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Abstract

In this paper we consider a stepping-stone model on a circle with circular Brownian

migration. We first point out a connection between Arratia flow and the marginal dis-

tribution of this model. We then give a new representation for the stepping-stone model

using Arratia flow and circular coalescing Brownian motion. Such a representation enables

us to carry out some explicit computation. In particular, we find the Laplace transform

for the time when there is only a single type left across the circle.
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1. Introduction

Stepping-stone model is a mathematical model for population genetics. A discrete-site

stepping-stone model describes the simultaneous evolution of interacting populations over

a collection of finite or countable colonies. There are mutation, selection and resampling

within each colony, and there is migration among different colonies. See [Kim53] and

[Shi88] for some early work.

Continuous-site stepping-stone model was first introduced in [Eva97]. It is a process

takeing values from the space

Ξ := {µ : E → M1(K)},

where E denotes the continuous site space, K denotes the type space, and M1(K) denotes

the space of all probability measures on K. Intuitively, such a map µ represents the relative

frequencies of populations at various sites simultaneously. More precisely, for e ∈ E and

B ⊂ K, µ(e)(B) represents the “proportion of the population at the site e processing types

from the set B”. The “moments” of the continuous-site stepping-stone model are specified

using the so called migration processes taking values in E.
1
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In this paper we only consider a stepping-stone model with site space T, a circle of

circumference 1, with type space K = [0, 1], and with Brownian migration on T. We call it

a stepping-stone model with circular Brownian migration (in short, a SSCBM) and write

it as X throughout the paper.

The distribution of SSCBM is uniquely determined by a family of coalescing Brownian

motions on T. But we have to go through more notations before we could present the

exact formula.

Given a positive integer n, let Pn denote the set of partitions of Nn := {1, . . . , n}. That

is, an element π of Pn is a collection π = {A1, . . . , Ah} of disjoint subsets of Nn such

that
⋃

i Ai = Nn. The sets A1, . . . Ah are the blocks of the partition π. The integer h is

called the length of π and is denoted by |π|. Equivalently, we can think of Pn as the set of

equivalence relations on Nn and write i ∼π j if i and j belong to the same block of π ∈ Pn.

Given π ∈ Pn, let

αi := minAi, 1 ≤ i ≤ |π|.

{αi} is the collection of minimal elements for π.

By a circular (instantaneously) coalescing Brownian motion we mean a collection of

Brownian motions on T such that any two of them will move together as soon as they

first meet. Given a circular coalescing Brownian motion (Z1, . . . , Zn) starting at e =

(e1, . . . , en). For t > 0, let πe(t) be a Pn-valued random partition such that i ∼πe(t) j iff

Zi(t) = Zj(t). Then πe(t) is the random partition induced by (Zi(t)). Write

Γe(t) := {αi(t) : 1 ≤ i ≤ |πe(t)|}

for the collections of minimal elements for πe(t).

SSCBM is then a Ξ-valued Hunt process X with its transition semigroup specified as

following. Given µ ∈ Ξ and n > 0, for any fi ∈ C(T), Ki ⊂ K, i = 1, . . . , n,

Qµ

[
n∏

i=1

∫

T
deif(ei)Xt(ei)(Ki)

]
=

∫

Tn

de
n∏

i=1

f(ei)P


 ⊗

i∈Γe(t)

µ(Zi(t))(
⋂

j∼πe(t)i

Kj)


 ,(1.1)

where Qµ denotes the probability law of X when its initial value is µ. See Theorem 4.1 in

[DEF+00] for a result on a general continuous-site stepping-stone model.

In [DEF+00] a particle representation for X was given using the Poisson random mea-

sure on DT[0,∞[×K and a “look down” scheme similar to that in [DK96]. It leads to better

insight into the model. In the same spirit we are going to propose another representation

for X in this paper.
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It was shown in [Eva97] that X degenerates, i.e. for any t > 0, for almost all e ∈ R,

Xt(e) becomes a point mass on some k ∈ K. A stronger version of this clustering behavior

was later shown in [DEF+00] for site-space T and in [Zho03] for site-space R. In fact,

when the site-space is R there exists a random partition of R such that R is divided into

disjoint intervals and Xt(e) is a point mass on the same k ∈ K for almost all e in each

interval. This suggests that we can identify Xt with a function f on T such that f(e) = k

whenever Xt(e) = δk. In this way we can identify X with a step-function-valued process.

