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Abstract. The paper studies the optimal reinsurance problem if the risk level is

measured by a general risk function. Necessary and sufficient optimality conditions are given

for a wide family of risk functions, including Deviation Measures, Expectation Bounded Risk

Measures and Coherent Measures of Risk. Then the optimality conditions are used to verify

whether the classical reinsurance contracts (quota-share, stop-loss) are optimal regardless

of the risk function to be used, and the paper ends by particularizing the findings so as to

study in detail two deviation measures and the Conditional Value at Risk.
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1. I���	�����	�

General risk functions are becoming more and more important in insurance and fi-
nance. Since the paper of Artzner et al. (1999) introduced the axioms and properties
of their “Coherent Measures of Risk”, many authors have extended the discussion.
The recent development of newmarkets (insurance or weather linked derivatives, com-
modity or energy/electricity derivatives, etc.) and products (inflation-linked bonds,
equity indexes annuities, hedge funds, etc.), the necessity of managing new types of
risk (credit risk, operational risk, etc.), the presence of asymmetries and fat tails,
and the (often legal) obligation of providing initial capital requirements have made
it rather convenient to overcome the variance as the most important risk measure
and to introduce more general risk functions. Hence, it is not surprising that the
recent literature presents many interesting contributions focusing on new methods
for measuring risk levels. Among others, Goovaerts et al. (2004) have introduced
the Consistent Risk Measures, also studied in Burgert and Rüschendorf (2006), Frit-
telli and Scandolo (2005) have analyzed Risk Measures for Stochastic Processes, and
Rockafellar et al. (2006) have defined the Deviations and the Expectation Bounded
Risk Measures.
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Many classical actuarial and financial problems have been revisited by using new
risk functions. For example, Nakano (2004) draws on a Coherent Measure to price
in incomplete markets, Konno et al. (2005) minimize the Absolute Deviation in a
Portfolio Choice Problem, Mansini et al. (2007) deal with Portfolio Choice Problems
and more complex measures, Alexander et al. (2006) compare the minimization of
Value at Risk (V aR) and the Conditional Value at Risk (CV aR) for a portfolio
of derivatives, and Schied (2007) deals with Optimal Investment with Convex Risk
Measures.

The Optimal Reinsurance Problem is a classical issue in Actuarial Science. Usu-
ally,authors consider the primary (or ceding) company viewpoint. A common ap-
proach attempts to minimize some measure of the first insurer risk after reinsurance,
restricted to some premium condition. A first paper was by Borch (1960), who proved
that the stop loss reinsurance minimizes the variance of the retained loss if premiums
are calculated following the expected value principle. A few years later Arrow (1963)
also assumed the expected value principle and showed that the same stop loss rein-
surance maximizes the expected utility of the terminal wealth of a risk-averse insurer.
Since maximizing the utility u(x) is equivalent to minimizing the loss w(x) = −u(−x),
both approaches aim to minimize some risk function.

The posterior research followed the ideas outlined in the foundational articles,
trying to take into account more general risk measures and premium principles which
often give optimal contracts other than stop loss. In recent years there have appeared
some interesting articles devoted to this subject. For example, Kaluszka (2001) still
takes the variance of the retained loss as the risk function to be minimized, but consid-
ers other premium principles like the standard deviation principle and the variance
principle. Also, Gajec and Zagrodny (2004) consider more general symmetric and
even asymmetric risk functions like the expected absolute deviation and the trun-
cated variance of the retained loss, under the standard deviation premium principle.
Young (1999) maximizes the expected utility of the final wealth under Wang’s pre-
mium principle. Kaluszka (2005) studies reinsurance contracts with several different
convex measures of the retained risk and also many convex premium principles (ex-
ponential, semi-deviation and semi-variance, Dutch, Wang and Gini principles, etc.).
Other famous financial risk measures like the V aR or the Tail Value at Risk (TV aR)
are also being considered. For example, Kaluszka (2005) uses the TV aR as a pre-
mium principle and Cai and Tan (2007) calculate the optimal retention for a stop loss
reinsurance by considering the V aR and Conditional Tail Expectation risk measures,
under the expected value premium principle.1

1The CV aR is also called TV aR, Expected Shortfall, Conditional Tail Expectation, etc., although
for some discrete random variables there might be some slight differences among the definitions used
by several authors.
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This paper considers the expected value premium principle and deals with the
Optimal Reinsurance Problem if risk levels are measured by modern risk functions.
These risk functions include as particular cases every Deviation Measure, every Ex-
pectation Bounded Risk Measure, and most of the Coherent, Convex or Consistent
Risk Measures. Thus it may be worth to point out the level of generality of the
analysis, since a unified approach is developed that does not depend on the concrete
risk function to be used.

The paper’s outline is as follows. Section 2 will present our general Optimal
Reinsurance Problem and the basic conditions and properties of the risk function ρ
to be used. Since the risk function is not differentiable in general, the optimization
problem is not differentiable either, and Section 3 will be devoted to overcome this
caveat. Actually, the results of this section will play a critical role in the rest of the
article. We will use the Representation Theorems of Risk Measures so as to transform
the initial Optimal Reinsurance Problem in a minimax problem. Later, following an
idea developed in Balbás and Romera (2007) and Balbás et al. (2008), the minimax
problem is equivalent to a new linear (and therefore differentiable) problem in Banach
spaces. In particular, the dual variable belongs to the set of probabilities on the
Borel σ−algebra of the sub-gradient of ρ. Since this fact would provoke high degree
of complexity when dealing with the optimality conditions of the linear problem,
Theorem 3 is one of the most important results in Section 3 and the whole article,
because it guarantees that the optimal dual solution will be a Dirac Delta, and thus
we can leave the use of general probability measures in order to characterize the
Optimal Reinsurance Contract. Section 3 ends by yielding necessary and sufficient
optimality conditions. Special interest may merit Theorem 4, since it provides a
Variational Principle that will often apply in the remaining sections.

Section 4 is devoted to verify whether the usual types of reinsurance satisfy the
Optimality Conditions, with special focus on quota-share and stop-loss contracts. It
will be shown that a quota-share reinsurance hardly will be optimal regardless of the
risk function ρ, while a stop-loss reinsurance much more easily satisfies the Optimality
Conditions. The main reason is that the optimality of stop-loss contracts is closely
related to the existence of bang-bang-like solutions for the Variational Principle above.

