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Abstract

Several authors have used Fourier inversion to compute prices of
puts and calls, some using Parseval’s theorem. The expected value
of max(S − K, 0) also arises in excess-of-loss or stop-loss insurance,
and we show that Fourier methods may be used to compute them. In
this paper, we take the idea of using Parseval’s theorem further: (1)
formulas requiring weaker assumptions; (2) relationship with classical
inversion theorems for probability distributions; (3) formulas for pay-
offs which occur in insurance. Numerical examples are provided.

1 Introduction

Lewis (2001) gives formulas which price options without having first to find
the distribution of the underlying, by applying Parseval’s theorem. Borovkov
& Novikov (2002) do not explicitly name Parseval’s theorem, but some of
their option pricing formulas can be obtained using Parseval’s theorem. All
that is needed in those papers is the characteristic function (= Fourier trans-
form) of the distribution of the logarithm of the underlying and the Fourier
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transform of the payoff function. Fourier methods are applied to option pric-
ing by several other authors, for instance Bakshi & Madan (2000), Carr &
Madan (1999), Heston (1993), Lee (2004), Raible (2000).

In insurance, the payoff

(S −K)+ = max(S −K, 0)

also occurs in excess-of-loss or stop-loss contracts, so Parseval’s theorem
might also be used to calculate pure premiums. This paper explores the
computation of both option prices and insurance premiums via Parseval’s
theorem in a unified setting.

The mathematical problem is the same in insurance as in option pricing,
that is, the computation of E g(S) for some function g. The difference is
that in many cases option pricing models focus on the logarithm of S (the
“log-price”), while insurance applications are usually phrased in terms of the
distribution of S itself. For instance, the Black-Scholes formula for a call
option is the expectation of the payoff (S −K)+, where logS has a normal
distribution; more recent models also specify the distribution of the log-price,
rather than S itself. The consequence is that the Fourier transform which is
likely to be known is that of X = logS. This explains the particular form of
the formulas in Lewis (2001) and Borovkov & Novikov (2002).

By contrast, in insurance applications the distribution of S is often (though
not always) one for which the Fourier transform E exp(iuS) is known. This
is why we will identity two different classes of inversion formulas: (1) those
where the Fourier transform of log(S) is known (and thus appears in the
inversion formula), and (2) those where the Fourier transform of S appears.
The first kind of inversion formula will be referred to as “Mellin-type”, since
it is the Mellin transform E exp(iu log(S)) = ESiu which is used, and the
other kind will be called “Fourier-type”. The formulas in Lewis (2001) and
in Borovkov & Novikov (2002) are thus all of Mellin type, while the insurance
examples in Section 4 below are all of Fourier type. We do not suggest that
this classification is essential, or that it neatly differentiates option pricing
from insurance, but we found it useful in presenting a unified view of the
applications of Parseval’s theorem to option pricing and insurance.

Section 2 states the particular form of the Parseval theorem we will use,
and recalls two standard theorems of probability theory which are directly
related to the pricing formulas which follow. Section 3 gives the main results
of the paper. Lewis (2001) gives formulas which require the finiteness of
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ESα for α in some interval [a, b], with a < 0, b > 1 (see his Theorem 3.2);
Borovkov & Novikov (2002) make similar assumptions. This is good enough
in many cases, but not always feasible. We give general formulas which do not
require this type of assumption (this is where our formulas are reminiscent
of the classical inversion formulas for distribution functions). Moreover, we
do not assume that the underlying has a probability density function, as
many authors have done. Section 4 gives some numerical applications. The
appendices contain some background on Fourier transforms and some of the
proofs.

Notation. We denote FX(x) = P{X ≤ x} the distribution function of X,
and µX the measure on R induced by FX , that is, µX(B) = P{X ∈ B}, B a
Borel subset of R. The Fourier transform of a function f : R → C, f ∈ L1,
is denoted

f̂(u) =

∫
R

eiuxf(x) dx.

The Fourier transform of a signed measure µ with finite total mass |µ| < ∞
is written

µ̂(u) =

∫
R

eiux µ(dx).

If µ = µX , then this is plainly the characteristic function of the distribution
of X,

µ̂X(u) = E eiuX .

Integrals of functions h which are not in L1 occur as inverse Fourier trans-
forms. These are called “principal value” integrals, and are denoted

PV

∫ ∞

−∞
h(x) dx = lim

M→∞

∫ M

−M
h(x) dx.

2 Preliminaries

2.1 Parseval’s theorem

The problem considered in this paper is to compute

Eg(X) =

∫
g(x) dµX(x)
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using Parseval’s theorem. This theorem requires that the function g be inte-
grable over R, which is not always the case in applications. To remedy this
situation, we multiply the payoff function g by a damping factor r(x) to turn
it into a new function gr that is in L1. Let

gr(x) = r(x)g(x), dµrX(x) =
1

r(x)
dµX(x). (2.1)

Then

Eg(X) =

∫
gr(x) dµrX(x).

We consider two specific cases: (1) exponential damping factors r(x) =
eαx, α some real constant; (2) polynomial damping factors r(x) = (1+ cx)−b,
c > 0, b ∈ {1, 2, . . . }. (Lewis (2001) only used exponential damping factors.
Of course other choices for r(·) are possible.)

For instance, the call and put payoff functions

g1(x) = (ex −K)+, g2(x) = (K − ex)+ (2.2)

are not integrable over R, and so the usual form of Parseval’s Theorem
(Theorem A2, Appendix A) is not directly applicable. However, when us-
ing r(x) = eαx for some α < −1, g1(x) is replaced with

gr1(x) = (e(α+1)x −Keαx)I{x>K},

which is integrable.
Parseval’s theorem is found by first noting that the function

G(y) =

∫
gr(x− y) dµrX(x), (2.3)

is a convolution, and then concluding that

Ĝ(u) = ĝr(−u)µ̂rX(u).

By Theorem A.1 (Appendix A), this implies

1

2
[G(0+) +G(0−)] =

1

2π
PV

∫
ĝr(−u)µ̂rX(u) du. (2.4)

There are conditions for this equation to hold, which will be discussed presently.
We first look at whether the left-hand side of the last equation may be re-
placed with G(0) = Eg(X). This is of importance, because there are cases
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where the function G is not continuous at the origin. For instance, consider
the simplistic case where r(x) = e−x and

g(x) = I{x>0}, X = 0 or 1 with probability 1
2
.

Then G(0+) = 1
2

and G(0−) = 1, which means that Eq.(2.4) returns 3
4
, not

the correct value Eg(X) = 1
2
. It can be seen that the reason for this is that

there is a probability mass at x = 0, which also happens to be a discontinuity
point of g.

The following lemma (proof in Appendix B) gives conditions under which
G is continuous at the origin, and will be sufficient for our purposes.

