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Abstract

We study asymptotic stability of the optimal filter with respect to its initial conditions. We show
that exponential stability of the nonlinear filter holds for a large class of denumerable Markov chains,
including all finite Markov chains, under the assumption that the observation function is one-to-one
and the observation noise is sufficiently small. Ergodicity of the signal process is not assumed.
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1. Introduction

In this note, we consider the stability problem of the nonlinear filter for discrete-time finite
or countable state Markov chains. Let (Xn)n≥0 be a time-homogeneous Markov chain on the
denumerable space S with transition matrix Q = (qij)i,j∈S. Hereafter we suppose that S = Z,
the integer space, or S = {1, 2, . . . , m} for some m ∈ N. The information about the signal
process (Xn)n≥0 is obtained through the observation process (Yn)n≥1 as follows.

Yn = h(Xn) + σVn, n ≥ 1, (1)

where h is a real-valued function defined on S, (Vn)n≥1 is a sequence of i.i.d. random variables
with the density function g, and σ > 0 is a constant. For simplicity, (Vn)n≥1 is assumed to be
independent of (Xn)n≥0. We suppose that (Xn)n≥0, (Vn)n≥1 and (Yn)n≥1 are all defined on the
same probability space (Ω,F , P ).
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The optimal filtering problem consists of computing the conditional law of Xn given the
σ-algebra FY

n := σ(Y1, . . . , Yn), that is, computing πn := (πn(i), i ∈ S)∗, where πn(i) is defined
by

πn(i) := P
(
Xn = i|FY

n

)
, i ∈ S.

We use Dn to denote the diagonal matrix with Dn(i, i) := ∆n(i) := g((Yn − h(i))/σ), i ∈ S.
Define

ρµ
n := DnQ∗ρµ

n−1, n ≥ 1, (2)

where Q∗ is the transpose of Q and ρµ
0 = µ = (µ(i), i ∈ S)∗ is the distribution of X0. By Bayes’

rule, we have that

πµ
n = ρµ

n/‖ρµ
n‖. (3)

Hereafter, we use ‖ν‖ :=
∑

i∈S |ν(i)| to denote the total variation norm of a finite signed
measure ν on S, and use πµ

n instead of πn to emphasize the dependence on the initial distribution
µ. Note that (3) is well defined since P (‖ρµ

n‖ = 0) = 0.

Let µ′ 6= µ be another probability measure on S satisfying µ << µ′. We denote the
corresponding solutions of (2) and (3) by ρµ′

n and πµ′
n , respectively. Note that (3) remains well

defined P -a.s., since P (‖ρµ′
n ‖ = 0) = 0. Denote by E the expectation with respect to P . Then,

the filter (or the filtering process) is called stable if for any bounded function f on S it holds
that

E|πµ
n(f)− πµ′

n (f)| := E

∣∣∣∣
∫

S

f(x)πµ
n(dx)−

∫

S

f(x)πµ′
n (dx)

∣∣∣∣ → 0 as n →∞.

Since the actual initial distribution of the signal process (Xn)n≥0 is rarely known, it is important
to study the stability of the filter from an applications point of view.

Recently, there is an increasing interest in considering the stability problem of the nonlinear
filter for Markov signals. The first result was obtained by Ocone and Pardoux (1996). They
used results of Kunita (1971) to show that the optimal filter forgets its initial distribution in
an Lp sense when the signal process is ergodic. However, the paper doesn’t provide a rate of
convergence and needs to be revised, in view of the recently spotted gap in the proof of Theorem
3.3 of Kunita (1971) (see Baxendale, Chigansky and Liptser (2004) and Budhiraja (2003)).
Some new approaches based on, for instance, the Hilbert projective metric and the related
Birkhoff’s contraction coefficient (Atar and Zeitouni (1997a, b)), the semi-group techniques
and Dobrushin ergodic coefficient (Del Moral and Guionnet (2001)), have been introduced to
study the stability problem. Most of the known results, under different assumptions, lead to
the stronger exponential convergence of the total variation norm (in this case, the filter is said
to be exponentially stable):

lim sup
n→∞

1

n
log ‖πµ

n − πµ′
n ‖ < 0 P − a.s. (4)
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We refer the interested readers to Atar and Zeitouni (1997a, b), Baxendale, Chigansky and
Liptser (2004), Chigansky and Liptser (2004) and Chigansky (2005) for the recent results on
nonlinear filtering for ergodic signals on finite or compact state spaces, and to Atar (1998),
Budhiraja and Ocone (1999), LeGland and Oudjane (2003) and Stannat (2004a, b) for the
cases of non-ergodic signals or noncompact state spaces.