Despite of the level of generality of the analysis it may be worth to study partic-
ular risk functions in detail, and this is the focus of Section 5. So, the Optimality
Conditions will be tested if ρ equals the Standard Deviation, the Absolute Deviation
and the Conditional Value at Risk. Obviously, the Optimality Conditions may be
tested in detail for much more alternative risk measures (the measure of Wang, Wang,
2000, down side semi-deviations, etc.), but we had to make a decision. The Standard
Deviation was selected because it has been very frequently used in Finance and In-
surance, the Absolute Deviation has shown more adequate properties with respect to
the Stochastic Dominance in presence of heavy tails and/or asymmetries (Ogryczak
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and Ruszczynski, 2002) and the Conditional Value at Risk is becoming more and
more interesting in Finance and Insurance because it also respects the Stochastic
Dominance (Ogryczak and Ruszczynski, 2002), provides information about the de-
gree of risk in monetary terms (capital requirements, reserves, etc.), shows suitable
analytic properties and is deeply known and understood by many practitioners. For
the three risk functions we will find that the optimal strategy is closely related to a
stop-loss-like reinsurance.

The last section of the paper points out the most important conclusions.

2. P����$������
 ��� �	����	�


Consider the probability space (Ω,F , µ) composed of the set of “states of the world”
Ω, the σ−algebra F and the probability measure µ. Consider also a couple of con-
jugate numbers p ∈ [1,∞) and q ∈ (1,∞] (i.e., 1/p + 1/q = 1). As usual Lp

(Lq) denotes the Banach space of IR−valued measurable functions y on Ω such that
E (|y|p) < ∞, E () representing the mathematical expectation (E (|y|q) < ∞, or y
essentially bounded if q =∞). According to the Riesz Representation Theorem, we
have that Lq is the dual space of Lp.

Fix the random variable y0 ∈ Lp+ = {y ∈ Lp : µ (y ≥ 0) = 1} providing us with
the final amount of money that a insurance company must pay at a future date T ,
and take a “Minimum Pure Premium”

0 ≤ S ≤ E (y0) (1)

that this company would like to withhold.
Let

ρ : Lp −→ IR

be the general risk function that the insurer uses in order to control the risk level of
his final (at T ) wealth. Denote by

∆ρ = {z ∈ Lq;−E (yz) ≤ ρ (y) , ∀y ∈ Lp} . (2)

The set ∆ρ is obviously convex. We will assume that ∆ρ is also σ (Lq, Lp)−compact
and

ρ (y) =Max {−E (yz) : z ∈ ∆ρ} (3)

holds for every y ∈ Lp. Actually, these are quite natural assumptions. Indeed,
they are closely related to the Representation Theorems of Risk Measures stated in
Rockafellar et al. (2006), where the authors consider p = 2. Following the ideas of
the paper above, and bearing in mind the Representation Theorem 2.4.9 in Zalinescu
(2002) for convex functions, it is easy to prove that the σ (Lq, Lp)−compactness of
∆ρ and the fulfillment of (3) hold if:
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a) ρ is a continuous Expectation Bounded Risk Measure in the sense of Rockafellar
et al. (2006),2 in which case

∆ρ ⊂ {z ∈ Lq;E (z) = 1}

and ρ (y) ≥ −E (y) for every y ∈ Lp (with strict inequality if y is not a constant or
zero-variance random variable).

b) ρ is a continuous Deviation (or Deviation Measure) in the sense of Rockafellar
et al. (2006),3 in which case

∆ρ ⊂ {z ∈ Lq;E (z) = 0}

and ρ (y) ≥ 0 for every y ∈ Lp (with strict inequality if y is not a constant or
zero-variance random variable).

Particular interesting examples are the Conditional Value at Risk (CV aR) of
Rockafellar et al. (2006), The Dual Power Transform (DPT ) of Wang (2000), the

Wang Measure (Wang, 2000), the p−deviation given by ρ (y) = [E (|E (y)− y|p)]
1/p
,

or the downside p−semi-deviation given by ρ (y) = [E (|Max {E (y)− y, 0}|p)]
1/p
,

amongst many other risk functions.4

Assumption 1. Henceforth we will assume that ∆ρ is σ (L
q, Lp)−compact, (3)

holds and E () remains constant on ∆ρ. If we denote E (z) = Ẽ ∈ IR for every z ∈ ∆ρ
then we will also suppose that Ẽ ≥ 0 and

ρ (y) ≥ −ẼE (y) (4)

holds for every y ∈ Lp. �

Proposition 1. Under Assumption 1 the constant random variable z = Ẽ a.s. be-
longs to ∆ρ.

Proof. It immediately follows from (2) and (4). �

2Furthermore, if ρ is also coherent in the sense of Artzner et al. (1999) then

∆ρ ⊂ L
q
+ = {z ∈ L

q;µ (z ≥ 0) = 1} .

3Moreover, according to Theorem 2.2.20 in Zalinescu (2002), ρ is continuous if and only if ρ is
lower semi-continuous. The same equivalence holds if ρ is a Expectation Bounded Risk Measure.

4If ρ equals the Wang measure or the DPT (or other risk measures given by distorting functions)
then see Cherney (2006) for further details about ∆ρ.
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Denote by y ∈ Lp the total amount that the insurer will pay after a reinsurance
contract, i.e., y0 − y will denote the amount to be paid by the reinsurer. Then the
insurer will choose y by solving the optimization problem






Min ρ (kE (y)− y)
y ≤ y0
S − E (y) ≤ 0
y ≥ 0

(5)

where k ≥ 1 denotes the proportion of the Pure Premium that insurer and reinsurer
use in order to price.

3. O#��$�� ����
������: P��$�� ��� ���� #�	���$
 ��� 	#��$�����

�	�����	�


In general ρ will be non-differentiable and therefore so will be Problem (5). To
overcome this caveat we will follow the method proposed in Balbás et al. (2008). So,
bearing in mind (3), Problem (5) is equivalent to Problem






Min θ
θ + E ((kE (y)− y) z) ≥ 0, ∀z ∈ ∆ρ
y ≤ y0
S − E (y) ≤ 0
θ ∈ IR, y ≥ 0

(6)

in the sense that y solves (5) if and only if there exists θ ∈ IR such that (θ, y) solves
(6), in which case

θ = ρ (kE (y)− y)

holds. Since

E ((kE (y)− y) z) = kE (y) Ẽ − E (yz) = E
(
y
(
kẼ − z

))

(5) and (6) are equivalent to






Min θ

θ + E
(
y
(
kẼ − z

))
≥ 0, ∀z ∈ ∆ρ

y ≤ y0
S −E (y) ≤ 0
θ ∈ IR, y ≥ 0

(7)

Notice that (7) is more than differentiable because it is linear. Its first constraint is
valued on the Banach space C (∆ρ) of real-valued and continuous functions on the
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(weak∗) compact space ∆ρ, whereas the second one is valued on Lp. Since their
duals are M (∆ρ) and Lq, M (∆ρ) denoting the space of inner regular real valued
σ−additive measures on the Borel σ−algebra of ∆ρ (endowed with the weak∗ topol-
ogy), the Lagrangian function

L : IR×Lp ×M (∆ρ)× Lq × IR −→ IR

becomes

L (θ, y, ν, λ, τ ) =

θ
(
1−

∫
∆ρ

dν (z)
)
+
∫
∆ρ

E
[
yz − kẼy

]
dν (z) + E (yλ)− E (y0λ) + Sτ −E (y) τ .

