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1. Introduction

Let (Xi1, X2i), 1 ≤ i ≤ n, be independent and identically distributed (iid) nonnegative random

vectors, each having a bi-variate distribution function (d.f.) F (·, ·) and representing a bi-variate

failure or survival time, such as those for ‘twins’ or two components of the same machine. Suppose

further that these vectors are subject to random censoring from the right by another, independent

set of iid random vectors (Yi1, Y2i), 1 ≤ i ≤ n, each having d.f. G(·, ·), so that we can only observe

(δ1i, δ2i, Zi1, Z2i), 1 ≤ i ≤ n, where δji = 1{Xji ≤ Yji}, Zji = min(Xji, Yji), j = 1, 2, 1 ≤ i ≤ n, and

1(A) denotes the indicator function of the event A. Our goal is to estimate F (·, ·) or equivalently,

its survivor function F̄ (·, ·) := P{X1 > ·, X2 > ·} based on the observed data, i.e., to obtain the

bi-variate version of the celebrated Kaplan-Meier estimator.

This problem has a surprisingly long history; see Prentice et al (2004), Gill et al (1995) for

more references. Notable among the estimators are those derived by Dabrowska (1988) and van

der Laan (1995). Note that the former can assign negative values to some events whereas the

latter is inexplicit, although asymptotically efficient under some strong conditions such as complete

observation of the censoring variables. Gill et al (1995) show that three estimators proposed in the

literature, including that of Dabrowska (1988), are efficient under complete independence (of all the

X’s and Y ’s) and continuity.

In Section 2 of this paper we show that a bi-variate (in fact, multivariate) survivor function

is an eigenfunction corresponding to eigenvalue unity of the cumulative hazard function (looked

upon as an integral operator). The estimator is then obtained in Section 3 as a solution to the

empirical version of the eigenfunction equation, which is a matrix eigenvector problem. Section 4

gives the general solution to the eigenfunction problem. In Section 5, the estimator is linearized by

the functional ∆-method, and its influence function is shown to be asymptotically efficient.

It must be mentioned that one version of the empirical matrix eigenvector problem (Eq.(2.1),

Section 2) was also obtained by Prentice et al (2004). However, their solution was incorrect.
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2. The integral equation

Let F̄ (x1, . . . , xm) = P{X1 > x1, . . . , Xm > xm} be the survival function of an m-dimensional

random vector X = (X1, . . . , Xm), m ≥ 1. Then F̄ (·, . . . , ·) satisfies the integral equation

F̄ (x1−, . . . , xm−) =
∫

[x1,∞)×···×[xm,∞)
F̄ (t1−, . . . , tm−)

dF (t1, . . . , tm)

F̄ (t1−, . . . , tm−)
(2.1)

Let us look at m = 2 only for the sake of convenience. Now for censored data, we have

dF (t1, t2)

F̄ (t1−, t2−)
=

Ḡ(t1−, t2−)dF (t1, t2)

Ḡ(t1−, t2−)F̄ (t1−, t2−)
,

where G(·, ·) is the censoring distribution. Thus Eq.(2.1) becomes

F̄ (x1−, x2−) =
∫

[x1,∞)×[x2,∞)
F̄ (t1−, t2−)

dH11(t1, t2)

H̄(t1−, t2−)
, (2.2)

and F (·, ·) can be estimated as a solution to the empirical version of Eq.(2.2):

F̄n(x1−, x2−) =
∫

[x1,∞)×[x2,∞)
F̄n(t1−, t2−)

dH11
n (t1, t2)

H̄n(t1−, t2−)
, (2.3)

where as usual, H11
n (t1, t2) = n−1 ∑n

i=1 δ1iδ2i1{Z1i ≤ t1, Z2i ≤ t2}, and H̄n(t1, t2) = n−1 ∑n
i=1 1{Z1i >

t1, Z2i > t2}.
Equations (2.1) and (2.3) obviously represent eigenvalue problems, i.e., F̄ (x1−, x2−) and F̄n(x1−, x2−)

are eigenvectors corresponding to the eigenvalue 1 for the integral operators
∫
[·,∞)×[·,∞)(dF (t1, t2)/F̄ (t1−, t2−))

and
∫
[·,∞)×[·,∞)(dH11

n (t1, t2)/H̄n(t1−, t2−)), respectively.

