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ABSTRACT

The Distribution of the Discounted Compound PH–Renewal Process

by Ya Fang Wang

The family of phase–type (PH) distributions has many useful properties such as closure un-

der convolution and mixtures, as well as rational Laplace transforms. PH distributions are

widely used in applications of stochastic models such as in queueing systems, biostatistics

and engineering. They are also applied to insurance risk, such as in ruin theory.

In this thesis, we extend the work of Wang (2007), that discussed the moment generating

function (mgf) of discounted compound sums with PH inter–arrival times under a net in-

terest δ ̸= 0. Here we focus on the distribution of the discounted compound sums. This

represents a generalization of the classical risk model for which δ = 0.

A differential equation system is derived for the mgf of a discounted compound sum with PH

inter–arrival times and any claim severity if its mgf exists. For some PH inter–arrival times,

we can further simplify this differential equation system. If inter–arrival times have a PH

distribution of order 2, then second–order homogeneous differential equations are developed.

By inverting the corresponding Laplace transforms, the extended density functions and cu-

mulative distribution functions are also obtained. In addition, the series and transformation

methods for solving differential equations is proposed, when the mean of inter–arrival times

is small.
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Applications such as stop–loss premiums, and risk measures such as VaR and CTE are in-

vestigated. These are compared for different inter–arrival times. Some numerical examples

are given to illustrate the results.

Finally, asymptotical results are discussed, when the mean inter–arrival time goes to zero.

For a fixed time, the asymptotic normal distribution is derived for discounted compound

renewal sums.
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Introduction

As a generalization of the exponential and Erlang(n) distributions, phase–type (PH) distri-

butions were first introduced by Neuts (1975). They have been used widely in applications

of stochastic models such as in queueing systems, engineering, biostatistics and reliability.

PH distributions also have been applied to risk theory, in particular in ruin theory. The

random variable defined as the absorption time in a continuous-time Markov chain, with n

transient states i = 1, 2, . . . , n and one absorbing state 0, has a PH distribution. PH distri-

bution and density functions are expressed in terms of a vector α and a nonsingular matrixA.

Neuts (1981) gives a detailed introduction of stochastic models in queueing theory with PH

distributions. Latouche and Ramaswami (1999) discuss the application of PH in stochastic

models and they also introduce the algorithms for the models. Asmussen (2003) presents

more details about the properties of PH distributions and their applications to queuing the-

ory.

In the last decade PH distributions have been applied also to insurance risk. Asmussen

(2000) studies the ruin probability in the compound Poisson model with PH claim severities.

Earlier Asmussen and Rolski (1991) had already introduced some numerical examples with

PH claim severities to compute ruin probabilities. Frostig (2004) obtains the distribution of

the time to ruin and upper bounds with PH claim size distributions. Asmussen, Avram and

Pistorius (2004) show the potential of PH distributions in mathematical finance. Dickson

and Hipp (2000) study a risk process in which claim inter–arrival times have a PH distribu-

tion of order 2. Li and Garrido (2005) give the expected discounted penalty (Gerber-Shiu)

function for renewal risk model with rational Laplace transform of the inter–arrival times.

Ren (2005) discusses the probability of ruin, the Laplace transform of the time of ruin, the
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expected value of the time of ruin, and the discounted moments of the deficit at ruin for the

classical risk model, when claim sizes have a PH distribution.

PH distributions form an interesting family. First they can be represented using matrices

and vectors, which simplifies the computations with mathematical software such as Maple,

Mathematica or Matlab. Second they have many nice properties such as closure under

convolutions and mixtures and rational Laplace transforms. Furthermore PH distributions

generalize exponential, Erlang(n) and Cox distributions, which are already well known and

widely used. Moreover they are dense in the class of all distributions defined on the non-

negative real numbers, hence PH distributions enable algorithmically tractable solutions for

stochastic models.

Many papers propose approximation methods using PH distributions. For instance Sangüesa

(2008) introduces an approximation method for nonnegative random variables using PH dis-

tributions. Dufresne (2007) also discusses the approximation of nonnegative random vari-

ables by mixed exponentials. Fackrell (2003) presents estimation methods for PH distribu-

tions. Bladt, Gonzalez and Lauritzen (2003) consider the estimation of functionals depending

on one or several PH distributions using Markov chain Monte Carlo methods. Asmussen,

Avram and Usabel (2002) present a fast and simple algorithm for computing finite-horizon

ruin probabilities using an Erlang (phase–type) approximation and an extrapolation scheme.

Since Andersen (1957) introduced the compound renewal sums, the model has been genera-

lized to discounted compound sums, that consider the effect of interest and inflation. Taylor

(1979), Delbaen and Haezendonck (1987) and Willmot (1989) obtain the moments of the dis-

counted compound Poisson process. Then Léveillé and Garrido (2001a) replace the Poisson

process by a renewal process and derive the first two moments of the discounted compound

renewal sum. In Léveillé and Garrido (2001b) they also obtain recursive formulas for all

the moments of the discounted compound renewal process. Kim and Kim (2007) discuss

the moments of discounted aggregated claims in a Markovian environment, while van der

Weider, Suyono and van Noorwijk (2008) get the first two moments of discounted aggregate

claims for different discount functions. Finally Ren (2008) derives explicit formula for the

first two moments of discounted compound renewal sums.
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Considering the moment generating function (mgf) of the discounted compound renewal

sums, Jang (2004) studies the Laplace transform of the discounted compound Poisson pro-

cess if the claim severities are exponential or mixtures of exponentials. In 2007, Jang also

derive the mgf using jump diffusion processes. Léveillé, Garrido and Wang (2010) derive ana-

lytical expressions for the mgf of the discounted compound renewal sums, in particular, they

obtained a closed form for the mgf of the discounted compound Poisson sums with PH claim

severities and second–order homogeneous differential equations for the mgf if the inter-arrival

time is Erlang(2) distributed. Wang (2007) develops homogeneous differential equations for

the mgf of discounted compound sums if the inter–arrival times have Erlang(n) distributions.

The thesis extends the work in Wang (2007) for the mgf of the discounted compound sum.

The mgf is a classical technique to find the expectation and variance of a random variable,

as well as its probability density function by inversion. Hence the natural question is what

is the distribution of the discounted compound sum? In this thesis we generalize the above

results to the PH–renewal process. First, its mgf is derived. We also discuss the technique

for obtaining the extended density of the discounted compound PH renewal process and

its applications. Furthermore, the asymptotic normal distribution of discounted compound

renewal sums is investigated, when the mean of inter–arrival times is small.

The thesis is organized as follows. Chapter 1 gives the formal definition of PH distributions

and introduces some of its basic properties and examples. Chapter 2 introduces the model

and gives a differential equation for the mgf of the discounted compound renewal sums un-

der PH inter–arrival times and general claim severities, as long as the moment generating

function exists. Some corollaries and examples are also given. Chapter 4 derives the ex-

tended density function for the discounted compound sums numerically, especially the series

method is used to solve differential equations. Applications of the results, such as stop–loss

premiums, Value–at–Risk (VaR), Condition Tail Expectation (CTE) are studied in Chapter

4. The asymptotic normality of compound renewal sums and discounted compound renewal

processes is discussed in Chapter 5.
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Chapter 1

Phase–Type Distributions

Since they were introduced by Neuts (1975) in queueing theory and reliability, PH distribu-

tions have been applied also to insurance risks such as ruin probabilities. Here we mainly

focus on the distribution of discounted compound PH–renewal. Hence we reproduce the

definition of PH distributions, some of their basic properties and examples, that will be used

later. For additional details please refer to Neuts (1981), Fackrell (2003) or Wang (2007).

1.1 The Definition of PH Distributions

A phase–type distribution is defined as a probability distribution of the time to absorption

in a continuous-time Markov chain with n transient states i = 1, 2, . . . , n and one absorbing

state 0. Here we consider the mathematical definition of PH distributions. For details on the

probabilistic interpretation and the properties of PH distributions in Markov chains, please

refer to Neuts (1981) and Asmussen (2003).

Definition 1.1.1. Continuous phase–type distribution

Let A be an arbitrary non-singular square matrix of order n such as limx→∞ eAx = 0 and

α′eAx1 is a decreasing function in x. α be a n-dimensional column vector such that α′ 1 = 1,

where 1 is a n-dimensional column vector of 1′s, that is:

α =
(

α1 α2 · · · αn

)′
,

n∑
i=1

αi = 1 , αi ≥ 0 and 1 =
(

1 1 · · · 1
)′

.

4



If the distribution function FX of a random variable X can be written as:

FX(x) = 1− α′eAx1 , x ≥ 0, (1.1)

then we say that FX is (or X has) a phase–type (PH) distribution with parameters (α ,A).

Remark 1.1. Note that in the original definitions of PH distributions, like that of Neuts

(1975) A = (aij) was the rate matrix of stationary Markov chain. Consequently it was

assumed that aii < 0 and aij > 0 for i ̸= j. From Neuts (1981) we can see these conditions

imply those of Definition 2.1.1.

Hence taking the derivative of FX (see Lemma A.2.4.), we obtain the density function of X:

fX(x) = −α′ eAx A 1 , x ≥ 0. (1.2)

The following are some examples of PH distributions (see Neuts, 1981, Fackrell, 2003 and

Wang, 2007).

Example 1.1.1. If X has an exponential distribution with density function fX(x) = λ e−λx,

for λ > 0, then it is PH with

α′ = (1), A = (−λ) .

Example 1.1.2. If X has an hyper–exponential distribution (also called mixed exponential)

with density function

fX(x) =
n∑

i=1

αi λi e
−λix , x > 0 , λi > 0 ,

where αi > 0 and
∑n

i=1 αi = 1, then it is also PH with α and A given by:

α =
(

α1 α2 · · · αn

)′
,

and

A =


−λ1 0 · · · 0

0 −λ2 · · · 0

...
...

. . .
...

0 0 · · · −λn


.
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Example 1.1.3. If X has an Erlang(n) distribution with density

fX(x) =
λn xn−1 e−λx

(n− 1)!
, x > 0 , n ∈ N+ , λ > 0,

then it is also PH with

α =
(

1 0 · · · 0
)′

,

a n-dimensional vector and the following matrix of order n

A =



−λ λ 0 · · · 0 0

0 −λ λ · · · 0 0

0 0 −λ · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · −λ λ

0 0 0 · · · 0 −λ


. (1.3)

Example 1.1.4. If we have n different values λi > 0 in the previous example, then it defines

a generalized Erlang(n) distribution of order n with α and A as follows:

α =
(

1 0 · · · 0
)′

,

and

A =



−λ1 λ1 0 · · · 0 0

0 −λ2 λ2 · · · 0 0

0 0 −λ3 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · −λn−1 λn−1

0 0 0 · · · 0 −λn


,

and the density function can be expressed as a mixture of exponentials fX(x) =
∑n

i=1 aie
−λix

for given polynomial coefficients ai in terms of λi, where 0 < λ1 ≤ λ2 · · · ≤ λn.
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Example 1.1.5. If X has a n-phase Coxian distribution with the following parameters,

then it is also PH distribution:

α =
(

α1 α2 . . . αn

)′
,

n∑
k=1

αk = 1 , αi ≥ 0 ,

and

A =



−λ1 λ1 0 · · · 0 0

0 −λ2 λ2 · · · 0 0

0 0 −λ3 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · −λn−1 λn−1

0 0 0 · · · 0 −λn


,

where 0 < λ1 ≤ λ2 ≤ · · · ≤ λn .

Example 1.1.6. If X has the following parameters (α ,A), it is called unicycle PH distri-

bution:

α =
(

α1 α2 . . . αn

)′
,

n∑
k=1

αk = 1 , αi ≥ 0 ,

and

A =



−λ1 λ1 0 · · · 0 0

0 −λ2 λ2 · · · 0 0

0 0 −λ3 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · −λn−1 λn−1

µ1 µ2 µ3 · · · µn−1 −λn


,

where µi ≥ 0 , for i = 1, 2, · · · , n− 1 and 0 < λ1 ≤ λ2 ≤ · · · ≤ λn.

Example 1.1.7. If A is an upper triangular matrix, we call X acylic or triangle PH (TPH).

Note that in general, the parameters (α ,A) for PH distributions are not unique. Consider

exponential PH distribution with density

fX(x) = 0.01e−0.01x , x > 0 ,

7



which can be parameterized either with (α , A) or (β ,B) given by:

α =
(

1
)′

, A =
(

−0.01
)
,

β =
(

0.5 0.5
)′

, B =

 −0.01 0.01

0 −0.02

 .

The following subsections present the expectation and mgf of PH distributions.

1.1.1 Expectation

From (1.1) the expectation of X is given by:

E(X) =

∫ ∞

0

[1− FX(x)] dx = α′
∫ ∞

0

eAx dx 1 . (1.4)

From the definition of the matrix exponential function (see Appendix A, Definition A.1.4),

we have

A

∫ x

0

eAu du = eAx − I =

∫ x

0

eAu du A , (1.5)

where I is identity matrix of order n. Given that A−1 exists, assuming that limx→∞ eAx = 0,

we have the following:∫ x

0

eAu du = A−1A

∫ x

0

eAu du = A−1(eAx − I) , (1.6)

and hence ∫ ∞

0

eAu du = lim
x→∞

∫ x

0

eAu du = lim
x→∞

A−1(eAx − I) = −A−1 . (1.7)

Substituting (1.7) into (1.4) gives:

E(X) = −α′A−11 . (1.8)

1.1.2 Moment Generating Function

From (1.7) one can also obtain the mgf of X :

MX(t) =

∫ ∞

0

etxfX(x) dx = −α′
∫ ∞

0

e(tI+A)x dxA 1 = α′ (tI+A)−1A 1 , t ∈ R . (1.9)

8



The same procedure also gives the Laplace transform f̂X of X :

f̂X(s) = −α′ (sI−A)−1A 1 , s ∈ R . (1.10)

Consider the n-th moment of the PH distributions, we have that:

E(Xn) =
dn

dtn
MX(t)|t=0 =

dn

dtn
α′ (tI+A)−1A 1|t=0 =

dn

dtn
α′ (tAA−1 +A)−1A 1|t=0

=
dn

dtn
α′(tA−1 + I)−1A−1A 1|t=0 =

dn

dtn
α′

∞∑
k=0

(−1)k(tA−1)k1|t=0

by Definition A.1.4 of the matrix exponential, hence

E(Xn) =
dn

dtn
α′

∞∑
k=0

(−1)kA−ktk1|t=0 = (−1)n n!α′A−n 1 , n ∈ N+ .

For additional properties of PH distributions and detailed derivations see Neuts (1981) and

Asmussen (2003).

1.2 Closure Properties

Apart from having analytical expressions for its moments and mgf, the family of PH distri-

butions is closed under convolution and mixtures.

Property 1.2.1. If the distributions FX of X and FY of Y are both continuous PH dis-

tributions with parameters (α,A) of order n and (β,B) of order m respectively, then their

convolution FX ∗ FY is also a PH distribution with parameter (γ,C). Here γ and C are

given by

γ = (α′, 0′m)
′ and C =

 A −A 1n β
′

0 B

 , (1.11)

where 1k =
(

1 1 · · · 1
)′

is a vector of order k × 1.

Proof. The Laplace transform of a PH (γ ,C) random variable Z can be obtained from (1.10)
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as

f̂Z(s) = −γ′(sIn+m −C)−1C 1

= −(α′, 0′m)

 sIn −A A1nβ
′

0 sIm −B

−1 A −A 1nβ
′

0 B

 1n

1m


= −(α′, 0′m)

 (sIn −A)−1 −(sIn −A)−1A 1nβ
′(sIm −B)−1

0 (sIm −B)−1


×

 A −A1nβ
′

0 B

 1n

1m


= −α′(sIn −A)−1A1n + α′(sIn −A)−1A1nβ

′1m

+α′(sIn −A)−1A1nβ
′(sIm −B)−1B1m .

Since β′ 1m = 1, then

f̂Z(s) = (−α′(sIn −A)−1A1n)(−β′(sIm −B)−1B1m) = f̂X(s)f̂Y (s) , s ∈ C , (1.12)

where f̂X and f̂Y are the Laplace transforms of a PH(α ,A) random variable X of order n

and a PH(β ,B) random variable Y of order m, respectively.

Remark 1.2. The convolution FX ∗ FY does not have a unique PH representation. For

instance, it can also be written as a PH(γ ,C) distribution with

γ = (β′, 0′n)
′, C =

 B −B1mα
′

0 A

 . (1.13)

Property 1.2.2. The mixture θFX +(1− θ)FY , where 0 ≤ θ ≤ 1, is also a PH distribution

with parameters (γ, C), where γ and C are given by:

γ =
(
θα′, (1− θ)β′)′ , C=

 A 0

0 B

 . (1.14)
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Proof. Let f̂Z be the Laplace transform of θFX + (1− θ)FY , then:

f̂Z(s) = θf̂X(s) + (1− θ)f̂Y (s)

= −θα′(sIn −A)−1A1n − (1− θ)β′(sIm −B)−1B1m

= −(θα′, (1− θ)β′)′

 sIn −A 0

0 sIm −B

−1 A 0

0 B

 1n

1m


= −γ′(sIn+m −C)−1C 1 ,

where γ and C are given in (1.14).

Property 1.2.3. If the random variable X is a PH (α ,A), then θX also is a PH (γ,C),

where

γ = α and C = 1
θ
A , for θ > 0 .

Proof. Let Y = θX, then

FY (y) = P(Y ≤ y) = P(θX ≤ y) = P(X ≤ 1

θ
y) = 1− α′e

1
θ
Ay1 , y > 0 .

From Properties 1.2.1 and 1.2.3 we obtain the following results.

Corollary 1.2.1. If independent random variables X and Y are both PH distributions with

parameters (α,A) and (β,B) respectively, then aX + bY also is PH (γ,C), where

γ = (α′ 0)′ , C =

 1
a
A − 1

a
A1nβ

′

0 1
b
B

 , a > 0 , b > 0 .

Note that the parameters (γ,C) are not unique. Another representation could be:

γ = (β′ 0)′ , C =

 1
b
B −1

b
B1mα

′

0 1
a
A

 , a > 0 , b > 0 .

From the definition of the Laplace transform of a PH distribution, we see that it is a ratio-

nal polynomial in s. If the maximal degree of the denominator is p then the degree of the
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numerator is q < p, hence the limit of the Laplace transform goes to zero as s tends to ∞.

