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Abstract

A general algorithm for the calculation of variational bounds for any type of anisotropic linear
elastic composite is presented. Analytical expressions for the bounds are derived using this general
approach. Bounds for multiphase, linear, transversely isotropic, elastic composites are reported.
Bounds for the two-dimensional case are calculated. Some comparisons with other models are
shown.

1. Introduction

Due to the anisotropic character of a composite, its geometric and physical nonlinear behavior, the
geometric shape of the reinforcements and their distributions in the composite, among other factors,
exact analytic expressions of overall properties can not be provided. Sometimes, however, the range
of validity of the overall properties of a composite using variational principle can be estimated.

The study of the variational bounds for linear and non-linear composite materials has been
considered by many authors (see, for instance, Pobedrya (1984), Ponte Castarieda (1992) and Willis
(1991)). In Rodriguez-Ramos et al. (2004) a generalization of the Hashin-Shtrikman variational
principles is reported.

In this work, starting from the general expression of the energy derived in Rodriguez-Ramos et al.
(2004) for non-linear composites, an application to a particular case of linear, elastic, transversely
isotropic composites is studied and the analytical expressions of the variational bounds for each
material constant are derived. In particular, the bounds for two and three phase transversely
isotropic composites are reported.

2. Statement of the problem

The solution of the non homogeneous problem follows from:

Div&(d, X)=0, or o, =0, o = F(E,X):%@:kagkl, 2.1)
&
al, =d,=¢2°, (2.2)

where &, & denote the second order stress and strain tensors, respectively. &; :%(uhj +U; ;)

where u, denotes the component of mechanical displacement and the comma denotes partial



differentiation. C is the stiffness tensor, and it is a fourth range tensor. £° and G° are respectively
the prescribed second order constant tensor and the mechanical displacement vector.

The solution of the above problem (heterogeneous problem) can be written as the sum of the
solution of the comparison problem (homogeneous medium), denoted by Problem A, and the
solution of the auxiliar problem related to the second order stress polarization tensor p, denoted by

Problem B.

Therefore,

N - -

u=u‘+u”, £=£°+2P, 5=5°+p, (2.3)
where ¢, £¢ and [° are the stress, strain tensors and mechanic displacement of the comparison

body, respectively. The magnitudes £ P, p and " denote the strain, stress polarization tensors
and the mechanical displacement of the polarization contribution, respectively.

The solution of the Problem A is the vector G° and it satisfies the following boundary value
problem

Div&C(Jj:O, 5°=‘9Wa—~(f)=6°:5°, (2.4)
&

_ =0, (2.5)

where the quadratic potential energy of the comparison body W ° can be introduced as

c

u

We(g®) = ici‘j?k,gijgﬁl and the stiffness constant Cj,, does not depend on the spatial coordinate X.
2

The solution (P of the auxiliary problem related to the stress polarization tensor p (Problem B)
can be found from

Div(5+C<2?)=0, or p,, +Ceel, =0, (2.6)

up\z =0, (2.7)

where the potential energy of the polarized contribution is denoted by W °(¢), and it is defined by

WP(g)=W(g)-W*(g). Then we can obtain the expression for the stress polarization tensor in
components as

p; =F p(gij) =
g

The associate constitutive relation (strain as a function of the polarization tensor) from (2.8) can be
written in the form,

oW P (&) . . .
— = Ojj _Cijklgkl = Cijklgkl - Cijkl &y = (Cijkl - Cijkl )€ - (2.8)

6a)p(p--) ~
gij =——— =Hij P Hija = Cijn —Cfia) ™ (2.9)
0 Pij
where
1
oP ()= 2 Hiiii Pij Pi (2.10)



is the inverse potential energy related to the potential energy W P(g) of the polarization
contribution defined in (2.8).

The boundary value problem for the composite can be summarized as follows:

Composite Comparison body Polarization contribution
— c _ P _
oy, =0 oy, =0 Oij,j =
= C
o = Cijaéu = o =Ciluéu + Gi}O = Pijj +Cijkl‘9|5 =0 (211)
0 0
Ui|z:8inj Ui|z:5ijxj uipZ:O

3. Some considerations related to elastic energy. General expression of the energy

The analytical expressions for the variational bounds of a linear transversely isotropic elastic
composite are obtained using the energy functional given by the formula (53) reported in
Rodriguez-Ramos et al. (2003):

(D—l

_EJ‘(O-i?gi? +2pijgi? + pijgi'j - 20" (p))dv . (3.1)

