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Abstract. We present a duality relation between two systems of coalescing random

walks and an analogous duality relation between two systems of coalescing Brownian

motions. Our results extends previous work in the literature and we apply it to the

study of a system of coalescing Brownian motions with Poisson immigration.

1. Introduction

Consider a system of m indexed particles with locations in R that evolve as follows.

Each particle moves according to an independent standard Brownian motion on R until

two particles are at the same location. At this moment a coalescence occurs and the

particle of higher index starts to move together with the particle of lower index. We

say the particle with higher index is attached to the particle with lower index, which is

still free. The particle system then continues its evolution in the same fashion. Note that

indices are not essential here, the collection of locations of the particles is Markovian in its

own right, but it will be convenient to think of the process as taking values in Rm rather

than subsets of R with at most m elements. For definiteness, we will further assume that

the particles are indexed in increasing order of their initial positions: it it clear that the

dynamics preserve this ordering. Call the resulting Markov process X = (X1, . . . , Xm).

The analogous coalescing simple random walk has many applications. One successful

example is in voter model, which is particularly well understood because of a duality

relation with the coalescing random walk (see, for example, [Gri79, Lig99]). Similarly,

SNE supported in part by NSF grant DMS-0071468 and a Miller Institute for Basic Research in Science

research professorship, XZ supported by an NSERC grant.
1



2 STEVEN N. EVANS AND XIAOWEN ZHOU

coalescing Brownian motion plays a key role in analyzsing some complex interactive sto-

chastic systems. For example, in [DEF+00] the coalescing Brownian motion is dual to the

Brownian stepping-stone model in the sense that it determines the joint “moments” of

the latter. This interplay leads to further results on the Brownian stepping-stone model

in [Zho03]. A “continuous family” of coalescing Brownian motions, often referred as the

Arratia flow, serves as a fundamental example in the theory of stochastic flows. See

[Arr79, Har84] for accounts of this topic. The Arratia flow has been used to give an

example of an interesting noise that is not generated by Brownian motions or Poisson

processes [Tsi98, Tsi04]. More general “sticky” flows have recently been considered in

[LJR02, LJR03, War02].

Closed form analytic expressions for features of the joint distribution of coalescing

Brownian motion are rarely known, but some intriguing relationships have been observed

for stochastic systems involving coalescing Brownian motions. A self-duality relation for

the Arratia flow is described in the Introduction of [Arr79], where the borders between

clusters (that is, pre-images of particles) are shown to have the same joint distribution

as the locations of particles. A duality between a system of coalescing Brownain motions

and a system of annihilating Brownian motions is established in [DEF+00]. A dual rela-

tionship is presented in [STW00] between two system of Brownian motions, in which one

system runs forward in time, the other runs backward in time, Brownian motions from the

same system coalesce and Brownian motions from different systems reflect on each other.

Another result along this line is obtained in in [TW97], which involves a duality on two

flows of Brownian motions moving at opposite directions of the time interval (−∞,∞).

Within each flow, the Brownian motions coalesce, and meanwhile each Brownian motion

is either reflected or absorbed at 0 depending on when it reaches 0. There is no interaction

between the two flows.

The distribution of X(t) is uniquely specified by knowing for each choice of y1 < y2 <

. . . < yn the joint probabilities of which “balls” X1(t), X2(t), . . . , Xm(t) lie which of the

“boxes” [y1, y2], [y2, y3], . . . , [yn−1, yn]. That is, the distribution of X(t) is determined by
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the joint distribution of the indicators

I→ij (t,y) := 1{Xi(t) ∈ [yj, yj+1]}

for 1 ≤ i ≤ m and 1 ≤ j ≤ n− 1.

Suppose now that Y := (Y1, . . . , Yn) is another coalescing Brownian motion. The

distribution of Y(t) is uniquely specified by knowing for each choice of x1 < x2 < . . . < xn

the distribution of the indicators

I←ij (t,x) := 1{xi ∈ [Yj(t), Yj+1(t)]}

for 1 ≤ i ≤ m and 1 ≤ j ≤ n− 1.

