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Abstract

Parabolic Yao-type Geometric Spanners in Wireless Ad Hoc Networks
Ojenie Artoun
Geometric graphs are frequently used to model a wireless ad hoc network
in order to build efficient routing algorithms. The network topology in
mobile wireless networks may often change therefore position-based rout-
ing that uses the idea of localized routing has an advantage over other
types of routing protocols. Since a wireless network has limited memory
and energy resources, topology control has an important role in enhanc-
ing certain desirable properties of these networks. To achieve the goal of
topology control, spanning subgraphs of the U DG graph such as Relative
Neighborhood Graph, Gabriel Graph and Yao Graph are constructed,

which are then routed upon rather than the original UDG.

In this thesis we introduce a spanning subgraph of the UDG graph that is
a variation of the Displaced Apex Adaptive Yao (DAAY") graph. In this
subgraph an exclusion zone based on a parabola is defined with respect to
each non-excluded nearest neighbor and positioned on each node, instead
of a cone as with the DAAY subgraph, such that each nearest neighbor
is inside the parabola. It also lets the apex of the parabola to move along

the line segment between the node and its neighbor. The subgraph has

111



two adjustable parameters, one each for the position of the apex with
respect to the nearest neighbor, and the width of the parabola. Thus a
directed or undirected spanning subgraph of a UDG is constructed. We
show that this spanning subgraph is connected, has a conditional bounded
out-degree, is a t-spanner with bounded stretch factor, and contains the
Euclidean minimum spanning tree as a subgraph. Experimental compar-

isons with related spanning subgraphs are also presented.
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Chapter 1

Motivations

1.1 Wireless ad hoc networks

A wireless ad hoc network consists of a collection of wireless hosts that can commu-
nicate with each other without the use of a network infrastructure or any centralized
administration. Since wireless ad hoc networks can be easily and inexpensively set
up as needed, they offer solutions to a variety of applications, especially in situations
with geographical or logistical constraints such as battlefields, military applications,
and other emergency and disaster situations.

Wireless ad hoc networks can be subdivided into two classes: static and mobile.
In static networks, the position of a wireless node does not change or changes very
slowly once the node is deployed; an example is sensor networks. In mobile networks
or MANETSs (Mobile Ad hoc NETworks), wireless nodes may move freely. Mobile
wireless networks change their topology frequently and often without any regular
pattern, therefore routing in these networks is challenging and of great importance.
In this thesis our focus is on MANETSs and for simplicity we assume that the nodes

are quasi-static during the short period of topology reconstruction or route finding.



In addition, we assume that the position information of each node can be obtained
by a low-power Global Position System (GPS) receiver at the node. There are many
techniques to estimate the position of the nodes or the distance between neighboring
nodes if GPS is not available [9].

We consider a wireless ad hoc network consisting of a set V' of N wireless nodes
distributed in the Euclidean two-dimensional plane R%. Each node has a transmission
range r, which we assume is a fixed number, that can be represented as a disk centered
at the node. These wireless nodes can be modeled by a unit disk graph UDG(V') in
which there is an edge between two nodes if and only if their Fuclidean distance is at
most 7, the transmission range of the node [2, 3]. Node v can receive the signal from
node u if node v is within the transmission range of node u. If nodes v and v are
not able to communicate directly then node u uses multi-hop wireless links through
intermediate nodes to send packets to node v.

Topology control in wireless ad hoc networks is to maintain a connected topology
among the network nodes by reducing number of the active nodes and links. Topology
control in a wireless ad hoc network may require construction of a t-spanner subgraph
of the network. A spanning subgraph of unit disk graph is a subgraph that connects all
the nodes in the graph. If the shortest path between any two nodes in the subgraph
is not ¢ times, ¢ € R, longer than the shortest path between those two nodes in the
original unit disk graph then that spanning subgraph is called a t-spanner of the unit
disk graph. A t-spanner with linear number of links is called a sparse spanner. Such

spanning subgraphs are used in many routing algorithms.



1.2 Routing in wireless ad hoc networks

Routing in wireless ad hoc networks generally involves multiple hops because of the
limited transmission range. In such a network, each node operates not only as a host
but also as a router, forwarding packets for other nodes which may not be within direct
wireless transmission range of their destination node. Routing in ad hoc networks
can be challenging because of node mobility, lack of a predefined infrastructure, the
peer-to-peer mode of communication and limited transmission range. Also some or
all of the nodes in a wireless ad hoc network might rely on batteries, and power
and computation constraints could force a node to exhaust its energy. Because of
the mentioned limitations, it is more challenging to design a network topology based
on a subgraph for wireless ad hoc networks that is suitable for designing or using a
routing algorithm which uses less power and has less memory consumption, than the
traditional wired networks.

The goal of routing in wireless ad hoc networks is to find a path from the source
node to the destination node, and to deliver packets to the destination node. Since
nodes in the network may move freely, a path discovered by a source may not exist
after a short interval of time. This requires the nodes to discover and maintain
routes in the network. There are different routing protocols for wireless ad hoc
networks depending on how nodes establish and maintain paths. They mainly may
be devided into topology-based routing protocols and position-based or location-based
routing protocols [27, 14] categories. Topology-based routing protocols are mainly
subcategorized as pro-active [30], reactive [16, 31] and hybrid [15] routing protocols.

Pro-active routing protocols are table-driven protocols. They maintain a rout-
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ing table using the routing information learnt from their neighbors and they update
it continuously. Examples of this type of protocols are the Destination-Sequenced
Distance-Vector (DSDV) protocol [30] and the Wireless Routing Protocol (WRP)[28].
The main drawback to pro-active routing protocols is that because of the node mo-
bility, routing tables are updated frequently and these protocols suffer from overhead
due to route maintenance.

Reactive routing protocols are demand-driven protocols. They find a path when it
is necessary. Examples of this type of protocol are the Ad-hoc On-demand Distance
Vector Routing (AODV)[31] and the Dynamic Source Routing (DSR) protocols |3,
16]. The main drawback of reactive routing is that because of the on-the-fly route
discovery there is a delay in delivering the packets to the destination.

Hybrid protocols combine the advantages of various approaches of local pro-active
routing and global reactive routing into a single protocol which achieves a more scal-
able and efficient protocol. An example of this type of protocol is the Zone Routing
Protocol (ZRP)[15]. The drawback to hybrid routing is that route maintenance is
still needed.

Position-based routing protocols use position information of nodes in the network
and the global topology information of the network has very little use. Therefore
frequent changes of the network topology has no effect on such routing protocols,
thus making position-based routing a good candidate for wireless ad hoc networks.
Position-based routing in wireless ad hoc networks uses the idea of localized routing
where each node maintains only local e.g., one or two hop, topology information. This

is an advantage since nodes in wireless ad hoc networks frequently have scarce storage



resources and limited power. More importantly when the network topology changes
no more computation is needed to maintain a routing table. Localized routing has the
following desirable characteristics. The number of nodes in a network can increase
since there is no routing table to be updated. Therefore localized routing is scalable.
Every node in the network performs the same routing protocol in deciding to which

neighboring node to forward the packet. Therefore localized routing is uniform.