The question then is whether a rational polynomial corresponds to a PH distribution. The

answer is given in O’Cinneide (1990) and is reproduced here with the following result.

Property 1.2.4. A distribution defined on (0,∞) is a PH distribution if and only if it

satisfies the following conditions:

1. it has the point mass at zero, or

2. it has

• a strictly positive density function on (0,∞), and

• a rational Laplace transform such that there exists a pole of maximal real part

−γ that is real, negative and such that−γ > Re(−ξ), where −ξ is any other pole.

1.3 Discrete PH Distributions

For completion, we also define discrete PH distributions. Traditionally a discrete PH random

variable is defined as the absorption time of an evanescent discrete-time Markov chain {Yk},

with k = 0, 1, 2, . . ., on a finite phase space S = {0, 1, 2, . . . , n} where phase 0 is absorbing.

Here we give an algebraic definition.

Definition 1.3.1. Discrete phase–type distributions

Let A be an arbitrary square matrix of order n, such that limk→∞Ak = 0 and I − A is

non–singular and α be a n-dimensional column vector such that α′ 1 = 1, where 1 is a n-

dimensional column vector of 1′s, that is:

α =
(

α1 α2 · · · αn

)′
,

n∑
i=1

αi = 1 , αi ≥ 0 and 1 =
(

1 1 · · · 1
)′

. (1.15)

If the probability function {pk} of a random variable X is given by:

pk = α′Ak−1(I−A)1 , k ≥ 1 . (1.16)

Then X is called a discrete PH distribution with parameters (α ,A). The cumulative distri-

bution function, defined for k = 1, 2, . . . , is given by:

Fk = 1− α′Ak1 .

12



From the definition of the probability function, the probability generating function is given:

G(z) =
∞∑
k=1

pkz
k =

∞∑
k=1

α′Ak−1(I−A)1zk , z ∈ R ,

= z α′
∞∑
k=1

(Az)k−1(I−A)1 = z α′(I− zA)−1(I−A)1 , (1.17)

where ρ(zA) < 1 (the spectral radius operator ρ() is defined in Appendix A.1.3.). The

expression (1.17) shows that the probability generating function is a rational function.

From the Definition A.1.4 of the matrix exponential, differentiating (1.17) with respect to z

and letting z = 1 gives the first moment

E(X) = d
dz
z α′(I− zA)−1(I−A)1

∣∣∣
z=1

= d
dz

∑∞
k=1 α′Ak−1(I−A)1zk

∣∣∣
z=1

,

which in turn implies:

E(X) = α′(I−A)−11 .

Similarly the n-th factorial moment is given by:

E(Xn) = n!α′(I−A)−nAn−11 , n = 1, 2, . . . .

Some well known discrete random variables have PH distributions. For example, the geo-

metric random variable with probability function

pk = (1− p)k−1p , 0 ≤ p < 1 and k ≥ 1 ,

is a discrete PH distribution with parameters (α ,A) given by

α = 1 , A = 1− p .

Remark 1.3. Latouche and Ramaswami (1999) shows that Properties 1.2.1, 1.2.2 and 1.2.3

for the continuous PH distributions are also true for discrete PH distributions. The following

property shows that compound PH sums also have PH distributions if the number of terms

in sum has a discrete PH distribution. For more details about properties of the discrete PH

distributions please refer to Neuts (1981) and Latouche and Ramaswami (1999).
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Property 1.3.1. Let pk be the probability function of a discrete PH with parameters (β,S)

and FX be a continuous PH distribution with parameters (α,A). Then the infinite mixture∑∞
k=0 Sk F

∗k
X is also a PH with parameter (γ,C) given by:

γ = α′ ⊗ β ,

C = A⊗ I−A1α′ ⊗ S ,

where F ∗k
X denotes the k−fold convolution of FX (where F ∗0

X = 1[x ≥ 0]), I is identity matrix

of order n and ⊗ is the Kronecker product. For a proof see Neuts (1981).

These convolution and closure properties show that the mixtures of geometric and negative

binomial distributions are also discrete PH distributions. In fact, we can verify that any

distribution with finite support on the nonnegative integers is a discrete PH distribution

with parameters (α,A) which are given by:

α′ =
(

p1 p2 p3 · · · pn

)
, A =



0 0 · · · 0 0

1 0 · · · 0 0

0 1 · · · 0 0

...
...

. . .
...

...

0 0 . . . 1 0


.

Thus, binomial and hypergeometric distributions are discrete PH distributions also. How-

ever, the Poisson distribution is not a PH distribution since it does not have a rational

probability generating function. For details on the properties of discrete PH distributions,

see Neuts (1981), Fackrell (2003) or Wang (2007).
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Chapter 2

Moment Generating Function of

Compound PH–Renewal Processes

In this chapter we first revisit the compound renewal risk model. For completeness, we re-

produce the model definition and the main problems tackled.

Andersen (1957) considered compound renewal sums given by:

S(t) =

N(t)∑
k=1

Xk , t ≥ 0 ,

where N(t) is a renewal process.

In the case where interest and inflation are considered, Léveillé and Garrido (2001a) impose

the following model assumptions:

• Assume that there is an inflationary impact on the risk business and the inflation rate

acting on claim severities at time t is known and denoted αt. The claim severities,

{Yk}k≥1, are then inflated. Claim occurrence times are represented by {Tk}k≥1.

• Let N(t) = sup{k ∈ N ;Tk ≤ t} for each t > 0, where sup ∅ = 0 and N(0) = 0, count

the number of claims recorded over the time interval [0, t].

• βs is the known force of interest earned at time s ∈ (0, t]. Then
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Z(t) =

N(t)∑
k=1

e−B(Tk)Yk , t ≥ 0 , (2.1)

where B(s) =
∫ s

0
βud u for s ∈ (0, t] and Z(0) = 0 if N(0) = 0, defines the aggregate

discounted value at time 0 of all claims recorded over [0, t].

The definition of the risk model:

1. the claim number process N = {N(t) , t ≥ 0} forms a renewal process. The inter–

arrival times, denoted by τk = Tk − Tk−1 , k ≥ 2 and τ1 = T1 have a common distribu-

tion say Fτ .

2. The claim severities {Yk}k≥1 are defined as random variables. Let the deflated claim

severities

Xk = e−A(Tk)Yk , k ≥ 1 ,

where A(t) =
∫ t

0
αs ds for any t ≥ 0, satisfy the following assumptions:

• {Xk}k≥1 are independent and identically distributed (i.i.d.) ,

• {Xk , τk}k≥1 are mutually independent.

From the definition of the model, the aggregate discounted sum in (2.1) is

Z(t) =

N(t)∑
k=1

e−B(Tk)Yk =

N(t)∑
k=1

e−D(Tk)Xk , t > 0 , (2.2)

where D(Tt) = B(t)− A(t) =
∫ t

0
(βs − αs) ds =

∫ t

0
δs ds.

If net interest rates are constant but not zero, that is δt = βt−αt = δ > 0, then the aggregate

discounted value at time 0 of the total claims recorded over the period [0 , t] is given by

Z(t) =

N(t)∑
k=1

e−δTkXk , t ≥ 0 , (2.3)

with Z(t) = 0 if N(t) = 0 .
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In this chapter, we consider the discounted compound renewal sums, where the inter–arrival

times are PH distributed. An ordinary differential equation system for the mgf at time t

is obtained. We also discuss the asymptotic behavior of the mgf as t goes to infinity. In

addition, some corollaries and examples are given to illustrate the results.

We begin the chapter with the introduction of the PH–renewal process, especially the re-

newal function and the renewal density. For more details please refer to Asmussen (2003).

2.1 The PH–Renewal Process

A Poisson process is a special case of a renewal process with exponential inter–arrival times.

It can been found in many probability text books. Here we consider a more general family

of inter–arrival times with PH distributions.

Definition 2.1.1. The counting process N = {N(t) ; t ≥ 0} is said to be a PH–renewal

process if the inter–arrival times τk = Tk − Tk−1 , k ≥ 2 and τ1 = T1, have a common PH

distribution say Fτ , and are independent.

In this thesis we are particularly concerned with the mean of N(t). The function

m(t) = E
[
N(t)

]
, t ≥ 0 , (2.4)

is called the renewal function. The renewal density is then defined as

m′(t) = lim
△t→0

E
[
N(t+ △ t)

]
− E

[
N(t)

]
△ t

, t ≥ 0 .

For instance, the renewal function of a Poisson process is easily obtained to be

m(t) = λt , t ≥ 0 ,

where λ > 0 is the parameter of the exponential inter–arrival times.

More generally consider inter–arrival times that are PH distributed with parameters (α ,A),

then we have the following result.
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Proposition 2.1.1. Consider a renewal process with inter–arrival times which are PH dis-

tributed with parameters (α ,A). Then the renewal density exists and is given by

m′(t) = α′eA(I−1α′)t(−A)1 .

For a proof using the Markov chain method see Neuts (1978, 1981), Latouche and Ra-

maswami (1999) and Asmussen (2003). Here we use the same probabilistic approach as in

Wang (2007, p31) to prove the result.

Proof. From Cox (1970) we have that:

m(t) = E
[
N(t)

]
=

∞∑
k=1

F ∗k
τ (t) , t ≥ 0 , (2.5)

where F ∗k
τ denotes the k−fold convolution of Fτ , the distribution of inter–arrival times.

When the inter–arrival times have a PH (α,A) distribution, then

Fτ (t) = 1− α′eAt1 , t ≥ 0. (2.6)

By the closure property, the convolution of Fτ is also a PH distribution. Let F ∗k
τ , for k ≥ 2,

take the following PH (αk,Ck) form:

α 1 = α , α k = (α′ , 0′(k−1)n )
′ , C1 = A , Ck =

 A −A1αk−1

0 Ck−1

 , (2.7)

where the order of α is n and the order of 0 (k−1)n is (k−1)×n, then from (2.5) and Definition

A.1.4 of Appendix A we have that

m(t) = 1− α′eAt1 + 1− α′
2e

C2t1 2n + · · ·+ 1− α′
ke

Ckt1 kn + · · ·

= 1− α′
∞∑
r=0

(At)r

r!
1 + 1− α′

2

∞∑
r=0

(C2t)
r

r!
1 2n + · · ·+ 1− α′

k

∞∑
r=0

(Ckt)
r

r!
1 kn + · · ·

= −
[(
α′A1 + α′

2C21 2n · · ·
)
t+

1

2!

(
α′A21 + α′

2C
2
21 2n + · · ·

)
t2 + · · ·

]
. (2.8)

First let us prove the following result by induction on j = 1, 2, . . .:

α′
kC

j
k 1 kn = 0 , for k ≥ j + 1 . (2.9)

When j = 1 and k ≥ 2, we have

α′
k Ck 1 kn = (α′ 0′(k−1)n )

 A −A1αk−1

0 Ck−1

 1

1 (k−1)n

 = α′A1− α′A1α′
k−1 1 k−1 = 0 ,
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since α′
k−11 k−1 = 1. Suppose that j ≤ n− 1, then

α′
kC

j
k 1 kn = 0 , for k ≥ j + 1 . (2.10)

Now we need to prove that (2.10) is true, when j = n. Note the fact that:

α′
k C

n
k 1 kn = (α′ 0′(k−1)n )

 An −
∑n−1

i=0 An−i1α′
k−1C

i
k−1

0 Cn
k−1

 1

1 (k−1)n


= α′An1−

n−1∑
i=0

α′An−i1α′
k−1C

i
k−11 (k−1)n

= −
n−1∑
i=1

α′An−i1α′
k−1C

i
k−11 (k−1)n . (2.11)

Assumption (2.10) leads to α′
k−1C

i
k−11 (k−1)n = 0, for k ≥ n ≥ i + 1, then the result

α′
k C

n
k 1 kn = 0 holds. Hence we have that

m(t) = −
{
α′A1t+

1

2!

[
α′A21 + α′

2C
2
21 2n

]
t2 +

1

3!

[
α′A31 + α′

2C
3
21 2n + α′

3C
3
31 3n

]
t3 +

+
1

n!

[
α′An1 + α′

2C
n
21 2n + · · ·+ α′

nC
n
n1nn

]
tn + · · ·

}
. (2.12)

We now show the following result by induction on n = 1, 2, · · · :

α′Aj1 + α′
2C

j
21 2n + · · ·+ α′

nC
j
n1nn = α′[A(I− 1α′)

]j−1
A1 . (2.13)

When n = 1, obviously (2.13) holds. Suppose that when j ≤ n − 1 the following result is

true:

α′Aj1 + α′
2C

j
21 2n + · · ·+ α′

jC
j
j1 jn = α′[A(I− 1α′)

]j−1
A1 . (2.14)

Then where j = n, from (2.11) we have that:

α′An1 + α′
2C

n
21 2n + · · ·+ α′

nC
n
n1nn

= α′An1−
n−1∑
i=1

α′An−i1α′
2−1C

i
2−11 (2−1)n − · · · −

n−1∑
i=1

α′An−i1α′
n−1C

i
n−11 (n−1)n

= α′An1−
n−1∑
i=1

α′An−i1

[
α′Ai1 + α′

2C
i
21 2n + · · ·+ α′

n−1C
i
n−11 (n−1)n

]
. (2.15)

Assumptions (2.14) and (2.9) lead (2.15) to be:

= α′An1−
n−1∑
i=1

α′An−i1α′[A(I− 1α′)
]i−1

A1 = α′[A(I− 1α′)
]n−1

A1 . (2.16)
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Hence (2.12) can be simplified as:

m(t) = −
{
α′A1 t+

1

2!
α′A(I− 1α′)A1 t2 +

1

3!
α′[A(I− 1α′)

]2
A1t3 + · · ·

+
1

(k + 1)!
α′[A(I− 1α′)

]k
A1 tk+1 + · · ·

}
. (2.17)

Differentiating (2.17) with respect to t yields

m′(t) = −
{
α′A1 + α′A(I− 1α′)A1 t+

1

2!
α′[A(I− 1α′)

]2
A1t2 + · · ·

+
1

k!
α′[A(I− 1α′)

]k
A1 tk + · · ·

}
. (2.18)

Using Definition A.1.4. from Appendix A leads tom′(t) = α′eA(I−1α′)t(−A)1 which completes

the proof.

2.2 The Moment Generating Function of Z(t)

Consider now the mgf of Z(t), for fixed t, when N is a renewal process. Léveillé, Garrido

and Wang (2010) gives the following theorem.

Theorem 2.2.1. For any t > 0 , δ > 0 and s ∈ Ω ⊆ R, the domain of existence of the

following mgf, we have

MZ(t)(s) = 1 +
∞∑
k=0

∫ t

0

∫ t−x1

0

· · ·
∫ t−

∑k
i=1 xi

0

k+1∏
i=1

[
MX

(
se−δ

∑i
j=1 xj

)
− 1
]

×dm(xk+1) . . . dm(x2) dm(x1) , (2.19)

where m(x) is the renewal function defined in (2.4) and
∑k

i=1 xi = 0 for k = 0.

In particular, when inter–arrival times are PH (α,A) distributed, the renewal density can be

written as

dm(x) = α′ eBx (−A)1 dx , for B = A(I− 1α′).

Hence from Theorem 2.2.1 the mgf MZ(t)(s) can be rewritten as

MZ(t)(s) = 1 +
∞∑
k=0

∫ t

0

∫ t−x1

0

· · ·
∫ t−

∑k
i=1 xi

0

k+1∏
i=1

([
MX

(
se−δ

∑i
j=1 xj

)
− 1
]

×α′ eBxi(−A)1

)
dxk+1 . . . dx2 dx1 , t > 0 , s ∈ Ω .
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Let yi = x1 + x2 + · · ·+ xi for i = 1, 2, · · · , k + 1, and y0 = 0 then

MZ(t)(s) = 1 +
∞∑
k=0

∫ t

0

∫ t

y1

· · ·
∫ t

yk

k+1∏
i=1

[
MX

(
se−δyi

)
− 1
]
α′ eB(yi−yi−1)(−A)1

×dyk+1 . . . dy2 dy1 .

Changing the order of the integrals yields:

MZ(t)(s) = 1 +
∞∑
k=0

∫ t

0

∫ yk+1

0

· · ·
∫ y2

0

k+1∏
i=1

[
MX

(
se−δyi

)
− 1
]
α′ eB(yi−yi−1)(−A)1

× dy1 . . . dyk dyk+1 , t > 0 , s ∈ Ω . (2.20)

Differentiating both sides of (2.20) with respect to t yields

∂

∂t
MZ(t)(s) =

[
MX(se

−δt)− 1
]
α′ eBt(−A)1 +

[
MX(se

−δt)− 1
]

×
( ∞∑

k=1

∫ t

0

∫ yk

0

· · ·
∫ y2

0

α′ eB(t−yk)(−A)1
k∏

i=1

[
MX

(
se−δyi

)
− 1
]

×
[
α′ eB(yi−yi−1)(−A)1

]
dy1 · · · dyk−1 dyk

)
, t > 0 , s ∈ Ω . (2.21)

Now let

f(t; s) =
∞∑
k=1

∫ t

0

∫ yk

0

· · ·
∫ y2

0

α′ eB(t−yk)(−A)1
k∏

i=1

[
MX

(
se−δyi

)
− 1
]

×
[
α′ eB(yi−yi−1)(−A)1

]
dy1 · · · dyk−1 dyk , t > 0 , s ∈ Ω , (2.22)

therefore (2.21) can be written in the form of a differential equation

∂

∂t
MZ(t)(s) = [MX(se

−δt)− 1
]
α′ eBt(−A)1 + [MX(se

−δt)− 1
]
f(t; s) . (2.23)

This differential equation for MZ(t)(s) can be solved for some PH inter–arrival times by a

method of differential equation systems, as we can see in the following section.

