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1 Introduction and Background

Let {Xi, i ≥ 1} be a sequence of independent and identically distributed random
variables with common distribution function F (x) and the density f(x) supported on
R+. Then a smooth estimator of the density function f(x) is given by

f̃n(x; λn,D) = λn

N∑
j=0

pj(λnx)wj(λn,D), (1.1)

where λn is a constant which controls the smoothness of the estimator, wj(., .), j =
1, ... denote the weights depending on the data D and the constant λn (see Gowronski
and Stadm”uler (1980, 1981)); specifically N = λn max(X1, ..., Xn),
wj(lambda, D) = Fn((j + 1)/λ) − Fn(j/λ), Fn is the empirical distribution function
based on the data D. These estimators were independently proposed by Chaubey
and Sen (1996), though the weights were truncated. The important property of the
sequence {λn}∞n=1 is to be chosen such that λn →∞ and n−1λn → 0 as n →∞.

A convenient stochastic choice of λn was proposed by Chaubey and Sen (1996) as:

λn(1) =
n

max(X1, ..., Xn),

1Corresponding author: E-mail: chaubey@alcor.concordia.ca



as it satisfies the desired properties mentioned before if E(X) < ∞. Chaubey and Sen
(1998) noticed that for the compact support this choice will not satisfy the property
that n−1λn → 0 as n → infty. To cover these cases also they proposed the choice
of λn(2) = n(log log rn)−1/Xn−rn+1:n where rn = o(log log n). This choice satisfies the
properties as mentioned before. We also find in the above papers that a deterministic
choice

λn(3) = [n2/5] + 1

may be recommended as in Gowronski and Stadtmüller (1981) due to the strong con-
vergence of the density under this condition. These recommendations are based on
the asymptotic theory, however, in finite sample case they may not be very satisfac-
tory. The choice λn(1) and λn(2) may turn out to be very large so that they create
problems in computation. The third choice may be a good guide for a first choice,
but one would like to assert some ’optimality’ to this constant. It is purpose of this
note to investigate some cross validation methods for data adaptive choice of λn. Note
that it is explicit in Gawronski and Stadtmüller (1981) that λn is an integer, but this
is not necessary. We will investigate two choices of cross validation methods, one is
based on the likelihood and the other is based on mean integrated squared error. The
latter method is a popular one in the literature on kernel smoothing and one could
expect this to be a preferred method here also. However, we have found through
extensive simulations that likelihood based cross validation is numerically more con-
venient. Section 2 describes these methods in detail and the next section presents
the results of extensive simulations. Comments on computational aspects are also
detailed there. Section 4 gives conclusions of the study.

2 Likelihood and Integrated Squared Error Cross

Validation

2.1 Likelihood Based Cross Validation

Bowman (1981) shows that minimizing the Kullback-Liebler divergence is equivalent
to the minimization of

CVKL(λn) = − log
n∏

i=1

f̃n(x;Di) = −
n∑

i=1

log(f̃n(x;Di)),

where Di denotes data with Xi removed from D. The solution of the above minimiza-
tion problem will be denoted by λnKL. When the whole sample is used in constructing
the discrete density estimator, we will simply denote the density by f̃n(x).
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2.2 Integrated Square Error Cross Validation

According to this criterion we determine λn that minimizes the criterion related to
the integrated squared error,

CVISE(λn) =

∫
f̃ 2

n(x; λ2
n, (D))dx− 2

1

n

n∑
i=1

f̃n−1(Xi; λn,Di).

The first term can be explicitly obtained and the result is shown below:

∫ ∞

0

f̃n(x)2 =
λn

2

N∑
j=0

N∑

k=0

(j + k)!

j!k!

(
1

2

)j+k

wj(λn,D)wk(λn,D).

The solution to the above minimization problem is denoted by λnISE.

2.3 Hellinger Distance

The Hellinger distance between two densities f and g is given by

H(f, g) =

∫ (√
f(x)−

√
g(x)

)2

dx.

This measure is appropriate as a benchmark to establish the closeness of the estimated
density to the true density in finite samples, since this is a bounded measure unlike
the measures in the above subsections. One notices that since

∫ √
f(x)g(x)dx ≤

(1/2)(
∫

f(x)dx +
∫

g(x)dx) = 1/2,

0 ≤ H(f, g) ≤ 2.

