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Abstract

This paper presents a second order accurate piecewise linear volume track-
ing based on remapping for triangular meshes. This approach avoids the com-
plexity of extending unsplit second order volume of fluid algorihtms, advection
methods, on triangular meshes. The method is based on Lagrangian-Eulerian
methods; therefore, it does not deal with edge fluxes and corner fluxes, flux
corrections, as is typical in advection algorithms. The method is constructed
of three parts: Lagrangian phase, reconstruction phase and remapping phase.
In the Lagrangian phase, the original, Fulerian, grid is projected along tra-
jectories to obtain Lagrangian grids. In practice, this projection is handled
through the time integration of velocity field for grid vertices at each time
step. The reconstruction is truncating the volume material polygon for each
Lagrangian mixed grid. Since in peicewise linear approximation, the interface
is represented by a segment line, the polygon material truncation is mainly
finding the segment interface. Finding the segment interface is calculating the
line normal and line constant at each multi-fluid cell. Details of applying two
normal calculation methods, differential and geometric least squares meth-
ods, are given. While the geometric least squares method exhibits second
order accurate in reproducing circular interfaces, the differential least squares
method results in first order accurate representation of the interface. The
last part of the algorithm which is remapping of the volume materials from
the Lagrangian grid to the original one is performed by a series of polygon
intersection procedures. The behavior of the algorithm is investigated for flow
fields with constant interface topology and flow fields inducing large interfa-
cial stretching and tearing. Second order accuracy is obtained if the velocity
integration and the reconstruction steps are at least second order accurate.
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1 Introduction

1.1 Motivation

Many diverse areas of industry deal with multi phase and free surface flows. These
flows are mainly characterized by the discontinuous interfaces carried out within the
flows. Moreover, often tracking the interfaces determines the whole behavior of the
flow. Therefore, numerical modeling of such flows distinctively deal with tracking
the interfaces based on conservation of mass.

One of the practical methods for solving the conservation of mass in the presence
of moving material interfaces is volume tracking (Volume of Fluid). Several codes
based on Volume Tracking idea on Cartesian grid, namely SOLA-VOF [1, 2] and its
descendants NASA-VOF2D (3], NASA-VOF3D [4], RIPPLE [5, 6] and FLOW3D |7,
8] are widely used for modeling interfaces and free surfaces in industrial applications.
For example, a modified version of SOLA-VOF has been used by researcher to model
the flow in thermal ink jet devices [9] and SOLA-VOF and FLOW3D have been
used extensively by material scientists to model problems involving melting and
solidification (e.g., [10, 11]).

However, all of these codes are built around a relatively crude volume tracking
interface reconstruction algorithm that relies on a piecewise-constant or “staircase”
representation of the interface and the advection algorithms that are at best first-
order accurate. More modern volume tracking interface reconstruction method use
a linear approximation to the interface in each multi-fluid cell (e.g, see [12]). For
example, M. Busmann et al [13, 14] developed a 3D modified version of RIPPLE to
model droplet impact. M. Passandideh-fard et al [15, 16] added solidification part to
that code to model the molten droplet impact with solidification and plasma spray
coating. All of above cited piecewise linear interface reconstruction algorithm still
produce a first order accurate approximation to the front.

In modeling more delicate physics (e.g., capillarity), first order approximation
to the front is inadequate because accurate calculating the interface curvature and
topology (which leads to surface tension calculation) is essential. Moreover, in sim-
ulating flows involving complex geometry ( e.g., casting) structured domain parti-
tioning, dependent on the degree of the geometry complexity, either fails or leads
to inefficient computations. Therefore, to overcome these limitations, developing a
higher order accurate volume tracking code amenable to any domain partitioning is
a necessity. In particular, a second order accurate algorithm on triangular meshes
is desirable because it not only enables addressing flows in complex geometry but
also can easily be equipped with an adaptation technique to result in efficient and
accurate computations.



1.2 Volume Tracking
1.2.1 Eulerian Methods

Many numerical models of interfacial flows have taken the form of Eulerian meth-
ods. Eulerian methods, in which the mesh is fixed, are ideal for flows with large
deformation; but the sharp resolution of interfaces is lost (the problem is typically
called diffusion of the interfaces). Among many methods for tracking the inter-
faces in incompressible flows, volume tracking (VT) or volume of fluid (VOF) has
benefited from a widespread use due to its simplicity and automatic capturing of
interfaces (e.g., see Pilliod [2] the advantages of VT). A typical VT method on an
Eulerian frame of reference which is called advection or transport method considers
the following fluid volume evolution equation (e.g. see Kothe [17] or Rider [18]):

of

5 + V.(uf) =0, (1)
where f is the volume fraction. If one considers the domain filled by two different
dark and light fluids, f is the percentage of volume cell occupied by the dark fluid.
Therefore, it can vary between 0 and 1 inclusively ( Note the volume of dark fluid
and volume material are used interchangeably.) A finite difference discretization of
the equation (1) on an uniform Cartesian 2-D domain partitioning leads to:
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where F, , . = (fu)i,; denotes the flux of f across the left-hand edge of ¢, jth
cell and G};_; 5 = (fv);;_,/o denotes the flux across the bottom edge of the ¢, jth
cell, etc, and v and v are the components of velocity vector u in z and y directions
respectively. Equation (2) simply states that fluxes are required in order to advance
f in time. Therefore two actions must be performed: interface reconstruction and
time integration. Interface reconstruction involves locating the interface at each cell
and then truncating the material polygon in order to define the polygon truncating
volume material. Time integration involves performing an appropriate splitting or
unsplitting scheme to transport the volume material along the fluxes. In either of
these two stages algorithms differ. Ref. [18, 19] present rather complete review of
different schemes. Since the present work concerns second order accurate methods,
among many reconstruction techniques, we only review the piecewise linear interface
calculation (PLIC) because it can potentially lead to second order accuracy to the
front. The PLIC approximates the interface at each cell by a segment line. Therefore
the reconstruction step requires two major calculations; the line normal and the line
constant.