Lemma 2.1 Assume |µrX | = E|r(X)−1| < ∞.
(a) Suppose that there are a1 < a2 < · · · < an such that

(i) P{X = aj} = 0 for j = 1, . . . , n,

(ii) gr is uniformly bounded and piecewise continuous over (−∞, a1), (a1, a2),
· · · , (an−1, an), (an,∞), and has finite limits g(aj−), g(aj+).

Then G(y) (Eq.(2.3)) is continuous at y = 0.

(b) If EX+ < ∞, then G(y) = E(X − K − y)+ is continuous at y = 0. If
X ≥ 0 and K > 0, then G(y) = E(K + y −X)+ is continuous at y = 0.

The next theorem is the theoretical foundation of the rest of the paper; it is
a direct consequence of Theorem A.2.

Theorem 2.1 Let X be a random variable, and suppose (2.1) holds. Assume
that

(a) |µrX | < ∞,

(b) gr ∈ L1,

(c) the function G defined in Eq.(2.3) is continuous at the origin and sat-
isfies condition (b) of Theorem A.1.

Then

E g(X) =
1

2π
PV

∫
ĝr(−u)µ̂rX(u) du.
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We give a sufficient condition for part (b) of Theorem A.1 to hold (proof
in Appendix B).

Lemma 2.2 Condition (b) of Theorem A1 is satisfied if gr has bounded vari-
ation over R. This is in particular true if gr is uniformly bounded, piecewise
differentialble and such that, ignoring a finite number of discontinuities,∫ ∞

−∞

∣∣∣∣dgr(x)

dx

∣∣∣∣ dx < ∞.

For any function ϕ and any constant α, we denote

ϕ(α)(x) = eαxϕ(x), x ∈ R.

The Fourier transform of ϕ(α) will be denoted ϕ̂(α):

ϕ̂(α)(u) =

∫ ∞

−∞
φ(x)eαxeiux dx = φ̂(u− iα).

For a signed measure µ on R and α ∈ R, define a new signed measure µ(α)

by
µ(α)(dx) = eαxµ(dx).

Then the Fourier transform of µ
(α)
X is

µ̂
(α)
X (u) = E e(iu+α)X = µ̂X(u− iα).

An application of Theorem 2.1 with r(x) = e−αx then gives

E g(X) =
1

2π
PV

∫ ∞

−∞
ĝ(−α)(−u) µ̂

(α)
X (u) du

=
1

2π
PV

∫ ∞

−∞
ĝ(−u+ iα)µ̂X(u− iα) du.

By comparison, the direct application of Parseval’s Theorem (without a
damping factor) would give

1

2π
PV

∫ ∞

−∞
ĝ(−u)µ̂X(u) du.
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Hence, the damping factor e−αx changes the path of integration in the com-
plex plane, by translating it by −iα units.

In the case of polynomial damping factors, for β ∈ {1, 2, . . . } and c > 0
we let

g[−β](x) = (1 + cx)−βg(x), dµ
[β]
X (x) = (1 + cx)βdµX(x).

In the cases we consider, the Fourier transform of g[−β] may be expressed
in terms of special functions. Because β is a positive integer, the Fourier
transform of µ

[β]
X (x) is a linear combination of µ̂X and its derivatives.

2.2 Two classical theorems

We state two standard theorems which are intimately related to the option
or stop-loss formulas which follow. Each expresses the distribution function
of a random variable as a Fourier inversion integral. The best known proofs
of these results (see Lucaks, 1970, p.31, and Kendall & Stuart, 1977, p.97)
rely on Dirichlet integrals, but Appendix C gives proofs based on Parseval’s
theorem.

Theorem 2.2 If a and a+ h are continuity points of FX , then

FX(a+ h) − FX(a) =
1

2π
PV

∫ ∞

−∞

1 − e−iuh

iu
e−iuaµ̂X(u) du.

Theorem 2.3 If FX is continuous at x = b, then

FX(b) =
1

2
+

1

2π
PV

∫ ∞

0

1

iu
[eiubµ̂X(−u) − e−iubµ̂X(u)] du.

In option pricing, Theorem 2.3 leads to the well-known formula

E(eX −K)+ = E(eX)Π1 −KΠ2,

where

Π1 = E
[
eX1{eX>K}

]
/E(eX) =

1

2
+

1

π

∫ ∞

0

Re

[
K−iuµ̂X(u− i)

iuµ̂X(−i)

]
du

Π2 = P{eX > K}.
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2.3 Mellin-type and Fourier-type formulas

Lewis (2001) and other authors consider payoffs which are explicit functions
of eX , such as the usual call and put payoffs g1 and g2 in (2.2). This is because
most financial models are expressed in terms of the log-price. For instance,
a formula for E(S −K)+ is obtained in terms of

Eeiu logS = ESiu. (2.5)

The insurance applications considered in Section 4, however, lead to expres-
sions of the type E(S −K)+, but the inversion formulas are in terms of the
Fourier transform E(eiuS).

The expression in Eq.(2.5) is known as the Mellin transform of the distri-
bution of S. In order to distinguish these two situations, we will call “Mellin-
type” the formulas where ESiu appears, and “Fourier-type” those where
E(eiuS) appears.

3 Inversion formulas

In this section, formulas are derived for the expectations of the payoffs g1

and g2 in (2.2). In each case, Parseval’s theorem yields an inversion integral
along the line u − iα in the complex plane, if α can be found such that (i)
g(−α) is in L1 and (ii) E exp(αX) is finite. It is not always possible to find
such α, depending on the function g considered and also the distribution of
X. For this reason, we derive general formulas which do not assume that
such α �= 0 exists. The idea is to truncate the distribution of X in such a
way that Parseval’s theorem applies for some α �= 0, next to let α tend to 0,
and, finally, to remove the truncation of the distribution of X.

An important point to keep in mind in what follows is that if there is
α > 0 such that E exp(αX) < ∞, then necessarily E exp(α′X) < ∞ for
0 < α′ < α (the same applies for α < 0). The set of α such that g(−α) ∈ L1,
when not empty, is either an interval or a single point. Hence, the set of α
such that both E exp(αX) < ∞ and g(−α) ∈ L1 is either empty or an interval
(possibly reduced to a single point). This has numerical implications, since
the observed accuracy of the integral formula often varies with α within the
allowed interval.
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3.1 Mellin-type formulas

The proof of the next theorem can be found in Appendix B. Part (b) gives
formulas which do not require damping factors and therefore apply in all
cases.

Theorem 3.1 Let S ≥ 0, K > 0 and

h(u) =
K−iu+1

iu(iu− 1)
E(Siu).

(a) If there exists α < 0 such that E(Sα) < ∞, then

E(K − S)+ = KP{S = 0} +
1

2π
PV

∫ ∞

−∞
h(u− iα) du.

If, moreover, E(S) < ∞, then

E(S −K)+ = ES −KP{S > 0} +
1

2π
PV

∫ ∞

−∞
h(u− iα) du.

(b) In all cases,

E(K − S)+ =
K

2
[1 + P{S = 0}] +

1

π
PV

∫ ∞

0

Re[h(u)] du.

