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Abstract 
 
In this paper we study efficient hedging and its applications to the pricing of equity-
linked life insurance contracts. We devote our attention to the pure endowment contracts 
with a flexible guarantee. In our setting, these insurance instruments are based on two 
risky assets of the market controlled by the Black-Scholes model during the contract 
period. The first asset is responsible for the maximal size of future profit while the second 
provides a flexible guarantee for the insured. 
The insurance company is considered as a hedger of a maximum of two risky assets as a 
contingent claim in this market. The contract is exercised if the insured is still alive at the 
maturity time and cannot be perfectly hedged in view of a positive survival probability of 
a client. To provide an appropriate risk-management in connection of such a contract, the 
company should exploit some imperfect hedging forms. Here we propose the use of 
efficient hedging with a power loss function. 
Specifying developments in this area, we create the pricing methodology for the 
insurance contracts under consideration in terms of a generalized Margrabe’s formula. 
The results are illustrated by a numerical actuarial analysis with the indices Russell 2000 
and Dow Jones Industrial Average. 
 
Key words: equity-linked life insurance, efficient hedging, flexible guarantee, pure 
endowment, Margrabe’s formula. 
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1. Introduction 
 
These innovative insurance contracts combine both financial and insurance risks and 
allow insurance companies to be competitive in the modern financial system. Therefore, 
the problem of the pricing of these contracts should be very important for various 
insurance institutions. The first papers on this topic (see Brennan and Schwartz (1976, 
1979), Boyle and Schwartz (1977)) were devoted to pure endowment contracts with fixed 
guarantee. The authors of these papers recognized a close connection of equity-linked life 
insurance and option pricing discovered several years before by Black, Scholes, and 
Merton. They recognized that the payoff of such an insurance contract is identical to the 
payoff of a call option with the strike price equal to the guarantee plus some fixed 
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amount. We should also mention the papers by Delbaen (1986), and Bacinello and Ortu 
(1993) where the contracts with guarantees modeled as deterministic functions were 
studied by an application of the Black-Scholes-Merton option pricing theory and the 
Monte-Carlo numerical technique. Aase and Person (1994) were probably the first who 
gave relatively strong mathematical theory of the pricing of equity-linked life insurance 
policies based on perfect hedging. Boyle and Hardy (1997) investigated advantages and 
disadvantages of methods available for such pricing including transaction costs. Moeller 
(1998, 2002) proposed another approach exploiting the mean-variance hedging theory by 
Follmer-Sondermann-Schweizer. He gave a full description of the optimal (in the mean-
variance sense) initial prices and hedging strategies for the contracts with fixed 
guarantees. 
To complete our brief historical description of the subject we would like to mention the 
books of Hardy (2003) and Melnikov (2004a). The first one can be regarded as rich 
source of general information about equity-linked contracts. The second one develops 
quantitative methods of risk-management in finance and insurance, and devoted to 
mathematical aspects of the pricing of equity-linked life insurance. 
We study here the contracts pure endowment with flexible guarantees, and therefore, the 
contracts with fixed and deterministic guarantees can be regarded as particular cases. In 
our setting, these contracts are based on two risky assets of the Black-Scholes model on 

. The first asset  is more profitable while the second one  is more reliable. So, 

 can be considered as possible gains of insured and  as a flexible guarantee. We 

consider the insurance company as a hedger of the claim . It is exercised 
only if the insured is still alive at the time 