We first review three major normal finding methods applicable to irregular grids.
These methods are:



1. Extension of Youngs’ second method has been developed by Rider and Kothe
[18] based on novel k-exact polynomial interpolation for continuous data dis-
tribution on unstructured meshes of Barth [20]. Since this method is based on
the differential minimization, we call it Differential Least Squares (DLS).

2. Least Squares method has been applied by Pilliod [2] in VT reconstruction
algorithm. Pucket [8] originally developed the method to model gas interface
in compressible flow. Since then it has been extensively used to model com-
pressible flows (e.g., see [21, 22, 23, 24]) and incompressible (e.g., see [25, 26])
flows. The heart of this method is geometric minimization. Therefore, we call
it Geometric Least Squares (GLS).

3. Swartz method [27] has been used and modified in some papers (e.g., see
[18, 28, 27]). This method is an iterative method. A brief description of the
method is as follows. Given an initial guess of normal n (and obviously a
volume fraction), the segment line is reconstructed for a mixed (multi-fluid)
reference cell. Assuming that a chosen mixed border cell of the reference cell
has the same normal n, the segment line is constructed for the border cell as
well. The centroid of these two segment lines specifies a unique direction and
equivalently a unique normal. This normal is chosen as a new guess n. The
same process is repeated until convergence.

The details of implementation of first two methods on triangular meshes which
are not found in the literature are given in this paper. In addition, errors and
convergence rates are demonstrated and discussed extensively.

For finding the line constant, Rider and Kothe [18] have recently developed
an automatic method amenable to any domain partitioning, unlike the previous
case-by-case method suitable for orthogonal grids. Details will be presented in the
methodology section.

Although the reconstruction part of Eulerian VT algorithm is extendible to
fully unstructured meshes, the time integration part appears to be complicated
and expensive for irregular meshes. In unsplit time integration schemes (e.g., [18,
19]), the corner fluxes must be considered in order to correct the edge fluxes to
ensure second order temporal accuracy. Calculating the corner fluxes for irregular
grids means performing the intersection process for as many time as the number of
neighbors of a reference cell. This calculation is generally higher than orthogonal
meshes.

1.2.2 Eulerian-Lagrangian Methods

An alternative method that does not deal with the fluxes to advance volume fraction
f in time is Lagrangian method. Lagrangian methods, in which the computational
mesh travels with the fluid, are ideal for many problems which involve interfaces



between materials or free surfaces. However, multidimensional Lagrangian calcula-
tions can typically be carried out for only a limited time before severe mesh distor-
tion, or even mesh tangling destroys the calculation. To overcome these individual
limitations, methods have been developed which combine the features of both the
Lagrangian and Eulerian methods. These are called Lagrangian-Eulerian (LE) or
remapping methods. The integral form of the fluid volume evolution equation can
represent the Lagrangian form of the methods as follows:

d

dt Jvi () fdv =0, (3)
where dV is the element of volume, and the integration is over an arbitrary finite
Lagrangian volume Vi (t) at time ¢, a volume whose bounding surface moves with
the local fluid velocity, a volume which always contains the same material particles.
Equation (3) indicates that the volume of the dark fluid of a Lagrangian volume
is conserved along trajectories. This equation may be used to solve for the time
evolution of f. Since the dark fluid volume of the Lagrangian control volume is

V(t) = / v, 4
0=/[,.f (4)

a discretization of these two equations is simply given by
V() = v, (5)

where the superscript n stands for the current time and n + 1 stands for some
unspecified future time.

Equations (3) and (4) may be interpreted and applied in two distinct ways,
forward and backward trajectories, as presented by Dukowicz and Baumgardner
[29] in modeling of compressible flow.

(a) Forward trajectories: The current grid with known volume fraction f is
projected to the future time t"*!. We may reconstruct the volume of the dark
fluid V**!, on each Lagrangian cell. The reconstruction scheme can be the PLIC
approximation. We now wish to transfer the new-time dark fluid material to some
target grid, which typically will be the same as the current grid if one is interested
in an Eulerian method. This is obtained as follows,

it = [ vty (6)
Vp
where the subscript 7" stands for the target grid. Equation (6) implies integration
on the overlap of grids 7" and L.

(b) Backward trajectories: The target grid, which is the desired grid at time
, is projected back in time to the departure points of the trajectories at time
t". This gives the Lagrangian grid L at time t", i.e., V(t"). However, we have the
volume fraction at time ¢" on our starting grid, which we assume for simplicity to

tn+1
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be the same as the target grid. This volume fraction may be reconstructed to give
the dark fluid volume at each target cell V™. Equation (4) is now interpreted to give

n+l __ n
Vi = - Vidv. (7)
We note that (7) again implies integration on the overlap of grids 7" and L. Note that
in this case the reconstruction takes place on the target grid, which may be somewhat
simpler because the target grid is usually more regular than the Lagrangian grid.