Let Ξ′ be the space of K-valued right continuous step functions on T equipped with the

topology inherited from DR(T). For each µ ∈ Ξ, we are going to construct a Ξ′-valued

process (X ′
t, t > 0) which can be regarded as SSCBM with initial value µ under the above-

mentioned identification. To this end, we first point out an interesting connection between

Arratia flow and SSCBM in Section 2. This connection allows us to specify the entrance

law of X ′ using the pre-image of Arratia flow. Then we give an explicit construction of

X ′ using Arratia flow and circular coalescing Brownian motion, and we will show that X ′

so defined does have the right distribution under the above-mentioned identification. In

this sense X ′ provides a nice version for X. Such a representation enables us to compute

the distribution of the time when there is only a single type of individuals left across T in

Section 3. It also allows us to obtain a result on the type that survives eventually.

2. A representation of stepping-stone model with circular Brownian

migration

We adopt some conventions for the rest of this paper. We identify T with interval

[0, 1). Whenever we write (e1, . . . , em) ∈ Tm it implies that e1, . . . , em have been already

arranged in anti-clockwise order around T. Given u, v ∈ T, write [u, v[ for an interval

starting at u and ending at v in anti-clockwise order. Write v − u for the length of the

interval [u, v[. For {ki} ⊂ K and (e1, . . . , em) ∈ Tm, write
∑m

i=1 ki1{[ei, ei+1[}, em+1 := e1,

for a right continuous step function on T.

Arratia flow was first introduced in [Arr79]. Arratia flow on T describes the evolution

of a stochastic system in which there is one Brownian motion starting at each point in

T. Two Brownian motions coalesce once they meet. Formally, the Arratia flow can be

defined as a collection {φ(s, t, x) : 0 ≤ s ≤ t, x ∈ T} of random variables such that

• the random map (s, t, x) 7→ φ(s, t, x) is jointly measurable,

• for each s and x, the map t 7→ φ(s, t, x), t ≥ s, is continuous,
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• for each s and t with s ≤ t, the map x 7→ φ(s, t, x) is non-decreasing and right-

continuous,

• for s ≤ t ≤ u, φ(t, u, ·) ◦ φ(s, t, ·) = φ(s, u, ·),
• for u > 0, (s, t, x) 7→ φ(s + u, t + u, x) has the same distribution as φ,

• for (x1, . . . , xm) ∈ Tm the process (φ(0, t, x1), . . . , φ(0, t, xm))t≥0 has the same dis-

tribution as a circular coalescing Brownian motion starting at (x1, . . . , xm).

From the continuity of Brownian sample paths we see that, for each t > 0, there exists

a positive integer valued random variable N(t) and two sequences of random variables

(Vi(t)) ∈ TN(t) and (Ui(t)) ∈ TN(t) such that

φ(0, t, x) = Vi(t) for x ∈ [Ui(t), Ui+1(t)[ and i = 1, . . . , N(t).

In fact, we can even show that

P[|N(t)|] = 1 + 2
∞∑

n=1

exp
{−n2π2t

}
,

where |N(t)| denotes the cardinality for N(t). See Corollary 9.3 in [DEF+00].

For any µ ∈ Ξ, given N(t), (Ui(t), i = 1, . . . , N(t)) and (Vi(t), i = 1, . . . , N(t)), let

{κi, i = 1, . . . , N(t)} be a collection of independent K-valued random variables such that

κi follows the distribution µ(Vi(t)). Define

(2.1) X ′
t(e) =

N(t)∑

i=1

κi1{[Ui(t), Ui+1(t)[}(e), e ∈ T.

We first point out that X ′(t), when identified as

(2.2)
N(t)∑

i=1

δκi1{[Ui(t), Ui+1(t)[},

is indeed a version of Xt.

Proposition 2.1. For any t > 0, with the identification (2.2) X ′
t has the same distribution

as Xt under Qµ.

Proof. To determine the distribution of X ′
t we only need to specify joint distributions such

as

P{X ′
t(e1) ∈ dk1, . . . , X

′
t(en) ∈ dkn}.