A value closer to 0 signifies a closer resemblance of f and g. We will use H(f̃n, f) to
compare the values of different choices of λn for different simulated samples from f
in the next section. The optimum value here will be denoted by λnH . We conjecture
that as n →∞ different choices of λn are equivalent.

3 Simulation Studies

3.1 Some Comments on Computations

Here we simulate samples from the standard exponential distribution and Lognormal
distribution for sample sizes n = 10, 20, 30,
40, 50, 100, 1000. For each sample we obtain the optimum choice of λn by KL and ISE
cross-validation methods. To judge the closeness of the estimated density with the
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true density we have listed the Hellinger distances H(f̃n, f) for each choice of λn. The
optimum solution may be obtained using any optimizing subroutines, however, care
must be taken because the function CV (λn), in general is not a very smooth function
due to the discrete nature of the weights wj(λ,D).

We have found that the R- subroutine nlm may not provide the correct solution,
specially if the starting point is far away from the global solution. For example,
Figure 1 below gives histogram of a sample from Lognormal(0,1) distribution with
max(x) = 9.102234. The nlm subroutine gives 3.287119 and 6.554863 for the minima
for KL and ISE cross validation respectively. The code returned is 3 for the KL
criterion and 2 for the ISE criteria. These codes imply that the result is “probably
the solution” and therefore we must confirm these values. The program is based on
a gradient method and when the gradient tolerance is reached ( or other criteria is
reached) the solution is reported. Therefore, many times local minima or reported.

The default values were used, however, changing the gradient tolerance to lower
label 1e-16 did not produce different results. To confirm the solution, therefore we
decide to plot the criterion function in the range [1, 20]. These plots suggest that
the correct minima for the first criterion is in the interval [2, 5] and for the second
criterion it is inside the interval [2, 8]. Hence, the reported values from the routine
nlm seem to be correct solution. So we give the starting value 2, instead of 1. Now
the reported solution is 2.002482 in both the cases. This looks reasonable in the first
case but not in the second case.

Therefore, we must examine the function CV (λ) in the neighborhood of the so-
lution. So we decide to use the routine optimise which allows to input an interval
for the solution. An interval of (2,5) gives the solution 2.70999 for the KL criterion
and that in the interval (2,8) gives a solution of 4.294595. The solution in the first
case is not for from that produced by the nlm routine but that in the second case
is quite different. Giving a wider interval of (1,20), the solutions are respectively
given by 2.629449 and 5.215846 and seem reasonable by looking at the graph. This
procedure picks up the minima as 13.94625 H(f̃n, f) where as nlm routine gives a
local minima of 6.551021 for a starting value of 1. The value of n/max(x1, x2, ..., xn)
for this sample is given by 8.191776. The Hellinger distances of the estimated den-
sities using Chaubey-Sen, KL, ISE with the true lognormal density are respectively
given by 0.02909614, 0.03221081 and 0.02638340 which are close to true distance of
0.02316986 if we new the true density.

It may be concluded that as long as the value of λn is in the close neighborhood
of the minima, the estimated density is not very different from the optimum choice.
Corresponding four densities are plotted in Figure 2 and there is almost no difference
in them qualitatively. In this particular data the plot obtained using the ISE criteria
may be preferred over the others as it comes closer to the one obtained under the
true minimum Hellinger distance but it is not as rough.

4
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Figure 1: Histogram of a Lognormal Sample, Sample Size = 100
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Plot of $CV(lambda)$ for KL Criterion
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Plot of $CV(lambda)$ for ISE Criterion
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Plot of $CV(lambda)$ for Hellinger Distance Criterion
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Figure 2: CV(λ) Plots for a Lognormal Sample, Sample Size = 100
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Smooth Density Plot
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Smooth Density Plot

Sample Size =  100 , lambda =  2.6294
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Smooth Density Plot

Sample Size =  100 , lambda =  5.2158
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Smooth Density Plot
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Figure 3: Smooth Density Plot for a Lognormal Sample, Sample Size = 100

7



3.2 Simulation for Some Standard Distributions

We have simulated from the following densities:

(1). Exponential Distribution

f(x) = exp(−x)I(x > 0)

(2). Lognormal Distribution

f(x) =
1

x
√

2π) exp{−1
2
(log x)2

I(x > 0)

(3). Gamma(α) Distribution

f(x) =
1

Γ(α)
exp(−x)xα−1I(x > 0)