The integral evaluating in equation (6) and (7) which is called remapping phase
has been the most difficult part of Lagrangian-Eulerian methods (e.g., see [29]) in
solving classic advection or continuity equations. In the present work, since we are
dealing with a geometric solution of 2-D incompressible flows, the integral part can
be handled in a series of polygon intersections.

In addition to specific advantage of remapping methods over advection ones in
addressing irregular grids, the remapping methods does not offer any inherent time
step limitation unlike the advection methods. The numerical stability of the Eulerian
schemes on a finite grid generally requires that the time step be limited by the CFL
condition (Courant-Friedrichs-Lewy condition) of the form Max|u|dt/dx < 1; but in
methods employing remapping, there is no inherent time step limit. In principle, one
can go forward or backward along trajectories as far as one wishes. However, there
is a practical limit of the form Max|Vu|dt < 1 to prevent trajectory intersections
[24]. There is a price to be paid for the potentially longer time step: grid L is in
principle arbitrarily located with respect to the grid T, and to go from one to other
requires a costly search when the CFL condition is not satisfied.

Although much effort has been devoted to model compressible flows with remap-
ping methods, just a few investigations can be found for incompressible flows. Mosso
et al [28, 27] reported a VT algorithm on unstructured meshes associated with the
remapping technique. Their algorithms employ irregular but logically rectangular
grids in two dimensions. They used Swartz’s method to calculate the interface nor-
mals. They verified their model for a simple translation velocity field. The authors
also examined the solid body rotation test [27]. They analyzed the same algorithm
for different numerical schemes to find the arrival point of trajectories ( integration
of velocity filed in time to find the trajectories). In the exact integration, mass is
conserved exactly, but in forward and backward Euler, the initially circular body un-
dergoes considerable expansion and contraction respectively. For revolving velocity
w = 27 and 6t = 1/80, the areas magnify by the factor of 1.002 by using the Eu-
ler forward scheme. For the trapezoidal rule, associated with the Crank-Nicholson
scheme, they reported 1.0005 amplification factor. Note that Euler forward and
backward leads to first order time integration accuracy, while trapezoidal rule is
second order accurate. However, they have not investigated the performance of the
algorithm for deforming velocity fields.

The focuse herein is on developing a second order accurate volume tracking
algorithm on triangular grids. The work has the following objectives:
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e Describes in detail the application of DLS and GLS normal finding methods
on triangular grids.

e Verifies the accuracy of those methods in reproducing the circular interfaces
by both qualitative results and error measurements.

e Develops the forward trajectory VT remapping algorithm on triangular meshes.

e Verifies the developed VT method on two different evolutionary problems, (a)
constant interface tests including simple translation and solid body rotation
and (b) a vortical flow field that stretches and potentially tears any interfaces
carried within the flow.

The remainder of this paper is structured as follows. Section 2 details the different
parts of the VT algorithm. Section 3 presents some numerical experiments verifying
the accuracy and fidelity of the algorithm. And finally, Section 4 concludes this
work.

2 Reconstructing the Interface

To better describe the algorithm used to reconstruct the interface, the interface
segment at each computational cell is defined by

nx+p=0, (8)

where n is a unit normal vector to the line representing the interface segment, x is a
point on the line and p is the line constant. To locate the interface at each cell with
a given volume fraction distribution, one can first calculate the normal and then the
corresponding line constant for each line segment. The line constant p follows from
enforcing the volume conservation and the interface normal n follows from volume
fraction gradients. Extension of Youngs’ second method and Least Squares will be
used for calculating normals. Based on [18], p is determined.

2.1 Finding the Interface Normal

We first present the DLS method on triangular meshes. In details, the neighborhood
(tessellation) chosen to calculate the normal at each interfecial cell in least squares
manner will be illustrated. Since this method is at best first order accurate, we then
detail the GLS method on triangular meshes which leads to second order accurate
in that it reproduce line interface exactly as Pilliod [19, 30] conjectured. Since the
GLS method is an iterative method, we will use the DLS solution as an initial guess.



2.1.1 Differential Least Squares

In the DLS method, volume fraction Taylor series expansions of f* are formed from
each reference cell volume fraction f; at point x; to each cell neighbor f; at point xi.
The sum (f7° — f;,)? over all n immediate neighbors is then minimized in the least
squares sense using the normal equations. For triangular meshes, the n immediate
neighbors are triangles having at least one vertex in common with the ith reference
triangle. Figure 1.a presents the reference cell (the bold cell) and its circumventing
neighbors contributing in calculating the normal. All coordinates are evaluated in
the mass center of triangles. The L, norm minimization yields the volume fraction
gradients as solution to the linear system (in 2D)

AT Ax = ATb, (9)
where
wi(Te — i)  We(Ye — ¥i) wi(frx — fi)
A= : : , b= : ,

where wy = 1/|xx — x;|* (£ = 2 is taken) and

x_<vyﬂ>.

The normal is then computed as

where

IV fil = \/(Vafi)? + (Vy )2

Exact calculation of reconstruction gradients for linear f is guaranteed. However,
even for linear interface, the f distribution through the tessellation is not linear
(Figure 1.a). Therefore, DLS does not yield second order accuracy as can be seen in
Figure 1.b where DLS solution results in the different line for the interface. Figure
1.b also shows that the approximated interface for the bold triangle produces the
volume fractions which are different than those produced by the exact interface
(Figure 1.a). Minimizing of these difference is the heart of GLS method which has
been proved to be second order accurate.