Following Luenberger (1969) the element (ν, λ, τ) ∈M (∆ρ)×Lq× IR is dual feasible
if and only if it belongs to the non-negative coneM+ (∆ρ)× Lq+ × IR+ and

Inf {L (θ, y, ν, λ, τ ) : θ ∈ IR, y ∈ Lp+} > −∞,

in which case the infimum above equals the dual objective on (ν, λ, τ). Hence, the
dual problem of (7) becomes






Max Sτ −E (y0λ)∫
∆ρ

E
[
y
(
z + λ− kẼ − τ

)]
dν (z) ≥ 0, ∀y ∈ Lp+

ν ∈ P (∆ρ) , λ ∈ Lq+, τ ∈ IR+

(8)

P (∆ρ) denoting the set composed of those elements inM (∆ρ) that are probabilities.

P (∆ρ) is convex, and the Alaoglu‘s Theorem easily leads to the compactness
of P (∆ρ) when endowed with the σ (M (∆ρ) , C (∆ρ))−topology (Horvàth, 1966, or
Anderson and Nash, 1987). Besides, given z ∈ ∆ρ we will denote by δz ∈ P (∆ρ) the
usual Dirac delta that concentrates the mass on {z}, i.e., δz({z}) = 1 and δz(∆ρ \
{z}) = 0. It is known that the set of extreme points of P (∆ρ) is given by

ext (P (∆ρ)) = {δz; z ∈ ∆ρ} , (9)

though we will not have to draw on this result. The objective function in (8) does not
depend on the variable ν ∈ P (∆ρ), which, along with (9), suggest that the solution
of (8) could be achieved in {δz; z ∈ ∆ρ}. Let us show that this guesstimate is correct.

Lemma 2. (Mean Value Theorem). Let ν ∈ P (∆ρ). Then there exists zν ∈ ∆ρ such
that ∫

∆ρ

E (yz) dν (z) = E (yzν) (10)

holds for every y ∈ Lp.
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Proof. Consider the linear function

Lp � y −→ ϕ (y) =

∫

∆ρ

E (yz) dν (z) ∈ IR.

ϕ is clearly continuous because for every sequence (yn)
∞
n=1 converging to zero in Lp

the sequence of functions
Lq � z −→ E (ynz) ∈ IR

uniformly converges to zero on bounded sets of Lq, and, consequently,

(∫

∆ρ

E (ynz) dν (z)

)∞

n=1

converges to zero if ∆ρ is bounded. ∆ρ is bounded because it is σ (L
q, Lp)−compact.

Since ϕ is linear and continuous the Riesz Representation Theorem guarantees
the existence of zν ∈ Lq such that (10) holds. Thus, it only remains to show that
zν ∈ ∆ρ, i.e., according to (2), we must prove the inequality

−E (yzν) ≤ ρ (y) , ∀y ∈ Lp.

(10) points out that it is sufficient to see

−

∫

∆ρ

E (yz) dν (z) ≤ ρ (y) , ∀y ∈ Lp.

For every z ∈ ∆ρ one has that −E (yz) ≤ ρ (y) , ∀y ∈ Lp, and, therefore,

−

∫

∆ρ

E (yz) dν (z) ≤

∫

∆ρ

ρ (y) dν (z) = ρ (y) ,

for every y ∈ Lp. �

Theorem 3. If (ν, λ, τ) ∈ P (∆ρ)×Lq+× IR+ solves (8) then there exists z ∈ ∆ρ such
that (δz, λ, τ) solves (8).

Proof. Consider (ν, λ, τ) solving (8) and take zν ∈ ∆ρ satisfying (10). Then,
for every y ∈ Lp+ we have that

0 ≤

∫

∆ρ

E
[
y
(
z + λ− kẼ − τ

)]
dν (z) =

E (yzν) + E (yλ)− kẼE (y)− τE (y) .
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Thus

0 ≤

∫

∆ρ

E
[
y
(
z + λ− kẼ − τ

)]
dδzν (z) ,

holds for every y ∈ Lp+, which proves that (δzν , λ, τ) is (8)-feasible. Thus, the result
trivially follows because the objective values of (8) in (ν, λ, τ) and (δzν , λ, τ ) are
identical. �

Remark 1. The latter theorem leads to significant consequences. In particular, we
can consider the alternative and far simpler dual problem






Max Sτ − E (y0λ)

z + λ− kẼ − τ ≥ 0
z ∈ ∆ρ, λ ∈ Lq+, τ ∈ IR+

(11)

where z ∈ ∆ρ is playing the role of ν ∈ P (∆ρ). Indeed, notice that Theorem 3
guarantees that we only have to focus on the (8)-feasible solutions taking the form
(δz, λ, τ ) for some z ∈ ∆ρ, and for such a feasible solution the first constraint of (8)
is equivalent to the first constraint of (11). �

Bearing in mind the latter remark the Karush-Kuhn-Tucker (or complementary
slackness) conditions of (7) may be given by using (11) rather than (8). Then they
are 





θ + E
(
y
(
kẼ − z

))
= 0

λ (y0 − y) = 0
τ (E (y)− S) = 0

y
(
z + λ− kẼ − τ

)
= 0

θ ∈ IR, y ∈ Lp+, z ∈ ∆ρ, λ ∈ Lq+, τ ∈ IR+

(12)

and are sufficient optimality conditions to solve both (7) and (11). In general, they are
not necessary since we are dealing with infinite dimensional Banach spaces and the so
called “duality gap” between (7) and (11) might arise, though several qualifications
may be imposed so as to prevent this pathological situation (see Luenberger, 1969,
or Anderson and Nash, 1987). Besides, as usual in Optimization Theory, the dual
variable λ provides us with sensitivity of the optimal value θ with respect to the initial
risk yo, and τ gives the sensitivity of θ with respect to the withheld Pure Premium
S.