To solve Eq.(2.3), we may assume that the estimator gives mass pi ≥ 0 to the observation

(Z1i, Z2i), 1 ≤ i ≤ n, so that

F̄i := F̄n(Z1i−, Z2i−) =
n∑

j=1

aijpj,

where

aij =





1 if Z1j ≥ Z1i, Z2j ≥ Z2i

0 otherwise;

Further, let bi := 4H11
n (Z1i, Z2i)/H̄n(Z1i−, Z2i−) = n−1δ1iδ2i/H̄n(Z1i−, Z2i−). Then Eq.(2.3), with

x1 = Z1i, x2 = Z2i, 1 ≤ i ≤ n, may be rewritten as

n∑

j=1

aijpj =
n∑

k=1

F̄n(Z1k−, Z2k−)aikbk

=
n∑

k=1

aikbk

(
n∑

l=1

aklpl

)

=
n∑

l=1

(
n∑

k=1

aikbkakl

)
pl. (2.4)
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Equation for p = (p1, . . . , pn). In matrix notation, Eq.(2.4) becomes

Ap=ABAp,
n∑

i=1

pi = 1, (2.5)

where A = ((aij)), p = (p1, . . . , pn), B = diag (b1, . . . , bn). Now order (Z1i, Z2i), 1 ≤ i ≤ n, in the

increasing order of the first coordinate, i.e., as (Z1i:n, Z[2i:n]), 1 ≤ i ≤ n, where Z11:n ≤ · · · ≤ Z1n:n

and Z[2i:n], 1 ≤ i ≤ n, are the corresponding concommitants. Then, with any suitable convention

for breaking ties, A becomes an upper-triangular matrix, i.e.,

aij =





0 if j < i

1 if j = i

1 or 0 if j > i

Note that for univariate ordered data, aij = 1 for all j ≥ i. Thus A now becomes invertible, and

Eq.(2.5) becomes

p=BAp,
n∑

i=1

pi = 1. (2.6)

Remark 2.1. Equation (2.6) is also obtained, by a different heuristics and in a more complicated

form, by Prentice et al (2004), as follows: they start with the motivation, theoretical hazard ≈
empirical hazard. This leads to the equation

pi∑n
j=1 aijpj

= n−1δ1iδ2i/H̄n(Z1i−, Z2i−) = bi,

which is exactly Eq.(2.6). However, they put aij = 1− dij, where dij = 1{Z1j < Z1i or Z2j < Z2i},
and rewrite the equation as (I+BD)p=b, where b = (b1, . . . , bn). Further restriction to only the

non-zero components of b, say b̂ = (b1, . . . , bs), and the corresponding p̂ = (p1, . . . , ps) gives an

equation of the form

Âp̂ = 1,

where 1 = (1, . . . , 1). From this they conclude that there always is a solution for p in Eq.(2.6), and

the latter is unique. Section 2 below shows very clearly that neither conclusion is true.

Equation for F̄ = (F̄1, . . . , F̄n). Since obviously F̄ = Ap, and also

1 = F̄n(0−, 0−) =
∫

[0,∞)×[0,∞)
F̄n(t1−, t2−)

dH11
n (t1, t2)

H̄n(t1−, t2−)
,

we may write Eq.(2.5) alternatively as

F̄ = ABF̄,
n∑

i=1

biF̄i = 1, (2.7)
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3. Solutions to Equations (2.6) and (2.7)

Equation (2.6). Put δ1iδ2i = δi. Under the ordering that led to Eq.(2.6), we then have BA =

((biaij)), where

biaij =
δiaij

nH̄n(Z1i−, Z2i−)
=

δiaij∑n
k=1 1{Z1k ≥ Z1i, Z2k ≥ Z2i} =

δiaij∑n
k=i aik

In particular, BA too is upper-triangular with diagonal elements (bi = δi/
∑n

k=i aik, 1 ≤ i ≤ n),

which are of course the eigenvalues of BA. Hence there are three possibilities with Eq.(2.6):

1) bi0 = 1 for some i0, bi < 1 for i 6= i0: unique solution.

This is equivalent to δi = 1, aik = 0, k > i, uniquely for i = i0. In this case Eq.(2.6) has

only one linearly independent solution p (i.e., the eigen-subspace of BA for eigenvalue 1 has

dimension 1), hence a unique solution with
∑n

i=1 pi = 1. This solution is obtained as follows:

without loss of generality (WLOG), assume i0 = n, i.e., bn = δn = 1. (If i0 < n, interchange

Row-i0 and Row-n in BA.)

Then we have, for 1 ≤ i ≤ n− 1,

pi = bi

n∑

j=i

aijpj,

which gives

pi =
bi

1− bi

n∑

j=i+1

aijpj

= ci


1 +

∑

j>i

aijcj +
∑

j>i

∑

k>i

aijajkcjck + · · ·

+ai,i+1ai+1,i+2 . . . an−2,n−1ci+1 . . . cn−1] pn, (3.1)

where ci = bi/(1− bi) = δi/(nH̄n(Z1i−, Z2i−)− δi), 1 ≤ i ≤ n− 1, and

pn = 1/


1 +

n−1∑

i=1

ci +
∑

i<j

cicjaij +
∑

i<j<k

cicjckaijajk + · · ·

+c1 . . . cn−1a12a23 . . . an−2,n−1] (3.2)

Note that we got Eq.(3.2) using the condition
∑n

i=1 pi = 1.