2.1.2 Geometric Least Squares

Consider the tessellation of triangles in Figure 1, circumventing the bold triangle.
Let f(z) be a curve that passes through the bold cell and let the f; for i =1, ..., n,
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(a) (b)

Figure 1: The tessellation of the bold cell (reference cell). (a) exact line interface (dashed line)
and the corresponding volume fractions. (b) The extension of the reconstructed line interface of
the bold cell through the tessellation using DLS and the corresponding volume fractions.

where n is the number of triangles, represent the volume fractions due to the function
f, in the tessellation. Now let f be a linear approximation of f with slope m and
the volume fractions f; and assume that f has the same volume fraction in the bold
cell as f; i.e., fy = f, ,where b stands for bold cell. Define E? to be the discrete L?
error between the volume fractions in the tessellation of triangles circumventing the
bold triangle,

n
B} () = (3 (film) — £)?)?. (11)
i=1
In the GLS algorithm one minimizes E? as a function of m by rotating the line f
under the constrain that this line exactly reproduce the volume fraction in the bold
triangle, f, = o

Note that if the f(x) is linear, the GLS algorithm reconstructs the line exactly,
assuming the minimization procedure will always find the global minima. This claim
is true because the E? has the minimum value of 0 when the the f(z) is linear.

In practice the f(z) is considered as a function of the angle § measured with
respect to the horizon instead of 7. Therefore § can vary in the interval of 0
and 2 x m. To obtain the global minima, one may first divide the interval into
infinitesimal subdomains. He then evaluates the Ef(é) in all of subdomains to get
the global minima. However, this method is not efficient due to its large number of
E?() evaluations. The practical way starts with an initial guess and using a 1-D
minimization methods to reach the minima, where Brent’s algorithm (e.g., [31]) is
used to find the minima. The DLS solution offers an ideal initial guess. Usually
minimization algorithms need the minima to be banded before iterations starts.
Brent’s algorithm is an iterative method that fits a parabola over the interval, and
uses the minimum of the parabola as the next guess for the minimum of the given
function. If it cannot fit a parabola, it does a golden section search. The method

stops when both the interval and consecutive guesses are within a given tolerance.
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Figure 2: Circular interface, dashed line, with radius of 0.368 centered at (0.525,0.464) on a
unit triangulated square. The L; norm errors between the exact volume fractions and linear
approximations for the mixed bold triangles are plotted in Figure 3.

In our case, we gradually change the initial guess in two directions until the
errors at endpoints of the interval become greater than the one given by the initial
guess. How do we guarantee that the initial interval includes the global minima
not the local one? Figure 2 shows a circular volume distribution on the triangular
meshes. Figure 3 illustrates the variation of the E?(f) with respect to 6 on the bold
triangles represented in Figure 2. Figure 3 also depicts the DLS solution used as
initial guess for those cells. We observe that except for the triangle number 2 on
Figure 2, the other three plots just have one minima. The plot corresponding to the
triangle 2 has several minima but the difference between the local minima and the
global is more than 7/2 radians. This difference is substantially greater than the
difference between the DLS solution and the global minima as depicted in Figure 3.
However, the proof of the fact that the initial interval based on the DLS solution
whether includes or not the global minima for any interface topology is beyond the
scope of this paper. We just claim that it works for our cases because we obtain
second order spatial accuracy for all experiments.

Note that in order to evaluate the E? at each 7 the interface is reconstructed at
all triangles in the tessellation. It means that at each iteration of the minimization
procedure n line constant calculations are performed. Since n is multiplied by the
number of iterations, the GLS appears to be prohibitively expensive in particular
for 3-D problems.
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Figure 3: L? error between volume fractions for circular interface at four bold triangles in Figure
2. versus the angle measured from the horizon. The square marks indicate the DSL solution for
those Triangles.

2.2 Finding the Line Constant

The value of p is governed by a volume conservation law. In other words, the value of
p is constrained such that the resulting line passes through the cell with a truncation
volume equal to the cell material volume V. This determination requires inverting
a relation V(p), in which V' can vary linearly, quadratically, or cubically with p,
depending upon the coordinate system and the shape of the n-sided polygon formed
by the interface segment truncating the cell. Here V (p) is the material volume in the
cell bounded by the interface segment (with line constant p) and the portion of the
edges within the material. It is tempting to construct an algorithm for determining
p based on a direct solution of the relation V(p). However, since this relation is
often nonlinear and varies in each mixed cell, and since also it depends upon local
data, a “case-by-case” implementation showed that it is not efficient (vectorizable
or parallel), nor general, nor concise, nor easily maintained and understood, partic-
ularly for irregular grids. Instead relation V' (p) is inverted iteratively in each mixed
cell (a mixed cell is a cell with f between zero and one). The resulting algorithm is
therefore independent of the mixed-cell properties and data.
The line constant p is calculated when the general nonlinear function

becomes zero. To calculate V(p), the truncated volume resulting from the intersec-
tion between the assumed line segment and the reference cell is found from an initial
guess of p. When V(p) and V are equal (to within some tolerance), the interface
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segment is declared “reconstructed” in that cell. To find the zero of this function
(F'(p)), Brent’s method has been used in this paper. Since Brent’s method use an
inverse parabola interpolation, it is suitable for finding the root of F'(p) as V often
varies quadratically with p.