Assumption 2. There is no duality gap between (7) and (8), i.e., (12), along with
the restrictions of (7) and (11), provide necessary and sufficient optimality conditions
for both (7) and (11). �
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Let us end this section with alternative optimality conditions implied by (12) that
will often apply throughout the rest of the paper.

Theorem 4. (Variational Principle). Suppose that y ∈ Lp is (5)-feasible and satisfies
µ (y > 0) = 1. Then:

a) y solves (5) if and only if there exist τ ∈ IR+ and z∗ ∈ ∆ρ such that





E(yz∗) ≥ E (yz) , ∀z ∈ ∆ρ

z∗ ≤ kẼ + τ(
kẼ + τ − z∗

)
(y0 − y) = 0

τ (E (y)− S) = 0

(13)

In such a case θ = E
(
y
(
z∗ − kẼ

))
, y, z = z∗, λ = kẼ + τ − z∗, and τ solve both

(7) and (11) respectively.
b) If Ẽ = 0 and E (y) > S then y solves (5) if and only if 0 ≥ E (yz) for every

z ∈ ∆ρ. In such a case θ = 0, y, z = 0, λ = 0, and τ = 0 solve both (7) and (11)
respectively.

c) If ρ is a Deviation Measure and E (y) > S then y solves (5) if and only if y is
a constant (or zero variance) random variable.

Proof. a) Suppose that y solves (5), and take a primal solution (θ, y) and a
dual one (z∗, λ, τ ). The first constraint of (7) leads to

θ + E
(
y
(
kẼ − z

))
≥ 0

for every z ∈ ∆ρ, whereas the first constraint in (12) leads to

θ + E
(
y
(
kẼ − z∗

))
= 0.

Whence, the first condition in (13) becomes trivial. Besides, the fourth equation in
(12) gives

λ = kẼ + τ − z∗

and therefore λ ≥ 0 implies the second condition in (13). Moreover, the latter
expression and the second equation in (12) imply the third equation in (13), and the
last equation in (13) comes from the third equation in (12).

Conversely, if y is (5)-feasible and satisfies µ (y > 0) = 1 then it may be immedi-
ately verified that the proposed solution satisfies (12) along with the primal and the
dual constraints.

b) If Ẽ = 0 and E (y) > S then the last equation in (13) gives τ = 0 and the
second one gives z∗ ≤ 0. Since the expected value of z∗ must vanish (z∗ ∈ ∆ρ) we
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have that z∗ = 0.5 Thus the first condition of (13) trivially implies that 0 ≥ E (yz)
for every z ∈ ∆ρ.

Conversely, if 0 ≥ E (yz) for every z ∈ ∆ρ then it may be immediately verified that
the proposed solution satisfies (12) along with the primal and the dual constraints.

c) If ρ is a Deviation Measure and E (y) > S then Ẽ = 0, and Statement b) shows
that the optimal value of (5) is θ = 0 if y solves (5). Then ρ (kE (y)− y) = 0 implies
that kE (y)− y is constant and therefore so is y.

Conversely if y is constant then so is kE (y)− y and therefore ρ (kE (y)− y) = 0,
which implies that y solves (5) because ρ cannot attain negative values. �

Remark 2. Notice that Theorem 4c) points out that for every deviation ρ the so-
lution y of (5) will almost always satisfy E (y) = S. Indeed, E (y) > S would
provoke that y should be constant, and therefore it should equal its expectation.
Then y0 ≥ y = E (y) > S, and consequently the minimum Pure Premium to be
withheld should be less than a lower bound of the initial risk y0, which hardly occurs
in practice. �

Remark 3. Conditions (12) are necessary and sufficient and therefore they are a
quite useful tool. Nevertheless, in practical examples and applications it might be
difficult to find an explicit solution of the system generated by (12). Things become
much easier if we are able to compute the solution of (7) or (11) by an alternative
algorithm, since then (12) easily applies to solve the remaining problem. This is for
instance the way followed in Balbás and Romera (2007) or Balbás et al. (2008), where
the authors deal with infinite-dimensional linear programming in order to solve risk
minimization problems associated with usual financial topics. Following the ideas
of these authors we could develope an infinite-dimensional simplex-like algorithm so
as to solve (11) under appropriate assumptions (see also Anderson and Nash, 1987),
and then we could use (12) so as to solve (7). However, in this paper we will prefer
to draw on the Variational Principle provided by the condition E (yz∗) ≥ E (yz) of
Theorem 4. Indeed, the next two sections will show that it may be very useful in
both theoretical approaches and practical situations. In particular, when dealing with
practical applications it may yield an interesting relationship between the solution
y of (7) and the solution z∗ of (11), that may be found by solving the simple and
frequently linear problem {

Max E (yz)
z ∈ ∆ρ

(14)

Some illustrative examples will be studied in Section 5. �

5Recall that z∗ = 0 ∈ ∆ρ owing to Proposition 1.



O#��$�� ����
������ %��& '������ ��
( ������	�
 12

4. P��������� ����
������ �	������


This section will be devoted to verify whether the most important (or usual) rein-
surance contracts solve Systems (12) or (13). In particular, we will focus on the full
reinsurance (y = 0), the null reinsurance (y = y0) and quota-share and/or stop-loss
reinsurance contracts.

Proposition 5. Suppose that µ (y0 > 0) = 1. If Ẽ = 0 then y = 0 solves (5) (or (7))
if and only if S = 0. If Ẽ > 0 then y = 0 solves (5) if and only if S = 0 and k = 1.6

Proof. If y = 0 solves (5) then the primal constraint E (y) = 0 ≥ S and (1)
lead to S = 0. Moreover, Conditions (12) become θ = 0 and λ = 0. Therefore the
constraints of (11) lead to

z ≥ kẼ + τ .

Consequently, taking the expectation, Ẽ ≥ kẼ + τ , which implies

0 ≥ (1− k) Ẽ ≥ τ ≥ 0.

Thus all of them are equalities, and Ẽ > 0 leads to k = 1.
Conversely, if the proposed conditions hold then it is easy to see that θ = 0, y = 0,

λ = 0, z = Ẽ and τ = 0 satisfy System (12), and they are feasible due to Proposition
1. �

Proposition 6. Suppose that S = E (y0). Then y = y0 solves (5).