Averaging the functional (3.1) and using the average operator <e> on the volume V, the
expression (3.1) can be written in the following form:

20 c

5 o 5EC PN Py oo P
A= v < Cij€i] > +2 < Pjj&jj > 2< @ (P)>+< Pij&ij > (3.2)

Each term of (3.2) can be denoted, for simplicity, in the following form:
A =< O'ﬁgﬁ >, Ay =2< pijgﬁ > Ag=-2< oP(p)> and Ay =< pijgin >, (3.3)

Therefore, the equation (3.2) can be given in an equivalent form as A = A+A+AA,

Now, consider a composite made of q components (g-phases). The stress polarization tensor p

depends on the space variable x, and the stress polarization tensor for each phase « of the
composite is denoted by p,, . Therefore, we have:

~ q ~
a=1

where Vv, is the volume fraction of the component o in the composite, and

q

>v, =1 (3.5)

a=1
The magnitudes A, Ay and Ag can be written as functions of the spherical and deviator
contributions of tensors £° and p . The decomposition is Pij =%p5ij +Pjj and



& = L —e-ojj +&j, where p, e are the spherical and p;, €; are the deviator parts of the two
&ij = d ij ™ ij

tensors £° and P, respectively, and d is the dimension of the Euclidean space, i.e. d =2 (two-
dimensional space) or d = 3 (three-dimensional space).
After some algebraic manipulations, the magnitudes A, Ay and Ag have the following compact

and general form in terms of spherical and deviator parts,

1 o2 2 _ _
A = 42 e“Cijj + ge'eijcﬁkk +8ijCiji B
Ay = Zv ( Pue+2P, : 5), (3.6)

~ o~ - d 1 2 _ _
= _Z_;Va P, :H, 1P, = _Z_;Va [d_z piHiijjg +E P, Py Hiw, *+ Py, Hij, Pu, ]
. ~ 1 ~ ~ ~ ~ =~ ~C 1 .
with wp(pa):gpa ‘H, :p, and H =(C—C T . For the sake of brevity, the proof of the
expression (3.6) is omitted.

The expression A, is related to polarization contribution (Problem B) and it depends on the

unknown polarization displacement (" . Therefore, we need to solve the auxiliary problem (2.6)-
(2.7) related to stress polarization tensor p where the vector G" is the solution of the problem. The
problem is solved using the Fourier transform.

Applying the Fourier transform to the equation (2.6), we obtain

Ci?kla)ja),U =iw;P;,

(3.7)

where Uy and P; denote the Fourier transforms of the functions ulf and p;, respectively. The
magnitude A4 can be written in the Parsevall form,

1 1
el dVy Pi (@)E;i (@) AV, = ——=— | Pii (@)G;i (©)dV,, 3.8
jp,s vaj  (D)Ejj (@) Sﬂgvvj  (@)Gij (@) (38)

where P(a)) and E(c?)) are the Fourier images of the stress polarization tensor p and strain tensor

€ , respectively, and Ej; :%(Gij +Gjj) with Gj; =iU;w;.

Now, our aim is to derive the integrand function given in (3.8) as a function only of the polarization

~ - . . . ; .
tensor p . From the vector @ we can introduce a unit vector, i.e. k; = H and then equation (3.7)
a

k.
is written in the following form, C, k,kU, =i—-P, . We therefore have,

||l

=i(Ci kK )-1”";” X (3.9)

We can derive from formula (3.9) the expression,



c *
Cijklkj k| kaz—kj km P

ij (3.10)

where P,F is the Fourier image of the component p;j = Pij— < Pjj >-

The tensor C© can be decomposed as sum of two tensors; one isotropic tensor denoted by éi‘go

(the components are denoted as ciC.

i ) and the other tensor, the so called remainder tensor,
1SO

denoted by C S (the components are denoted by c&,, ). Thus, Clq =Ciyy  +Ci, . Therefore,
ijKl res 1 ijkliso ijKl res
the equation (310) can be rewritten in the form:
c c _ _ *
(Cijkliso k] k| +Cijk|res kj k|)ka =- kj km le . (3.11)
c C c c
~ Ciq—C Ciq +C
The tensor T =t, € ®€,, with components t;, = Cicjkl- ki ki :%5"( + AL 12 1k has
1SO
c C
2 o Ot

an inverse tensor of the form Z = Zik 6 ® 8, with zj = ki ki . The

c c ik C /~C c
C11 = C2 cyy (63 —Cpp)

equation (3.11) is multiplied by the inverse tensor Z and we have

C C
ki kg — utle
J C (nC _ Cy ijKlpes
cyy (67 —Cp5)
Let us introduce a unit vector N = n,€; with the following properties,

