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Abstract

Structural Controllability of Multi-Agent Systems Subject to Partial Failure

Saeid Jafari

Formation control of multi-agent systems has emerged as a topic of major in-

terest during the last decade, and has been studied from various perspectives using

different approaches. This work considers the structural controllability of multi-

agent systems with leader-follower architecture. To this end, graphical conditions

are first obtained based on the information flow graph of the system. Then, the no-

tions of p-link, q-agent, and joint-(p, q) controllability are introduced as quantitative

measures for the controllability of the system subject to failure in communication

links or/and agents. Necessary and sufficient conditions for the system to remain

structurally controllable in the case of the failure of some of the communication links

or/and loss of some agents are derived in terms of the topology of the information

flow graph. Moreover, a polynomial-time algorithm for determining the maximum

number of failed communication links under which the system remains structurally

controllable is presented. The proposed algorithm is analogously extended to the

case of loss of agents, using the node-duplication technique.

The above results are subsequently extended to the multiple-leader case, i.e.,

when more than one agent can act as the leader. Then, leader localization prob-

lem is investigated, where it is desired to achieve p-link or q-agent controllability

in a multi-agent system. This problem is concerned with finding a minimal set

of agents whose selection as leaders results in a p-link or q-agent controllable sys-

tem. Polynomial-time algorithms to find such minimal sets for both undirected and

directed information flow graphs are presented.
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Chapter 1

Introduction

1.1 Motivation and Related Work

Collective behavior in large groups of entities is common in the real world and can

be viewed as a special behavior of large number of agents interacting together. Such

behavior has certain advantages; for example, collective motions of ant colonies,

bird flocks, and fish schools can increase chance of finding food and avoiding preda-

tors and other risks [1]. Such natural behavior has inspired study of multi-agent

systems [2–6]. A multi-agent system is a collection of dynamic units that inter-

act over an information exchange network for its operation. The applications of

such systems have been expanding to the areas such as rescue missions, firespot-

ting, ocean exploration, space science missions, terrain mapping, surveillance, and

even military applications with various types of agents [7–13]. Due to vast applica-

tions of multi-agent systems, their control and coordination has emerged as a topic

of major interest during the last decades [14–18]. Examples include cooperative

control of unmanned aerial/ground/underwater vehicles, scheduling of automated

highway systems, formation control of satellite clusters, and congestion control in

communication networks.
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The use of multiple agents has more potential advantages than a single-agent

application including robustness, flexibility, and adaptability to unknown dynamic

environments [19]. Spacecraft formation flying is an example in which a mission is

performed by a virtual spacecraft consisting of a group of simple, low-cost, highly

coordinated small satellites. A wide range of scientific, military, and commercial

space applications can potentially benefit from such a technology to perform dis-

tributed observations for surveillance, magnetosphere sensing, interferometry, and a

variety of other missions. This approach provides significant advantages such as (i)

autonomous operations with minimal ground involvement; (ii) increased coverage

due to the separation between the agents, and (iii) creating a more flexible structure

by regarding the group of agents as one large complex agent, with no single point

of failure (as in the case of a single agent) [20–22].

Along with these advantages, there exist a number of challenges in design-

ing control algorithms because the individual agents have limited computational,

communications, sensing, and mobility resources. In particular, due to the im-

portance of information sharing in the coordination of a multi-agent system, the

information flow structure between the agents needs to be taken into account in

control design [23]. In [24–27], a number of approaches are proposed to address the

above problem. The role of the interconnection topology in the information flow

and formation stability is studied in a number of papers (e.g. see [28, 29]). In [30],

leader-follower local control laws with vision-based feedback are employed to stabi-

lize a formation of multi-agent systems. On the other hand, behavioral schemes are

investigated in [31,32] to stabilize formations of vehicles.

Motivated by recent technological advances in the areas of wireless communica-

tions, embedded computation, and micro fabrication, several results are reported in

the literature on the formation control of multiple autonomous mobile agents [33–38].

Graph-theoretic approaches have recently been recognized as effective tools for the
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analysis of multi-agent systems in the control literature. Such mathematical tools

are employed for the analysis of a number of relevant problems such as consensus,

rendezvous, flocking, leader-follower formation control, and containment [39–45]. In

the consensus problem, all agent should converge to the same point in the state

space. In the rendezvous problem which is an instantiation of the consensus prob-

lem, a collection of agents are supposed to meet at an unspecified common location.

Flocking problem, on the other hand, is concerned with the convergence of the ve-

locity vectors and orientations of the agents to a common value at steady state. In

the leader-follower formation control, a subset of agents act as leaders and influence

the behavior of the other agents (referred to as the followers) to achieve prescribed

objectives such as formation reconfiguration. In the containment problem, the lead-

ers move in such a way that the followers remain in the convex leader-polytope at

all times.

Another issue concerning the multi-agent systems coordination is their con-

trollability. The controllability problem in the leader-follower multi-agent systems

was first introduced in [46], where the classical notion of controllability for a leader-

based multi-agent system was studied. In this problem, one or more agents acting

as the leaders are influenced by an external control input while the other agents are

governed by a decentralized averaging rule and produce their control input based

on the information they receive from their neighbors. It is aimed to steer the inter-

connected system to specific positions by regulating the motion of the leader. Since

the dynamics of the system relies on its interconnection topology, it is clear that

the controllability should depend on the network topology. In [46], necessary and

sufficient conditions are provided for the controllability of a system in terms of the

eigenvalues and eigenvectors of a sub-matrix of the Laplacian of the information flow

graph. It is also substantiated in [46] that increasing the size of the information flow

graph would not necessarily improve the controllability of the system. Subsequently,
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in [47, 48], the controllability of the leader-follower multi-agent systems is charac-

terized by graph theory. It is shown in [47] that a leader-symmetric interconnection

network is uncontrollable. The above paper also investigates the dependency of

the rate of convergence of the system on the position of the leader. Network equi-

table partitions are introduced in [49] to present a new necessary condition for the

controllability of a multi-agent system. Using this notion, the controllability char-

acterizations are extended to a multiple-leader setting in [50]. More recently, the

notion of relaxed equitable partitions is introduced in [51] to provide a graph-theoretic

interpretation for the controllability subspace when the network is not completely

controllable. The controllability of a single-leader multi-agent system under fixed

and switching topologies for both continuous-time and discrete-time cases is studied

in [52, 53], where it is shown that the controllability of the overall system does not

require that the network be controllable for a fixed topology; in other words, even if

the network interconnection switches between a number of uncontrollable networks

with fixed topologies, the overall system can be controllable.

While the aforementioned results provide efficient techniques to check the con-

trollability of multi-agent systems, they are mainly concerned with undirected inter-

connection graphs. Furthermore, they assume that the followers obey a consensus-

like control strategy, and then investigate the controllability of the system for the

given control law. For example, such a control law is considered in [54]; however,

the corresponding information flow graph is assumed to be weighted. It is shown

that these weights can be adjusted properly to obtain a controllable system if and

only if the underlying graph is connected.
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1.2 Thesis Contributions

In this thesis, a novel approach to the controllability verification of multi-agent

systems is introduced. The proposed method is concerned with the structural con-

trollability, as opposed to the controllability of a fixed topology. To this end, a quan-

titative measure is provided for the controllability of any given directed information

flow graph. It is primarily aimed to obtain graphical conditions for the structural

controllability of a leader-follower multi-agent system with a single leader. The

structural controllability is then quantified for both cases of communication links

failure and loss of agents. Necessary and sufficient conditions are derived for con-

trollability preservation under such failures. These results are extended to the case

of multiple leaders, and then the problem of finding a minimal set of agents whose

selection as leaders results in a structurally controllable system is investigated.

1.3 Thesis Outline and Publications

The rest of the thesis is organized as follows. Chapter 2 provides the basic theo-

retical background, where some preliminaries from graph theory are presented, and

the concept of structural controllability is introduced. In Chapter 3, graphical con-

ditions for the controllability of a single leader multi-agent system based on the

topology of its information flow graph is derived. Moreover, conditions for control-

lability preservation in the case of failure of some communication links or loss of

some agents are provided. The results are then extended to a multiple-leader case.

Chapter 4 considers the leader localization problem on both undirected and directed

information flow graphs. Finally, conclusions and future research directions are pre-

sented in Chapter 5.
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Chapter 2

Background

This chapter provides a background to the problem under study in this dissertation.

First, basic concepts of graph theory are introduced, and then the notions of struc-

tured systems and structural controllability are studied. Throughout this thesis, the

set of integers {1, 2, . . . , k} is denoted by Nk. The difference of the set X and the

Y which is the set containing all elements of X that do not belong to Y is denoted

by X\Y . The size of a set X is the number of its elements, and is represented by

|X|. The ith member of an ordered set X is denoted by X(i). Two sets X and Y

are intersecting if the sets X\Y , Y \X, and X ∩ Y are all nonempty.

It is to be noted that most of the material presented in Section 2.1 are drawn

from [55–57].

2.1 A Brief Introduction to Graph Theory

Graphs are so named because they can be represented graphically, and this graphical

representation helps us understand many of their properties. An undirected graph G

is a pair (V , E), where V is a non-empty finite set of elements called vertices, and E

is a set of unordered pairs of elements of V called edges. If eij = {i, j} ∈ E is an edge

with end vertices i and j, then eij is said to join i and j. The size of the vertex set
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and the edge set of a graph are called the order and size of the graph, respectively.

A graph can be represented pictorially as in Fig. 2.1(a) and (b). The black circles

or nodes represent the vertices, and each edge {i, j} is represented by a line joining

the nodes corresponding to the vertices i and j. For example, Fig. 2.1(a) represents

a graph of order four and size six with the vertex set V = {1, 2, 3, 4} and edge set

E = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}.