Thus we can think of a coalescing Brownian motion as being a set of evolving balls

with the distribution at time t determined by how the balls fall in a fixed set of boxes,

or we can think of a coalescing Brownian motion as giving a set of evolving boxes with

the distribution at time t determined by how these boxes contain a fixed set of balls. We

show that these two points of view are dual to each other in the sense that if X(0) = x

and Y(0) = y, then for each t ≥ 0 the arrays of indicators (I→ij (t,y)) and (I←ij (t,x))

have the same joint distribution. We derive this duality from an analogous, essentially

combinatorial, fact about coalescing simple random walk.

Special cases of the above mentioned duality were proved earlier in [XZ]. Instead of

using a discrete approximation approach, the results there were directly obtained from

coalescing Brownian motions, and, as a result, the proofs were rather lengthy.

Moreover, we extend the Brownian motion result to a situation where the “balls” and

the “boxes” are allowed to originate at different points in time (rather than all originating

at time 0). This latter extended result is then used to analyse the asymptotic behaviour

of a system of coalescing Brownian particles in which new particles arise according to a

homogeneous space–time Poisson point process.

The rest of this paper is arranged as follows. Section 2 contains the preparation and

the proof of our main result on the duality between two coalescing simple random walks.

In section 3 we generalize this dual relationship to coalescing Brownian motions starting
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from possibly different times. Some known results are re-derived. In section 4 we further

generalize the duality to a model with both coalescing Brownian motion and Poisson

migration included.

2. Coalescing random walk

A p-simple random walk on Z is a continuous time simple random walk that makes

jumps at unit rate, and when it makes a jump from some site it jumps to the right

neighbour with probability p and to the left neighbour with probability 1 − p. An m-

dimensional p-simple coalescing random walk is defined in the same way as the coalescing

Brownian motion of the Introduction. When p = 1
2

we just call this particle system a

simple coalescing random walk.

Some notation is useful to keep track of the interactions among the particles in the

coalescing system. Let Pm denote the set of interval partitions of the totality of indices

Nm := {1, . . . , n}. That is, an element π of Pn is a collection π = {A1(π), . . . , Ah(π)}
of disjoint subsets of Nm such that

⋃
i Ai(π) = Nm and a < b for all a ∈ Ai, b ∈ Aj,

i < j. The sets A1(π), . . . Ah(π) consisting of consecutive indices are the intervals of the

partition π. The integer h is the length of π and is denoted by l(π). Equivalently, we can

think of Pm as a set of equivalence relations on Nm and write i ∼π j if i and j belong to

the same interval of π ∈ Pm. Of course, if i ∼π j, then i ∼π k ∼π j for all i ≤ k ≤ j.

Given π ∈ Pm, define

αi(π) := min Ai(π)

to be the left-hand end-point of the ith interval Ai(π). Put

Zm
π := {(x1, . . . , xm) ∈ Zm : x1 ≤ . . . ≤ xm and xi = xj if i ∼π j}

and

Ẑm
π := {(x1, . . . , xm) ∈ Zm : x1 ≤ . . . ≤ xm and xi = xj if and only if i ∼π j}.

Note that Zm is the disjoint union of the sets Ẑm
π , π ∈ Pm.
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Write X = (X1, . . . , Xm) for the coalescing random walk. If X(t) ∈ Ẑm
π , then the free

particles at time t have indices α1(π), . . . , αl(π)(π) and the ith particle at time t is attached

to the free particle with index

min{j : 1 ≤ j ≤ m, j ∼π i} = max{αk(π) : αk(π) ≤ i}.