In this note, under the assumption that h is one-to-one and σ is sufficiently small, we show
that (4) holds for a large class of denumerable Markov chains (Xn)n≥0, including all finite
Markov chains. The main results, Theorems 2.1 and 2.2, and some examples are given in
Section 2. The proofs of the main results are given in Section 3.

2. Results and examples

To simplify notation, in the sequel, we respectively denote ρµ
n, π

µ
n, ρµ′

n , πµ′
n by ρn, πn, ρ

′
n, π′n.

Theorem 2.1. Let (Xn)n≥0 be a Markov chain on Z with the transition matrix Q = (qij)i,j∈Z

and the initial distribution µ. Define the observation process (Yn)n≥1 by (1). Suppose that the
following conditions hold.
(i) There exists a sequence {ak}∞k=−∞ of nonnegative real numbers such that

qi+k,i ≤ ak for all i, k ∈ Z and
∞∑

k=−∞
ak < ∞.

(ii) Define

ΩX := {(i0, i1, . . .) : ij ∈ Z, qij ,ij+1
> 0,∀j ≥ 0 and µ(i0) > 0}. (5)

Then, there exists a constant K such that for any path (i0, i1, . . .) ∈ ΩX ,

lim inf
n→∞

1

n

[
log

n−1∏
j=0

qij ,ij+1

]
≥ K.

(iii) There is a constant c > 0 such that for any i, j ∈ Z, i 6= j,

|h(i)− h(j)| ≥ c.

(iv) The density function g is bounded on R satisfying
∫∞
−∞ | log(g(x))|g(x)dx < ∞ and

lim|x|→∞ g(x) = 0.
Then, for any probability measure µ′ on Z satisfying µ << µ′, we have that

lim
σ→0

lim sup
n→∞

1

n
log ‖πn − π′n‖ < 0 P − a.s.

Theorem 2.2. Let (Xn)n≥0 be a finite Markov chain on {1, . . . , m} with the initial distribution
µ. Define the observation process (Yn)n≥1 by (1). Suppose that h is one-to-one and g satisfies
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condition (iv) of Theorem 2.1. Then, for any probability measure µ′ on {1, . . . , m} satisfying
µ << µ′, we have that

lim
σ→0

lim sup
n→∞

1

n
log ‖πn − π′n‖ < 0 P − a.s.

Remark 2.3. (i) Suppose that there exists an integer M > 0 such that for any i ∈ Z, {j :
qij > 0} ⊆ {j : |j − i| ≤ M}. Define

ak :=

{
1, if |k| ≤ M,
0, otherwise.

Then, condition (i) of Theorem 2.1 is satisfied.
(ii) If α := inf{qij : qij > 0, i, j ∈ Z} > 0, then condition (ii) of Theorem 2.1 is satisfied with
K := log α.
(iii) The counterexample given in Kaijser (1975) (see also Example 5.1 of Chigansky and Liptser
(2004)) indicates that if the observation function h is not one-to-one, then the filtering process
can be unstable even if the signal process is ergodic and σ = 0.
(iv) Condition (iv) of Theorem 2.1 is satisfied for a large class of functions such as the density
functions of normal, uniform and Pareto random variables, etc.

Remark 2.4. Here, we recall some known results on the exponential stability of the nonlinear
filter for discrete-time finite Markov chains. Let (Xn)n≥0 be a finite Markov chain with the
transition matrix Q. Suppose that the observation process (Yn)n≥1 is defined by (1). If (Xn)n≥0

is ergodic and (Vn)n≥1 is a sequence of i.i.d. standard Gaussian random variables, then
(i) If all the entries of Q are strictly positive, then the filter is exponentially stable (see Theorem
1.2 of Atar and Zeitouni (1997a)).
(ii) If σ is sufficiently small and there exists a state i such that {j : h(j) = h(i)} consists of a
single point, or if σ is sufficiently large, then the filter is exponentially stable (see Theorems
1.3 and 1.4 of Atar and Zeitouni (1997a)).
(iii) If h is one-to-one, then the filter is exponentially stable. This result also holds for more
general observation noise (Vn)n≥1 (see Lemma 4.1 of Chigansky (2005)).