The ends of an edge are said to be incident with the edge, and vice versa. Two

Figure 2.1: Examples of: (a) an undirected graph, and (b) an undirected graph with
a self-loop and a pair of parallel edges.

vertices (edges) are adjacent if they are incident with a common edge (vertex). Two

distinct adjacent vertices are called neighbors ; clearly, in an undirected graph if

vertex i is a neighbor of vertex j, then j is a neighbor of i as well. Ni denotes

the set of all neighbors of a vertex i, i.e. Ni := {j |{i, j} ∈ E}. Edges incident

with only one vertex (i.e., those with identical ends) are called self-loops, while

distinct edges incident with the same vertices are called parallel edges. For example,

the graph in Fig. 2.1(b) has a self-loop on vertex 2, and a pair of parallel edges

between vertices 1 and 3. A graph is simple if it has no self-loops and no parallel

edges. A path from vertex i1 to vertex ik, denoted by Pi1ik = (i1, i2, . . . , ik), is a

sequence of distinct vertices starting with i1 and ending with ik such that any pair

of vertices in {i1, i2, . . . , ik} are adjacent if they are consecutive in the sequence,

and are nonadjacent otherwise. Similarly, a cycle is a sequence of vertices C =

(i1, i2, . . . , ik, i1) starting and ending with the same vertex such that any pair of

vertices in {i1, i2, . . . , ik} are adjacent if they are consecutive in the sequence, and

8



are nonadjacent otherwise. Two paths (cycles) are called disjoint if they consist of

disjoint sets of vertices. Each vertex on the path Pi1ik (including the vertex ik itself)

is called an ancestor of ik, and each vertex of which ik is an ancestor is a descendant

of ik. An ancestor or descendant of a vertex is proper if it is not the vertex itself.

The immediate proper ancestor of a vertex ij on Pi1ik (j 6= 1) is its predecessor or

parent, denoted by ζ(ij), and the vertices whose predecessor is ij are its successors

or children.

The length of a path or a cycle is the number of its edges. A self-loop is a

cycle of length one, and a pair of parallel edges constructs a cycle of length two. A

chord of a path (cycle) is an edge between two vertices of the path (cycle) that is

not an edge of the path (cycle). A path (cycle) is chordless if it contains no chords.

A graph G is chordal if each cycle in G of length greater than three has at least one

chord; otherwise it is called unchordal. Chordal graphs are also called triangulated

and perfect elimination graphs. Fig. 2.2 depicts a chordal and an unchordal graph.

A clique of a graph G is a set of mutually adjacent vertices. In other words, V ′ ⊆ V

Figure 2.2: (a) A chordal graph, and (b) an unchordal graph.

is a clique in G if for all distinct vertices i, j ∈ V ′, {i, j} ∈ E . A maximal clique is a

clique that is not a subset of any other clique. A clique cover is a family of cliques

that includes every vertex of the graph. Finding the minimum number of cliques

which cover all vertices of a graph is known as minimum clique cover problem. A set

of vertices or edges is called independent (or stable) if there is no pair of adjacent

in it. A complete graph is a simple graph in which any two vertices are neighbors;

a complete graph of order n is denoted by Kn. Two complete graphs are shown in

Fig. 2.3.
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A graph is connected if there exists a path between each pair of vertices; otherwise

Figure 2.3: (a) A complete graph of order four, and (b) a complete graph of order
five.

the graph is disconnected. A disconnecting set in a connected graph G is a set of edges

whose removal disconnects G. A cutset of G is a disconnecting set, such that none

of its proper subsets is a disconnecting set. The edge-connectivity of G is the size

of the smallest cutset in G. A separating set in G is a set of vertices whose deletion

disconnects G. The vertex-connectivity of G is the size of the smallest separating set

in G.

Let X be a set of vertices, the edge cut of G associated with X is the set of edges of

G with one end in X and the other end in V\X, and is denoted by ∂G(X). Fig. 2.4

shows a simple graph in which the edge cut associated with vertex set X = {1, 2, 6}

is ∂G(X) = {{2, 3}, {5, 6}}.

The degree (or valency) of a vertex x of G is the number of edges incident with x,

Figure 2.4: The edge cut associated with a vertex set in a simple graph.

and is denoted by dG({x}). In general, the degree of a set X ⊂ V is the number of

edges of G with one end in X and the other end in V\X, that is dG(X) = |∂G(X)|.

Although it is convenient to represent any graph by a diagram consisting of

a set of points (vertices) joined by lines (edges), such a representation may be

10



unsuitable when it comes to storing information of a large graph in a computer. A

useful representation of graphs involves matrices. Let G be a graph of order n and

of size m, with the vertex set V = {1, 2, . . . , n}. The adjacency matrix A(G) of this

graph is an n × n matrix whose (i, j) entry is the number of edges joining vertices

i and j. An adjacency matrix of a simple graph has entries 0 or 1, where the (i, j)

entry A(G) is 1 if {i, j} ∈ E , and is 0 otherwise; diagonal elements are also zero.

The adjacency matrix of an undirected graph is symmetric, and also diagonalizable

over R; that is, there is a basis of Rn consisting of the eigenvectors of A(G). The

incidence matrix of G, denoted by I(G), is an n × m matrix whose (i, j) entry is

1 if vertex i is incident to edge j, and is 0 otherwise. The degree matrix of G,

denoted by ∆(G), is an n × n diagonal matrix whose (i, i) entry is the degree of

vertex i, and the other entries are all zero. The Laplacian matrix L(G) is defined

as L(G) = ∆(G) − A(G). In an undirected graph, the Laplacian matrix is always

symmetric and positive semi-definite. It can be shown that L(G) = I(G)I(G)T .

The algebraic multiplicity of the zero eigenvalue of L(G) is equal to the number

of connected components in the graph. In a connected graph of order n, the n-

dimensional eigenvector associated with the single zero eigenvalue of L(G) is the

vector of ones. Its second smallest eigenvalue is positive and is referred to as the

algebraic connectivity of the graph, because it is directly related to how vertices are

interconnected.

A directed graph or digraph G = (V , E) is characterized by a set of vertices V

and a set of edges E ⊆ V × V . An edge of G is denoted by eij := (i, j) ∈ E , which is

a directed arc from vertex i to vertex j. In such an ordered pair, the first vertex i is

called tail and the second one j is called head. In a digraph, a self-loop eii = (i, i) is

an edge connecting vertex i to itself. Two edges are anti-parallel if one’s head/tail

is the other’s tail/head. Fig. 2.5 shows a digraph containing a pair of anti-parallel

edges between vertices 2 and vertex 6, and a pair of parallel edges between vertices

11



3 and 5.

The set of all neighbors of vertex i is defined as Ni := {j | eji ∈ E}. A sequence

Figure 2.5: Parallel and anti-parallel edges in a digraph.

of edges (i1, i2), (i2, i3), . . . , (ik−1, ik) is referred to as a directed i1ik-path (ij ∈ V ,

j ∈ Nk). The parent function of this path is defined as ζ(ij) = ij−1, for j ∈ Nk\N1.

The vertex i1 is called the origin or root of the path, and the vertex ik is called the

end of the path. A vertex i is called reachable from vertex j if there exists a path

whose origin and end are j and i, respectively. An R-rooted path is a path whose

origin is in the set R ⊂ V ; the set R associated with such a path is called the root

set. A group of mutually disjoint R-rooted paths is called an R-rooted path family.

Fig. 2.6 shows three pairwise disjoint R-rooted paths which construct an R-rooted

path family. A closed path consisting of distinct vertices is called a cycle and a set

Figure 2.6: Three mutually disjoint R-rooted paths.

of disjoint cycles is called a cycle family. The set of all edges of G entering X ⊆ V is

denoted by ∂−G (X) and is called the incut of X, and the set of all edges of G leaving

X is denoted by ∂+
G (X) and is referred to as the outcut of X. In other words, incut

(outcut) of X is the set of edges of G whose heads (tails) lie in X and whose tails

(heads) lie in V\X.
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In the digraph shown in Fig. 2.5, the incut and outcut of vertex set X = {3, 4, 5, 6}

are ∂−G (X) = {e23, e26} and ∂+
G (X) = {e62, e61}, respectively. The size of the incut

and outcut associated with X are called the indegree and outdegree of X, respec-

tively, and are denoted by d−G (X) and d+
G (X). For two disjoint sets X, Y ⊂ V , let

∂−GY
(X) ⊆ ∂−G (X) be the set of all edges of G whose tails lie in Y and whose heads

lie in X; also, let the size of this set be denoted by d−GY
(X).

A digraph is weakly connected if there is an undirected path between any pair

of vertices, that is, the corresponding undirected graph is connected. A digraph is

strongly connected if there is a directed path between every pair of vertices.

2.2 Controllability of Structured Systems

Controllability is an important concept in the analysis and design of control system.

Consider an LTI system described by the following standard state equation

ẋ(t) = Ax(t) +Bu(t) (2.1)

where x(t) ∈ Rn, u(t) ∈ Rm are the state and input of the system, respectively, and

A and B are real valued matrices of appropriate dimensions. The LTI system (2.1)

is said to be controllable if there exists an input u(t) which will drive the system

from any initial state x(0) = x0 to any final state x(tf ) = xf in a finite time interval

[0 tf ] [58]. It is to be noted that in this definition no constraint is imposed on the

input.

In a controllable system of the form (2.1), the matrix Wc(t)=
∫ t

0
eAτBBT eA

T τdτ

is nonsingular for any t > 0. It can be shown that the input

u(t) = BT eA
T (tf−t)W−1

c (tf )(xf − eAtfx0) (2.2)

will transfer any initial state x(0) = x0 to any final state x(tf ) = xf [58] (note that

such an input is not unique). It can be shown that the input u(t) given by (2.2)
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minimizes the cost function J =
∫ tf

0
||u(τ)||2dτ , where ||.|| denotes the Euclidean

norm.

In many real-world problem, in modeling problems the matrices A and B have

a number of fixed zero entries determined by the physical structure of the system,

and the remaining entries are not known exactly. In other words, the parameters

of a system are usually not known precisely, with the exception of zeros that are

fixed (e.g., due to the absence of physical connections between certain parts of a

system) [59].

Typical analysis and design techniques for linear systems are often based on

the premise that full knowledge of the system parameters is available. Although

a number of methods have been developed in the past three decades to deal with

uncertainty in the analysis and design of control systems, such techniques are known

to have important drawbacks in practice. For example, they are complex in general,

and can lead to very conservative results (e.g. sufficient conditions for robust stabil-

ity) [60, 61]. Moreover, robustness analysis techniques rely on the numerical values

of the physical model, and are usually effective for a certain range of parameter

variation only. As an alternative to conventional methods discussed above, one can

develop an analysis methodology based on the structure of the system, as opposed

to its exact numerical values.

The structured system approach was first introduced in [62], and was further

developed later in [63–65]. Several control problems have been studied since then

in the framework of structured systems. Input-output decoupling of structured

systems is studied in [66,67]. In [68,69], disturbance rejection for structured systems

is investigated using state feedback. The problem of fault diagnosis for structured

systems is considered in [70]. Decentralized control of structured systems, on the

other hand, is investigated in [71].

A matrix is called structured if its entries are either fixed zeros or independent
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free parameters. Two matrices are said to be structurally equivalent if there is a

one-to-one correspondence between their zeros. A system of the form (2.1) is called

structured if both A and B are structured matrices, and also the union of the nonzero

entries of A and B is algebraically independent. In the remainder of this chapter,

let an LTI system of the form (2.1) be represented by the pair (A,B).