In order to write down the generator of X, we require a final piece of notation. Let

{ek
i : 1 ≤ i ≤ k} be the set of coordinate vectors in Zk; that is, ek

i is the vector that has

ith coordinate 1 and all other coordinates 0. For π ∈ Pm, define a map Kπ : Zm
π → Zl(π)

by

Kπ(x) = Kπ(x1, . . . , xm) := (xα1(π), . . . , xαl(π)(π))

Notice that Kπ is a bijection between Zm
π and {x ∈ Zl(π) : x1 ≤ x2 ≤ . . . ≤ xl(π)}. For

brevity, we will sometimes write xπ for Kπ(x).

Write B(Zm) for the collection of all bounded functions on Zm. The generator G of X

is the operator G : B(Zm) → B(Zm) given by

Gf(x) := p

l(π)∑
i=1

f ◦K−1
π (xπ + e

l(π)
i ) + (1− p)

l(π)∑
i=1

f ◦K−1
π (xπ − e

l(π)
i )

− l(π)f ◦K−1
π (xπ), f ∈ B(Zm), x ∈ Ẑm

π , π ∈ Pm.

This expression is well-defined, because if x ∈ Ẑm
π , then xπ, xπ + e

l(π)
i and xπ − e

l(π)
i are

all in {x ∈ Zl(π) : x1 ≤ x2 ≤ . . . ≤ xl(π)}.
Note: From now on we will suppress the dependence on dimension and write e

l(π)
i as ei.

Write Z′ := Z + 1
2

= {i + 1
2

: i ∈ Z}. An n-dimensional q-simple coalescing random

walk on Z′n and its generator H can be defined in the obvious way. Such a process, with

q = 1− p, will serve as the process dual to the p-simple coalescing random walk on Zm in

the following way.

Fix x ∈ Zm with x1 ≤ . . . ≤ xm and y ∈ Z′n with y1 ≤ . . . ≤ yn. By analogy with the

notation introduced in the Introduction, put

I→ij (t,y) := 1{Xi(t) ∈ [yj, yj+1]}
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and

I←ij (t,x) := 1{xi ∈ [Yj(t), Yj+1(t)]}

for 1 ≤ i ≤ m and 1 ≤ j ≤ n− 1.

Theorem 2.1. Suppose in the notation above that X = (X1, . . . , Xm) is an m-dimensional

p-simple coalescing random walk starting at x = (x1, . . . , xm) with x1 ≤ . . . ≤ xm and

Y = (Y1, . . . , Yn) is a n-dimensional (1 − p)-simple coalescing random walk starting at

y = (y1, . . . , yn) with y1 ≤ . . . ≤ ym. Then for each t ≥ 0 the joint distribution of the

m× (n− 1)-dimensional random array (I→ij (t,y)) coincides with that of the m× (n− 1)-

dimensional random array (I←ij (t,x)).

Proof. For a function g : {0, 1}m(n−1) → R, a vector x̃ ∈ Zm with x̃1 ≤ . . . ≤ x̃m, and a

vector ỹ ∈ Z′n with ỹ1 ≤ . . . ≤ ỹn, set

ḡ(x̃; ỹ) := g(1[ỹ1,ỹ2](x̃1), . . . , 1[ỹn−1,ỹn](x̃1), . . . , 1[ỹ1,ỹ2](x̃m), . . . , 1[ỹn−1,ỹn](x̃m)).

We may assume that X and Y are defined on the same probability space (Ω,F ,P). We

need to show that

(2.1) P[ḡ(Xt;y)] = P[ḡ(x;Yt)].

For x̃ ∈ Zm, put ḡx̃(·) := ḡ(x̃; ·), and for ỹ′ ∈ Z′n, put ḡỹ(·) := ḡ(·; ỹ). In order to

establish (2.1), it suffices by a standard argument (cf. Section 4.4 in [EK86]) to show that

(2.2) G(ḡy)(x) = H(ḡx)(y)

(recall that G and H are the generators of X and Y, respectively).