A well chosen initial guess for p improves convergence. p is initialized prior to the
iteration in the following manner. Lines possessing the interface normal n are passed
through each vertex of the polygon cell (triangle), and the resulting truncation
volumes are computed. Second, these two lines forming truncation volumes that
bound the actual material in the cell, i.e, provide upper (pnq;) and lower (ppmin)
bounds for p. The initial guess for p can then be a linear average of p,,;, and pp,qz-

The constant line finding algorithm can be summarized in the following steps
as found in [18]:

1. Given an interface line segment, truncate a mixed cell.

2. Find and assemble the n vertices of the polygon formed by those cell ver-
tices inside the fluid and the interface line/cell edge intersection points (using
geometric functions).

3. Calculate the volume bounded by this polygon.

4. Determine if the polygon volume differs from the known fluid volume by some
prescribed tolerance.

5. If the volumes differ, use Brent’s method to find a new estimate for p in
equation (4) and go back to step 1.

6. If the volumes do not differ, the interface line is declared reconstructed.

The intersection in the line constant calculation process can be handled properly
by using simple geometric functions as suggested by W. Rider and D. Douglas [1].
These functions which are widely used in the field of computational geometry (e.g.,
[32]) are: (1) Line-Line intersection, (2) Point location, (3) Polygon collection and
(4) Polygon area. They can be freely accessible via http://public.lanl.gov:80/mww/
publicas.html.

2.3 Time Integration

The time integration part of the VT method employs the forward trajectories remap-
ping. In this algorithm, to evolve volume materials in time, first the original grids
(Eulerian grids) are projected along trajectories to obtain the Lagrangian grids.
This step is called the Lagrangian phase. The heart of the Lagrangian phase is
finding the trajectories. In other words, the velocity field must be integrated from
the original grids to Lagrangian grids, and can be written as:

tn+1

(") = 2(t") + n udt (12)
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where z1,(t"™!) is the coordinate of the Lagrangian grid and the x(¢") is the original
coordinate and u is the velocity vector. Here the integration is carried out in 2-D.
If the velocity field is analytically integrable in time, exact integration is performed,
otherwise, one should use numerical schemes to integrate (1). Note that numerical
integration is a practical approach since the real flow often does not even have the
exact expression for velocity due to nonlinearity of the Navier-Stokes equations.
Therefore, using numerical integration even for the exactly integrable cases reveals
more insight into the performance of the method under real situations. For some of
our problem tests we use numerical schemes like trapezoidal role, associated with
Crank-Nicholson schemes, or second order Range-Kutta techniques for system of
differential equations.

For the Trapezoidal rule, the new coordinates of Lagrangian meshes are ob-
tained from averaged velocity over the time step multiplied with the time step. The
descretized form of the equation (12) employing the basic Runge-Kutta (midpoint
method) for the given velocity field

dx
° k; = dtu(t",x(t"))

1
k, = Stu(t™ + 6t, x(t" + ékl))

x(t") = x(t") + ko, (14)

where x,u,ky, ks are 2-D vectors. x,u are coordinate and velocity vectors re-
spectively. In the next step, the volume materials are reconstructed on the new
Lagrangian grids (reconstruction step), assuming that volume fractions remain con-
stant during the Lagrangian phase. The Reconstruction step includes calculation of
normals, interface segment location and finally volume material truncation at each
Lagrangian grid. In Figure 4 that visualize the VT algorithm, quadrilateral a;b.ed
(shaded region) is the truncation polygon on the a;bcy.

The assumption of constant f leads to exact results of volume material con-
servation provided no changes of the original volume occur during the Lagrangian
phase (velocity integration). Since all velocity fields studied in this work are diver-
gent free due to incompressibility, the exact integration does not lead to any volume
conservation violation, but numerical schemes, like trapezoidal and Runge-Kutta
schemes, do not consider the divergent free constrain, so the volume material is not
conserved. However, in most cases this error is at least two order of magnitude
smaller than the interface error. Therefore it does not defect the solution.

The final step of the VT algorithm is to deposit the volume materials truncated
on the Lagrangian grids to the target grids which are the original grids in our al-
gorithm (remapping phase). Remapping phase is performed via a series of polygon

13



Figure 4: Forward Trajectories remapping. Triangle abc as an original grid, triangle arbrcy, the
corresponding Lagrangian grid and quadrilateral arbred the truncated material polygon on the

aLchL.

intersections if volume materials and target grids are treated as polygons. In prac-
tice, depending on the CFL number some levels of circumventing triangles must
be searched for intersection. (Circumventing triangles are triangles circumventing
the reference triangle, reference triangle is abc in Figure (1)). For instance, if the
CFL is substantially smaller than 1, searching one level of circumventing triangles
is enough. This searching procedure makes the remapping algorithm to be more
expensive than the corresponding advection one.

For intersections, the algorithm developed by K. Schutte [33] is used. This
algorithm is capable of finding an intersection of two possibly concave polygons with
quadratic time complexity. Since polygons formed during the reconstruction steps
have small number of vertices (4-sided or 3-sided polygons for triangular meshes),
quadratic time complexity does not considerably defect the complexity of the whole
algorithm.

In summary, consider the Figure (4). It illustrates the three steps of the remap-
ping method for the reference element abc. This element moves along velocity tra-
jectories, dashed arrows, to apbrcy. This is simply the Lagrangian phase. Forming
the quadrilateral aybred on the element arbrcy, is the reconstruction part. Finally,
part of the remapping phase for the reference is finding the intersection of the shaded
polygon arpbred with the reference cell abc. To complete the remapping phase and
finding the new volume fraction f for abc the overlap of abc with other material
polygons formed on the neighboring Lagrangian elements must be found.
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(a) (b)
Figure 5: Piecewise linear reconstructed interfaces for the interface normal n on a triangular

grid, offset circle. (a) Reconstructed interface using the DLS method . (b) Reconstructed interface
using the GLS method.