If E(S) < ∞,

E(S −K)+ = ES − K

2
[1 + P{S = 0}] +

1

π
PV

∫ ∞

0

Re[h(u)] du.

These formulas extend those given for calls and puts in Lewis (2001) and
Borovkov & Novikov (2002).

3.1.1 Example: S has a discrete distribution

First, suppose that X ≡ x0. This means that µ̂X(u) = eiux0 , and

h(u) = − eceiu(x0−c)

iu(1 − iu)
,
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where c = lnK. Then

Re[h(u)] = −ec cos(uxc)

1 + u2
− ec sin(uxc)

u(1 + u2)
, xc = x0 − c.

Now
1

π

∫ ∞

0

cos(uxc)

1 + u2
du =

1

2

∫ ∞

−∞

eiuxc

π(1 + u2)
du =

1

2
e−|xc|

(this is 1
2

times the characteristic function of the Cauchy distribution). Also,
letting signxc = I{x>0} − I{x<0},∫ ∞

0

sin(uxc)

u(1 + u2)
du =

∫ ∞

0

∫ xc

0

cos(uy)

1 + u2
dy du

=

∫ xc

0

1

2
e−|y| dy = (signxc)

1

2
(1 − e−|xc|).

Hence,

ec

2
+

1

π

∫ ∞

0

Re[h(u)] du =
ec

2
− ec

2
[e−|xc| + (signxc)(1 − e−|xc|)]

=
ec

2
[1 − (signxc)](1 − e−|xc|) = (ec − ex0)+.

Since a discrete distribution is a linear combination of degenerate distribu-
tions, this shows that the formula is correct for discrete random variables
S > 0. It is true for any S ≥ 0, because if P{S = 0} = 1, then

E(K − S)+ = K,

while

K +
1

2π

∫ ∞

0

ec

iu

[
eiuc

E(0−iu)

1 + iu
− e−iuc

E(0iu)

1 − iu

]
du = K.

3.2 Fourier-type formulas

We now look at formulas for the payoffs

g3(x) = (x−K)+, g4(x) = (K − x)+I{0≤x≤K}

in terms of µ̂X(u) = E(eiuX). Exponential damping factors eαx can be used
just as in the previous section, but we show that one may also use polynomial
damping factors.
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3.2.1 Exponential damping factors

Theorem 3.2 (a) If there exists α > 0 such that E(eαX) < ∞, then E(X −
K)+ < ∞ for K ∈ R and

E(X −K)+ =
1

2π
PV

∫ ∞

−∞
ĝ3(−u+ iα)µ̂X(u− iα) du,

where

ĝ3(z) = −eizK

z2
.

(b) Let X ≥ 0. For any α ∈ R such that E(eαX) < ∞ (including α = 0) and
K ≥ 0,

E(K −X)+ =
1

2π
PV

∫ ∞

−∞
ĝ4(−u+ iα)µ̂X(u− iα) du,

where

ĝ4(z) =
1

z2
(1 + izK − eizK).

Proof. Part (a) is a direct application of Parseval’s theorem and Lemma 2.1,
given that if Im(z) > 0, then for any K,

ĝ3(z) =

∫ ∞

K

(x−K)eizx dx = eizK
∫ ∞

0

yeizy dy = −eizK

z2
.

For part (b), it is clear that g
(−α)
4 I[0,K] ∈ L1 for any α ∈ R; also, the condition

in Lemma 2.1(b) and Lemma 2.2 are satisfied. Provided µ̂X(−iα) < ∞, we
can thus apply Parseval’s theorem, with

ĝ4(z) =

∫ ∞

0

(g3(x) +K − x)eizx dx =
1

z2
(1 + izK − eizK). �

In Section 3.2.3, a variation on part (a) of this theorem is given which
does not require that E(eαX) < ∞ for any α > 0.
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3.2.2 Polynomial damping factors

An alternative to the formulas in Theorem 3.2 is to use a polynomial damping
factor. For β ∈ {1, 2, . . . } and c > 0, let

g[−β](x) = (1 + cx)−βg(x), dµ
[β]
X (x) = (1 + cx)βdµX(x).

For the payoff g3(x) = (x−K)+, given β ≥ 2,

ĝ[−β]

3 (u) =

∫
R

eiux(x−K)+

(1 + cx)β
dx =

eiuK

c2(1 + cK)β−2
Ψ(2, 3 − β;−iu(1 + cK)/c),

(3.1)

where

Ψ(α, γ; z) =
1

Γ(α)

∫ ∞

0

e−zttα−1

(1 + t)α−γ+1
dt, α > 0,

is the confluent hypergeometric function of the second kind. (The integral
formula above holds (i) for Re(z) > 0 and also (ii) for Re(z) = 0, Im(z) �= 0
if γ ≤ 1; for more details, see Lebedev, 1972, Chapter 9.)

The function Ψ in (3.1) may be expressed in terms of the incomplete
gamma function; since

Ψ(2, 3 − β; z) = Ψ(1, 3 − β; z) − Ψ(1, 2 − β; z),

formula (3.1) may be written in terms of

Ψ(1, γ; z) = z1−γezΓ(γ − 1; z), (3.2)

where

Γ(a; z0) =

∫ ∞

z0

xa−1e−x dx, | arg(z0)| < π.

Because β is a positive integer, an alternative is to use integration by
parts to show that, if n = 0, 1, 2, 3, . . . ,

Ψ(1,−n; z) =
n∑
j=0

(−z)j
(n+ 1 − j)j+1

+
(−z)n+1

(n+ 1)!
Ψ(1, 1; z), Re(z) ≥ 0.
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The remaining hypergeometric function Ψ(1, 1; z) may in turn be written as
an incomplete gamma function (see (3.2)), or else as

Ψ(1, 1; z) = −ezE1(−z), E1(z) = −
∫ ∞

−z

e−t

t
dt, | arg(−z)| < π.

Here E1(·) is the exponential integral function. For more details on the special
functions above, see Abramowitz and Stegun (1970) or Lebedev (1972).

Now, let us turn to the payoff g4(x) = (K − x)+. In order for the Fourier
transform of

g
[−β]
4 (x) = (1 + cx)−β(K − x)+

to be defined, we assume X ≥ 0. The Fourier transform of g
[−β]
4 may be found

in the obvious way: since

g
[−β]
4 (x) = g

[−β]
3 (x) + (1 + cx)−β(K − x),

we get, for β ≥ 2,

ĝ[−β]

4 (u) = ĝ[−β]

3 (u) +

∫ ∞

0

eiux(K − x)

(1 + cx)β
dx

= ĝ[−β]

3 (u) +

(
K

c
+

1

c2

)
Ψ(1, 2 − β;−iu/c) − 1

c2
Ψ(1, 3 − β;−iu/c).

The case β = 1 is different:

ĝ[−1]

4 (u) =
cK + 1

c2
[
Ψ(1, 1;−iu/c) − eiuKΨ(1, 1;−iu(1 + cK)/c)

]
− 1

iuc
(eiuK−1).