Definition 2.1. [59] A system (A,B) is structurally controllable if there exists a

system structurally equivalent to (A,B) which is controllable in the usual sense.

Proposition 2.1. [62] A system (A,B) is structurally controllable if and only if for

any ε > 0, there exists a controllable system (A0, B0) of the same structure as (A,B)

such that ||A−A0|| < ε and ||B−B0|| < ε (where ||.|| denotes any arbitrary norm).

Definition 2.2. [65] The structured matrix [A | B] ∈ Rn×(n+m) is said to be irre-

ducible if there exists no permutation matrix P such that

PAP−1 =

 A11 0

A21 A22

 and PB =

 0

B21


where A11 ∈ Rk×k, A21 ∈ R(n−k)×k, A22 ∈ R(n−k)×(n−k), and B21 ∈ R(n−k)×m are

structured matrices, with k ∈ Nn, and 0 is the zero matrix of appropriate dimension.

Definition 2.3. [63] The generic rank of a structured matrix is the maximum rank of

its structurally equivalent matrices. Therefore, a structured matrix has full generic

rank if and only if there exists a matrix of full rank obtained by fixing the free

parameters at some particular values.

Remark 2.1. Neither stability nor instability is a structural property, so these prop-

erties cannot be handled with structured systems. As a simple example consider the

first order system ẋ(t) = αx(t), in which for any value of α, it can be stable or

unstable.
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Structured systems can be represented by digraphs. This enables one to study

such systems from a graph theoretic prospective. An m-input n-dimensional linear

structured system defined by the pair (A,B) can be represented by a digraph of order

n+m denoted by G(A,B) = (V , E). The vertex set of G(A,B) is given by V = X∪U ,

where X = {x1, x2, . . . , xn} and U = {u1, u2, . . . , um} are the sets of state and in-

put vertices, respectively. The (i, j) entry of the matrix [A | B] corresponding to

a nonzero parameter is associated with a directed edge from vertex j to vertex i. De-

note these edges by E , i.e. E = {(j, i) | The (i, j) entry of [A | B] is a free parameter}.

As an example, consider the following structured system

ẋ(t) =



× 0 0 0

× 0 0 0

0 0 0 0

0 0 × ×


x(t) +



× 0

0 ×

× 0

0 ×


u(t) (2.3)

where × denotes parameters of the system that can be chosen freely. The digraph

G(A,B) of the system is of order six with the vertex set V = {x1, x2, x3, x4, u1, u2}.

The resulting digraph is depicted in Fig. 2.7.

Figure 2.7: A digraph associated with system (2.3).

In G(A,B), a path whose origin is in U is called a stem. The terminal vertex

of a stem is called top of the stem. Consider a cycle C and an edge e = (i, j) such

that vertex j is contained in C but vertex i is not; then, C ∪ {e} is called a bud,

and e is called the distinguished edge of the bud. Consider a stem S and a sequence
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of buds B1,B2, . . . ,B`; the digraph CG = S ∪
(
∪`j=1Bj

)
is called a cactus if for any

i ∈ N`, the tail of the distinguished edge of Bi is not the top of S, and is the only

vertex belonging to Bi and S ∪
(
∪i−1
j=1Bj

)
. Fig. 2.8 gives an illustration for the case

` = 3.

Figure 2.8: A cactus with three buds.

Theorem 2.1. [65,72] The following statements for a structured system (A,B) are

equivalent.

i. (A,B) is structurally controllable.

ii. [A | B] is irreducible and its generic rank is n.

iii. In G(A,B), there exists a disjoint union of cacti that covers all state vertices.

iv. In G(A,B), every state vertex is the end vertex of a U-rooted path, and there

exists a disjoint union of a U-rooted path family and a cycle family that covers

all state vertices.

Using this theorem, one can determine if a linear time-invariant (LTI) system

with a state-space representation of the standard form (2.1) is structurally control-

lable. It is to be noted that analogous results hold for structural observability [72].
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Chapter 3

Structural Controllability of

Multi-Agent Systems

In this chapter, a novel approach to the controllability verification of multi-agent

systems is introduced. The proposed method is concerned with the structural con-

trollability, as opposed to the controllability of the fixed system. To this end, a

quantitative measure is provided for the controllability of any given directed infor-

mation flow graph. It is primarily aimed to obtain graphical conditions for the struc-

tural controllability of a leader-follower multi-agent system with a single leader. The

structural controllability is then quantified for both cases of communication links

failure and loss of agents. Necessary and sufficient conditions are derived for pre-

serving structural controllability under such failures. Polynomial-time algorithms

are provided subsequently to find the maximum number of such failures for which

the system remains structurally controllable. The case of a single-leader is con-

sidered first, and the results are then extended to the multiple-leader setting. We

consider a directed information flow graph; clearly, the results can also be applied

to undirected information flow graphs by replacing each undirected edge with a pair

of anti-parallel edges. Throughout this thesis it is assumed, unless otherwise stated,
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that the information flow graph is a digraph with no parallel edges.

3.1 Problem Statement

Consider a team of single integrator agents given by

ẋi(t) = ui(t), i ∈ Nn (3.1)

where xi(t) and ui(t) are the state and control input of agent i, respectively. Let

the interaction between the agents be specified by a given information flow graph

G = (V , E). This graph, which is assumed to be static and directed, has n vertices

(one for each agent) and an edge from vertex j to vertex i (i, j ∈ Nn, i 6= j) if agent

j is capable of transmitting its state to agent i. In a static information flow graph,

the movements of the agents would not result in any new edge to be generated, or

any existing edge to be eliminated. Fig. 3.1 shows an information flow graph for a

group of five agents in which, for instance, agents 3 and agent 4 have access to state

of agent 1, while agent 1 does not have any information about them.

Figure 3.1: An information flow graph for a group of five agents.

Assume that one of the agents, say agent n, acts as the leader, and is influenced

by an external control input, denoted by un(t) = uext(t), enabling it to move without

any constraint. Let the remaining four agents, called followers, obey a control law

of the following form

ui(t) =
∑

j∈Ni∪{i}

αijxj(t), i ∈ Nn−1 (3.2)
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where the coefficients αij ∈ R are fixed. Therefore, the state of each agent is updated

based on its interaction with the neighbors under the above rule. For example, in

the information flow graph shown in Fig. 3.1 the control input of agent 3 is expressed

as

u3(t) = α31x1(t) + α33x3(t) + α34x4(t).

The state of each agent is defined to be its absolute position with respect to

an inertial reference frame, which can often be measured with sufficient accuracy

by using GPS-based systems [73]. Throughout the paper, it is assumed that the

agent dynamics is decoupled along each dimension, allowing for one-dimensional

state representation for each agent.

Definition 3.1. The information flow graph G is called controllable if there exist

αij’s, such that by moving the leader properly, the followers can take any desired

configuration.

In the information flow graph G of a leader-follower multi-agent system with

a vertex representing each agent, the vertex corresponding to the leading agent is

called the root, and is denoted by r. It is assumed that d−G({r}) = 0.

Under the control law (3.2), the dynamics of the followers can be described as

ẋ(t) = Ax(t) + bu(t) (3.3)

where x(t) = [x1(t) ... xn−1(t)]
T ∈ Rn−1, u(t) = xn(t) ∈ R, and A = [aij], b = [bi]

are structured matrices of proper dimensions. For any i, j ∈ Nn−1, aij = αij if

j ∈ Ni∪{i}; otherwise, aij = 0. Also, for any i ∈ Nn−1, bi = αin if n ∈ Ni; otherwise

bi = 0. Therefore, (3.3) describes a structured system whose controllability under the

control input u(t) is equivalent to the controllability of the underlying information

flow graph.

It is desired to graphically interpret the necessary and sufficient conditions
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for controllability of a digraph and to find conditions under which it remains con-

trollable after the elimination of a number of edges or vertices. It is also aimed to

quantitatively measure the controllability of an information flow graph subject to

failure in the agents or communication links.

3.2 Controllability of an Information Flow Graph

Consider a structured system described by the following state equation

ẋ(t) = Ax(t) +Bu(t) (3.4)

where x(t) ∈ Rn denotes the state, u(t) ∈ Rm is the input, and A, B are structured

matrices of appropriate dimensions. Let G(A,B) be the digraph representing the

system (3.4). The following theorem gives the necessary and sufficient conditions

on the digraph G(A,B) for the structural controllability of the system (3.4).

Theorem 3.1. [72] System (3.4) with the digraph G = (V , E) is structurally con-

trollable if and only if both of the following conditions hold: i) Every vertex in G is

the end vertex of an R-rooted path; ii) There exists a disjoint union of an R-rooted

path family and a cycle family that covers all vertices, where R ⊂ V is the set of

vertices corresponding to the columns of the matrix B.

One can use the above theorem to find graphical conditions for the controlla-

bility of the information flow graph (see Definition 3.1). Since each of the followers

has access to its own local state, one can assume that there exists a self-loop on each

vertex associated with a follower. This means that αii in the control law (3.2) is

nonzero for any i ∈ Nn−1 (note that this would not require additional communica-

tion links). This assumption along with the fact that the root set R is a singleton,

i.e. R = {r}, gives rise to the following theorem.
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Theorem 3.2. The information flow graph G is controllable if and only if any vertex

in G is reachable from the root.

Proof : The reachability of all vertices from the root implies that each vertex

is the end vertex of a rooted path. The vertex corresponding to the root can be

considered as a rooted path of length zero, and a self-loop on each vertex constructs

a cycle family whose union with the rooted path spans the vertex set V . Thus, the

proof follows from Theorem 3.1. �

Fig. 3.2 depicts two information flow graphs for a six-agent group in which the

vertex labeled r represents the leading agent. In Fig. 3.2(a), vertex 5 is not the end

of an r-rooted path, i.e., it is unreachable from the root. Hence, from Theorem 3.2

the digraph is uncontrollable. Fig. 3.2(b) represents a controllable information flow

graph, since each vertex is reachable from the root.

Figure 3.2: (a) An uncontrollable information flow graph; (b) a controllable infor-
mation flow graph.

In the next sections, controllability preservation of an information flow graph

in case of failure of some communication links or loss of agents is investigated.
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3.3 Controllability under Communication Links

Failure

The goal of this subsection is to present graph-based necessary and sufficient con-

ditions under which an information flow graph remains controllable in the presence

of a certain number of communication link failures. In other words, it is desired to

verify whether the whole system remains controllable by using any subset of a given

size of the communication links. To this end, the notion of p-link controllability is

introduced in the sequel.

