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A three-dimensional finite element method has been implemented to predict the 

transmission loss of a packed muffler and a parallel baffle silencer for a given frequency 

range. Iso-parametric quadratic tetrahedral elements have been chosen due to their 

flexibility and accuracy in modeling geometries with curved surfaces.  For accurate 

physical representation, perforated plates are modeled with complex acoustic impedance 

while absorption linings are modeled as a bulk media with a complex speed of sound and 

mean density.  Domain decomposition and parallel processing techniques are applied to 

address the high computational and memory requirements.  The comparison of the 

computationally predicted and the experimentally measured transmission loss shows a 

good agreement. 
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1. INTRODUCTION 

Since numerous physical phenomena include a form of wave propagation, there has 

always been an interest in understanding and modeling wave propagation and its 

interactions with other physical phenomena. 

 

In general, there are three concerns in developing an appropriate model for a physical 

phenomenon: the complexity of the actual physical phenomenon, the minimum required 

accuracy and lastly, the available analytical, experimental and computational resources.  

Due to the fact that phenomena involving wave propagation can potentially be complex 

and require high accuracy, this constraint in computational resources limits the models to 

address rather simple problems only. However, in recent years, swift advances in the 

computational capacity of microprocessors and lower prices for memory have created a 

new perspective for developing other powerful models, such as finite element methods, to 

address complex wave propagation problems. 

 

This work focuses primarily on noise control technology. A three-dimensional finite 

element method is implemented and applied to solve several noise control problems.  
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More specifically, three-dimensional time-harmonic wave propagation in air and porous 

media is modeled whereby porous materials may be used as acoustic absorbers or as 

filters in mufflers and silencers. Therefore, finite element modeling can be used for 

predicting the transmission loss (TL) in the problem of interest at a given frequency 

range. 

 

In the last decade, finite element methods have been widely used to solve Helmholtz’s 

equation, a governing equation for time-harmonic wave propagation, mainly in two-

dimensional domains. A major challenge for using finite element methods for 

Helmholtz’s equation is that a specific resolution requirement for minimal wavelength 

must be respected for control of the approximation error.  Dispersion analysis 

demonstrates that because of a pollution effect associated with a phase error, it is 

generally more difficult to meet the resolution requirements for higher frequencies [1].  In 

one of the most recent studies, general resolution rules that account for the pollution 

effect are derived by F. Ihlenburg [2]. 

 

Several finite element methods have been developed to ease resolution requirements 

which are seemingly an open problem. C. Farhat et al. [3] briefly reviewed many 

suggested methods in the literature and, consequently, offered a discontinuous Galerkin 

method with plane wave basis functions as the most effective approach for solving short 

wave Helmholtz’s problems. A simpler modification of the standard Galerkin finite 

element method based on least-squares stabilization is provided by I. Harari et al. [4] to 

effectively relax the resolution requirements. Since the focus of this work is on the 

application of the finite element method, the use of quadratic elements are deemed 

sufficiently capable of addressing this issue. 

 

As mentioned before, due to restrictions in computational resources, most of the early 

published applications of finite element methods for time-harmonic wave propagation 

had been limited to two-dimensional domains. This has been changed in recent years, and 

more examples of three-dimensional applications can be found in the literature. For 

instance, a three-dimensional finite element model was developed by T. Koike et al. [5] 

to clarify the acoustic mechanisms of the human middle ear without direct measurements 

since these are difficult to conduct. R. Tezaur et al. [6] generated a three-dimensional 

finite element method with quadratic tetrahedral elements for acoustic scattering 

problems in exterior domains. The acoustic absorption of multi-layer absorbers was 

studied by F. -C. Lee et al. [7] using a Galerkin finite element method with eight-node 

brick elements. 