Proof. Every (5)-feasible solution must satisfy E (y) ≥ S = E (y0). Thus,
E (y0 − y) = 0 and y0 − y ≥ 0 imply y0 − y = 0, i.e., y0 is the unique (5)-feasible
random variable. �

Theorem 7. Suppose that S < E (y0) and µ (y0 > 0) = 1. Then:
a) y = y0 solves (5) if and only if there exists z∗ ∈ ∆ρ such that

E (y0z
∗) ≥ E (y0z) (15)

for every z ∈ ∆ρ and

µ
(
kẼ − z∗ ≥ 0

)
= 1. (16)

In such a case θ = E
(
y0

(
z∗ − kẼ

))
, y = y0, z = z∗, λ = kẼ − z∗ and τ = 0 solve

the primal and dual problem respectively.

6Recall that Ẽ = 0 holds for deviations and Ẽ = 1 holds for expectation bounded risk measures.
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b) If Ẽ = 0 then y = y0 is optimal if and only if E (y0z) ≤ 0 for every z ∈ ∆ρ. In
such a case θ = 0, y = y0, λ = 0, z = 0 and τ = 0 solve the primal and dual problem
respectively.

c) If ρ is a Deviation Measure then y = y0 is optimal if and only if y0 is constant
(or zero-variance).

Proof. a) and b). The given conditions immediately follow from (13) since
S < E (y0) leads to τ = 0. Conversely, if (15) and (16) hold then it is immediate to
verify that the proposed solution is feasible and satisfies (12).

c) It immediately follows from Theorem 4c. �

Next let us verify quota-share-like reinsurance contracts. Obviously, y ∈ Lp and
lying between 0 and y0 is said to be a quota-share reinsurance if there exists α ∈ (0, 1)
such that y = αy0.

7

Theorem 8. Suppose that µ (y0 > 0) = 1.
a) Suppose that Ẽ > 0. y = αy0 with α ∈ (0, 1) is optimal if and only if

α ≥
S

E (y0)
, k = 1 and E (y0z) ≤ ẼE (y0) for every z ∈ ∆ρ. In such a case θ = 0,

y = αy0, z = Ẽ, λ = 0 and τ = 0 solve the primal and the dual problem respectively.

b) Suppose that Ẽ = 0. y = αy0 with α ∈ (0, 1) is optimal if and only if α ≥
S

E (y0)
and E (y0z) ≤ 0 for every z ∈ ∆ρ. In such a case y = αy0, θ = 0, z = 0, λ = 0 and
τ = 0 solve the primal and the dual problem respectively.

c) If ρ is a Deviation Measure then y = αy0 with α ∈ (0, 1) is optimal if and only

if α ≥
S

E (y0)
and y0 is constant.

Proof. Suppose that y = αy0 with α ∈ (0, 1) is optimal. Then the third
condition of System (13) leads to

z∗ = kẼ + τ .

Computing the expectation in both sides one has Ẽ = kẼ + τ and τ = (1− k) Ẽ.
Since 1− k ≤ 0 and Ẽ ≥ 0 we have τ ≤ 0 and thus

τ = 0

because the opposite inequality is imposed in the statement of Theorem 4.

7The extreme cases α = 0 and α = 1 have been excluded because they were analyzed in the
discussion above.



O#��$�� ����
������ %��& '������ ��
( ������	�
 14

Now, z∗ = kẼ + τ gives
z∗ = kẼ, (17)

and the condition θ = E
(
y
(
kẼ − z∗

))
of Theorem 4 implies

θ = 0. (18)

a) Suppose that Ẽ > 0 and y = αy0 with α ∈ (0, 1) is optimal. Taking expectation

in (17) we have Ẽ = kẼ and therefore k = 1. α ≥
S

E (y0)
must hold owing to the

third constraint of (7), and (18), along with the first constraint of (13), imply that

αE (y0z) ≤ αẼE (y0)

must hold for every z ∈ ∆ρ because z
∗ = kẼ = Ẽ. Conversely, if the given conditions

hold, then it is easy to verify that the provided solution is composed of feasible
elements that satisfy (12).

b) Suppose that Ẽ = 0 and y = αy0 with α ∈ (0, 1) is optimal. Then the given
conditions may be proved by following a similar argument as in the proof above.
Furthermore, the converse implication becomes trivial once more.

c) Suppose that ρ is a Deviation measure and y = αy0 with α ∈ (0, 1) is opti-

mal. Then α ≥
S

E (y0)
follows from the third primal constraint, and (18) leads to

αρ (kE(y0)− y0) = 0, which implies that kE(y0)− y0 is constant, and thus so is y0.
The converse is obvious because every Deviation Measure vanishes on zero-variance
random variables and is positive for non-constant ones. �

Finally let us verify stop—loss-like reinsurance contracts. Obviously, y ∈ Lp and
lying between 0 and y0 is said to be a stop-loss reinsurance if there exists α > 0 such
that

y =

{
y0, y0 ≤ α
α otherwise

. (19)

Hereafter the random variable of (19) will be denoted by yα0 . Obviously, since the
null reinsurance has been already studied, without loss of generality we will assume
in the remainder of this section that µ (y0 > α) > 0.

Theorem 9. Suppose that µ (y0 > α) > 0, S < E (yα0 ) and µ (y0 > 0) = 1 hold.
Denote Ωα = {ω ∈ Ω; y0 (ω) > α}. Then:

a) yα0 solves (5) if and only if there exists z∗ ∈ ∆ρ such that

z∗ ≤ kẼ, (20)
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z∗ (ω) = kẼ, ω ∈ Ωα (21)

and
E (yα0 z

∗) ≥ E (yα0 z) (22)

for every z ∈ ∆ρ. In such a case θ = E (yα0 z
∗)− kẼE (yα0 ), y

α
0 , z

∗, λ = kẼ − z∗ and
τ = 0 solve both the primal and the dual problem respectively.

b) Suppose that Ẽ = 0. yα0 solves (5) if and only if

E (yα0 z) ≤ 0 (23)

for every z ∈ ∆ρ. In such a case θ = 0, yα0 , z = 0, λ = 0 and τ = 0 solve both the
primal and the dual problem.

c) Suppose that ρ is a Deviation Measure. Then yα0 solves (5) if and only if yα0 is
constant (zero-variance).