1.3 Thesis contribution

When modeling a wireless ad hoc network using the unit disk graph, the size of
the graphs could be as large as the square order of the number of network nodes.
Since the goal of designing a network is to achieve desirable network features such as
bounded node degree, low-stretch factor, and also facilitate the use of attractive rout-
ing schemes such as localized routing with guaranteed delivery, we want to construct
a subgraph of the unit disk graph which is sparse, can be constructed locally, and is
relatively good in terms of the length of possible paths compared with the original
unit disk graph.

We introduce a new spanning subgraph of a unit disk graph, that is a variation of
Displaced Apex Adaptive Yao Graph DAAY [12]. This new graph replaces the cones
in DAAY with parabolas and locally constructs a directed or undirected spanning
subgraph of a UDG. We show that this new subgraph is connected, has a condition-
ally bounded out-degree, is a t-spanner with bounded stretch factor, and contains the

Euclidean minimum spanning tree as a subgraph.



1.4 Thesis organization

This thesis consists of five chapters. The present chapter (Chapter 1) provided the
background and motivations of this study.

In Chapter 2, a systematic literature review on the most relevant contributions to
the spanner graphs is presented. In addition, advantages and disadvantages of the
use of these graphs to model wireless ad hoc networks are discussed.

In Chapter 3, a new geometric subgraph is introduced which is a variation of DAAY
graph. The properties of the new subgraph are also proved.

Chapter 4 presents a large set of numerical examples for the new subgraph and the
results are compared with some of other known subgraphs.

Finally, in Chapter 5, conclusions, contributions and future work are presented.



Chapter 2

Spanning graphs

2.1 Preliminaries

A graph G is defined as G = (V, E) where V is the set of N vertices vy, vs,..., vy
and F is the set of pairs of vertices, called edges, and is a subset of cartesian product
V' x V. A node, or vertex, u is a neighbor of node v if there exists a pair (u,v) € E,
such that there is an edge between u and v in the graph G. N(u) is the set of all
neighboring nodes of node u. A geometric graph is a graph in which the vertices are
points in the Euclidean plane and edges are straight line segments between vertices.
A geometric graph is planar if no edges cross each other.

A Unit Disk Graph or UDG(V') is a geometric graph such that for each pair of nodes
u,v € V there exists an edge (u,v) € UDG(V) if and only if dist(u,v) < 1. In our
wireless model there exists an edge between two nodes in UDG (V) if and only if
dist(u,v) < r where 7 is the transmission range of the nodes in V.

The degree of a node w is the number of edges connecting u to its neighbors, or
simply |N(u)|. A Euclidean graph is a weighted graph G = (V, E) in which V is a

set of points in the plane, and each edge (u,v) € E is assigned a weight equal to the



Euclidean distance between u and v, dist(u,v), which we denote as |uv].

dist(u,v) = \/ (s — v2)? + (u, — v,)?

Weight of a graph G is defined as the sum of edge lengths for all edges in F.

A subgraph of a graph is a graph with vertices and edges as subsets of vertices and
edges of the original graph. A path from a source node, s, to a destination node, d,
in a graph is a sequence of nodes s, vy, vs, ..., V%, d where v; and v, are neighbors;
fori=1,...,k— 1. A graph is connected if there is a path between any two nodes
in the graph. A strongly connected graph is a directed graph in which there is a path
between any two nodes by traversing the edges in the directions that they point. A
spanning subgraph of a graph is a graph has all vertices in the original graph and its
edges is a subset of edges in the original graph. For a geometric graph G' a Fuclidean
Minimum Spanning Tree or EMST(G) is a spanning tree of G with minimum weight.
A t-spanner of graph G is a spanning subgraph on V' that connects all nodes and the
length of the shortest path between any two nodes in S is at most ¢ times the length
of the shortest path between the same nodes in G. Parameter t is called the stretch
factor.

There are several possible definitions of the length of a path. An important length
definition is based on considering the power consumed during routing along a path.
Suppose u = vy, ..., V...,V = v is the shortest path from u to v in subgraph S
of original graph G, define pg(u,v) = > 1" [v;_1v;|? as the total transmission power
consumed by the path. Let u = wo,...,wj,...,w, = v be the shortest path from u

to v in graph G, define po(u,v) = 77, lwj_1w;|” as the total transmission power



consumed by the path in G. Here ( is a constant between 2 and 5 depending on the
wireless transmission range ([24]) and is called path loss exponent. The power stretch

factor (distance dilation ratio), p&(G), of the subgraph S is defined as follows ([21]):

pe(G) = max pslu,v)

2.1
u,veV pPg u,v) ( )

If 5 =1 in the above, we obtain the length stretch factor based on simply summing
the Euclidean lengths of the edges of the path.

The stretch factor can also be measured by number of hops in the path. Let ls(u,v)
be the number of edges in the shortest path from u to v in subgraph S of original
graph G and let lg(u,v) be the number of edges in the shortest path from u to v
in G. Then hop stretch factor (hop dilation ratio), parameter ¢t above, is defined as

follows:

ls(u,v)

p5(G) = max (2.2)

u,veV ZG(U> ’U)
A t-spanning path from u to v is strong if the length of every edge in the path is at
most |uv|. The graph G is a strong t-spanner if there is a strong t-spanning path

between every pair of nodes in G.

2.2 Topology control

Since wireless ad hoc networks may be powered by a limited power supply like bat-
teries, typically have small memory, and the network topology may change due to
node mobility, an important goal of topology control is to maintain connectivity and
to increase network lifetime. A basic requirement to achieve these goals is to con-
struct a spanning subgraph of UDG. Because unit disk graphs can be very dense

9



depending on the number of nodes in the network, constructing subgraphs that, in
particular, are sparse, power-efficient which is measured by stretch factor, and are
locally constructed (with the information of neighbors at one or two hops distance) so
that changes of network topology are easily handled, are of great interest.(see [22, 32]
for surveys).

We are particularly interested in spanning subgraphs that are sparse with low
number of edges in the graph, have low stretch factor to be power-efficient, have
bounded degree meaning each node in the subgraph has a degree less than a constant
fixed number, are planar or nearly planar and can be constructed locally. Many of
spanning subgraphs have been introduced (see surveys [27],[32]) and each one achieves

one or some of those objectives.

2.3 Geometric structures

There have been an extensive study on geometric spanners of the UDG for ad hoc
networks and many subgraphs have been introduced. Dobkin et al. [11] showed that
the Delaunay graph is a planar geometric spanner of the Euclidean graph. Bose et
al. [7] introduced a subgraph of the Delaunay graph that is a geometric spanner of
the Euclidean graph. Recently Kanj and Perkovic [18] improved this subgraph and
constructed a subgraph of Delaunay graph with bounded degree and stretch factor
which implies a planar geometric spanner of a Euclidean graph. Li et al. [23] gave
a distributed algorithm that constructs a planar geometric spanner of a unit disk
graph. Wang and Li [35] introduced a bounded-degree planar spanner of a unit disk

graph. A comprehensive survey on different methods for constructing t-spanners with

10



various properties is given in [29)].
In the following we present some of the geometric spanning subgraphs of a UDG
that are commonly used with position-based routing and are the most relevant to our

work.

