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Abstract

The paper deals with optimal portfolio choice problems when risk levels are given

by coherent risk measures, expectation bounded risk measures or general deviations.

Both static and dynamic pricing models may be involved.

Unbounded problems are characterized by new notions such as compatibility and

strong compatibility between pricing rules and risk measures. Surprisingly, it is

pointed out that the lack of bounded optimal risk and/or return levels arises in prac-

tice for very important pricing models (for instance, the Black and Scholes model)

and risk measures (V aR, CV aR, absolute deviation and downside semi-deviation,

etc.).

Bounded problems will present a Market Price of Risk and generate a pair of

benchmarks. From these benchmarks we will introduce APT and CAPM like analy-

ses, in the sense that the level of correlation between every available security and
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some economic factors will expalin the security expected return. On the contray,

the risk level non correlated with these factors will have no influence on any return,

despite we are dealing with very general risk functions that are beyond the standard

deviation.

Key words. Risk Measure, Compatibility between Prices and Risks, Efficient

Portfolio, APT and CAPM like models.

J.E.L. Classification. G11, G13.
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1 Introduction

General risk functions are becoming very important in finance and insurance. Since Artzner

et al. (1999) introduced the axioms and properties of the “CoherentMeasures of Risk” many

authors have extended the discussion. The recent development of new markets (insurance

or weather linked derivatives, commodity derivatives, energy/electricity markets, etc.) and

products (inflation-linked bonds, equity indexes annuities or unit-links, hedge funds, etc.),

the necessity of managing new types of risk (credit risk, operational risk, etc.) and the

(often legal) obligation of providing initial capital requirements have made it necessary

to overcome the variance as the most used risk measure and to introduce more general

risk functions. It has been proved that the variance is not compatible with the Second

Order Stochastic Dominance if asymmetries and heavy tails are involved (Ogryczak and.

Ruszczynski, 1999).

Hence, it is not surprising that the recent literature presents many interesting contributions

focusing on new methods for measuring risk levels. Among others, Föllmer and Schied

(2002) have defined the Convex Risk Measures, Goovaerts et al. (2004) have introduced the

Consistent Risk Measures, Rockafellar et al. (2006a) have defined the General Deviations

and the Expectation Bounded Risk Measures, and Brown and Sim (2009) have introduced

the Satisfying Measures.

Many classical actuarial and financial problems have been revisited by using new risk func-

tions. For instance, pricing and hedging issues in incomplete markets (Föllmer and Schied,

2002, Nakano, 2004, Staum, 2004, Balbás et al., 2009a, etc.), as well as equity linked annu-
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ities hedging issues (Barbarin and Devolder, 2005), optimal reinsurance problems (Balbás

et al., 2009b), and other practical topics.

With regard to portfolio choice and asset allocation problems, among others, Alexander

et al. (2006) compare the minimization of the Value at Risk (V aR) and the Conditional

Value at Risk (CV aR) for a portfolio of derivatives (such a portfolio is obviously composed

of asymmetric securities and therefore the standard deviation is not appropriate), Calafiore

(2007) studies “robust” efficient portfolios in discrete probability spaces if the risk measure

is the absolute deviation, Schied (2007) deals with optimal investment with convex risk

measures, and Miller and Ruszczynski (2008) analyze efficient portfolios with coherent risk

measures. Other authors have also dealt with generalizations of the Sharpe ratio, the

introduction of benchmarks in the line of the Market Portfolio of the classical Capital

Asset Pricing Model (CAPM), and the extension of formulas relating expected returns to

some kind of generalized betas, also in the line of the CAPM . For instance, Stoyanov et

al. (2007) have introduced new ratios related to many risk measures such as CV aR, and

leading to various benchmark portfolios. Similarly, Rockafellar et al. (2006b) and (2006c)

have analyzed portfolio choice problems when risk levels are given by deviation measures,

have introduced benchmarks, and have defined new betas related to the deviation they are

using that preserves the usual relationship between beta and expected return. Rockafellar

et al. (2007) have also shown the possible existence of equilibrium if agents deal with

general deviations.

The present paper considers a general measure of risk ρ. Both expectation bounded risk

measures and deviations are included in the analysis, as well as coherent risk measures.

Then we present a classical risk/return mathematical programming problem whose solu-

tions will be the efficient portfolios. An important novelty is that this portfolio choice

problem involves both ρ and the market pricing rule denoted by Π. From a theoretical

point of view, considering Π seems to present some advantages with respect to the usual

analysis focusing on the distributions of the available assets’ returns. Indeed, Π will be

characterized by the Stochastic Discount Factor (SDF ) zπ of the economy (Chamberlain

and Rothschild, 1983, or Duffie, 1988) which will permit us to study many properties by

connecting the SDF zπ of Π and the sub-gradient ∆ρ of ρ.

The paper’s outline is as follows. Section 2 will present the notations and the general
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framework we are going to deal with. Section 3 will be devoted to study the properties

of the efficient portfolios. The section is divided into three subsections. In the first one

the general portfolio choice problem is discussed, and necessary and sufficient optimality

conditions are provided (Theorem 3). This seems to be one of the first times that this kind

of conditions are given for maybe infinite-dimensional portfolio choice problems. As said

above, we use pricing rules rather than return distributions, which allows us to consider

dynamic pricing models (the Black and Scholes model, for instance) leading to infinite-

dimensional optimization problems.

Theorem 3 is used in the second subsection of Section 3 so as to present many cases leading

to meaningless economic properties. So, though the notion of compatibility between pricing

rules and risk measures has been defined in Balbás and Balbás (2009), this paper deals with

its implications in portfolio choice. Theorem 4 points out that risk levels may tend to −∞

while expected returns simultaneously tend to ∞ if the lack of compatibility applies. It

is also pointed out that many important risk measures (V aR, CV aR, weighted CV aR or

WCV aR, Dual Power Transform or DPT , etc.) are not compatible with very important

pricing models (Black and Scholes, Heston, etc.). All of these cases lead to unbounded risk

and returns.