Definition 3.2. The information flow graph G is said to be p-link controllable if

p is the largest number such that the controllability of the digraph is preserved af-

ter removing any group of at most p − 1 edges. In this case, p is called the link-

controllability degree.

The above definition implies that in a p-link controllable digraph, the minimum

number of edges whose removal makes the digraph uncontrollable is p. This number

will hereafter be denoted by lc(G). The minimal set of links whose failure makes the

digraph uncontrollable is called critical links set (this set is not unique, in general).

The value of lc(G) provides a quantitative measure of reliability with respect to

communication failure.

Theorem 3.3. The information flow graph G = (V , E) is p-link controllable if and

only if

min
X⊂V
r∈X

d+
G (X) = p.

Proof : It is clear from the definition of outcut that removing the set ∂+
G (X)

from the edge set E for every X ⊂ V with r ∈ X makes the set V\X unreachable

from the root. On the other hand, suppose that F is the minimal set of edges whose

removal makes at least one of the vertices unreachable from the root. Let XF be
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the set of reachable vertices from r after the removal of those edges which belong to

F . The proof follows now on noting that F includes all members of the outcut of

XF . �

Given a digraph G, one may use Theorem 3.3 to find the value of lc(G). How-

ever, calculating the outdegree of all possible subsets of the vertex set V takes

exponential time. In other words, Theorem 3.3 provides an algorithm whose com-

plexity is exponential in the size of the input, and hence is intractable for high-order

digraphs. The complexity of an algorithm is defined to be the number of basic

computational steps (e.g., arithmetical operations and comparisons) required for its

execution. This number clearly depends on the size and nature of the input. In

polynomial-time algorithms, complexity is bounded above by a polynomial in the

input size. The significance of such algorithms is that normally they are compu-

tationally feasible, even for large input graphs. On the contrary, exponential-time

algorithms have high running times which render them unusable even on inputs of

moderate size. Therefore, it is desired to develop a polynomial-time algorithm to

determine the value of lc(G) for any digraph.

Let lc(G, x) be the minimum number of edges whose deletion makes the vertex

x unreachable from the root. Note that by definition lc(G) = minx∈V\{r} lc(G, x).

Lemma 3.1. For a specified vertex y in a digraph G,

lc(G, y) = min
X⊂V

r∈X,y 6∈X

d+
G (X).

Proof : The proof is similar to that of Theorem 3.3. �

Lemma 3.2. Given a digraph G, consider a specified vertex y and an ry-path denoted

by Pry. Let Gnew be the digraph obtained from G by reversing the direction of the

edges of Pry. Then the following relation holds

lc(Gnew, y) = lc(G, y)− 1.
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Proof : It is straightforward to show that for any set of vertices X which

includes the root and excludes vertex y, |Pry ∩ ∂+
G (X)| − |Pry ∩ ∂−G (X)| = 1, that

is, the number of edges of Pry leaving X is one more than those entering X (see

Fig. 3.3). In other words, reversing an ry-path decreases d+
G (X) by one, for every

X ⊂ V with r ∈ X and y 6∈ X. The proof follows directly from this result and

Lemma 3.1. �

Figure 3.3: An illustrative example given for the proof of Lemma 3.2.

Theorem 3.4. Consider a digraph G with a specified vertex y. Construct a new

digraph Gnew by reversing the direction of the edges of an ry-path in G, if any.

Repeat the same procedure for Gnew and continue until a digraph Gfinal is obtained

in which y is unreachable from the root. Denote with Y ⊂ V the reachable vertices

from r in Gfinal. Then, the outcut of Y in G is a minimal set whose deletion makes

y unreachable from the root; in particular, d+
G (Y ) = lc(G, y).

Proof : From Lemma 3.2, each time the direction of the edges of an ry-path is

revered, the outdegree of Y decreases by one. The proof follows now from the fact

that for the final digraph Gfinal, ∂
+
Gfinal

(Y ) = ∅. �

One of the important outcomes of Theorem 3.4 is that one can use it to

develop a polynomial-time procedure for finding lc(G). An algorithm of complexity

O(|V|2|E|) is developed below whose input is an information flow graph G = (V , E)

of order n, and outputs are lc(G) and a set of critical links C.
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Algorithm 3.1.

C = ∅.

lc(G) = n.

for i = 1 to n− 1,

H = G.

Main: Y = {r} and ζ(j) = ∅ (∀j ∈ V).

while ∃ exy ∈ ∂+
H(Y ),

Y = Y ∪ {y}.

ζ(y) = x.

end while

if i ∈ Y ,

In H, reverse the direction of all the edges in the ri-path obtained by using

the parent function ζ, and then jump to Main.

end if

if d+
G (Y ) < lc(G),

lc(G) = d+
G (Y ).

C = ∂+
G (Y ).

end if

end for

return lc(G) and C.

As an example, consider the digraph shown in Fig. 3.4(a). Let Algorithm 3.1

be applied to this digraph to find the value of lc(G, i) for a specific vertex, say i = 3,

and its corresponding critical links set, C3 (i.e., a set of edges whose deletion makes

vertex 3 unreachable from the root). The evolution of set Y at each step is as follows.

26



Figure 3.4: (a) A digraph G = (V , E); (b) the digraph H obtained by reversing the
first r3-path, (c) the digraph H obtained by reversing the second r3-path.

Step 1: Y = {r}; Y = {r, 1}, ζ(1) = r; Y = {r, 1, 5}, ζ(5) = r; Y = {r, 1, 5, 2},

ζ(2) = 1; Y = {r, 1, 5, 2, 4}, ζ(4) = 5; Y = {r, 1, 5, 2, 4, 3}, ζ(3) = 4. In this di-

graph, 3 ∈ Y and the r3-path is ((r, 5), (5, 4), (4, 3)). Fig. 3.4(b) shows the digraph

H after reversing the r3-path obtained in this step.

Step 2: Y = {r}; Y = {r, 1}, ζ(1) = r; Y = {r, 1, 2}, ζ(2) = 1; Y {r, 1, 2, 4},

ζ(4) = 2; Y = {r, 1, 2, 4, 3}, ζ(3) = 2; Y = {r, 1, 2, 4, 3, 5}, ζ(5) = 2. In the

resultant digraph, 3 ∈ Y and the r3-path is ((r, 1), (1, 2), (2, 3)). Fig. 3.4(c) shows

the digraph H after reversing the r3-path obtained in this step.

Step 3: Y = {r}. Here, 3 6∈ Y ; therefore, lc(G, 3) = d+
G (Y ) = 2 and

C3 = ∂+
G (Y ) = {(r, 1), (r, 5)}.

By applying this procedure to all vertices, one obtains lc(G) = 2, that is the

digraph shown in Fig. 3.4(a) is 2-link controllable.

As noted before, the set of critical links is not unique, in general, and hence

Algorithm 3.1 gives one of possibly multiple critical sets. For instance, Fig. 3.5

depicts nine possible sets of critical links of the digraph illustrated in Fig. 3.4(a) by

dashed arrows. For this digraph, Algorithm 3.1 gives the set shown in Fig. 3.5(a) as

a critical links set.

The next theorem provides the minimum number of edges required for p-link

controllability of a digraph.

Theorem 3.5. Any p-link controllable digraph of order n has at least (n−1)p edges.

Also, there exists a p-link controllable digraph whose size attains this lower bound.
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Figure 3.5: Nine sets of critical links for a 2-link controllable digraph. Edges asso-
ciated with critical links are depicted by dashed arrows.

Proof : In a p-link controllable digraph, the indegree of any vertex x ∈ V\{r}

is at least p. Therefore,

|E| =
∑

x∈V\{r}

d−G ({x}) ≥ (n− 1)p

Let X ⊂ V\{r} be a set of p vertices and Y = V\{X ∪ {r}}. Construct a complete

digraph of order p whose set of vertices is X. Then, create the p edges (r, x), for all

x ∈ X. Create also edges from any vertex in X to any vertex in Y . The resulting

digraph has p+ p(p− 1) + p(n− p− 1) = (n− 1)p edges (Fig. 3.6 gives an example

with p = 3 and n = 6). To prove that this digraph is p-link controllable, it suffices

to show that there exists p edge-disjoint paths from r to any vertex x ∈ V\{r}. If

x ∈ X, then the p edge-disjoint paths are given by the p − 1 paths (r, y), (y, x),

for all y ∈ X\{x}, together with the path (r, x). If x ∈ Y , the paths are given by

(r, y), (y, x), for all y ∈ X. �

The rest of this section is dedicated to finding the value of p for some standard

digraphs.
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Figure 3.6: An illustrative example given for the proof of Theorem 3.5.

Proposition 3.1. Choose any vertex of a complete digraph Kn = (V , E) of order

n as the root, and remove all of its incoming edges. Then, the resultant digraph is

(n− 1)-link controllable.

Proof : Since the outdegree of each vertex (including the root) is equal to

n − 1, thus p ≤ n − 1. Moreover, Pi = (r, i), (i, j) (for i ∈ V\{j}) and Pj = (r, j)

provide n − 1 edge-disjoint paths from the root to vertex j. This yields that any

critical links set should have at least n− 1 edges, and this completes the proof. �

Remark 3.1. Since a complete digraph has the maximum number of edges, Propo-

sition 3.1 implies that the maximum possible value for lc(G) in an information flow

graph G with n vertices is n− 1.

Three complete digraphs of order three, four, and five are shown in Fig. 3.7,

where in each digraph a vertex is chosen as the root and its incoming edges are re-

moved. From Proposition 3.1, the digraph shown in Fig. 3.7(a) is 2-link controllable,

that in Fig. 3.7(b) is 3-link controllable, and that in Fig. 3.7(c) is 4-link controllable.

Kautz digraph is known to be an ideal candidate to represent the intercon-

nection network for parallel system architectures [74]. The Kautz digraph K(d, κ)

for d ≥ 2 and κ ≥ 1 consists of the vertex set V = {0, 1, . . . , n − 1}, and the edge

set E = {(i, j)| j ≡ −(id + τ) (mod n), τ = 1, . . . , d}, where n = dκ + dκ−1. This
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Figure 3.7: Complete digraphs of order (a) three, (b) four, and (c) five.

digraph has |V| = n vertices and |E| = nd edges. The link-controllability degree for

a Kautz digraph is obtained in the next proposition.

Proposition 3.2. Choose any vertex of a Kautz digraph K(d, κ) = (V , E) as the

root, and remove all of its incoming edges. Then, the resultant digraph is d-link

controllable.