By definition (φ(0, t, e1), . . . , φ(0, t, en)) is a circular coalescing Brownian motion start-

ing at (e1, . . . , en). Let πe(t) be the induced partition on Nn. For any ki ∈ K, i = 1, . . . , n,

given (Ui(t)) and (Vi(t)) as before, observe that φ(0, t, ei) and φ(0, t, ej) belong to the same
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interval [Ur(t), Ur+1(t)[ for some r iff i ∼πe(t) j. Also notice that φ(0, t, ei) = φ(0, t, ej)

whenever i ∼πe(t) j. Then

P

{
n⋂

i=1

{X ′
t(ei) ∈ dki}

}
= P


 ∏

i∈Γe(t)

1





⋂

j∼πe(t)i

{kj = ki}


µ (φ(0, t, ei)) (dki)


 .(2.3)

An inspection of (2.3) reveals that (1.1) holds for X ′(t) when it is regarded as Ξ-valued.

So Xt and X ′
t have the same distribution.

¤

By Proposition 2.1 we may and will suppose that Xt, t > 0, is Ξ′-valued in the rest of

the paper.

We can read off some properties for Xt, t > 0, immediately from Proposition 2.1.

First, with probability one Xt (as a function of e) can only take finitely many different

values from K. Moreover, if µ(e) is a diffuse measure for almost all e ∈ T, then with

probability one Xt takes different values over different intervals on T, i.e. X(e) = k for

e ∈ [e1, e2[ whenever X(e1) = k = X(e2). Such properties are also discussed in Section 10

of [DEF+00].

Conditioning on Xs =
∑m

i=1 ki1{[ui, ui+1[}, (1.1) shows that, given t > s, Xt can only

take values from {ki}. Moreover, for any {k′j , j = 1, . . . , n} ⊂ {ki} and any (zj) ∈ Tn, by

(1.1) we can further show that

Q





n⋂

j=1

{Xt(zj) = k′j}
∣∣∣∣∣∣
Xs =

m∑

i=1

ki1{[ui, ui+1[}




= Q





n⋂

j=1

{Xs(Zj(t− s)) = k′j}


 ,

(2.4)

where (Zj) is a circular coalescing Brownian motion starting at (zj).

To describe the evolution of X over time we need a Lemma on duality between two

circular coalescing Brownian motions.

Fix y = (y1, . . . , ym) ∈ Tm and z = (z1, . . . , zn) ∈ Tn. Let (Y1, . . . , Ym) be an m-

dimensional circular coalescing Brownian motion starting at y. Let (Z1, . . . , Zn) be an

n-dimensional circular coalescing Brownian motion starting at z. Put

I→ij (t, z) := 1{Yi(t) ∈ [zj , zj+1[}

and

I←ij (t,y) := 1{yi ∈ [Zj(t), Zj+1(t)[}
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for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Recall that zn+1 := z1 and Zn+1 := Z1.

Lemma 2.2. The two (m×n)-dimensional arrays (I←ij (t,y)) and (I→ij (t, z)) have the same

distribution.

Proof. We can prove Lemma 2.2 in the same way as Theorem 2.1 in [Zho], i.e. we first show

that the corresponding duality holds for circular coalescing random walks, and then apply

time-space scaling to obtain the desired result for circular coalescing Brownian motions.

¤

By Lemma 2.2 we can easily derive the following dual relationship. Such a result was

pointed out in [Arr79] for coalescing Brownian flow on the real line.

Proposition 2.3. When identified as point processes, (Ui(t)) and (Vi(t)) have the same

distribution for any fixed t > 0.

Proof. For any (zi) ∈ T2n, let (Zi) be a coalescing Brownian motion starting at (zi). Con-

sider a sequence of circular coalescing Brownian motions {(φ(0, t, xm
i ))m

i=1,m = 1, 2, . . .}
such that the set {xm

i , i = 1, . . . , m} of starting locations approaches to a dense set in T as

m → ∞. Such a sequence provides an “approximation” for the Arratia flow on T. Then

by Lemma 2.2

P





m⋂

i=1



φ(0, t, xm

i ) 6∈
n⋃

j=1

(z2j−1, z2j)









= P





m⋂

i=1



xm

i 6∈
n⋃

j=1

(Z2j−1(t), Z2j(t))







 .

(2.5)

Taking a limit in (2.5) as m →∞, we can show that

P



{Vi(t)}

⋂ n⋃

j=1

(z2j−1, z2j) = ∅


 = P





n⋂

j=1

{Z2j−1(t) = Z2j(t)}


 .