In the univariate case, aij = 1 for j ≥ i so that bi = δi/(n− i + 1), and

pn = 1/
∏n−1

j=1 [1 + cj] =
∏n−1

j=1 [1− bj],

pi = cipn
∏n−1

j=i+1[1 + cj] = bi
∏i−1

j=1[1− bj], 1 ≤ i ≤ n− 1,

which is exactly the Kaplan-Meier estimator.
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2) bi = 1 for i ∈ I, where I = {i1, . . . , ir}, r ≥ 2, and bi < 1 for i /∈ I: multiple

solutions.

In this case we do not have a unique solution to Eq.(2.6), satisfying
∑n

i=1 pi = 1, but r ≥ 2

linearly independent solutions. We can, however, enforce a unique solution by imposing the

restriction

pi1 = · · · = pir . (3.3)

Assume as in Case-1 that ir = n, WLOG. Note that ci = bi/(1 − bi) is not defined for i ∈ I,

but by Eq.(3.1)–(3.2) it is clear that Eq.(3.3) is ensured if we let ci = 1, i ∈ I. Thus the

modified solution is again given by Eq.(3.1)–(3.2), putting ci = 1, aik = 0, k > i, for i ∈ I.

3) bi < 1 for 1 ≤ i ≤ n: no solution.

In this case 1 is not an eigenvalue of BA, and Eq.(2.6) has no non-zero solution. We can,

however, produce a pseudo-solution that leads to a defective estimator, i.e., one satisfying
∑n

i=1 pi < 1. Augment the vector p = (p1, . . . , pn) to p̃ = (p1, . . . , pn, pn+1), the matrix B to

B̃ = diag (b1, . . . , bn, bn+1) where bn+1 = 1, and the matrix A to Ã = ((aij))(n+1)×(n+1) where

ai,n+1 = 1 for 1 ≤ i ≤ n + 1, an+1,j = 0 for 1 ≤ j ≤ n. Then the equation

p̃ = B̃Ãp̃

obviously satisfies the condition of Case-1 with n replaced by (n+1). Hence its unique solution

is obtained from Eq.(3.1)–(3.2) with n replaced by (n + 1). Note that in this solution pn+1

represents the excess mass and (p1, . . . , pn) the defective estimator.

In the univariate case defective estimator is obtained when δn = 0, and the excess mass is

given by (following Case 1)

pn+1 = 1/
∏n

j=1[1 + cj]

=
∏n

j=1[1− bj] = 1−∑n
i=1 pi,

Equation (2.7). To avoid unnecessary repetitions, let us consider only Case-1, namely, bn = 1,

bi < 1 for 1 ≤ i ≤ n− 1, which gives a unique solution. Eq.(2.7) can be written as

F̄i =
n∑

j=i

aijbjF̄j, 1 ≤ i ≤ n,

which in this case leads to the solution

F̄i = (1− bi)
−1

n∑

j=i+1

aijbjF̄j

= (1− bi)
−1


1 +

∑

j>i

aijcj +
∑

j>i

∑

k>i

aijajkcjck + · · ·

+ai,i+1ai+1,i+2 . . . an−2,n−1ci+1 . . . cn−1] F̄n, 1 ≤ i ≤ n− 1, (3.4)
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where, as before, ci = bi/(1− bi) = δi/(nH̄n(Z1i−, Z2i−)− δi), 1 ≤ i ≤ n− 1, and

F̄n = 1/


1 +

n−1∑

i=1

ci +
∑

i<j

cicjaij +
∑

i<j<k

cicjckaijajk + · · ·

+c1 . . . cn−1a12a23 . . . an−2,n−1] (3.5)

Note that we got Eq.(3.5) using the condition
∑n

i=1 biF̄i = 1.

4. General Solution to the Eigenvalue Equation (2.1)

Let us consider the general eigenvalue problem in Eq.(2.1) above:

q(x) =
∫

1{t ≥ x}q(t) dF (t)

F̄ (t−)
, (4.1)

with the initial condition q(0) = 1. Here t = (t1, t2) and x = (x1, x2) represent vector variables, and

the inequality is defined in the coordinate-wise sense.

Uniqueness of the solution. Since F̄ (x−) is always a solution to Eq.(4.1), it is clear that we have

a unique solution, under q(0) = 1, if every solution is of the form cF̄ (x−), i.e., the eigen-subspace

corresponding to the eigenvalue 1 is of dimension 1.

However, it is not hard to see that uniqueness fails if there are more than one point x satisfying

0 < P{X = x} = P{X ≥ x}, because for every such point Eq.(4.1) is of the form: q(x) = q(x).