We will also introduce the new notion of strong compatibility between a pricing rule and

a risk measure (Definition 2). Once again the lack of strong compatibility makes the

expected return be unbounded, although the risk level remains bounded in this case. This

pathological situation applies for very important compatible risk measures and deviations

(the measure of Wang, the Compatible Conditional Value at Risk or CCV aR, the absolute

deviation, the absolute down-side semi-deviation, etc.) along with important pricing models

(Black and Scholes, Heston, etc.). Theorem 6 and its remarks clarify this finding, that

may be very interesting to managers and traders. Indeed, many risk measures are used

in practice so as to compute capital requirements, so an unbounded optimal risk/return

problem may provide practitioners with practical tools to reach significant falls in the risk

levels and the capital requirements, that are sometimes also understood as opportunity

costs. Finally, there are two additional remarkable findings of this subsection. Firstly, the

new deviation measure Ñ is introduced so as to overcome the incompatibility of the CV aR

and the WCV aR with respect to the Black and Scholes model. Secondly, we will show

that the standard deviation is strongly compatible with every pricing rule.

4



The third subsection of the third section is devoted to those situations presenting strong

compatibility. In such a case we will introduce the benchmark and the Capital Market Line

(CML) for a general couple (Π, ρ), as well as the Market Price of Risk.

The fourth section of the paper will deal with extensions of the classical Arbitrage Pricing

Theory (APT ) and CAPM . With respect to the important contributions of Rockafellar

et al. (2006b) our approach seems to present four major novelties. First, it also applies

for expectation bounded or coherent risk measures. Second, it also deals with the APT

model. Third, it clarifies that this type of analysis only makes sense in presence of strong

compatibility. An fourth, our betas are essentially different of those of Rockafellar et al.

(2006b), and they are similar to those of the classical CAPM and APT (that uses the

standard deviation). We do not use the risk/deviation measure ρ so as to define the betas.

On the contrary, they are given by the covariance between the returns of the analyzed

security and the factors explaining the market (APT ) or the benchmark generating the

CML (CAPM). This fact seems to reflect an advantage since one can clearly see that the

betas and the systematic risk are indicating correlation with the factors/market, while the

specific risk and the specific noise have null correlation with the factors/market, and there-

fore cannot be explained by them. In this sense, the betas are reflecting the information

about the analyzed security that is given by the factors/market, and the approach becomes

quite parallel to that of the classical APT or CAMP . This could be another advantage

provided by the use of pricing rules and the SDF , a major concept in Financial Economics.

Summarizing, there seems to be several contributions in this paper. So, we provide general

optimality conditions in a portfolio choice problem that may involve static and dynamic

pricing models. Second, we introduce the new notion of strong compatibility between

prices and risks and study the effect of both the lack of compatibility and the lack of

strong compatibility. It is pointed out that the lack of (strong) compatibility applies in

very important models of Financial Economics. Third, models with a market price of risk

are also characterized and analyzed, and they also may involve dynamic pricing models.

Finally, APT and CAPM like developments are presented for general risk measures, and

they do not modify the classical definitions of the betas. On the contrary, systematic risks

will depend on the correlations with the factors/market whereas idiosyncratic risks and

noises will be non correlated with them.
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Section 5 points out the most important conclusions of the paper.

2 Preliminaries and notations

Consider the probability space (Ω,F , µ) composed of the set of “states of the world” Ω,

the σ−algebra F and the probability measure µ. If p ∈ [1,∞), Lp will denote the space

of IR−valued random variables y on Ω such that IE (|y|p) <∞, IE () representing the math-

ematical expectation. If q ∈ (1,∞] is its conjugate value (i.e., 1/p + 1/q = 1) then the

Riesz Representation Theorem (Horvàth, 1966) guarantees that Lq is the dual space of Lp,

where L∞ is composed of the essentially bounded random variables. A special important

case arises for p = q = 2.

Consider a time interval [0, T ], a subset T ⊂ [0, T ] of trading dates containing 0 and T ,

and a filtration (Ft)t∈T providing the arrival of information and such that F0 = {∅,Ω} and

FT = F . We will denote by Y ⊂ L2 a closed subspace composed of reachable pay-offs, i.e.,

if y ∈ Y there exists an adapted to the filtration (Ft)t∈T price process of a self-financing

portfolio (St)t∈T , such that ST = y, a.s. Then, if Π (y) = S0, following usual conventions

we will suppose that the pricing rule

Π : Y −→ IR

providing us with the price Π (y) of every y ∈ Y is linear and continuous.1 As usual, the

market will be said to be complete if Y = L2.

Assume the existence of a riskless asset. Denote by rf ≥ 0 the risk-free rate. The equality

Π (k) = ke−rfT (1)

must hold for every k ∈ IR.

Being Y a Hilbert space the Riesz Representation Theorem implies the existence of a unique

zπ ∈ Y such that

Π(y) = e−rfT IE (yzπ) (2)

1The absence of arbitrage implies that S0 must remain the same if there are more than one self-financing

portfolio whose final value equals y ∈ Y .
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for every y ∈ Y . zπ is usually called “Stochastic Discount Factor” (SDF ), and it is closely

related to the Market Portfolio of the CAPM (Duffie, 1988).

Expression (1) implies that

ke−rfT = Π(k) = e−rfTkIE (zπ) ,

which leads to

IE (zπ) = 1. (3)

Let p ∈ [1, 2] and

ρ : Lp −→ IR

be the general risk function that a trader uses in order to control the risk level of his final

wealth at T . Denote by

∆ρ = {z ∈ Lq;−IE (yz) ≤ ρ (y) , ∀y ∈ Lp} .2 (4)

The set ∆ρ is obviously convex. We will assume that ∆ρ is also σ (L
q, Lp)−compact,3 and

ρ (y) =Max {−IE (yz) : z ∈ ∆ρ} (5)

holds for every y ∈ Lp. Furthermore, we will also impose the existence of Ẽ ∈ IR, Ẽ ≥ 0,

such that

∆ρ ⊂
{
z ∈ Lq; IE (z) = Ẽ

}
. (6)

Summarizing, we have:

Assumption 1. The set ∆ρ given by (4) is convex and σ (Lq, Lp)−compact, (5) holds for

every y ∈ Lp and (6) holds. �

The assumption above is closely related to the Representation Theorem of Risk Measures

stated in Rockafellar et al. (2006a). Following their ideas, and bearing in mind the Repre-

sentation Theorem 2.4.9 in Zalinescu (2002) for convex functions, it is easy to prove that

the fulfillment of Assumption 1 holds if and only if ρ is continuous and satisfies:

a) Translation invariance

ρ (y + k) = ρ (y)− Ẽk

2Notice that q ∈ [2,∞].
3See Horvàth (1966) for further details about σ (Lq, Lp)−compact sets.
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for every y ∈ Lp and k ∈ IR.