Proof. Suppose that yα0 solves (5). Then the last condition in (13) gives τ = 0
and (20) follows from the second constraint of (13). Furthermore, (21) immediately
follows from the third condition of (13) and (22) is obvious.

a) It only remains to prove the converse implication, which is trivial since one
only has to verify that the proposed solution satisfies (12).

b) According to (20) z∗ ≤ 0, which implies z∗ = 0 because E (z∗) = 0 (z∗ ∈ ∆ρ).
Hence, (23) follows from (22), and the converse is immediate since one only needs to
check the proposed solution in (12).

c) It is a trivial consequence of Theorem 4c. �

If we remove the assumption S < E (yα0 ) then things become a little bit more
complex.

Theorem 10. Suppose that µ (y0 > α) > 0, S = E (yα0 ) and µ (y0 > 0) = 1 hold.
Denote Ωα = {ω ∈ Ω; y0 (ω) > α}. Then, yα0 solves (5) if and only if there exist
z∗ ∈ ∆ρ and τ ∈ IR+ such that

z∗ ≤ kẼ + τ ,

z∗ (ω) = kẼ + τ , ω ∈ Ωα

and
E (yα0 z

∗) ≥ E (yα0 z)

for every z ∈ ∆ρ. In such a case θ = E (yα0 z
∗) − kẼE (yα0 ), y

α
0 , z

∗, λ = kẼ + τ − z∗

and τ solve both the primal and the dual problem respectively. �

We will not give any proof of this result because it is absolutely analogous to the
proof of the previous theorem.
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Remark 4. Despite Theorem 9 seems to be more exhaustive than Theorem 10, con-
dition S < E (yα0 ) is “more ambiguous” than S = E (yα0 ). Indeed there cannot be
two different values of α satisfying the equality because if α1 < α2, µ (y0 > α2) > 0
and E (yα10 ) = E (yα20 ) then E (yα20 − yα10 ) = 0 and yα20 − yα10 ≥ 0 imply yα20 − yα10 = 0.
Whence,

yα10 (ω) = α1 < α2 = yα20 (ω)

for ω ∈ Ωα2 implies µ (y0 > α2) = 0, against the assumptions.
Consequently, it is also very easy to verify the conditions of Theorem 10 in practice.

One just needs to compute the unique α such that E (yα0 ) = S and then check the
existence of z∗ in ∆ρ. �

Theorem 8 has clarified that quota-share contracts will hardly be optimal. How-
ever, the next section will point out that stop-loss contracts are very often optimal or
“almost optimal”, i.e., the conditions of Theorems 9 and 10 much more easily hold.
The main reason will be that (14) frequently generates a linear problem with a Bang
Bang solution (Luenberger, 1969), and this sort of solution will be closely related to
the stop-loss reinsurance.

5. P��������� ��
( ������	�


Until now all the previous results of the paper hold regardless of the risk function we
are using. In this section we will analyze some important examples of risk function. In
particular, we will focus on the Standard Deviation since, as said in the introduction,
it is very used in the literature, the Absolute Deviation, since it has better properties
with respect to the Second Order Stochastic Dominance if asymmetry and/or heavy
tails are involved (Ogryczak and Ruszczynski, 1999), and the Conditional Value at
Risk, since it is becoming a very well-known Coherent and Expectation Bounded Risk
Measure that also respects the Stochastic Dominance (Ogryczak and Ruszczynski,
2002).

In general, the p−deviation

σp : L
p −→ IR

is defined by

σp (y) = (E (|y −E (y)|p))
1

p = ‖y −E (y)‖p .

Since Lq is the dual space of Lpit is known that

σp (y) = Max
{
E ((y − E (y)) z) ; z ∈ Lq, ‖z‖q ≤ 1

}

= Max
{
E(yz)− E (y)E (z) ; z ∈ Lq, ‖z‖q ≤ 1

}

= Max
{
E (y (z − E (z))) ; z ∈ Lq, ‖z‖q ≤ 1

}
.
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Hence
∆ρ =

{
z − E (z) ; z ∈ Lq, ‖z‖q ≤ 1

}
. (24)

Moreover, in the particular case p = q = 2, by using the properties of the orthogonal
projection of Hilbert spaces it is easy to prove that

∆2 =
{
z; z ∈ L2, ‖z‖2 ≤ 1, E (z) = 0

}
(25)

(Rockafellar et al., 2006).8

Theorem 11. Suppose that p = 2, ρ = σ2 and µ (y0 > 0) = 1.
a) If µ (y0 ≥ S) = 1 then (5) is solved by every constant function y such that

S ≤ y ≤ y0. If so, the optimal value of (5) vanishes.9

b) If µ (y0 ≥ S) < 1 and α ∈ IR is such that E (yα0 ) = S then yα0 solves (5).10

Proof. a) is obvious so let us prove b). We will prove that the properties of
Theorem 4 are fulfilled. Take

τ =
α− S

σ2 (yα0 )
(26)

and

z∗ =
yα0 − S

σ2 (yα0 )
. (27)

First of all notice that σ2 (y
α
0 ) > 0 and therefore the definitions above are correct.

Indeed, if yα0 were constant then E (yα0 ) = S would imply yα0 = S, and consequently
y0 ≥ yα0 = S, contradicting the assumptions.

Secondly, τ ≥ 0, since α < S would imply yα0 ≤ α < S, contradicting E (yα0 ) = S.
Thirdly, z∗ ∈ ∆2. Indeed, according to (25) we must show that E (z∗) = 0 and
‖z∗‖22 ≤ 1 hold. The first equality trivially follows from E (yα0 ) = S, whereas the
inequality is also satisfied because

‖z∗‖22 =

∥∥∥∥
yα0 − S

σ2 (yα0 )

∥∥∥∥
2

2

=
‖yα0 − S‖22
σ2 (yα0 )

2 =
σ2 (y

α
0 )
2

σ2 (yα0 )
2 = 1. (28)

8Obviously
∆2 �

{
z; z ∈ L2, ‖z‖

2
≤ 1, E (z) = 0

}

because z = z − E (z) whenever E (z) = 0, and the opposite inclusion holds because for every z in
the unit ball of L2 we have that E (z) and z −E (z) are orthogonal, and therefore the Pithagorean
Theorem leads to

1 ≥ ‖z‖2
2
= ‖E (z)‖2

2
+ ‖z −E (z)‖2

2
≥ ‖z −E (z)‖2

2
.