Note that in 1-dimension there cannot be more than one such point. Hence we have the following

result:

Theorem 4.1. Denote ∆F (x) = P{X = x}, and suppose that the set,

N(F ) := {x|0 < ∆F (x) = P{X ≥ x}} ,

contains at most one point. Then every solution to Eq.(4.1) is of the form q(x) = cF̄ (x−).

Proof: Put r(x) = q(x)/F̄ (x−), then Eq.(4.1) can be written as

r(x) =

∫
1{t ≥ x}r(t)dF (t)

F̄ (x−)
.

First assume r(x) is a simple function, of the form r(x) =
∑k

j=1 cj1Aj
(x), where ∪jAj = IR2, Aj ∩

Aj′ = ∅ for j 6= j′. Then the equation further reduces to: cl =
∑k

j=1 cjpj(x) for x ∈ Al, where

pj(x) = P{X ∈ Aj ∩ [x,∞)}/F̄ (x−), so that
∑k

j=1 pj(x) = 1. Further, for all x 6∈ N(F ), pj(x) > 0

for at least two indices 1 ≤ j ≤ k. Now we have 0 =
∑k

j=1(cj − cl)pj(x), hence taking cl = minj cj

we get c1 = · · · = ck. The case of a general r(x) follows.(??)2
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Solution in 1 dimension. In 1-dimension we may write Eq.(4.1), for any M > x such that

F̄ (M−) > 0, as

F̄ (x−) =
∫

1{M > t ≥ x}F̄ (t−)
dF (t)

F̄ (t−)
+ F̄ (M−),

= F̄ (M−) +
∞∑

n=1

∫
· · ·

∫
1{M > tn ≥ · · · ≥ t1 ≥ x}F̄ (M−)

dF (tn)

F̄ (tn−)
· · · dF (t1)

F̄ (t1−)
,

iterating the previous equality; (4.2)

now using the initial condition F̄ (0−) = 1 we get

F̄ (M−) =

[
1 +

∞∑

n=1

∫
· · ·

∫
1{M > tn ≥ · · · ≥ t1 ≥ 0} dF (tn)

F̄ (tn−)
· · · dF (t1)

F̄ (t1−)

]−1

,

so that

F̄ (x−) =
1 +

∑∞
n=1

∫ · · · ∫ 1{M > tn ≥ · · · ≥ t1 ≥ x} dF (tn)
F̄ (tn−)

· · · dF (t1)
F̄ (t1−)

1 +
∑∞

n=1

∫ · · · ∫ 1{M > tn ≥ · · · ≥ t1 ≥ 0} dF (tn)
F̄ (tn−)

· · · dF (t1)
F̄ (t1−)

(4.3)

Example 4.1. If F (x) = 1 − e−λx, x ≥ 0, λ > 0, then dF (t)
F̄ (t−)

= λdt, and Eq.(4.3) reduces to, for

any M > x,

F̄ (x) =
exp(λ(M − x))

exp(λM)
= exp(−λx).

Solution in 2 or more dimensions. In 2 or higher dimensions Eq.(4.2) no longer holds because

of the loss of the linear order in these dimensions. However, denote M > x if Mj ≥ xj with strict

inequality for at least one j = 1, 2. Then for any M > x with F̄ (M−) > 0,

F̄M(x) := P{M > X > x}, F̄+
M(x) := F̄M(x) + F̄ (M−).

Then obviously limM→∞ F̄M(x) = limM→∞ F̄+
M(x) = F̄ (x), and for M > x,

F̄+
M(x−) =

∫
1{M > t ≥ x}F̄+

M(t−)
dF (t)

F̄+
M(t−)

+ F̄ (M−)

= F̄ (M−)

[
1 +

∞∑

n=1

∫
· · ·

∫
1{M > tn ≥ · · · ≥ t1 ≥ x} dF (tn)

F̄+
M(tn−)

· · · dF (t1)

F̄+
M(t1−)

]
,

(4.4)

iterating the previous equality. Next, using the initial condition F̄+
M(0−) = F (M−) + F̄ (M−) we

get

F̄+
M(x−) = [F (M−) + F̄ (M−)]

[1 +
∑∞

n=1

∫ · · · ∫ 1{M > tn ≥ · · · ≥ t1 ≥ x} dF (tn)

F̄+
M (tn−)

· · · dF (t1)

F̄+
M (t1−)

]

1 +
∑∞

n=1

∫ · · · ∫ 1{M > tn ≥ · · · ≥ t1 ≥ 0} dF (tn)

F̄+
M (tn−)

· · · dF (t1)

F̄+
M (t1−)

.
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Hence finally,

F̄ (x−) = lim
M→∞

F̄+
M(x−) = lim

M→∞

[1 +
∑∞

n=1

∫ · · · ∫ 1{M > tn ≥ · · · ≥ t1 ≥ x} dF (tn)
F̄ (tn−)

· · · dF (t1)
F̄ (t1−)

]

1 +
∑∞

n=1

∫ · · · ∫ 1{M > tn ≥ · · · ≥ t1 ≥ 0} dF (tn)
F̄ (tn−)

· · · dF (t1)
F̄ (t1−)

.