2.3 Differential Equations for MZ(t)(s)

Consider PH inter–arrival times with parameters (α,A), then we can obtain homogeneous

differential equations or differential systems for the moment generating function of Z(t).
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Differentiating both sides of (2.22) with respect to t yields

∂

∂t
f(t; s) = α′BeBt

{ ∞∑
k=1

∫ t

0

∫ yk

0

· · ·
∫ y2

0

k∏
i=1

[
MX

(
se−δyi

)
− 1
]
e−Byk(−A)1

×α′ eB(yk−yk−1)(−A)1 · · ·α′ eB(y2−y1)(−A)1α′ eBy1(−A)1

×dy1 · · · dyk−1 dyk

}
+ α′ eBt

{[
MX(se

−δt)− 1
]
e−Bt (−A) 1α′ eBt(−A)1

+
[
MX(se

δt)− 1
] ∞∑

k=2

∫ t

0

∫ yk−1

0

· · ·
∫ y2

0

k−1∏
i=1

[
MX

(
se−δyi

)
− 1
]

× e−Bt(−A)1α′ eB(t−yk−1)(−A)1 · · ·α′ eB(y2−y1)(−A)1α′ eBy1(−A)1

× dy1 · · · dyk−2 dyk−1

}
, t > 0 , s ∈ Ω . (2.24)

Simplifying (2.24) produces:

∂

∂t
f(t; s) =

{ ∞∑
k=1

∫ t

0

∫ yk

0

· · ·
∫ y2

0

k∏
i=1

[
MX

(
se−δyi

)
− 1
]
α′ BeB(t−yk)(−A)1

×α′ eB(yk−yk−1)(−A)1 · · ·α′ eB(y2−y1)(−A)1α′ eBy1(−A)1

×dy1 · · · dyk−1 dyk

}
+
[
MX(se

−δt)− 1
]
α′ (−A) 1α′ eBt(−A)1

+
[
MX(se

δt)− 1
]
α′ (−A) 1

{ ∞∑
k=2

∫ t

0

∫ yk−1

0

· · ·
∫ y2

0

k−1∏
i=1

[
MX

(
se−δyi

)
− 1
]

×α′ eB(t−yk−1)(−A)1 · · ·α′ eB(y2−y1)(−A)1α′ eBy1(−A)1

× dy1 · · · dyk−2 dyk−1

}
, t > 0 , s ∈ Ω . (2.25)

Substituting (2.22) into (2.25) gives:

∂

∂t
f(t; s) =

∞∑
k=1

∫ t

0

∫ yk

0

· · ·
∫ y2

0

k∏
i=1

[
MX

(
se−δyi

)
− 1
]
α′ BeB(t−yk)(−A)1

×α′ eB(yk−yk−1)(−A)1 · · ·α′ eB(y2−y1)(−A)1α′ eBy1(−A)1

×dy1 · · · dyk−1 dyk +
[
MX(se

−δt)− 1
]
α′ (−A) 1α′ eBt(−A)1

+
[
MX(se

−δt)− 1
]
α′ (−A) 1 f(t; s) . (2.26)

For special cases of PH distributions, we still can further simplify (2.26). We begin with a

generalized Erlang(2) distribution.
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2.3.1 Generalized Erlang(2) Inter–arrival Times

If inter–arrival times have generalized Erlang(2) distributions, whose parameters are given

by:

α′ =
(
1 0) , A =

 −λ1 λ1

0 −λ2

 ,

then, by Maple, we have

m′(t) = α′ eBt(−A)1 = − λ1λ2

λ1+λ2
e−(λ1+λ2)t + λ1λ2

λ1+λ2
,

α′ BeBt(−A)1 = λ1λ2e
−(λ1+λ2)t , for B = A(I− 1α′) .

Hence

α′BeBt(−A)1 = −(λ1 + λ2)α
′ eBt(−A)1 + λ1λ2 . (2.27)

Lemma 2.3.1. If inter–arrival times have generalized Erlang(2) distributions, then

∂

∂t
f(t; s) = −(λ1 + λ2)f(t; s) + λ1λ2 MZ(t)(s)− λ1λ2 . (2.28)

Proof. Since the sum of the first row of A for generalized Erlang(2) equals to 0, that is

α′ (−A) 1 = 0, then (2.26) can be simplified as

∂

∂t
f(t; s) =

∞∑
k=1

∫ t

0

∫ yk

0

· · ·
∫ y2

0

k∏
i=1

[
MX

(
se−δyi

)
− 1
]
α′BeB(t−yk)(−A)1

×α′ eB(yk−yk−1)(−A)1 · · ·α′ eB(y2−y1)(−A)1α′ eBy1(−A)1

×dy1 · · · dyk−1 dyk . (2.29)

Substituting (2.27) into (2.29) yields

∂

∂t
f(t; s) = −(λ1 + λ2)

∞∑
k=1

∫ t

0

∫ yk

0

· · ·
∫ y2

0

k∏
i=1

[
MX

(
se−δyi

)
− 1
]
α′ eB(t−yk)(−A)1

×α′ eB(yk−yk−1)(−A)1 · · ·α′ eB(y2−y1)(−A)1α′ eBy1(−A)1

× dy1 · · · dyk−1 dyk + λ1λ2

∞∑
k=1

∫ t

0

∫ yk

0

· · ·
∫ y2

0

k∏
i=1

[
MX

(
se−δyi

)
− 1
]

×α′ eB(yk−yk−1)(−A)1 · · ·α′ eB(y2−y1)(−A)1α′ eBy1(−A)1 dy1 · · · dyk−1 dyk . (2.30)

Combining (2.20) and (2.29), (2.30) gives (2.27).

Next we show that the mgf MZ(t)(s) for generalized Erlang(2) inter–arrival times satisfies a

homogeneous differential equation, with respect to t.
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Theorem 2.3.1. If inter–arrival times are generalized Erlang(2), then the mgf of Z(t) sat-

isfies:
∂2

∂t2
MZ(t)(s) = a1(t)

∂

∂t
MZ(t)(s) + a0(t)MZ(t)(s) , t ≥ 0 , s ∈ Ω , (2.31)

with initial values MZ(0)(s) = 1 and ∂
∂t
MZ(t)(s)| t=0 = 0, where

a1(t) =
∂
∂t

[
MX(se

−δt)− 1
][

MX(se−δt)− 1
] − (λ1 + λ2) , a0(t) = λ1λ2

[
MX(se

−δt)− 1
]
.

Proof. Differentiating both sides of (2.23) with respect to t produces

∂2

∂t2
MZ(t)(s) =

∂

∂t

[
MX(se

−δt)− 1
]
α′ eBt(−A)1 +

[
MX(se

−δt)− 1
]

×α′ B eBt(−A)1 +
∂

∂t

[
MX(se

−δt)− 1
]
f(t, s)

+
[
MX(se

−δt)− 1
] ∂
∂t

f(t, s) . (2.32)

Substituting (2.28) and (2.27) into (2.32) and combining (2.20) yields Theorem 2.3.1.

Remark 2.1. If δ = 0, then the homogeneous differential equation in (2.3.1) is given by:

∂2

∂t2
MZ(t)(s) = a1

∂

∂t
MZ(t)(s) + a0MZ(t)(s) , t > 0 , s ∈ R , (2.33)

with coefficients a1 = −λ1 − λ2 , a0 = λ1λ2

[
MX(s) − 1

]
that are constant with respect

to t. Solving this homogeneous differential equation using standard techniques (Polyanin

and Zaitsev, 2003) yields the mgf of the Sparre Andersen sum with generalized Erlang(2)

inter–arrival times S(t) =
∑N(t)

i=1 Xi:

MS(t)(s) = e−
1
2
(λ1+λ2)t

[
(λ1 + λ2)

√
d
−1

sinh
(1
2

√
d t
)
+ cosh

(1
2

√
d t
)]

,

where d = 4λ1λ2MX(s) + (λ1 − λ2)
2.

Corollary 2.3.1. If λ1 = λ2 = λ, the inter–arrival times are Erlang(2) distributed, then we

get
∂2

∂t2
MZ(t)(s) = a1(t)

∂

∂t
MZ(t)(s) + a0(t)MZ(t)(s) , t ≥ 0 , s ∈ Ω ,

with initial values MZ(0)(s) = 1 and ∂
∂t
MZ(t)(s)| t=0 = 0, where a1(t) =

∂
∂t

[
MX(se−δt)−1

][
MX(se−δt)−1

] − 2λ,

a0(t) = λ2
[
MX(se

−δt)− 1
]
and MX is the mgf of the deflated claim severity X.

This result is given by Léveillé, Garrido and Wang (2010).
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2.3.2 Mixed Exponential Inter–arrival Times

Now consider the mgf of Z(t), when inter–arrival times are mixed exponential of order 2

with parameters given by:

α′ =
(
a 1− a) , A =

 −λ1 0

0 −λ2

 ,

then

m′(t) = α′ eBt(−A)1 = a(1−a)(λ1−λ2)2

(1−a)λ1+aλ2
e−[(1−a)λ1+aλ2]t + λ1λ2

(1−a)λ1+aλ2
,

α′ BeBt(−A)1 = −a(1− a)(λ1 − λ2)
2e−[(1−a)λ1+aλ2]t .

Hence

α′BeBt(−A)1 = −
[
(1− a)λ1 + aλ2

]
α′ eBt(−A)1 + λ1λ2 . (2.34)

Lemma 2.3.2. If the inter–arrival times have a mixed exponential distribution of order 2,

then

∂

∂t
f(t; s) =

{[
MX(se

−δt)− 1
]
α′ (−A)1−

[
(1− a)λ1 + aλ2

]}
f(t; s)

+λ1λ2 MZ(t)(s) +
[
MX(se

−δt)− 1
]
α′ (−A)1α′ eBt(−A)1− λ1λ2 . (2.35)

Proof. Substituting (2.34) into (2.26) produces

∂

∂t
f(t; s) = −

[
(1− a)λ1 + aλ2

]{ ∞∑
k=1

∫ t

0

∫ yk

0

· · ·
∫ y2

0

k∏
i=1

[
MX

(
se−δyi

)
− 1
]
α′

×eB(t−yk)(−A)1α′ eB(yk−yk−1)(−A)1 · · ·α′ eB(y2−y1)(−A)1α′ eBy1(−A)1

×dy1 · · · dyk−1 dyk

}
+ λ1λ2

{ ∞∑
k=1

∫ t

0

∫ yk

0

· · ·
∫ y2

0

k∏
i=1

[
MX

(
se−δyi

)
− 1
]

×α′ eB(yk−yk−1)(−A)1 · · ·α′ eB(y2−y1)(−A)1α′ eBy1(−A)1

×dy1 · · · dyk−1 dyk

}
+
[
MX(se

−δt)− 1
]
α′ (−A) 1α′ eBt(−A)1

+
[
MX(se

−δt)− 1
]
α′ (−A) 1 f(t; s) . (2.36)

By (2.22) and (2.20), (2.36) implies (2.35) holds.

Next we are ready to prove that the mgf Z(t), for mixed exponential inter–arrival times, also

satisfies an homogeneous differential equation.
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Theorem 2.3.2. If the inter–arrival times are mixed exponential of order 2, then the mgf

of Z(t) satisfies:

∂2

∂t2
MZ(t)(s) = a1(t)

∂

∂t
MZ(t)(s) + a0(t)MZ(t)(s) , t ≥ 0 , s ∈ Ω , (2.37)

with initial values MZ(0)(s) = 1 and ∂
∂t
MZ(t)(s)| t=0 =

[
MX(s)− 1

]
α′ (−A)1, where

a1(t) =
∂
∂t

[
MX(se

−δt)− 1
][

MX(se−δt)− 1
] +

[
MX(se

−δt)− 1
]
α′ (−A)1−

[
(1− a)λ1 + aλ2

]
,

a0(t) = λ1λ2

[
MX(se

−δt)− 1
]
.

Proof. Substituting (2.34) and (2.35) into (2.32) and combining (2.23) gives (2.37).

Consider PH inter–arrival times, if the order of matrix A is 2, then we obtain second–order

homogeneous differential equations for the mgf of Z(t). This result will be discussed in the

next subsection.

2.3.3 PH Inter–arrival Times of Order 2

Let a PH random variable represent the inter–arrival times with parameters (α, A), such

that

α′ =
(
a 1− a) , A =

 a11 a12

a21 a22

 , (2.38)

then B = A(I− 1α′) can be diagonalized, as is proved in the following lemma.

Lemma 2.3.3. If the PH inter–arrival times have parameters given by (2.38), then matrix

B has two independent eigenvectors.

Proof. Since

B = A(I− 1α′) =

 a11 a12

a21 a22

 1− a −1 + a

−a a


=

 (1− a)a11 − a a12 (−1 + a)a11 + a a12

(1− a)a21 − a a22 (−1 + a)a21 + a a22

 ,

then the characteristic polynomial is given by

det (λI−B) = λ2 −
[
a11 − a21 + a (a21 + a22 − a11 − a12)

]
λ ,
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which implies λ1 = 0 and λ2 = a11− a21+ a (a21+ a22− a11− a12) are eigenvalues of B. Now

a11 < 0 , a22 < 0 and a12 > 0 , a21 > 0, then a11− a21+ a (a21+ a22− a11− a12) < 0. Hence B

has two different eigenvalues, which implies that eigenvectors, corresponding to eigenvalues

a11 − a21 + a (a21 + a22 − a11 − a12) and 0 are independent.

Remark 2.2. Lemma 2.3.3 not only demonstrates that B has two distinct eigenvalues with

one being 0, but it also implies that B can be diagonalized, since it has two independent

eigenvectors, such that λ 0

0 0

 = P−1BP ⇒ B = P

 λ 0

0 0

P−1 ,

where λ = a11 − a21 + a (a21 + a22 − a11 − a12) is the nonzero eigenvalue and the columns of

P are eigenvectors, corresponding to eigenvalues λ and 0.

By Definition A.1.4 of the matrix exponential, we have that

eBt = P

 eλt 0

0 1

P−1 ,

then there exists two numbers c11 and c12, such that

m′(t) = α′ eBt(−A)1 = α′P

 eλt 0

0 1

P−1(−A)1 = c11e
λt + c12 .

Similar arguments can be also applied to α′ BeBt(−A)1, then

α′ BeBt(−A)1 = α′P

 λ 0

0 0

 eλt 0

0 1

P−1(−A)1 = c21e
λt ,

where c21 is a constant number. Hence there exists c⋆ = c21
c11

and c⋆⋆ = − c21c12
c11

, such that

α′ BeBt(−A)1 = c⋆ α′ eBt(−A)1 + c⋆⋆ . (2.39)

Lemma 2.3.4. If PH inter–arrival times have parameters given by (2.38), then

∂

∂t
f(t; s) =

{[
MX(se

−δt)− 1
]
α′ (−A)1 + c⋆

}
f(t; s)

+c⋆⋆ MZ(t)(s) +
[
MX(se

−δt)− 1
]
α′ (−A)1α′ eBt(−A)1− c⋆⋆ . (2.40)
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Proof. Substituting (2.39) into (2.26) gives

∂

∂t
f(t; s) = c⋆

{ ∞∑
k=1

∫ t

0

∫ yk

0

· · ·
∫ y2

0

k∏
i=1

[
MX

(
se−δyi

)
− 1
]
α′ eB(t−yk)(−A)1

×α′ eB(yk−yk−1)(−A)1 · · ·α′ eB(y2−y1)(−A)1α′ eBy1(−A)1

×dy1 · · · dyk−1 dyk

}
+ c⋆⋆

{ ∞∑
k=1

∫ t

0

∫ yk

0

· · ·
∫ y2

0

k∏
i=1

[
MX

(
se−δyi

)
− 1
]

×α′ eB(yk−yk−1)(−A)1 · · ·α′ eB(y2−y1)(−A)1α′ eBy1(−A)1

×dy1 · · · dyk−1 dyk

}
+
[
MX(se

−δt)− 1
]
α′ (−A) 1α′ eBt(−A)1

+
[
MX(se

δt)− 1
]
α′ (−A) 1 f(t; s) . (2.41)

Combining (2.20) with (2.41) yields (2.40).

Theorem 2.3.3. If inter–arrival times are PH with parameters given by (2.38), then the

mgf of Z(t) satisfies:

∂2

∂t2
MZ(t)(s) = a1(t)

∂

∂t
MZ(t)(s) + a0(t)MZ(t)(s) , t ≥ 0 , s ∈ Ω , (2.42)

with initial values MZ(0)(s) = 1 and ∂
∂t
MZ(t)(s)| t=0 =

[
MX(s)− 1

]
α′(−A)1, where

a1(t) =
∂
∂t

[
MX(se

−δt)− 1
][

MX(se−δt)− 1
] +

[
MX(se

−δt)− 1
]
α′ (−A)1 + c⋆ ,

a0(t) = c⋆⋆
[
MX(se

−δt)− 1
]
.

Proof. Substituting (2.39) and (2.40) into (2.32) and combining (2.23) gives (2.42).

2.3.4 PH Inter–arrival Times of Order n ≥ 3

Let

f ⋆(t; s) =
∞∑
k=1

∫ t

0

∫ yk

0

· · ·
∫ y2

0

eB(t−yk)(−A)1
k∏

i=1

[
MX

(
se−δyi

)
− 1
]
α′ eB(yi−yi−1)(−A)1

× dy1 · · · dyk−1 dyk , t > 0 , s ∈ Ω , (2.43)

then (2.22) can be written as:

f(t; s) = α′f ⋆(t; s) .

In order to obtain the mgf of Z(t) when the inter–arrival time has a PH distribution, we

need the following result.
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Lemma 2.3.5. For any t ≥ 0 , δ ≥ 0 and s ∈ Ω, f⋆ satisfies the following differential

equations:

∂

∂t
f ⋆(t; s) =

{
B−

[
MX(se

−δt)− 1
]
A1α′

}
f⋆(t; s) +A1α′ eBtA1

[
MX(se

−δt)− 1
]
. (2.44)

Further, (2.44) has unique continuous solution in [0,∞) with initial value f ⋆(0, s) = 0.