As to the Fourier transform of µ
[β]
X (x),

µ̂[β]

X (u) =

β∑
k=0

(
β

k

)
ck

∫
R

xkeiuxdµX(x) =

β∑
k=0

(
β

k

)
(−ci)k ∂

k

∂uk
µ̂X(u).

Recall that if E(|X|k) < ∞, then ∂k

∂uk µ̂X(u) exists for all u ∈ R. We have the
following result.
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Theorem 3.3 Let K ≥ 0 and c > 0.

(a) If β ∈ {2, 3, . . . }, E|X|β < ∞, then

E(X −K)+ =
1

2π
PV

∫ ∞

−∞
ĝ[−β]

3 (u)

[
β∑

k=0

(
β

k

)
βk(−ci)k ∂

k

∂uk
µ̂X(u)

]
du.

(b) If β ∈ {0, 1, 2, 3, . . . }, X ≥ 0 and EXβ < ∞, then

E(K −X)+ =
1

2π
PV

∫ ∞

−∞
ĝ[−β]

4 (u)

[
β∑

k=0

(
β

k

)
βk(−ci)k ∂

k

∂uk
µ̂X(u)

]
du.

3.2.3 Formulas without damping factors

We first show how an inversion formula can be found for E(X − K)+ as a
direct application of Theorem 2.3, when X ≥ 0. For all X,

E(X −K)+ =

∫ ∞

K

P(X > y) dy.

If X ≥ 0, define a new distribution (sometimes called the “ladder height”
distribution associated with X) with density

fX(x) =
P(X > x)

EX
1{x>0}.

Then
E(X −K)+ = (EX) P(X > K).

An easy calculation yields

µ̂X(u) =
µ̂X(u) − 1

iuEX
.

Theorem 2.3 says that

P{X > K} =
1

2
+

1

π
PV

∫ ∞

0

Re

[
e−iuK µ̂X(u)

iu

]
du,

which implies that if X ≥ 0, E(X) < ∞, then for any K ≥ 0

E(X −K)+ =
EX

2
+

1

π
PV

∫ ∞

0

Re

[
e−iuK(1 − µ̂X(u))

u2

]
du. (3.3)
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It is possible apply the idea once more: consider a new random variable
X with density

fx(x) =
P(X > x)

EX
1{x>0} =

E(X − x)+

E(X2)/2

µ̂x(u) =
µ̂X(u) − 1

iuEX
=

µ̂X(u) − 1 − iuEX

(iu)2E(X2)/2
.

This requires EX2 < ∞. The function fx is integrable and differentiable;
therefore, and Theorem A.1 implies that if X ≥ 0, E(X) < ∞, then for any
K > 0,

E(X −K)+ =
1

π
PV

∫ ∞

0

Re

[
e−iuK [1 + iuE(X) − µ̂X(u)]

u2

]
du. (3.4)

To remove the assumption that E(X2) < ∞, observe that the right-hand
sides of (3.3) and (3.4) differ by

EX

2
− E(X)

π
lim
M→∞

∫ M

0

Re

[
ie−iuK

u

]
du = 0.

Next, compare (3.3) with part (a) of Theorem 3.2. The differences are
that Theorem 3.2(a) requires the additional assumption that E(eαX) < ∞
for some α > 0, but does not assume that X ≥ 0. We now extend those
formulas to cases where E(eαX) may be infinite for all α > 0, and where X
may take positive and negative values.

Suppose E(eαX) < ∞ for some α > 0. Then Theorem 3.2 involves∫ M

−M
ĝ3(−u+ iα)µ̂X(u−iα) du

= −
∫ M−iα

−M−iα

e−izK

z2
µ̂X(z) dz

= −
∫ M−iα

−M−iα

e−izK

z2
(µ̂X(z) − 1) dz −

∫ M−iα

−M−iα

e−izK

z2
dz.

As M → ∞, the last integral tends to 0 if K ≥ 0, and to 2πK if K < 0 (use
residues). The path of integration in the remaining integral can be pushed
up to the real axis, yielding (3.3) when M tends to infinity (the pole at the
origin leaves πE(X)).
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We have thus proved the following result. (In parts (a) and (b) the integral
is easily seen to converge absolutely; part (b) follows upon writing (K −
X)+ = [(−K) − (−X)]+.)

Theorem 3.4 (a) If E(X+) < ∞, then for any K ∈ R,

E(X −K)+ =
EX

2
+ (−K)+ +

1

π

∫ ∞

0

Re

[
e−iuK(1 − µ̂X(u))

u2

]
du.

(b) If E[(−X)+] < ∞, then for any K ∈ R,

E(K −X)+ = K+ − EX

2
+

1

π

∫ ∞

0

Re

[
eiuK(1 − µ̂X(−u))

u2

]
du.

(c) If X ≥ 0, E(X) < ∞, then for any K > 0,

E(X −K)+ =
1

π
PV

∫ ∞

0

Re

[
e−iuK [1 + iuE(X) − µ̂X(u)]

u2

]
du.

Note that parts (a) and (b) imply the known formula (e.g. Sato, 1999, p.29)

E(|X|) = E(X+) + E[(−X)+] =
1

π

∫ ∞

−∞

Re[1 − µ̂X(u)]

u2
du.

4 Examples

In the first two examples (compound Poisson/exponential, generalized Pareto)
there are closed form expressions for the expected payoffs as well as for Fourier
and Mellin transforms. It is therefore possible to test the inversion formu-
las derived above against the exact expected payoffs. In the other examples
(compound Poisson/Pareto, compound Poisson/Pareto plus α-stable), there
are no closed form expressions for the expected payoffs we consider, and si-
mulation is used to assess the performance of the Fourier inversion formulas.
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4.1 Compound Poisson/exponential distribution

In this example, the explicit distribution is known, as well as both the Fourier
and Mellin transforms. We will show that this distribution is intimately re-
lated to the hypergeometric functions 0F1 and 1F1. Recall that

0F1(c; z) =
∞∑
m=0

zm

m!(c)m
, z ∈ C, −c /∈ N,

where (c)0 = 1, (c)m = c(c+ 1) · · · c(c+m− 1), and that

1F1(a, c; z) =
∞∑
k=0

(a)k
(c)k

zk

k!
, z ∈ C, −c /∈ N.

The latter is known as the confluent hypergeometric function of the first
kind. It is known that (Lebedev, 1972, p.267)

e−z 1F1(a, c; z) = 1F1(c− a, c;−z).

Suppose that

S =
N∑
k=1

Xk, Xk ∼ exp(1), N ∼ Poisson(λ).

First, the characteristic function of S is

E(eiuS) = exp

[
λ

(
1

1 − iu
− 1

)]
= 1F1(1, 1;λiu/(1 − iu)).

Next, we may calculate the density of the distribution explicitly for x > 0 :

∂

∂x
P{S ≤ x} =

∞∑
n=1

e−λλn

n!

xn−1e−x

(n− 1)!