Proof : In a Kautz digraph K(d, κ), the indegree and outdegree of each vertex

are both equal to d. It is shown in [75] that for any two distinct vertices x and y in

K(d, κ), there exist d paths from x to y whose common vertices are exactly x and y.

From this result, one can conclude (in a way similar to the proof of Proposition 3.1)

that p = d. �

Three Kautz digraphs with d = 2 and different values for κ (κ = 1, 2, and 3)

are depicted in Fig. 3.8. In these digraphs, by choosing any of the vertices as the root

and removing its incoming edges, the resultant digraph will be 2-link controllable.

3.4 Controllability under Agents Failure

This section presents a condition under which an information flow graph remains

controllable after a number of agents fail, i.e. they stop operating. It is to be

noted that the failure of an agent implies that all communication links from/to

the corresponding agent also fail. However, in certain type of agent failures the
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Figure 3.8: Three Kautz digraphs: (a) K(2, 1), (b) K(2, 2), and (c) K(2, 3).

communication links of the failed agent may remain operational [76]. Note also that

it is assumed in this section that the leader is not subject to failure.

Definition 3.3. Analogously to the definition of p-link controllability, the informa-

tion flow graph G is said to be q-agent controllable if q is the largest number such

that the controllability of the digraph is preserved after removing any group of at

most q − 1 vertices. In this case, q is called the agent-controllability degree.

In other words, in a q-agent controllable digraph, q is the minimum number of

vertices whose removal makes the digraph uncontrollable. This number will hereafter

be denoted by ac(G). Moreover, the minimal set of agents whose failure makes the

digraph uncontrollable is called critical agents set (this set is not unique, in general).

The larger the value of ac(G) is, the more reliable the corresponding networked

system is to agents failure. It is to be noted that a digraph resulted by removing all

of the followers is known to be uncontrollable. This implies that q ≤ n− 1.

The problem of finding agent-controllability degree of an information flow

graph G can be converted to that of finding link-controllability degree by creating

a digraph G̃ from G using node-duplication technique [77] as follows. Replace any

vertex i of G, except the root with two vertices ĩ1 and ĩ2, and draw the edge (̃i1, ĩ2)

subsequently. Then, replace each edge (i, j) of G with (̃i2, j̃1). Note that the edge

(r, i) in G is replaced by (r, ĩ1). As an example, a digraph with its node-duplicated
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counterpart are shown in Fig. 3.9(a) and (b), respectively.

Figure 3.9: An example of a digraph (a) and its node-duplicated counterpart (b).

Lemma 3.3. Given a digraph G = (V , E); consider a specified vertex y, where

(r, y) /∈ E. Let ac(G, y) be the minimum number of vertices of G whose removal

makes the vertex y ∈ V\{r} unreachable from the root. Then

ac(G, y) = lc(G̃, ỹ1).

Proof : Let X be a minimal set of vertices of G such that any path from r

to y in G passes through at least one of these vertices. Let also F be a minimal

set of edges of G̃ such that any path from r to ỹ1 in G̃ includes at least one of the

edges of F . It follows from the definitions of q-agent and p-link controllability that

|X| = ac(G, y) and |F | = lc(G̃, ỹ1). Consequently, to prove this lemma it suffices to

show that |X| = |F |. For any x ∈ X, consider the edge (x̃1, x̃2) ∈ G̃ and let FX

be the union of all such edges. It is straightforward to show that |X| = |FX |, and

that every path from r to ỹ1 in G̃ includes at least one edge in FX . This yields that

|X| ≥ |F |. Now, it is aimed to map F to a set of vertices XF (of size |F |) in G in

such a way that every path from r to y passes through at least one vertex in XF .

Every edge in F has one of the forms (r, ĩ1) or (̃i1, ĩ2) or (j̃2, ĩ1) or (̃i2, ỹ1), and is

mapped to vertex i in G (see Fig. 3.10). This map is injective because if two edges in

F are mapped to the same vertex i, then both edges can be replaced by (̃i1, ĩ2) which

contradicts the initial assumption of the minimality of F . Under this mapping, one
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Figure 3.10: An illustrative example given for the proof of Lemma 3.3.

reaches a set of vertices XF in G of the same size as F , with the property that any

path from r to y in G passes through at least one of these vertices. This implies

that |F | ≥ |X|, which completes the proof. �

It is to be noted that for a vertex y directly connected to the root, re-

moval of any set of vertices does not affect its reachability from the root. For

any such vertex, define ac(G, y) = n − 1. It is straightforward to show that

ac(G) = miny∈V\{r} ac(G, y). Therefore, from Lemma 3.3 one can find the value

of q using the results presented for the p-link controllability. In order to find a set of

critical agents, one can apply the same mapping used in the proof of Lemma 3.3 to

the set of critical edges C of G̃ given by Algorithm 3.1. Fig. 3.11(a) shows a 1-agent

controllable digraph with a unique critical agents set ({1}). The digraph shown in

Fig. 3.11(b) is 2-agent controllable and has multiple critical agents sets (e.g., {1, 5}

and {2, 4}).

Figure 3.11: (a) A 1-agent controllable digraph with a unique critical agent set, (b)
a 2-agent controllable digraph with multiple critical agents sets.

It is clear that in an (n− 1)-agent controllable digraph of order n, all vertices
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are directly connected to the root. The next theorem presents a lower bound on the

number of edges of a q-agent controllable digraph, for 1 ≤ q ≤ n− 2.

Theorem 3.6. Any q-agent controllable digraph of order n with 1 ≤ q ≤ n− 2 has

at least n+ q − 2 edges. Also, there exists a q-agent controllable digraph whose size

attains this lower bound.

Proof : In a q-agent controllable digraph of order n with 1 ≤ q ≤ n− 2, there

exist k ≥ 1 vertices which are not directly connected to the root. Let X1 ⊂ V\{r}

be the set of such k vertices, and X2 = V\{X1 ∪ {r}} be the set of all vertices that

are directly connected to the root. Note that the indegree of any vertex in X1 is at

least q, while that of any vertex in X2 is at least one. Therefore,

|E| =
∑

x∈V\{r}

d−G ({x}) =
∑
x∈X1

d−G ({x}) +
∑
x∈X2

d−G ({x})

≥ kq + (n− k − 1) = n− 1 + k(q − 1)

≥ n+ q − 2

To construct a q-agent controllable digraph G = (V , E) of order n with n+q−2

edges, consider a vertex z ∈ V\{r} and let X be the set of all vertices except r and

z (clearly, |X| = n − 2). Draw an edges (r, x) for every vertex x ∈ X. Let Y be

a set of q arbitrary vertices of X. From each vertex y ∈ Y create an edge (y, z).

The resulting digraph has (n− 2) + q edges (see Fig. 3.12 for q = 2 and n = 6). To

show that this digraph is q-agent controllable, it suffices to show that ac(G, z) = q

because ac(G, x) = n − 1 for any x ∈ X. Since only the removal of the vertex set

Y can make the vertex z unreachable from the root, this implies that ac(G, z) = q,

which completes the proof. �

Proposition 3.3. Choose arbitrarily a vertex of a complete digraph Kn = (V , E)

of order n as the root, and remove all of its incoming edges. Then, the resultant

digraph G is (n− 1)-agent controllable.
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Figure 3.12: An illustrative figure for the proof of Theorem 3.6.

Proof : The proof is straightforward on noting that in a complete digraph,

any vertex (including the root) is directly connected to all other vertices. �

Proposition 3.4. Choose arbitrarily a vertex of a Kautz digraph K(d, κ) = (V , E)

with κ > 1 as the root, and remove all of its incoming edges. Then, the resultant

digraph G is d-agent controllable.

Proof : In a Kautz digraph, the outdegree of any vertex is d. For κ > 1,

the number of vertices is greater than d + 1, and hence there exists at least one

vertex y ∈ V\{r} such that (r, y) /∈ E . It results from the fact d+({r}) = d that

ac(G, y) ≤ d, for any y not directly connected to r. This result along with the fact

that there exist d paths from r to y whose common vertices are exactly r and y

implies that ac(G, y) = d. �

3.5 Joint Controllability

This section investigates the controllability of the information flow graph under

simultaneous failure of some of the communication links and agents.

Definition 3.4. An information flow graph G = (V , E) is said to be joint (p, q)-

controllable if in case of simultaneous failure of any set of agents of size y ≤ q and

any set of links of size x ≤ p, such that x+ y < p+ q, it remains controllable.
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The above definition states that G = (V , E) is joint (p, q)-controllable if for all

points (a, b) ∈ D, where D := {(x, y)| x, y ∈ Z+, x ≤ p, y ≤ q, and x + y < p + q}

(see Fig. 3.13), for any vertex set X ⊂ V of size b and any edge set F ⊂ E of size a,

the digraph H = (V\X, E\F ) is controllable.

Figure 3.13: An illustrative figure for the definition of joint (p, q)-controllability.

Let Ω be the set of all pairs (p, q) such that G = (V , E) is joint (p, q)-

controllable. Also, let Ωi be the set of all pairs (p, q) such that in case of the

removal of any set of vertices of size y ≤ q (excluding r and i) and any set of edges

of size x ≤ p at the same time, such that x+ y < p+ q, vertex i remains reachable

from the root. It is clear that Ω ⊆ ∪n−1
i=1 Ωi; thus, if one finds the sets Ωi’s for any

vertex i ∈ V\{r}, the set Ω can then be obtained.

Proposition 3.5. A complete digraph of order n is joint (p, q)-controllable for any

pair (p, q) ∈ Ω, where Ω = {(x, y)| x, y ∈ Z+, y = −x+ n− 1}.

Proof : In a complete digraph of order n, there exist n− 1 ri-paths (Pj’s) for

any i ∈ V\{r}, where

Pj =


(r, j)(j, i) i 6= j

(r, i) i = j

, j = 1, 2, . . . , n− 1

Any pair of distinct paths intersect at exactly r and i (see Fig. 3.15). Assume that

an arbitrary set of vertices of size y (excluding r and i) and an arbitrary set of edges

of size x are subject to removal at the same time. It can be easily seen that while
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Figure 3.14: Joint (p, q)-controllability of a complete digraph of order n.

Figure 3.15: An illustrative figure for the proof of proposition 3.5, ri-paths in a
complete digraph of order six.

the number of removed elements (i.e. x + y) is less than n − 1, vertex i remains

reachable from the root. Moreover, in the case of removal of one element (vertex or

edge) from each ri-path (i.e. x+ y = n− 1), vertex i becomes unreachable from the

root. The proof follows from the definition of joint (p, q)-controllability. �

Fig. 3.16 shows three complete digraphs of order three, four and five, along

with their corresponding (p, q) pairs.