[ T,0 ] 1
TS 2

TS
1
tS 2

TS

),max( 21
TT SS

T . This contingent claim cannot be hedged 
perfectly due to survival probability, which is less than one. Therefore, the initial capital 
of any admissible strategy is strictly less than the initial capital of a perfect hedge. In this 
situation, we must use another type of hedging when the optimal strategy is obtained by 
minimization of the expected value of some loss function under the above restriction of 
the initial capital of the strategy. This is efficient hedging introduced and developed by 
Follmer and Leukert (2000). We apply their general results to the case of the power loss 
function and obtain the concrete formulae in case of our pricing problem in terms of 
Margrabe’s formula (1978). We formulate our results in a form that is most convenient 
for actuarial analysis where the survival probability is given as a quantitative 
characteristic of insurance component of risk, and is compared with a pure financial risk 
component. Finally, we give a numerical actuarial analysis based on our theoretical 
results and real financial data for assets  (the Russell 2000) and  (the Dow Jones 
Industrial Average). 
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2. Basic notions and auxiliary results 
 

The paper presents new actuarial methodology of pricing equity-linked life insurance 
contracts with a flexible guarantee. Keeping in mind both, the theoretical and applied 
character of the paper, we consider the following Black-Scholes model for the underlying 
risky asset  and flexible guarantee : 1S 2S

( ) .,2,1, TtidWdtSdS tii
i
t

i
t ≤=+= σµ                                 (2.1) 

Here iµ  and iσ  are the rate of return and volatility of the asset ,  is a 
Wiener process defined on a standard stochastic basis 

iS ( ) TttWW ≤=

( )( )PFF Ttt ,,, ≤=Ω F . 
 
We note that the model (2.1) can be rewritten with the help of Kolmogorov-Ito’s formula 
as follows (see Shiryaev (1999)): 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−= ti

i
i

ii
t WtSS σ

σ
µ

2
exp

2

0                                          (2.2) 

For the non-risky asset B , we assume for simplicity that 1=tB . Therefore, the risk-free 
interest rate is equal to zero. 
 
We consider the model (2.1)-(2.2) under a technical condition 1221 σµσµ =  to make 

risky asset  and guarantee   by martingales over a measure  with the density with 
respect to 
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Remark 2.1. According to the Girsanov theorem, the process  tWW Tt
1

1*

σ
µ

+=  

is a Wiener process with respect to . *P
Remark 2.2. The case of a constant guarantee can be included in our consideration with 

.022 == µσ  

Remark 2.3. We consider here the model where both the guarantee  and  risky asset  
are generated by the same Wiener process. The case where these assets are modeled by 
different correlated Wiener processes is studied in another paper by the first author. 
Finally, as a direct corollary of (2.2) we note the following useful representation of the 
guarantee  through the underlying risky asset : 

2
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tS
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We are going to study the pure endowment contracts with flexible guarantee based on the 
model (2.1)-(2.2). Assume that a client at age x  has the remaining lifetime . This 
random variable is defined on the probability space 

( )xT
( )PF ~,~,~Ω . The payoff of the contracts 

under consideration has the form 
( )( ) { } ( ){ .,max 21

TxTTT ISSxTH >⋅= }                                       (2.4) 
Let us rewrite the pure financial component of (2.4) as follows: 

{ } ( ) ,,max 21221 +
−+= TTTTT SSSSS                                             (2.5) 

where  ( ) .,,0max 1Rxxx ∈=
+

Using (2.5) we can reduce the pricing of the claim (2.4) to the pricing of the option 

( )+−
21
TT SS  provided . It is quite natural to consider the contract with the 

payoff (2.4) on the product probability space 
( ){ TxT > }

( )PPFF ~,~,~ ××Ω×Ω  emphasizing the 
independence of financial and insurance risks. 
What price for the contract (2.4) would be appropriate? According to the option pricing 
theory, we can find it using (2.4)-(2.5) as follows: 

( )( ) ( ) ( ) ,~ 21*2** +
−+=×= TTxTTxTxT SSEpSEpxTHEEU                          (2.6) 

where ( ){ TxTPpxT >= }~  is a survival probability, EE ~*
×  is expectation with respect to 

PP ~*
× .  