2.3.1 Relative neighborhood graph

Consider two circles, one centered at node u, C,, and other at node v, C,,, with radius
luv|. An edge (u,v) from graph G is in the relative neighborhood graph of G[60],
denoted RNG(G), if and only if the intersection of two circles does not contain any
other node w € V. See Figure 2.1(a). This spanning graph has been introduced by
Toussaint ([34]) and it has been shown that RNG(G) is planar and a t-spanner with

power stretch factor of N — 1.

2.3.2 Gabriel graph

Let disk(u,v) be a circle with diameter |uv| and centered at the midway point of edge
(u,v). An edge (u,v) from the graph G is in the Gabriel graph of G[45], denoted

GG(G), if and only if disk(u,v) does not contain any other node w € V. See Figure

Amy/2N — 4

2.1(b). Bose et al.[5] have shown that GG(G) is planar and a 3

-spanner.
Furthermore Li et al.[24] prove that the power stretch factor of any Gabriel subgraph

1S one.

2.3.3 Yao graph

At each node u, define k cones, k > 6, by k equally-separated rays originating at u.

— s

A directed edge (u,v) is in the directed Yao graph of G, denoted Y G (G), if and only

11



Figure 2.1: (a)Relative Neighborhood Graph ;(b)Gabriel Graph ;(c)Yao Graph

if (u,v) is the shortest edge, if any, in each cone. Ties are broken arbitrarily [37].
Let YGi(G) be the undirected graph obtained by ignoring the direction of edges in
YG(G). See Figure 2.1(c). A similar construction of Y Gi(G) is also called a Theta

Graph [6]. YG1(G) may have crossing edges if G is a UDG. Yao graph has an out-

degree of at most k, contains the EM ST (G) as a subgraph, is a T 5 gz SPanmer
—2¢in T
3
and is connected if UDG(G) is connected [20, 24]. Li et al. [24] prove that the power
1
stretch factor of Yao graph is at most ——————.
1—(2sin7)?

2.3.4 Gabriel-Yao graph and Yao-Gabriel graph

Li et al.[25] proposed two structures by combining Gabriel graph and Yao graph that
are sparser than the original two graphs. In GY G (G) Gabriel graph is applied on top
of Yao graph structure and in Y GG(G) Yao graph is applied on top of Gabriel graph

structure. Both graphs are connected if the UDG(G) is connected, have out-degree

1

1—(2sin %)

of at most k and have power stretch factor of

2.3.5 Half space proximal graph

For every node u € V define an open half plane H(u,z) containing z, neighbor

—_—
of u, with the boundary line perpendicular to and at the midway point of (u, z).

A directed Half Space Proximal graph[31], denoted HSP(G) is constructed by the

12
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§§§\§\\\_\, ,

(d)

Figure 2.2: Constructing the HSP graph in a UDG. (a) An edge is selected to the
first closest neighbor, (b) and (c) next closest neighbors are selected from outside the
half plane, (d) until list of neighbors is empty.

following iterative steps [10]:

for all u € V do
Create a list of neighbors of u: LN (u) = N(u).
repeat
Find the nearest neighbor z and add edge (Tz)) to Im))(G)
Define H(u, z) and discard all the nodes in it from LN (u).
until LN (u) is empty
end for
Let HSP(G) be the undirected graph obtained by ignoring the direction of edges.
See Figure 2.2. HSP(G) is strongly connected, has an out-degree of at most six

and contains EM ST (G) as its subgraph. An HSP(G) is not planar and may have

crossing edges.

2.3.6 The family of G?\ graphs

Bose et al.[4] introduces a family of G4 graphs that are related to the HSP, and
that depend on two parameters A and 0. Let 0 < < 7/2 and 1/2 < A < 1. Define

C(u, z,0), the cone of angle 26 with apex u and edge (u,z) as its bisector. Define

13



H(u, z,\), the half plane containing z with the boundary line perpendicular to (u, z)
1

and at the distance of §|uz| from u. Now define the K (u, z,0,\), destruction region

of z with respect to u as the intersection of C(u, 2z, 0) and H(u, 2, \). G is constructed

by the following iterative steps:

for all w € V do
Create a list of neighbors of u: LN (u) = N(u).
repeat
Find the nearest neighbor z and add edge (u, 2) to GY.
Define K (u, z,0,\) and discard all the nodes in it from LN (u).
until LN (u) is empty
end for
GS has an out-degree of at most |(27/(min(6, arccos(1/2X)))| and it is a strong ¢-

spanner, with ¢ = 1/((1 — \) cos(#)).
2.3.7 Displaced apex adaptive Yao graph

The Displaced Apex Adaptive Yao graph [12], denoted DAAY (G, «,p), is a class
of orientation-invariant Yao-type graphs that includes the HSP graph as a special
case. For every u € V define cone C(u,z,6) the cone of interior angle 26 with
é .
edge (u,z) as its bisector. The parameter a, 0 < o < 1, determines 6 as a frac-
tion of a maximum cone angle, which we define below. Let (1 — p)u + pz be a
parametrization of line segment between v and z, 0 < p < 1. The position of
apex of the cone is represented by choosing a particular p. The directed displaced

apex adaptive Yao graph, DAAY (G, a,p) is constructed by the following iterative

14



steps:
for all w € V do
Create a list of neighbors of u: LN (u) = N(u).

repeat

Find the nearest neighbor z and add edge (u, z) to DAAY (G, «, p).
Define C(u, z,6) and discard all the nodes in it from LN (u).
until LN (u) is empty
end for
Let DAAY (G, a,,p) be the undirected graph obtained by ignoring the direction of
edges. See Figure 2.3. Since this thesis work is a variation of DAAY', we describe it
in more detail.
The maximum cone angle, 6,,(p, |uz|), is a function of p and |uz|, and is defined

as follows:

sin (6, (p, [uz]) — %)
sin(f,,(s, |uz|))

=D if0<p<0.5

3 |

sin (0, (p, |uz|) — cos™t (2L
<2 )) Puzl o5 <s<1
sin(f,,(s, |uz|)) r

For p = 0.5, maximum cone angle is 6,,(0.5, |uz|) = 7/2 and if & = 1 then § =
Om(p, |uz|), therefore we obtain the Half Space Proximal graph. The main properties
of DAAY are listed below. Proofs are presented in [12, 1].

Property 2.3.1. Consider a node set V and UDG(V') defined on V. If UDG(V) is
connected and the cone angle 6 is less than or equal to 0,,(p, |uz|) then DAAY (UDG(V, a, p)

1s strongly connected.

Property 2.3.2. The out-degree of any node in DAAY(UDG(V),a,p), 0 = « -

2
Om(p, |uz]), 0 < a <1, is at most {%J where ¢ is defined by W
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Figure 2.3: Constructing DAAY graph in a UDG. (a)An edge is selected to the first
closest neighbor, (b) next closest neighbor is selected from outside the cone, (c¢) until
list of neighbors is empty.

Property 2.3.3. Let V C R? be a set of N points and let 0< 7/3 be the cone angle.