Fix x ∈ Ẑm
π and y ∈ Ẑ′n$ for some π ∈ Pm and $ ∈ Pn. Set

I+ := {i : 1 ≤ i ≤ l(π), xαi(π) +
1

2
= yαj($) for some 1 ≤ j ≤ l($)}

and

I− := {i : 1 ≤ i ≤ l(π), xαi(π) − 1

2
= yαj($) for some 1 ≤ j ≤ l($)}.



COALESCING BROWNIAN MOTIONS 7

Similarly, put

J− := {j : 1 ≤ j ≤ l($), yαj($) − 1

2
= xαi(π) for some 1 ≤ i ≤ l(π)}

and

J+ := {j : 1 ≤ j ≤ l($), yαj($) +
1

2
= xαi(π) for some 1 ≤ i ≤ l(π)}.

Recall that xα1(π) < . . . < xαl(π)(π) and yα1($) < . . . < yαl($)($). Therefore, for each

i ∈ I+ there is a unique j ∈ J− such that xαi(π) + 1
2

= yαj($) and vice versa. Fix such a

pair (i, j). Observe that

x′ := x +
∑

k∈Ai(π)

em
k = K−1(xπ + ei)

and

y′ := y −
∑

k∈Aj($)

en
k = K−1(y$ − ej).

Writing 1(B)(·) for the indicator function of a set B, we are going to verify that

(2.3) (1([yj′ , yj′+1])(x
′
i′)) = (1([y′j′ , y

′
j′+1])(xi′))

by considering all the possible scenarios.

Given any i′ ∈ Ai(π) we have:

• for j′ = αj($)− 1,

1([yj′ , yj′+1])(x
′
i′) = 1([yj′ , yj′+1])(xi′ + 1)

= 0

= 1([yj′ , yj′+1 − 1])(xi′) = 1([y′j′ , y
′
j′+1])(xi′),

• for αj($) ≤ j′ < max Aj($),

1([yj′ , yj′+1])(x
′
i′) = 1([yj′ , yj′+1])(xi′ + 1)

= 0

= 1([yj′ − 1, yj′+1 − 1])(xi′) = 1([y′j′ , y
′
j′+1])(xi′),
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• for j′ = max Aj($),

1([yj′ , yj′+1])(x
′
i′) = 1([yj′ , yj′+1])(xi′ + 1)

= 1

= 1([yj′ − 1, yj′+1])(xi′) = 1([y′j′ , y
′
j′+1])(xi′),

• and for j′ < αj($)− 1 or j′ > max Aj($),

1([yj′ , yj′+1])(x
′
i′) = 1([yj′ , yj′+1])(x

′
i′) = 1([yj′ , yj′+1])(xi′ + 1)

= 0

= 1([yj′ , yj′+1])(xi′) = 1([y′j′ , y
′
j′+1])(xi′).

Moreover, given any i′ 6∈ Ai(π), we have xi′ 6= xαi(π). Hence

• for j′ = αj($)− 1,

1([yj′ , yj′+1])(x
′
i′) = 1([yj′ , yj′+1])(xi′) = 1([yj′ , yj′+1 − 1])(xi′) = 1([y′j′ , y

′
j′+1])(xi′),

• for j′ = max Aj($),

1([yj′ , yj′+1])(x
′
i′) = 1([yj′ , yj′+1])(xi′) = 1([yj′ − 1, yj′+1])(xi′) = 1([y′j′ , y

′
j′+1])(xi′),

• for αj($) ≤ j′ < max Aj($),

1([yj′ , yj′+1])(x
′
i′) = 1([yj′ , yj′+1])(xi′) = 1([yj′ − 1, yj′+1 − 1])(xi′) = 1([y′j′ , y

′
j′+1])(xi′),

• and for j′ < αj($)− 1 or j′ > max Aj($),

1([yj′ , yj′+1])(x
′
i′) = 1([yj′ , yj′+1])(xi′) = 1([y′j′ , y

′
j′+1])(xi′).

Combining the above observations yield (2.3).

Therefore,

ḡy ◦K−1
π (xπ + ei) = ḡx ◦K−1

π (y$ − ej).