On the other hand, {Ui(t)} ∩ (z2j−1, z2j) = ∅ iff (z2j−1, z2j) ⊂ [Ui(t), Ui+1(t)[ for some

i iff φ(0, t, z2j−1) = Vi(t) = φ(0, t, z2j) for some i. Consequently, we also have

P



{Ui(t)}

⋂ n⋃

j=1

(z2j−1, z2j) = ∅


 = P





n⋂

j=1

{φ(0, t, z2j−1) = φ(0, t, z2j)}


 .

So, the assertion holds. ¤
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Let us go back to the stepping-stone model. We first consider a special initial value ν.

Given

ν =
m∑

i=1

δki1{[ui, ui+1[} ∈ Ξ,

write Y = (Yi) for an m-dimensional circular coalescing Brownian motion starting at

u := (ui) and define

X ′
t =

m∑

i=1

ki1{[Yi(t), Yi+1(t)[}, t ≥ 0,

with the convention that 1{[y, y[} := 0.

Lemma 2.4. X ′ has the same distribution as X under Qν .

Proof. (X ′
t) is clearly a Markov process from its definition.

Given {k′1, . . . , k′n} ⊂ {ki, i = 1, . . . ,m} and (vj) ∈ Tn, let Z = (Zj) be a circular

coalescing Brownian motion starting at v := (vj). Set

g(y; z) :=
n∏

j=1

∑

i:ki=k′j

1{[yi−1, yi[}(zj).

Lemma 2.2 yields that

P





n⋂

j=1

{X ′
t(vj) = k′j}



 = P





n⋂

j=1

{
m∑

i=1

ki1{[Yi(t), Yi+1(t)[}(vj) = k′j

}



= P [g(Y(t);v)]

= P [g(u;Z(t))]

= P





n⋂

j=1

{
m∑

i=1

ki1{[ui, ui+1[}(Zj(t)) = k′j

}



= P





n⋂

j=1

{
X ′

0(Zj(t)) = k′j
}


 .

It then follows from Proposition 2.1 and (2.4) that X ′ and X have both the same initial

value and the same transition semigroup. So, they have the same distribution.

¤

Now we are ready to construct a representation for X with a general initial value µ ∈ Ξ.

Given ε > 0, as in (2.1) put

(2.6) X ′
ε =

N(ε)∑

i=1

κi1{[Ui(ε), Ui+1(ε)[}.
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Given N(ε), (U1(ε), . . . , UN(ε)(ε)) and (κ1, . . . , κN(ε)), write (Yi) for an N(ε)-dimensional

circular coalescing Brownian motion starting at (Ui(ε)). We further define

(2.7) X ′
t =

N(ε)∑

i=1

κi1{[Yi(t− ε), Yi+1(t− ε)[}, t ≥ ε,

again, with the convention that 1{[y, y[} := 0. Combining Proposition 2.1 and Lemma 2.4

we can easily obtain the following result.

Theorem 2.5. Given µ ∈ Ξ and ε > 0, (X ′
t, t ≥ ε) has the same distribution as (Xt, t ≥ ε)

under Qµ.

Remark 2.6. The representation (2.7) suggests that SSCBM can also be thought of as a

multi-type, nearest-neighbored voter model on T. See Chapter V in [Lig85] for discussions

on voter model.

Remark 2.7. A similar representation can be found for a stepping-stone model with Brow-

nian migration on R. We leave the details to the readers.

3. The first time when there is only a single type left

In this section we are going to study properties of X using the representation given in

Section 2.

Treating (Xt, t > 0) as Ξ′-valued, put

T := inf{t > 0 : ∃k ∈ K, Xt(e) = k, ∀e ∈ T}.

T is then the first time when a single type of individuals prevail all over T. It is easy to

see from the representation (2.7) that

Qµ{T < ∞} = 1,

for all µ ∈ Ξ. Now we are going to find the exact distribution for T .

We start with a preliminary result which is interesting in its own right. Let (Yi) be an

m-dimensional circular coalescing Brownian motion starting at (yi) ∈ Tm, m ≥ 2. Let

Tm := inf{t > 0 : Y1(t) = . . . = Ym(t)}.