b) Homogeneity

ρ (αy) = αρ (y)

for every y ∈ Lp and α > 0.

c) Sub-additivity

ρ (y1 + y2) ≤ ρ (y1) + ρ (y2)

for every y1, y2 ∈ Lp.

d) Mean dominating

ρ (y) ≥ −ẼIE (y) (7)

for every y ∈ Lp.4

It is easy to see that if ρ is continuous and satisfies Properties a), b), c) and d) above with

Ẽ = 1 then it is also coherent in the sense of Artzner et al. (1999) if and only if

∆ρ ⊂ Lq+ = {z ∈ Lq;µ (z ≥ 0) = 1} . (8)

Particular interesting examples with Ẽ = 1 are the Expectation Bounded Risk Measures

of Rockafellar et al. (2006a). For instance, the Conditional Value at Risk (CV aR) and the

Weighted Conditional Value at Risk (WCV aR) (Rockafellar et al., 2006a), the Compatible

Conditional Value at Risk (CCV aR) of Balbás and Balbás (2009), the Dual Power Trans-

form (DPT ) of Wang (2000) and the Wang Measure (Wang, 2000), among many others.

Particular interesting examples with Ẽ = 0 are the deviation measures of Rockafellar et al.

(2006a). Among others, the classical p−deviation given by

σp (y) = [IE (|IE (y)− y|p)]1/p , (9)

or the downside p−semi-deviation given by

σ−p (y) = [IE (|Max {IE (y)− y, 0}|p)]1/p . (10)

4Actually, the properties above are almost similar to those used by Rockafellar et al. (2006a) in order

to introduce their Expectation Bounded Risk Measures.
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Finally, let us remark that L2 being a Hilbert space there are orthogonal projections on

every closed subspace. In particular, we will focus on ϕY and ϕπ, the orthogonal projections

on Y and the linear manifoldL (1, zπ) ⊂ Y respectively (see Maurin, 1967, for further details

about the orthogonal projection in Hilbert spaces).

3 Portfolio choice

3.1 General approach

Let us consider the following portfolio choice problem,






Min ρ (y)

IE (yzπ) ≤ erfT

IE (y) ≥ R

y ∈ Y

. (11)

where R > erfT represents the minimum required return. Bearing in mind (2), (11) mini-

mizes the risk of a reachable pay-off whose global price is not higher than one and whose

expected value is at least R. Thus it is a standard Risk/Return approach with ρ as the

risk measure. Of course, higher quantities of money may be invested. Since ρ and IE are

homogeneous the solution of (11) will be multiplied by C > 0 if C denotes the value of

the quantity to invest and the first and second constraints become IE (yzπ) ≤ CerfT and

IE (y) ≥ RC respectively.

The minimization of risk measures is a complex problem that may be addressed with

several methods. Among others, the approaches of Ruszczynski and Shapiro (2006) or

Rockafellar et al. (2006b) appropriately overcome those problems generated by the lack of

differentiability of ρ. Nevertheless, we will follow the method of Balbás et al. (2009b) and,

accordingly, we will transform (11) in the new problem
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




Min θ

θ + IE (yz) ≥ 0, ∀z ∈ ∆ρ

IE (yzπ) ≤ erfT

IE (y) ≥ R

θ ∈ IR, y ∈ Y

(12)

θ ∈ IR and y ∈ L2 being the decision variables. Following the paper above, (5) allows us

to prove that y solves (11) if and only if there exists θ ∈ IR such that (θ, y) solves (12), in

which case

θ = ρ (y)

holds. Furthermore, with similar arguments as in Balbás et al. (2009b), one can show that

Problem






Max − erfTλ1 +Rλ2

IE (y (λ1zπ − λ2 − z)) = 0, ∀y ∈ Y

z ∈ ∆ρ, λ1 ≥ 0, λ2 ≥ 0

is the dual of (12), λ1, λ2 ∈ IR and z ∈ ∆ρ being the decision variables. The first constraint

means that λ1zπ − λ2 − z ∈ Y T , Y T denoting the orthogonal subspace of Y . Then it is

equivalent to ϕY (λ1zπ − λ2 − z) = 0, which, along with 1 ∈ Y and zπ ∈ Y , lead to the

following dual problem






Max − erfTλ1 +Rλ2

ϕY (z) = λ1zπ − λ2,

z ∈ ∆ρ, λ1 ≥ 0, λ2 ≥ 0

. (13)

Proposition 1 IE (ϕY (z)) = Ẽ for every z ∈ ∆ρ.

Proof. Obviously z − ϕY (z) ∈ Y T , and 1 ∈ Y , so IE (ϕY (z)) = IE (z) . Therefore the

conclusion follows from (6). �

Consequently we can simplify (13). Indeed, taking expectations in the first restriction of

(13), and taking into account (3) we have
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λ1 = λ2 + Ẽ.

Thus, changing the variable λ2 = λ, λ1 = λ+ Ẽ we have the following problem equivalent

to (13)






Max
(
R− erfT

)
λ− ẼerfT

ϕY (z) =
(
Ẽ + λ

)
zπ − λ

z ∈ ∆ρ, λ ≥ 0

(14)

Problems (12) and (14) involve the infinite-dimensional Hilbert space L2. Thus, the absence

of the so called “duality gap” is not guaranteed, i.e., the dual optimal value may be strictly

lower than the primal one (Luenberger, 1969). To overcome this caveat we have to verify

the fulfillment of the Slater qualification, which requires an additional assumption.

Assumption 2. There exists y ∈ Y such that IE (yzπ) ≤ erfT and IE (y) > erfT .5 �

Proposition 2 Problem (12) is feasible and satisfies the Slater qualification, i.e., there

exists (θ, y) ∈ IR×Y satisfying the three constraints of (12) as strict inequalities.

Proof. Consider the pay-off y satisfying the conditions of Assumption 2, a positive constant

C < 1, and for α ∈ IR, α > 0, take

yα = αy −
(
αerfT − C

)
.