(4.5)

Example 4.2. Let F (x1, x2) = F1(x1)F2(x2), where Fj(x) = 1−e−λjx, j = 1, 2. Then the right-hand

side of Eq.(4.5) reduces to

lim
M→∞

[ ∞∑

r=0

(λ1(M1 − x1))
r

r!

(λ2(M2 − x2))
r

r!

]
/

[ ∞∑

r=0

(λ1M1)
r

r!

(λ2M2)
r

r!

]

= e−λ1x1e−λ2x2 lim
M→∞

([ ∞∑

r=0

e−λ1(M1−x1)e−λ2(M2−x2) (λ1(M1 − x1))
r

r!

(λ2(M2 − x2))
r

r!

]
/

[ ∞∑

r=0

e−λ1M1e−λ2M2
(λ1M1)

r

r!

(λ2M2)
r

r!

])

= e−λ1x1e−λ2x2 = F̄ (x1, x2),

since the limit in the first equality above equals one. (??)

Alternative form of solution. Consider only the 2-dimensional case. Take M > 0 and a partition

0 = s10 < s11 < · · · < s1N1 = M1, 0 = s20 < s21 < · · · < s2N2 = M2. Then a discretized version of

Eq.(4.4) for this partition would be

F̄i =
∑

j≥i

F̄j∆j,
∑

j

F̄j∆j = 1 (4.6)

where i = (i1, i2), j = (j1, j2), 1 ≤ il, jl ≤ Nl, l = 1, 2, F̄i = F̄ (s1i1 , s2i2), and

∆j =
∫

[s1j1
,s1,j1+1)×[s2j2

,s2,j2+1)
dF (t)/F̄ (t−).

Now Eq.(4.6) can be solved as in Eq.(3.4)–(3.5) to get

F̄i =
(1−∆i)

−1

[
1 +

∑
r≥1 1{N > jr > · · · > j1 > i} ∆jr

1−∆jr
· · · ∆j1

1−∆j1

]

1 +
∑

r≥1 1{N > jr > · · · > j1} ∆jr

1−∆jr
· · · ∆j1

1−∆j1

; (4.7)

Letting the partition-size go to ∞ we get the following expression from Eq.(4.7) (remember that

a > b if aj ≥ bj with strict inequality for at least one j = 1, 2):

F̄ (x−) = lim
M→∞

(1−∆F (x))−1
[
1 +

∑∞
n=1

∫ · · · ∫ 1{M > tn > · · · > t1 > x} dF (tn)
1−∆Λ(tn)

· · · dF (t1)
1−∆Λ(t1)

]

1 +
∑∞

n=1

∫ · · · ∫ 1{M > tn > · · · > t1 ≥ 0} dF (tn)
1−∆Λ(tn)

· · · dF (t1)
1−∆Λ(t1)

,

(4.8)

where ∆Λ(x) =
∫
{x} dF (t)/F̄ (t−). The equivalence of Eq.(4.5) and (4.8) can be seen via the well-

known expansion: (1− x)−1 = 1 + x + x2 + · · · for |x| < 1. Eq.(4.8) was also obtained by Prentice

et al (2004) in an incorrect form.
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5. Influence function of the estimator

Note that Equations (2.3)–(2.6) and their solutions are completely dimension-free, i.e., is valid

for ∆i := (δ1i, . . . , δmi), Zi = (Z1i, . . . , Zmi) for m ≥ 1, with the definitions δi =
∏m

j=1 δji and

aik = 1{Zk ≥ Zi} where the inequality is defined in the coordinate-wise sense. Hence in this section

we shall use scalar notation also for vector variables, with the above interpretation.

Now to derive the influence functions for the estimators F̄n(x) and
∫

ϕdFn for a given ϕ(·), let

P denote the distribution of (δ, Z) and Pn the empirical distribution of (δi, Zi), 1 ≤ i ≤ n. Also, let

Tx(P ) := F̄ (x−), Tϕ(P ) :=
∫

ϕdF, and let Tx(Pn), Tϕ(Pn) be their estimators, respectively, obtained

via Eq.(2.6). Thus we rewrite Eq. (2.2) and (2.3) as the eigenvalue problems

Tx(P ) =
∫

1{t ≥ x}Tt(P )
dH11(t)

H̄(t−)
,

Tx(Pn) =
∫

1{t ≥ x}Tt(Pn)
dH11

n (t)

H̄n(t−)
, (1)

with the initial conditions T0(P ) = 1, T0(Pn) = 1.