Triangles Error Order Triangles Error Order
2x10% | 4.44 x 1073 2x10% |2.24x1073

0.91 2.03
2x20% | 2.37x1073 2 % 20% | 5.50 x 1074

1.08 2.07
2x40% | 1.12x 1073 2x40% | 1.31 x 107

0.93 2.04
2 x80% | 5.87 x 1074 2 x 80% | 3.18 x 107°

1.08 1.89
2 x 1602 | 2.77 x 10~* 2 x 160% | 8.59 x 106

Table 1: L; Circle Reconstruction Error: (a) using DLS method, on left and (b) using GLS
method, on right.

3 Verifying Experiments

In this section, we first examine the accuracy of both the DLS and the GLS interface
normal calculation methods. Since no approximation occurs during the line constant
process, normal finding tests actually clarify the behavior of the reconstruction
portion. We then report the behavior of the VT algorithm on evolutionary problems:
simple translation and solid body rotations as primary tests and a vortical flow as
a more realist test.
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Figure 6: Piecewise linear reconstructed interfaces normal n on the triangular grid, offset circle.
(a) DLS method; Zoom of a specific region, dashed line represents the initial circle (b) GLS method;
Zoom of a specific region of the interface, dashed line represents the initial circle.

3.1 Interface Reconstructing accuracy

The DLS and GLS methods are examined on reproducing a circular body (radius
0.368) centered at (0.525,0.468). The domain is a unit square partitioned by either
unstructured or structured triangles. Structured grids are just used for convergence
study. Figure 5 and 6 show the qualitative comparison between the DLS and GLS
methods on reproducing the circular interface.

Qualitative results for the reconstruction algorithms are also presented in the
form of L, errors and convergence rates. The L; error is the absolute value of the
area difference between the material corresponding the exact interface and the ap-
proximate solution at each interfacial(mixed) grid. The summation of these portions
over all mixed cells gives the L, error. Table 1 represents the error and the rate of
convergence for 2 x 102,2 x 202,2 x 402,2 x 80? and 2 x 1602 structured triangles for
the two reconstruction methods.

Table 1 clearly shows the rate of convergence which is first order accurate for the
DLS method and second order accurate for the GLS method. First order accuracy
of the DLS is due to the discontinuity of the volume fraction f distribution caused
by treating the integrated quantity f as a continuous quantity at the center of the
grid. This behavior of the DLS has also been reported on uniform orthogonal grids
by Rider [18] and Pilliod [19, 30]. Since the GLS method is a linear approximation
of the interface, the greater the ratio of the grid size over the curvature radius of
the real interface, the better approximation. As seen in Table 1, the finer the grid
(with the constant curvature radius) the smaller the GLS error with respect to the
DLS error. For example, the error ratio of these two methods is around 2 for the
coarsest mesh (2 x 10?) and is around 20 for the finest one (2 x 160?). Figure 6.b
also shows this concept but in a slightly different way on a rather coarse mesh. In
other words, for the GLS method, different local accuracy is recognizable in different
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Figure 7: Performance of the VT method in translating an initially circular fluid body at 45° for
a distance of two domain diagonals on 3034 unstructured triangles. (a) Reconstructed interfaces

based on the DLS normal calculation. (b) Corresponding error contours. (20 contour levels on
the interval of —5 x 1075 and 5 x 1075.) (c) Reconstructed interfaces based on the GLS normal

calculation. (d) Corresponding error contours. (20 contour levels on the interval of —5 x 1075 and

5x 1075.)

grids. For instance, if the cell contains a longer interface, the real interface and the
approximated one are not fully matched due to the fact that the cell involves higher

curvature.
Triangles Error Order Triangles Error Order
2 %322 [9.87x107* 2 x32% [1.60x 107"
0.88 1.09
2 x 642 | 5.38 x 10~ 2 x 642 | 7.53 x 107°
0.81 1.61
2 x 1282 | 3.06 x 1074 2 x 1282 | 2.46 x 107

Table 2: L; error norms and convergence rates for a circular fluid body translated two domain
diagonals at 45° angle to the grid;left) the DLS method and right) the GLS method.
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3.2 Evolutionary Problems

To examine the VT algorithm, we set up two inherently different problems. First,
translation and solid body rotation are investigated so no deformation is taken
place during the evolution. Therefore, the initial shape must be conserved. Second,
a vortical flow is investigated; therefore, bodies undergo large deformations enable
us to asses the performance of the algorithm on physical problems.

(a) Translation test: An initially circular body (radius of 0.25) centered at
(0.5,0.5) of a unit square, is translated two domain diagonals ( the lengh of two
diagonals is 1 unit) with a unit constant solenoidal (divergent free) velocity field.
The translation time is divided to four smaller time period in which velocity sign is
constant. Therefore, the circular body should return to its initial position after one
complete period.