Proposition 3.6. Choose an arbitrary vertex of a Kautz digraph K(d, κ) = (V , E)

with κ > 1 as the root, and remove all of its incoming edges. Then, the resultant

digraph is joint (p, q)-controllable for any pair (p, q) ∈ Ω, where Ω = {(x, y)| x, y ∈

Z+, y = −x+ d}.

Proof : In a Kautz digraph, there exist d ri-paths for any i ∈ V\{r} whose

common vertices are exactly r and i [75]. The proof follows now, using an approach

similar to the one in Proposition 3.5. �
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Figure 3.16: The set of pairs (p, q) for three complete digraphs.

3.6 Examples

This section considers a number of digraphs (which can potentially be the informa-

tion flow graphs of multi-agent systems) and gives the values of p and q and the pair

(p, q) for each one.

A simple loop digraph of order n is a directed cycle consisting of the vertex

set V = {0, 1, . . . , n − 1}, and the edge set E = {(i, j)| j − i ≡ 1 (mod n)} [74].

Fig. 3.17(a) shows a simple loop digraph of order five. In a simple loop digraph with

n > 2, by choosing an arbitrary vertex as the root, the digraph will be 1-link and

1-agent controllable. However, there is no pair (p, q) with p, q > 0 to achieve joint

(p, q)-controllability.

A distributed double loop digraph of order n consists of the vertex set V =

{0, 1, . . . , n − 1}, and the edge set E = {(i, j)| j − i ≡ 1, n − 1 (mod n)} [78].

Fig. 3.17(b) shows a distributed double loop digraph of order five. In a distributed

double loop digraph with n > 3, by choosing any vertex as the root, the digraph

will be 2-link and 2-agent controllable. Also, it is joint (1, 1)-controllable.

A daisy chain loop digraph of order n consists of the vertex set V = {0, 1, . . . , n−
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1}, and the edge set E = {(i, j)| j− i ≡ 1, n− 2 (mod n)} [79]. Fig. 3.17(c) shows a

daisy chain loop digraph of order five. In a daisy chain loop digraph with n > 3, by

choosing any vertex as the root, the digraph will be 2-link and 2-agent controllable.

Also, it is a joint (1, 1)-controllable digraph.

Figure 3.17: (a) Simple loop digraph of order five; (b) distributed double loop
digraph of order five, and (c) daisy chain loop digraph of order five.

In all the examples provided in the chapter, the value of p is equal to the value

of q; however this is not always the case. As an example, consider the digraph shown

in Fig. 3.18 for which p = 2 and q = 1. In this digraph, the critical agents set is

unique (agent 4) while the critical links set is not, that is, there exist several pairs

of edges whose removal makes at least one vertex unreachable from the root.

Figure 3.18: A 2-link and 1-agent controllable information flow graph.

Circulant digraph of order n consists of the vertex set V = {0, 1, . . . , n − 1},

and the edge set E = {(i, j)| j − i ≡ β (mod n), β ∈ B} where B ⊆ Nn−1 [80]. In a

weakly connected circulant digraph of order n > 3, by choosing a vertex as the root,

one has p = |B| and q ≤ |B|. Fig. 3.19 shows a circulant digraph of order six with

B = {2, 3, 5}. In this digraph, by choosing any vertex as the root and removing its
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incoming edges, the resultant digraph will be 3-link and 2-agent controllable.

Figure 3.19: A circulant digraph of order six with p = 3 and q = 2.

3.7 Multiple-Leader Case

In the previous sections, the controllability of the information flow graph of a multi-

agent system with single leader is studied. This section aims to extend the results

obtained so far to a multiple leader setting, i.e., when more than one agent can act

as the leader.

Consider a team of single integrator agents given by

ẋi(t) = ui(t), i ∈ Nn (3.5)

and assume some of the agents, say agents n−m+ 1, m−m+ 2, . . ., n act as the

leaders and are influenced by unconstrained external control inputs ui(t) = uiext(t),

i ∈ Nn\Nn−m. The remaining agents, i.e. followers, obey the following control law

ui(t) =
∑

j∈Ni∪{i}

αijxj(t), i ∈ Nn−m (3.6)

Therefore, the dynamics of the followers is described as

ẋ(t) = Ax(t) +Bu(t) (3.7)

where x(t) = [x1(t) ... xn−m(t)]T ∈ Rn−m, u(t) = [xn−m+1(t) ... xn(t)]T ∈ Rm, and

A = [aij] and B = [bij] are structured matrices of proper dimensions. Let G be
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the digraph representing the structured system (3.7), and R be the set of vertices

corresponding to the leading agents in this digraph.

Theorem 3.7. The information flow graph G = (V , E) is controllable if and only if

each vertex in V\R is reachable from the root set R.

Proof : The reachability of each vertex of the set V\R from the root set R

is equivalent to each member of the above set being the end vertex of an R-rooted

path. The vertices in R can be considered as R-rooted paths of length zero, and a

self-loop on each vertex x ∈ V\R constructs a cycle family whose union with these

zero-length R-rooted paths span the vertex set V . The proof follows now from The-

orem 3.1. �

Given a leader-follower multi-agent system with multiple leaders, let lc(G;R)

be the minimum number of edges whose removal results in a digraph in which at

lease one vertex is unreachable from the root set R. Let also lc(G, x;R) be the

minimum number of edges whose removal makes the vertex x ∈ V\R unreachable

from R. Clearly, lc(G;R) = minx∈V\R lc(G, x;R); therefore, in a p-link controllable

information flow graph G, the relation lc(G, x;R) ≥ p holds, for any x ∈ V\R. The

following theorem gives a necessary and sufficient condition for the p-link controlla-

bility in multi-agent systems with multiple leaders.

Theorem 3.8. The information flow graph G = (V , E) with the root set R is p-link

controllable if and only if

min
R⊆X⊂V

d+
G (X) = p.

Proof : The proof is similar to that of Theorem 3.3, and is omitted here. �

In order to find the value of lc(G, x;R), let a new digraph G ′ = (V ′, E ′) be

constructed from G by extending the sets V and E as follows: Consider a new vertex
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r, and define

V ′ = V ∪ {r} and E ′ = E ∪ {(r, i), ∀i ∈ R}.

The digraph G ′ will be referred to as the expanded digraph of G with respect to R.

As an illustrative example, Fig. 3.20(a) shows a digraph with a root set R of size

three, and Fig. 3.20(b) demonstrates how the digraph G ′ is constructed from G.

Figure 3.20: (a) An information flow graph G and, (b) the corresponding expanded
digraph G ′ with respect to R.

Consider the expanded digraph G ′ = (V ′, E ′) corresponding to a given digraph

G, and let x ∈ V ′\{R ∪ {r}} be a specified vertex of G ′. Construct a new digraph

G ′new by reversing the direction of all edges of any rx-path, except for those edges

which belong to {r} × R, if any. Repeat the same procedure for G ′new and continue

until a digraph G ′final is obtained in which x is unreachable from the root r. Denote

with Xr,G′ the set of all reachable vertices from r in G ′final (note that Xr,G′ ⊂ V ′).

Theorem 3.9. The outcut of Xr,G′ in G ′ is a minimal set whose deletion makes

vertex x ∈ V ′\{R∪{r}} unreachable from R. In particular, d+
G′(Xr,G′) = lc(G, x;R).

Proof : The proof is similar to that of Theorem 3.4. �

One can use the result of Theorem 3.9 to develop a polynomial-time procedure

for finding the value of lc(G, x;R). The following algorithm is presented for this

purpose.
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Algorithm 3.2.

H = G ′.

Main: Y = {r} and ζ(j) = ∅ (∀j ∈ V ′).

while ∃ euv ∈ ∂+
H(Y ),

Y = Y ∪ {v}.

ζ(v) = u.

end while

if x ∈ Y ,

InH, reverse the direction of all the edges in the rx-path obtained by using

the parent function ζ, except that the paths of the form (r, i), i ∈ R, and

then go to Main.

end if

lc(G, x;R) = d+
G′(Y )

return lc(G, x;R).

Using the above algorithm, the notion of q-agent and joint (p, q)-controllability

can be extended to multiple leader settings.

Proposition 3.7. In a leader-follower multi-agent system with a controllable infor-

mation flow graph, all agents (including the leaders) can take any desired position.

Proof : As noted before, the controllability of the information flow graph G is

equivalent to the controllability of the corresponding structured system (3.7) under

the control input u(t) = [xn−m+1(t) ... xn(t)]T , where ẋi(t) = uiext(t), i ∈ Nn\Nn−m.

Let z(t) = [xT (t) uT (t)]T = [x1(t) ... xn(t)]T and u̇(t) = [un−m+1
ext (t) ... unext(t)]

T =

uext(t); then

ż(t) =

 A B

0 0

 z(t) +

 0

I

uext(t) (3.8)
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where 0 and I are the zero and identity matrices of proper dimensions. If the pair

(A,B) is controllable, then rank([A− λI | B]) = n−m, for all complex numbers λ.

Therefore, the matrix  A− λI B 0

0 λI I

 (3.9)

has rank n, for all complex numbers λ. This means that one can find the control

input uext(t) such that the state of system (3.8) (i.e., the positions of all agents

including the leaders) can be transferred from any initial state to any final state in

a finite time interval. �

As an example consider five robots moving in vw-plane, where the state of

agent i, xi(t), is defined to be its absolute position with respect to the origin. The

information flow graph of the system is shown in Fig. 3.21. It can be easily seen

that the action of agents 4 and 5 as leaders makes the system controllable. Thus,

Figure 3.21: The information flow graph of a five-agent system.

the equations of the system can be written as follows: ẋ1(t) = α14x4(t), ẋ2(t) =

α21x1(t) + α23x3(t), ẋ3(t) = α35x5(t), ẋ4(t) = u4
ext(t), and ẋ5(t) = u5

ext(t), where

xi(t) ∈ R2, for i = 1, 2, . . . , 5. These equations can be represented in a matrix form

as follows, in which I and 0 are 2 × 2 identity and zero matrices, respectively, and
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x(t) = [xT1 (t), xT2 (t), ... , xT5 (t)]T .