Then, (3) trivially shows that IE (yα) tends to∞ as so does α whereas IE (yαzπ) ≤ C. Hence

we can fix α large enough to guarantee the fulfillment of the second and third constraints

as strict inequalities. Besides, the function ∆ρ � z → IE (yαz) ∈ IR is continuous and ∆ρ is

compact, so taking θ > Max {−IE (yz) ; z ∈ ∆ρ} the first constraint is satisfied as a strict

inequality too. �

The Slater qualification ensures the absence of duality gap (Luenberger, 1969). Thus, one

can give the Strong Duality Theorem below, whose proof is omitted because a similar one

may be found in Balbás et al. (2009b).

5Since IE (y0zπ) = 1 and IE (y0) = 1 if y0 = 1 is a risless security, and IE
(
ye−rfT zπ

)
≤ 1 and IE

(
ye−rfT

)
>

1, actually Assumption 2 only imposes the existence of a risky security whose expected return is higher

than the interest rate.
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Theorem 3 Suppose that y∗ ∈ Lp and (λ∗, z∗) ∈ IR× Lq. Then, they solve (11) and (14)

if and only if the following Karush-Kuhn-Tucker conditions





(
λ∗ + Ẽ

) (
IE (y∗zπ)− erfT

)
= 0

λ∗ (IE (y∗)−R) = 0

IE (y∗zπ) ≤ erfT

IE (y∗) ≥ R

ϕY (z
∗) =

(
Ẽ + λ∗

)
zπ − λ∗

IE (y∗ϕY (z
∗)) ≤ IE (y∗ϕY (z)) , ∀z ∈ ∆ρ

λ∗ ≥ 0, z∗ ∈ ∆ρ

(15)

are fulfilled. Moreover, the dual solution is attainable if (11) is bounded, in which case the

optimal value of both (11) and (14) becomes
(
R− erfT

)
λ∗ − ẼerfT . �

3.2 Cases with unbounded optimal risk or return

This subsection is devoted to illustrate the existence of examples leading to meaningless

situations from a economic point of view. Surprisingly, some of these examples will in-

volve very important pricing models (for instance, Black and Scholes) and very important

risk measures (for instance, CV aR). Non pathological cases will be analyzed in the next

subsection.

We will consider two notions: Compatibility and strong compatibility between the pricing

rule Π and the risk measure ρ.

Definition 1 (Balbás and Balbás, 2009). The pricing rule Π and the risk measure ρ are

said to be compatible if there are no sequences

(yn)
∞

n=1 ⊂ Y

such that erfTΠ(yn) = IE (ynzπ) ≤ 0 for every n ∈ IN and Limnρ (yn) = −∞. �

Next let us show the existence of pathological situations

Theorem 4 Π and ρ are not compatible if and only if Problem (11) is unbounded, i.e., if

and only if for every R > erfT the risk level may tend to −∞ whereas the expected return

is at least R.
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Proof. Take y0 (11)-feasible (the existence is guaranteed by Proposition 2) and the se-

quence (yn)
∞

n=1 of the definition above. Then, IE ((y0 + yn)zπ) ≤ IE (y0zπ) ≤ erfT whereas

ρ(y0 + yn) ≤ ρ (y0) + ρ (yn) obviously tends to −∞. Hence, it is sufficient to show that

IE (y0 + yn) ≥ R. IE (y0 + yn) = IE (y0) + IE (yn) ≥ R + IE (yn). (7) leads to IE (yn) ≥

− 1

Ẽ
ρ (yn) ≥ 0 because Ẽ > 0 and ρ (yn) ≤ 0 for n ∈ IN large enough.6

Conversely, if Π and ρ are compatible then

ρ (y) ≥ −ẼIE (yzπ)

for every y ∈ Y (Balbás and Balbás, 2009), and this implies that ρ (y) ≥ −ẼerfT for every

y ∈ Y such that IE (yzπ) ≤ erfT . �

Remark 1 There are many examples that fit in the latter theorem. For instance, Bal-

bás and Balbás (2009) have shown that the CV aR, the WCV aR and the DPT are not

compatible with the Black and Scholes model and the Heston models, among many other

classical pricing models related to derivative securities. All of these cases lead to portfolio

choice problems such that there are available strategies whose risk becomes −∞ while their

expected return becomes as large as desired. Moreover, since

V aRµ0 (y) ≤ CV aRµ0 (y)

holds for every level of confidence µ0 ∈ (0, 1) and every y ∈ L2, if we fix R > erfT then for

the Black and Scholes and for the Heston pricing model one can find a sequence of reachable

pay-offs whose expected return remains higher than R while their V aRµ0 tends to −∞. �

Remark 2 An obvious consequence of Theorems 3 and 4 is that the compatibility of Π and

ρ is equivalent to the feasibility of (14), i.e., to the existence of λ ≥ 0 and z ∈ ∆ρ such that

ϕY (z) =
(
Ẽ + λ

)
zπ − λ (16)

holds. �

The second important notion in this section is the “strong compatibility”.

6Notice that Ẽ = 0 cannot hold because (7) would imply ρ (y) ≥ 0 for every y ∈ Lp, and Definition 1

could not hold.
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Definition 2 The pricing rule Π and the risk measure ρ are said to be strongly compatible

if there exist λ > 0 and z ∈ ∆ρ such that (16) holds. �

The lack of strong compatibility will also lead to pathological situations.

Theorem 5 Suppose that Π and ρ are compatible but they are not strongly compatible.

Then:

a) The dual solution (λ∗, z∗) exists and satisfies λ∗ = 0.

b) The (11)-optimal value equals −ẼerfT and does not depend on R.

Proof. Since Π and ρ are compatible Theorem 4 shows that (11) is bounded, so Theorem

3 implies the existence of a dual solution (λ∗, z∗). The lack of strong compatibility implies

that λ∗ = 0, since there are no (14)-feasible solutions with strictly positive λ. Moreover,

(14) makes it obvious that the optimal value equals −ẼerfT and does not depend on R.�

Remark 3 If the lack of strong compatibility occurs then once again we are facing a mean-

ingless phenomenon from an economic point of view. Indeed, Theorem 5b points out that

the minimum risk level will remain constant and equal to −ẼerfT while the expected return

R may tend to∞. As in the previous case of lack of compatibility, there is no market price

of risk either, since the expected return may increase as desired without any increment of

risk. The only difference between both scenarios is given by the behavior of the optimal risk

level. If there is no compatibility it may go to −∞. If there is compatibility but there is no

strong compatibility then it remains the same (−ẼerfT ). �

Next let us see that the lack of strong compatibility frequently holds for complete markets.