Proposition 3.1. Given any positive integer m ≥ 2, we have

(3.1) P[e−λTm ] =
m∑

i=1

sinh((yi+1 − yi)
√

λ)
sinh(

√
λ)

, λ > 0.
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Proof. For i = 1, . . . , m, write Si for the time when Yi+1 first reaches Yi from the clockwise

direction. As usual, we define Ym+1 := Y1. Since (Yi+1 − Yi)/
√

2 is again a Brownian

motion which starts at (yi+1− yi)/
√

2 and stops whenever it reaches 0 or 1/
√

2, Si is then

the first time that the Brownian motion (Yi+1 − Yi)/
√

2 reaches 1/
√

2 before it reaches 0.

We thus have

(3.2) P[e−λSi ] =
sinh((yi+1 − yi)

√
λ)

sinh(
√

λ)
.

See Exercise II.3.10 in [RY91].

Our key observation is that

P{Tm < t} =
m⋃

i=1

{Si < t},

and the events on the right hand side of this equation are disjoint. So, (3.1) follows.

¤

Standard argument gives the following result.

Corollary 3.2. For any positive integer m ≥ 2, we have

P[Tm] =
1
4
− 1

4

m∑

i=1

(yi+1 − yi)3.

Consequently, P[Tm] attains its maximum 1/4− 1/4m2 iff all the initial values y1, . . . , ym

are equally spaced on T.

Remark 3.3. An explicit expression for the distribution of Tm can also be found. By

Theorem 4.1.1 in [Kni81], we have

P{Si ≤ t} =
√

2(yi+1 − yi) +
2
π

∞∑

n=1

(−1)n

n
sin

(√
2nπ(yi+1 − yi)

)
exp

{−n2π2t
}

.

Therefore,

P{Tm ≤ t} =
√

2 +
2
π

m∑

i=1

∞∑

n=1

(−1)n

n
sin

(√
2nπ(yi+1 − yi)

)
exp

{−n2π2t
}

.(3.3)

We expect that P{Tm ≤ t} also reaches its minimum when y1, . . . , ym are equally spaced

on T. But we do not have a proof yet.

Let κ be the type of individuals left after time T . Then

κ = lim
t→∞Xt(e), ∀e ∈ T.
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Theorem 3.4. Given µ ∈ Ξ such that µ(x) is a diffuse probability measure for almost all

x ∈ T, then the Laplace transform for T has the expression

(3.4) Qµ[e−λT ] =

√
λ

sinh(
√

λ)
, λ > 0.

Moreover,

(3.5) Qµ{κ ∈ dk} =
∫

T
deµ(e)(dk).

Proof. Given m and (yi) ∈ Tm, we first observe that, by (3.1),

(3.6) lim
m→∞P[e−λTm ] = lim

m→∞

m∑

i=1

(yi+1 − yi)
√

λ

sinh(
√

λ)
=

√
λ

sinh(
√

λ)

as

max
1≤i≤m

(yi+1 − yi) → 0 + .

Recall from the representation (2.7) that, for ε > 0,

X ′
t =

N(ε)∑

i=1

κi1{[Zi(t− ε), Zi+1(t− ε)[}, t ≥ ε,

where, given N(ε), (Zi) is a circular coalescing Brownian motion starting at (Ui(ε)) ∈
TN(ε). Put

T (ε) := inf{t ≥ 0 : Z1(t) = . . . = ZN(ε)(t)}.

Notice that, given N(ε), κ1, . . . , κN(ε) are all different since µ(e) is diffuse for almost all

e ∈ T. Then ε + T (ε) is also the first time when X ′(e) assumes a single value in K for all

e ∈ T.

Put

∆(ε) := max
1≤i≤N(ε)

(Ui+1(ε)− Ui(ε)).

It is evident from the definition of Arratia flow and the representation (2.7) that ∆(ε) → 0

in probability and

P{T (ε) > 0} → 1 as ε → 0 + .

In addition, Qµ{T > 0} = 1. It follows from Theorem 2.5 and (3.6) that

Qµ[e−λT ] = lim
ε→0+

Qµ[e−λT ; T > ε]

= lim
ε→0+

P
[
P

[
e−λ(ε+T (ε));T (ε) > 0

∣∣∣X ′
ε

]]

=

√
λ

sinh(
√

λ)
.

(3.7)
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Finally, by (1.1) we have that

lim
t→∞Q

µ{Xt(e) ∈ dk} = lim
t→∞P[µ(Z(t))(dk)],

where Z is a circular Brownian motion starting at e ∈ T. (3.5) thus follows.