Proof. Differentiating both sides of (2.43) with respect to t for s ∈ Ω yields

∂

∂t
f ⋆(t; s) = BeBt

{ ∞∑
k=1

∫ t

0

∫ yk

0

· · ·
∫ y2

0

e−Byk(−A)1
k∏

i=1

[
MX

(
se−δyi

)
− 1
]

×
[
α′ eB(yi−yi−1)(−A)1

]
dy1 · · · dyk−1 dyk

}
+eBt

{[
MX(se

−δt)− 1
]
e−Bt (−A)1α′ eBt(−A)1

+
[
MX(se

δt)− 1
] ∞∑

k=2

∫ t

0

∫ yk−1

0

· · ·
∫ y2

0

e−Bt(−A)1α′ eB(t−yk−1)(−A)1

×
k−1∏
i=1

[
MX

(
se−δyi

)
− 1
]
α′ eB(yi−yi−1)(−A)1 dy1 · · · dyk−2 dyk−1

}
. (2.45)

Simplifying (2.45), we have that

∂

∂t
f ⋆(t; s) = B

{ ∞∑
k=1

∫ t

0

∫ yk

0

· · ·
∫ y2

0

eB(t−yk)(−A)1
k∏

i=1

[
MX

(
se−δyi

)
− 1
]

×
[
α′ eB(yi−yi−1)(−A)1

]
dy1 · · · dyk−1 dyk

}
+
[
MX(se

−δt)− 1
]
(−A) 1α′ eBt(−A)1 +

[
MX(se

−δt)− 1
]

×
{ ∞∑

k=2

∫ t

0

∫ yk−1

0

· · ·
∫ y2

0

(−A)1α′eB(t−yk−1)

k−1∏
i=1

[
MX

(
se−δyi

)
− 1
]

×
[
α′ eB(yi−yi−1)(−A)1

]
dy1 · · · dyk−2 dyk−1

}
, t > 0 , s ∈ Ω . (2.46)

Substituting (2.43) into (2.46) yields

∂

∂t
f ⋆(t; s) = B f∗(t; s) +A1α′ eBtA1

[
MX(se

−δt)− 1
]

−
[
MX(se

−δt)− 1
]
A1α′f⋆(t; s) . (2.47)

From (2.47) we have equation (2.44).
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Since here we consider continuous PH distributions for the inter–arrival times and the PH

claim severities, then the uniqueness of the solution of (2.44) in Lemma 2.3.5 with initial value

f ⋆(0; s) = 0, follows the results of ordinary differential equations (see Bellman, 1997).

Consider equation (2.23) and Lemma 2.3.5, then the following differential equations are

obtained for the mgf of Z(t):

Theorem 2.3.4. If the inter–arrival times are PH distributed with parameters (α,A), and

X is the claim severity, then for any t ≥ 0 , δ ≥ 0 and s ∈ Ω, the mgf of Z(t) satisfies the

following equations:

∂

∂t
MZ(t)(s) = [MX(se

−δt)− 1
]
α′ eBt(−A)1 + [MX(se

−δt)− 1
]
f(t, s) ,

f(t; s) = α′ f⋆(t; s) ,

with initial value MZ(0)(s) = 1 and where f ⋆(t; s) is given by

∂

∂t
f ⋆(t; s) =

{
B−

[
MX(se

−δt)− 1
]
A1α′

}
f ⋆(t; s) +A1α′ eBtA1

[
MX(se

−δt)− 1
]
, (2.48)

with initial value f ⋆(0; s) = 0.

Remark 2.3. For general PH distributions the above equations are difficult to simplify

further. For special cases such as the Erlang(n) and PH distributions of order 2, we can

further simplify the results, but if the order of matrix A is large with many parameters, the

relation between f(t; s) and its derivatives is not clear. Instead of resorting to homogeneous

differential equations or ordinary differential equations we use ordinary differential systems.

The following corollaries are already well known result; see for instance Gerber (1971), Karlin

and Taylor (1975) and Willmot (1989).

Corollary 2.3.2. If inter–arrival times have an exponential distribution with parameter λ,

then the mgf of Z(t) is given by:

MZ(t)(s) = eλ
∫ t
0 [MX(se−δu)−1]du , s ∈ Ω , (2.49)

where MX is the mgf of the claim severity X.
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Proof. Inter–arrival times are exponential with parameter λ, hence A = −λ, with vectors

α = 1 and 1 = 1 which implies that matrix B = 0, then f ⋆(t; s) = f(t; s). From Theorem

2.3.4 we have that

∂

∂t
f(t; s) = λ

[
MX(se

−δt)− 1
]
f(t; s) + λ2

[
MX(se

−δt)− 1
]
, (2.50)

and
∂

∂t
MZ(t)(s) =

[
MX(se

−δt)− 1
]
f(t; s) + λ

[
MX(se

−δt)− 1
]
. (2.51)

Hence
∂

∂t
f(t; s) = λ

∂

∂t
MZ(t)(s) , (2.52)

then

f(t; s) = λMZ(t)(s) + c(s) , (2.53)

where c(s) is a function in s. The initial values MZ(0)(s) = 1 and f(0; s) = 0 give c(s) = −λ.

The solution of first-order differential equations yields the solution of (2.50) given by:

f(t; s) = λeλ
∫ t
0 [MX(se−δu)−1]du − λ , (2.54)

with initial value of 0. Substituting (2.54) into (2.53) yields

MZ(t)(s) = eλ
∫ t
0 [MX(se−δu)−1]du − 1− 1

λ
c(s) . (2.55)

c(s) = λ implies the result:

MZ(t)(s) = eλ
∫ t
0 [MX(se−δu)−1]du .

Corollary 2.3.3. If the inter–arrival times are Erlang(n), then the n-th derivative of the

mgf MZ(t)(s) with respect to t is given by Wang (2007, p41):

∂n

∂tn
MZ(t)(s) = an−1(t)

∂n−1

∂tn−1
MZ(t)(s) + an−2(t)

∂n−2

∂tn−2
MZ(t)(s) + · · ·

+a1(t)
∂

∂t
MZ(t)(s) + a0(t)MZ(t)(s) , (2.56)

with initial values

MZ(0)(s) = 1 ,
∂

∂t
MZ(t)(s)| t=0 = 0 ,

∂2

∂t2
MZ(t)(s)| t=0 = 0 , · · · , ∂

n−1

∂tn−1
MZ(t)(s)| t=0 = 0 ,
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where, for a fixed s,

ak(t) =

(
n−1
n−k

)
∂n−k

∂tn−kM(t, s)−
(

n
n−k

)
λn−kM(t, s)−

∑(n−2)−(k−1)
i=1 ak+i(t)

(
k+i−1

i

)
∂i

∂ti
M(t, s)

M(t, s)
,

with M(t, s) =
[
MX(se

−δt)− 1
]
, for k = 1, 2, · · · , n− 1 and a0(t) = λnM(t, s).

Note that there are 3 lemmas needed in order to prove this result in Wang (2007). Here we

prove them for completeness, beginning with the second one. The proof of the first one is

trivial.

Lemma 2.3.6. If the inter–arrival times have Erlang(n) distributions with parameters (α,A),

then

α′ Bk (−A)1 = 0 , for k ≤ n− 2 , (2.57)

where B = A(I− 1α′).

For the proof see Wang (2007, p42)

Lemma 2.3.7. Let the inter–arrival times have Erlang(n) distributions with parameters

(α,A), then:

α′ ∂
n−1

∂tn−1
f⋆(t, s) = α′Bn−1f ⋆(t; s) . (2.58)

Proof. From Theorem 2.3.4

∂

∂t
f ⋆(t; s) =

{
B−

[
MX(se

−δt)− 1
]
A1α′

}
f⋆(t; s) +A1α′ eBtA1

[
MX(se

−δt)− 1
]
. (2.59)

Multiplying (2.59) on the right by α′ gives:

α′ ∂

∂t
f ⋆(t; s) = α′Bf⋆(t; s) +

[
MX(se

−δt)− 1
]
α′(−A)1α′f ⋆(t; s)

+
[
MX(se

−δt)− 1
]
α′(−A)1α′ eBt(−A)1 . (2.60)

Since α′(−A)1 = 0, hence

α′ ∂

∂t
f ⋆(t; s) = α′Bf ⋆(t; s) . (2.61)

Differentiating (2.61) with respect to t yields:

α′ ∂
2

∂t2
f ⋆(t; s) = α′B

∂

∂t
f ⋆(t; s) . (2.62)
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By (2.59) and Lemma 2.3.6, (2.62) can be written as:

α′ ∂
2

∂t2
f ⋆(t; s) = α′B2f ⋆(t; s) . (2.63)

Repeating the procedure with higher order derivatives in (2.62) and (2.63) we have

α′ ∂
n−1

∂tn−1
f ⋆(t; s) = α′Bn−1f ⋆(t; s) . (2.64)

Lemma 2.3.8. (α,A) are the parameters for Erlang(n) distributions and B = A(I− 1α′)

then

α′eBxBn−1 (−A)1 = λn −
n−1∑
k=1

λk

(
n

k

)
α′eBxBn−1−k (−A)1 . (2.65)

For a proof see Wang (2007, p43).

Lemma 2.3.9. If the inter–arrival times are Erlang(n), then (n− 1)-th derivative of f in t

is given by

∂n−1

∂tn−1
f(t; s) = −

n−1∑
k=1

λk

(
n

k

)
∂n−1−k

∂tn−1−k
f(t; s) + λnMZ(t)(s)− λn . (2.66)

The proof of Corollary 2.3.2 follows from Lemmas 2.3.7, 2.3.8 and 2.3.9, for details please

refer to Wang (2007).

Now consider the classical renewal compound risk model under the condition that δ = 0. A

closed form is obtained for the mgf of the compound sum when the inter–arrival times are

PH distributed. In order to prove the result, first we need the following result.

Lemma 2.3.10. Let y(t) be a vector with order n and each component be a function of t. If

d

dt
y(t) = D y(t) + b(t) , (2.67)

with initial value 0 , then the solution is given by:

y(t) = eDt

∫ t

0

e−Dx b(x)dx , (2.68)

where D is a square matrix of order n, and b(t) is vector of dimension n.
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Proof. The definition of matrix exponential gives the derivative of eDt to be:

d

dt
eDt = DeDt = eDtD ,

hence differentiating both sides of (2.68) with respect to t gives

d

dt
y(t) = D eDt

∫ t

0

e−Dx b(x)dx+ eDte−Dtb(t)

= D y(t) + b(t) . (2.69)

Corollary 2.3.4. If the inter–arrival times have PH (α,A) and the net interest force δ = 0,

then for any t ≥ 0 and s ∈ Ω, the moment generating function of Z(t) is given by:

MZ(t)(s) = m(t) [MX(s)− 1
]
+ [MX(s)− 1

]2(
α′B∗−1eB

∗t(I⊗ α′)
[
(−B∗)⊕B

]−1

×
[
e((−B∗)⊕B)t − I

[
(A1)⊗ (A1)

]
+m(t)α′B∗−1A1

)
+ 1 ,

(2.70)

where m(t) is a renewal function, MX is the mgf of the claim severity variable X and

B∗ = B−
[
MX(s)− 1

]
A1α′.

Proof. If δ = 0 by Theorem 2.3.4 we have that:

∂

∂t
f⋆(t; s) =

{
B−

[
MX(s)− 1

]
A1α′

}
f⋆(t; s) +

[
MX(s)− 1

]
A1α′ eBtA1 .

Let B∗ = B−
[
MX(s)− 1

]
A1α′ and b(t) =

[
MX(s)− 1

]
A1α′ eBtA1, then

∂

∂t
f ⋆(t; s) = B∗f⋆(t; s) + b(t) . (2.71)

Then by Lemma 2.3.10 the solution of (2.71) is given by:

f⋆(t; s) = eB
∗t

∫ t

0

eB
∗x b(x)dx . (2.72)

It follows that f(t; s) = α′f⋆(t; s) = α′eB* t
∫ t

0
e−B* x b(x)dx. Hence from Theorem 2.3.4 we

have the following expression:

∂

∂t
MZ(t)(s) = [MX(s)− 1

]
α′ eBt(−A)1 + [MX(s)− 1

]
α′eB

∗t

∫ t

0

e−B∗x b(x)dx , (2.73)
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which implies that:

MZ(t)(s) = [MX(s)− 1
] ∫ t

0

α′ eBx(−A)1dx

+[MX(s)− 1
] ∫ t

0

α′eB
∗u

∫ u

0

e−B∗x b(x)dx du+ 1 , (2.74)

since the initial value of MZ(t)(s) at t = 0 is 1 and m′(x) = α′ eBx(−A)1 is a renewal density

function, then the renewal function is given by

m(t) =

∫ t

0

m′(x)dx =

∫ t

0

α′ eBx(−A)1dx .

Now we consider
∫ t

0
α′eB

∗u
∫ u

0
e−B∗x b(x)dx du; changing the order of integration yields,∫ t

0

α′eB
∗u

∫ u

0

e−B∗x b(x)dx du = α′
∫ t

0

∫ t

x

eB
∗ue−B∗x b(x) du dx

= α′
∫ t

0

e−B∗x B∗−1eB
∗u |tx b(x) dx

= α′
∫ t

0

B∗−1
(
eB

∗t − eB
∗x
)
e−B∗x b(x) dx . (2.75)

Simplifying (2.75) gives∫ t

0

α′eB
∗u

∫ u

0

e−B∗x b(x)dx du = α′B∗−1eB
∗t

∫ t

0

e−B∗x b(x) dx− α′B∗−1

∫ t

0

b(x) dx . (2.76)

Substituting b(t) =
[
MX(s)− 1

]
A1α′ eBtA1 into (2.76) yields∫ t

0

α′eB
∗u

∫ u

0

e−B∗x b(x)dx du =
[
MX(s)− 1

]
α′B∗−1eB

∗t

∫ t

0

e−B∗xA1α′ eBxA1 dx

−
[
MX(s)− 1

]
α′B∗−1

∫ t

0

A1α′ eBxA1 dx . (2.77)

Then using the properties of Kronecker’s product ⊗ and sum ⊕ (see Definitions A.3.1 and

A.3.2, as well as Properties A.3.1 and A.3.2):

(U1U2 · · ·Un)⊗ (V1V2 · · ·Vn) = (U1 ⊗V1)(U2 ⊗V2) · · · (Un ⊗Vn) , n ≥ 1 ,

and

exp (U)⊗ exp (V) = exp (U⊕V) .
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Since m′(x) = α′ eBx(−A)1 is a number, hence:∫ t

0

α′eB
∗u

∫ u

0

e−B∗x b(x)dx du

=
[
MX(s)− 1

]
α′B∗−1eB

∗t

∫ t

0

(I⊗ α′)(e−B∗x ⊗ eBx)(A1⊗A1)dx

+m(t)
[
MX(s)− 1

]
α′B∗−1A1

=
[
MX(s)− 1

]
α′B∗−1eB

∗t

∫ t

0

(I⊗ α′)e((−B∗)⊕B)x(A1⊗A1)dx

+m(t)
[
MX(s)− 1

]
α′B∗−1A1 . (2.78)

Then ∫ t

0

α′eB
∗u

∫ u

0

e−B∗x b(x)dx du

=
[
MX(s)− 1

]
α′B∗−1eB

∗t(I⊗ α′)
[
(−B∗)⊕B

]−1(
e((−B∗)⊕B)x|t0

)
(A1⊗A1)

+m(t)
[
MX(s)− 1

]
α′B∗−1A1

=
[
MX(s)− 1

]
α′B∗−1eB

∗t(I⊗ α′)
[
(−B∗)⊕B

]−1
[
e((−B∗)⊕B)t − I

]
(A1⊗A1)

+m(t)
[
MX(s)− 1

]
α′B∗−1A1 . (2.79)

Substituting (2.79) into (2.74) gives

MZ(t)(s) = m(t) [MX(s)− 1
]
+ [MX(s)− 1

]2(
α′B∗−1eB

∗t(I⊗ α′)
[
(−B∗)⊕B

]−1

×
[
e((−B∗)⊕B)t − I

]
((A1)⊗ (A1)) +m(t)α′B∗−1A1

)
+ 1 , (2.80)

that gives the proof of Corollary 2.3.3.

Remark 2.4. Corollary 2.3.4 gives a closed formula for the mgf of compound PH–renewal

processes, when the interest rate δ = 0. There are a few special cases available in the lite-

rature for this mgf, such as exponential and Erlang(2) inter–arrival times. This generalizes

classical risk models to any PH inter–arrival times.

For instance, if the inter–arrival times are Coxian PH distributed with parameters (α,A)

given by:

α′ =
(

α 1− α
)
, A =

 −λ1 λ1

0 −λ2

 ,
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then from Corollary 2.3.3, the mgf is given by

MZ(t)(s) = e−
1
2
at

((
(−1 + α)MX(s)− 2α+ 1

)
λ2 − λ1√

b
sinh

1

2
t
√
b+ cosh

1

2
t
√
b

)
,

where

a = λ2(−1 + α)MX(s) + λ2 + λ1 , and

b =
(
1 + (−1 + α)MX(s)

)2
λ2
2 + 2λ1

(
− 1 + (α+ 1)MX(s)

)
λ2 + λ2

1 .

Instead, if we consider inter–arrival times have a PH distribution which is a mixture of

exponentials with parameters (α,A) given by:

α′ =
(

α 1− α
)
, A =

 −λ1 0

0 −λ2

 ,

then the mgf of Z(t) is given by:

MZ(t)(s) = e−
1
2
ta

((
(2−MX(s))α+MX(s)− 1

)
λ2 +

(
1 + (MX(s)− 2)α

)
λ1√

b
sinh (

1

2
t
√
b)

+ cosh (
1

2
t
√
b)

)
,

a =
(
(−λ2 + λ1)α+ λ2

)
MX(s)− λ1 − λ2 , and

b = λ2
1

(
αMX(s)− 1

)2 − 2λ1λ2

(
1−MX(s) + α2MX(s)

2 − αMX(s)
2
)
λ1

+λ2

(
1−MX(s) + αMX(s)

)2
.

Finally, if the inter–arrival times are PH distributed as generalized Erlang(2), the mgf of

MZ(t) are given in Remark 2.1.

2.4 Numerical Examples

In this section some examples are considered to illustrate the results. Expectations, variances

and the asymptotic behavior of MZ(t)(s) as time t goes to infinity are also studied.
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Example 2.4.1. We consider a mixed exponential renewal process with parameters (α,A)

and exponential claim sizes with parameter θ, where

α′ =
(

0.5 0.5
)
, A =

 −λ1 0

0 −λ2

 , θ = 1 .

Here the net interest force δ = 0.01, while λ1 = 0.02 and λ2 = 0.04.

Let f ⋆(t; s) =

 h1(t; s)

h2(t; s)

 . Using Maple, we obtain the following results:

h1(t; s) =
1

150(s− 1)3

[
s(s2 + 3s− 1) e−0.03t + 3s2(s− 4) e−0.02t

+3s(4− s) e−0.01t − 4s3 + 12s− 11s

]
,

h2(t; s) =
1

150(s− 1)3

[
s(6s2 − 4s+ 1) e−0.04t + 2s(1− s2 − 3s) e−0.03t

+2s(4− s) e−0.01t − 4s3 + 12s2 − 11s

]
.

Then we have for a fixed s:

f(t; s) = α′f⋆(t; s) = 0.5h1(t; s) + 0.5h2(t; s)

=
1

150(s− 1)3

[
s(6s2 − 4s+ 1) e−0.04t + s(1− s2 − 3s) e−0.03t + 3s2(s− 4) e−0.02t

+5s(4− s) e−0.01t − 8s3 + 24s2 − 22s

]
.

