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Abstract 
A general algorithm for the calculation of variational bounds for any type of anisotropic linear 
elastic composite is presented. Analytical expressions for the bounds are derived using this general 
approach. Bounds for multiphase, linear, transversely isotropic, elastic composites are reported. 
Bounds for the two-dimensional case are calculated. Some comparisons with other models are 
shown. 
 
1. Introduction 
 
Due to the anisotropic character of a composite, its geometric and physical nonlinear behavior, the 
geometric shape of the reinforcements and their distributions in the composite, among other factors, 
exact analytic expressions of overall properties can not be provided. Sometimes, however, the range 
of validity of the overall properties of a composite using variational principle can be estimated.  
 
The study of the variational bounds for linear and non-linear composite materials has been 
considered by many authors (see, for instance, Pobedrya (1984), Ponte Castañeda (1992) and Willis 
(1991)). In Rodriguez-Ramos et al. (2004) a generalization of the Hashin-Shtrikman variational 
principles is reported.  
 
In this work, starting from the general expression of the energy derived in Rodriguez-Ramos et al. 
(2004) for non-linear composites, an application to a particular case of linear, elastic, transversely 
isotropic composites is studied and the analytical expressions of the variational bounds for each 
material constant are derived. In particular, the bounds for two and three phase transversely 
isotropic composites are reported.  
 
2. Statement of the problem 
 
The solution of the non homogeneous problem follows from: 

( ) 0or    ,0,~
, == jijXuDiv σσ

rr ,    ( ) klijlkij CXF ε
ε
εεσ =

∂
∂

== ~
)~W(,~ r

,    (2.1) 

0~ε==
Σ ouu rr ,          (2.2) 

where εσ ~,~  denote the second order stress and strain tensors, respectively. ),,(
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where  denotes the component of mechanical displacement and the comma denotes partial iu



differentiation. C~  is the stiffness tensor, and it is a fourth range tensor.  and  are respectively 
the prescribed second order constant tensor and the mechanical displacement vector. 
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The solution of the above problem (heterogeneous problem) can be written as the sum of the 
solution of the comparison problem (homogeneous medium), denoted by Problem A, and the 
solution of the auxiliar problem related to the second order stress polarization tensor , denoted by 
Problem B..       

p~

 
Therefore,  
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where  ,  and  are the stress, strain tensors and mechanic displacement of the comparison 
body, respectively. The magnitudes ,  and 

cσ~ cε~ cur

pε~ p~ pur  denote the strain, stress polarization tensors 
and the mechanical displacement of the polarization contribution, respectively. 
 
The solution of the Problem A is the vector cur  and it satisfies the following boundary value 
problem  
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where the quadratic potential energy of the comparison body can be introduced as  cW
c
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The solution  of the auxiliary problem related to the stress polarization tensor  (Problem B) 
can be found from  
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where the potential energy of the polarized contribution is denoted by )~(εpW , and it is defined by 
)~()~()~( εεε cp WWW −= . Then we can obtain the expression for the stress polarization tensor in 

components as 
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The associate constitutive relation (strain as a function of the polarization tensor) from (2.8) can be 
written in the form, 
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is the inverse potential energy related to the potential energy  of the polarization 
contribution defined in (2.8). 

)~(εpW

 
The boundary value problem for the composite can be summarized as follows:  
 
Composite   Comparison body  Polarization contribution 
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3. Some considerations related to elastic energy. General expression of the energy 
 
The analytical expressions for the variational bounds of a linear transversely isotropic elastic 
composite are obtained using the energy functional given by the formula (53) reported in 
Rodriguez-Ramos et al. (2003): 
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Averaging the functional (3.1) and using the average operator >•<  on the volume V, the 
expression (3.1) can be written in the following form: 
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Each term of (3.2) can be denoted, for simplicity, in the following form: 
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Therefore, the equation (3.2) can be given in an equivalent form as . 4321 AAAAA +++=