Then DAAY (UDG(V), «, p) is a spanner with hop stretch factor W.
— 4 SIn D)

Property 2.3.4. Let V C R? be a set of N points and let 0< 7/3 be the cone angle.
Then DAAY (UDG(V), «, p) is a spanner with power stretch factor

1— (2sin(4))7

Property 2.3.5. Consider a node set V. and UDG(V) defined on V. Assume that
UDG(V) is connected. Then DAAY (UDG(V),a,p), 0 = a0, (p, |uz|), 0 <o <1,
contains the Euclidean Minimum Spanning Tree EMST(UDG(V)) as a subgraph.

2.4 Summary

Although the relative neighborhood graph and Gabriel graph are planar graphs, they
have high stretch factor. The Yao graph has the advantage of controlling the node
out-degree and has lower stretch factor in addition to a sparse subgraph. The GY G
and Y GG do not make an improvement in node degree but constructed subgraph is
sparser. HSP has a bounded node degree and it is a sparse graph. DAAY combines
the advantages of both the HSP subgraph and the Yao subgraph by permitting control
over the degree of the subgraph while also being orientation-invariant. Therefore our

focus is on DAAY and in the next chapter we introduce a modified version.
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Chapter 3

Adaptive parabolic Yao graph

In this chapter, we introduce a variation of the DAAY graph called the Adaptive
Parabolic Yao graph, which is an undirected subgraph of an undirected unit disk
graph. It uses parabolas, instead of cones as with DAAY", positioned on each node
such that nearest neighbor is centered “inside” the parabola. Like DAAY", the apex
of the parabola is permitted to move along the line segment between the node and

its neighbor.

3.1 Definition

Let V be a set of NV points in the Euclidean two-dimensional plane. Consider vertices
u,z € V, such that z is a neighbor of u. Without loss of generality (WLOG), we
will assume that w is positioned at the origin of the Cartesian coordinate system
and its neighbor z is positioned along the positive z-axis at the point (|x|,0). Let
(1 — a)u+ az with 0 < a < 1 be a parametrization of the line segment between
u and z, then any choice of a represents a position b which we will define as apex
of the parabola (note that the apex, or vertex, is the intersection point between the

parabola and its axis of symmetry). Consider parameter v, a real number in {0} UR™.

17



We define a to be the width of the parabola, with respect to a,,, the maximum width
of the parabola (a function of a and |uz|) which we will define later in Eq. 3.2 on
page 22, as follows:

(1+7v)a, if0<a<05

a = v-a, ifa=0.5 (3.1)
(1 —=7)a, if0sb<a<l

where variable v defines different values of a for a given parabola. Now the parabola
P can be defined by z = ay? + b. By changing o the parabola moves along the
line segment uz. As the value of v increases, the value of the width of parabola a
increases, towards positive infinity, from its minimum value a,,. A point v(x,,y,)
is inside the parabola if and only if (z, — ay,?> — b) > 0. See Figures 3.1, 3.2 and
3.3. To define the parabola in the form of x = ay? + b, positions of all nodes in the
network are an affine transformation of the original positions of the nodes such that
nodes have first a translation and then a rotation by 6, the angle between the new
and original x positive axes. This transformation does not change the topology of

the network, with respect to position of the nodes relative to each other.

Algorithm 1 Adaptive Parabolic Yao(G, a, ) graph algorithm
Input: A graph G with the node set V', width parameter v, and parameter c.
Output: A list of directed edges L for each mode u € V which represent the
Adaptive Parabolic Yao subgraph of G, APY(G,a,~).
for all u € V do
Create a list of neighbors of u: LN (u) = N(u).
repeat
(a) Remove the nearest neighbor node z from LN (u) (ties broken arbitrarily)
and add the directed edge uz to L.
(b) Determine a,,(a, |uz|) such that a is calculated by equation 3.1.
(¢) Let b = (1 — @)u + az be a point on the line segment uz.
(d) Consider the parabola P with its apex at b with width a and z in its
interior, such that the line uz bisects the parabola P into two equal halves.
(e) Scan the list LN (u) and remove each node in the interior of P from LN (u).
until LN (u) is empty
end for
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Figure 3.1: Definition of parabola when o < 0.5. This picture shows
r = (1 + 7)a,y* + b family of parabolas with a = 0.25 and v =
0,1,2,4,...,64. The value of a is positive and as the value of v increases
the parabola gets narrower.

Definition 3.1.1. Let G be a UDG with node set V. The directed Adaptive Parabolic
—

Yao subgraph, APY (G, a,7), is defined to be the graph with node set V. whose edges

are obtained by applying the Adaptive Parabolic Yao(G,«,~) algorithm, Algorithm 1

given on page 18, on the graph G using parabola width a(Eq. 5.1), and apex position

b. The undirected graph APY(G,«,7) is obtained by ignoring the direction of the

directed edges in APY (G, «a,7).
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Figure 3.2: Definition of parabola when o > 0.5. This picture shows
r = (1 —9)a,y* + b family of parabolas with a = 0.75 and vy =
0,1,2,4,...,512. At the beginning the value of a is negative, hence
parabola is inverted. As the value of 7 increases the parabola closes
up, becomes a line, and then gets narrower.

Lemma 3.1.2. Consider a node u and a neighbor z of u, where WLOG we assume
u 1s at the origin and z is positioned on the positive x-axis. Consider an arbitrary
point b = (1 — a)u + az at the distance a|uz| from u. Define L to be the line that
1s perpendicular to the line segment uz and that intersects uz at its midpoint m
(corresponding to a = 0.5). Define a parabola x = ay* + b with its apex at b and
its axis of symmetry on the line segment uz, oriented such that z is in its interior.
Consider the parabola intersecting the line L at a point ¢ (see Figure 3.4). Then the
width of parabola is defined by;

~2(1 = 2a)|uz|
 Aucl? - |uz|?

Proof. Consider the right triangle Aucm, we have |mc|? = |uc|*> — |um|?. By substi-

2(1 — 2a)|uz|

tuting ¢ in the parabola’s formula we conclude that a = .
4lucl]? — |uz|?
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Figure 3.3: Definition of parabola when o = 0.5. This picture
shows © = ~a,,y> + b family of parabolas with o = 0.5 and v =
0,1,2,4,...,512. At the beginning the value of a is 0 and parabola
starts as a line, then as the value of v increases parabola gets narrower.

O

Corollary 3.1.3. Consider a node u and a neighbor z of u, where WLOG we assume
u 1s at the origin and z is positioned on the positive x-axis. Consider an arbitrary
point b = (1 — a)u + az at the distance o|uz| from w. Define L to be the line
that is perpendicular to the line segment uz and that intersects uz at its midpoint
m (corresponding to alpha = 0.5). Define a parabola x = ay?® + b with its apex at
b and its axis of symmetry on the line segment uz, oriented such that z is in its
interior. Consider the parabola intersecting the line L at a point ¢ (see Figure 3.4).