By the integral differential equation in Theorem 2.3.4 with an initial value of MZ(0)(s) = 1,

it follows that for a fixed t the mgf MZ(t)(s) at s < 1 is:

MZ(t)(s) =
1

12(1− s)3

[
s(4s− 1− 6s2) e−0.04t + 6(4− s)(s2e−0.02t +

4

3
se−0.01t − 1

2
)

]
. (2.81)

If we differentiating (2.81) with respect to s and evaluate at let s = 0, we obtain moments

of MZ(t)(s):

E
[
Z(t)

]
=

11

4
− 8

4
e−0.01t − 1

12
e−0.04t , t > 0

E
[
Z(t)2

]
= 51 + 33e−0.02t − 84e−0.01t , t > 0 ,

which are consistent with results in Léveillé and Garrido (2001a).
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The asymptotic mgf of MZ(t)(s) at t goes to infinity is :

MZ(∞)(s) =
4− s

4(1− s)3
=

1

4

1

(1− s)2
+

3

4

1

(1− s)3
, s < 1 , (2.82)

which implies that the distribution of Z(∞) is mixed Erlang(2) with probability 1
4
and

Erlang(3) with probability 3
4
, while the scale parameter is 1.

The following example considers generalized Erlang(2) inter–arrival times.

Example 2.4.2. Let inter–arrival times have a generalized Erlang(2) distribution with para-

meters (α,A) and claim severities be exponential parameter θ, where

α′ =
(

1 0
)
, A =

 −λ1 λ1

0 −λ2

 , θ = 1 . (2.83)

Let δ = 0.01, here λ = 0.01 and λ2 = 0.02, then Maple gives:

h1(t; s) =
1

150s3

[
6(1− s)(−1 + se−0.01t) ln

(1− se−0.01t

1− s

)
+ (3s3 − 6s)e−0.01t

+(3s2 − 3s3)e−0.02t + s3e−0.03t − s3 + 6s− 3s2
]
,

h2(t; s) =
1

150s3(e0.01t − s)

[
6(−1 + s)(e0.01t − s) ln

(1− se−0.01t

1− s

)
+ (−3s2 − s3 + 6s)e0.01t

+(3s2 − 3s3)e−0.01t + (s3 − 3s4)e−0.02t + 2s4e−0.03t + 3s3 − 6s+ s4
]
,

which implies that:

f(t; s) = α′f ⋆(t; s) = h1(t; s) .

Then the mgf of Z(t) at a fixed t is given for s < 1 by:

MZ(t)(s) =
1

s3

{[
(4s− 4s2)e−0.01t + 6s− 6

]
ln (

1− se−0.01t

1− s
)

+(s2 − s3)e−0.02t + (2s3 + 2s2 − 6s)e−0.01t + 6s− 3s2
}
. (2.84)

Differentiating (2.84) with respect to s and letting s = 0, the moments of Z(t) are also

obtained:

E
[
Z(t)

]
=

1

8
− 1

6
e−0.01t +

1

24
e−0.04t ,

E
[
Z(t)2

]
=

3

5
+

2

5
e−0.05t − 1

3
e−0.04t − 2

3
e−0.01t ,

which are also consistent with results in Léveillé and Garrido (2001a).
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Remark 2.5. For expression (2.84), again, the asymptotic result as t → ∞ is:

MZ(∞)(s) =
1

s3

[(
6− 6s) ln(1− s) + 6s− 3s2

]
, s < 1 . (2.85)

Example 2.4.3. Let the inter–arrival times have Coxian PH distributions with parameters

(α,A) and the claim severities be exponential with parameter θ, where

α′ =
(

α1 α2

)′
, A =

 −λ1 λ1

0 −λ2

 ,

and here

α1 = α2 = 0.5 , λ1 = 0.01 , λ2 = 0.02 and θ = 1 .

Under the effect of a net interest force δ = 0.01, by Theorem 2.3.4 and Maple we have that

h1(t; s) =
s

100(1− s)
(1− e−0.01t)2 , s < 1, t > 0 ,

h2(t; s) =
s

100(1− s)
(1− e−0.02t) , s < 1, t > 0 .

Then the function f(t; s) can be obtained from

f(t; s) = α′f ⋆(t; s) = 0.5h1(t, s) + 0.5h2(t; s) =
0.01s

1− s
(1− e−0.01t) , s < 1, t > 0 .

The integrating differential equation in Theorem 3.3.1 yields the mgf of Z(t) for fixed t > 0:

MZ(t)(s) =
1− se−0.01t

1− s
, s < 1 . (2.86)

Note that (2.86) is the mgf of Z(t) for a Poisson process with parameter λ = 0.01 and

exponential claims with parameter θ = 1.

Differentiating (2.86) with expect to s gives the first and second moments:

E[Z(t)] = 1− e−0.01t and E[Z(t)2] = 2− 2e−0.02t ,

which can also be proved by the results in Léveillé and Garrido (2001a).

The asymptotic result of MZ(t)(s) as t goes to infinity is given by:

MZ(∞)(s) =
1

1− s
, s < 1 , (2.87)

which shows that here the asymptotic distribution of Z(t) is exponential with parameter 1.
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Example 2.4.4. In the previous examples we considered exponential claim sizes. Now let

claim sizes have a mixed exponential distribution, which is also PH with parameters (β,B),

while inter–arrival times are still Coxian with parameters (α,A), as in Example 2.4.3. The

parameters are given here by:

β′ =
(

β1 β2

)
, B =

 θ1 0

0 θ2

 , α′ =
(

α1 α2

)
, A =

 −λ1 λ1

0 −λ2

 ,

where β1 = β2 = 0.5, θ1 = 1, θ2 = 2, λ1 = 0.02, λ2 = 0.04, and the net interest force is still

δ = 0.01. Then Maple gives:

h1(t; s) = − s

50

(s− 1)e−0.04t − 2se−0.02t + 4e−0.01t + s− 3

s2 − 3s+ 2
, s < 1 , t > 0 ,

h1(t; s) = − s

50

(1− s)e−0.04t + 2e−0.01t + s− 3

s2 − 3s+ 2
, s < 1 , t > 0 .

Then the corresponding function f(t; s) is obtained from:

f(t; s) = α′f ⋆(t; s) = 0.5h1(t; s) + 0.5h2(t; s) =
−0.02s(−3 + s− se−0.02t + e−0.0tt)

s2 − 3s+ 2
.

Again Maple and Theorem 2.3.4, gives the derivative equation of the mgf:

∂

∂t
MZ(t)(s) =

0.01se−0.01t(−2− s2e−0.02t + 3se−0.01t)(−3 + 2se−0.01t)

(s2 − 3s+ 2)(2− se−0.01t)(1− se−0.01t)
, (2.88)

where the initial value is MZ(0)(s) = 1. Integrating (2.88) with respective to t yields the mgf

of Z(t) for a fixed t > 0:

MZ(t)(s) =
s2e−0.02t − 3se−0.01t + 2

(1− s)(2− s)
, s < 1 . (2.89)

Remark 2.6. Differentiating (2.89) with respect to s and letting s = 0 yields the following

moments of Z(t):

E[Z(t)] =
3

2
− 3

2
e−0.01t and E[Z(t)2] =

7

2
+ e−0.02t − 9

2
e−0.01t , t > 0 ,

which can be also proved by the results in Léveillé and Garrido (2001a).

Here the asymptotic result for MZ(t)(s) as t → ∞ is given by:

MZ(∞)(s) =
2

(1− s)(2− s)
= 2

1

1− s
− 2

2− s
, s < 1 , (2.90)

which show the distribution of Z(∞) is a combination of exponentials with parameters 1

and 2 respectively, while the coefficients are 2 and −1.
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Example 2.4.5. Finally consider a more complicated case with generalized Erlang(2) inter–

arrival times and Erlang(2) claim severities. The PH distribution for the generalized Erlang(2)

has parameters (β,B), while the Erlang(2) has parameters (α,A), given here by

β′ =
(

1 0
)
, B =

 −0.01 0.01

0 −0.02

 , α′ =
(

1 0
)
, A =

 −1 1

0 −1

 .

By Theorem 2.3.4 we obtain the vector f⋆(t; s) =

 h1(t; s)

h2(t; s)

 where h1(t; s) , h2(t; s) are

given for a fixed s < 1 and t > 0 by:

h1(t; s) =
1

150(s− 1)(1− se−0.01t)2

(
2s(s+ 1)e−0.01t + (3s3 + 3s2 − 2s)e−0.03t

−(s3 + 5s2)e−0.02t − (s2 − s3)e−0.05t + (s2 + s− 3s3)e−0.04t − s

)
,

h2(t; s) =
1

7200(1− s)(1− se−0.01t)4

(
6s4(s− 1)e−0.07t − 3s3(5s+ 3s2 − 7)e−0.06t

+12s2(3s2 − 2)e−0.05t + 3s(3 + 7s− s3 + s4 − 15s2)e−0.04t

+6s(3s− 2s3 − 2 + s2)e−0.03t + 3s3(5s+ 3s2 − 7)e−0.02t − 12s2e−0.01t + 3s

)
.

Hence

f(t; s) = α′f⋆(t; s)

= h1(t; s) =
1

150(1− s)(1− se−0.01t)2

(
(2s− 3s3 − 3s2)e−0.03t − 2s(s+ 1)e−0.01t

+(s3 + 5s2)e−0.02t + (s2 − s3)e−0.05t − (s2 + s− 3s3)e−0.04t + s

)
.

Then the derivative in t of the m.g.f. of Z(t) is given by:

∂

∂t
MZ(t)(s) =

se−0.01t(2− se−0.01t)

150(s− 1)(−1 + se−0.01t)4

(
se−0.03t(−2 + 3s2 + 3s)− se−0.04t(−s− 1 + 3s2)

+s2(s− 1)e−0.05t + 2s2(s+ 1)e−0.02t − s2 − s2e−0.03t(s+ 5)

−(s− 1)(−1 + se−0.01t)2(e−0.03t − 1)

)
, s < 1 , t > 0 . (2.91)

with initial value MZ(0)(s) = 1. Integrating (2.91) yields

MZ(t)(s) =
2

(1− se−0.01t)3(1− s)

(
s(s3 +

1

2
s2 − 1

2
s+

1

6
)e−0.04t − 1

2
s2(s2 − s+

1

3
)e−0.05t

−13

6
se−0.01t +

11

3
s2e−0.02t − 3s3e−0.03t +

1

2

)
, s < 1 , t > 0 . (2.92)
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Remark 2.7. Differentiating (2.92) with respect to s yields the moments of Z(t), here the

first two moments are given by.

E[Z(t)] = 1− 4

3
e−0.01t+

1

3
e−0.04t and E[Z(t)2] = 2+

2

3
e−0.02t+

4

3
e−0.05t− 8

3
e−0.01t− 4

3
e−0.04t ,

which implies by results in Léveillé and Garrido (2001a).

Finally, the asymptotic result for the moment generating function is:

MZ(∞)(s) =
1

1− s
, s < 1 , (2.93)

which is an exponential distribution with mean 1.

In this chapter we have derived homogeneous differential equations (or differential systems)

for the mgf of Z(t), when the inter–arrival times are PH distributed. It is difficult to get

the solution to the differential equations, even for simple cases, because the coefficients are

functions of t. For instance, the solution in Example 2.4.4 is not such a simple function,

even for Coxian inter–arrival times. But the results are much more general than what was

available in the literature.

In the next chapter we discuss the calculation of the distribution of Z(t) by inversion me-

thods. A truncated series method is proposed to approximate the solution of the differential

equations in the cases where we can not get the exact solution.
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Chapter 3

PH–Renewal Distribution Functions

In Chapter 2 we introduced the model of discounted compound PH–renewal sums and ob-

tained homogeneous and differential equation system for the mgf of Z(t). Some examples

are also given to explain results. In this chapter a deeper analysis of the model is presented.

First, the distribution function of discounted compound renewal sums is obtained by invert-

ing Laplace transforms. Very often a simple expression for the mgf of Z(t) is not possible,

so an approximate solution to the differential equation is needed.

Since the solution of the differential equations is the mgf of Z(t), the coefficient of differen-

tial equations of MZ(t)(s), with respect to t, is a function in t. Then a series approximation

method gives solutions that are polynomials in t, in which each coefficient is a rational poly-

nomial in s. Hence we can use the corresponding Laplace transform and invert it to obtain

the approximate distribution function of Z(t). We call this approximation the truncated

series solution, by contrast to the exact solution. The accuracy of this method depends on

where one truncates the series. A more accurate solution requires a longer series. Hence by

controlling the time t parameter properly, we can obtain very nice results for the distribution

function of discounted compound renewal sums. The truncated series method is discussed

in detail in Section 3.2.
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3.1 Exact PH–Renewal Density Functions

The solutions of the differential equations depend on the function f(t; s) or f ⋆(t; s), the so-

lution of the differential equation system in (2.48). This solution of the differential equation

is the exact mgf of Z(t). Inverting its corresponding Laplace transform produces the exact

distribution function of Z(t).

To illustrate this exact solution we use the same numerical examples as in Section 2.4 and

derive the exact density (or extended density) and cumulative distribution functions.

Example 3.1.1. (Example 2.4.1 revisited) For a mixed exponential renewal process com-

bined to exponential claim sizes of mean 1, consider a net interest force δ = 0.01 and mixed

exponential parameters λ1 = 0.02, λ2 = 0.04, and α′ =
(
0.5 0.5

)
. Example 2.4.1 gives the

mgf for the discounted compound renewal sum of Z(t) in (2.81).

Inverting the Laplace transform corresponding to (2.81) using Maple gives the following

probability mass at x = 0 and density function of Z(t) for x > 0, which is called the

extended density function (edf).:

f(x) =


1
2
(e−0.02t + e−0.04t) , if x = 0 ,[

(3
4
x2 − 5

2
x+ 1

2
)e−0.02t + (11

12
x− 1

8
x2 − 7

6
)e−0.04t

+(4
3
x+ 2

3
− x2)e−0.01t + 3

8
x2 + 1

4
x
]
e−x , if x > 0 ,

(3.1)

and the cumulative distribution function (cdf) is given by

F (x) = 1 + (
1

2
− 2

3
x+

1

8
x2)e−x−0.04t + (

1

2
+ x− 3

4
x2)e−x−0.02t + (x2 +

2

3
x)e−x−0.01t .

−(1 + x+
3

8
x2)e−x , x ≥ 0 .

The two following graphs show the cdf of Z(t) and its conditional density function, given

x > 0, for different times t. From the graphs we see how fast the curves tend to the asymp-

totic result.

The asymptotic density function of Z(∞) given in (3.2) is also produced by inverting the

Laplace transform corresponding to MZ(∞)(s) given in (2.82). Integrating this density func-

tion gives the asymptotic cdf of Z(t) in (3.2). The expressions for the density function and
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cdf of Z(∞) are given by:

f∞(x) =
1

4
x e−x +

3

4
x2e−x and F∞(x) = 1− e−x(1 + x+

3

8
x2) , x ≥ 0 . (3.2)

Hence the asymptotic distribution of Z(∞) is a mixture of an exponential with mean of 1

and a gamma (α = 3 and β = 1).
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Figure 3.1: Cond. d. of Z(t) in Example 3.1.1
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Figure 3.2: Cdf of Z(t) in Example 3.1.1

Note that the extended density function has a jump at x = 0, hence the conditional density

(cond.d.) given that x > 0 is plotted in Figure 3.1. Figures 3.1 and 3.2 show that the

conditional density function and the cdf converge to the asymptotical results, when t ≥ 320.

The cdf takes longer to reach probability one for larger t values, since there are more claims

when time t is large. The cdf graph confirms that Z(t) has a heavier tail for large time

t values. The graph also shows that the distribution of Z(t) reaches the asymptotic value

when t > 320 and that the point mass at x = 0 disappears asymptotically.

Example 3.1.2. (Example 2.4.2 revisited) The mgf of Z(t) in (2.84) is given by:

MZ(t)(s) =
1

s3

{[
(4s− 4s2)e−0.01t + 6s− 6

]
ln (

1− se−0.01t

1− s
)

+(s2 − s3)e−0.02t + (2s3 + 2s2 − 6s)e−0.01t + 6s− 3s2
}
, s < 1 , (3.3)

when inter–arrival times have a generalized Erlang(2) distribution and exponential claim

severities with parameters in (2.83). Inverting the Laplace transform corresponding to (2.84)
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gives the following point mass at x = 0 and defective density function for x > 0:

f(x) =


2e−0.01t − e−0.02t , if x = 0 ,

(4e−0.01t + 6x+ 3x2 + 4xe−0.01t)
[
Ei(1, xe0.01t)− Ei(1, x)

]
−(3x+ 6 + e−0.01t)e−xe0.01t−0.01t + e−x(3 + 3x+ 4e−0.01t) , if x > 0 ,

where Ei(1, x) is called exponential integral defined by:

Ei(1, x) =

∫ ∞

x

e−u

u
du ,

Integrating this density function when x > 0 plus adding the mass at the point zero gives

the following cdf of Z(t):

F (x) = 2e−0.01t − e−0.02t + e−0.03t
[
(4xe0.02t + 3x2e0.03t + x3e0.03t + 2x2e0.02t)[

Ei(1, xe0.01t)− Ei(1, x)
]
− e−xe0.01t+0.01t(1 + x+ x2e0.01t + 3xe0.01t)

+2e−x+0.02t(1 + x) + e−x+0.03t(x2 + 2x− 1) + e0.01t − 2e0.02t + e0.03t
]
, x ≥ 0 .

Note that the asymptotic density function is obtained by inverting the corresponding Laplace

transform of the mgf given in (2.85). The asymptotic density function and cdf of Z(∞) are

given by the following expressions:

f∞(x) = (3 + 3x)e−x − (6x+ 3x2)Ei(1, x) , x ≥ 0 (3.4)

F∞(x) = (2x+ x2 − 1)e−x − (3x2 + 3x3)Ei(1, x) , x ≥ 0 . (3.5)
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Figure 3.3: Cond. d. of Z(t) in Example 3.1.2
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Figure 3.4: Cdf of Z(t) in Example 3.1.2
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Figures 3.3 and 3.4 shows that the conditional density, given that x > 0, and the cdf converges

to their asymptotic results in (3.4) and (3.5) when t ≥ 320. Again the distribution Z(t) has

a heavier tail when t is large.