 
Now, consider a composite made of q components (q-phases). The stress polarization tensor p~  

depends on the space variable , and the stress polarization tensor for each phase 
→

x α  of the 
composite is denoted by αp~ . Therefore, we have: 
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where  is the volume fraction of the component α in the composite, and  αv
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The magnitudes ,  and  can be written as functions of the spherical and deviator 
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tensors  and , respectively, and d is the dimension of the Euclidean space, i.e. 0~ε p~ 2=d  (two-
dimensional space) or  (three-dimensional space). 3=d
 
After some algebraic manipulations, the magnitudes ,  and  have the following compact 
and general form in terms of spherical and deviator parts,  
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expression (3.6) is omitted. 
 
The expression  is related to polarization contribution (Problem B) and it depends on the 
unknown polarization displacement 

4A
pur . Therefore, we need to solve the auxiliary problem (2.6)-

(2.7) related to stress polarization tensor  where the vector p~ pur  is the solution of the problem. The 
problem is solved using the Fourier transform. 
 
Applying the Fourier transform to the equation (2.6), we obtain 
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where )(~ ωrP  and )(~ ωrE  are the Fourier images of the stress polarization tensor  and strain tensor p~

ε~ , respectively, and )(
2
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Now, our aim is to derive the integrand function given in (3.8) as a function only of the polarization 
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We can derive from formula (3.9) the expression, 
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where  is the Fourier image of the component . *
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The tensor cC~  can be decomposed as sum of two tensors; one isotropic tensor denoted by c
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The equation (3.12) is multiplied by the tensor jiij eePP rr
⊗= **~ , and using the above properties, the 

following expression can be derived for two dimensional case ( 2=d ) 
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Finally, the components  and  of the expression  can be split into 
deviators and spherical parts, and therefore we obtain  

*
ijp ijp ><−= ijijij ppp*

∑∑
==

><−+><−=
q

ijijc

q

c ppvbppvaA
1

222

1

2
4 )()(

α
α

α
αα α

,     (3.15) 

where cc
c

a
1124

1
τ

−=  and 
)(4

3

1211112

1211
ccc

cc

c
ccc

cc
b

−

−
−=

τ
. 

 
Now, we can derive the general expression of  for the three-dimensional case (4A 3=d ). The 
equation (3.12) can be written in the form, 
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Analogous to the above procedure for 2=d , we obtain the general expression   for three-
dimensional case ( ) in the form, 
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Finally, the expression for the energy can be calculated for two dimensional problems ( 2=d ) from 
the equations (3.6) and (3.15) and for three-dimensional problem ( 3=d ) using the expressions 
(3.6) and (3.17).  
 
4. General approach for variational bounds of multiphase anisotropic elastic composite 
 
It is well known that the solution of the auxiliary problem (2.6)-(2.7) (Problem B) is a stationary 
point of the functional (see, Rodríguez-Ramos et. at. (2004)) 
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From the variational principle of Hashin-Shtrikman we can state that the stationary point is 
maximum or minimum according to the following statements: 
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The functional (4.1) has maximum if the tangential modulus 
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The maximum or minimum of the magnitude A  can be obtained with respect to the stress 
polarization tensor  from the condition of the existence of extrema applied to the spherical (p~ p ) 
and deviator ( ijp ) components of the stress polarization tensor. In that case, a system of equations 
is written in the following form, 
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The two unknown magnitudes  and >< p >< ijp  are derived from equations (4.2) and (4.3). Then, 

the unknown functions >< p  and >< ijp  are substituted into the expression for the energy (3.2), 
but they are now written in a compact form for any anisotropic media as 
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and applying the sufficient condition of extrema  (maximum) and  

(minimum) an analytical expression of the bounds can be derived. The analysis of the bounds is 
done for the composite with well ordered q-phases, i.e. . The condition 

 is satisfied if we take the properties of the comparison body as the properties of the q-

phase elastic moduli, i.e., ; on the other hand, the condition  is satisfied if the 

comparison body is chosen to be one of highest phase elastic moduli , i.e. the phase with 

properties . 
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5. Example of bounds for transversely isotropic elastic composite 
 