In the following examples, all the filtering processes are exponentially stable under the
assumption that h and g satisfy conditions (iii) and (iv) of Theorem 2.1.

Example 2.5. (Simple random walk) Let the Markov chain (Xn)n≥0 in Theorem 2.1 be a
simple random walk on Z, i.e. (Xn)n≥0 is a Markov chain on Z such that

qi,i+1 = p, qi,i−1 = 1− p, ∀i ∈ Z,

where 0 < p < 1 is a constant. Then conditions (i) and (ii) of Theorem 2.1 are satisfied. Note
that the transition matrix Q doesn’t satisfy the “non-mixing” condition in Chigansky and
Liptser (2004). Since (Xn)n≥0 is periodic and even transient if p 6= 1

2
, (Xn)n≥0 is non-ergodic.
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Example 2.6. Let (Xn)n≥0 be the Markov chain on Z with the transition matrix Q = (qij)i,j∈Z,
where

q00 = 1,

qn0 = p|n|, qnn = 1− p|n|, ∀n 6= 0, 0 < p < 1.

Then condition (i) of Theorem 2.1 is satisfied with the sequence {ak := p|k|, k ∈ Z}. In the
following we show that condition (ii) of Theorem 2.1 is also satisfied.

Let ΩX be defined as in (5). For any path (i0, i1, . . .) ∈ ΩX , there are two cases:
Case 1. There exists a j0 ∈ Z+ such that ij0 = 0. Then, by the definitions of Q and ΩX ,
ij = 0, ∀j ≥ j0 and thus qij ,ij+1

= 1,∀j ≥ j0. Hence

lim inf
n→∞

1

n

[
log

n−1∏
j=0

qij ,ij+1

]
= 0.

Case 2. There exist an i ∈ Z\{0} such that ij = i,∀j ≥ 0. Then

lim inf
n→∞

1

n

[
log

n−1∏
j=0

qij ,ij+1

]
= lim inf

n→∞
1

n

[
log

n−1∏
j=0

(1− p|i|)

]
= log(1− p|i|) ≥ log(1− p).

Set K := log(1− p). Then condition (ii) of Theorem 2.1 is satisfied.

Example 2.7. Let (Xn)n≥0 be the Markov chain on Z with the transition matrix Q = (qij)i,j∈Z,
where

q00 = 1,

qn,n−1 = p, qn,n−2 = p2, . . . , qn1 = pn−1, qn0 = pn, qnn = 1−
n∑

i=1

pi,

q−n,−j = qn j, ∀n ≥ 1, 0 ≤ j ≤ n, 0 < p <
1

2
.

Similar to Example 2.6, one can show that conditions (i) and (ii) of Theorem 2.1 are satisfied.

3. Proofs

Proof of Theorem 2.1. By Lemma 2 of Atar and Zeitouni (1997b), we have that

‖πn − π′n‖ ≤
‖ρn ∧ ρ′n‖
‖ρn‖‖ρ′n‖

, (6)

where ρn ∧ ρ′n is the matrix with entries

(ρn ∧ ρ′n)(i, j) = ρn(i)ρ′n(j)− ρn(j)ρ′n(i), ∀i, j ∈ Z
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and
‖ρn ∧ ρ′n‖ :=

∑
i,j∈Z

(ρn ∧ ρ′n)(i, j) =
∑

i 6=j

(ρn ∧ ρ′n)(i, j).

First, we show that

lim
σ→0

lim sup
n→∞

1

n
log ‖ρn ∧ ρ′n‖ = −∞. (7)

By (2), we have that

ρn(i) =

( ∞∑

k=−∞
ρn−1(i + k)qi+k,i

)
g

(
Yn − h(i)

σ

)
.