Note also that, for a function ϕ(·) satisfying ϕ(x) = 0 if x 6∈ [0, τ ] for some τ with H̄(τ) > 0,

Tϕ(P ) =
∫

ϕ(t)Tt(P )
dH11(t)

H̄(t−)
,

Tϕ(Pn) =
∫

ϕ(t)Tt(Pn)
dH11

n (t)

H̄n(t−)
. (2)

Section 4 shows that the functional Tx(P ) = Tx(H
11, H) is Hadamard differentiable, i.e.,

lim
ε→0

[
Tx(H

11 + εh11
ε , H + εhε)− Tx(H

11, H)
]
/ε

exists if h11
ε → h11, hε → h, in the domain of sub-probability measures on IRm

+ .

The influence functions for Tx(Pn), Tϕ(Pn) can now be derived as

Lx(Pn) =
n∑

i=1

lx(δi, Zi)/n = lim
ε→0

[Tx(P + ε(Pn − P ))− Tx(P )]/ε, (3)

and Lϕ(Pn) =
∑n

i=1 lϕ(δi, Zi)/n similarly.

Now let Pε,n = P + ε(Pn − P ) = (1− ε)P + εPn, and note that

H11
ε,n(t) := H11(t) corresponding to Pε,n = (1− ε)H11(t) + εH11

n (t),

H̄ε,n(t) := H̄(t) corresponding to Pε,n = (1− ε)H̄(t) + εH̄n(t).

Then from Eq.(10),

lim
ε→0

[Tx(Pε,n)− Tx(P )]/ε

9



= lim
ε→0

∫
1{t ≥ x}

[
Tt(Pε,n)

dH11
ε,n(t)

H̄ε,n(t−)
− Tt(P )

dH11(t)

H̄(t−)

]
/ε

= lim
ε→0

∫
1{t ≥ x} [Tt(Pε,n)− Tt(P )]

ε

dH11
ε,n(t)

H̄ε,n(t−)

+ lim
ε→0

∫
1{t ≥ x}Tt(P )

[
dH11

ε,n(t)

H̄ε,n(t−)
− dH11(t)

H̄(t−)

]
/ε. (4)

Since [
dH11

ε,n(t)

H̄ε,n(t−)
− dH11(t)

H̄(t−)

]
/ε =

[
(1− ε)dH11(t) + εdH11

n (t)

(1− ε)H̄(t−) + εH̄n(t−)
− dH11(t)

H̄(t−)

]
/ε,

it follows from Eq.(13) that the influence function Lx(Pn) of Tx(Pn) = F̄n(x−) satisfies the linear

equation

Lx(Pn) =
∫

1{t ≥ x}Lt(Pn)
dH11(t)

H̄(t−)

+
∫

1{t ≥ x}Tt(P )
H̄(t−)dH11

n (t)− H̄n(t−)dH11(t)

H̄2(t−)
;

since Tt(P ) = F̄ (t−), this simplifies to

Lx(Pn)−
∫

1{t ≥ x}Lt(Pn)
dF (t)

F̄ (t−)
=

∫
1{t ≥ x}

[
dH11

n (t)

Ḡ(t−)
− H̄n(t−)

dF (t)

H̄(t−)

]
(5)

Further, using Eq.(2) the influence function Lϕ(Pn) of Tϕ(Pn) =
∫

ϕdFn is given by

Lϕ(Pn) = lim
ε→0

[Tϕ(Pε,n)− Tϕ(P )]/ε

= lim
ε→0

∫
ϕ(t)

[
Tt(Pε,n)

dH11
ε,n(t)

H̄ε,n(t−)
− Tt(P )

dH11(t)

H̄(t−)

]
/ε

=
∫

ϕ(t)Lt(Pn)
dF (t)

F̄ (t−)

+
∫

ϕ(t)

[
dH11

n (t)

Ḡ(t−)
− H̄n(t−)

dF (t)

H̄(t−)

]
(6)

Now from Theorem 4.1, Eq.(5) does not have a unique solution in general, because the corre-

sponding homogeneous equation, l(x) − ∫
1{t ≥ x}l(t) dF (t)

F̄ (t−)
= 0, has the general solution cF̄ (x−)

for any scalar c (i.e., F̄ (x−) is the eigenvector spanning the 1-dimensional eigenspace).

However, a unique solution, which gives the unique influence function, is obtained if we impose

the initial condition L0(Pn) = 0; this is the natural condition to impose in view of the uncensored

case, where we know that

Lx(Pn) = n−1
n∑

i=1

1{Xi ≥ x} − F̄ (x−).

Thus in view of Theorem 4.1, and focusing only on the special case where F (·), G(·) have

densities f(·), g(·), we rewrite Eq.(5) as a Volterra integral equation:

Lx(Pn)−
∫

Lt(Pn)K(x, dt) = zn(x) (7)

L0(Pn) = 0, (8)

10



where

K(x, dt) = 1{t ≥ x}dF (t)/F̄ (t), K(0, dt) = dF (t)/F̄ (t)

and

zn(x) =
∫

1{t ≥ x}
[
dH11

n (t)

Ḡ(t)
− H̄n(t)

dF (t)

H̄(t)

]
.