If |uc| = |uz| then
2(1 — 2a)

a =
3luz|
Definition 3.1.4. Consider a node v and a neighbor z of u, where WLOG we assume

u 1s at the origin and z is positioned on the positive x-axis. Consider an arbitrary

point b = (1 — a)u + az at the distance a|uz| from u. Define L to be the line that
21



1s perpendicular to the line segment uz and that intersects uz at its midpoint m
(corresponding to o = 0.5). Define a parabola x = ay* + b with its apex at b and
its axis of symmetry on the line segment uz, oriented such that z is in its interior.
Consider the parabola intersecting the line L at a point ¢ (see Figure 3.4). Suppose
mazrimum transmission range is r, define minimum value of a which is the mazimum

parabola width a,,(a, |uz|) as follows:

( (L _
(23|M| ) f0<a<05
1
G-y
am(a, luz|) = <(@)Q B 2%) ] ifa=05 (3.2)
1_

(G-9) if05<a<l

| ()2 1) sl

where 6 € ]0.5, 1] such that § —« < €, € small positive number.

Note that when 0.5 < o < 1 the width of the parabola a is negative. This
definition describes a class of parabolas that not only move along the line segment
uz but also are concave, straight or convex depending on the value of 7. See Figures
3.1, 3.2 and 3.3. When a = 0.5 such that a = 0, we obtain the Half Space Proximal
graph. Since for a > 0.5 the limiting shape of the parabola is concave, if a fixed
value of a is used for all nearest neighbors (regardless of the distance |uz|) such that
the parabola is convex, the subgraph will be connected if the UDG is connected.
This would be analogous to using a cone with a fixed angle in the DAAY subgraph.

It may be noted that for a < 0.5, from Eq. 3.2, the width of the convex limiting
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In this section we will list several properties of the APY subgraph. In the following



3.2.1 Connectivity

Theorem 3.2.1. Consider a node set V and UDG (V') defined on'V'. Let m(UDG-
(V),a,7y) to be the graph with node set V' whose edges are obtained by applying the
Adaptive Parabolic Yao(G,«a,v) algorithm, Algorithm 1 given on page 18, on the
graph G using parabola width a(Eq. 3.1), and apex position b. If UDG(V) is con-
nected and the parabola width a is greater than or equal to an(«,|uz|) defined in
Eq. 3.2 then m(UDG(V), a, ) is strongly connected.

Proof. Consider a proof by contradiction. Assume that there is at least one edge
uv € UDG(V') such that there is no directed path from u to v in m(UDG(V), a, 7).
Let uv be the shortest such edge in UDG(V'). This implies that there is an edge
uz € m(UDG(V),a,v) such that |uz| < |uv|, because the edge uv should be in
the parabola of uz selected by the Adaptive Parabolic Yao(UDG(V), a, 7y) algorithm.

Now consider the triangle Auzv in Fig. 3.4. The choice of maximum parabola
width in Def. 3.1.4 is based on the idea that it ensures that v is contained in the
open half-plane H containing z defined by the line perpendicular to the line segment
uz in the middle of uz (the point corresponding to o = 0.5 in our parametrization of
the uz; labeled as m in Fig. 3.4). Consider the three cases defined by the value of a.
First, assume 0 < o < 0.5 (for example, the apex of the parabola would be at the
point labeled as k in Fig. 3.4(a)). Then to keep v in the interior of H, the maximum
parabola width for a would define a parabola that intersects the boundary of H at a
point at distance |uz| from u (such a point is labeled as ¢ in the figure). By Corollary
3.1.3, this limiting parabola width a,, (o, |uz|) as defined in Def. 3.1.4.

Now, assume 0.5 < a < 1. To keep v in the interior of H, the maximum parabola

width for a would define a parabola that intersects the boundary of H at a point
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at distance r from w (such a point is labeled as ¢ in the Fig. 3.4(b)). By Lemma
3.1.2 and noting that |uc| = r, this limiting parabola width a,,(«, |uz|) is defined in
Def. 3.1.4. The case of o = 0.5 implies the HSP graph of UDG(V') and as shown in
[10] it is connected.

In all three cases, since a > a,, (v, |uz|), then any position of the node v inside the
parabola for z such that |uz| < |uv| would give |zv| strictly less than |uv|. Since uv
is an edge in UDG(V), then zv is also an edge in UDG(V'). Therefore, there exists
a directed path from z to v in m(UDG(V), a,7), and so there is a directed path

—_—
from u to v in APY(UDG(V), «, 7).

3.2.2 Bounded out degree

Theorem 3.2.2. Consider a node set V and UDG (V') defined on'V'. Let m(UDG-
(V),a,7y) to be the graph with node set V' whose edges are obtained by applying the
Adaptive Parabolic Yao(G,«,v) algorithm, Algorithm 1 given on page 18, on the
graph G using parabola width a(Eq. 3.1), and apex position b. The out-degree of any

— 2
node in APY(UDG(V),a,7), 0<a <1, is % where ¢ is defined by:

{ (a(rsing)? + adg)® + (rsing)®> = if0<a <05 33)

(a(do sin ¢)® + adp)” + (dosin¢)® = d2 if 0.5 <a <1
where dy = min{dist(u,v) : u,v € UDG(V)}.
Proof. By the definition of Adaptive Parabolic Yao(G, «,7), the smallest angle be-
tween any two edges is when any nearest neighbor that is selected to form an edge is
outside, or on the boundary of, the parabola for any other neighbor.
Consider a node u. Let z be the nearest neighbor. The parameters o and v define

a parabola. For 0 < a < 0.5, the smallest angle between z and another nearest
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Figure 3.6: An example Figure for Thm.3.2.2. For both cases 0 < a < 0.5 and 0.5 <
a <1 as |uz| increases, the smallest angle ¢ also increases

When 0.5 < a < 1, the smallest angle between z and another nearest neighbor w,
occurs if w is placed at the intersection e of the parabola boundary and the circle of
radius uz centered on u (Fig. 3.5(b)). Consider the segment eh intersecting uz at d.
We have |ed| = |uz|sin ¢ and from parabola |ud| = a(|uz|sin¢)* + a|uz|. Therefore
we have:

(a(luz|sing)® + oz|uz|)2 + (Juz|sin ¢)? = |uz|?

As we can see in Fig. 3.6, the smallest angle depends on distance of u and its
closest neighbor z that constructs the parabola. As |uz| increases ¢ increases for
both 0 < a < 0.5 and 0.5 < a < 1 cases. Therefore smallest ¢ is when nodes u and z
are the closest nodes in the network. Call this smallest distance dy. Then the smallest
angle between any two nodes is defined by Eq 3.3 and the maximum out-degree for

2
any node will be —W.
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The Adaptive Parabolic Yao graph has a conditional maximum out-degree for
each node, since for 0 < a < 0.5 it depends on dy which is the distance between the
closest nodes in the network. Note that ¢ is a fixed angle for 0.5 < a < 1 and a fixed
7, and decreasing |uz| does not change the size of the angle ¢ (see Figure 3.5-(b) and
also Figure 3.6 for the case o = 0.75). This shows that high out-degree happens for
the nodes with closest neighbors. As the value of 7 increases from 0 the parabola is
narrower and the maximum out-degree of the APY subgraph would be that of the
original UDG. As an example, based on the Thm. 3.2.2, when a = 0.25, for a fixed
luz|, v = 0 gives ¢ = 49.73° and therefore the out-degree of u is 7.2, while v = 8
gives ¢ = 18.40° and the out-degree is 19.6. When o = 0.75, for the same fixed |uz|,
v = 0 gives ¢ = 42.63° and therefore the out-degree of u is 8.4, while v = 8 gives
¢ = 34.84° and the out-degree is 10.3. Conversely, the in-degree is not bounded by

a constant and could be as large as the number of nodes.