In this section, an example of bounds using the above procedure is presented. For a better 
explanation, bounds for two dimensional case (d = 2) are studied. In particular, we consider a 
composite with transversely isotropic properties of their constituents. The Hooke law for the 
transversely isotropic elastic materials is given in the following matrix form, 
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The reduced Hooke law for the plane deformation in the plane  where 21xx 0332313 === εεε  can 
be written as, 
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In this case, the expressions given in (3.6) and (3.14) can be reduced for transversely isotropic case 
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The functional A given in the formula (4.4) can be written in the compact form 
2

2
1

AAA += . Thus 

replacing (5.9) and (5.10) in the compact form, we obtain, 

ijijij
cccc epepecceccA ><+><+−++=

2
1)()(

2
1 2

1211
2

1211 , 

2

2

22

1

12

2

22

1

122 )
1

2()
)1(4

1(
1)1(4

1
ij

c

c

c

c
ij

cc
ij

cc e
b

me
a

ke
b

e
a

emekA
γ

γ
γ

γ
γ

γ
γ

γ
+

++
+

+=
+

+
+

++= . 

Let us introduce the following notation in the above quadratic form, 
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The expressions of the lower and upper bounds related to multiphase composites can be obtained 
from the above formula, taking into consideration the relevant statement from the variational 
principle of Hashin-Shtrikman. They are applied in the following way, 
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L

b
mm

+
+=   and  

]1[2 )(
2

)(

)(
2

qq
c

q

qU b
mm

γ
γ

+
+= ,  ( qq mmmm <<<< −121 L ).(5.12) 

The superscripts 1 and q between brackets mean the replacement of the comparison body by the 
inclusion or matrix respectively. 
 
The bounds (5.11)-(5.12) for two phases composite can be written in the form, 

11

1

12

2
1 1

km
v

kk

vkkL

+
+

−

+=                and     

22

1

21

1
2 1

km
v

kk

vkkU

+
+

−

+= ,  (5.13) 

)(2
)2(1

111

111

12

2
1

kmm
vmk

mm

vmmL

+
+

+
−

+=    and  

)(2
)2(1

222

222

21

1
2

kmm
vmk

mm

vmmU

+
+

+
−

+= . (5.14) 

 
The expressions (5.13)-(5.14) are the same bounds to (4.25)-(4.28) reported by Hashin (1965).  
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Now, the bounds for the shear module µ  ( ) are studied. We consider the antiplane deformation 
problem, where the Hooke law in that case has the form 

G

1212 εµσ =  ,  1313 εµσ = . In matrix form 
we have,  
 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

13

12

13

12
2
2

20
02

2
2

ε
ε

µ
µ

σ
σ . 

 
Therefore, the only deviator contributions different from zero are 12e  and 13e . The magnitudes 

 and  are obtained as follows, 321  , , AAA 4A
2

1 ij
c eA µ= ,    2

13
2

12
2 22 eeeij += ,  

∑
=

=
q

ijij epvA
1

2 2
α

αα ,   ∑
= −

−=
q

ijc
p

v
A

1

2
3

α α

α
αµµ

 ,    2
13

2
12

2 22 pppij += , 

∑
=

><−=
q

ijijc ppvbA
1

22
4 )(

α
α α

 , with  ccb
µ2
1

−= . 

The necessary condition 0=
∂
∂

αijp
A  for the extrema of the functional A  is given in the following 

form:  
 

0)(222 =><−+
−

−=
∂
∂

ijijcijcij
ij

ppvbp
v

ev
p

A
αα

α
α

α

α
α

µµ
.    (5.15) 

From the equation (5.15) we can get ij
c

ij e
b

p
γ

γ
+

=><
1

 , with 
1

1

1
−

=
∑ ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−
=

q

cc bv
α α

α
µµ

γ . 

Thus, the functional  21 2
1 AAA +=  has the particular form, 

222 )
1

(
1 ij

c

c
ij

c
ij

c e
b

e
b

eA
γ

γµ
γ

γµ
+

+=
+

+= . 