Theorem 2. Under continuity of F (·), G(·), the influence function for Tx(Pn) is asymptotically

efficient and is given by the unique solution to Eq.(7)–(8):

Lx(Pn) = ax(Pn)− F̄ (x)a0(Pn)

where

ax(Pn) = zn(x) +
∞∑

r=1

∫
· · ·

∫
zn(yr)K(x, dy1) · · ·K(yr, dyr). (9)

Proof: It is easy to see that the infinite Neumann series in ax(Pn) is convergent, so that ax(Pn) is

finite, and it is a solution to Eq.(17). In view of Lemma 1, a general solution to Eq.(7) is therefore

of the form

Lc
x(Pn) = ax(Pn) + cF̄ (x).

Setting Lc
0(Pn) = 0 gives c = −a0(Pn), hence the unique solution to Eq.(7)–(8) is given by Lx(Pn).

As for asymptotic efficiency, Lx(Pn) obviously belongs to the closed linear span of the empirical

process {zn(x), x ≥ 0}, which obvioulsy belongs to the tangent space of the model at P, hence so

does Lx(Pn).

To complete the proof, we need to verify Eq.(3.7), Theorem 3.1, of van der Vaart (1991), which

in this case boils down to

A∗Lx(Pn) = n−1
n∑

i=1

1{Xi ≥ x} − F̄ (x), (10)

where A is the score operator:

Ah = E(h(Xi, 1 ≤ i ≤ n)|δi, Zi, 1 ≤ i ≤ n)

and

A∗L = E(L(δi, Zi, 1 ≤ i ≤ n)|Xi, 1 ≤ i ≤ n)

is the dual of A.

To verify Eq.(10), note that Lx(Pn) is of the form Lx(Pn) =
∑n

i=1 Lx(δi, Zi)/n. We thus need to

look only at

E[Lx(δi, Zi)|Xi] = E[ax(δi, Zi)|Xi]− F̄ (x)E[a0(δi, Zi)|Xi]

for each fixed i, 1 ≤ i ≤ n. Let us consider only the bi-variate case, i.e., m = 2 and Xi = (X1i, X2i).

Now

E[ax(δi, Zi)|Xi] = E[zi(x)|Xi] +
∞∑

r=1

∫
· · ·

∫
E[zi(yr)|Xi]K(x, dy1) · · ·K(yr, dyr),

11



where

zi(x) =
δi1{Zi ≥ x}

Ḡ(Zi)
−

∫
1{Zi ≥ t}1{t ≥ x}dF (t)

H̄(t)
;

further, for an arbitrary h(δi, Zi) we have

E[h(δ1i, δ2i, Z1i, Z2i)|Xi]

=
∫

[h(1, 1, X1i, X2i)1{X1i ≤ y1, X2i ≤ y2}+ h(1, 0, X1i, y2)1{X1i ≤ y1, X2i > y2}
+h(0, 1, y1, X2i)1{X1i > y1, X2i ≤ y2}+ h(0, 0, y1, y2)1{X1i > y1, X2i > y2}] dG(y1, y2),

so that

E[zi(x)|Xi] = 1{Xi ≥ x} −
∫

1{Xi ≥ t}1{t ≥ x}dF (t)

F̄ (t)
= 1{Xi ≥ x} −

∫
1{Xi ≥ t}K(x, dt).

Plugging the expression for E[zi(x)|Xi] back into that for E[ax(δi, Zi)|Xi] we see that the successive

terms in the infinite series cancel each other out, so that we are left with

E[ax(δi, Zi)|Xi] = 1{Xi ≥ x} and E[a0(δi, Zi)|Xi] = 1{Xi ≥ 0} = 1.

Hence finally,

E[Lx(δi, Zi)|Xi] = E[ax(δi, Zi)|Xi]− F̄ (x)E[a0(δi, Zi)|Xi] = 1{Xi ≥ x} − F̄ (x),

and Eq.(10) is verified.2

We now calculate the influence function in a few special cases.

Example 1: Uncensored data. In this case H11
n (·) = Hn(·) = Fn(·), the usual empirical d.f.,

Ḡ ≡ 1, H11(·) = H(·) = F (·), F̄ = H̄, so that Eq.(17) reduces to

Lx(Pn)−
∫

1{t ≥ x}Lt(Pn)
dF (t)

F̄ (t−)
= F̄n(x−)−

∫
1{t ≥ x}F̄n(t−)

dF (t)

F̄ (t−)
,

which gives the general solution Lc
x(Pn) = F̄n(x−) + cF̄ (x−), and under L0(Pn) = 0, the unique

solution

Lx(Pn) = F̄n(x−)− F̄ (x−) = n−1
n∑

i=1

1{Xi ≥ x} − F̄ (x−).