1 15ij if d=2
<nn; >:—'[ninjdV: 2 ,
\Y 1 ,
v —o; if d=3
3

2 ¢

C.:.
c il g

@+ S
C11 = C2

ki kj ki ki) Gym == Kk Pj zik. (3.12)

. 16,60 +6,6,+6,5,) if d=2

<nn;n.n, >:—Ininjnkn| dv = :
\Y 1 .

v E(&j&kl +0,05 +0,0,) if d=3

The equation (3.12) is multiplied by the tensor P = PIJ € ®¢€,, and using the above properties, the
following expression can be derived for two dimensional case (d = 2)

C C C C
C1 +C * c;, —3C *
79 <Gy P >=——2—12 <P Pi>+—12 "1 o pipis (3.13)
m = km 8¢S (cC c ol 4¢C (cS c oy
C17 (G171 —C13) Cy7 (G171 —C13)
C
cC.. S 1 cC
where 7, =1+ ores @17) o 2¢S. ). Notice that for the isotropic case

c _C C (nC _ ~Cy ijjres 1] res
C11—Crp  8Cpy (Cpq —Cpp)
79 =1, since the reminder tensor is the null tensor, i.e. Ciﬁkl

res

The expression A4 in (3.8) using (3.13) can be written in the following form,

=0.



C C
C11TCp

C Cc C
87y (¢ —Cpp)

Cc C
Crp, —3Cp)

C C Cc
4rcyy (Cg —Cpp)

Ay =< pjj &jj >= < pﬁ pjj >+ < p;} Pij >- (3.14)

Finally, the components p;j and pjj of the expression p;} = pjj— < pjj > can be split into
deviators and spherical parts, and therefore we obtain

J 2 2 J 2 2
A4:aczva(pa_<p> )"‘bczva(ﬁij _<ﬁij> ) (3.15)
a=1 a=1 “
3ct —ct
where a, =— S and b, =— 011 S 12 -~
4rycpq 4rycpq (c11 - 012)

Now, we can derive the general expression of A, for the three-dimensional case (d =3). The
equation (3.12) can be written in the form,

(o C
C11 TS
C C C
15¢p7 (¢; —Cp5)

2¢C. C ., aC
s (C11 +Cpp) c 9cC

c c C c c i 'JJ res ij ij res
3(cyy —Cp)  15¢y7 (¢p —¢pp)

c C

73< Gym Pum >= < P,? Pjj >+ < P,; Rij >, (3.16)

C C Cc
15¢p7 (¢; —¢pp)

where 73 =1+

Analogous to the above procedure for d =2, we obtain the general expression A, for three-
dimensional case (d = 3) in the form,

q q
A =ac, DVa(po—<p>?)tbey DV, (B —< P >%) (3.17)
a=1 a=1
8cl, —2cf
where a, = - s and b, =- 101 C12C .
973¢p 1573 ¢y (¢ —Cp5)

Finally, the expression for the energy can be calculated for two dimensional problems (d =2) from
the equations (3.6) and (3.15) and for three-dimensional problem (d =3) using the expressions
(3.6) and (3.17).

4. General approach for variational bounds of multiphase anisotropic elastic composite

It is well known that the solution of the auxiliary problem (2.6)-(2.7) (Problem B) is a stationary
point of the functional (see, Rodriguez-Ramos et. at. (2004))

® =%I(a§ g +2p; & + p; & —20°(p))dV ie. 5P(p,5p)=0. 4.1)
\

From the variational principle of Hashin-Shtrikman we can state that the stationary point is
maximum or minimum according to the following statements:



P
The functional (4.1) has maximum if the tangential modulus ZF
‘9ij

is positive, i.e. from (2.8), we

C
can see that Cijy > CijkI .

p
The functional (4.1) has minimum if the tangential modulus ZF
gij

is negative, i.e. from (2.8), we
can see that Cij < Cﬁkl :

The maximum or minimum of the magnitude A can be obtained with respect to the stress
polarization tensor p from the condition of the existence of extrema applied to the spherical (p)

and deviator (p;) components of the stress polarization tensor. In that case, a system of equations
is written in the following form,