Rewriting (2.6) as 

( ) ( ) ,21*2* +
−=− TTxTTxTxT SSEpSEpU                                 (2.7) 

we arrive to the conclusion that the value ( )2*
TxTxT SEpU −  is the maximal available 

initial price of the option ( )+−
21
TT SS . On the other hand, the equality (2.7) shows that this 

price is strictly less than the initial price ( )+−
21*
TT SSE  of perfect hedge. 

 
Recall (see Shiryaev (1999)) that for the market (2.1)-(2.2) with the basic risky asset 

, any process 1
tt SS = ( ) 0, ≥= tttt γβπ  adapted to the price evolution  is called a tF
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portfolio (strategy). Define its value (capital) as a sum . We shall 
consider only self-financing strategies satisfying the following condition 

, where all stochastic differentials are well defined.  

tttt SX γβ
π

+=

tttt dSddX γβ
π

+=
Every -measurable nonnegative random variable TF H  is called a contingent claim (c.c). 
A self-financing strategy π  is a perfect hedge for H  if 

HX T ≥
π (a.s.).                                                 (2.8) 

The option pricing theory of Black-Scholes-Merton in the framework of the model (2.1)-
(2.2) states that such a strategy does exist, is unique for a given contingent claim, and has 
the initial capital HE* . The idea of hedging in the sense (2.8) should be reformed if 

 .                                                  (2.9) HEXX T
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where inf  is taken over all self-financing strategies with nonnegative values satisfying 
the budget restriction (2.9). The optimal strategy satisfying (2.10) is called the efficient 
hedge (see Foellmer and Leukert (2000)).  
Below, we consider a power loss function . The main results in 
efficient hedging with this loss function are the following. 

( ) 0,0, ≥>= xpxxl p

Efficient hedge  for the problem (2.10) exists and coincides with a perfect hedge for a 
modified c.c.  with the structure  

*
π
pH

 ( ) HZaHH p
Tpp ∧−=

−11       for ,                              (2.11) 1>p

{ }p
pT HaZp IHH −−

>
⋅= 11        for 10 << p ,                              (2.12) 

{ }pT aZp IHH
>

−⋅= 1        for 1=p ,                                          (2.13)                              

where constants  are defined from the initial condition . pa 0
* XHE p =

According to (2.5)-(2.7), pricing of (2.5) can be reduced to hedging of ( )+−
21
TT SS  under 

the initial restriction 

 ( ) ( )++
−<−=≤

21*21*
00 TTTTxT SSESSEpXX π .                                  (2.14) 

To provide the corresponding actuarial analysis of (2.5), we shall use efficient hedging 

methodology applied to ( )+−
21
TT SS . 
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3. Actuarial analysis based on efficient hedging 
 
First of all, we would like to find a relationship between insurance and financial 
components of the contract (2.5). Using the definitions of perfect and efficient hedging, 
one can conclude from (2.6)-(2.7) that  

( ) ( )+ >

+
−=−= 0,

21*21*
0 ppTTTTxT SSESSEpX                               (3.1) 

where  is defined by (2.11)-(2.13). ( )+− pTT SS 21

 
Rewriting (3.1) to separate insurance and financial components of the contract, we obtain 
the following, convenient for our actuarial analysis, formula: 
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The left-hand side of (3.2) is equal to survival probability of the insured accumulating 
quantitatively insurance risk of the contract (2.5) while the right-hand side is related to 
pure financial risk. So, the equation (3.2) can be viewed as a key balance equation 
controlling the risks associated with the contract (2.5). 
The main problem is how to calculate the ratio in (3.2). The denominator of the ratio can 
be represented as 
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Because  are martingales with respect to 21, SS *P , we have , i=1,2.  ii
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where  are Gaussian random variables. Applying Lemma 2.4 from 
Melnikov (2004a), we find from (3.4) that 
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Using (3.4)-(3.5), we obtain a variant of Margrabe’s formula for the case under 
consideration 
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To provide an appropriate analysis of the contract (2.5) using the formula (3.2), we need 
to estimate the numerator of the ratio in (3.2). The main technical idea is to represent 
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Using (2.3) and (3.7), we obtain the next representation of : TZ
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Now we separate our analysis of the option ( )+− pTT SS 21  in three cases according to (2.11)-
(2.13). 
 