(4). Weibull(α) Distribution

f(x) = αxα−1 exp(−xα)I(x > 0)

(5). Mixtures of two Exponential Distributions

f(x) = [π
1

θ1

exp(−x/θ1) + (1− π)
1

θ1

exp(−x/θ1)]I(x > 0),

where we choose θ1 ≥ θ2 and π 6= 0.5. In the simulations, I have fixed θ1 = 1.
Note that we have generally not incorporated the scales in these distributions,
because of the following invariance property. Denote by f̃nX(, lambdan) as the
smooth density based on X data using parameter λn. Suppose that X goes
through a scale transformation Y = X/c where c is a positive constant. Then
it can be easily seen that

f̃nY (y; ?) = cf̃nX(cy; λn)

= cλn

N∑
j=0

pj(λncy)wj(λn,D)

= cλn

N∑
j=0

pj(λncy)[Gn(
j + 1

cλn

)−Gn(
j

cλn

)]

= f̃nY (y; λ∗n),

where λ∗n = cλn, here Gn denotes the edf of the transformed data X1/c, ..., Xn/c.
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Figure 4: Box Plot for λn for 100 Exponential Samples 1: For Chaubey-Sen Choice,
2: KL Cross-Validation, 3: ISE Cross-Validations 4: Optimum Hellinger Distance
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Figure 5: Box Plot for λn for 100 Lognormal Samples 1: For Chaubey-Sen Choice, 2:
KL Cross-Validation, 3: ISE Cross-Validations 4: Optimum Hellinger Distance

10



1 2 3 4

1
3

5

Sample Size =  10

1 2 3 4

1
3

5

Sample Size =  20

1 2 3 4

2
4

6
8

Sample Size =  30

1 2 3 4

2
6

10

Sample Size =  40

1 2 3 4

2
6

10

Sample Size =  50

1 2 3 4

5
15

Sample Size =  100

Figure 6: Box Plot for λn for 100 Gamma Samples, α = 2, 1: For Chaubey-Sen
Choice, 2: KL Cross-Validation, 3: ISE Cross-Validations 4: Optimum Hellinger
Distance
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Figure 7: Box Plot for λn for 100 Weibull Samples, α = 2, 1: For Chaubey-Sen Choice,
2: KL Cross-Validation, 3: ISE Cross-Validations 4: Optimum Hellinger Distance
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Figure 8: Box Plot for λn for 100 Exponential Mixture Samples, θ1 = 2, θ2 = 1, Π = .4,
1: For Chaubey-Sen Choice, 2: KL Cross-Validation, 3: ISE Cross-Validations 4:
Optimum Hellinger Distance
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Figure 9: Box Plot for λn for 100 Exponential Mixture Samples, θ1 = 10, θ2 = 1, Π =
.2, 1: For Chaubey-Sen Choice, 2: KL Cross-Validation, 3: ISE Cross-Validations 4:
Optimum Hellinger Distance
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4 Conclusion

Denote by λ1O the value which minimizes the Kullback-Liebler divergence

KL(λn) = E
∫

log
f(x)

f̃n(x)
dF (x),

λ2O the minimizer of

MISE(λn) = E
∫

(f̃n(x)− f(x))2dx

and λ3O the minimizer of the expected Hellinger distance,

h(λn) = E
∫

(

√
f̃n(x)−

√
f(x))2dx.

We have suppressed the index n, in λiO to differentiate it from the stochastic data
dependent choice λin.

It is seen that

1. Chaubey-Sen choice usually produces large values of the smoothing parame-
ters, especially, for large samples. Because of the invariance property of the
estimator, choice of the scale of the data does not affect the optimum value.

2. Chaubey-Sen choice is much more variable even in the cases on an average it is
close to the true optimum.

3. The two cross-validation criteria generally produce similar results, especially for
larger samples and they converge to the true optimum under the known density.

4. We conjecture that suppose λiO denotes the true value of λn which minimizes
criterion i, i = 1, 2, 3, and λin is the minima based on the data, then

(i) lim
n→∞

λin

λiO

= 1 a.s.

(ii) lim
n→∞

λ1O

λHO

= lim
n→∞

λ2O

λHO

= 1 a.s.,

where λHO is the true minimizer of the expected Hellinger distance between f̃n

and f .
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