9Notice that the assumed conditions imply that y is a stop-loss reinsurance.
10This result is closely related to that by Borch (1960).
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Next let us prove that E (yα0 z
∗) ≥ E (yα0 z) for every z ∈ ∆2. We will show that z∗

solves the variational problem

Max
∫
Ω
yα0 zdµ∫

Ω
zdµ = 0∫

Ω
z2dµ ≤ 1

Since this problem is obviously convex, it is sufficient to show that z∗ satisfies the
Karush-Kuhn-Tucker conditions (Luenberger, 1969), i.e., we must state the existence
of L1, L2 ∈ IR, L2 ≥ 0, such that L2

(
1− ‖z∗‖22

)
= 0 and

yα0 = L1 + 2L2z
∗ = L1 + 2L2

yα0 − S

σ2 (yα0 )
.

The first condition is obvious because (28) shows that ‖z∗‖22 = 1, and the second one

clearly holds for L1 = S and L2 =
1

2
σ2 (y

α
0 ).

It only remains to verify that z∗ ≤ τ and z∗ = τ if yα0 < y0 (i.e., if y
α
0 = α) but

both expressions trivially follow from (26) and (27). �

Remark 5. In the proof of the theorem above we have provided the values of τ and
z∗ without any previous computation, and then we have checked that z∗ solves the
variational problem (14). However, in practice the process will be different, that is,
we will have to solve (14) in order to establish the relationship between the primal
solution y and the dual one z∗. For this reason we will follow this second way in
order to study the Absolute Deviation and the Conditional Value at Risk, despite the
exposition will be a little bit more tedious. �

Remark 6. Let us consider now Problem (5) with ρ = σ1, and suppose that µ (y0 > 0) =
1. Then (24) obviously implies that

∆1 = {z − E (z) ; z ∈ L∞,−1 ≤ z ≤ 1} .

Then the Variational Principle of Theorem 4 and Remark 3 leads to the linear opti-
mization problem






Max E (y (z −E(z))) =
∫
Ω
yzdµ− E(y)

∫
Ω
zdµ

z ≤ 1
z ≥ −1
z ∈ L∞

It is easy to verify that the problem above satisfies the Slater Qualification (Lu-
enberger, 1969), so the Karush-Kuhn-Tucker conditions become necessary and suf-
ficient. Furthermore, the dual space of L∞ contains L1 and is composed of those
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finitely-additive measures on the Borel σ−algebra of Ω being µ−continuous and hav-
ing finite variation (Horvàth, 1966). Thus, the Karush-Kuhn-Tucker conditions lead
to the existence of two such a measures m1 ≥ 0 and m2 ≥ 0 such that






y = E (y) +m1 −m2∫
Ω
(1− z) dm1 = 0∫

Ω
(1 + z) dm2 = 0

(29)

The second and third conditions lead to z = 1 whenever m1 �= 0 and z = −1 whenever
m2 �= 0. Thus, there is a measurable partition Ω = A ∪B ∪ C such that






z = −1, m1 = 0, ω ∈ A
−1 ≤ z ≤ 1, m1 = m2 = 0, ω ∈ B
z = 1, m2 = 0, ω ∈ C

Consequently, the first equality in (29) gives
{

m2 = E (y)− y, ω ∈ A
m1 = y −E (y) ω ∈ C

and therefore mi ∈ L1, i = 1, 2, because they vanish out of the indicated sets.
Summarizing






z = −1, m1 = 0, y = E (y)−m2 ≤ E (y) , ω ∈ A
−1 < z < 1, m1 = m2 = 0, y = E (y) , ω ∈ B
z = 1, m2 = 0, y = E (y) +m1 ≥ E (y) , ω ∈ C

(30)

The remaining conditions in Theorem 4 impose the existence of τ ≥ 0 such that
{

z ≤ E (z) + τ
z = E (z) + τ , if y < y0

Therefore the maximum of z will be E (z) + τ .11 Since z ≤ 1 there are to cases to
consider:

Case 1. E (z) + τ < 1. In such a case C is void (or a null set) and (30) implies
that y ≤ E (y). Thus y = E (y) has to be constant. Then y0 ≥ y = E (y) ≥ S imply
that S has been chosen as a lower bound of the initial risk y0 and thus every feasible
and constant random variable y solves (5) because it makes σ1 vanish.

Case 2. E (z) + τ = 1. According to Theorem 4c we can also impose E (y) = S
since otherwise the solution of (5) would be constant and we would be in the scenario

11Suppose at the moment that y0 is not the solution of (5). According to Proposition 6 and
Theorem 7, this case only appears in the trivial cases S = E (y0) or S < E (y0) and y0 constant.
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of Case 1.Hence, bearing in mind (30), E (z) + τ = 1 and E (y) = S there must be a
measurable set C such that






C ⊂ {ω; y0 ≥ S}
y = y0, ω /∈ C
S ≤ y ≤ y0, ω ∈ C
E (y) = S

(31)

and these are the necessary and sufficient conditions so as to guarantee that y is
optimal, since the requirements of Theorem 4 are fulfilled by taking z∗ = z − E (z)
with z = χC − χΩ\C and τ = 1 − E (z), which is non negative because −1 ≤ z ≤ 1
and satisfies

z∗ = z − E (z) ≤ 1−E (z) = τ

with equality on C because z = 1.12

In order to summarize we will provide a formal statement reflecting the findings
above. �

Theorem 12. Suppose that p = 1, ρ = σ1 and µ (y0 > 0) = 1.
a) If µ (y0 ≥ S) = 1 then (5) is solved by every constant function y such that

S ≤ y ≤ y0. If so, the optimal value of (5) vanishes.
b) If µ (y0 ≥ S) < 1 and y is (5)-feasible then y solves (5) if and only if there exists

a measurable set C such that (31) holds.
c) If µ (y0 ≥ S) < 1 and α ∈ IR is such that E (yα0 ) = S then yα0 solves (5).

Proof. a) is obvious and b) may be proved by checking that the elements z∗

and τ in the remark above make the conditions of Theorem 4 hold. To prove c) one
must show that the conditions of b) are respected by yα0 . It is sufficient to see that

{ω; y0 ≥ α} ⊂ {ω; y0 ≥ S}

which is trivial if one shows that α ≥ S. But α < S would imply the contradiction
yα0 ≤ α < S = E (yα0 ). �

Remark 7. Suppose now that ρ = CV aRµ0 , µ0 ∈ (0, 1) being the level of confi-
dence.13 In such a case Rockafellar et al. (2006) has stated that

∆ρ =

{
z ∈ L∞; 0 ≤ z ≤

1

µ0
, E (z) = 1

}
. (32)

12As usual, χC and χΩ\C are the characteristic functions of C and its complementary.
13In order to simplify the exposition we will assume that k < 1/µ0 and that the distribution of

y0 is continuous. The rest of cases may be also analized but the exposition is much more tedious.
Furthermore both restrictions are quite natural. In particular, regarding the first one, k will never
be in practice higher than 2 or 3, and µ0 will never be more than 5%, i.e., 1/µ0 will be 20 at least.
In addition, Proposition 6 enables us to suppose that S < E (y0) holds.
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Consequently, if µ (y > 0) = 1 and we would like to check whether y solves (5) then
Theorem 4 and Remark 3 suggest to solve the linear optimization problem






Max E (yz) =
∫
Ω
yzdµ

z ≤ 1/µ0
z ≥ 0∫
Ω
zdµ = 1

z ∈ L∞

.