Case 1:   1>p .
 
According to (3.8), we have 
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Equation (3.10) has the unique solution 
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Using (3.9)-(3.12), we can represent ( )+− pTT SS 21  as follows 
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Taking into account the equality ( ){ } ({ pCYpCY TT
II ≤> )}−= 1 , we get 
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Using (3.14), we can calculate the difference between two terms in (3.13) reproducing 
exactly the same procedure as in (3.3)-(3.6) and replacing 1 by ( )pCC = : 
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To calculate other two terms in (3.13), we represent the product as follows p
TTYS α2
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Taking an expected value of (3.16) with respect to *P and using our technical condition 
1221 σµσµ = , we find that  
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Exploiting (3.16)-(3.17), we can reproduce the same procedure as in (3.3)-(3.6) (as in 
(3.15), we should replace there 1 by ( )pCC = ) and obtain 
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−

                    (3.18) 

 
Combining (3.2), (3.6), (3.13), (3.15), and (3.18), we arrive to the final formula 

( )
( )

( )( ) ( )( )
( )( ) (( ))

( ) ( ) ( ) ( )( )

( ) ( )( )
( )( ) ( )( )TSSbSTSSbS

TTCSSb

TSS
C

C

TSSbSTSSbS

TCSSbSTCSSbS

SSE

SSE
p

p

pp

TT

pTT
xT

pp

p

,,,,

,,

2
1exp1

,,,,

,,,,

2
0

1
0

2
0

2
0

1
0

1
0

21
2
0

1
0

2
2112

0
1
0

2
0

1
0

2
0

2
0

1
0

1
0

2
0

1
0

2
0

2
0

1
0

1
0

21*

21*

−+

−

−+

−+

−+
+

+

Φ−Φ

−+Φ
×

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −

−
−

+

Φ−Φ

Φ−Φ
=

−

−
=

σσα

σσ
αα

αα
α

                 (3.19) 

 9



where we replaced a constant ( )11 −p
pGa  by ( )

pC

C
α

+−1  according to the equation (3.12). 

 
Remark 3.1. If   is known, we can reconstruct the constant  (and ) from (3.19) 
and find the corresponding hedging strategy as a perfect hedge for a modified claim. 

xT p C pa

 
Case 2:   10 << p .
 
This case can be treated in the same way. 

Taking into account the structure of ( )+− pTT SS 21  in (2.12), we express the product 

( ) p

TT SZ
−12  introducing a free parameter γ  (see (3.7)-(3.12)) and get 

( ) ( ) ( ) ( ) ( ) .
122

1
112

21

1
2
1

1
p

T

p

TTT

p

TT GYSSSGSZ
ασσ

γµ

σ

µγ

==
−

+
−−

                            (3.20) 
 

In the equality (3.20) 
( ) ( pp −−−=
+

−= 11

21

1
2
1

1

σσ
γµ

σ

µγ
α )  and, hence, 

( )( )
( )

( )( )
( ) ( ) ( ) .111

,1

2
1

1

21

2
2
1

1

211

2
112

2
1

1

211

2
112

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−

−
+=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
−−

+=−

−
−−

==

pp

p

p

p

σ

µ
σσ

σ

σ

µ
σσµ

σµσ

σ

µ
α

σσµ
σµσ

γγ

                 (3.21) 

 
Consider the following analog of the characteristic equation (3.12): 

( )( ) .0,1
1

≥−=
−+−

yyGy
p

p
p α

α
                                  (3.22) 

Let us separate two possible situations.  
 