Theorem 6 Suppose that for every δ > 0

µ (zπ < δ) > 0. (17)

If the market is complete (Y = L2) and ρ is coherent and expectation bounded then Π and

ρ are not strongly compatible. �
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Proof. Since the market is complete ϕY becomes the identity map. Furthermore, Ẽ = 1

because ρ is expectation bounded. Therefore (16) becomes

z = (1 + λ) zπ − λ. (18)

Suppose that Π and ρ are strongly compatible and take λ > 0 and z ∈ ∆ρ satisfying (18).

Given δ > 0 one has that

µ

(
zπ <

δ

1 + λ

)
> 0,

and (18) implies that µ (z < δ − λ) > 0. Taking δ < λ one has that µ (z < 0) > 0. On

the other hand, the coherence of ρ and (8) show that z ≥ 0. Whence, we have a clear

contradiction. �

Remark 4 There are many examples of complete markets satisfying (17). For instance,

the Black and Scholes model (Wang, 2000, or Hamada and Sherris, 2003). It may be also

proved that the Heston model and other Stochastic Volatility models satisfy (17). All of

these models are not strongly compatible with any coherent and expectation bounded risk

measure. Very important examples of such a measures are the CCV aR and the Wang

measure, among others. For all of these cases there is no market price of risk, and the

optimal value of (11) always equals −erfT and does not depend on R. In other words, one

can construct a portfolio whose expected value is as large as desired and whose risk level

remains bounded and constant. �

Remark 5 Balbás and Balbás (2009) have shown that the CCV aR and the Black and

Scholes model are compatible, but the latter remark has pointed out that they are not strongly

compatible. For the Black and Scholes model, and for every level of confidence µ0 ∈ (0, 1),

one has that (Balbás and Balbás, 2009)

CCV aRµ0 (y) =Max
{
CV aRµ0 (y) ,−Π(y) e

rfT
}
.

Since the CCV aR is coherent and expectation bounded, and following Rockafellar et al.

(2006a) to construct deviations, one can define the new deviation measure

Ñµ0 (y) =Max
{
CV aRµ0 (y) ,−Π (y) e

rfT
}
+ IE (y) ,

which satisfies the requirements of Assumption 1 for Ẽ = 0. It is easy to see that Ñµ0 and the

Black and Scholes model are strongly compatible. Indeed, otherwise we could find a sequence
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(yn)
∞

n=1 ⊂ Y with IE (ynzπ) ≤ erfT for every n ∈ IN,
(
Ñµ0 (yn)

)∞

n=1
bounded from above and

(IE (yn))
∞

n=1 going to ∞. Therefore
(
CCV aRµ0 (yn)

)∞
n=1

=
(
Ñµ0 (yn)

)∞

n=1
− (IE (yn))

∞

n=1

would go to −∞. Thus, (11) would be unbounded and Theorem 4 would imply that the

CCV aR would not be compatible with the Black and Scholes model.

Finally, let us indicate that a similar remark applies if the role of the CV aR is played by

the WCV aR. �

Remark 6 It is worth to remark that the absence of compatibility cannot hold if ρ is a

deviation measure. Indeed, notice that Ẽ = 0 in such a case, so (7) points out that ρ does

not achieve negative values and therefore it cannot tend to −∞, i.e., Definition 1 cannot

hold.

However, the lack of strong compatibility may still hold. For instance, take the absolute

deviation (9) for p = 1

ρ (y) = σ1 (y) = IE (|IE (y)− y|) .

Then, according to Rockafellar et al. (2006a),

∆ρ = {z − IE (z) ; z ∈ L∞, ‖z‖
∞
≤ 1} .

Therefore ∆ρ is obviously composed of (essentially) bounded random variables. Besides,

(16) and Ẽ = 0 lead to

z = λzπ − λ

for complete markets (ϕY is the identity map). Nevertheless, if zπ is unbounded (Black

and Scholes, Heston etc.), the latter equality implies that λ = 0, i.e., there is no strong

compatibility. This is also interesting to remark that the absolute deviation is the unique

p−deviation (see (9)) compatible with the Second Order Stochastic Dominance and the

standard utility functions (Ogryczak and Ruszczynski, 1999 and 2002). Finally, it is also

easy to see that the absolute semi-deviation ((10), p = 1) is not strongly compatible with

the Black and Scholes and the Heston models neither. It trivially follows from σ−1 (y) =

σ1 (y) /2. �

Remark 7 Finally, it is also remarkable that the standard deviation is strongly compatible

with every pricing rule. Indeed, for ρ = σ2 we have that (Balbás et al., 2009b)

∆ρ =
{
z ∈ L2; IE (z) = 0, σ22 (z) ≤ 1

}
. (19)
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Then, (3) shows that λzπ−λ ∈ ∆ρ if λ > 0 is small enough so as to satisfy λ
2σ22 (zπ − 1) ≤

1. Besides, the equality Ẽ = 0 and ϕY (λzπ − λ) = λzπ − λ point out that Equality (16)

holds. �

3.3 Models with a market price of risk

This subsection will deal with models where the strong compatibility holds. Thus, hence-

forth we will assume the following

Assumption 3. There exists strong compatibility between Π and ρ. �

Theorem 7 The dual solution (λ∗, z∗) exists, does not depend on R > erfT and satisfies

λ∗ > 0. The (11) and (14) optimal value equals
(
R − erfT

)
λ∗ − ẼerfT .