ẋ(t) =



0 0 0 α14I 0

α21I 0 α23I 0 0

0 0 0 0 α35I

0 0 0 0 0

0 0 0 0 0


x(t) +



0 0

0 0

0 0

I 0

0 I



 u4
ext(t)

u5
ext(t)

 (3.10)

It is aimed to bring the agents from configuration shown in Fig. 3.22(a) to that

of Fig. 3.22(b). Assume α14 = 0.2, α21 = 0.1, α23 = 0.3, and α35 = 0.5, and

Figure 3.22: (a) Initial configuration, (b) final configuration.

let the initial and final states be x0 = [1 13 7 7 13 1 13 13 1 1]T and xf =

[30 1 30 4 30 7 30 10 30 13]T , respectively. The external control inputs (in two-

dimensional space) shown in Fig. 3.23 can drive the state of the system from x0 to xf

in 10 seconds. Fig. 3.24 shows the initial and the final positions of the agents along

with their respective trajectories in vw-plane, in which the blank circle represent

the leading agents.
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Figure 3.23: The external control inputs in two-dimensional space.

Figure 3.24: The state trajectories of the system.
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Chapter 4

Leader Localization

The location problem in the computer science literature deals with finding the best

location of facilities such as shops, telecommunication centers, factories, warehouses,

and computer servers in a network to achieve certain specifications, and is often

formulated as an optimization problem [81]. This problem has been extensively

studied in the past few decades [82–84]. Although in a typical location problem the

distance plays an important role in defining constraints and objective functions, in a

class of location problems called source location, flow or connectivity requirements

are also taken into consideration. Various types of source location problem with

different constraints and objectives are investigated in the literature [85–89]. This

chapter investigates a special case of this problem for multi-agent system, which will

be referred to as the leader localization problem.

Leader localization problem in a multi-agent system, on the other hand, is

concerned with selecting a minimum number of leaders among the agents, in order

for the information flow graph G = (V , E) to be controllable. Also, it is aimed to find

a vertex set R ⊆ V of the smallest size, such that the information flow graph is p-link

or q-agent controllable. It is also desired to present polynomial-time algorithms to

find such minimal sets in both undirected and directed information flow graphs.
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Definition 4.1. Given a digraph G = (V , E), a set X ⊂ V is called p-deficient if

d−G (X) < p. A p-deficient set is minimal if none of its proper subsets is p-deficient.

Fig. 4.1 shows a digraph with two minimal 2-deficient sets, X1 = {1, 2, 3} and

X2 = {4}.

Figure 4.1: A digraph with two minimal 2-deficient sets.

Definition 4.2. The set R ⊆ V is called a p-link root set if lc(G;R) ≥ p.

Theorem 4.1. Given a digraph G = (V , E), a set R ⊆ V is a p-link root set if and

only if any p-deficient set X in G intersects R.

Proof : Assume X is a p-deficient set disjoint from R. Since d−G (X) < p, hence

for every vertex x ∈ X, lc(G, x;R) < p. This contradicts the initial assumption that

R is a p-link root set. Consider now a set R (R ⊆ V) for which lc(G;R) < p, and

assume R intersects any p-deficient set of G. According to Theorem 3.8, there exists

a set X ⊂ V with R ⊆ X, such that d+
G (X) < p, or equivalently d−G (V\X) < p.

This means that V\X is a p-deficient set disjoint from R, which contradicts the

assumption that R intersects any p-deficient set of G. This contradiction completes

the proof. �

It is deduced from Theorem 4.1 that a set R is a p-link root set if and only if

any minimal p-deficient set intersects R.

Although undirected graphs can be viewed as a special case of digraphs, be-

cause of certain properties they have, one can develop a simpler procedure to solve
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the leader localization problem for undirected graphs. Therefore, these two cases

are considered separately in the sequel.

4.1 Leader Localization in Undirected Informa-

tion Flow Graphs

This section investigates the leader localization problem in multi-agent systems with

bidirectional communication links, represented by the undirected information flow

graph G0 = (V , E0).

Let ~G = (V , ~E) be a digraph obtained by replacing each edge of G0 with

two anti-parallel directed edges (as an illustrative example, see Fig. 4.2). It is

straightforward to show that lc(G0, x;R) = lc(~G, x;R), for any R ⊆ V and x ∈ V\R.

The symbol ~G will hereafter be used to represent the directed counterpart of an

undirected graph G0. It is to be noted that the main idea of this section is borrowed

from [86].

Figure 4.2: (a) An undirected graph G0, and (b) its directed counterpart ~G.

Lemma 4.1. Let X and Y be two disjoint subsets of the vertex set of ~G; then

d−~GY
(X) = d−~GX

(Y ).

Proof : The proof follows immediately on noting that for any edge from Y to

X in ~G, there exists an edge in the opposite direction (from X to Y ). �
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Lemma 4.2. Let X and Y be two intersecting subsets of V and define Z = V\{X ∪

Y }; then

d−~G (X) + d−~G (Y ) = d−~G (X\Y ) + d−~G (Y \X) + 2d−~GZ
(X ∩ Y ).

Proof : It is straightforward to show that

d−~G (X) = d−~GZ
(X\Y ) + d−~GY \X

(X\Y ) + d−~GZ
(X ∩ Y ) + d−~GY \X

(X ∩ Y )

d−~G (Y ) = d−~GZ
(Y \X) + d−~GX\Y

(Y \X) + d−~GZ
(X ∩ Y ) + d−~GX\Y

(X ∩ Y )

d−~G (X\Y ) = d−~GZ
(X\Y ) + d−~GY \X

(X\Y ) + d−~GX∩Y
(X\Y )

d−~G (Y \X) = d−~GZ
(Y \X) + d−~GX\Y

(Y \X) + d−~GX∩Y
(Y \X)

(4.1)

From Lemma 4.1, we have

d−~GY \X
(X ∩ Y ) = d−~GX∩Y

(Y \X) and d−~GX\Y
(X ∩ Y ) = d−~GX∩Y

(X\Y ) (4.2)

Therefore, the proof follows from (4.1) and (4.2). �

Theorem 4.2. Let ~G = (V , ~E) be the directed counterpart of a given undirected

graph G0 = (V , E0). Then, all minimal p-deficient sets of ~G are pairwise disjoint.

Proof : Let X1, X2 ⊂ V be two distinct minimal p-deficient sets, and assume

X1 ∩X2 6= ∅. It follows from the definition of a minimal p-deficient set that X1 and

X2 are intersecting. On the other hand, since X1\X2 ⊂ X1 and X2\X1 ⊂ X2, hence

the sets X1\X2 and X2\X1 are not p-deficient. From Lemma 4.2

d−~G (X1) + d−~G (X2) = d−~G (X1\X2) + d−~G (X2\X1) + 2d−~GZ
(X1 ∩X2)

where Z = V\{X1 ∪X2}. The facts that d−~G (X1) < p, d−~G (X2) < p, d−~G (X1\X2) ≥ p,

and d−~G (X2\X1) ≥ p imply d−~GZ
(X1 ∩ X2) < 0. This result is not true because the

indegree of a set cannot be negative. This contradiction completes the proof. �

One can use Theorem 4.2 to find the minimal p-link root set without explicitly

identifying the minimal p-deficient sets. This is spelled out in the sequel.
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Theorem 4.3. Let R be a p-link root set of ~G. For a vertex x ∈ R, if lc(~G, x;R\{x}) ≥

p, then R\{x} is a p-link root set as well. Moreover, if lc(~G;R\{x}) < p, then

|R ∩X| = 1, where X is the minimal p-deficient set and x ∈ X.

Proof : Assume that lc(~G, x;R\{x}) ≥ p. Since R is a p-link root set, it

intersects any p-deficient set. It can be shown that either R\{x} intersects any p-

deficient set too, or there exists a p-deficient set X with x ∈ X disjoint from R\{x}.

This implies that lc(~G, x;R\{x}) ≤ d−~G (X) < p which is a contradiction. The proof

in this case follows from Theorem 4.1. Assume now that lc(~G;R\{x}) < p. This

implies that R\{x} is not a p-link root set. Since R is a p-link root set, x should

belong to a minimal p-deficient set; otherwise, R\{x} will intersect any minimal

p-deficient set as well. Clearly, R∩X 6= ∅ and R\{x}∩X = ∅, which completes the

proof. �

Theorems 4.1 and 4.2 imply that in an undirected information flow graph G0,

a minimal p-link root set contains one vertex from each minimal p-deficient set of

~G. Theorem 4.3 is used next to develop a polynomial-time procedure for finding a

minimal p-link root set. It is to be noted that the minimal p-link root set is not

necessarily unique.

Algorithm 4.1.

R = V .

for i = 1 to n,

if lc(~G, i;R\{i}) ≥ p,

R = R\{i}.

end if

end for

return R.
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Using the node duplication technique discussed in Section 3.4 along with the

above algorithm, one can find a minimal root set to achieve q-agent controllability

in undirected information flow graphs.

4.2 Leader Localization in Directed Information

Flow Graphs

The result of Theorem 4.2 is not valid for a general digraph G, that is, the minimal

p-deficient sets of G are not mutually disjoint in general. Therefore, Algorithm 4.1

cannot be employed to find a minimal p-link root set for an arbitrary digraph. As as

example, consider the digraph shown in Fig. 4.3. This digraph has two intersecting

minimal 2-deficient sets X1 = {1, 2, 3} and X2 = {1, 4, 5}. From Theorem 4.1, it can

be easily concluded that in this example the minimal 2-link root set is R = {1} ⊆

X1 ∩X2, while Algorithm 4.1 may give a 2-link root set of size more than one, e.g.,

R = {2, 5}.

Figure 4.3: A digraph with two intersecting minimal 2-deficient sets.

According to Theorem 4.1, a minimal p-link root set is a minimal set inter-

secting all the minimal p-deficient sets. Therefore, one approach to find a minimal

p-link root set in a digraph is constructing all minimal p-deficient sets, and then

finding a minimal set R that intersects all of them.

As an efficient approach for finding p-deficient sets of a digraph G = (V , E),
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one can consider all sets F ⊂ E of size less than p, and find all sets X ⊂ V for which

F = ∂−G (X). Using this approach, the following algorithm of complexity O(|E|p)

gives the family of all p-deficient sets S, where S(i) = Xi denotes the ith p-deficient

set in S. Although the complexity of the algorithm grows exponentially with the

value of p, the set S can be constructed in polynomial-time in terms of the size of

the graph, because p is a fixed and typically small number.

Algorithm 4.2.

S = ∅ and j = 1.

for k = 1 to p− 1,

Let Z be the family of all subsets of E of size k.

for i = 1 to |Z|,

Let H = {y|(x, y) ∈ Z(i)} and T = {x|(x, y) ∈ Z(i)}.

while there exists an edge (u, v) ∈ ∂−G (H) and (u, v) 6∈ Z(i),

H = H ∪ {u}.

end while

if T ∩H = ∅,

S(j) = H.

j = j + 1.

end if

end for

end for

return S.