Furthermore, it is easy to see for i′ 6∈ I+ that

ḡy ◦K−1
π (xπ + ei′) = ḡy ◦K−1

π (xπ)
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and for j′ 6∈ J− that

ḡx ◦K−1
$ (y$ − ej′) = ḡx ◦K−1

$ (y$).

Similarly, for any i ∈ I− there exists a unique j ∈ J+ such that xαi(π)− 1
2

= yαj($) and

vice versa. For such a pair (i, j) we have

ḡy ◦K−1
π (xπ − ei) = ḡx ◦K−1

π (y$ + ej).

Furthermore, we see for i′ 6∈ I− that

ḡy ◦K−1
π (xπ − ei′) = ḡy ◦K−1

π (xπ)

and for j′ 6∈ J+ that

ḡx ◦K−1
$ (y$ + ej′) = ḡx ◦K−1

$ (y$).

Lastly, note that

ḡy ◦K−1
π (xπ) = ḡ(x;y) = ḡx ◦K−1

$ (y$)

and so

G(ḡy)(x)−H(ḡx)(y)

= p

l(π)∑
i=1

(
ḡy ◦K−1

π (xπ + ei)− ḡy ◦K−1
π (xπ)

)

+ (1− p)

l(π)∑
i=1

(
ḡy ◦K−1

π (xπ − ei)− ḡy ◦K−1
π (xπ)

)

− p

l($)∑
j=1

(
ḡx ◦K−1

$ (y$ − ei)− ḡx ◦K−1
$ (y$)

)

− (1− p)

l($)∑
j=1

(
ḡx ◦K−1

$ (y$ + ei)− ḡx ◦K−1
$ (y$)

)

= p
∑

i∈I+

ḡy ◦K−1
π (xπ + ei)− p

∑

j∈J−
ḡx ◦K−1

$ (y$ − ej)

+ (1− p)
∑

i∈I−
ḡy ◦K−1

π (xπ − ei)− (1− p)
∑

j∈J+

ḡx ◦K−1
$ (y$ + ej)

= 0,
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as required. ¤

Remark 2.2. One can see from the proof that it is crucial that the random walks make

only nearest neighbor jumps.

3. Coalescing Brownian motion

In this section we will show that the duality in Theorem 2.1 also holds when the coa-

lescing random walks are replaced by coalescing Brownian motions. Coalescing Brownian

motion can be defined similarly to coalescing random walk. This duality between two co-

alescing Brownian motions follows if one can show the unsurprising fact that a coalescing

random walk scaled in time and space in the usual way converges weakly to a coalescing

Brownian motion.

Proposition 3.1. The conclusion of Theorem 2.1 holds when the coalescing random walks

are replaced by coalescing Brownian motions in the definition of (I→ij (t,y)) and (I←ij (t,x)).

We omit the the proof, but remark that a particularly straightforward martingale argu-

ment proof of the convergence of coalescing random walk to coalescing Brownian motion

can be given using the following result that parallels Lévy’s celebrated martingale char-

acterization of Brownian motion (and is a fairly simple consequence of that result). We

also omit the proof of this theorem.

Theorem 3.2. Let X be an m-dimensional continuous process with X(0) = x, where

x1 ≤ . . . ≤ xm, and let FX denote the filtration generated by X. Then the following are

equivalent.

(i) The process X is a coalescing Brownian motion.

(ii) For each 1 ≤ i ≤ m, the process Xi is a Brownian motion with respect to FX, and

for each pair 1 ≤ i < j ≤ n, the process 1√
2
(Xj −Xi) is a Brownian motion stopped

at 0 with respect to FX.