Proof. Assumption 3 and Theorem 4 show that (11) and (14) are bounded and Theorem

3 shows that (14) attains its optimal value. Moreover it is obvious that this optimal value

coincides with the solution of





Max λ

ϕY (z) =
(
Ẽ + λ

)
zπ − λ

z ∈ ∆ρ, λ ≥ 0

. (20)

The remaining statements are now trivial. �

Remark 8 According to (15) the solutions of (11) and (14) are characterized by






IE (y∗zπ) = erfT

IE (y∗) = R

ϕY (z
∗) =

(
Ẽ + λ∗

)
zπ − λ∗

IE (y∗ϕY (z
∗)) ≤ IE (y∗ϕY (z)) , ∀z ∈ ∆ρ

λ∗ > 0, z∗ ∈ ∆ρ

(21)

since λ∗+ Ẽ ≥ λ∗ > 0. The two first equalities show that the (11)-constraints are saturated,

so R is the real expected return of the investment. �
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Remark 9 If y∗ solves (11) the absence of duality gap (Theorem 3) and λ∗ > 0 (Theorem

7) for the dual solution imply that

ρ (y∗) =
(
R− erfT

)
λ∗ − ẼerfT ,

and therefore

R =
1

λ∗

(
ρ (y∗) + ẼerfT

)
+ erfT . (22)

One can interpret that
1

λ∗
represents the Market Price of Risk, in the sense that there is an

affine relationship between optimal risks and returns, and the expected return R increases
1

λ∗
units per unit of the risk increment. Due to the analogy with the usual Capital Asset

Pricing Model the affine function (22) will be called Capital Market Line (CML). �

Remark 10 Henceforth fix

R0 > erfT (23)

and take y∗0, solution of (11). Consider (λ
∗, z∗) such that y∗0 and (λ

∗, z∗) satisfy (21). Then

bearing in mind (3) and Proposition 1 it is easy to see that

αy∗ −
(
αerfT − erfT

)
∈ Y

and (λ∗, z∗) also satisfy (21) if α
(
R0 − erfT

)
+erfT replaces R0. Since α

(
R0 − erfT

)
+erfT

takes all the values within
(
erfT ,∞

)
as so does α within the interval (0,∞), it is clear that

the dual solution does not depend on R0 and the primal one is a combination of y
∗
0 and the

riskless asset leading to the required expected return.

The remaining efficient portfolios (solutions of (11)) that arises as R varies are combina-

tions of the risk-free asset and the benchmark y∗0. So, for R > erfT the discussion above

shows that the proportion α to invest in the benchmark y∗0 must satisfy

R = α
(
R0 − erfT

)
+ erfT

which leads to

α =
R− erfT

R0 − erfT
,

and

1− α =
R0 −R

R0 − erfT

will be invested in the riskless security.
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Every portfolio y ∈ Y with Π (y) = 1 and IE (y) = R > 1 must be replaced by

R− erfT

R0 − erfT
y∗0 +

R0 −R

R0 − erfT
erfT =

IE
(
y − erfT

)

IE (y∗0 − erfT )
y∗0 +

IE (y∗0 − y)

IE (y∗0 − erfT )
erfT (24)

so as to reach an efficient portfolio with optimal risk level. The optimal risk level

IE
(
y − erfT

)

IE (y∗0 − erfT )
ρ (y∗0)− Ẽ

IE (y∗0 − y)

IE (y∗0 − erfT )
erfT (25)

will be called systematic risk of y, and the remaining risk

ρ (y)−
IE
(
y − erfT

)

IE (y∗0 − erfT )
ρ (y∗0) + Ẽ

IE (y∗0 − y)

IE (y∗0 − erfT )
erfT (26)

will be called idiosyncratic or specific. �

4 CAMP and APT like models

The object of this section is to prove that CAPM and APT like formulas also hold in the

general framework we are dealing with. To this purpose we will consider the portfolio

y∗1 = ϕπ (y
∗

0) ∈ L (1, zπ) ,

orthogonal projection of the benchmark y∗0 on the linear manifold L (1, zπ) generated by

the riskless asset and the SDF . Since y∗1− y∗0 ∈ L (1, zπ)
T , orthogonal subspace of L (1, zπ)

(Maurin, 1967), one has that IE (y∗1 − y∗0) = IE ((y
∗
1 − y∗0) zπ) = 0, which gives

IE (y∗1) = IE (y
∗

0) = R0 (27)

and

IE (y∗1zπ) = IE (y
∗

0zπ) = erfT . (28)

In particular, y∗1 is (11)-feasible.

Hereafter the variance of a random variable y ∈ L2 and the covariance between two random

variables y1, y2 ∈ L2 will be denoted by σ22 (y) and IC (y1, y2), respectively.

In the classical CAPM and APT models one must assume that the market is not risk-

neutral, which means that the Market Portfolio is not a riskless security (Duffie, 1988).

Actually our Assumption 2 also imposes a non risk neutral market.
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Proposition 8 The market is not risk-neutral, i.e., the benchmarks y∗0 and y∗1 are not

riskless securities (are not zero-variance). Therefore the SDF zπ is not a riskless security

either and L (1, zπ) = L (1, y
∗
1).

Proof. If y∗0 were riskless security then y∗0 ∈ L (1, zπ) and y∗1 = ϕπ (y
∗
0) = y∗0 would be a

riskless security too. Thus, let us show that y∗1 is not a riskless security. Indeed, suppose that

y∗1 is constant. (23) and (27) show that y∗1 > erfT , and therefore IE (y∗1zπ) = y∗1IE (zπ) = y∗1

owing to (3), which contradicts (28).

Besides, y∗1 ∈ L (1, zπ) points out that zπ is not a riskless security either since otherwise

the dimension of L (1, zπ) would equal one and y∗1 would have to be risk-free. Finally, the

equality L (1, zπ) = L (1, y
∗
1) is already trivial. �

Theorem 9 (APT like formula). Suppose that {y1, y2, ..., yk} ⊂ Y is a linearly indepen-

dent system such that IC (yi, yj) = 0 for i �= j. Suppose also that the benchmark y∗1 satisfies

y∗1 ∈ L (1, y1, y2, ..., yk) .
7

Then, for every reachable pay-off y ∈ Y we have that

y − IE (yzπ) =
k∑

j=1

βj (yj − IE (yjzπ)) + εy (29)

and

IE (y − yzπ) =
k∑

j=1

βj (IE (yj − yjzπ)) ,

εy ∈ Y satisfying

IE (εy) = 0, Π(εy) = 0, and IC (εy, yj) = 0, j = 1, 2, ..., k, (30)

and βj being the regression coefficient

βj =
IC (y, yj)

σ22 (yj)
, (31)

7Notice that this condition is equivalent to

zπ ∈ L (1, y1, y2, ..., yk)

due to L (1, zπ) = L (1, y
∗

1
).
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j = 1, 2, ..., k. In particular, if Π (y) = Π (yj) = 1, j = 1, 2, ..., k, then

y − erfT =
k∑

j=1

βj
(
yj − erfT

)
+ εy (32)

and

IE
(
y − erfT

)
=

k∑

j=1

βj
(
IE
(
yj − erfT

))
. (33)