Let us introduce the notation 
γ

γµµ
c

c
b+

+=
1

. Therefore the bounds for the shear module in the 

composite with q-phase has the form 

)1()1(

)1(
1

1 γ

γµµ
c

L
b+

+=    and   )()(

)(

1 qq
c

q
qU

b γ

γµµ
+

+=  ,  ( qq µµµµ <<<< −121 L ). 

 
In particular, for a two-phase composite we obtain 

1

1

12

2
1

2
1

µµµ

µµ
v

v
L

+
−

+=        and      

2

2

21

1
2

2
1

µµµ

µµ
v

v
U

+
−

+= .   (5.16) 

 
The bounds (5.16) are the same bounds to (5.12) – (5.13) given by Hashin (1965).  
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Finally, the bounds for the parameters ,  and  are derived. Our analysis is reduced to the 
plane . The Hook law for the deformation plane  where 

13c 33c 44c

31xx 31xx 0232212 === εεε  can be 
written in the matrix form  
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

13

33

11

44

3313

1311

13

33

11

2

  
  

200
0
0

2

  
  

ε

ε
ε

σ

σ
σ

c
cc
cc

. 

 
Analogous to the above procedure for the other bounds we can calculate the magnitudes  
and  in the following way, 

321 ,, AAA

4A
 

2
1344

2
33131133331133

2331311
1 4)2()(

4
2

ececcceecce
ccc

A cccccc
ccc

+−++−+
++

= , 

∑
=

++=
q

epepepvA
1

13
2
1333

2
332 )44(

α
αα αα

∑
=

++−−=
q

pppppvA
1

2
134

2
333332

2
13 ]2

4
1[

α
ααα ααα

ξξξξ , 

∑∑
==

><−+><−+><−=
q

c

q

c ppppvbppvaA
1

2
13

2
13

2
33

2
33

1

22
4 )2222()(

α
α

α
αα αα

, 

where 

2
131333331111

131333331111
1

)()()(

)(2
ccc

ccc

cccccc

cccccc

−−−−

−−−+−
=

ααα

αααξ ,   
2

131333331111

33331111
2

)()()(

)
ccc

cc

cccccc

cccc

−−−−

+−−
=

ααα

ααξ , 

 

2
131333331111

131333331111
3

)()()(

)(2
ccc

ccc

cccccc

cccccc

−−−−

−+−+−
=

ααα

αααξ ,
)(2

1

4444
4 ccc −
=

α

ξ , with cc
c

a
114

1
τ

−=  , 

)(4

3

121111

1211
ccc

cc

c
ccc

cc
b

−

−
−=

τ
, and  

)(16

)2()311()241644()(

121111

1211441211441312111211
ccc

ccccccccccc

ccc

ccccccccccc

−

+−−+++−−
=τ . 

From the necessary condition 0=
∂
∂

αp
A    and   0=

∂
∂

αijp
A  of the extrema of the functional A  we 

can write, 

><−=−− paeppa cc 22
1)

4
1( 3321 α

ξξ α ,       (5.17) 
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><−=−+ 3333333
2 )(
4

pbepbp cc α
ξ

ξ
α ,      (5.18) 

1313134 )( epbpb cc =><+−
α

ξ .        (5.19) 
 
An expression for >< 13p  can be calculated directly from the equation (5.19), i.e.,  

13
13

13
13 1

e
nb

n
p

c+
=><   , where   ∑

= −
=

q

cb
v

n
1 4

13
α

α
ξ

. 