If  pp −>− 1α , then according to (3.21) 

( ) ( ) pp −>
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−

−
+ 112

1

1

21

2
2
1

1

σ

µ
σσ

σ

σ

µ      or      .12
1

1 p−>
σ

µ               (3.23) 

If the condition (3.23) is fulfilled, then the equation (3.22) admits one, two or zero 
solutions. All these cases can be considered in a similar way as in Case 1. 
 

If  pp −≤− 1α , then p−≤ 12
1

1

σ

µ and, therefore, the equation (3.22) has only one solution 

. The corresponding modified contingent claim can be rewritten in the form ( )pCC =

( ) ( ) ( ){ pCYTTpTT T
ISSSS ≤

++
−=−

2121
}                                         (3.24) 

and according to (3.2), we find (for 10 << p ) that  
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( )
( )

( )( ) ( )( )
( )( ) (( )) .

,,,,

,,,,
1 2

0
1
0

2
0

2
0

1
0

1
0

2
0

1
0

2
0

2
0

1
0

1
0

21*

21*

TSSbSTSSbS

TCSSbSTCSSbS

SSE

SSE
p

TT

pTT
xT

−+

−+
+

+

Φ−Φ

Φ−Φ
−=

−

−
=           (3.25) 

 
Remark 3.2.  Due to (3.24) we can analyze (3.25) in another way. We can fix a 
probability ( )( ) ,0,1 >−=≤ εεpCYP T and, using log-normality of , find  
through 

TY ( )pC
ε -quantile of a standard normal distribution. 

 
Case 3:  1=p .
 
According to (2.13) to reconstruct this modified contingent claim, we represent (see 
(3.7)-(3.12))  as follows TZ

( ) ( ) ( ) p

TTTT GYSSGZ
ασσ

γµ

σ

µγ

==
+

−
21

1
2
1

1
2

1
1                                          (3.26) 

where 
( )

21

1
2
1

11
σσ

γµ

σ

µγ
α −=

+
−=p  and, therefore, 

( )

( ) .,

,

21
211

1

21

1

211

21

σσ
σσσ

µ
γ

σσ
µ

α

σσσ
σσ

γγ

>
−

==−

−
==

pp

p

 

Using pα−  we find from (2.13) and (3.26) that  

( ) ( )
( )

( ) { CYTT

GaY

TT
GaY

TT T

pT
p

p
T

ISSISSISS >

+

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
>

+

⎭
⎬
⎫

⎩
⎨
⎧ >

+
−=−=−

−
−

−

212121

211
1
σσσ

µα }              (3.27) 

where  

( ) ( )
1

211
µ

σσσ
α

−
= pGC .                                                   (3.28)                              

Using (3.2)-(3.6), (3.14), (3.15), and (3.27), we find for the case 1=p  that  

( )
( )

( )( ) ( )( )
( )( ) (( ))TSSbSTSSbS

TCSSbSTCSSbS

SSE

SSE
p

TT

pTT
xT

,,,,

,,,,
1 2

0
1
0

2
0

2
0

1
0

1
0

2
0

1
0

2
0

2
0

1
0

1
0

21*

21*

−+

−+
+

+

Φ−Φ

Φ−Φ
−=

−

−
=              (3.29) 

where C  is defined by (3.28). 
 
Remark 3.3. To analyze the formula (3.29) one can reproduce the same arguments as in 
Remark 3.2. These results were shortly announced in Melnikov (2004b). 
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4. Concluding remarks and numerical example 

 
According to actuarial tradition, insurance company deals with a group of  insureds of 
age 

xl
x . Denote their future life-times as independent identically distributed random 

variables . Let  be a number of deaths in the group of 

insureds by the time . 

xi lixT ,...,1),( = ( ){∑
=

≤=
x

i

l

i
txTxt Id

1
}

Tt ≤
In the beginning of the contract period (see (2.4)-(2.6)), the premium collected from the 
group is . At time , the price of the contract for the group should be equal to xtx Ul ⋅ Tt ≤
( ) xtTxtx Udl −⋅− . Values txxtx ldl +=−  can be found from actuarial statistics, and  
can be calculated by the same method as a premium . Therefore, we will illustrate 
our analysis only for a single contract at initial time 

xtT U−

xT U
0=t . 