Corollary 10 (CAPM like formula). For every reachable pay-off y ∈ Y we have that

y − IE (yzπ) = β
(
y∗1 − erfT

)
+ εy

and

IE (y − yzπ) = β
(
IE
(
y∗1 − erfT

))
,

εy ∈ Y satisfying

IE (εy) = 0, Π (εy) = 0, and IC (εy, y
∗
1) = 0,

and β being the regression coefficient

β =
IC (y, y∗1)

σ22 (y
∗
1)

. (34)

In particular, if Π (y) = 1, then

y − erfT = β
(
y∗1 − erfT

)
+ εy (35)

and

IE
(
y − erfT

)
= β

(
IE
(
y∗1 − erfT

))
. (36)

Proof. Let us prove Theorem 9 since Corollary 10 is a trivial consequence if one bears in

mind (2) and (28). Obviously, if Rj = IE (yj), j = 1, 2, ..., k,

{

1,

(
yj −Rj
σ2 (yj)

)k

j=1

}

⊂ Y

is a orthonormal system. Thus, the projection Lemma of Hilbert Spaces (Maurin, 1967)

establishes the existence of εy ∈ L (1, y1, y2, ..., yk)
T such that

y = β̃0 +
k∑

j=1

β̃j

(
yj −Rj
σ2 (yj)

)
+ εy, (37)
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where

β̃0 = IE (y)

and

β̃j = IE

(
y

(
yj −Rj
σ2 (yj)

))
, (38)

j = 1, 2, ..., k. εy ∈ L (1, y1, y2, ..., yk)
T trivially leads to (30), and multiplying by zπ and

taking expectations in (37) one has

β̃0 = Π(y) e
rfT −

k∑

j=1

β̃j

(
Π(yj)e

rfT −Rj
σ2 (yj)

)
.

Whence (37) becomes

y −Π (y) erfT =
k∑

j=1

β̃j

(
yj − Π(yj)erfT

σ2 (yj)

)
+ εy,

which, due to (2), leads to (29) if one takes β̃j = βj/σ2 (yj), j = 1, 2, ..., k. Moreover, (31)

trivially follows from (38). The remaining expressions, (32) and (33), are now obvious. �

Remark 11 Expressions (32) and (33) are clearly similar to those of the classical APT

model. They indicate that the real y − erfT and the expected IE
(
y − erfT

)
risk premiums

may be given by a family of non correlated factors that generate the benchmark y∗1 if one

adds the riskless asset. One only needs to estimate the systematic risk levels βj, given by

(31), that yield the sensitivity of the security (pay-off) y with respect to the j − th factor

explaining the market. The committed error εy has neither correlation with the factors nor

with the benchmark y∗1, and therefore is something specific of the security y.

Analogously, (35) and (36) indicate that the real y − erfT and the expected IE
(
y − erfT

)

risk premiums may also be given by the real y∗1 − erfT and the expected IE
(
y∗1 − erfT

)
risk

premiums of the benchmark y∗1. The relationship is given by the systematic risk level β

given by (34). Once again the error εy has no correlation with the benchmark y
∗
1 and is

specific of the asset/portfolio we are analyzing.

As said in Remark 10, given y ∈ Y with Π (y) = 1 one can construct an efficient portfolio

with the same expected return but lower risk. (24) and (36) show that the efficient portfolio

will be

βy∗0 + (1− β) erfT

22



where β is given by (34). The systematic risk (25) of y becomes

βρ (y∗0)− Ẽ (1− β) erfT ,

which is clearly given by β once ρ (y∗0) is known, i.e., β may be understood as a measure of

the systematic risk.

ρ being an homogeneous, translation invariant and sub-additive risk measure implies that

ρ (y) = ρ
(
erfT + β

(
y∗1 − erfT

)
+ εy

)

≤ βρ (y∗1)− Ẽ (1− β) erfT + ρ (εy) . (39)

Since y∗0 is efficient (28) and (27) point out that

ρ (y∗0) ≤ ρ (y∗1) ,

with equality if and only if y∗1 = y∗0. Thus, bearing in mind (39), if β ≥ 0 the specific (26)

risk of y will be

ρ (y)− βρ (y∗0) + Ẽ (1− β) erfT

≤ βρ (y∗1)− Ẽ (1− β) erfT + ρ (εy)− βρ (y∗0) + Ẽ (1− β) erfT

= β (ρ (y∗1)− ρ (y∗0)) + ρ (εy) ,

and therefore we have an upper bound for the idiosyncratic risk that depends on εy and the

difference of risk between both benchmarks. The term β (ρ (y∗1)− ρ (y∗0)) will vanish if and

only if y∗1 = y∗0. �

In the particular case of the Standard Deviation ρ = σ2 (see (9)), if Y is generated by a

static approach (T = {0, T}, only one trading date), it is known that y∗0 ∈ L (1, zπ), which

obviously implies that y∗1 = y∗0, and both the benchmark y∗0 providing the efficient portfolios

and the one y∗1 providing the CAPM -like formulas (35) and (36) coincide. Then, it may be

interesting to characterize those properties leading to an identical situation if ρ is a more

general risk measure or deviation and the pricing model may be dynamic.

Remark 12 Consider the dual solution (λ∗, z∗) that may obtained by solving the linear

problem (20). y∗1 = y∗0 holds if and only if there exist x1, x2 ∈ IR such that y
∗
0 = x1 + x2zπ.

Since (y∗0, λ
∗, z∗) must satisfy (21) we have that





x1 + x2IE (z

2
π) = erfT

x1 + x2 = R0
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must hold, which, taking into account Proposition 8 and 0 < σ22 (zπ) = E (z
2
π) −E (zπ)

2 =

E (z2π)− 1, shows that y
∗
1 = y∗0 if and only if

y∗0 =
R0 (1 + σ22 (zπ))− erfT

σ22 (zπ)
−
R0 − erfT

σ22 (zπ)
zπ. (40)

The fulfillment of (40) is easy to verify once y∗0 has been computed, or by checking whether

(
R0 (1 + σ22 (zπ))− erfT

σ22 (zπ)
−
R0 − erfT

σ22 (zπ)
zπ, λ

∗, z∗
)

satisfies (21). �

Despite the latter remark characterizes the fulfillment of y∗1 = y∗0, one can also give another

conditions that only require to solve the linear problem (20).