The members of S are not necessarily minimal, i.e., it is possible that Xi ⊂ Xj,

for some i and j. To construct the family of all minimal p-deficient sets of G,

the set S must be modified by removing all sets Xj, if there exists a set Xi such
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that Xi ⊂ Xj. Clearly, this can be performed in polynomial-time. The modified

version of S consisting of only minimal p-deficient sets is hereafter denoted by Ŝ.

By applying Algorithm 4.2 to the digraph shown in Fig. 4.3, one arrives at S =

{{1, 2, 3}, {1, 2, 3, 5}, {1, 4, 5}, {1, 2, 4, 5}}. Since X1 ⊂ X2 and X3 ⊂ X4, the family

of all minimal p-deficient sets will be Ŝ = {X1, X3} = {{1, 2, 3}, {1, 4, 5}}.

The following two theorems present some useful properties of minimal p-

deficient sets of a digraph G, and will be used later to find a minimal p-link root set

of G. It is to be noted that the main idea of these theorems is borrowed from [87].

Theorem 4.4. Let {X1, X2, . . . , Xk} ⊆ Ŝ be any group of pairwise intersecting

members of Ŝ; then,
⋂k
i=1Xi 6= ∅.

Proof : To prove the theorem by contradiction, assume W = {X1, . . . , X`} ⊆

Ŝ is a set with the smallest size ` for which the statement of the theorem does not

hold. This implies that
⋂
Xi∈W Xi = ∅, and that for any W ′ ⊂ W ,

⋂
Xi∈W ′ Xi 6= ∅.

Let Yj =
⋂
Xi∈W (i 6=j)Xi, for j = 1, . . . , `. It is clear that Yi’s are nonempty pairwise

disjoint sets. Also, ∂−G (Yi) ∩ ∂−G (Yj) = ∅ for i 6= j. This, along with the facts that

∂−G (Yi) ⊆
⋃
j 6=i ∂

−
G (Xj) and Xi’s are p-deficient, implies that

∑̀
i=1

d−G (Yi) ≤
∑̀
i=1

d−G (Xi) < p`.

This means that d−G (Yi) < p for some i ∈ N`; i.e., Yi is also p-deficient. This contra-

dicts the minimality assumption for Xj (i 6= j), on noting that Yi ⊆ Xj for i 6= j.

This contradiction completes the proof. �

Let G∗ = (V∗, E∗) be an undirected graph of order |Ŝ|, with a one-to-one cor-

respondence between its vertices and the members of Ŝ, that is, Xi ∈ Ŝ corresponds

to vertex i in G∗. In this graph, two distinct vertices i, j ∈ V∗ are adjacent if the

corresponding members of Ŝ (i.e., Xi and Xj) have a nonempty intersection. Then,

finding the minimal p-link root set is equivalent to finding the minimum covering
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by cliques for G∗. Such a minimal root set can be obtained by considering a com-

mon element of the sets corresponding to each clique in this minimum covering (the

existence of such a common element for each clique is guaranteed by Theorem 4.4).

For instance, consider the information flow graph G shown in Fig. 4.4, and assume

it is desired to find a minimal 2-link root set in it. From Algorithm 4.2, the family

of all minimal 2-deficient sets is given by Ŝ = {X1, X2, X3}, where X1 = {1, 6, 7},

X2 = {3, 4, 8}, and X3 = {8, 9, 13, 14}. Since the sets X2 and X3 are intersecting,

Figure 4.4: An information flow graph of a group of 15 agents.

taking two vertices, one from X1 and another one from X2 ∩ X3, say {6, 8}, gives

a minimal 2-link root set for G. A special property of G∗ presented in the next

theorem enables one to develop a polynomial-time procedure for finding a minimum

covering by cliques for G∗.

Theorem 4.5. The graph G∗ constructed from the family of all minimal p-deficient

sets of a digraph G is chordal.

Proof : Assume G∗ is not chordal, and has a cycle of length greater than three

without any chord. Let the sequence of vertices 1, 2, . . . , ` represent this chordless

cycle, and define Yi = Xi ∩ Xi+1 for any i ∈ N`. Let also X`+1 = X1, where Xi is

the minimal p-deficient set of G corresponding to vertex i ∈ V∗. It is evident that

Yi’s are nonempty pairwise disjoint sets. This implies that ∂−G (Yi) ∩ ∂−G (Yj) = ∅ for

i 6= j. Also, ∂−G (Yi) ⊆ ∂−G (Xi) ∪ ∂−G (Xi+1). The above derivation together with the
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fact that Xi’s are p-deficient, yields

∑̀
i=1

d−G (Yi) ≤
∑̀
i=1

d−G (Xi) < p`.

This implies that d−G (Yi) < p, for some i ∈ N`, i.e., Yi is p-deficient. This contra-

dicts the initial assumption of the minimality of Xi, as Yi ⊆ Xi. This contradiction

completes the proof. �

In [90], a polynomial-time algorithm is proposed to find the minimum covering

by cliques for chordal graphs. In order to use this algorithm, it is first required to

rename the vertices and orient the edges of G∗ as follows.

Algorithm 4.3.

υ = |V∗|.

Mark all vertices of G∗.

while G∗ has more than one marked vertex,

if there exists a marked vertex i such that all of its marked neighbors form

a clique, then,

Rename i to υ and let φ(υ) = i.

Unmark i and let υ = υ − 1.

end if

end while

Rename the remaining vertex, j, to 1 and let φ(1) = j.

for any edge eij ∈ E∗,

Orient eij from min(i, j) to max(i, j).

end for

Let ~G∗ = G∗.

return ~G∗.
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Let N∗i be the set of all neighbors of vertex i in ~G∗, and define a sequence of

vertices n1, n2, . . . , nν as follows:

n1 = |V∗| and nk = max{i ∈ V∗| i < nk−1, i 6∈ ∪k−1
j=1N

∗
nj
}.

For any i ∈ Nν , let Pi = N∗ni
∪{ni}; then, Ci =

⋃
j∈Pi

φ(j) is a clique and the family

of {C1, C2, . . . , Cν} is a minimum covering by cliques for the graph G∗.

By retrieving the original labels of the vertices of G∗ using the function φ, one

can construct a minimal p-link root set of G as follows: Let Yi = ∩j∈Ci
Xj, for any

i ∈ Nν . From Theorem 4.4, Yi 6= ∅, for any i ∈ Nν ; therefore, by taking one element

from each Yi, a minimal p-link root set of G is obtained.

As an example, consider a digraph G with eight minimal p-deficient sets

X1, . . . , X8, where the graph G∗ corresponding to its minimal p-deficient sets is

shown in Fig. 4.5. Algorithm 4.3 gives a digraph ~G∗ obtained from G∗ by renaming

Figure 4.5: The graph G∗ obtained from the family of all minimal p-deficient sets of
the digraph G.

its vertices and orienting the edges. Choose the vertices of G∗ in the order given

by (1, 2, 3, 4, 5, 6, 7, 8). Then, φ(8) = 1, φ(7) = 2, φ(6) = 3, φ(5) = 4, φ(4) = 5,

φ(3) = 6, φ(2) = 7, and φ(1) = 8. The digraph ~G∗ shown in Fig. 4.6 is the out-

come of the above procedure. Note in ~G∗ that n1 = 8, N∗8 = {1, 3, 4}, n2 = 7,

N∗7 = {2, 4, 6}, and n3 = 5, N∗5 = {2, 3, 4}. Then, P1 = {1, 3, 4, 8}, P2 = {2, 4, 6, 7},

and P3 = {2, 3, 4, 5}. Therefore,

C1 = {φ(1), φ(3), φ(4), φ(8)} = {8, 6, 5, 1}
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Figure 4.6: The digraph ~G∗ obtained from G∗.

C2 = {φ(2), φ(4), φ(6), φ(7)} = {7, 5, 3, 2}

C3 = {φ(2), φ(3), φ(4), φ(5)} = {7, 6, 5, 4}

Now, let Y1 = X8 ∩X6 ∩X5 ∩X1, Y2 = X7 ∩X5 ∩X3 ∩X2, Y3 = X7 ∩X6 ∩X5 ∩X4,

and assume r1 ∈ Y1, r2 ∈ Y2 and r3 ∈ Y3, Therefore, R = {r1, r2, r3} ⊂ V is a

minimal p-link root set for G.

Using the technique discussed in Section 3.4, one can find a minimal root set

to achieve q-agent controllability in an arbitrary digraph.
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Chapter 5

Conclusions and Future Work

5.1 Summary

The structural controllability of a leader-follower team of single integrator agents

is investigated in this work. The information flow graph of the system is assumed

to be directed, as a general representation of this type of interconnected network.

Graphical interpretations of structural controllability of a single leader system based

on the information flow graph are provided.

Three notions are introduced in Chapter 3 as quantitative measures for the

controllability of the system subject to communication links and/or agents failure.

The first notion is p-link controllability, which deals with controllability preservation

in the case of communication links failure. The second one is q-agent controllability,

which is concerned with agents’ loss. Finally, controllability of the network in the

case of simultaneous failure in some communication links and agents is studied by

introducing the notion of joint-(p, q) controllability. A polynomial-time algorithm

is subsequently presented to find the values of p and q, for any given p-link and

q-agent controllable information flow graph. Necessary and sufficient conditions on

the structure of the information flow graph are also derived to ensure the structural
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controllability in the case of communication links or agents failure.

The results obtained are then extended to the multiple-leader case. In par-

ticular, in Chapter 4, it is shown that a proper selection of agents as leaders can

improve the reliability of the network by increasing the degree of controllability of

the network. The problem of leader localization is introduced, which is concerned

with finding a minimal set of agents whose selection as leaders results in a p-link

or q-agent controllable system, for given p and q. Polynomial-time algorithms are

also provided to find the underlying minimal sets. The problem is investigated for

directed information flow graphs first, and is then extended to the case of undirected

graphs.

5.2 Suggestions for Future Work

The research presented in this thesis provides a foundation for future research in

the field of cooperative control systems, where it is desired to design a reliable

and fault tolerant network of multi-agent systems. Finding minimum number of

communication links whose addition to a given information flow graph results in a

p-link, q-agent, or joint-(p, q) controllable system, considering agents with double-

integrator or nonholonomic dynamics, weight assignment for the communication

links to achieve the fastest rate of convergence to desired configuration, and extend-

ing the results to information flow graphs with (randomly) switching topologies are

some of the problems which can be addressed in the future.
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