3.2.3 Length stretch factor

Theorem 3.2.3. Consider a node set V and UDG(V') defined on'V'. Let m(UDG-
(V),a,7y) to be the graph with node set V whose edges are obtained by applying the
Adaptive Parabolic Yao(G, a,7y) algorithm, Algorithm 1 given on page 18, on the graph
G using parabola width a(Eq. 3.1), and apex position b. Then APY (UDG(V), a,~)

1s a spanner with length stretch factor o % )
Proof. Let uv be an edge in U DG that is not selected by Adaptive Parabolic Yao(G, a;, )
algorithm. Since, by Theorem 3.2.1, APY (UDG(V'), o, ) is connected, then there is
a shortest path from u to v. Let a “worst” such path from v tovin APY(UDG(V), «,7)
be uy = u,uy, ug, ..., U, =v. See Fig. 3.7. By the Adaptive Parabolic Yao(G, a,7)

algorithm, the angle Zu; ju;v < ¢ from Eq. 3.3 on page 25 and |u;u; 1| < |u;v| since
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Figure 3.7: Figure for Thm. 3.2.3

otherwise w;v would be part of APY (UDG(V), a, ) and part of the path. Also, by
Theorem 3.2.1, |u;1v| < |u;v| since we can always decrease the distance to v from
each u; along the path.

Now consider the triangle Aw;u;,v. See Fig. 3.7. Let p be the point on w;v
such that |u;p| = |u;u;41|. By the triangular inequality |u;,1v| < |u;11p| + [pv|. Note

that |u;11p| = (2sin §)|uiui+1|, and |pv| = |u;v| — |u;ui1|. Applying these two latter
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equations to the triangular inequality, we obtain
|UZ‘+1’U| S |UZ’U| — |uzuz+1|(1 — 2SIH§)

Applying the previous analysis iteratively on the entire path, we have

> fuserel < 3 (ol = (juwsalt -2 %) ) ).

0<i<m 0<i<m

Therefore,

Z (Juiwit1|) < <ﬁ> Z (Juv] = |uiy1v])

0<i<m 2/ 0<i<m

1
< | ———— | |wov|.
- (1—2sm§>| |

The larger the angle ¢, the larger the stretch factor along the path. Consider when

u; 41 is a nearest neighbor of u; defining a parabola by the Adaptive Parabolic Yao

(G, a,7) algorithm. For 0 < a < 0.5, the largest angle possible between u;, v, and

u;11 is when a node is placed at ¢, the intersection of the parabola boundary and the

boundary of the circle of radius u;u;,; centered at u; (Fig. 3.4(a), page 23). In this

case the largest angle is g For 0.5 < a < 1, the largest angle possible between w;,

v, and u;,, is when a node is placed at ¢, the intersection of the parabola boundary

and the boundary of the circle of radius r centered at w; (Fig. 3.4(b), page 23). In

T
this case as |u;u;1| — 0, the angle ¢ is maximized to 5

For the stretch factor to be bounded by the above inequality, then ¢ must be
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restricted by ¢ < g thus for any i, dy < |u;u;11| and from Eq. 3.3:
2
<a(d0 sin g)Q + a|uiui+1|> + (dg sin g)Q <d;

Therefore for any node u the width of parabola constructed by its nearest neighbor

(53—
o
4

z, should be restricted by a <

3.2.4 Power stretch factor

Theorem 3.2.4. Consider a node set V and UDG(V') defined on'V'. Let m(UDG-
(V),a,7y) to be the graph with node set V' whose edges are obtained by applying the
Adaptive Parabolic Yao(G, o, 7y) algorithm, Algorithm 1 given on page 18, on the graph
G using parabola width a(Eq. 3.1), and apex position b. Then APY (UDG(V), a,~)

1s a spanner with power stretch factor ——————.  Where ¢ is defined as in
1—(2sin2)?
Thm. 3.2.2 and ¢p< m/3.

Proof. Here we use a similar approach to the one presented in [24]. For a constant
5, Phpy < 6 if and only if for any link wv € UDG\APY, papy(u,v) < duv|?
(see [24]), where papy (u,v) = X, |u;_1u;)® is the total transmission power by path
Uy = U, Uy, Ug, - ., Uy = v from u to v. Let § be 1/(1 — (2 sin%)ﬁ), we show that for
any pair of nodes u,v € UDG\APY there is a path connecting v and v in APY with
Papy (u,v) < Sluvl®. Since APY is connected, if edge (u,v) ¢ APY then there is a
path uyg = u, uy, us, ..., u, = v that connect v and v in APY.

We use induction. For m = 1 it is clear that |uv|® < §luv|’. Now suppose
papy(u,v) < 8uv|? for any path from u to v with (m — 1) edges. Consider a path

with m edges, containing edge uw and path from w to v with (m — 1) edges. We
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consider two cases. Case 1: If angle Zuwv < g (see Fig. 3.8(a)) we know that
luw| < |uv| and Zwuv < ¢. Consider point p along edge uw such that |up| = |uv|. Tt

is clear that |vw| < |vp| and |vp| = (2 sin§)|uv|. Therefore |wv| < (2 sin§)|uv|, then:

pary (u,v) = luw|’® + papy (w,v) < |uwl]’ + §|wv|”

< |uv|® + 5(QSin§)B|U’U|B = dluv|?

Case 2: If angle Zuwv > 7/2 we have |uw|?+ |wv|* < |uv|? (see Fig. 3.8(b)), therefore

B ¢ 2 2
<|“w|> + <|w”|) < <|“w|> + <|w”|) < 1 since 8 > 2, which implies that

Juv] |uv| Juv]

luw|? + |wo|? < |uv|?. Now we have:

pary (u,v) = luw|’® + papy (w,v) < |uwl|’® + §|wv|”

< Sluw|? + lwv|? < 8luvl?

This proves that p')py < 6.

0

By using the same logic presented in proof of Thm. 3.2.4, we can also prove that

1

power stretch factor of Displaced Apex Adaptive Yao graph is m.
— S1n 5
Theorem 3.2.5. Let V. C R? be a set of N points and let 0< 7/3 be the cone angle.

Then DAAY(UDG(V), a, s) is a spanner with power stretch factor m.
— S1n D)
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Figure 3.8: Figure for Thm. 3.2.4 (a) Case 1, Zuwv< w/2; (b) Case 2 Zuwv > m/2.

3.2.5 Containing EMST

Theorem 3.2.6. Consider a node set V and UDG(V') defined on'V'. Let m(UDG-
(V),a,7y) to be the graph with node set V' whose edges are obtained by applying the
Adaptive Parabolic Yao(G,«,v) algorithm, Algorithm 1 given on page 18, on the
graph G using parabola width a(Eq. 3.1), and apex position b. Assume that UDG(V')
is connected. Then APY(UDG(V),a,v), 0 < a < 1, contains the Euclidean Mini-
mum Spanning Tree EMST(UDG(V)) as a subgraph.