 

While recent versions of most commercially available finite element software packages, 

such as FEMLAB, ABAQUS, MSC.Nastran and ANSYS, have included three-

dimensional acoustic simulations, it is still advantageous to develop an open-source finite 

element code because many improvements to the numerical methods and the physical 

modeling remain.  In this work, a particular parallel processing concept has been 

implemented to address larger problems with the available resources.  Furthermore 

specific components of mufflers and silencers, such as perforated plates and absorbing 

materials have been modeled. 
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Regarding applications for mufflers and silencers, M. L. Munjal [8], in an overview of 

the last decade of research in the Indian Institute of Science, concluded that more 

research is required in “FEM analysis of complex geometries like perforated element 

mufflers in order to incorporate 3-D effects”.  In a recent study, S. Bilawchuk et al. [9] 

compared various numerical methods for calculating the transmission loss in silencers. It 

was concluded that the combination of the finite element method and the three-point 

method is advantageous over other considered methods. A three-dimensional direct 

mixed-body boundary element method for packed silencers was created by T. W. Wu et 

al. [10], including modeling of perforated plates and two different acoustic media; i.e. air 

and absorbing material. This method is based on the multi-domain boundary element 

method which necessitates homogeneous and isotropic subdomains. To verify the 

formulation, several test cases were examined and the results were compared with 

experimental data. In this work, we examine several of those test cases using our three-

dimensional finite element method.  

 

In practice, finite element simulation requires high computational and memory resources, 

particularly at higher frequencies. Using domain decomposition and parallel processing 

techniques, one can take advantage of the simultaneous computational and memory 

capacity of several computers for solving one problem in parallel. Our methodology 

applies a domain decomposition method for division of the original system into several 

subproblems.  

 

Following this introduction, diverse general noise control problems, including the 

problems at hand, will be described in Section 2. Section 3 briefly presents mathematical 

models of wave propagation in an ideal gas and porous media, as well as through a 

perforated plate.  In Section 4, several common approaches to investigate noise control 

problems will briefly be reviewed and a finite element method is presented in more 

detail. Section 5 reports the finite element results and provides a comparison with 

experimental data. Finally, Section 6 will conclude this work and suggest future research 

directions. 

 

2. NOISE CONTROL PROBLEMS 

There are a variety of noise sources and noise propagation problems surrounding us.  

However, almost all noise propagation problems belong to one of the two main 

categories. The first category involves noise propagation problems whereby the 

frequency and the amplitude of the source are known; for example, a vibrating structure 

or fluid on the boundary of the domain. The second type entails noise propagation 

problems such that the source of the noise is coupled with the noise propagation problem. 

An example of this is the turbulence of fluid flow within the domain. These two main 

categories of noise control problems are known as, respectively, vibroacoustic and 

aeroacoustic problems. For the problems we examine, the major source of noise is known  

at the inlet pipe; hence, these problems were considered as vibroacoustic problems. 
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Generally speaking, the goal is to reduce noise since excessive noise in our environment 

is shown to have damaging effects on human beings and other living creatures. 

Furthermore, high amplitude noise may produce vibrations and this can consequently 

lead to fatigue and the eventual break down of machine parts. 

 

Passive noise control techniques, such as absorption panels, acoustic enclosures, double 

glaze windows, mufflers, silencers and earplugs, are remedies implemented for 

controlling the impact of noise. A more recent approach in noise control technology is 

known as active noise control. It is based on measuring noise or vibration and then 

producing a wave with almost the same amplitude but in opposite phase in order to 

cancel out original noise or vibration. This is a relatively expensive process since it 

requires the use of microphones or accelerometers, a real-time control system and 

speakers or actuators. 

 

Accurate modeling of an acoustic field is an essential part of the design procedure in 

noise control systems. In this study, a packed muffler and a parallel baffle silencer are 

chosen as examples of noise control devices. Mufflers and silencers are extensively used 

in inlets and outlets of internal combustion engines, air compressors and fans for reducing 

the propagation of the noise generated in those machines. 