1 1_ 1
[d_zHiijja _ac]pa"'apijaHijkka:Ee_23c< P>, (4.2)
1 _ — _ _
—PoHijkk, + Pi, Hiji, —be Pij, = &j —be <Pij >. (4.3)

d

The two unknown magnitudes < p > and < pj; > are derived from equations (4.2) and (4.3). Then,
the unknown functions < p > and < pj; > are substituted into the expression for the energy (3.2),

but they are now written in a compact form for any anisotropic media as
1

2 2 _ _ 1 L
A:d—ze Cﬁ” +He~eijcﬁkk +eijCﬁklek| +E< p>+< pIJ > eij , (4.4)
and applying the sufficient condition of extrema Cij >Ci§kI (maximum) and Cijy <Ci(j;kl

(minimum) an analytical expression of the bounds can be derived. The analysis of the bounds is
done for the composite with well ordered g-phases, i.e. Cy, >Cy, >--->Cy, . The condition

Cij,, > Cﬁkl is satisfied if we take the properties of the comparison body as the properties of the g-
phase elastic moduli, i.e., Cijqu; on the other hand, the condition Cjj_ <Ci‘J?kI is satisfied if the

comparison body is chosen to be one of highest phase elastic moduli Cjj, i.e. the phase with

properties Cijkll .

5. Example of bounds for transversely isotropic elastic composite

In this section, an example of bounds using the above procedure is presented. For a better
explanation, bounds for two dimensional case (d = 2) are studied. In particular, we consider a
composite with transversely isotropic properties of their constituents. The Hooke law for the
transversely isotropic elastic materials is given in the following matrix form,



on _Cll C12 (13 0 0 0 || 1
022 Cio C1 C13 0 0 0 €22
033 Ci13 Ci3 C33 0 0 0 €33
\/5623 B 0 0 0 2cyy 0 0 \/5823 . 1)
\/50-13 0 0 0 0 2 Cyq 0 \/E £13
_\/5012_ | 0 0 0 0 0 2C66__\/5812_

The reduced Hooke law for the plane deformation in the plane x,X, where g3 = £93 = £33 =0 can
be written as,
o11 Ci1 Cr2 0 £11
o2 |=|C2 Cn1 0 €2 | (5.2)
V201, 0 0 cu—C2f[v2e,

In this case, the expressions given in (3.6) and (3.14) can be reduced for transversely isotropic case
to

A = (205 + 2056+ (05 ~ci e}, & 8 85 + 263, 53
q [— -_—

A, :Zva(pae+2pijaeij)' (5.4)
a=1

X 1 2 Bn2 n2 n2 n2 "2

A =_zva Z pz& +&; Pi |+ Pij=Pa+Ppnt 2P, (5.5)
a=1

where the constants & and &, are listed as follows,

2 1
& = Hiijja = , &, = H1111a - H1122u =

_
Cllu - C1C1 + Clza - Clcz Clla - C1°1 - C12a +Cp,

The magnitude A, is given by the formula,

J 2 2 J =2 = 2
Ag=ac D Vo (Pg =< P>)+be 3 Ve (P —<Pjj>), (5.6)
a=1 a=1
where the constants a_, b, are written in the form,
c c c c C _ nC
a, .t , b, =- KE+m , Where k¢ St g me =G
4(m° +Kk°®) 4me (k¢ +m°) 2 2
From the condition of extremum with respect to spherical and deviator parts, i.e. A =0 and
P
oA . . .
———, we obtain the following system of equations,
Pij,
aa_szoce_%V(x paal+2acva(pa_<p>):07 (57)
P



SRV 2N, Ty & 420, (B~ <Py ) =0, 8)

i

The unknown functions <p>and < p; > are calculated directly from (5.7) and (5.8). Therefore, we
can write,

1 7, : d 1 _
<p>=————-¢€, with = V (—¢,—a 1, 5.9
p 2 (L+a y,) Y1 ; q(4§1 ¢) (5.9)
<P, >=—12 g with —iv e _p ) (5.10)
ey T e |

The functional A given in the formula (4.4) can be written in the compact form A=A +%. Thus
replacing (5.9) and (5.10) in the compact form, we obtain,

1, ¢ C a2 c cyg2 , 1 = =
AZE(C11+C12)e +(Cp1 — Co) & +E< p >e+ < Pjj >&j,

A=k‘e’+m°gl + L n g, 7o &l =(k°+ L 7 M ey (2me 412 el
4(1+ac71) 1+b. 7, 4(1 a; 71) 1+b, 7,
Let us introduce the following notation in the above quadratic form,
k=k®+—"  and m=me+—12
4(1+aCYZ) 2(1+bCYZ)