(iii) The process X is a continuous martingale with quadratic variation 〈Xi, Xj〉t = t −
Tij ∧ t, where Tij := inf{s ≥ 0 : Xi(s) = Xj(s)}, 1 ≤ i ≤ j ≤ n.
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For a function g : {0, 1}m(n−1) → R, a vector x̃ ∈ Zm with x̃1 ≤ . . . ≤ x̃m, and a vector

ỹ ∈ Z′n with ỹ1 ≤ . . . ≤ ỹn, set

ḡ(x̃; ỹ) := g(1[ỹ1,ỹ2](x̃1), . . . , 1[ỹn−1,ỹn](x̃1), . . . , 1[ỹ1,ỹ2](x̃m), . . . , 1[ỹn−1,ỹn](x̃m)).

Proposition 3.1 says that for any x and y

P[ḡ(Xt;y)] = P[ḡ(x;Yt)].

By choosing the right function g we can recover some known dualities. For example, given

π = (A1, . . . , Ah) ∈ Pn and y1 < . . . < y2h, put

ḡ(x;y) =
h∏

j=1

∏
i∈Aj

1[y2j−1,y2j ](xi), x ∈ Rn, y ∈ Rm.

Then Proposition 3.1 implies that

P





h⋂
j=1

⋂
i∈Aj

{Xi(t) ∈ [y2j−1, y2j]}


 = P





h⋂
j=1

⋂
i∈Aj

{xi ∈ [Y2j−1(t), Y2j(t)]}


 ,

which gives the duality in Theorem 1.1 of [XZ]. If we choose

ḡ(x;y) =
n∏

i=1

(
1−

m∏
j=1

(1− 1[y2j−1,y2j ](xi))

)
, x ∈ Rn, y1 < . . . < y2m,

then

P

{
n⋂

i=1

{Xi(t) ∈
m⋃

j=1

[y2j−1, y2j]}
}

= P

{
n⋂

i=1

{Xi(0) ∈
m⋃

j=1

[Y2j−1(t), Y2j(t)]}
}

.

Therefore, Proposition 3.7 in [XZ] follows readily.

The duality Proposition 3.1 can be generalized to one involving coalescing Brownian

motion starting from different times. In order to state this result, it will be convenient to

think of coalescing Brownian motion a little differently from what we have done so far. As

we have defined it, the coalescing Brownian motion X takes values in the space {x ∈ Rm :

x1 ≤ x2 ≤ . . . ≤ xm}. It will be more convenient to work with a related process for which

we don’t impose this condition. Given an arbitrary x ∈ Rm, let σ be any permutation

of the indices {1, 2, . . . , m} such that xσ(1) ≤ xσ(2) ≤ . . . xσ(m). Let X̃ be an Rm-valued
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process that has the same distribution as the process (Xσ(1), Xσ(2), . . . , Xσ(m)), where

X(0) = (xσ(1), xσ(2), . . . , xσ(m)). It is not difficult to see that X̃ is a time-homogeneous

strong Markov process. The following result is obvious.

Corollary 3.3. The duality in Proposition 3.1 holds when the ordered coalescing Brown-

ian motion X is replaced by the unordered coalescing Brownian motion X̃.

Given ((s1, x1), . . . , (sm, xm)) ∈ (R+ × R)m with 0 ≤ s1 ≤ s2 ≤ . . . ≤ sm, define a

process X̄ taking values in {ε} ∪ ⋃m
k=1(R+ × R)k, where ε is the null vector, as follows.

Let 0 ≤ σ1 < . . . < σ` denote the distinct elements of (s1, . . . , sm) written in order.

For t ∈ [0, σ1[, X̄(t) = ε. For t ∈ [σ1, σ2[, X̄ evolves as X̃(· − σ1) under the initial

condition X̃(0) = (xi : si = σ1). Inductively, if X̄(t) has been defined on [0, σh[, then

for t ∈ [σh, σh+1[ (with the convention σ`+1 = ∞), X̄ evolves conditionally independently

of {X̄(u) : u ∈ [0, σh[} given X̄(u−) as X̃(· − σh) under the initial condition X̃(0) =

X̄(u−) ∪ (xi : si = σh) (where ∪ denotes the operation of appending one vector to the

end of the other).

The following result is a straightforward consequence of Proposition 3.1 and repeated

applications of the Markov property.

