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Abstract

The Lévy and jump measures are two key characteristics of Lévy

processes. This paper fills what seems to be a simple gap in the litera-

ture, by giving an explicit relation between the jump measure, which is

a Poisson random measure, and the Lévy measure. This relation paves

the way to a simple proof of the classical result on path continuity of

Lévy processes in Section 2.

The jump function in Paul Lévy’s version of the Lévy–Khinchine

formula and the Lévy measure in more recent characterizations essen-

tially play the same role, but with different drift and Gaussian com-

ponents. This point is shown in detail in Section 3, together with an

explicit relation between the jump function and the Lévy measure.

1 Introduction

The characteristic function of a stochastically continuous process starting

at zero and with stationary independent increments can be written as

ΦXt
(s) = E[eisXt ] = exp

{

t
[

ias −
s2b2

2

+

∫

R\{0}

[

eisx − 1 − isxI{−1,1}(x)
]

ν(dx)
]}

, (1)
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for s ∈ R, t ≥ 0 and with constants a ∈ R, b ∈ R
+, where ν is a measure

defined on R \ {0} that satisfies:

∫

R\{0}

(

|x|2 ∧ 1
)

ν(dx) < ∞ . (2)

Equation (1) is the celebrated Lévy–Khinchine representation of a Lévy

process. The theory of Lévy process is well established (see [1], [5], or [3])
and is becoming increasingly popular in applications.

Lévy processes being cadlag, the number of jumps exceeding a fixed
threshold, i.e. |∆Xs| ≥ ε, before some time t, has to be finite for all ε > 0.

Hence if a Borel set B ∈ B(R), is bounded away from 0 (i.e. 0 /∈ B̄, the
closure of B), then for any t ≥ 0 the cardinality

NB
t = ]{s ∈ [0, t] ; ∆Xs ∈ B} = JX([0, t]× B) , (3)

is well defined and a.s. finite. The process NB
t is called the counting process

of B. It inherits the Lévy properties from X and is a Poisson process with
intensity νX(B) < ∞. JX is known as the jump measure associated with

the process X = {Xt ; t ≥ 0}.

2 Jump measure and path continuity

Let (Ω,F , P) be a probability space, E ⊂ R and µ a given positive Radon

measure on (E, E). Then the existence of a Poisson random measure on E
is assured by the following proposition (for a proof see [2]).

Proposition 2.1 For any Radon measure µ on E ⊂ R, there exists a Pois-

son random measure M on E with intensity µ.

B in (3) can be adapted to a threshold process. For a general Lévy

process if the small jumps are truncated at some level say, ε, the resulting
process is a compound Poisson process. The following proposition shows

that the jump measure corresponding to a threshold process is a Poisson
random measure (for a proof see [2]).

Proposition 2.2 Let X = {Xt ; t ≥ 0} be a compound Poisson process

with intensity λ and jump size distribution F . Its jump measure JX is a

Poisson random measure on R× [0,∞) with intensity measure µ(dx×dt) =

ν(dx) dt = λ dF (x) dt.
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Now setting B = [ε,∞), from Proposition 2.2 it follows that for k ∈ N
+

P
{

JX(B × [t1, t́1]) = k
}

= exp
[

−

∫

B

∫ t́1

t1

µ(dx× dt)
]

[

∫

B

∫ t́1
t1

µ(dx × dt)
]k

k!

= exp
[

−

∫

B

∫ t́1

t1

λ dF (x) dt
]

[

∫

B

∫ t́1
t1

λ dF (x) dt
]k

k!

= exp
[

− |t́1 − t1|

∫

B

ν(dx)
]

[

|t́1 − t1|
∫

B
ν(dx)

]k

k!

= e

[

−|t́1−t1|ν([ε,∞)
]

[

|t́1 − t1|ν([ε,∞])
]k

k!
. (4)

Equation (4) characterizes the relation between the jump measure JX and
the Lévy measure ν of a Lévy process. This characterization leads to the

following simple proof.

Proposition 2.3 X has continuous sample paths if and only if JX = 0 a.s.,

which implies that there are no jumps.

Proof: P{JX(A × [t1, t́1]) = 0} = 1 implies, by (4), that

exp
[

− |t́1 − t1| ν([ε,∞])
]

[

|t́1 − t1| ν([ε,∞])
]0

0!
= 1 ,

for any choice of t́1, t1 and ε. Hence it must be that ν(ε,∞) = 0. But then

by the Lévy–Khinchine representation of a Lévy process in (1) we see that
X is Brownian motion with drift, that is it has continuous sample paths.

On the other hand, if X has continuous sample paths then its Lévy
measure, which controls all jumps, should be identically zero. That is

ν(ε,∞) = 0 for any choice of ε. Then (4) implies for any positive integer k
that

P{JX(A × [t1, t́1]) = k} = 0

and for k = 0

P{JX(A × [t1, t́1]) = 0} = 1 ,

that is JX is almost surely zero.