Figure 7 shows the qualitative result of the translation test on a fully unstruc-
tured triangular grid. The CFL number is 0.3 and is based on the characteristic
mesh size resulting from the minimum area constraint in mesh generating. Triangu-
lation characteristic which has 3430 triangles are no area less than 0.00048 and no
angle less than 31.5. (Note that all results except for convergence studies occure on
this mesh.) (The Triangulation is performed by the freely accessible C code “Trian-
gle.c” via http://www.gams.nist.gov.) Figures 7.a and 7.c show the circular body
after one complete translation period for the two normal finding methods, DLS and
GLS, respectively. Figures 7.b and 7.c report the corresponding error contours. Er-
ror norms can be defined based on some positive-definite measure of the differences
observed between the computed and exact values of f. The L; norm is defined as

EM =3N"Vilf

computed exact
,J 2,J : (1 5)
grid

It is chosen to estimate the computed error.

Quantitative study exploits 2 x 322, 2 x 642 and 2 x 1282 structured triangles.
The L; error norm and convergence rate are presented in Table 2, on (a) on the left
corresponding errors of the DLS and (b) on the right the ones of the GLS. The CFL
number of 0.5 is used.

The VT algorithm associated with the GLS method performs better than the
DLS method as it is clear from Table 2 and Figure 7. The GLS represents results
with more accuracy and convergences with greater rate (Table 2). This is also
obvious from the error contours in Figure 7.d which are fewer than the ones of
Figure 7.b.

(b) Rotation test: An initially circular body (radius of 0.15) centered at
(0.5,0.75) revolves around the center of the unit squared domain with the unit
constant angular velocity for one complete revolution. The similar qualitative re-
sults are presented with the CFL of 7/12, Figure 8. The convergence study are
also reported in the same manner but with the CFL of 7/6. All of these results
are associated with the exact velocity integration. However, in order to study the
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Triangles Error Order Triangles Error Order
2x322 | 1.10 x 1073 2 x 322 |6.50x 1072

0.81 1.95
2 x 642 | 6.27 x 107* 2 X 64% | 1.68 x 1074

0.91 1.89
2 x 128 | 3.33 x 10~* 2 x 128% | 4.54 x 107°

Table 3: L; error norms and convergence rates for a circular fluid body rotated one complete
circle associated with exact velocity integration; on left the DLS method and on right GLS method

Triangles Error Order | Volume error

2 x 322 640 x10°* 1.30 x 10°©
1.97

2 %642 | 1.63x107% 1.62 x 1077
1.90

2 x 1282 | 4.37 x 107° 2.03 x 108

Table 4: L; error norms, convergence rates and volume errors for a circular fluid body rotated
one complete circle associated with Trapezoidal velocity integration and the GLS method.

performance of numerical integration, we present the quantitative results of VT al-
gorithm associated with the Trapezoidal time integration for the GLS reconstruction
algorithm. In Table 4, the volume error due to the numerical integration is reported
in addition to L; error norm and the convergence rate.

Figure 8 and Table 3 clearly show that the GLS method is more accurate than
the DLS method for the solid body rotation. The GLS method is second order
accurate while the DLS appears to be first order accurate. Table 4 shows that
the behavior of the reconstruction error and the rate of convergence in the case
of Trapezoidal numerical integration is almost the same as the exact integration
reported in Table 3 for the GLS normal calculation. Since the spatial accuracy
governed by the reconstruction portion of the VT is second order accurate, the
exact velocity integration with the second order spatial accuracy just yields the VT
of the second order accurate which is also achieved by using the Trapezoidal rule
integration. However, in contrast to the previous cases, the mass is not conserved
exactly due to violating divergent free constraint during the numerical integration;
but it does not affect the solution because the volume errors are at least 2 order of
magnitude smaller than the reconstruction errors.

(c) Vortical flow: Our last test problem imposes a vortical flow that stretches
and potentially tears any interfaces carried within the flow. It contains a single
vortex that will spin fluid elements, stretching them into a filament that spirals
toward the vortex center. The initial condition of the test is the same as rotation
test. Pictures on the right sides of Figure 9 resembles the exact behavior of the
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Figure 8: Performance of the VT method in rotating an initially circular fluid body for one

revolution on a 3034 unstructured mesh. (a) Reconstructed interfaces based on the DLS normal
calculation. (b) Corresponding error contours. (20 contour levels on the interval of —5 x 1075 and
5 x 1075.) (c) Reconstructed interfaces based on the GLS normal calculation. (d) Corresponding
error contours. (20 contour levels on the interval of —5 x 107° and 5 x 1075.)

flow. These pictures are obtained by considering the initial circular body as fluid
particles on a fined grid (2 x 2502 triangles) and simply evolving those particles in
time with a simple Euler forward scheme albeit with a very small time step (0.001).

For VT model of the flow, the vertices of the grid are integrated in time using
the basic Range-Kutta method (the midpoint method) to obtain the Lagrangian
grid. The GLS normal calculation method is used in the reconstruction procedure.
The VT model of the flow is presented on the left of Figure 9 which are performed
in the CFL of 1/8/3 on the same unstructured triangulation of the unit square. By
integrating to late times, it is possible to observe the behavior of our VT method
under rather extreme circumstances, whereby filaments become thinner than it is
supportable by the computational mesh. In Figure 9, the solution becomes poor
when interface topology is not resolved, i.e, as exhibited by single filament breaking
into series of fluid clumps that are each supportable by the reconstruction method.
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By t = 4.5 (Fig. 9.j) the body has fragmented into numerous pieces.

Convergence results are obtained by time-reversing the flow using Leveque’s
cosine term. As the reversal period 7" becomes longer, the fluid body evolves further
away from its initial circular configuration; hence, it must undergo increasingly
complicated topological change to reassemble properly at ¢ = T'. Convergence results
for the single vortex velocity field indicate that our method is remarkably resilient.
The method exhibits second order convergence, even for long periods (7' = 8), where
appreciable interface tearing and topological change have occurred. This is indicated
by the L; error norms and convergence results shown in Table 5, 6, 7. Figure 10
illustrate that solution errors are more evident for longer reversal period.