Proposition 3.4. Let ((s1, x1), . . . , (sm, xm)) and X̄ be as above, and let Y = (Y1, . . . , Yn)

be a coalescing Brownian motion starting at y = (y1, . . . , yn), with y1 ≤ . . . ≤ ym. Then,

for t ≥ maxi si, the m× (n− 1)-dimensional random array

(
1[yj ,yj+1](X̄i(t))

)

has the same distribution as

(
1[Yj(t−si),Yj+1(t−si)](xi)

)
.

Given two functions f, g : R+ → R with f(t) ≤ g(t) for all t, let D→
t (f, g) ⊂ [0, t] × R

denote the region sandwiched between the graphs of f and g up to time t. That is,

D→
t (f, g) := {(s, y) : 0 ≤ s ≤ t, f(s) < y < g(s)}.
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Let D←
t (f, g) := {(t − s, y) : (s, y) ∈ Dt(f, g)} be the region D→

t (f, g) time-reversed at

time t. The conclusion of in Proposition 3.4 is that the random array

(
1[yj ,yj+1](X̃i(t))

)

has the same distribution as the random array

(1{(si, xi) ∈ D←
t (Yj, Yj+1)}) .

4. Coalescing Brownian motion with Poisson migration

In this section we are going to study a particle system which can be described intuitively

as follows. Given a time-space Poisson random measure Π+ on R+ × R with intensity

measure λ× Lebesgue. Particles appear at the atoms of Π+. Once a particle appears, it

starts to move. The existing particles execute coalescing Brownian motion with possibly

different initial times. Define a set-valued process S by taking St to be the set of locations

of those particles at time t > 0.

The easiest way to define S formally is via the coalescing Brownian flow φ of Arratia

[Arr79]. Here φ(s, t, x) for s, t, x ∈ R with s ≤ t is a collection of random variables with

the properties

• the random map (s, t, x) 7→ φ(s, t, x) is jointly measurable,

• for each s and x, the map t 7→ φ(s, t, x), t ≥ s, is continuous,

• for each s and t with s ≤ t, the map x 7→ φ(s, t, x) is non-decreasing and right-

continuous,

• for s ≤ t ≤ u, φ(t, u, ·) ◦ φ(s, t, ·) = φ(s, u, ·),
• for u ∈ R, (s, t, x) 7→ φ(s + u, t + u, x) has the same distribution as φ,

• for x1, . . . , xm ∈ R the process (φ(0, t, x1), . . . , φ(0, t, xm))t≥0 has the same distri-

bution as X̃ started at (x1, . . . , xm).

We then set

St = {φ(s, t, x) : (s, x) ∈ Π+, 0 ≤ s ≤ t},

where we use the short-hand notation (s, x) ∈ Π+ to mean that (s, x) is an atom of Π+.
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For any b > 0 we have that almost surely

St ∩ [−b, b] = {φ(s, t, x) ∈ [−b, b] : (s, x) ∈ Π+, 0 ≤ s ≤ t, x ∈ [−a, a]}

for all a > 0 sufficiently large: in particular, St is almost surely a discrete set and we

identify St interchangeably with the simple point process obtained by placing a unit mass

on each point. Using this observation, conditioning on Π+, by Proposition 3.4, and taking

limits, we get the following result which characterizes the avoidance function and hence

the distribution of St (see Theorem 3.3 of [Kal76]).

Proposition 4.1. Given y1 < . . . < y2n, let Y be a coalescing Brownian motion starting

from (y1, . . . , y2n). Then

P

{
St ∩

n⋃
j=1

]y2j−1, y2j] = ∅
}

= P

[
exp

(
−λ

n∑
j=1

∫ t

0

Y2j(s)− Y2j−1(s)ds

)]
.