 

The most important acoustic property of a muffler and a silencer is its transmission loss 

which is defined as the difference between the output and input noise amplitude for a 

given frequency. The traditional method for evaluating the TL requires the solution of the 

acoustic field for two different boundary conditions and is called the four-pole method 

[11]. However, described in this research work is a faster method, the three-point method 

[12], used for the evaluation of the TL. 

 

Three-Point Method 

In the three-point method, the TL can be calculated with a single solution for each 

frequency.  This setting is presented in figure 1. At the input, there is a uniform velocity 

(or pressure) and the output is assumed anechoic. Letting x1 and x2 represent the 

coordinates of two points along the muffler axis while p, generally a complex value, 

represents the amplitude of the sound pressure at each point, the TL can therefore be 

evaluated by means of the following equation: 

o
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If c is the speed of sound propagation in the fluid and  is the angular frequency, then k 

is the wave number defined as k= /c. Subscripts Re and Im denote the real part and the 

imaginary part of a complex variable. 

 

 

Figure 1:  Location of the Points for the Three-Point Method in a Muffler 

 

3. MATHEMATICAL MODELING 

In aeroacoustic studies, the acoustic field is coupled with the flow field.  For 

compressible flow, the main governing equations are a set of non-linear partial 

differential equations: the Navier-Stokes equations. In vibroacoustic studies, the acoustic 

field may be coupled with vibrations of the solid structure.  Therefore, the governing 

equation is the wave equation in the elastic medium, which is linear. However, in most 

cases, the acoustic pressure is not strong enough to have a substantial impact on the solid 

structure so the two fields are not coupled. It is often the case that, in practice, the wave 

equation in an elastic solid is solved for the structure.  Then, the solution enables one to 

determine the boundary conditions for the wave equation in the fluid. 

 

The wave equation for a perfect gas with no damping can be derived from three basic 

fluid dynamic equations [11].  The linear wave equation is presented in equation (10). 

Pc
t

P 22

2

2

.                                 (10) 

where P is the sound pressure and c is the speed of sound such that 
isentropic

P
c 2 . 

Solving equation (10) with the corresponding boundary and initial conditions in the time 

domain gives P as a function of time and space. 

 

By assuming a time-harmonic solution for the sound pressure,
tip eP , the linear wave 

equation reduces to Helmholtz's equation given as equation (11): 

pkp 22
.                                  (11) 

It should be noted that p is in the frequency domain and therefore has a complex value. 

 

For mufflers and silencers, the transient state is not important so the acoustic field can be 

solved by applying Helmholtz's equation at every frequency. 

 

Perforated Plate 
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The basic assumptions for modeling a perforated plate in an acoustic field are continuous 

normal velocity and discontinuous pressure through the plate. Several empirical relations 

exist for relating the normal velocity, un, and the pressure jump ,Δp, through a perforated 

plate for various conditions. The simple relation proposed by Sullivan and Crocker [13] is 

considered sufficiently accurate for usage in this report. The dimensionless transfer 

impedance Zt of a perforated plate can be approximated as follows:  

fi
c

Z t 02.04.2
1

0

,                           (12) 

where σ is the ratio of the open area to the total area of the plate.  The pressure jump can 

be calculated as designated here below:  

nt ucZp 0 .                                  (13) 

Also, the normal particle velocity, un, and the normal sound pressure gradient are related 

as demonstrated in equation (14): 

nui
n

p
0 .                            (14) 

 

Porous Media 
Sound absorbing materials are exploited to absorb acoustic energy which eventually 

converts itself into thermal energy due to viscous and thermal effects. Sound absorbing 

materials are generally highly porous materials, so the acoustic wavelength is generally 

much greater than the dimensions of the pores. This is the key point in modeling porous 

media as a bulk. Based on the relations developed by Delany and Bazley [14,15], a 

porous material can be replaced by an equivalent fluid that is characterized by a complex 

speed of sound, cB, and a complex mean density, B. Both cB and B are related to the 

propagation constant, B, and the characteristic impedance, ZB , by these equations: 

B

B

i 
c ,              (15a) 

B

B

B
c

Z
.                                   (15b) 

B and ZB can be measured directly by the two-cavity method [16] or they can be 

calculated by empirical power law approximations [17], provided that the flow resistivity, 

R, is known. 