Proof. This proof has a similar approach as in proof for the HSP(UDG(V)) (see
[10]). Let EMST(UDG(V)) be a Euclidean Minimum Spanning Tree of UDG(V)
that contains the maximum number of edges of APY(UDG(V),«,v). Consider a
proof by contradiction. Assume there is an edge wv in EMST (UDG(V)) that is not in

APY (UDG(V),a,~). This implies that there is an edge uz € APY(UDG(V), a,7)
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such that |uz| < |uv|, because the edge uv should be in the cone of another shorter
edge selected by the Adaptive Parabolic Yao (UDG(V), a, ) algorithm, and |vz| <
|uv| (otherwise, by Theorem 3.2.1, the m(UDG(V), a,7) would not be strongly
connected). Since EMST (UDG(V)) is a spanning tree, there is a path from v (or u)
to z. If the path is from v to z, then removing uv from the graph and adding the edge
uz we obtain a spanning tree with equal or less weight with an additional edge from
APY(UDG(V),a,7), a contradiction. If the path is from u to z, then removing uv
from the graph and adding the edge vz we obtain a spanning tree with less weight,

again a contradiction.
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Chapter 4

Simulation and results

In all our experiments we have chosen connected unit disk graphs by randomly gen-
erating node coordinates on an area of 100 x 100 units. The graphs that were not
connected were not used. Also, the transmission range of 15 units has been used. We
varied N, the number of nodes, between 65, 75, 85, 95 and 105 nodes. We have used
similar parameters as those used in the simulations presented in similar published
research. All results are averaged over 70 or 24 graphs, as will be indicated in each
case, for each value of N. Note that for all our simulations we use ¢ = 10~! and
§d = a+107t in Eq. 3.2. To calculate power stretch factor, we have considered 3 = 2

in Eq. 2.1.

4.1 Adaptive parabolic Yao graph

The following are the implementation results of the Adaptive Parabolic Yao graph.
Here we study the behavior of APY graph with respect to two parameters a and
~v. We have considered different values of a = 0,0.125,0.25,...,0.875,1 and v =
0,1,2,4,...,2% The case of v = 0 is when the parabola is defined with its maximum

width, a,,. All the values are averaged over 70 random graphs. As we can see from

35



contour lines, APY graph has a strong dependency on both a and . When v = 0
and 0.5 < a <1, APY is behaving more like HSP graph.

From Figures 4.1, 4.2, 4.3 , 4.4, 4.5, 4.6, the behavior of APY graph is different
for values less than o = 0.5 and for that of greater than o = 0.5. For both cases as ~
increases average node degree, maximum node degree, number of crossing edges and
total weight of the graph increases while hop stretch factor and power stretch factor
decreases. Minimum value, as a lower bound, of average node degree, maximum node
degree, number of crossing edges and total weight of the graph is where o = 0.5 and
v = 0. Although for all v the values decrease when « goes from 0.5 to 1, it is in a
lower rate than when « goes from 0.5 to 0 (Figures 4.1, 4.2, 4.3 , 4.4). From Fig. 4.3,
number of crossing edges for graphs with o > 0.5 and v < 3 is zero and also for the
same values of v the graphs with a < 0.5 have low number of crossing edges. These
graphs are more suitable for routing algorithms that use planar graphs.

Power stretch factor and hop stretch factor are calculated by formulas 2.1 and
2.2 from chapter 2.1. Figures 4.5 and 4.6 show that a maximum value, as an upper
bound, occurs where o = 0.5 and v = 0. For all 7 the hop stretch factor is higher
when « > 0.5 than to the values when a < 0.5. As 7 increases graphs with o < 0.5
have a very close value for hop stretch factor (2.01 — 2.04).The power stretch factor
also has a maximum, as an upper bound, at « = 0.5 and v = 0, but with the reversed
situation. Values for graphs with a > 0.5 are lower than those with @ < 0.5. For
v = 0, power stretch factors for « = 0 and a = 1 are very close (1.61 and 1.62).

Although we have mentioned in Section 3.2.3 that the maximum angle ¢ should

be bounded from above by 7/3, the experimental results show no drastic change in
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stretch factors when this value is exceeded. So, in practice it would appear that such

a restriction on a is not necessary.
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Average Node Degree

Figure 4.1: Average Node Degree for APY graph
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Maximum Node Degree

Figure 4.2: Maximum Node Degree for APY graph
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4.2 Comparisons

In this section we compare Adaptive Parabolic Yao graph to the spanning subgraphs
mentioned in chapter 2. All the values are averaged over 24 random graphs. Number

of nodes, N, varies between 65, 75, 85, 95 and 105 nodes.

4.2.1 APY and DAAY graphs

In the following we show a comparison of the Adaptive Parabolic Yao graph with
DAAY and HSP as a special case for both APY and DAAY graphs.

From Figures 4.7, 4.8, 4.9 and 4.10 we see that APY graph has relatively higher
node degree and number of crossing edges than DAAY graph. Also, the total weight
of the graph in APY is larger than in DAAY. But as the number of nodes in the
network increases, the APY graph has the ability to greatly reduce the degree of
nodes and number of crossing edges to a lower limit than the DAAY graph, where
those values change in a small range. This is made possible by varying the value of
.

On the other hand, hop stretch factor and power stretch factor of APY graph
are clearly less than the values for DAAY graph, for any number of nodes N. See
Figures 4.11 and 4.12. Although large number of crossing edges could be a restriction
for some routing algorithms, APY graph enables to model a large network with low
value for both hop stretch factor and power stretch factor.

Figure 4.13 demonstrates a histogram for percentage of nodes with respect to
degree of nodes. As we can see, for & = 0 it is more probable that the node degree

for nodes in APY graph to vary in a wider range of values while in DAAY a higher
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percentage of nodes have low degrees. When « increases from 0 to 1, the values for
APY graph monotonically increases towards the values for & = 0.5 which is the HS P

graph.
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4.2.2 APY and related spanning subgraphs

In the following we demonstrate a comparison of APY graph with o =0 and v =0
for the parabola with the largest width, DAAY graph with o = 0 and p = 1 for the
cone with the largest angle, Y AO graph with k = 6, UDG and HSP graphs and G,
graph with A = 0.51 and n = % for the largest cone angle, which we indicate it as
HP.

As we can see in Figures 4.14, 4.15, 4.16 and 4.17, average node degree, maximum
node degree, number of crossing edges and total weight of the APY graph are higher
than DAAY graph and lower than Y AO graph. Specifically, node degree of the APY
is less than the Y AO graph which is bounded by & number of cones. All mentioned
values are large for G§ graph. While APY graph has hop stretch factor and power
stretch factor values that are again between the values for DAAY and Y AO graphs,
G§ graph is lower than APY for both values. See Figures 4.18 and 4.19.