The system (5.17) – (5.18) can be solved with respect to  and αp
α33p  and a new system is 

obtained,  

33
21

33
2

1 222
)1( eep

b
pa c

c
ϑϑϑ

ϑ +>=<+><+ ,      (5.20) 

eepbp
a

c
c

8
)1(

4
2

333333
2 ϑ

ϑϑ
ϑ

−>=<++><− ,      (5.21) 

where  

∑
= +−−

−
=

q

cc

c

ba

bv

1
2
2

31

3
1

8
)()

4
1(

)(
  

α

α

ξ
ξξ

ξ
ϑ  ,   ∑

= +−−

=
q

cc ba

v

1
2
2

31

2
2

8
)()

4
1(

  
α

α

ξ
ξξ

ξ
ϑ    and 

∑
= +−−

−
=

q

cc

c

ba

av

1
2
2

31

1
3

8
)()

4
1(

)
4
1(

  
α

α

ξ
ξξ

ξ
ϑ . 

 
The system (5.20) – (5.21) is solved with respect to unknown functions >< p  and >< 33p  and we 
get,  3321 eep ϕϕ +>=<     and     eep 233333 4ϕϕ −>=< , with  

])1()1(8[2

)1(8
2
231

2
231

1
cccc

cc

baba

bb

ϑϑϑ

ϑϑϑ
ϕ

+++

++
=   ,  

cccc baba 2
231

2
2

)1()1(8

4

ϑϑϑ

ϑ
ϕ

+++
=   

and  
cccc

cc

baba

aa
2
231

2
213

3
)1()1(8

)1(8

ϑϑϑ

ϑϑϑ
ϕ

+++

++
= . 

 

Thus, the functional 21 2
1 AAA +=  can be written in the form, 

2
13

13

13
44

2
33231311

2
3321133

2
211311

]
1

2[2]
2

15222[       

)
2
1(]

2
15[]

2
15222[

4
1

e
nb

n
cecc

eecceccA

c

ccc

cccc

+
++++−+

++−−++++=

ϕϕ

ϕϕϕ
. 

The following notation can be introduced, 

2113111311 2
1522222 ϕϕ +++=+ cc cccc ,       (5.22) 
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211331133 2
15ϕ−−=− cc cccc ,        (5.23) 

2313111311 2
1522222 ϕϕ ++−=− cc cccc ,       (5.24) 

13

13
4444 1

22
nb

n
cc

c

c
+

+= .         (5.25) 

The system (5.22)–(5.25) is solved with respect to the unknown functions  , ,    and   
and we obtain, 

11c 13c 33c 44c

 

22
15

2
321

1111
ϕϕϕ

+++= ccc ,            
22
31

1313
ϕϕ

−+= ccc  ,    

22
15

2
321

3333
ϕϕϕ

+−+= ccc    and   
)1(2 13

13
4444 nb

n
cc

c

c
+

+= . 

The expressions for the bounds of the materials constants ,  ,   and  can be listed as, 11c 13c 33c 44c
 

22
15

2

)1(
3

)1(
2

)1(
1)1(

1111
ϕϕϕ

+++= cc
L

,  
22

15
2

)(
3

)(
2

)(
1)(

1111

qqq
qcc

U

ϕϕϕ
+++= , 

22

)1(
3

)1(
1)1(

1313
ϕϕ

−+= cc L ,   
22

)(
3

)(
1)(

1313

qq
q

U cc
ϕϕ

−+= , 

22
15

2

)1(
3

)1(
2

)1(
1)1(

3333
ϕϕϕ

+−+= cc
L

,  
22

15
2

)(
3

)(
2

)(
1)(

3333

qqq
qcc

U

ϕϕϕ
+−+= , 

)1(2 )1(
13

)1(

)1(
13)1(

4444
nb

n
cc

c
L

+
+= ,  

)1(2 )(
13

)(

)(
13)(

4444 qq
c

q
q

U
nb

n
cc

+
+= . 

 
6. Conclusions 
A general procedure for deriving the variational bounds for any type of anisotropic linear elastic 
composite is studied. Analytical expressions for the bounds of linear, transversely isotropic elastic 
composite are given. In particular, bounds for two-dimensional case are then calculated. Non 
limitation about the quantities of inclusions and the geometrical shape of the inclusions are 
considered for the estimation of the bounds. The method allows us the calculation of all bounds for 
the material parameters involved in different type of anisotropies and good estimation of the 
effective properties are obtained.  
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