Then

(ρn ∧ ρ′n)(i, j) = ρn(i)ρ′n(j)− ρn(j)ρ′n(i)

=

( ∞∑

k=−∞
ρn−1(i + k)qi+k,i

)( ∞∑

l=−∞
ρ′n−1(j + l)qj+l,j

)
g

(
Yn − h(i)

σ

)
g

(
Yn − h(j)

σ

)

−
( ∞∑

l=−∞
ρn−1(j + l)qj+l,j

) ( ∞∑

k=−∞
ρ′n−1(i + k)qi+k,i

)
g

(
Yn − h(j)

σ

)
g

(
Yn − h(i)

σ

)

= g

(
Yn − h(i)

σ

)
g

(
Yn − h(j)

σ

) [ ∞∑

k,l=−∞
qi+k,iqj+l,jρn−1(i + k)ρ′n−1(j + l)

−
∞∑

l,k=−∞
qj+l,jqi+k,iρn−1(j + l)ρ′n−1(i + k)

]

= g

(
Yn − h(i)

σ

)
g

(
Yn − h(j)

σ

) ∞∑

k,l=−∞
qi+k,iqj+l,j(ρn−1 ∧ ρ′n−1)(i + k, j + l). (8)

Denote the supremum norm of g by ||g||∞. Then, we obtain from (8), conditions (i) and (iii)
that

‖ρn ∧ ρ′n‖
=

∑

i 6=j

|(ρn ∧ ρ′n)(i, j)|

=
∑

i 6=j

g

(
Yn − h(i)

σ

)
g

(
Yn − h(j)

σ

) ∣∣∣∣∣
∞∑

k,l=−∞
qi+k,iqj+l,j(ρn−1 ∧ ρ′n−1)(i + k, j + l)

∣∣∣∣∣

≤
∑

i 6=j

g

(
Yn − h(i)

σ

)
g

(
Yn − h(j)

σ

) ∞∑

k,l=−∞
ak al|(ρn−1 ∧ ρ′n−1)(i + k, j + l)|
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=
∞∑

k,l=−∞
ak al

∑

i6=j

g

(
Yn − h(i)

σ

)
g

(
Yn − h(j)

σ

)
|(ρn−1 ∧ ρ′n−1)(i + k, j + l)|

≤ ||g||∞
(

sup
|x|≥ c

2σ

|g(x)|
)( ∞∑

k=−∞
ak

)2

‖ρn−1 ∧ ρ′n−1‖.

By induction, we get

‖ρn ∧ ρ′n‖ ≤

||g||∞

(
sup
|x|≥ c

2σ

|g(x)|
)( ∞∑

k=−∞
ak

)2



n

‖ρ0 ∧ ρ′0‖. (9)

It follows from (9) and condition (iv) that

lim
σ→0

lim sup
n→∞

1

n
log ‖ρn ∧ ρ′n‖

≤ lim
σ→0

lim sup
n→∞


log


||g||∞

( ∞∑

k=−∞
ak

)2

 + log

(
sup
|x|≥ c

2σ

|g(x)|
)

+
1

n
log ‖ρ0 ∧ ρ′0‖




= −∞.

Next, we show that

lim sup
n→∞

(
− 1

n
log ‖ρn‖

)
≤ −K +

∫ ∞

−∞
| log(g(x))|g(x)dx P − a.s. (10)

For n ≥ 1 and i ∈ Z, we have that

ρn(i) =
∑

i0,...,in−1

ρ0(i0)qi0,i1 · · · qin−1,i41(i1) · · ·4n−1(in−1)4n(i).

Then

‖ρn‖ =
∑
i∈Z

ρn(i) ≥ ρn(Xn) ≥ ρ0(X0)qX0,X1 · · · qXn−1,Xn41(X1) · · ·4n(Xn), (11)

where
4j(Xj) = g(Vj), 1 ≤ j ≤ n. (12)

Let ΩX be defined as in (5). Then, one finds that P ◦X−1
· (ΩX) = 1. Thus, we obtain by (11),

(12), condition (ii) and the law of large numbers that P -a.s.,

lim inf
n→∞

1

n
log ‖ρn‖ ≥ lim inf

n→∞
1

n

[
log

n−1∏
j=0

qXj ,Xj+1

]
+ lim inf

n→∞
1

n
log

(
n∏

j=1

g(Vj)

)

≥ K −
∫ ∞

−∞
| log(g(x))|g(x)dx.
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Hence (10) holds.