Consider the equation (2.1) as a theoretical model for financial indices the Russell 2000 
(RUT-I) and the Dow Jones Industrial Average (DJIA) correspondingly for  The 
Russell 2000 is the index of small US companies’ stocks, whereas the Dow Jones 
Industrial Average is based on the portfolio consisting of 30 blue-chip stocks in the USA. 
The first index, RUT-I, is supposed to be more risky than DJIA. 

.2,1=i

Using daily observations of prices from August 1, 1997, until July 31, 2003, we estimate 
empirically ),( 11 σµ  and ),( 22 σµ , the rate of return and volatility for RUT-I and DJIA. 
We get the following specification of the model: 

.2089.,0417.
,2232.,0481.

22

11
==
==

σµ
σµ

 

Calculating 0100.21 =σµ  and 0093.12 =σµ  we can conclude that our technical 
condition 1221 σµσµ =  is approximately fulfilled. 
The initial prices of these indices (August 1, 2003) are 468.08 and 9153.97. Therefore, 

we use 1

08.468
97.9153

tS⋅  as the value of the first asset to make the initial values of both assets 

the same. 
 
The key formulae for our numerical analysis are (3.19), (3.25), (3.29) containing an 

unknown parameter . In our example, the ratio )( pC 9655.2
1

1 =
σ

µ
 and, therefore, for 

sufficiently small p  (see (3.23)), the corresponding modified contingent claim has a 
quantile form (3.24). To calculate , we will use (3.25) and Remark 3.2 for 
identification of . The results for risk levels 

xT p
)( pC 1.0,05.0,025.0,01.0=ε  and 

 are given in Table 1. Using Life Tables from Bowers et al (1997), we can 
find the ages of insureds for such contracts, which are displayed in Table 2. 

10,5,3,1=T
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When the level of risk ε  increases, the company should restrict the group of insureds by 
attracting older clients. As a result, the company diminishes the insurance component of 
risk to compensate for the increasing financial risk. 
Using contracts for a longer term T  allows the insurance company to diminish insurance 
risk with fixed ε . Therefore, the company can afford to work with younger groups of 
clients. 
We can consider the case  in the same way because of the similarity between (3.25) 
and (3.29). The difference will appear when we construct hedge exploiting different 
formulae for : (3.22) for 

1=p

pa 10 << p  and (3.28) for 1=p . 
For the case , the calculations with the help of formula (3.19) demonstrate results 
with very small values of . In Table 3, the results for 

1>p

xT p 2=p  are shown, however, the 
very similar data can be obtained for other values of . Therefore, we can conclude 

that the insurance company with the loss function , does not accept any 
financial risk transferring it to insurance risk. 

1>p

1, >px p

 
 01.0=ε  025.0=ε  05.0=ε  1.0=ε  

1=T  0.931898 0.877458 0.781251 0.621439 
3=T  0.93979 0.891087 0.804175 0.657577 
5=T  0.944328 0.898968 0.817541 0.678939 

10=T  0.951165 0.910903 0.837938 0.71195 
 

Table 1. Survival Probabilities for 10 << p  
 

 
 01.0=ε  025.0=ε  05.0=ε  1.0=ε  

1=T  78 85 92 99 
3=T  64 70 77 85 
5=T  55 63 70 77 

10=T  43 51 58 65 
 

Table 2. Age of Insureds 
 
 

 01.0=ε  025.0=ε  05.0=ε  1.0=ε  
1=T  0.081596 0.145582 0.256894 0.437299 
3=T  0.061184 0.110569 0.198556 0.346621 
5=T  0.055751 0.101166 0.18268 0.321402 

10=T  0.048835 0.089097 0.162063 0.288051 
 

Table 3. Survival Probabilities for  1>p
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