Once again it is easy to verify the fulfillment of the Slater Qualification, and the
Karush-Kuhn-Tucker conditions become






y = L+m1 −m2∫
Ω
(1/µ0 − z) dm1 = 0∫

Ω
zdm2 = 0

L ∈ IR, m1 ≥ 0, m1 ≥ 0

.

As in the previous case we can find a partition Ω = A ∪B ∪ C such that





z = 0, m1 = 0, y = L−m2 ≤ L, ω ∈ A
0 < z < 1/µ0, m1 = m2 = 0, y = L, ω ∈ B
z = 1/µ0, m2 = 0, y = L+m1 ≥ L, ω ∈ C

(33)

and m1 and m2 become random variables of L1. Besides, Theorem 4 implies the
existence of τ ≥ 0 such that z ≤ k+τ , z = k+τ whenever y < y0, and τ (E (y)− S) =
0. Let us consider three possible scenarios:

Case 1, k+ τ = 1/µ0. Then τ = 1/µ0−k > 0 and therefore E (y) = S. Moreover
µ (B) = 0 since otherwise z < k + τ on B leads to y0 = y = L on B and y0 cannot
be constant with positive probability because its distribution is continuous. Thus,
let us remove B from (33). E (z) = 1 implies that µ (C) = µ0, so the necessary
and sufficient conditions guaranteeing that y solves (5) will be: E (y) = S and there
exists a measurable set C such that µ (C) = µ0, y = y0 out of C, and y0 (ωC) ≥ y0 (ω)
whenever ωC ∈ C and ω /∈ C. In particular, if α is such that E (yα0 ) = S then yα0
satisfies the conditions of this case if and only if µ (y0 > α) ≤ µ0, since in such a case
we can extend {y0 > α} to a set C = {y0 > α′} (α′ ≤ α) such that µ (y0 > α) = µ0
(recall that y0 has continuous distribution).

Case 2, k + τ < 1/µ0. In this second scenario C has null probability, so let us
remove it in (33). Then (33) clearly points out that y = yL0 , since z = 0 < k+ τ on A
leads to y = yL0 on A. Notice that three more requirements must be satisfied. Firstly,
E
(
yL0
)
≥ S, secondly, E (z) = 1 implies µ (B) (k + τ ) ≥ 1, and thus

1/µ (B) ≤ k + τ < 1/µ0
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which also leads to µ0 < µ (B). Furthermore z must be constant (and equal k + τ)
on B, because otherwise y0 = yL0 = L on a subset of B with positive probability, and
being the distribution of y0 continuous we have µ (y0 = L) = 0. Then, µ (B) (k + τ ) =
1 implies 0 ≤ τ = 1/µ (B)−k, and 1/µ (B) ≥ k must hold.Thirdly, τ

(
E
(
yL0
)
− S

)
=

0 provokes E
(
yL0
)
= S or 1/µ (B) = k.

Case 3, k + τ > 1/µ0. Then (33) shows that z = k + τ never holds, and then
y = y0. On the other hand τ > 1/µ0−k > 0 implies S = E (y) = E (y0), contradicting
the assumptions. �

Theorem 13. Suppose that S < E (y0), the distribution y0 of is continuous, p = 1,
ρ = CV aRµ0 with 0 < µ0 < 1, 1/µ0 > k and y is a feasible solution such that
µ (y > 0) = 1. Then, y solves (5) if and only if at least one of the following assertions
hold:

a) E (y) = S and there exists a measurable set C such that µ (C) = µ0, y = y0
out of C, and

y0 (ωC) ≥ y (ωC) ≥ y (ω) = y0 (ω)

whenever ωC ∈ C and ω /∈ C. In such a case the optimal value of (5) is E (y (z − k))
where z = χC − χΩ\C.

b) y = yα0 and α is such that E (yα0 ) = S and µ (y0 > α) ≤ µ0. In such a case the
optimal value of (5) is E (y (z − k)) where z = χC − χΩ\C, C being a set of the form
C = {ω; y0 > α′} for some α′ ≤ a and such that µ (C) = µ0.

c) y = yα0 , E (yα0 ) = S,
1

µ (y0 > α)
≥ k and µ0 < µ (y0 > α). If so the optimal

value of (5) is E (y (z − k)) where z =
1

µ (y0 > α)
χµ(y0>α).

d) y = yα0 , E (yα0 ) > S,
1

µ (y0 > α)
= k and µ0 < µ (y0 > α). If so the optimal

value of (5) is E (y (z − k)) where z =
1

µ (y0 > α)
χµ(y0>α).

Proof. It follows from the previous remark and the equality θ = E
(
y
(
z∗ − kẼ

))

of Theorem 4. �

6. C	����
�	�


The Optimal Reinsurance Problem is a classical topic in Actuarial Theory and has
been studied under different assumptions and by using different criteria to compute
the insurer risk level. Besides, General Risk Functions are becoming very important
in Finance and Insurance, and many classical problems have been revisited by taking
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into account this recent approach. This article has shown that the Optimal Rein-
surance Problem may be analyzed by drawing on General Risk Functions such as
Deviation Measures, Expectation Bounded Measures of Risk or Coherent Measures
of Risk, among others. A unified approach has been presented, in the sense that
the findings are general enough and do not depend on the concrete Risk Function to
be used. Necessary and sufficient Optimality Conditions have been provided. These
conditions have been used so as to study the most important types of reinsurance
in practice, pointing out that quota-share-like reinsurance contracts hardly can be
optimal. Furthermore, three important concrete risk measures have been analyzed in
detail, with special focus on the Conditional Value at Risk since this Coherent and
Expectation Bounded Risk Measure is becoming more and more used in Finance and
Insurance due to its interesting properties. �
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Function for Lévy Risk Processes, November 2005

85. Ze–Chun Hu, Zhi–Ming Ma and Wei Sun, Extensions of Lévy–Khintchine
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