 

4. APPROACHES FOR MUFFLER ANALYSIS 

One of the first approaches utilized for studying mufflers referred to one-dimensional 

analysis in the frequency domain based on electro-acoustic analogy [18]. This approach 

has since then been elaborated on and combined with empirical approximations to deal 

with the effects of perforated elements, mean flow and mean temperature gradient [19, 

20, 21, 22]. Another one-dimensional approach employed is based on one-dimensional 

analysis in the time domain. In the latter approach, the equations are solved numerically 

in the time-domain to evaluate all acoustic waves simultaneously. One-dimensional 

analyses, based on plane-wave analysis, can predict muffler performance accurately as 

long as three-dimensional effects are ignorable. Hence, these analyses tend to be less 
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accurate when dealing with higher frequencies and complicated geometries. This can 

quite possibly be the reason why, in the past, the final design for mufflers was achieved 

mostly by trial and error. Moreover, designers were also limited to a certain number of 

basic elements, such as perforated tubes and expansion chambers, which were available 

and examined throughout numerous years. 

 

In the last decade, however, three-dimensional numerical analyses of mufflers, such as 

boundary element and finite element, have proved to be powerful tools for more accurate 

performance prediction and muffler designs. Three-dimensional numerical analyses 

require high computational and memory resources. Boundary element methods, BEMs, 

have the advantage of performing computations only on the boundaries of the domain 

and consequently, these methods have been applied to three-dimensional analysis more 

often than other available methods. However, finite element methods, FEMs, perform 

computations on the entire domain and are therefore more powerful. More specifically, 

FEMs are able to address problems in non-homogeneous domains. So, they have the 

potential to address acoustic problems in the presence of absorption materials, mean flow 

and mean temperature gradient. Moreover, it is shown that FEMs compare favorably to 

BEMs with regards to computational costs [23]. 

 

The Finite Element Method 

In this paper, a three-dimensional finite element method is implemented to assess the TL 

in a packed muffler and a parallel baffle silencer as illustrated in figure 2 and figure 3, 

respectively. In the parallel baffles, the absorption material is separated from air by 

keeping perforated plates on the sides and plane plates at the two ends. These examples 

are chosen to show the flexibility and accuracy of the method in addressing problems that 

arise when implementing typical components of a muffler or silencer. They are also 

selected due to the fact that measurement data is available [10]. It should be noted, 

however, that the application of the finite element method is not limited to these cases 

only. 

 

 

Figure 2: A Packed Muffler with Polyester Lining 
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(a) 

 
(b) 

Figure 3:  A Parallel Baffle Silencer; (a) Exterior Geometry, (b) Cross Section of the 

Parallel Baffles 

 

The governing equations can be written as shown below: 

022

aaa pkp    in a,                    (16) 

022

BBB pkp   in B,                    (17) 

where a and B are the domains of air and bulk porous material, respectively. The 

boundary conditions are consequently: 

0
n

p
   on rigid walls,                              (18) 

1p    at the inlet,                          (19) 

ikp
n

p
   at the outlet.                         (20) 

One-dimensional plane-wave propagation is assumed at the inlet and the outlet tubes. 

Hence, the anechoic boundary condition at the outlet has a rather simple form of a Robin 

boundary condition, identified in equation (20). At the interface between air and porous 

material, the normal velocity is continuous and the normal pressure gradient is 

proportional to the density ratio, thus represented as equation (21):  

BBaa n -unu ,    
n

p

n

p a

a

BB .              (21) 

On the perforated plate, equation (13) relates the two sides of the plate. Note that 

equation (12) is valid only for a perforated plate surrounded by air, so we must assume a 

narrow air gap between the absorption material and the perforated plate. 