The same also follows from Theorem 2 as ax(Pn) simplifies to F̄n(x−).

Example 2: Influence function for Tϕ(Pn) =
∫

ϕdFn.

From Eq.(6) and Theorem 2, we get for a ϕ(·) with compact support,

Lϕ(Pn) =
∫

ϕ(t)at(Pn)
dF (t)

F̄ (t)
− a0(Pn)

∫
ϕ(t)dF (t) +

∫
ϕ(t)

[
dH11

n (t)

Ḡ(t)
− H̄n(t)

dF (t)

H̄(t)

]
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Example 3: Univariate censored data. Here for r ≥ 1,
∫
· · ·

∫
K(x, dy1) · · ·K(yr, dyr)zn(yr)

=
∫
· · ·

∫
1{x < y1 < · · · < yr} f(y1)

1− F (y1)
· · · f(yr)

1− F (yr)(∫
1{t ≥ yr}

[
dH11

n (t)

Ḡ(t)
− H̄n(t)

dF (t)

H̄(t)

])
dy1 . . . dyr

=
∫ (− log F̄ (t) + log F̄ (x))r

r!
1{t ≥ x}

[
dH11

n (t)

Ḡ(t)
− H̄n(t)

dF (t)

H̄(t)

]
,

so that

ax(Pn) =
∫ F̄ (x)

F̄ (t)
1{t ≥ x}

[
dH11

n (t)

Ḡ(t)
− H̄n(t)

dF (t)

H̄(t)

]
,

and hence

Lx(Pn) = ax(Pn)− F̄ (x)a0(Pn) = −
∫

F̄ (x)1{t < x}
[
dH11

n (t)

H̄(t)
− H̄n(t)

dF (t)

H̄(t)F̄ (t)

]
(11)

In order to derive the general expression obtained by Stute (1995) (Eq.(1.7), Theorem 1.1),

consider a general ϕ(·) with compact support. Then from Eq.(6) and Eq.(11),

Lϕ(Pn)

= −
∫

ϕ(t)

(∫
1{s < t}

[
dH11

n (s)

H̄(s)
− H̄n(s)

dF (s)

H̄(s)F̄ (s)

])
dF (t)

+
∫

ϕ(t)

[
dH11

n (t)

Ḡ(t)
− H̄n(t)

dF (t)

H̄(t)

]
(12)

Consider the second inner integral in the first term of Eq.(12):

−
∫

1{s < t}H̄n(s)
dF (s)

H̄(s)F̄ (s)

= −n−1
n∑

i=1

∫
1{s < t ∧ Zi} dF (s)

Ḡ(s)F̄ 2(s)

= −n−1
n∑

i=1

(Ḡ(t ∧ Zi)F̄ (t ∧ Zi))
−1 + 1

+
∫

1{s < t}H̄n(s)
dG(s)

F̄ (s)Ḡ2(s)

= −(H̄n(t)/H̄(t))− n−1
n∑

i=1

(1{Zi ≤ t}/H̄(Zi)) + 1

+
∫

1{s < t}H̄n(s)dG(s)

H̄(s)Ḡ(s)
, (13)

where we have used integration-by-parts in the third line; now put Eq.(13) into Eq.(12) to get

Lϕ(Pn) = n−1
n∑

i=1

[
δiϕ(Zi)/Ḡ(Zi) + (1− δi)γϕ(Zi)− Γϕ(Zi)

]
− EF (ϕ),
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where γϕ(Zi) = Sϕ(Zi)/H̄(Zi), Γϕ(Zi) =
∫
1{Zi > s}[Sϕ(s)/(H̄(s)Ḡ(s))]dG(s) and Sϕ(s) =

∫
1{s <

t}ϕ(t)dF (t). This is exactly the expression obtained by Stute (1995).

Example 4: Bivariate censored data with independent components.

Let us consider the bi-variate situation where F (x1, x2) = F1(x1)F2(x2), G(y1, y2) = G1(y1)G2(y2),

where Fj(·), Gj(·), j = 1, 2, are the marginal distribution functions. In this case,

K(x, dt) = 1{t1 ≥ x1, t2 ≥ x2} f1(t1)f2(t2)

(1− F1(t1))(1− F2(t2)
dt1dt2 = K(x1, dt1)K(x2, dt2).

Hence

ax1,x2(Pn)

=
∞∑

r=0

(r!)−2
∫ 


2∏

j=1

1{tj ≥ xj}(− log F̄j(tj) + log F̄j(xj))
r




[
dH11

n (t1, t2)

Ḡ1(t1)Ḡ2(t2)
− H̄n(t)

dF1(t1)dF2(t2)

H̄1(t1)H̄2(t2)

]
.

This, however, does not seem to simplify any further.
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