Example 3.1.3. (Example 2.4.3 revisited) Coxian PH inter–arrival times with exponential

claim sizes. Here the mgf of Z(t) for a fixed t is given by (2.86) to be:

MZ(t)(s) =
1− se−0.01t

1− s
, s < 1 . (3.6)

Inverting the corresponding Laplace transform gives the following probability mass and de-

fective density function:

f(x) =

 e−0.01t , if x = 0 ,

e−x(1− e−0.01t) , if x > 0 ,
(3.7)

and cdf of Z(t) is:

F (x) = 1− e−x + e−x−0.01t , x ≥ 0 . (3.8)

Note that the extended density function in (3.7) and the cdf in (3.8) are very simple, which

is consistent with corresponding mgf, because this discounted compound sum Z(t) is a com-

pound Poisson process with rate 0.01 and exponential claim severities with means 1. There

is also an exponential jump mass at zero.

The asymptotic density function of Z(∞) given in Figure in 3.5 is obtained by inverting

the Laplace transform corresponding to mgf in (2.82). Integrating this asymptotic density

function yields the asymptotic cdf of Z(∞). Hence the density function of Z(∞) is e−x,

which show that Z(∞) is exponential with mean of 1.
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Figure 3.5: Cond. d. of Z(t) in Example 3.1.3
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Figure 3.6: Cdf of Z(t) in Example 3.1.3

It is not a surprise that the conditional densities have the same shape, since f(x) = e−x(1−

e−0.01t) and the probability mass e−0.01t, hence the conditional density function is fc(x) =

e−x(1−e−0.01t)
1−e−0.01t = e−x. This conditional density function is exponential with parameter 1.

Figure 3.6 also shows that the distribution of Z(t) converges to its asymptotic values when

t ≥ 320 and that the tail is heavier as t increases.

Example 3.1.4. (Example 2.4.4 revisited) Coxian inter–arrival times with mixed exponen-

tial claim sizes. In this case the mgf of the discounted compound sum is given in (2.89) that

is:

MZ(t)(s) =
s2e−0.02t − 3se−0.01t + 2

(1− s)(2− s)
, s < 1 .

Inverting the corresponding Laplace transform gives the following point mass and defective

density function:

f(x) =

 e−0.02t , if x = 0 ,

2e−x − 2e−2x − 3e−0.01t(e−x − 2e−2x) + e−0.02t(e−x − 4e−2x) , if x > 0 ,

while the cdf is given by:

F (x) = 1− 2e−x + e−2x + 3e−0.01t−x(1− e−x) + e−0.02t−x(2e−x − 1) , x ≥ 0 .
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The asymptotic density function of Z(∞) reproduced in Figure 3.7 is given by inverting the

Laplace transform corresponding to the mgf in (2.90), while integrating the density function

in (3.9) yields the corresponding cdf:

f∞(x) = 2e−x(1− e−x) , x > 0 , (3.9)

F∞(x) = 1− e−x(2− e−x) , x ≥ 0 . (3.10)
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Figure 3.7: Cond. d. of Z(t) in Example 3.1.4
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Figure 3.8: Cdf of Z(t) in Example 3.1.4

Figures 3.7 and 3.8 show again that the distributions reach the asymptotic values for t ≥ 320.

Example 3.1.5. Reconsider the last example in Section 2.4. For the discounted compound

sum with generalized Erlang(2) inter–arrival times and Erlang(2) claim severities, the mgf

is given in (2.92) to be:

MZ(t)(s) =
2

(1− se−0.01t)3(1− s)

[
s
(
s3 +

1

2
s2 − 1

2
s+

1

6

)
e−0.04t − 1

2
s2
(
s2 − s+

1

3

)
e−0.05t

−13

6
se−0.01t +

11

3
s2e−0.02t − 3s3e−0.03t +

1

2

]
, s < 1 .

Inverting the corresponding Laplace transform yields the following point mass and defective

density function:

f(x) =



2e−0.01t − e−0.02t , if x = 0 ,

1
(1−e−0.01t)3

[
1
3
(e−x − e−xe0.01t)(3− e0.05t + 22e−0.02t − 13e−0.01t + 7e−0.04t − 18e−0.03t)

]

+ 1
(1−e−0.01t)2

[
1
3
xe−xe0.01t(e0.01t − 4 + e−0.03t − 4e−0.02t + 6e−0.01t , if x > 0 .
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while the cdf of Z(t) for x ≥ 0:

F (x) = 2e−0.01t − e−0.02t −
1
3
e−0.02t

(1− e−0.01t)3

[
(xe0.02t + 10x+ 8)e−xe0.01t + 15e0.01t

−(5x+ 2)e−xe0.01t+0.01t − (10x+ 12)e−xe0.01t−0.01t + (5x+ 8)e−xe0.01t−0.02t

+(3e0.02t − 13e0.01t − e−0.03t + 7e−0.02t − 18e−0.01t)e−x + 3e−0.03t

+30e−0.01t + 22e−x − 3e0.02t − (x+ 2)e−xe0.01t−0.03t − 15e−0.02t − 30

]
. (3.11)

Figures 3.9 and 3.10 show the conditional density and cdf of Z(t) for x > 0 and its cdf:
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Figure 3.9: Cond. d. of Z(t) in Example 3.1.5
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Figure 3.10: Cdf of Z(t) in Example 3.1.5

Note that the asymptotic density function of Z(∞) in Figure 3.9 is obtained from the mgf

in (2.93). The expressions for the density function and the cdf of Z(∞) here are:

f∞(x) = e−x , x ≥ 0 , (3.12)

F∞(x) = 1− e−x , x ≥ 0 . (3.13)

Again here for t > 320, the conditional density function and cdf converge to the asymptotic

ones and the point mass vanishes.

The above examples show that the extended density function of Z(t) can be obtained by

inverting the Laplace transform, at least in cases where the differential equation can be

solved analytically. In other cases, instead of looking for an exact solution, we propose a

series approximation method discussed in detail in the next section.
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3.2 Numerical Approximation for PH Renewal Den-

sity Functions

In many cases it is difficult, if not impossible, to find exact solutions to the differential

equations presented above. In particular when a differential equation has non–constant co-

efficients or more than one argument s, t, it increases the difficulty in finding a solution. In

the previous section we discussed a few exact solutions of these differential equations that

greatly depended on the parameters chosen. For other parameters or in other cases we can-

not generally find an exact solution. An alternative is to solve the differential equation by

a series approximation method. If we consider relatively small parameter t, then the series

method can work very well. In this section we let time t ≤ 100, in such case the series can

be truncated accurately after 15 terms.

First we discuss the basic ideas about the truncated series solution to differential equations.

The coefficients in differential equations or differential systems are functions of the para-

meters s and t. They are expanded in term of t by the series. Let the solution to the

differential equation be series in the term of t, then coefficients of this series solution can

be written as functions of coefficients in expanded series. We explain this method by the

following simple case. Consider the first–order homogeneous differential equation

d

dt
f(t) = a(t; s)f(t) , (3.14)

with initial value f(0) = c0.

The coefficient a(t; s) is written as a series form given by

a(t; s) = a0(s) + a1(s)t+ a2(s)t
2 + · · ·+ an(s)t

n + · · · , (3.15)

Let the function f(t) be the series form in term of t

f(t) = b0(s) + b1(s)t+ b2(s)t
2 + · · ·+ bn(s)t

n + · · · . (3.16)

Differentiating (3.16) yields

d

dt
f(t) = b1(s) + 2b2(s)t+ 3b3(s)t

2 + · · ·+ nbn(s)t
n−1 + · · · . (3.17)
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Substituting (3.17), (3.16) and (3.15) into (3.14) gives

b0(s) = c0 , b1(s) = a0(s)b0(s) , b2(s) =
1

2

[
a0(s)b1(s) + a1(s)b0(s)

]
,

. . . , bn =
1

n

n−1∑
k=0

ak(s)bn−1−k(s) , . . . ,

hence the coefficients of the series solutions are functions in s. If we control the time param-

eter t, we can truncate the series. Inverting the Laplace transform yields an approximate

distribution3 function at the chosen time.

The following example gives a comparison between exact and series solutions.

Example 3.2.1. Revisit Examples 3.1.1, where the inter–arrival times have a mixed ex-

ponential distribution and claims are exponential. The exact extended density function of

Z(t), for x > 0, is given in (3.1):

f(x) =
[
(
3

4
x2− 5

2
x+

1

2
)e−0.02t+(

11

12
x− 1

8
x2− 7

6
)e−0.04t+(

4

3
x+

2

3
−x2)e−0.01t+

3

8
x2+

1

4
x
]
e−x .

For the series solution, the mgf of Z(t) is truncated at order 15, thus the extended density

function produced by inverting the Laplace transform has a long and messy expression, we

only include the graphs of the conditional density function, given x > 0 and the point mass

at x = 0.
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Figure 3.11: Cond. d. in Example 3.2.1
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Figure 3.12: Prob. at x = 0 in Example 3.2.1
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Note that there is a jump at x = 0 in the distribution of Z(t). Hence Figure 3.11 only shows

the cond.d., given x > 0.

Figures 3.11 show that the exact and series solutions are exactly the same if we control the

time parameter t ≤ 100, including the probability mass (prob.) at x = 0 in Figure 3.12. For

large t the asymptotic distribution provides an accurate approximation. Hence we conclude

that the truncated series method can serve as an accurate approximation method to solve

the differential equations at fixed points of time t in some cases, where the exact solutions

cannot be obtained.

A natural question is if the series method can be used for large time t values? First let us

look at the following example.

Example 3.2.2. Reconsider Example 2.4.1, the asymptotic result for the mgf is:

MZ(∞)(s) =
4− s

4(1− s)3
, s < 1 .

Inverting its corresponding Laplace transform yields the asymptotic density function of

Z(∞):

f(x) =
1

8
e−x(3x2 + 2x) , x ≥ 0 .

The following graph shows defective density functions obtained by the series method, as well

as the asymptotic results when x > 0. The masses at x = 0 are 0.0004, 0.0004 and 0 for the

exact, series and asymptotic results, respectively.
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Figure 3.13: Defective density function of Z(t) for x > 0 in Example 3.2.2

In the above series solution, the series solutions for the mgf was truncated at 50 terms and

the time parameter is fixed at 350, which reaches the asymptotic result. Hence we again

conclude that for large t value we do not need the high order terms in the series. The

truncated series method is a suitable approach to solve differential equations (or differential

equation systems) when the exact solution is difficult to obtain.

The following examples illustrate further the series solution and its applications.

Example 3.2.3. (Revisit Example 2.4.1) For exponential claim sizes, the exact solution can

be obtained. However, as soon as we drop the exponential assumption, even for Erlang(2)

claim sizes and the same parameters as in Example 2.4.1, the differential equations no longer

yield an simple form for the exact solution. The truncated series method provides a simple

solution. Hence the time parameter is set to values t ≤ 100, while the parameters for the
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inter–arrival times mixture of exponentials are

α′ =
(

0.5 0.5
)
, A =

 − 1
100

0

0 − 1
300

 ,

while the Erlang(2) claim severities have a mean of 2. The resulting extended density function

is again tedious as it takes a long polynomial form. 3D graphs of the conditional density

function, given x > 0 and the cdf are given below:
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 The conditional density function on x>0

Figure 3.14: Cond. d. of Z(t) in Example 3.2.3
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Figure 3.15: Cdf of Z(t) in Example 3.2.3

Note that the distribution of Z(t) gets a heavier tail as t increases. As a result it takes a

longer time to reach probability 1.

Example 3.2.4. (Revisit the example 2.4.5) For generalized Erlang(2) inter–arrival times

and Erlang(2) claim severities, we have the exact solution to the differential equations for

the parameters chosen in the example. But this is not always this case. For example if the

generalized Erlang(2) parameters are:

α′ =
(

1 0
)
, A =

 − 2
300

2
300

0 −0.02

 ,

it becomes difficult to get the exact solution. By the series method, the extended density

function can be approximated by a polynomial in time t and x. The following graphs show

the conditional density function, given x > 0 and the cdf.
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Figure 3.16: Cond. d. of Z(t) in Example 3.2.4
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Figure 3.17: Cdf of Z(t) in Example 3.2.4

These results will be compared to those of the previous model in the following section.

Remark 3.1. In the truncated series method, there are no constrains on the parameters.

The solution to the differential equations (or differential systems) exist for any parameters.

For small time t, for example t ≤ 10, our series are very short and compact. In Example

2.4.1 if t ≤ 10, the approximate conditional density function is 0.510−6 te−x
[
60000 + (70

3
−

40
3
x+ x2)t2 + (600x− 1600)t

]
. For large t, as in Examples 3.2.3 and 3.2.4 the solutions form

large polynomials with 15 terms to approximate accurately the solution. Still these series

expressions for the density function are written as simple polynomials without any special

functions, making their integration and differentiation possible.

3.3 Comparison of the Models

In this section we compare two models; the discounted compound Poisson sums and the

discounted compound Erlang(n) sums.

This is possible here as both models for Z(t) are special cases of the compound PH–renewal

process, for which we obtained the mgf in Chapter 2 and the distribution in the previous

section. Different compound sums are usually compared through their mean and variances.

Since here we have the extended density function of Z(t), the model comparisons can be
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based on both, their extended density functions and cdf’s.

In our numerical examples, the mean of the inter–arrival times is kept constant at 200 and

the claim severities are Erlang(2) with mean 2. We compare the cases where the inter–arrival

times are exponential, Erlang(2), Erlang(3) and Erlang(4). Since some of the series appro-

ximations include many terms, we report only the mass at x = 0 and show the graphs of the

conditional density functions, given x > 0 and the cdf’s.

Note that the point mass x = 0 with the series method is the same as the exact value

P
(
N(t) = 0

)
for time t ≤ 100. These exact expressions for the masses at x = 0 are reported

below.

exponential Erlang(2) Erlang(3)
Erlang(4)

t
0 20 40 60 80 100

0.7

0.8

0.9

1.0

Figure 3.18: Probability mass at x = 0

Inter–arrival times Probability mass at

x = 0

Exponential e−0.005t

Erlang(2) e−0.01t+0.01te−0.01t

Erlang(3) e−0.03t+ 3
200

te−0.03t+

9
80000

t2e−0.03t

Erlang(4) e−0.02t+ 1
50
te−0.02t+

1
5000

t2e−0.02t +

1
750000

t3e−0.02

Figure 3.19: Probability mass x = 0
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Figure 3.20: Cond. d. of Z(t)

0
250.6

0

0.7

50
1

0.8

t
2

0.9

x

3

1.0

75
4 5 6

100

 Exponential--red,  Erlang(2)--green,  Erlang(3)--yellow,  Erlang(4)--blue

Figure 3.21: Cdf of Z(t)

Figures (3.20) and (3.21) show that:

• The density of Z(t) for the exponential inter–arrival times (Poisson model) has the

heaviest tail and the mass at x = 0 is the smallest in Figure (3.18).

• The difference between curves for different Erlang(n) models gets smaller as n increases

and the tail of the density of Z(t) decreases resulting in an increasing mass at 0.

Hence we conclude that the Poisson process is riskier than th Erlang(n)-renewal process, for

n = 2, 3 and 4.

3.4 Relationship Between Poisson and Erlang(n) Pro-

cesses

The previous section compares graphically the riskiness between Erlang(n = 1, 2, 3, 4) claim

renewal models with Erlang(2) claim severities. In this section we analyze the mathemati-

cal relationships between models, as initiated in Léveillé, Garrido and Wang (2010) which

studies compound renewal processes with discounted PH claim severities. Here we generalize

these results to the discounted compound renewal sum with any Erlang(n) inter–arrival times
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Let MP
Z(t)(s) be the mgf of ZP (t) when inter–arrival times are exponential (Poisson model),

M
E(n)
Z(t) (s) be the mgf of ZE(n)(t) when inter–arrival times are Erlang(n). Then

MP
Z(t)(s) = M

E(n)
Z(t) (s) ĥ(t; s) , (3.18)

and ĥ(t; s) is a function of t at fixed s. The idea is to solve (3.18) for ĥ(t; s) and show

that whether or not function ĥ(t; s) is the mgf of a random variable, which means that the

Poisson process can be written as sum of two independent variables.

First consider simple cases where the claim severity has an exponential distribution with

parameter θ. Hence

MP
Z(t)(s) =

(
θ − se−δt

θ − s

)λ
δ

, s < θ , (3.19)

where λ is a Poisson rate. This result can be obtained by simplifying Corollary 2.3.2

Let the Poisson and Erlang(2) processes have the same mean inter–arrival time, hence the

Poisson rate is 0.005 and the Erlang(2) parameter is 0.01. Under the assumption that

exponential claim severities parameter θ = 1, the net interest δ = 0.01, (3.19) gives

MP
Z(t)(s) =

(
1− se−0.01t

1− s

)0.5

, s < 1,

and the solution of second–order homogeneous differential equation (2.56) is:

M
E(2)
Z(t) (s) =

1

s2

{
(s− 1)

(
se−0.01t − 2

)
ln
[ 1− s

1− se−0.01t

]
+ se−0.01t(s− 2) + 2s

}
.

Thus the function ĥ(t; s) in (3.18) is written as:

ĥ(t; s) =
MP

Z(t)(s)

M
E(2)
Z(t)

=
s2
(
1− se−0.01t

)0.5
(1− s)0.5

[
(s− 1)

(
se−0.01t − 2

)
ln
[

1−s
1−se−0.01t

]
+ se−0.01t(s− 2) + 2s

] .(3.20)

Since the expression of ĥ(t; s) is complicated, inverting the corresponding Laplace transform

is impossible. However the series approximation in terms of t gives a nice result. The
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function denoted by h(2)(x), which corresponds to the inverted Laplace transform for the

time parameter t ≤ 40; is given by the series method to be

h(2)(x) =

 0.8769 , if x = 0 ,

(0.1357− 0.0001667x3 + 0.002533x2 − 0.0167x)e−x , if x > 0 .

We also have∫ ∞

0

(0.1357− 0.0001667x3 + 0.002533x2 − 0.0167x)e−xdx+ 0.8769 = 1 , (3.21)

which implies that the function h(2) is an extended density function for a certain random

variable and ĥ(t; s) is the mgf of this random variable. Thus random variable ZP (t) can also

be written as the sum of two independent random variables. That is (in distribution)

ZP (t)
D
= ZE(2)(t) + Z(2)(t) , (3.22)

where the random variables ZE(2)(t) and Z(2)(t) are independent.