 

At this point, one must introduce the following continuous space of complex functions:  
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where H1 is the Hilbert space. The variational formulation of the problem is to find Zp  

such that: 

Zv    dSvpikdSppv
Z

k
i

dSppv
Z

k
idvpkpvdvpkpv

op

pBa

S

oa

S

pp

t

a

S

pp

t

a

BBB

B

a

aaa

0

2

1

12

21

22

      (23) 

where So is the cross-sectional area of the output pipe and Sp1 and Sp2 are surfaces on both 

sides of a perforated plate. In equation (23), the first two terms (volume integrals) are 

associated with the governing equations for air and the porous material, respectively.  

The next two terms (surface integrals) are associated with the pressure jump through the 

perforated plates and they link the pressure of the two sides of the perforated plates.  The 

last term (a surface integral) is associated with the Robin boundary condition which can 

model the anechoic termination of the outlet tube. The computational model utilized is 

the standard Galerkin finite element method. The entire three-dimensional domain, , is 

divided into K conforming non-overlapping tetrahedral elements, Ω̂ j, such that: 

j

K

j

ˆ
1

 .                               (24) 

Iso-parametric quadratic elements are applied to model curved surfaces more accurately.  

More importantly, higher order elements are generally more accurate for wave problems.  

This has been shown both by dispersion analysis [1,31] and by by numerical experiments 

[32]. 

 

The discrete approximation space,
11 HH h , is defined as: 

)ˆ()ˆ( 2Im2ReImRe

1

jjh , v : vi vvvH ,          (25) 

where P2 are polynomials of degree two defined on each tetrahedral element, j, with four 

nodes on the corners and six nodes at the midpoint of each edge. 

 

The global basis functions,
1

hn H , are defined as: 

nmmn X )( ,   Nmn,1 ,                     (26) 

where N is the total number of global nodes and X is the coordinates of a global node. 

Using global basis functions, any function, v, can be approximated as: 
N

m

mmh XvXvXv
1

)()()( ,                  (27) 

where )( mm Xvv . 

 

Using equation (27) to expand all the functions appearing in the variational formulation, 

(equation (23)) in the discrete approximation space (equation (25)), the discretized 

equation leads to a linear system of algebraic equations obtained here below: 

fAp ,                                          (28) 
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where the coefficient matrix A is a sparse symmetric matrix, p is the vector of nodal 

values of the sound pressure amplitude and f includes the vector of nodal values of the 

forcing function. Here, f is non-zero only due to non-homogeneous Dirichlet boundary 

conditions at the inlet pipe. 

 

Since A, p and f have complex values the system can be written as: 

ImReImReImRe ))(( ffppAA iii .                (29) 

As a block system of equations, equation (29) corresponds to: 

ImImReReIm

ReImImReRe

fpApA

fpApA
.                                          (30) 

The block system given as equation (29) can be rewritten as a symmetric system: 

Im

Re

Im

Re

ReIm

ImRe

f

f

p-

p

A-A

AA
.                   (32) 

 

The block system derived above is solved using a parallel conjugate gradient iterative 

solver with a localized ILU(0) preconditioner that has no global dependency. An additive 

Schwarz domain decomposition method (ASM) for overlapped regions is applied to 

stabilize the localized ILU(0) preconditioning. Details of the domain decomposition and 

preconditioning technique can be found in the work of K. Nakajima and H. Okuda [24]. 

The standard Message Passing Interface (MPI) [25] subroutines are called in the code for 

all the message passing operations between the processors. 

 

While solving the above real system by a preconditioned conjugate gradient solver shows 

acceptable convergence for this particular problem, it should be noted this does not 

necessarily hold for general complex systems arising from finite element discretizations 

of Helmholtz’s equation because the resulting system is not always positive definite.  