Theorem 11 Consider the dual solution (λ∗, z∗). y∗1 = y∗0 holds if and only if ρ (−zπ) =

IE (zπz
∗).

Proof. The latter remark states that y∗1 = y∗0 holds if and only if (40) holds. (21) implies

that it is equivalent to the inequality

IE

((
R0 (1 + σ22 (zπ))− erfT

σ22 (zπ)
−
R0 − erfT

σ22 (zπ)
zπ

)
ϕY (z

∗)

)
≤

IE

((
R0 (1 + σ22 (zπ))− erfT

σ22 (zπ)
−
R0 − erfT

σ22 (zπ)
zπ

)
ϕY (z)

)
, ∀z ∈ ∆ρ

Manipulating, and taking into account Proposition 1, the previous inequality is equivalent

to

IE (zπϕY (z
∗)) ≥ IE (zπϕY (z)) , ∀z ∈ ∆ρ.

Since zπ ∈ Y and z − ϕY (z) ∈ Y T we have IE (zπϕY (z)) = IE (zπz) , ∀z ∈ ∆ρ, and the

inequality is equivalent to

IE (zπz
∗) ≥ IE (zπz) , ∀z ∈ ∆ρ,

and result trivially follows from (5). �

Consequently, for the Standard Deviation, which is strongly compatible with every pricing

model due to Remark 7, the equality y∗1 = y∗0 also holds for dynamic approaches.
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Corollary 12 If ρ = σ2 then y∗1 = y∗0.

Proof. Remark 7 shows that there are (14)-feasible solutions (λ, z) with λ > 0. Hence, if

(λ∗, z∗) solves (14) λ∗ > 0. Suppose that we prove that

(λ∗, z∗) =

(
1

σ2 (zπ)
,

1

σ2 (zπ)
zπ −

1

σ2 (zπ)

)
(41)

solves (14). Then

IE (zπz
∗) = IE

(
1

σ2 (zπ)
z2π −

1

σ2 (zπ)
zπ

)

=
IE (z2π)− 1

σ2 (zπ)
=
IE (z2π)− IE (zπ)

2

σ2 (zπ)

=
σ22 (zπ)

2

σ2 (zπ)
= σ2 (zπ) = σ2 (−zπ) ,

and the latter theorem applies. Let us now see (41). Since z∗ − ϕY (z
∗) and ϕY (z

∗) =

λ∗zπ − λ∗ are orthogonal the Pythagorean Theorem of Hilbert Spaces (Maurin, 1967) and

(6) lead to

σ22 (z
∗) = ‖z∗‖2

2
= ‖z∗ − ϕY (z

∗)‖2
2
+ ‖ϕY (z

∗)‖2
2
≥ ‖λ∗zπ − λ∗‖2

2
= σ22 (λ

∗zπ − λ∗) .

Moreover, since 1 ≥ σ22 (z
∗) due to (19), ‖z∗ − ϕY (z

∗)‖2
2
> 0would lead to 1 > (λ∗)2 σ22 (zπ − 1).

Then for α > 1 and small enough αλ∗ (zπ − 1) would have zero expectation and a vari-

ance lower than one, i.e., αλ∗ (zπ − 1) would be (14)-feasible due to (19). Since αλ∗ > λ∗

because α > 1 and λ∗ > 0, we have a contradiction because (λ∗, z∗) cannot solve (14).

Consequently, z∗−ϕY (z
∗) = 0, and z∗ = ϕY (z

∗) = λ∗zπ−λ
∗. As above, 1 > (λ∗)2 σ22 (zπ − 1)

cannot hold, so

(λ∗)2 σ22 (zπ − 1) = 1,

which ends the proof. �

5 Conclusions

This paper has dealt with the general portfolio choice problem and the classical APT and

CAPM models when risk levels are given by risk measures beyond the variance. Expec-

tation bounded risk measures, coherent risk measures and general deviation measures are
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included in the analysis. It seems to be an interesting topic since the variance has presented

some drawbacks. For instance, it is not always compatible with the Second Order Stochas-

tic Dominance. With respect to the reachable pay-offs, we have focused on the pricing

rule and the SDF rather than the distribution of the returns of the available securities.

Consequently, this analysis may apply for both static and dynamic pricing models.

First of all general optimality conditions have been given, despite the level of generality for

both risks and prices. Secondly, new notions such as strong compatibility between prices

and risks have been introduced. Surprisingly, the lack of (strong) compatibility leads to

unbounded portfolio choice problems, despite it is complex to reach economic interpreta-

tions of that. Nevertheless, the lack of (strong) compatibility holds for very important risk

measures (V aR, CV aR, WCV aR, CCV aR, DPT , Wang, absolute deviation, absolute

downside semi-deviation, etc.) and pricing models (Black Scholes, Heston, other complete

derivative-linked pricing models, etc.). Thirdly, models with a market price of risk have

also been characterized and analyzed, and they also may involve dynamic pricing models.

A CML have been generated and two major benchmarks have been introduced. Finally,

APT and CAPM like developments have been presented, and they do not modify the

classical definitions of the betas. On the contrary, systematic risks will depend on the

correlations with the factors/market, whereas idiosyncratic risks and noises will have null

correlation with the factors/market.
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Formula and Beurling–Deny Formula in Semi–Dirichlet Forms Setting,
February 2006

83. Ze–Chun Hu, Zhi–Ming Ma and Wei Sun, Formulae of Beurling–Deny
and Lejan for Non-Symmetric Dirichlet Forms, February 2006

84. Ze–Chun Hu and Wei Sun, A Note on Exponential Stability of the Non-
Linear Filter for Denumerable Markov Chains, February 2006
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93. Yogendra P. Chaubey, Naâmane Laib and Arusharka Sen, A Smooth
Estimator of Regression Function for Non-negative Dependent Random
Variables, March 2008

94. Alejandro Balbás, Beatriz Balbás and Antonio Heras, Optimal Rein-
surance with General Risk Functions, March 2008

95. Alejandro Balbás, Raquel Balbás and José Garrido, Extending Pricing
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