The expressions of the lower and upper bounds related to multiphase composites can be obtained
from the above formula, taking into consideration the relevant statement from the variational
principle of Hashin-Shtrikman. They are applied in the following way,

() @

71 71
kp =kj+————— and k, =k, +————, (k; <k, <---<k k,), (611
. 1+4[1+a(1) D1 ’ q+4[1+a§q)7fq)] ashe <mclqusioh - (G4Y
y e
m_ =m + 2 and my =m, +—% —— (m <m, <--<m,; <m,).(5.12)

211+b® 1 T2[+b p0]

The superscripts 1 and g between brackets mean the replacement of the comparison body by the
inclusion or matrix respectively.

The bounds (5.11)-(5.12) for two phases composite can be written in the form,

Ky = kg + Y2 and  ky =ky+ el , (5.13)
1 + V1 1 + V1
k2—k1 m1+k1 kl—k2 mo +k2
V2 V1
ML =Mt T omy)y, 2 MU =M2+— . (p+2my)v, (614)
mo — My 2m1 (m1+k1) mp —mo 2m2 (m2 +k2)

The expressions (5.13)-(5.14) are the same bounds to (4.25)-(4.28) reported by Hashin (1965).



Now, the bounds for the shear module x (G) are studied. We consider the antiplane deformation
problem, where the Hooke law in that case has the form o1o = g12 , o013 = 13- In matrix form
we have,

{\/5012}{2# 0}{\/5812}
V2oi3] [0 2u][V2es]

Therefore, the only deviator contributions different from zero are €, and 3. The magnitudes
A, A,, A, and A, are obtained as follows,

Co2 22 _o0a2  oa2
Po=u"&j, & =28 + 283,

S LV 2 w2 _om2 | =2
Ao =2 VaPij 8 Ag=—D—"—P; » Pij=2Pi2+2Pi3,
a=1 a=1tg —H~ ¢
d 2 2 . 1
A4 = bC Zva (ﬁ” —-< ﬁlj > ) , with bC =— c
a=1 “ 21
The necessary condition . =0 for the extrema of the functional A is given in the following
ij,
form:
oA _ v _ — _
— :2Va eij -2 a c pija +2bCVa(pija—< p” >)=0. (5.15)
0 pija Ho —

-1
q
From the equation (5.15) we can get < pjj >=L€ij Lwith = Y v, #—bc :
1+b sy — u®

c? a=1 -
Thus, the functional A=A+ % A, has the particular form,
A=plel+—L &2 =(ut+—L)e?.
MG 11bg y ij (u 1+bc7) ij

. Therefore the bounds for the shear module in the

Let us introduce the notation x = ¢ +
1+b.y

composite with g-phase has the form
7,(1) 7,((1)

= +——~——— and A A— .
,Ll|_ /Ul+1+b((;1) }/(1) an ,LlU /Uq +1+béq) ]/(q) (/ul </u2 < <'uq—1 </uq)

In particular, for a two-phase composite we obtain

v
HL=M+— :

Vi
1 V2

and Hy = Ho + (5.16)
Vi

+ +
Mo —m 2 M=t 2

The bounds (5.16) are the same bounds to (5.12) — (5.13) given by Hashin (1965).

10



Finally, the bounds for the parameters c;3, C33 and Cy4 are derived. Our analysis is reduced to the
plane x;X3. The Hook law for the deformation plane Xx;X3 where &1, =99 =&73 =0 can be
written in the matrix form

o11 ci1 ¢3 O &1
033 |=|C¢3 C3z O £33
\/5613 0 0 2C44 \/56‘13

Analogous to the above procedure for the other bounds we can calculate the magnitudes A, Ay, Ag
and A, in the following way,

c c c
C3 +2C 5 +C
11 13 ' ¥33 .2 c C\agm, c c Cy\52 C 72

q
A2 = D Vo (Pa e+45323a €33 +45123a €13)
a=1

q
1 _ _ _
Ay == Val & PG —¢2 Pa Pas, +83 D3y +264 P13 1,

a=1

d 2 2 d 2 2 2 2
Ay =ac D Vy (PG—<P>)+be D v, (2P35 —2<Pg3>" +2P3 —2< P13 >°),
a=1 a=1
where

c c c c c
G1, ~ %1 +C33, ~C33~2(%3, ~Cr3) C11, ~C11~Ca3, *+Ca3)