= λe−λ−x
∞∑
m=0

(λx)m

m!(m+ 1)!
= λe−λ−x0F1(2;λx).

Other authors have expressed this in terms of Bessel functions, but one might
argue that hypergeometric functions are more natural here. Next, turn to
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expectations of payoffs g3 and g4: if K > 0,

E(S −K)+ = λe−λ
∫ ∞

K

(x−K)e−x0F1(2;λx) dx

E(K − S)+ = Ke−λ + λe−λ
∫ K

0

(K − x)e−x0F1(2;λx) dx.

Finally, the Mellin transform of S is, for r > 0,

E(Sr) =
∞∑
n=1

λne−λ

n!
E(X1 + · · · +Xn)

r

=
∞∑
n=1

λne−λ

n!

∫ ∞

0

xr+n−1e−x

Γ(n)
dx

= λe−λ
∞∑
m=0

λm

(m+ 1)!

Γ(m+ 1 + r)

m!

= λe−λΓ(1 + r)
∞∑
m=0

Γ(m+ 1 + r)

Γ(1 + r)

Γ(2)

Γ(m+ 2)

λm

m!

= λe−λΓ(1 + r) 1F1(1 + r, 2;λ). (4.1)

We can thus write (for �(r) > −1)

E(Sr) = λΓ(1 + r) 1F1(1 − r, 2;−λ). (4.2)

Observe that the integral moments E(Sk), k = 1, 2, . . . , form an infinite series
in (4.1), but that they are a finite one in (4.2): if k = 0, 1, . . . ,

E(Sk) = λΓ(1 + k) 1F1(1 − k, 2;−λ) = λk!
k−1∑
j=0

(1 − k)j
(j + 1)!

(−λ)j

j!
.

We computed E(1 − S)+, λ = 1, by conditioning on N and also with
the Mellin inversion formula (results not shown). The latter was quicker, the
results identical.

4.2 Generalized Pareto

In this case there are closed form expressions, in terms of special functions,
for the expected payoffs E(K−X)+ and E(X−K)+, as well as for the Fourier
and Mellin transforms of X.
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For a > 0, let

B(a, b; y) =

∫ y

0

xa−1(1 − x)b−1 dx, 0 ≤ y ≤ 1.

This is the incomplete beta function. For a, b > 0, B(a, b; 1) = B(a, b) is the
beta function.

If a, b and θ > 0, we writeX ∼ Generalized Pareto(a, b, θ) if the density
function of X is

1

B(a, b)

θa xb−1

(θ + x)a+b
I{x>0}. (4.3)

Note that the usual 2–parameter Pareto(a, θ) is thus Generalized Pareto(a, 1, θ).
Here, letting y = x/(θ + x) yields

B(a, b) E(K −X)+ =

∫ K

0

(K − x)
θa xb−1

(θ + x)a+b
dx

= K

∫ 1

θ/(K+θ)

ya−1 (1 − y)b−1 dy − θ

∫ 1

θ/(K+θ)

ya−2 (1 − y)b dy

= K

∫ K/(K+θ)

0

ub−1 (1 − u)a−1 du

− θ

∫ K/(K+θ)

0

ub(1 − u)a−2 du

= KB
(
b, a; K

K+θ

)
− θB

(
b+ 1, a− 1; K

K+θ

)
.

Similarly, if a > 1,

B(a, b) E(X −K)+ = θB
(
a− 1, b+ 1; θ

K+θ

)
−KB

(
a, b; θ

K+θ

)
.

The Mellin transform of the Generalized Pareto(a, b, θ) distribution is

E(X iu) = θiu
B(a− iu, b+ iu)

B(a, b)
= θiu

Γ(a− iu)Γ(b+ iu)

Γ(a)Γ(b)
,

while its Fourier transform is

E(eiuX) =
1

B(a, b)

∫ ∞

0

eiuθxxb−1

(1 + x)a+b
dx =

Γ(a+ b)

Γ(a)
Ψ(b, 1 − a;−iuθ).
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As an illustration, suppose one wishes to compute the excess-of-loss pre-
mium E(X −K)+ if X ∼ Pareto(5, 1), using a polynomial damping factor.
For β = 3 and c = 1,

ĝ[−3](u) =

[
1 − (K + 1)

iu

2

] [
eiuK

(1 +K)
+ iue−iuE1(−iu(K + 1))

]
− eiuK

2(1 +K)

µ̂[3]

X (u) =
5

2
[1 + iu− u2e−iuE1(−iu)].

The excess-of-loss premium

E(X −K)+ =

∫ ∞

−∞
ĝ[−3](u)µ̂[3]

X (u) du

can then be obtained by numerical integration.

4.3 Compound Poisson/generalized Pareto

In this and the next example the only explicit expressions for the stop–loss
premiums are the Fourier inversion formulas; the numerical stop–loss (SL)
premiums so obtained are compared to simulation results.

The i.i.d. random variables Xj represent individual claim amounts (or
“severities”). The compound Poisson variable S represents the aggregate
claims over some time interval:

S =
N∑
j=1

Xj,

where N ∼ Poisson(λ). N is assumed independent of the {Xj}j≥1.
Suppose we want to compute an SL premium for the aggregate claims

variable S:

E(S −K)+ =

∫ ∞

0

g(x) dµS(x) =

∫ ∞

0

g[−β](x) dµ
[β]
S (x),

where g(x) = (x−K)+. By Theorem 3.3, for an integer β ≥ 2 the SL premium
is also equal to

E(S −K)+ =
1

2π

∫ ∞

−∞
ĝ[−β](−u)µ̂[β]

S (u) du, (4.4)
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where

µ̂[β]

S (u) =

β∑
j=0

(
β

j

)
(−i)j d

j

duj
µ̂S(u), u ∈ R. (4.5)

Since S is compound Poisson, µ̂S(u) = eλ[µ̂X(u)−1]. For instance, if β = 3 then

µ̂[3]

S (u) = µ̂S(u) − 3iµ̂′
S(u) − 3µ̂′′

S(u) + iµ̂′′′
S (u)

= eλ[µ̂X(u)−1]
{
1 − 3iλµ̂′

X(u) − 3[λµ̂′′
X(u) + λ2(µ̂′

X(u))2]

+i[λµ̂′′′
X(u) + 3λ2µ̂′

X(u)µ̂′′
X(u) + λ3(µ̂′

X(u))3]
}
.

If the {Xj}j≥1 have a Generalized Pareto(a, b, θ) distribution (see (4.3)),
then

dj

duj
µ̂X(u) =

∫ ∞

0

eiux
θa

B(a, b)

(ix)j xb−1

(θ + x)a+b
dx, u ∈ R, 0 ≤ j < a.

In general these may be written in terms of the special function Ψ; if a and b
are integers, then the derivatives may be expressed in terms of the exponential
integral function as in Section 3.2.2. Table 1 lists the SL premiums obtained
from (4.4) by numerical integration. Different values of the Poisson parameter
λ and of the retention limit K are used, but the Pareto parameters are fixed
at a = 5, b = 3 and θ = 1. These are compared with simulated SL premiums
based on 1,000,000 replications (for K = 0 the exact value E(S) = λb/(a−1)
is reported). Adding and subtracting the values between parenthesis to the
simulated premiums yields 95% (asymptotic) confidence intervals, giving a
measure of the simulation accuracy.