Several iterative solvers for such complex systems have been developed and examined 

for different problems [28, 29, 30]. 

 

The components of the coefficient matrix A, Amn, are: 
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,1,
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.   (33) 

When applying equation (33), each component is first evaluated on each element, and 

then elemental matrices are assembled to form the global matrix A. In order to perform 

operations such as integration and differentiation required for calculating the elemental 

matrices, each element is transformed from the global coordinate system (x, y, z) to the 

reference elemental coordinate system (ξ1, ξ2, ξ3). 

 

For quadratic iso-parametric tetrahedral elements, the coordinates of the reference 

element are functions of the elemental basis functions, hi (ξ1).  The definition of the basis 
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functions as well as the details of the quadratic iso-parametric elements can be found in 

most standard finite element text books [33, 34, 35].   

 

The components of the elemental matrix Â, Âij, for an interior element, Ω̂ , can be 

presented as: 
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It should be highlighted that Jacobian, J, is not constant within an iso-parametric element.   

 

Elemental integration is performed numerically using Gaussian quadrature defined on the 

reference element. Numerical integration leads to an exact result if the number of 

quadrature points is selected properly according to the order of the polynomial that is to 

be integrated. For instance, a fifth degree polynomial is integrated exactly with 15 

integration points [26]. The surface integrations appearing in equation (33) are similarly 

performed on a two-dimensional triangular reference element. 

 

5. RESULTS 

The packed muffler is a cylindrical expansion chamber with polyester lining, as shown in 

figure 2. The radius of the inlet and outlet tubes is r = 2.54 cm (1 in.) whereas the length 

and the radius of the chamber are L = 45.72 cm (18 in.) and R = 10.16 cm (4 in.), 

respectively. Also, the thickness of the polyester lining is h = 2.54 cm (1 in.).  The 

parallel baffle silencer with three polyester baffles is shown in figure 3. The dimensions 

shown in figure 3 are: a = 12.7 cm (5 in.), b = (24 in.), c = (6 in.), d = (12 in.), e = (36 

in.), f = (2 in.) and g = (4 in.). The polyester lining material has a flow resistivity equal to 

16000 MKS rayls/m. 

 

The frequency range of interest is between 100 and 2800 Hz.  The element size for the 

finite element domain was chosen to provide a minimum resolution of 12 elements per 

wavelength to ensure that the resolution requirements were met and, consequently, that 

accuracy was maintained. Figures 4 and 5 show the discretized computational domain for 

the muffler and the silencer, respectively.  In these figures, the curved surfaces appear as 

flat surfaces due to graphical limitations of the software. 
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Figure 4: Finite Element Domain for the Packed Muffler: Surface Mesh 
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Figure 5: Finite Element Domain for the Parallel Baffle Silencer: Surface Mesh 

 

In figure 6 and 7, the finite element results are reported and compared to the experimental 

and BEM results given by T. W. Wu et al. [10]. Comparison of the results with the 

experimental data indicated that our finite element results are accurate for predicting the 

TL in the frequency range of interest. The slight difference between the finite element 

results and the experimental data can be as a result of the mathematical modeling. As 

presented in section 3, the mathematical model assumes no absorption in the air and a 

perfect reflection on the walls; this is not accurate, especially at higher frequencies where 

an acoustic wave carries more energy. Moreover, the porous material and the perforated 
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plates are approximated by complex acoustic impedance evaluated using rather simple 

empirical relations. This may explain the higher error in the results obtained for the 

silencer. As passive devices, acoustic damping in silencers is absorbed by material which 

ultimately plays a major role in the overall performance of the device. In mufflers, as 

reactive devices, impedance mismatch due to the sudden expansion is generally the key 

mechanism for suppressing noise. 