‘):1 = ) 52 = )
c c C\2 c c C\2
(Clla - Cll) (C33a - C33) - (C13a - C13) (Clla - C11) (C33a - C33) - (C13a - C13)
c c c
£y = C11, ~Ci1+C33, ~Ca3+2(G13, —C3) £y = 1 with ag = ———
c c c\2 ' c ' c
(Clla —C11) (C33a —C33)— (C13a —Cq3) 2 (C44a —Cy4) 4drcyy
3¢t —cf
be = 11 12 and

B C /~C cH'
4rcpy(Cry —Cpp)

o (cf; —C1p) (Acf; —4cs, +16C, +24cg,) + (11c]; —3¢f,) (2¢5, —Cp +Cp,) |

C C (o
16¢y7 (17 —Cp5)

From the necessary condition A =0 and P 0 of the extrema of the functional A we
Pa Pij,,
can write,
1 1. e
(ngl—ac)pa—gfz P33, :E_ac< P>, (5.17)

11



%2 Po + (53 —0c) P33, =€33 —be < P33 >, (5.18)
(84 =bc) P13, +be < P13 >=83. (5.19)

An expression for < py3 > can be calculated directly from the equation (5.19), i.e.,

q
= M3 = Vo
< P13 >=—"—""813 ,Where mn3= :
1+be g3 05221154 —be
The system (5.17) - (5.18) can be solved with respect to p, and p33 ~and a new system is
obtained,
L+ac )< p> +1922bC < P33 >=%e+9—22§33, (5.20)
—192 aC< p>+(l+bc 33)< 533 >=L93§33—L9—828, (521)
where
q _ q
'9122 Vg (E3—b¢) = 3222 Vg 62 . and
-1 1 ¢ -1 1 ¢
T aad (G be)+ TG a-a) G-+
1
q Vo (Z &1 _ac)
%=3 7
=l (Zgl —ac) (&3 —he) +?2

The system (5.20) — (5.21) is solved with respect to unknown functions < p > and < p33 > and we
get, <p>=¢@e+g@po3z and < P33 >=¢@3833—4¢ye, with

_ 8.9 (1+bg 93) + 95 be oy - 4.9
2[B(L+ag &) (1+bg S5) + B agh] - B(L+ag X)L+ D 5) + 92 ag b
895 (1+a, )+ 9% a,

and @3 = > :
8(+a. ) A+bs K)+95 a. be

Thus, the functional A=A + % A, can be written in the form,

1 15 15 1 _
A:Z[Zcf1 +2C53+ 20 +?(/)2]82 +[c35 —Cf; _?¢2](Ee+e33)2 +

15 . 2 N3 1.2
+[2¢s —2¢, + 203 + —@y e85 +2[2¢5, + —=—]€
[ 11 13 T 493 2(02] 33+2[ 44 1+b, n13] 13
The following notation can be introduced,

2C11+2C13:2Cf1+2Cf3+2¢1+%§02, (522)

12



15
C33 —C11 =C53 —Ciy — = 92, (5.23)

2
2C11—2C13 =2C11—2C13 +2(p3 +?(02, (524)
n
204, =205, +— 23 5.25
44 a4 1+bC N3 ( )

The system (5.22)—(5.25) is solved with respect to the unknown functions cq7 , €13, C33 and Cyq
and we obtain,

o 150, 93 P93
WIS @,
c 21 1507 @3 c M3
Cp =Chp+———"5+-=> and Cyy =C,, +—>——.
BUMBT o 44 74T 20 b nga)

The expressions for the bounds of the materials constants c;;, C;3, C33 and C44 can be listed as,

@) @) @ (a) (a) (a)
y o1 1597 o o 1597 93
C11, = cl(l) et T, Ci1, = cl(g) e T,
@) @ (a) (a)
) I N ) P P
L= =+
@) @) @ (a) (a) (a)
) P 15¢; 2 2 15¢; 2
Ca3, —cl) + T, T, Ca3y, =P+ T, T,
o {3 () g

2+b® n{®) 21+b{® (@)

6. Conclusions

A general procedure for deriving the variational bounds for any type of anisotropic linear elastic
composite is studied. Analytical expressions for the bounds of linear, transversely isotropic elastic
composite are given. In particular, bounds for two-dimensional case are then calculated. Non
limitation about the quantities of inclusions and the geometrical shape of the inclusions are
considered for the estimation of the bounds. The method allows us the calculation of all bounds for
the material parameters involved in different type of anisotropies and good estimation of the
effective properties are obtained.
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