The Fourier premiums were computed using Romberg’s method, coded
in Maple or Matlab. We see that the Fourier SL premiums are in close agree-
ment with the simulated premiums. The computing time is of the order of
1 or 2 seconds for each value of K and seems independent of the choice of
parameters.

Table 2 lists additional SL premiums, also computed from (4.4). Here
both the Poisson parameter λ and the Pareto parameter a vary, but the
other two Pareto parameters are fixed at b = 3 and θ = 1, in such a way
that the expected value of S remains equal to 1. These illustrate the speed
at which these SL premiums tend to 0 as the retention K increases.
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Table 1: SL premiums - compound Poisson/gen. Pareto[λ; (a = 5, b =
3, θ = 1)]

λ = 1 λ = 2 λ = 3
K Simulated Fourier Simulated Fourier Simulated Fourier
0 0.7493 0.75 1.4993 1.5 2.2476 2.25

(±0.00196) (±0.00277) (±0.00339)
0.25 0.5959 0.5962 1.2865 1.2871 2.0119 2.0140

(±0.00183) (±0.00270) (±0.00335)
0.5 0.4657 0.4660 1.0915 1.0914 1.7863 1.7882

(±0.00169) (±0.00261) (±0.00330)
1 0.2821 0.2822 0.7702 0.7702 1.3804 1.3825

(±0.00141) (±0.00235) (±0.00313)

Table 2: SL premiums - compound Poisson/gen. Pareto[λ; (a, b =
3, θ = 1)]

λ = 1, a = 4 λ = 2, a = 7 λ = 3, a = 10
K Fourier Fourier Fourier
1 0.4924 0.3448 0.2774

1.5 0.3451 0.1857 0.1202
2 0.2442 0.0968 0.0474

2.5 0.1745 0.0493 0.0174
3 0.1260 0.0248 0.0060

4.4 Compound Poisson/gen. Pareto plus α–stable

Dufresne & Gerber (1991) considered a risk process made up of the sum of
a compound Poisson process and a Brownian motion. Furrer (1998) looked
at a risk model where an α-stable process is added to the compound Poisson
process. The motivation for those models is that the added Brownian motion
or stable process accounts for very large claims or for larger exogenous ran-
dom perturbations, such as changes in portfolio composition or in investment
income.

In this section, we therefore look at how stop-loss premiums can be com-
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puted if aggregate claims are represented by

Z = S + J =
N∑
j=1

Xj + J, (4.6)

where S is compound Poisson and J has an α-stable distribution. The claims
have a generalized Pareto distribution, and S and J are assumed indepen-
dent. There is of course no explicit expression for the distribution function or
density of Z, so simulation and Fourier inversion are the only possible ways
of computing SL premiums.

If J has an α-stable distribution, then

µ̂J(u) = e−ΨJ (u),

where
ΨJ(u) = pα|u|α[1 − iρ sign(u) tan(απ/2)] + iγu

if 0 < α < 1 or 1 < α ≤ 2, or

ΨJ(u) = p|u|(1 + iρ sign(u) log |u|) + iγu

if α = 1. The case α = 2 corresponds to the normal distibution; p is a scale
parameter, and ρ ∈ [−1, 1] relates to the symmetry (or lack thereof) of the
distribution. When 0 < α < 2, the distribution is symmetric if ρ = 0, it is
concentrated on (0,∞) if ρ = 1, and concentrated on (−∞, 0) if ρ = −1.
(For more details, see Sato (1999) or Samorodnitsky and Taqqu (1994).).

It is known that when 0 < α < 2 the right tail of the α-stable distribution
with characteristic function given above behaves as follows (Samorodnitsky
and Taqqu, 1994, p.16):

lim
y→∞

yαP(X > y) = Cα
1 + ρ

2
pα.

Hence, excluding the case ρ = −1, SL premiums E(Z − K)+ can be finite
only if α > 1. We will assume ρ > −1 and α > 1. The previous equation
also implies that the expected value of an α-stable distribution is finite if,
and only if, α > 1, and that the second moment of an α-stable distribution
is infinite for all α < 2.

We know the Fourier transforms of S and J , so the formulas in Sections
3.2.2 and 3.2.3 may be used to compute SL premiums. However, the restric-
tions on moments excludes polynomial damping factors if α < 2, since the
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minimum possible value of β is 2 (Theorem 3.3(a)). In the case where J is
concentrated on (0,∞) it is nevertheless possible to apply Theorem 3.3(b)
with β = 0 or 1, since

E(Z −K)+ = E(K − Z)+ + E(Z) −K.

However, the formula in Theorem 3.4(a) always applies here, since the sole
assumption is E|Z| < ∞.

We give a numerical example with α = 2, so that J has a normal distri-
bution (which we assume zero-mean) and

µ̂Z(u) = exp
{
λ
[
µ̂X(u) − 1

]
− σ2u2

2

}
.

If enough moments of the Pareto claims distribution exist then it is possible
to apply Theorem 3.3(a).

Table 3 illustrates the calculations for different values of the Poisson pa-
rameter λ and of the retention limit K, for fixed Pareto parameters a = 5,
b = 3, θ = 1 and a N(0, 1) perturbation. A polynomial damping factor is
used, with β = 3 and c = 1. The 1,000,000 simulated SL premiums and their
95% (asymptotic) confidence interval widths are given for comparison (again
here E(S) = λb/(a− 1) is the exact value for K = 0).

The effect of the normal perturbation is clear. The extra variability is
controlled by the parameter σ2. Table 4 illustrates its effect for a smaller
variance of σ2 = 1/2.

5 Conclusion

Hopefully these illustrations convincingly show that Parseval’s identity is ap-
plicable to the computation of stop–loss premiums. The method allows for
quite general aggregate claims models, including compound Poisson distri-
butions perturbed by some other Lévy process. The only requirement is that
the characteristic functions, or Mellin transforms, of the distibutions involved
be known.

On the down side, the integrals that have to be computed are often true
principal value integrals (i.e. that do not converge absolutely) involving cir-
cular functions. There are cases where the function to be integrated has to
be carefully studied to make the numerical integration work (this was not
the case in the numerical examples given in this paper).
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Table 3: SL premiums - compound Poisson/gen. Pareto[λ; (a = 5, b =
3, θ = 1)] + normal(0, 1)

λ = 1 λ = 2 λ = 3
K Simulated Fourier Simulated Fourier Simulated Fourier
0 0.7535 0.75 1.4975 1.5 2.2489 2.25

(±0.00277) (±0.00339) (±0.00391)
0.25 0.8124 0.8098 1.4238 1.4252 2.0968 2.0971

(±0.00215) (±0.00298) (±0.00366)
0.5 0.6675 0.6653 1.2401 1.2413 1.8869 1.8872

(±0.00200) (±0.00286) (±0.00357)
1 0.4364 0.4348 0.9195 0.9203 1.5013 1.5016

(±0.00170) (±0.00259) (±0.00336)
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A The Parseval Identity

One form of the Parseval identity is (Malliavin, 1995, p.134) is: if h, ĥ ∈ [L1

and µ is a signed measure with |µ| < ∞, then∫ ∞

−∞
h(x)µ(dx) =

1

2π

∫ ∞

−∞
ĥ(u)µ̂(−u) du.