Figure 4.20 demonstrates a histogram for percentage of nodes with respect to
degree of nodes. Again, APY graph has values between DAAY and Y AO graphs

but G graph has higher number of nodes with higher node degree.
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4.2.3 More on APY , DAAY and Gf\ graphs

The following is a comparison of the Adaptive Parabolic Yao graph, Displaced Apex
Adaptive Yao graph and G§ graph. For all three graphs we have considered their
respective parameter values such that the selected area to discard neighboring nodes
is the widest, for those parameters we have placed the apex of the parabola at the
two boundary values of distance from the nearest neighbor. Also a case of a narrow
region for the same positions of apex is considered. The results are presented in tables
4.1,4.2, 4.3, 4.4, 4.5 and 4.6.

As we can see, APY graph is the most dependent on its parameters a and ~
while the least dependent is the G§ graph. It is shown in [4] that G§ graphs are
strong t-spanners, it is reflected in its hop stretch factor and power stretch factor
values in Tables 4.5 and 4.6. While with varying parameters o and v, APY graph is
able to produce spanning subgraphs of the U DG graph that have different properties

suitable for different purposes and different routing algorithms.
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Table 4.1: Average Node Degree

APY v=20 vy=16 | v=64
a=20 a=1 a=20 a=1
3.3 2.5 4.3 4.1
DAAY s=1 s=0.2
a=0 a=1 a=0 a=1
2.8 2.5 4.3 4.2
GS 0 =89° 0=10°
A=051 1 A=099 [ A=0.51 ] A=0.99
4.1 4.1 4.6 4.6
Table 4.2: Maximum Node Degree
APY v=20 vy=16 | v=64
a=0 a=1 a=0 a=1
6.7 4.5 8.4 8.1
DAAY s=1 5s=0.2
a=70 a=1 a=20 a=1
5.4 4.4 8.3 8.3
G5 0 =289° 0=10°
A=051 1 A=099 [ A=0.51 ] A=0.99
7.5 7.8 8.9 8.9

o6




Table 4.3: Number of Crossing Edges

APY v=20 vy=16 | v=64
a=20 a=1 a=20 a=1
6.2 0.0 46.9 31.4
DAAY s=1 s=0.2
a=20 a=1 a=20 a=1
0.5 0.0 43.3 42.8
GS 0 =89° 0=10°
A=051 1 A=099 [ A=0.51 ] A=0.99
42.8 43.6 70.4 71.4
Table 4.4: Total Euclidean Weight
APY v=20 vy=16 | v=64
a=20 a=1 a=20 a=1
1137.5 804.55 1580.8 1489.2
DAAY s=1 5s=0.2
a=70 a=1 a=20 a=1
921.78 779.68 1556.7 1547.8
G5 0 =289° 0=10°
A=051 1 A=099 [ A=0.51 ] A=0.99
1470.5 1479.1 1700.4 1702.6
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Table 4.5: Hop stretch Factor

APY v=20 vy=16 | v=64
a=0 a=1 a=0 a=1
2.9583 3.5 2.0 2.2714
DAAY s=1 s=0.2
a=0 a=1 a=0 a=1
3.1667 3.9167 2.0417 2.2917
GS 0 =89° 0=10°
A=051 1 A=099 [ A=0.51 ] A=0.99
2.3333 2.1667 1.9167 1.9167
Table 4.6: Power Stretch Factor
APY v=20 vy=16 | v=64
a=20 a=1 a=20 a=1
1.594 1.6201 1.1922 1.2777
DAAY s=1 5s=0.2
a=20 a=1 a=20 a=1
1.6974 1.78 1.1931 1.3833
GY 0 =89° 0=10°
A=051 1 A=099 [ A=0.51] A=0.99
1.6628 1.6938 1.0948 1.0948
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Chapter 5

Conclusions and future work

In this thesis we presented an algorithm to construct a spanning subgraph of the
unit disk graph. We have shown the results of numerical simulations and also, com-
parisons to some known spanning subgraphs have been discussed. The results have
demonstrated that the APY subgraphs have some interesting properties which we
discuss in the following. In section 4.2 we will suggest some future research directions

that can be extended from the work of this thesis.
5.1 Discussions

The APY algorithm constructs a family of subgraphs by varying the values of «
and . The behavior of subgraphs constructed with 0 < a < 0.5 differs from the
subgraphs with 0.5 < a < 1. For the values of 0.5 < a < 1 when v = 0, APY is
behaving more like HSP.

Although the APY graph has a conditional maximum out-degree for each node,
since it depends on dy which is the distance between the closest nodes in the network,
it is possible to control the node degree through the parameter v which changes the

width of the parabola. This shows that high out-degree happens for the nodes with
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closest neighbors and the algorithm keeps the shortest edges. Also, the node degree
of the APY is still less than the Y AO graph which is bounded by fixed £ number of
cones.

The APY graphs with a > 0.5 have low number of crossing edges. These graphs
are more suitable for routing algorithms that use planar graphs. For all v, graphs
with o > 0.5 have higher hop stretch factor and lower power stretch factor compared
to graphs with a < 0.5. For both of these factors the values of the HSP graph
is a critical point. Although the APY graph has relatively higher node degree and
number of crossing edges than DAAY graph, as the number of nodes in the network
increases, the APY graph has the ability to greatly reduce the degree of nodes and
number of crossing edges to a lower limit than the DAAY graph. This is made
possible by varying the value of a. On the other hand, hop stretch factor and power
stretch factor of APY graph are clearly less than the values for DAAY graph, for
any number of nodes in the network. Although large number of crossing edges could
be a restriction for some routing algorithms, APY graph enables to model a large
network with low value for both hop stretch factor and power stretch factor.

Although we have mentioned in Section 3.2.3 that the maximum angle ¢ should
be bounded from above by 7/3, the experimental results show no drastic change in
stretch factors when this value is exceeded. So, in practice it would appear that such
a restriction on a is not necessary.

In conclusion, APY graph has similar properties to DAAY graph in bounding the
node out-degree, containing KM ST as its subgraph and being a spanner subgraph

of UDG with bounded stretch factor. Moreover, it has the flexibility of producing
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spanning subgraph with a combination of properties which can be useful for different

routing algorithms to apply on the graphs.

5.2 Future work

The work done in this thesis can be extended in the following directions.

e In this thesis we assumed that all nodes are homogeneous, however transmission
range of nodes in M AN ET's vary due to natural or man-made obstacles. This
is why constructing APY subgraph for a quasi-unit disk graph model of a
network would be an interesting future research. Another approach would be to

investigate APY subgraph of a mutual inclusion graph as a model for MANET.

e Since we mentioned that the restriction ¢ < % was not reflected in our exper-
imental results, next step would be to find a better upper bound for ¢ and

therefore to update the maximum out-degree and stretch factors.

e We have assumed that the nodes in our network model are static or quasi-static
in a time period. Next step would be to include node mobility and update the
APY graph regularly. This will not be difficult since deciding whether an edge

is in the subgraph is done locally using only one-hop neighbors of a node.

e It is possible to extend the APY to the 3D space. In this case the parabola will
be rotating about its axis of symmetry creating a 3D parabolic surface. Since
APY uses one hop distance information, the calculations and implementation
to the 3D space will be possible.The difficult part would be to prove the similar

properties for the 2D subgraph.
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