We have checked that the above result is also true for Erlang(3) inter–arrival times with

parameter λ = 0.015. Comparing to the previous Erlang(2) inter–arrival times, a closed

form solution for M
E(3)
Z(t) is difficult to get, however the series method gives M

E(3)
Z(t) , hence

(3.18) yields the function ĥ(t; s). Since the expression is tedious, here we give the inverse

Laplace transform corresponding to ĥ(t; s) as follows:

h(3)(x) =

 0.7920 , if x = 0 ,

0.23063 + 0.00586x2 − 0.00041x3 − 0.0319x , if x > 0 .

From

0.7920 +

∫ ∞

0

0.23063 + 0.00586x2 − 0.00041x3 − 0.0319xdx = 1 ,

thus h(3)(x) is an extended density function of a random variable denoted by Z(3)(t), and

hence

ZP (t)
D
= ZE(3)(t) + Z(3)(t) ,

where the variables ZE(3)(t) and Z(3)(t) are independent.
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We have checked with Maple that it is also true that there exist independent random variables

ZE(4)(t) and Z(4)(t), for a fixed t such that

ZP (t)
D
= ZE(4)(t) + Z(4)(t) .

We conjecture that for Erlang(n) for a large n = 5, 6, · · · , the following relation holds

ZP (t)
D
= ZE(n)(t) + Z(n)(t) ,

where the random variables ZE(n)(t) and Z(n)(t) are independent, when claim severities are

exponentially distributed.

The natural question now is if that this relationship holds true also for the other claim

severities? Consider Erlang(2) claim severities with mean of 2, under a net interest rate

δ = 0.01, hence:

MX(se
−δt) =

1

(1− se−δt)2
. (3.23)

Substituting (3.23) into (2.49) produces

MP
Z(t)(s) =

(
1− se−0.01t

1− s

)0.5

exp

{
1

1− s
− 1

1− se−0.01t

}
, s < 2 . (3.24)

The series approximation givesM
Er(2)
Z(t) (s), hence ĥ(t; s) can be written in the form of

MP
Z(t)

(s)

M
Er(2)
Z(t)

(s)
.

The approximation of M
Er(2)
Z(t) (s) produces long polynomials with many terms. Hence, here,

only the corresponding inverted Laplace transform of ĥ(t; s) is given by:

h(2)(x) =

 0.8307, if x = 0,

0.217e− 4x(x− 10.0117)(x− 47.0697)(x2 − 2.9187x+ 22.1542)e−x, if x > 0 .

Finally, we can check that the following integral∫ ∞

0

0.217e− 4x(x− 10.0117)(x− 47.0697)(x2 − 2.9187x+ 22.1542)e−xdx+ 0.8307 = 1 ,

which implies that the function h(2) is the extended density function of some random vari-

able, denoted Z(2)(t) as before, and ĥ(t; s) is its mgf.
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For Erlang(n = 3, 4) inter–arrival times with Erlang(2) claim severities, ZP (t) can also be

written as the sum of two independent variables as follows:

ZP (t)
D
= ZE(n)(t) + Z(n)(t) . (3.25)

Remark 3.2. From the above numerical results, we conjecture that (3.25) is true for any

claim severities.
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Chapter 4

Applications

Reinsurance is a common mechanism to share riskiness among insurance companies. Stop–

loss and excess–of–loss reinsurance treaties are examples of popular contracts. However

general formulas to calculate exact stop–loss premiums under net interest δ ̸= 0 are not

available for discounted compound sums Z(t).

Kaas, Vanneste and Goovaerts (1992) find the maximal stop–loss premium for a given re-

tention of compound Poisson (λ) risk models, with known λ and known means and variance

of the claim severity distribution. Xu, Bricker and Kortanek (1998) give an approximation

for both upper and lower bounds on the stop-loss premium, when the claim distribution

is not known. Genest, Marceau and Mesfioui (2002) present two different approaches to

calculate upper bounds for stop-loss premiums, when the mean and variance of claims are

known, but there is no information concerning the dependence on claim severities. For the

discounted compound renewal models, Léveillé and Garrido (2001a, 2001b) obtain the first

two moments and recursive formulas for higher moments.

In the next Section 4.1 we discuss the calculation of stop–loss premiums in detail for dis-

counted PH–renewal sums. A transformation method is introduced in order to solve the

differential equations for the mgf of Z(t), when the mean of inter–arrival times is very small.

With it we can calculate the stop-loss premiums numerically.

A second application of results on discounted compound renewal sums is to compare the

riskiness of different aggregate claim models. A common method for such comparisons of
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financial risks is the use of risk measures. In Section 4.2, some well-known risk measures

such as Value-at-Risk (VaR), Conditional Tail Expectation (CTE) are discussed. In practice

the number of claims received by insurance or reinsurance companies may be large. Two

numerical examples are given to illustrate the results for large numbers of claims. The

stop–loss premium, VaR and CTE are compared for different discounted compound renewal

models and net interest rates.

4.1 Stop–Loss Premiums

In previous chapters, we have obtained ordinary differential equations or homogeneous differ-

ential equations for the mgf of Z(t). In obtaining the density function of Z(t), two problems

are encountered. The first one obviously is to solve the differential equation to obtain the

mgf, and the second is to then get density functions by inverting the Laplace transform.

Theoretically, the series method can provide a solution to the differential equations, however

when the mean of the inter–arrival time is very small and time is counted in years, then a

large number of terms are needed in the series to approximate the solution accurately. Hence

computer programs require more time and more memory to reach a solution. For example,

for Erlang(n) inter–arrival times with parameter λ for the discounted compound sum Z(t),

if the mean inter–arrival time is n
λ
= 0.01 (i.e. λ = 100n) the number of terms required by

the series method to solve the differential equations for t = 2 years is at least 1, 800. For

such cases, where λ is large, we propose the use of an exponential factor, such as e−λt or eλt,

applied to the differential equations before seeking a solution. When λ = 100n and t is 1

or 2 , then e−λt is very small and it takes longer to approximate the solution by the series

method. In some circumstances we can obtain exact solutions to these differential equations,

but in such cases the solution is written in terms of special functions. These special functions

are not always available in closed form. The mgf of Z(t), while written in series form, can be

inverted easily. Hence we focus here on the series method to solve on differential equations.
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4.1.1 Exponential Inter–Arrival Times

Consider Poisson claim arrivals at rate λ. Even thought a closed form for the mgf of Z(t) is

available, it cannot be inverted easily, especially for large values of the parameter λ. Hence

for a given function g, and a fixed s, the transformation

MZ(t)(s) = e−λtg(t; s) (4.1)

will be faster and simpler to invert numerically.

First consider a simpler case, where inter–arrival times have an exponential distribution with

parameter λ. Hence (2.49) gives a first-order differential equation as follows:

∂

∂t
MZ(t)(s) = a0(t; s, 1)MZ(t)(s) , (4.2)

where, for a fixed s, the coefficient a0(t; s, 1) = λ
[
MX(se

−δt)− 1
]
and MX is the mgf of the

claim severity distribution FX .

Differentiating both sides of (4.1) with respect to t gives:

∂

∂t
MZ(t)(s) = e−λt

[
− λg(t; s) +

∂

∂t
g(t; s)

]
. (4.3)

From (4.2) we have:

a0(t; s, 1)MZ(t)(s) = e−λt
[
− λg(t; s) +

∂

∂t
g(t; s)

]
, (4.4)

which implies the following homogeneous differential equation in t for g(t; s) at a fixed s:

∂

∂t
g(t; s) = λMX(se

−δt)g(t; s) . (4.5)

Solving the differential equation in (4.5) for g(t; s) is simpler than the original one in (4.2) for

MZ(t)(s). The solution of (4.2) is then given by multiplying g(t; s) by e−λt. This is illustrated

in the following cases.

4.1.2 Erlang(2) Inter–Arrival Times

For Erlang(2) inter–arrival times, Léveillé and Garrido and Wang (2010) obtained the fol-

lowing homogeneous differential equation for MZ(t)(s) in t at a fixed s:

∂2

∂t
MZ(t)(s) = a1(t; s, 2)

∂

∂t
MZ(t)(s) + a0(t; s, 2)MZ(t)(s) , t ≥ 0 , (4.6)
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with initial values MZ(0)(s) = 1 and ∂
∂t
MZ(t)(s)|t=0 = 0, where a0(t; s, 2) = λ2

[
MX(se

−δt)−1
]

and a1(t; s, 2) =
∂
∂t

[
MX(se−δt)−1

][
MX(se−δt)−1

] − 2λ.

To obtain the function g(t; s), differentiate both sides of (4.1) with respect to t gives (4.3).

Differentiating a second time gives:

∂2

∂t2
MZ(t)(s) = e−λt

[
λ2g(t; s)− 2λ

∂

∂t
g(t; s) +

∂2

∂t2
g(t; s)

]
. (4.7)

Substituting expressions (4.3) and (4.7) into (4.6) yields the following differential equation

for g(t; s):
∂2

∂t2
g(t; s) = b1(t; s, 2)

∂

∂t
g(t; s) + b0(t; s, 2)g(t; s) , (4.8)

with coefficients b1(t; s, 2) = 2λ+ a1(t; s, 2) and b0(t; s, 2) = −λ2 − a1(t; s, 2)λ− a0(t; s, 2).

A pattern on the order n of the Erlang(n) assumption seems to emerge when going from

n = 1 in (4.5) to n = 2 in (4.8). The next section further explores this pattern for n ≥ 3.

4.1.3 Erlang(3) Inter–Arrival Times

When inter–arrival times are Erlang(3), from Corollary 2.3.3, we have the following homo-

geneous differential equation in t at a fixed s:

∂3

∂t3
MZ(t)(s) = a2(t; s, 3)

∂2

∂t2
MZ(t)(s) + a1(t; s, 3)

∂

∂t
MZ(t)(s) + a0(t; s, 3)MZ(t)(s) ,

t ≥ 0 , (4.9)

with initial values MZ(0)(s) = 1 , ∂
∂t
MZ(t)(s)| t=0 = 0 , ∂2

∂t2
MZ(t)(s)| t=0 = 0, and where

a2(t; s, 3) =
2 ∂
∂t

[
MX(se

−δt)− 1
][

MX(se−δt)− 1
] − 3λ ,

a1(t; s, 3) =
∂2

∂t2

[
MX(se

−δt)− 1
]
− 3λ2

[
MX(se

−δt)− 1
]
− a2(t; s, 3)

∂
∂t

[
MX(se

−δt)− 1
][

MX(se−δt)− 1
] ,

a0(t; s, 3) = λ3
[
MX(se

−δt)− 1
]
.

To get g(t; s) in (4.1), differentiate (4.1) with respect to t, which yields (4.3). Differentiating

a second time gives (4.7) and the third time we have at a fixed s:

∂3

∂t3
MZ(t)(s) = e−λt

[
− λ3g(t; s) + 3λ2 ∂

∂t
g(t; s)− 3λ

∂2

∂2t
g(t; s) +

∂3

∂t3
g(t; s)

]
. (4.10)
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Substituting expressions (4.3), (4.7) and (4.10) into (4.9) also yields a third-order homoge-

neous differential equation for g(t; s):

∂3

∂t3
g(t; s) = b2(t; s, 3)

∂2

∂t2
g(t; s) + b1(t; s, 3)

∂

∂t
g(t; s) + b0(t; s, 3)g(t; s) , (4.11)

with initial values g(0; 0) = 1, ∂
∂t
g(t; s)|t=0 = λ and ∂2

∂t2
g(t; s)|t=0 = λ2 and coefficients :

b2(t; s, 3) = 3λ+ a2(t; s, 3) ,

b1(t; s, 3) = −3λ2 − 2a2(t; s, 3) + a1(t; s, 3) ,

b0(t; s, 3) = λ3 + λ2a2(t; s, 3)− λa1(t; s, 3) + a0(t; s, 3) .

Clearly a pattern for g(t; s), when the inter–arrival times has Erlang(n = 4, 5, · · · ) distribu-

tion emerges and is given in the following remark.

Remark 4.1. Corollary 2.3.3 gives an n-th homogeneous differential equation for MZ(t)(s),

when the inter–arrival times are Erlang(n). The differential equation emerges and is given

by:

∂n

∂tn
MZ(t)(s) = an−1(t; s, n)

∂n−1

∂tn−1
MZ(t)(s) + an−2(t; s, n)

∂n−2

∂tn−2
MZ(t)(s) + · · ·

+a1(t; s, n)
∂

∂t
MZ(t)(s) + a0(t; s, n)MZ(t)(s) , (4.12)

with initial values

MZ(0)(s) = 1 ,
∂

∂t
MZ(t)(s)| t=0 = 0 ,

∂2

∂t2
MZ(t)(s)| t=0 = 0 , · · · , ∂

n−1

∂tn−1
MZ(t)(s)| t=0 = 0 ,

where

ak(t; s, n) =

(
n−1
n−k

)
∂n−k

∂tn−kM(t; s)−
(

n
n−k

)
λn−kM(t; s)−

(n−2)−(k−1)∑
i=1

ak+i(t; s, n)
(
k+i−1

i

)
∂i

∂ti
M(t; s)

M(t; s)
,

with M(t; s) =
[
MX(se

−δt)− 1
]
, for k = 1, 2, · · · , n− 1 and a0(t; s, n) = λnM(t; s).

Following the same procedure as for exponential, Erlang(2) and Erlang(3) inter–arrival times,

a n-th order homogeneous differential equation of g(t; s) is obtained when the inter–arrival

times are Erlang(n). This homogeneous differential equation is given by:

∂n

∂tn
g(t; s) = bn−1(t; s, n)

∂n−1

∂tn−1
g(t; s) + bn−2(t; s, n)

∂n−2

∂tn−2
g(t; s) + · · ·

+b1(t; s, n)
∂

∂t
g(t; s) + b0(t; s, n)g(t; s) ,
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with initial value

g(0; s) = 1 ,
∂

∂t
g(t; s)| t=0 = λ ,

∂2

∂t2
g(t; s)| t=0 = λ2 , · · · , ∂

n−1

∂tn−1
g(t; s)| t=0 = λn−1 ,

where the coefficients are

bj(t; s, n) = (−1)n+j+1

(
n

j

)
λn−j +

n−1∑
k=j

(−1)k−j

(
k

j

)
ak(t; s, n)λ

k−j

and ak(t; s, n) are the coefficients of the differential equation (4.12).

The following numerical examples illustrate how to solve differential equations by the trans-

formation and series methods. The time parameter is kept small here, at typical levels in

practice of t = 1 or 2 years.

Example 4.1.1. Consider inter–arrival times to be exponential, Erlang(2) and Erlang(3),

while claim severities are Erlang(2). The mean of inter–arrival times are 0.02 (i.e. λ = 50n),

while the mean of claim severities is 1000. Under a net interest rate of δ = 0.04 (β = 0.08

and α = 0.04), the mean of Z(1) for each model is given in the following table.

Inter–arrival times Exponential Erlang(2) Erlang(3)

Mean of Z(1) 49, 013.20 48, 763.25 48, 679.93

Table 4.1: Mean of Z(1)

The extended density function of Z(1) can be found by solving differential equations (4.5),

(4.8) and (4.11) for each model, respectively. These, first, yields the function g(t; s). Then

the mgf of Z(1) is obtained by (4.1). Hence inverting the corresponding Laplace trans-

forms gives the distribution of Z(1), with the probability of point masses at x = 0 is e−λt,

e−λt(1 + λt) and e−λt(1 + λt + 1
2
λ2t2), respectively, for the inter–arrival times exponential,

Erlang(2) and Erlang(3). Since the parameter λ is large, the probability at x = 0 is close to 0.
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0.00006

Figure 4.1: Conditional density function of Z(1): exponential [in red], Erlang(2) [green],

Erlang(3) [blue]

The conditional density functions in Figure 4.1 have the shape of normal distributions. We

also see that right and left tails of Z(1) are again heavier for exponentials inter–arrival times

than for Erlang(n), when n = 2 and 3. Z(1) is more concentrated around its mean as n

increases.

In the next example, the mean inter–arrival time is twice that of Example 4.1.1 and t extends

to 2, while claim severities are exponential.

Example 4.1.2. Again here, we assume that the inter–arrival times are Erlang(n) dis-

tributed (n = 1, 2, 3), but exponential claim severities. The mean of inter–arrival time is

0.01(λ = 100n) and mean claim severities 1000. Again the net interest δ = 0.04 (where

β = 0.08 and α = 0.04). The graph of corresponding densities follows.
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x
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0.000020

0.000025

Figure 4.2: Conditional density function of Z(2) in Example 4.1.2: exponential [in red],

Erlang(2) [green], Erlang(3) [yellow], Erlang(n → ∞) [blue]

Note that in this example, the discounted compound sum is calculated at time t = 2. The

conditional density functions in Figure 4.2 confirm the trend observed in Example 4.1.1.

Again, the shape of the distributions seems normal. As n increases the aggregate claims in

Z(2) are more concentrated around the mean and the tail of the distribution is thicker for

exponential inter–arrival times.

Remark 4.2. From Figures 4.1 and 4.2, we claim that the random sum Z(t) goes to a nor-

mal distribution as the parameter n of the Erlang(n) inter–arrival times distribution tends

to infinity. This idea can be verified analytically.

Let the mean and variance of inter–arrival times τ be µ = nβ and σ2 = nβ2, respectively,

then

σ2 = n(
β

n
)2 −→ 0 , as n −→ ∞.