This is a fairly restrictive result, because the damped functions we consider
often do not satisfy the condition ĥ ∈ L1; for instance, the function h(x) =
e−xI(0,∞)(x) is in L1 but its transform, ĥ(u) = 1/(1 − iu), is not. A less
restrictive inversion theorem is thus required for the applications considered
in this paper. We need the following classical inversion theorem.

Theorem A.1 (Apostol, 1974, p.324) Suppose h is a real function which
satisfies the following conditions:

(a) h ∈ L1 and

(b) either (b1) or (b2) holds:

(b1) h(x+) and h(x−) both exist and the integrals below are finite for some
ε > 0: ∫ ε

0

h(x+ t) − h(x+)

t
dt,

∫ 0

−ε

h(x− t) − h(x−)

t
dt;
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(b2) h(x) has bounded variation in some open neighborhood of x. (This im-
plies that h(x+) and h(x−) both exist. A sufficient condition for a
function to have bounded variation is having a derivative.)

Then
1

2
[h(x+) + h(x−)] =

1

2π
PV

∫ ∞

−∞
e−iuxĥ(u) du.

We are now able to derive the Parseval identity we need. Let µ be a signed
measure with |µ| < ∞ and h ∈ L1, and suppose that the convolution

y �→ (τµh)(y) =

∫ ∞

−∞
h(y − x)µ(dx)

satisfies assumption (b) of Theorem A.1, and that moreover (τµh)(y) is con-
tinuous at y = 0. It is known that h ∈ L1 implies τµh ∈ L1 (Malliavin, 1995,
p.114), and Theorem A.1 yields

(τµh)(0) =

∫ ∞

−∞
h(−x)µ(dx) =

1

2π
PV

∫ ∞

−∞
ĥ(u)µ̂(u) du.

To obtain Parseval’s identity, replace h(x) with g(−x), after noting that∫ ∞

−∞
eiuxg(−x) dx = ĝ(−u),

to get ∫ ∞

−∞
g(x)µ(dx) =

1

2π
PV

∫ ∞

−∞
ĝ(−u)µ̂(u) du. (A.1)

We have thus proved:

Theorem A.2 Let µ be be a signed measure with |µ| < ∞. Suppose that (i)
g ∈ L1, (ii) the function

y �→
∫ ∞

−∞
g(x− y)µ(dx)

is continuous at y = 0 and (iii) g satisfies condition (b) of Theorem A.1.
Then A.1 holds.
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B Proofs of theorems

Proof of Lemma 2.1. (a) Write∫
gr(x− y) dµrX(x) =

n+1∑
k=1

∫
Ik

gr(x− y) dµrX(x),

where {Ik} are the indicator functions of the intervals (−∞, a1), (a1, a2), . . . ,
(an−1, an), (an,∞). Then, as y → 0,

gr(x− y)Ik(x) → gr(x)Ik(x)

for all x. Since gr is uniformly bounded and |µrX | < ∞,∫
Ik

gr(x− y) dµr(x) →
∫
Ik

gr(x) dµr(x)

by dominated convergence, which yields the result.
To prove part (b), observe that G(y) is finite because (X − K − y)+ ≤

X+ + (y +K)−, and the result follows from

E(X −K − y)+ =

∫ ∞

K+y

P(X > x) dx.

In the other case G(y) = E(K + y − X)+ is always finite, and continuity
follows by dominated convergence. �

Proof of Lemma 2.2. Let V be the variation of gr over R. If {yj} is an
increasing sequence, then∑

j

|∆G(yj)| ≤
∫ ∑

j

|gr(yj + x) − gr(yj−1 + x)| dµrX(x)

≤
∫
V dµrX(x) = V |µrX | < ∞.

It is well known that the total variation of a function is bounded above by
the integral of the absolute value of the derivative, see for example Apostol
(1974, p.128). �
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Proof of Theorem 3.1. (a) Let K = ec and S = eX . First, assume that
P{S = 0} = 0. If g(x) = (ec − ex)+ and z ∈ C, then

ĝ(z) =

∫ c

−∞
eizx(ec − ex) dx

= lim
M→∞

∫ c

−M
(eizx+c − e(iz+1)x) dx

= lim
M→∞

{
ec

[
eizx

iz

∣∣∣c
−M

]
−

[
e(iz+1)x

(iz + 1)

∣∣∣c
−M

]}
= e(iz+1)c

(
1

iz
− 1

iz + 1

)
+ lim

M→∞

(
1

iz + 1
e−(iz+1)M − 1

iz
e−izM+c

)
.

The limit exists, and equals 0, if and only if, Im(z) < 0. Hence,

ĝ(z) =
e(iz+1)c

iz(iz + 1)
, Im(z) < 0.

Let h(z) = ĝ(−z)µ̂X(z). We need to restrict z to Im(z) > 0 for ĝ(−z) to
exist, and, therefore, we need to assume that E(eαX) exists for some α < 0.
This proves the first formula in (a), if P{S = 0} = 0.

If P{S = 0} > 0, then define a new variable S∗ with distribution

P{S∗ ∈ A} =
P{S ∈ A, S > 0}

P{S > 0} = P(S ∈ A |S > 0).

Then
E(K − S)+ = KP{S = 0} + P{S > 0}E(K − S∗)+

which yields the result, since

µS∗(u) =
µS(u)

P{S > 0} .

The second formula in (a) follows from the usual relationship y+−(−y)+ = y,
y = S −K.

Part (b) is obtained by first assuming that P{S = 0} = 0 and that there
exists α < 0 such that E(Sα) < ∞. The first formula in part (a) then holds.
The function h(z) is analytic in the upper complex plane, except for a simple
pole at the origin. We have

E(K − S)+ =

∫ ∞−iα

−∞−iα
h(z) dz,
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where the path of integration is the line {z Im(z) = −α}. For 0 < ε < M ,
define a closed path of integration CM,ε as in Figure 2. The integral of h(z)
along CM,ε is 0.

It is easy to see that

lim
M→∞

∫ −M−iα

−M
h(z) dz = lim

M→∞

∫ M−iα

M

h(z) dz = 0

and so

PV

∫ ∞

−∞
h(u− iα) du =

∫
Rε

h(z) dz +

(∫ −ε

−∞
+

∫ ∞

ε

)
h(z) dz,

where Rε is the half–circle around the origin in Figure 2. We find

lim
ε→0+

∫
Rε

h(z) dz = lim
ε→0+

∫ 0

π

h(εeiθ)εieiθdθ

= lim
ε→0+

∫ 0

π

e−iεe
iθ+c

(−iεeiθ)(1 − iεeiθ)
iεeiθ dθ

= Kπ.