The mass error is also presented in Table 5. Again, it is at least one order of
magnitude smaller than the interface error; therefore, it does not nullify our results.

This behavior is reasonable and expected, given the assumptions inherent in
the reconstruction, namely a piecewise linear interface approximation. The break
up exhibited in Figure 9 can be interpreted as an application of “numerical surface
tension” along interfaces that are resolved inadequately. High curvature regions
are those unresolvable regions having interfaces with a radii of curvature less than
roughly a mesh spacing. The piecewise linear approximation immediately flattens
these regions, effectively applying numerical surface tension. Thin filament regions
can also be the recipients of numerical surface tension, because poor linear recon-
structions occur in these regions from inaccurate interface normal estimations. Nu-
merical surface tension in these high curvature and thin filament regions can be
easily reduced with increased refinement.

Triangles Error Order | Volume error

2x 322 [328x107* 1.26 x 107°
1.88

2 x 642 | 8.94 x 107° 1.59 x 106
2.43

2 x 1282 | 1.66 x 10~° 1.86 x 1077

Table 5: L; error norms, convergence rates and volume error of the single vortex flow field for
T = 0.5 and using the GLS method as the normal finder.
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simulation at 6.
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—107° and 1079).

=T for T = 2.0 (20

(a) Reconstructed interfaces at ¢

3430 triangles using GLS as normal finder.

(b) Error contours at t = T for T = 0.5 (20 contour levels in the interval of

(¢) Reconstructed interfaces at ¢ = T for T = 2.0. (d) Error contours at ¢

in the interval of —9 x 1075 and 9 x 1075. (e) Reconstructed interfaces at t = T'/2

for T'= 8.0. (f) Reconstructed interfaces at ¢t =T for T = 8.0.

contour levels
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Triangles Error Order | Volume error

2x32%2 [1.85x 1073 4.43 x 107°
1.82

2 x 642 | 5.25x 107* 5.44 x 1076
1.89

2 x128% | 1.42 x 107* 7.44 x 1077

Table 6: L; error norms, convergence rates and volume error of the single vortex flow field for
T = 2.0 and using the GLS method as the normal finder.

Triangles Error Order | Volume error

2 %322 | 355 %1072 1.57 x 10°*
2.31

2 x 642 | 7.17 x 1073 2.65 x 107
2.32

2 x 1282 | 1.44 x 1073 2.80 x 107

Table 7: L; error norms, convergence rates and volume error of the single vortex flow field for
T = 8.0 and using the GLS method as the normal finder.

4 Conclusion

A piecewise linear remapping volume tracking algorithm on triangular meshes is
presented in this paper. The details of the normal line finding is given for two meth-
ods; differential least squares (DLS) and geometric least squares (GLS). Applying
these two methods for reproducing circular interfaces leads to first order accuracy
for the DLS method and second order accuracy for the GLS method. Moreover,
the error associated with the GLS method is substantially smaller than the DLS
method. The volume tracking algorithm is also examined under two inherently dif-
ferent evolutionary problems: (a) a translation test and a solid body rotation test
and (b) a vortical flow field.

The first test series that induce no topology changes not only demonstrate the
behavior of the volume tracking algorithm in translation and rotation, but also, com-
pare the performance of the associated DLS and GLS normal calculation methods.
Again, the volume tracking with the GLS method appears to be remarkably superior
to the DLS method in both error values and convergence rates. Since the Lagrangian
phase of the remapping method is handled through exact time integration of the
velocity field, second order accuracy in rotation test is achieved. In order to ex-
amine the volume tracking method with inexact velocity integration, the rotation
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test is repeated with numerical trapezoidal rule integration. Since the trapezoidal
rule is second order accurate, the accuracy and convergence rate is almost the same
as the previous exact integration. However, volume is not conserved; although, it
does not defect our solutions. Mass conservation violation is due to the forward
trajectory remapping in which the reconstruction, with constant volume fraction
during the Lagrangian phase, occurs on the Lagrangian grid that may have different
volume compared to the original grid. (It may expand or contract depending on the
approximated velocity integration).

Our last test imposes a vortical flow field that contains a single vortex. It
stretches and potentially tears any interface carried within the flow. To find the
trajectories, the basic second order Rungge-Kutta integration is carried out on the
corresponding velocity field. The qualitative results on a rather coarse grid are
remarkably good for short periods of times; but, become poor for long periods, as
the filaments break up into numerous pieces. The break up is due to existence
of high curvature and thin filament regions that are not resolvable by comparably
coarse computational cells. Despite the break up, quantitative convergence (with
the quadratic rate) does occur under grid refinement.

Several aspects of the algorithm deserve further attentions. First, the algorithm
can be equipped with adaptation techniques to capture accurately and efficiently
high curvature and thin filament regions of flows. Adaption can be easily imple-
mented, being an important feature of the triangular grid. Second, for more difficult
applications in which mass conservation is essential backward trajectory remapping
can be replaced with forward trajectories method. Since in backward trajectories,
reconstruction occur on the original grid, no mass violation happens. Finally, the al-
gorithm can be coupled with an appropriate incompressible Navier-Stokes solver to
model more physical flows in which a principle feature is the presence of an interface
between two fluids with different fluid properties.
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