¤

Remark 3.5. Notice that the distribution of T does not depend on µ as long as µ(x) is

diffuse for almost all x ∈ T.

Remark 3.6. Let X be a Brownian motion starting at 0 < x < 1/
√

2. Put

Tx := inf
{

t ≥ 0 : Xt = 0 or 1/
√

2
}

.

We observe that, for the µ in Theorem 3.4,

Qµ[e−λT ] = lim
x→0+

sinh(x
√

2λ)
x
√

2 sinh(
√

λ)

= lim
x→0+

P
[
e−λTx ; Tx = 1/

√
2
]

P
{
Tx = 1/

√
2
}

= lim
x→0+

P
[
e−λTx

∣∣∣XTx = 1/
√

2
]
.

(3.8)

Using (3.8) and Theorem 4.1.1 in [Kni81] we can further find an explicit expression for

Qµ{T ≤ t}. For t > 0,

Qµ{T ≤ t} = lim
x→0+

1√
2x

(√
2x +

2
π

∞∑

n=1

(−1)n

n
sin(

√
2nπx) exp

{−n2π2t
}
)

= 1 + 2
∞∑

n=1

(−1)n exp
{−n2π2t

}
.

(3.9)

Remark 3.7. It is not hard to see from the proof for Theorem 3.4 that the distribution

(3.9) coincides with the distribution of the time when the image of Arratia flow on T first

becomes a set of a single element, i.e. the distribution of

τ := inf{t ≥ 0 : φ(0, t, x) = φ(0, t, y),∀x, y ∈ T}.

Again, for the µ given in Theorem 3.4, for any ε > 0, let interval [U ′
ε, U

′′
ε [ be the unique

interval [Ui(ε), Ui+1(ε)[ in (2.6) such that κ = ki; i.e. [U ′
ε, U

′′
ε [ is the collection of sites at

time ε whose type eventually prevails.

Proposition 3.8. For the µ given in Theorem 3.4, as ε → 0+ both (U ′
ε) and (V ′′

ε ) converge

in distribution to a uniform distribution on T.
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Proof. Clearly U ′′
ε − U ′

ε → 0 in probability. Therefore, we just need to show that for any

[a, b[⊂ T,

(3.10) lim
ε→0+

P{U ′
ε ∈ [a, b[} = b− a.

To prove (3.10), we first notice that, given N(ε), events {Si < ∞}, 1 ≤ i ≤ N(ε), are

all disjoint, where Si is defined as in the proof for Proposition 3.1, but for a coalescing

Brownian motion starting at (Ui(ε), Ui+1(ε)). Consequently, by (3.2)

P{U ′
ε ∈ [a, b[} = P





⋃

1≤i≤N(ε)

{Ui(ε) ∈ [a, b[, Si < ∞}




= E





∑

1≤i≤N(ε)

(Ui+1(ε)− Ui(ε))1{Ui(ε) ∈ [a, b[}




= E [Un(ε)− Um(ε)] ,

where m := min{i : Ui(ε) ∈ [a, b[} and n := max{i : Ui(ε) ∈ [a, b[}. Therefore, (3.10)

follows readily.

¤

Remark 3.9. Finally, if µ ∈ Ξ is arbitrary, we can not find the explicit distribution for T

under Qµ . Nevertheless, similar to the proof for Theorem 3.4 we can still show that

Qµ[e−λT ] ≤
√

λ

sinh(
√

λ)
.

References

[Arr79] R. Arratia. Coalescing Brownian motions on the line. PhD thesis, University of Wisconsin,

Madison, 1979.

[DEF+00] P. Donnelly, S.N. Evans, K. Fleischmann, T.G. Kurtz, and X. Zhou. Continuum-sites stepping-

stone models, coalescing exchangeable partitions, and random trees. Ann. Probab., 28:1063–

1110, 2000.

[DK96] P. Donnelly and T. G. Kurtz. A countable representation of the fleming-viot measure-valued

diffusion. Ann. Probab., 24:698–742, 1996.

[Eva97] S.N. Evans. Coalescing markov labeled partitions and continuous sites genetics model with

infinitely many types. Ann. Inst. H. Poincaré Probab., 33:339–358, 1997.
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Montréal (QC) H4B 1R6 CANADA