Note that

‖ρ′n‖ =
∑
i∈Z

ρ′n(i) ≥ ρ′n(Xn) ≥ ρ′0(X0)qX0,X1 · · · qXn−1,Xn41(X1) · · ·4n(Xn).

Define
Ω′

X := {(i0, i1, . . .) : ij ∈ Z, qij ,ij+1
> 0,∀j ≥ 0 and µ′(i0) > 0}.

Since µ << µ′, P ◦X−1
· (Ω′

X) = 1. Similar to (10), one can show that

lim sup
n→∞

(
− 1

n
log ‖ρ′n‖

)
≤ −K +

∫ ∞

−∞
| log(g(x))|g(x)dx P − a.s. (13)

By (6), (7), (10) and (13), we find that P -a.s.,

lim
σ→0

lim sup
n→∞

1

n
log ‖πn − π′n‖ ≤ lim

σ→0
lim sup

n→∞

1

n
(log ‖ρn ∧ ρ′n‖ − log ‖ρn‖ − log ‖ρ′n‖)

= −∞,

which completes the proof.

Proof of Theorem 2.2. Define c := inf{|h(i) − h(j)| : i, j ∈ {1, . . . , m}, i 6= j}. Since h is
assumed to be one-to-one, c > 0. For i, j ∈ Z, define

q̄ij =

{
qij, if i, j ∈ {1, . . . , m},
0, otherwise.

Moreover, define ρn(i) = 0 for i ∈ Z\{1, . . . ,m} and n ∈ Z+. Then, for i = 1, . . . , m, we have
that

ρn(i) =

(
m−1∑

k=−m+1

ρn−1(i + k) q̄i+k,i

)
g

(
Yn − h(i)

σ

)
.

Similar to (8), for any i, j ∈ {1, . . . , m}, we have that

(ρn ∧ ρ′n)(i, j)

= g

(
Yn − h(i)

σ

)
g

(
Yn − h(j)

σ

) [
m−1∑

k,l=−m+1

q̄i+k,iq̄j+l,j(ρn−1 ∧ ρ′n−1)(i + k, j + l)

]
.

Then

‖ρn ∧ ρ′n‖ ≤
∑

i 6=j

g

(
Yn − h(i)

σ

)
g

(
Yn − h(j)

σ

) [
m−1∑

k,l=−m+1

∣∣(ρn−1 ∧ ρ′n−1)(i + k, j + l)
∣∣
]

≤ m(m− 1)‖g‖∞
(

sup
|x|≥ c

2σ

|g(x)|
)
‖ρn−1 ∧ ρ′n−1‖.
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Similar to (5), define

ΩX := {(i0, i1, . . .) : ij ∈ {1, . . . , m}, qij ,ij+1
> 0,∀j ≥ 0 and µ(i0) > 0}.

Then, one finds that P ◦X−1
· (ΩX) = 1. Define α := inf{qij : qij > 0, i, j ∈ {1, . . . , m}}. Then

α > 0. Thus, for any path (i0, i1, . . .) ∈ ΩX ,

lim inf
n→∞

1

n

[
log

n−1∏
j=0

qij ,ij+1

]
≥ log α.

The remainder of the proof is similar to that of Theorem 2.1, we omit the details here.
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Kaijser T., 1975. A limit theorem for partially observed Markov chains. Ann. Prob. 3 (4), 677-696.

9



Kunita H., 1971. Asymptotic behavior of the nonlinear filtering errors of Markov processes. J.
Multivariate Anal. 1, 365-393.

LeGland F., Oudjane N., 2003. A robustification approach to stability and to uniform particle
approximation of nonlinear filters: the example of pseudo-mixing signals. Stochastic Process. Appl.
106 (2), 279-316.

Ocone D., Pardoux E., 1996. Asymptotic stability of the optimal filter with respect to its initial
conditions. SIAM J. Control and Optim. 34 (1), 226-243.

Stannat W., 2004a. Stability of the filter equation for a time-dependent signal on Rd. Appl. Math.
Optim. 52 (1), 39-71.

Stannat W., 2004b. Stability of the pathwise filter equation on Rd. Preprint.

10



List of Recent Technical Reports

46. Yi Lu and José Garrido, Regime–Switching Periodic Models for Claim
Counts, June 2004.
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