 

In order to show the importance of modeling the lining porous material as an absorbing 

bulk rather than an absorbing surface, the results of the BEM with the local-reacting 

approach is also presented as figure 6. In the local reacting approach, the local impedance 

of the lining was measured and the chamber radius was set to R
*
=R-h, where the local 

impedance is applied. As shown in figure 6, the boundary element results implementing 

the local-reacting approach are less accurate compared to the finite element results and 

boundary element results using bulk-reacting approach. 
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Figure 6: Comparison of TL for a Packed Muffler; Experiment and BEM (Local-

Reacting Approach) From T. W. Wu et al. [10] 

 

In figure 7, the FEM results as well as the BEM results with the bulk-reacting approach 

are presented and they are compared to each other and with the experimental results. It is 

shown that the FEM results are similar to the BEM results and that both are in good 

agreement with the experimental results for most frequencies. The slight difference 
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between the FEM and BEM results may be due to the difference in empirical relations 

applied for modeling the porous material.  
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Figure 7: Comparison of TL for a Parallel Baffle Silencer; Experiment and BEM (Bulk-

Reacting Approach) From T. W. Wu et al. [10] 

 

The frequency range for the silencer was limited to 800 Hz because of the slow 

convergence rate of the parallel iterative solver at higher frequencies. This is a detail that 

will be addressed in the future. 

 

Notes on Computational Aspects 

Some details and observations about the computational aspects of this work are presented 

here. 

 

The finest mesh for the muffler is composed of 153,319 nodes and 107,727 elements.and 

has a maximum element size of 1 cm. Since each node has two degrees of freedom, due 

to complex variables, the resulting matrix has 306,638 degrees of freedom. This requires 

1,419 Mb of memory for our code to run on one processor.  The serial conjugate gradient 

solver with ILU preconditioner necessitates 271 iterations to solve the system with  an 

accuracy of 1.0e-7 and for a frequency of 200 Hz. 

 



 15 

The finest mesh for the silencer has a maximum element size of 3 cm and is composed of 

180,412 nodes and 114,618 elements. The global system has 360,824 degrees of freedom.  

The computational domain for the silencer was divided into six subdomains to be solved 

by six processors in parallel. The partitioning was accomplished such that each parallel 

baffle is located entirely in one subdomain to improve the convergence rate. Even though 

this strategy is contradictory with achieving the best load balance, it seems necessary for 

convergence of the parallel solver to occur. This is due to the use of a localized 

preconditioner [36].  The maximum memory requirement for each processor is 641 Mb. 

The parallel conjugate gradient solver with localized ILU preconditioner needs 5,272 

iterations to solve the system with an accuracy of 1.0e-7 and for a frequency of 200 Hz. 

 

It has been observed that introducing discontinuities in the domain, such as porous media 

and perforated plates, has a significant negative impact on the convergence rate 

particularly for a parallel solver. This impact has not yet been quantified or studied 

closely in this work. 

 

6. CONCLUSION 

Successful three-dimensional finite element modeling of a packed muffler and a parallel 

baffle silencer demonstrate the ability of the FEM in modeling acoustic wave propagation 

in a non-homogeneous domain. This encourages extending the application of the FEM to 

more complex cases where other methods have failed to do so accurately. These results 

also motivate the development of more efficient computational methods, such as the 

spectral element method (SEM) and more efficient preconditioned iterative solvers. By 

doing so, it will be possible to address wider frequency ranges, as this 3-D FEM is still 

expensive regarding the computational cost for solving high frequency acoustic fields. A 

recent two-dimensional study by the authors of this report demonstrate that a significant 

gain can be achieved, both in terms of the degrees of freedom and CPU time, by 

undertaking p-extension, which involves increasing the order of the approximation, as 

opposed to h-extension, which involves reducing the element size [27].  This confirms 

the predictions by dispersion analysis [1,31]. 

 

To further improve the accuracy of the modeling results, the mathematical model should 

be improved.  For instance, the FEM has potential to include the effects of the mean flow 

and temperature gradient in the domain and more accurate empirical relations for 

modeling the porous media and perforated plates. 
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