Hence,

E(ec − S)+ =
K

2
+

1

2π

∫ ∞

0

[h(u) + h(−u)] du.

Since h(u) + h(−u) = 2Re[h(u)], we thus have

E(K − S)+ =
K

2
+

1

π

∫ ∞

0

Re[ĝ(−u)µ̂X(u)] du. (B.1)

This formula was obtained under the assumption that there exists α < 0
such that E(Sα) < ∞. If this is not the case, then consider

Xa = X ∨ (−a),

for a > 0. As a → ∞, E(eiuX
a
) → E(eiuX) uniformly in u ∈ R. Since

|ĝ(u)| ∼ ec

u2
as |u| → ∞,

we find that

E(K − eX)+ = lim
a→∞

E(K − eX
a

)+ =
K

2
+

1

π

∫ ∞

0

Re[ĝ(−u)µ̂X(u)] du
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by dominated convergence. Finally, (B.1) holds for all S > 0.
The last formula may be proved another way. The function h(z) may be

rewritten as

ec
e−izc

−iz
µ̂X(z)

1 − iz
.

Note that µ̂X(z)/(1 − iz) is the Fourier transform of the convolution of an
exponential density with the law of X. This suggests proceeding as follows:

E(ec − eX)+ = ec
∫ c

−∞
(1 − ex−c) dµX(x) = ecP{X +G ≤ c},

if G ∼ exp(1) is independent of X. By Theorem 2.3,

ecP{X +G ≤ c} =
ec

2
+

1

2π

∫ ∞

0

ec

iu

[
eiuc

µ̂X(−u)

1 + iu
− e−iuc

µ̂X(u)

1 − iu

]
du

=
K

2
+

1

2π

∫ ∞

0

[h(u) + h(−u)] du,

which is the same as (B.1). Finally, the formulas in (b) are found by taking
into account the cases where P{S = 0} > 0, as in the proof of (a). �

C Proofs of “classical theorems” (Section 2)

We give proofs of these very-well known results based on Parseval’s theorem,
rather than the more common Dirichlet integrals.

Proof of Theorem 2.2. Let g(x) = I(a,a+h](x). Then

E g(X) = FX(a+ h) − FX(a)

and the conditions of Lemmas 2.2 and 2.1(a) are satisfied. We may thus apply
Theorem 2.1 with α = 0. The result follows from

ĝ(u) =
eiu(a+h) − eiua

iu
. �

Proof of Theorem 2.3. This formula is equivalent to

1 − FX(b) =
1

2
+

1

2π

∫ ∞

0

1

iu
[e−iubµ̂X(u) − eiubµ̂X(−u)] du.
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We prove the latter for b = 0; a translation X → X − b then finishes the
proof.

If we let g(x) = I(0,∞)(x), then ĝ(u) =
∫ ∞

0
eiux dx does not exist for real

u, but, if Im(z) > 0,

ĝ(z) =

∫ ∞

0

eizx dx = − 1

iz
.

We thus apply Theorem 2.1: temporarily assume there exists α > 0 such that
E(eαX) < ∞; then

1 − FX(0) = E g(X) =
1

2π
PV

∫ ∞

−∞
ĝ(−u+ iα)µ̂X(u− iα) du.

Let

h(z) = ĝ(−z)µ̂X(z) =
E(eizX)

iz
.

The function h is analytic in {z | − α < Im(z) < 0} and has a pole at z = 0.
Hence, ∫

CM,ε

h(z) dz = 0,

where CM,ε is the closed path in Figure 1.
We know that E g(X) equals the integral of h(z) on the line

{z | Im(z) = −α}.

We also know that, for 0 ≤ y ≤ α,∣∣E ei(M−iy)X∣∣ ≤ E(eyX) ≤ P{X ≤ 0} + E eαXI{X>0} = C < ∞.

Hence, on the segment {z | Re(z) = M,−α ≤ Im(z) ≤ 0},

|h(z)| ≤
∣∣∣∣Ciz

∣∣∣∣ ≤ C

M
,

and so ∣∣∣∣∫ M

M−iα
h(z) dz

∣∣∣∣ ≤ αC

M
→ 0

as M → ∞. In the same way,∣∣∣∣∫ −M

−M−iα
h(z) dz

∣∣∣∣ → 0

33



as M → ∞. We conclude that

PV

∫ ∞

−∞
ĝ(−u+ iα)µ̂X(u− iα) du = lim

M→∞

∫
LM,ε

h(z) dz,

where LM,ε is the path going along the real axis from −∞ to −ε, then around
the half-circle Rε (Figure 1), then on the real axis from ε to +∞.

Next, let ε → 0+. The integral over the half–circle in the path LM,ε is
(since dz = εieiθdθ)∫ 0

−π
h(εeiθ)εieiθdθ =

∫ 0

−π
µ̂X(εeiθ) dθ → π as ε → 0+ .

This implies

1 − FX(0) =
1

2
+ lim

M→∞

1

2π

∫ M

0

[h(u) − h(−u)] du

=
1

2
+ lim

M→∞

1

2π

∫ M

0

1

iu
[E(eiuX) − E(e−iuX)] du

=
1

2
+ lim

M→∞

1

π

∫ M

0

1

u
E[sin(uX)] du. (C.1)

If we then let X ′ = X − b, we find

E(eiuX
′
) = e−iubE(eiuX)

and so

1 − FX(b) = 1 − FX′(0)

=
1

2
+ lim

M→∞

1

2π

∫ M

0

[e−iubµ̂X(u) − eiubµ̂X(−u)] du.

If E(eαX) < ∞ for some α > 0, then we are finished. If not, then consider
Xa = X ∧ a, where a > 0. Formula (C.1) holds for Xa, and so

1 − FX(0) = 1 − FXa(0) =
1

2
+ lim

M→∞

1

π

∫ M

0

1

u
E[sin(uXa)] du.

The result is proved if it is shown that

lim
M→∞

[∫ M

0

1

u
E[sin(uX)] du−

∫ M

0

1

u
E[sin(uXa)] du

]
= 0.
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The expression in square brackets is equal to

E

{[∫ MX

0

sin(y)

y
dy −

∫ Ma

0

sin(y)

y
dy

]
I{X>a}

}
= E

[∫ MX

Ma

sin(y)

y
dy I{X>a}

]
,

which tends to 0 as M → ∞, by dominated convergence. �
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Beurling-Deny formula in semi-dirichlet forms setting, February, 2006.

63. Z. Hu, Z. Ma and W. Sun, Formulae of Beurling-Deny and LeJan for
non-symmetric dirichlet forms, February, 2006.

64. Z. Hu and W. Sun, A note on exponential stability of the nonlinear
filter for denumerable Markov chains, February, 2006.
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