We can re-phrase Proposition 4.1 as follows. For fixed a0 ∈ R, the function

b 7→ |D→
t (φ(0, ·, b), φ(0, ·, a0))| =

∫ t

0

φ(0, s, b)− φ(0, s, a0) ds, b ≥ a0,

where | · | denotes Lebesgue measure in the plane, is non-negative, non-decreasing, and

right-continuous. It follows that there is a unique random Radon measure Mt on R such

that

Mt(]a, b]) =

∫ t

0

φ(0, s, b)− φ(0, s, a) ds, b ≥ a.

Proposition 4.1 then says that St is the simple point process obtained by placing a unit

mass at each atom of the Cox process with the random intensity measure λMt; that is,

conditional on Mt = m, St is distributed as the random measure which places a unit mass

at each atom of a Poisson process with intensity measure λm. Note that Mt has atoms,

and so the resulting Cox process will not be a simple point process; that is, it can have

atoms with mass greater than one. Consequently, St is not a Cox process.
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There is a unique random Radon measure M∞ on R such that

M∞(]a, b]) =

∫ ∞

0

φ(0, s, b)− φ(0, s, a) ds

= lim
t→∞

Mt(]a, b])

= sup
t≥0

Mt(]a, b]), b ≥ a,

(the finiteness of M∞(]a, b]) is assured by the continuity of s 7→ φ(0, s, a) and s 7→ φ(0, s, b)

and the fact that φ(0, s, a) = φ(0, s, b) for all s sufficiently large). Hence St converges in

distribution as t → ∞ to the simple point process obtained by placing a unit mass at

each atom of the Cox process with the random intensity measure λM∞. As with St, the

point process S∞ is not a Cox process.

We can give an almost sure construction of S∞ as follows. Consider a Poisson random

measure Π− on R− × R with intensity measure λ × Lebesgue. Then St has the same

distribution as

{φ(s, 0, x) : (s, x) ∈ Π−, −t ≤ s ≤ 0},

and so S∞ has the same distribution as

{φ(s, 0, x) : (s, x) ∈ Π−, −∞ < s ≤ 0}.

We can do some explicit computations for S∞. In what follows, let Ai denote the Airy

function – see [AS72] for its definition and related properties.

Proposition 4.2. For a < b,

P{S∞∩]a, b] = ∅} =
Ai

(
λ

1
3 (b− a)

)

Ai(0)

and

P[# S∞∩]a, b]] = (3λ)
1
3
Γ(2

3
)

Γ(1
3
)
(b− a).
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Proof. Let (Y1, Y2) be a two-dimensional coalescing Brownian motion starting at (a, b).

Then 1√
2
(Y2−Y1) is a Brownian motion stopped at 0. By Theorem 1 in [Lef89], Theorem

1 in [Lac93], or Proposition 5.14 in [GS79], we have

P{S∞∩]a, b] = ∅} = P [exp(−λM∞(]a, b]))]

= P
[
exp

(
−λ

∫ ∞

0

Y2(s)− Y1(s) ds

)]

=
Ai

(
λ

1
3 (b− a)

)

Ai(0)
.

Note that

lim
d−c↓0

P{S∞∩]c, d] 6= ∅}
d− c

= − d

dx

Ai
(
λ

1
3 x

)

Ai(0)

∣∣∣∣∣
x=0

= −λ
1
3
Ai′(0)

Ai(0)

= (3λ)
1
3
Γ(2

3
)

Γ(1
3
)
.

Thus,

P[# S∞∩]a, b]] = lim
n→∞

n∑
i=1

P
{

S∞ ∩
]
a +

(i− 1)(b− a)

n
, a +

i(b− a)

n

]
6= ∅

}

= (3λ)
1
3
Γ(2

3
)

Γ(1
3
)
(b− a).

¤
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55. Shuanming Li and José Garrido, On Ruin for the Erlang(n) Risk Pro-
cess, June 2003

56. G. Jogesh Babu and Yogendra P. Chaubey, Smooth Estimation of a Dis-
tribution and Density function on a Hypercube Using Bernstein Poly-
nomials for Dependent Random Vectors , August 2003
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