3



3 Connection between different characterization

of Lévy processes

Nowadays, the characterization of Lévy processes in (1) is most frequently
used, but the original characterization, known as Kolmogorov’s representa-

tion, is

logΦXt
(s) = iats+t

∫ ∞

−∞

[

eisx−1−
isx

(1 + x2)

] (1 + x2)

x2
dG(x) , s ∈ R , (5)

where a is a real constant and G a bounded non–decreasing function with
G(−∞) = 0, known as the jump function.

Proposition 3.1 The jump of G, in (5), at x = 0 is the variance of the

normal component, i.e. σ2 = G(0+) − G(0−).

The objective of this section is to establish a correspondence between the
characterizations in (1) and (5). From this correspondence an explicit rela-

tion between G and ν is obtained. This also yields the proof of Proposition
3.1.

We can split logΦXt
in (5) to write it as:

log ΦXt
(s) = iats + t

∫

R\{0}

[

eisx − 1 −
isx

(1 + x2)

] (1 + x2)

x2
dG(x)

+t

∫

{0}

[

eisx − 1 −
isx

(1 + x2)

] (1 + x2)

x2
dG(x) . (6)

Now, in the second term, the integrand has a limit (by l’Hospital’s rule)

lim
x→0

[

eisx − 1 −
isx

(1 + x2)

] (1 + x2)

x2
=

−s2

2
,

and hence
∫

{0}

[

eisx − 1 −
isx

(1 + x2)

] (1 + x2)

x2
dG(x) =

−s2

2

[

G(0+)− G(0−)
]

. (7)

Further, for the first integrand in (6) we observe that

[

eisx − 1−
isx

(1 + x2)

] (1 + x2)

x2

=
[

eisx − 1− isx I[
|x|<1

]

] (1 + x2)

x2
−

is

x
+ isx I[

|x|<1
]

(1 + x2)

x2

=
[

eisx − 1− isx I[
|x|<1

]

](1 + x2)

x2
+

is

x

[

I[
|x|<1

] − 1
]

+ isx I[
|x|<1

] .
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Hence the first integral in (6) becomes:

∫

R\{0}

[

eisx − 1 −
isx

(1 + x2)

] (1 + x2)

x2
dG(x)

=

∫

R\{0}

[

eisx − 1 − isx I[
|x|<1

]

] (1 + x2)

x2
dG(x)

+is

∫

R\{0}

1

x

[

I[
|x|<1

] − 1
]

dG(x) + is

∫

R\{0}
x I[

|x|<1
] dG(x)

=

∫

R\{0}

[

eisx − 1 − isx I[
|x|<1

]

] (1 + x2)

x2
dG(x)

−is

∫

R\(−1,1)

1

x
dG(x) + is

∫

(−1,1)\{0}
x dG(x) ,

and we can rewrite (5) as:

ΦXt
(s) = exp

{

iats + t

∫

R\{0}

[

eisx − 1 − isx I[
|x|<1

]

] (1 + x2)

x2
dG(x)

−ist

∫

R\(−1,1)

1

x
dG(x)

}

exp
{

ist

∫

(−1,1)\{0}
x dG(x)

−
s2

2

[

G(0+) − G(0−)
]

t
}

= exp
{

is
[

a −

∫

R\(−1,1)

1

x
dG(x) +

∫

(−1,1)\{0}

x dG(x)
]

t

−
s2

2

[

G(0+) − G(0−)
]

t
}

(8)

exp
{

t

∫

R\{0}

[

eisx − 1− isx I[
|x|<1

]

] (1 + x2)

x2
dG(x)

}

.

Comparing (8) with (1) we see that for the Lévy–Khinchine characteriza-

tion in terms of G, as in (5), the drift is given by a −
∫

R\(−1,1)
1
x

dG(x) +
∫

(−1,1)\{0}x dG(x), the Gaussian component is
[

G(0+) − G(0−)
]

and the

explicit relation between G and ν is ν(dx) = (1+x2)
x2 dG(x).

Remark 3.1 The set of points of increase of G in (5), for x 6= 0, gives

information as to the nature of the compound Poisson component, i.e. the

relative density of the size of the discontinuities in the Lévy process sample

paths.
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4 Conclusion

The jump measure, being a Poisson random measure, is explicitly related to
the Lévy measure of a Lévy process. This relation yields a basic proof of the

classical result on path continuity of the process. The relation between the
jump function in Kolmogorov’s representation of Lévy–Khinchine’s formula

and the Lévy measure in more recent Lévy–Khinchine formulas is derived in
detail. This relation is useful in estimating the Lévy measure by estimating

the jump function from observed sample paths. For further details on such
an application see [4].
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