Chebyshev’s inequality shows that

τ
P−→ µ ,

hence, in the limit, inter–arrival times are constant (deterministic) and the number of claims

is t
µ
up to time t. By Lyapunov’s central limit theorem, we conclude that Z(t) goes to a

normal distribution, whose graph (in blue) is given in Figure 5.1.2.
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4.1.4 Application to Stop–loss Premiums

As an application of the above results, we now discuss the calculation of stop–loss premiums

for discounted sums Z(t). For the classical renewal risk model S(t) =
∑N(t)

k=1 Xk, the stop–loss

premium for duration t is written as:

πd(t) = E
[(

S(t)− dt
)
+

]
= E

[( N(t)∑
k=1

Xk − dt

)
+

]
, (4.13)

where the notation (X − d)+, for any random variable X and non–negative value d:

(X − d)+ =

 0 , if x ≤ d ,

X − d , if x > 0 ,
(4.14)

This model does not consider the effect of interest and inflation. When these parameters

are included in accumulated retention limits, then dt becomes a non–trivial function of the

contract duration t. Under constant rates of inflation β and interest α (and hence the net

interest δ = β − α), the accumulated retention d for a period of t years is no longer linear,

as in d · t, but rather d(t) = d
∫ t

0
eα(t−s)ds = dst α in actuarial notation. Hence the difference

between the accumulated claims and this barrier, if positive, can be written as

E
[(

eβtZ(t)− dst α

)
+

]
= E

[( N(t)∑
k=1

eβt−δTkXk − d

∫ t

0

eα(t−s)ds

)
+

]
. (4.15)

Discounting (4.15) back to the present value and taking expectation yields to

πd(t) = e−βt E

[( N(t)∑
k=1

eβt−δTkXk − d

∫ t

0

eα(t−s)ds

)
+

]
, (4.16)

which implies that the stop-loss premium can be calculated as:

πd(t) = E

[( N(t)∑
k=1

e−δTkXk − d

∫ t

0

e−δt−αsds

)
+

]
= E

[(
Z(t)− d e−δt

(1− e−αt

α

))
+

]
(4.17)

Example 4.1.3. Revisit the numerical Example 3.1.1, with Erlang(n, n = 1, 2, 3) inter–

arrival times and Erlang(2) claim severities. The density functions of Z(1) are continuous

for x > 0, and (4.17) gives stop–loss premiums, reported in the following table, for a retention

d = 58, 974.86, which is calculated by the formula d = E[Z(1)] + 2
√

V(Z(1)).
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Inter–arrival times δ = 0 δ = 0.04 δ = 0.08

Exponential 750.65 577.41 438.73

Erlang(2) 372.46 263.50 182.98

Erlang(3) 259.35 175.03 115.51

Table 4.2: Stop–loss premiums of Z(1) in Example 4.1.3

Table 4.2 shows that stop–loss premiums are largest for exponential inter–arrival times, at

any value of δ = 0, δ = 0.04 or δ = 0.08. In each column, stop–loss premiums decrease

for increasing Erlang(n) parameters n = 1 to n = 3. In each row, stop–loss premiums also

decrease with increasing δ as expected. We also see that there is a large difference between

δ = 0 and δ > 0. Hence considering the effect of interest is important, even for a one-year

discounted compound sum. These conclusions are consistent with the prior observation that

the random variable Z(1) has a heavier tail, when inter–arrival times are exponential.

Example 4.1.4. Similarly for Example 4.1.2, with Erlang(n = 1, 2, 3) inter–arrival times and

exponential claim severities, the stop–loss premiums for Z(2) are given in the following table

for a retention d = 22, 524.82, again calculated by the same formula d = E[Z(2)]+2
√
V(Z(2))

as in Example 4.1.3.

Inter–arrival times δ = 0 δ = 0.04 δ = 0.08

Exponential 3, 431.45 1, 605.89 662.80

Erlang(2) 2,497.62 1,001.03 338.99

Erlang(3) 2,173.75 809.35 249.27

Table 4.3: Stop–loss premiums for Z(2) in Example 4.1.4

Note the substantial difference in stop–loss premiums due to the presence of the discounted

rates δ = 0, δ = 0.04 or δ = 0.08.

Remark 4.3. The solutions of our homogeneous differential equations are approximated by

the series method. Hence, the length of the approximating series is determined by the choice

of time t and parameter λ. For the calculation of stop–loss premiums as well as in the next

section, these approximate results are rounded to two decimals.
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4.2 Risk Measures

Financial institutions and insurance companies use single-index values to describe the ris-

kiness of their businesses. Risk measures provide a useful analysis tool. We review here,

the definition of a risk measure and discuss some common risk measures such as VaR and

CTE. As an application of the previous results, VaR and CTE are calculated for different

discounted compound sums Z(t), for short time values t = 1 or t = 2. A comparison among

the different values obtained for VaR and CTE is made.

Definition 4.2.1. A risk measure is defined as a mapping from the set of random variables

representing the risks at hand to the real line.

A common notation for the risk measure associated with a random variable X is ρ[X]. Here

we consider nonnegative random variables X representing insurance losses.

4.2.1 VaR

Value-at-risk (VaR) has become one of the most popular risk measures. In statistical terms,

VaR is a quantile of the distribution of aggregate risks. VaR measures the worst loss, under

normal market conditions for a specific time interval, at a given confidence level. Using the

notation of Cai and Tan (2007), we define VaR as follows.

Definition 4.2.2. The Value-at-Risk (VaR) of a random variable X at a confidence level

1− α, 0 < α < 1 is given by:

V aRX(α) = inf {x : P(X > x) ≤ α} = inf {x : P(X ≤ x) ≥ 1− α} . (4.18)

By the definition P
(
X > V aRX(α)

)
≤ α while for any x < V aRX(α), P(X > x) > α. If the

cdf of X is a continuous function then V aR can be defined by

V aRX(α) = inf{x : P(X > x) = α} , (4.19)

or

V aRX(α) = inf{x : P(X ≤ x) = 1− α} = F−1
X (1− α) , (4.20)

where F−1
X (1 − α) is the inverse cdf corresponding to the confidence level α, which is also

called tolerance probability. In practice, α is often selected to be a small value such as
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α ≤ 0.05.

As a illustration, we consider the previous numerical examples in Examples 4.1.1 and 4.1.2.

The random variable Z(t) is continuous on the positive real axis for the net interest rates

δ = 0, δ = 0.04 and δ = 0.08. Hence the risk measure can be written as

V aRZ(1)(α) = F−1
Z(1)(1− α) .

The following VaR results were calculated by Maple at a confidence level of α = 0.05.

Inter–arrival times δ = 0 δ = 0.04 δ = 0.08

Exponential 64, 793.81 63, 516.11 62, 274.00

Erlang(2) 61, 786.10 60, 561.81 59, 371.30

Erlang(3) 60, 639.15 59, 435.41 58, 264.70

Table 4.4: VaR of Z(1) in Example 4.1.1

Inter–arrival times δ = 0 δ = 0.04 δ = 0.08

Exponential 233, 729.62 224, 634.10 216, 025.43

Erlang(2) 228, 924.71 220, 004.20 211, 559.10

Erlang(3) 227, 161.53 218, 305.54 209, 920.90

Table 4.5: VaR of Z(2) in Example 4.1.2

From Tables 4.4 and 4.5, we see that the largest VaR measures are for exponential inter–

arrival times. In each column VaR decreases as n increases, and in each row VaR also

decreases as the net interest δ increases. The percentage difference is almost 2% for each

column in Table 4.4 and 4% in Table 4.5, which shows the effect of interest and inflation

on Z(1) and Z(2) is non–negligible. The calculation of VaR also confirms that Z(t), with

exponential inter–arrival times is more risky than with Erlang(2 or 3) inter–arrival times.

Even though VaR is widely used by financial institutions, it is less popular in the academic

world for not being sub-additive, i.e. the riskiness of a portfolio as a whole can be larger
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than the sum of the stand-alone risks of its components when measured by VaR. Conse-

quently, VaR fails to justify diversification in a portfolio as a risk reducing measure. A

popular alternative risk measure is Conditional Tail Expectation (CTE), discussed in the

next subsection.

4.2.2 CTE

VaR measures the “worst case” losses, defined as the tail events with 1 − α probability.

However it does not account for the severities of losses above VaR, if the worst case actually

occurs. Hence an alternative risk measure, Conditional Tail Expectation (CTE) has been

proposed. Intuitively CTE captures the worst expected losses, given that they are greater

or equal to VaR at a fixed confidence level.

Definition 4.2.3. CTE

The Conditional Tail Expectation (CTE) of a random variable X at its V aRX(α) is formally

defined as

CTEX(α) = E[X|X > V aRX(α)] , (4.21)

or

CTEX(α) = E[X|X ≥ V aRX(α)] . (4.22)

If the random variable is continuous, then equations (4.21) and (4.22) are equivalent. Clearly

CTE is larger than VaR. The calculation for CTE equivalent to (4.22) is

CTEX(α) =
E[XIX≥V aRX(α)]

P
(
X ≥ V aRX(α)

) .
If the random variable X is continuous, then this formula can be further simplified as:

CTEX(α) =
1

α

∫ ∞

V aRX(α)

yf(y)dy ,

where f is density function of X. Again we revisit Examples 4.1.1 and 4.1.2. The following

CTE values were computed at the same confidence level α = 0.05.
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Inter–arrival times δ = 0 δ = 0.04 δ = 0.08

Exponential 68, 964.53 67, 604.19 66, 283.79

Erlang(2) 65, 157.73 63, 866.97 62, 612.36

Erlang(3) 63, 707.42 62, 443.22 61, 214.01

Table 4.6: CTE of Z(1) in Example 4.1.1

Inter–arrival times δ = 0 δ = 0.04 δ = 0.08

Exponential 242, 925.56 233, 474.86 224, 535.12

Erlang(2) 236, 862.95 227, 535.51 218, 904.26

Erlang(3) 234, 639.44 225, 494.18 216, 839.93

Table 4.7: CTE of Z(2) in Example 4.1.2

In both Tables 4.6 and 4.7, CTE decreases as n increases, in each column. It also decreases

as the net interest δ increases. The comparison with Tables 4.4-4.5, we see that CTE is

larger than VaR. We also see a substantial decrease in CTE, as δ goes from 0 to 0.08.

In this chapter we studied stop–loss reinsurance premiums. Since we now know the dis-

tribution function of the discounted compound sums, we can compute these premiums for

different models. To calibrate the riskiness for insurance businesses, two risk measures are

used here, VaR and CTE. We compared these model applications for different inter–arrival

times and differential net interest rates. We conclude that interest and inflation play an im-

portant role in practical applications. Stop–loss premium, VaR and CTE values vary greatly

for different inter–arrival time distributions and also when discounting is introduced.

From our numerical examples we also see that the shape of the conditional density function

of Z(t) looks like that of a normal distribution, as the mean inter–arrival time decreases.

This is be proved in the next chapter.
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Chapter 5

Asymptotics for Discounted

Compound Renewal Processes

Insurance companies or financial institutions can have a large number of claims each year.

For such large-scale portfolios, researchers use the heavy traffic method to approximate risk

processes and get their distributions, as was initially done for an infinite-server system in

the queueing literature.

The first treatment of diffusion approximations based on heavy traffic in risk theory is due

to Iglehart (1969) and then Grandell (1977). The basic idea is to let the number of claims

grow in a unit time interval. Garrido (1988) derived weak convergence theorems for modified

compound renewal processes of large insurance portfolios. Furrer, Michna and Weron (1997)

and Michna (2005) suggested an approximation based on α−stable Lévy motion. Sarkar

and Sen (2005) obtained the ruin probability and expected discounted penalty function for a

diffusion perturbed model as the limit of compound Poisson risk models. Lam and Blanchet

(2010) discuss the modeling of large–scale insurance portfolios, especially in the context of

life insurance, from a heavy traffic perspective. Heavy traffic means that the arrival rate is

large in an asymptotic sense, which resembles the typical scenario of large insurance compa-

nies with a high number of policyholders.

In the previous chapter, we developed a transformation method to solve differential equa-
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tions when the mean of inter–arrival time is very small. Figures 4.1 and 4.2 show that the

distribution of discounted compound renewal processes looks like a normal distribution. In

this chapter, we investigate analytically the asymptotical normal properties for a portfolio

with a large number of claims.

The approach that we use here is a normal approximation. We assume that the mean

inter–arrival times goes to 0, which implies that the rate of arrival is large. We study

the asymptotic distribution for both compound Poisson processes and compound renewal

processes, separately. Furthermore, the asymptotic distributions of discounted compound

Poisson and renewal processes are also obtained.

5.1 Compound Poisson Processes

For the Poisson process with rate λ, the inter–arrival times are exponentially distributed

with mean 1
λ
. If the mean inter–arrival time goes to zero, it implies that λ goes to ∞. That

is
1

λ
−→ 0 ⇔ λ −→ ∞ .

The following results can be obtained by heavy traffic methods, since the role played by λ

and t is symmetric in the probability function of the number of claims (see Remark 5.1).

Let S(t) =
∑N(t)

k=1 Xk and Xk be iid claim severities, where N(t) forms a Poisson process.

Consider the normalized process:

S⋆(t) =
1

σX

√
λt

[
S(t)−N(t)µX

]
=

1

σX

√
λt

[ N(t)∑
k=1

Xk −N(t)µX

]
,

where µX and σX are the mean and standard deviation of claim severities X, and hence

σX

√
λt =

√
V(S(t)−N(t)µX). Next we prove that S⋆(t) is asymptotically normally dis-

tributed.

Proposition 5.1.1. Let the mean of inter–arrival times be 1
λ
, then for a fixed t > 0

S⋆(t)
D−→ N(0, 1) , if λ −→ ∞ . (5.1)
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This result is given by Bening and Korolev (2002). Here we reproduce a proof that uses the

mgf method.

Proof.

S⋆(t) =
1

σX

√
λt

[ N(t)∑
k=1

Xk −N(t)µX

]
=

N(t)∑
k=1

Yk

σX

√
λt

, (5.2)

where Yk = Xk − µX . Let the mgf of S⋆(t) be denoted by MS⋆(t)(s), then we have

MS⋆(t)(s) = e
λt

[
MY ( s

σX
√

λt
)−1

]
. (5.3)

Since the mgf MY (
s

σX

√
λt
) can be written in the following form:

MY (
s

σX

√
λt

) = 1 +
s

σX

√
λt

E[Y ] +
1

2

( s

σX

√
λt

)2E[Y 2] + o(
1

λ
) , (5.4)

where E[Y ] = 0 and E[Y 2] = V[X] = σ2
X , hence

λt
[
MY (

s

σX

√
λt

)− 1
]
= λt

[ s2

2λt
+ o(

1

λ
)
]
−→ s2

2
, as λ −→ ∞. (5.5)

Substituting (5.5) into (5.3) gives:

lim
λ→∞

MS⋆(t)(s) = e
s2

2 . (5.6)

Thus

S⋆(t)
D−→ N(0, 1) , as λ −→ ∞ . (5.7)

Proposition 5.1.2. Let N(t) be a Poisson process with rate λ, then N(t) is approximately

asymptotically normal with mean λt and variance λt, when λ goes to ∞. That is

N(t)− λt√
λt

D−→ N(0, 1) , as λ −→ ∞ . (5.8)

This is a classical result, for example see Bowers et al. (1997).

Proof. Let N⋆(t) = 1√
λt
(N(t)− λt), since the mgf of N(t) is

MN(t)(s) = eλt(e
s−1) . (5.9)

This implies

MN⋆(t)(s) = e−
√
λtsMN(t)(

s√
λt

) = e−
√
λtseλt(e

s√
λt−1) = e−

√
λts+λt(e

s√
λt−1) (5.10)
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By Taylor’s series, we have

e
s√
λt − 1 = 1 +

s√
λt

+
1

2
(

s√
λt

)2 + o(
1

λ
)− 1 , (5.11)

this gives, as λ −→ ∞,

−
√
λts+ λt(e

s√
λt − 1) = −

√
λts+ λt

[ s√
λt

+
1

2
(

s√
λt

)2 + o(
1

λ
)
]
−→ 1

2
s2 . (5.12)

Hence

lim
λ→∞

MN⋆(t)(s) = e
s2

2 , (5.13)

which shows that

1√
λt

(N(t)− λt)
D−→ N(0, 1) , as λ −→ ∞ . (5.14)

Corollary 5.1.1. For a fixed t > 0,

1√
λt(µ2

X + σ2
X)

( N(t)∑
k=1

Xk − λtµX

)
D−→ N(0, 1) , as λ −→ ∞ . (5.15)

Proof. Based on Propositions 5.1.1 and 5.1.2, composition gives (5.15). For details see

Englund (1983).

Remark 5.1. The result in Proposition 5.1.1 is a special case of the weak convergence heavy

traffic results for the compound Poisson process by Iglehart (1969), Grandell (1977), Garrido

(1988), Furrer, Michna and Weron (1997) and Michna (2005):

1√
λnt(µ2

X + σ2
X)

(N(nt)∑
k=1

Xk − λntµX

)
D−→ W (t) , as n −→ ∞ , (5.16)

where λ is the Poisson rate and W is a Wiener process. Since the distribution of N(nt) is:

P
(
N(nt) = k

)
=

(λnt)k

k!
e−λnt , for k = 0, 1, 2, ...

then N(nt) has the same asymptotic probability distribution, if λ −→ ∞ or n −→ ∞, for

fixed t, respectively. Let n = λ in Proposition 5.1.1 and λ = 1 in (5.16), then N(nt) in

(5.16) and N(t) Proposition 5.1.1 have the same asymptotic distribution as n −→ ∞ and

λ −→ ∞, respectively. We then consider the distributions (5.16) and (5.15) to be equivalent.
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Before we study the asymptotic normality of discounted compound Poisson sums, the fol-

lowing result is needed.

Remark 5.2. In general, for any renewal process, if the mean inter–arrival time λ−1 goes

to 0, it implies that inter–arrival times τn
P−→ 0 as λ −→ ∞. Then it can be seen that

TN(t)
P−→ t , as λ −→ ∞ . (5.17)

Because limλ→∞ TN(t) ≤ t for any t, hence we conclude that if limλ→∞ TN(t) < t, then with

probability one, there would be at least one claim between times limλ→∞ TN(t) and t. This

would contradict the definition of renewal process N(t). Hence (5.17) holds. This demon-

strates that asymptotically there exits a claim at any time t. This also implies that the

process N(t) asymptotically restarts at any time, hence N(t) has independent increments.

The results extend asymptotically to compound renewal sums.

Now consider the discounted compound renewal process:

Z(t) =

N(t)∑
k=0

e−δTkXk ,

for a fixed t. Let t0 = 0, t1, t2, · · · , tm = t be an equally–spaced partition on [0, t], such that

the length of interval (t1 − 0) is small enough that the effect of interest and inflation can be

negligible. That is

e−δt1 ≈ 1 .

For example if δ = 0.04 and t1 = 0.01, then e−δt1 = 0.9996. For Tk ≤ t1,

P
(
e−δTk ≥ e−δt1

)
= 1 ⇒ e−δTk

P−→ 1 .

Hence Z(t1) can be approximated by S(t1), that is

Z(t1) ≈ S(t1) .

Since

Z(t) =

N(t)∑
k=0

e−δTkXk = Z(t1) + Z(t2)− Z(t1) + · · ·+ Z(t)− Z(tm−1) , (5.18)

and Remark 5.2 show that at each point tk, for k = 1, 2, · · · ,m, we have

TN(tk)
P−→ tk , as λ −→ ∞ .
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Hence we rewrite (5.18) as follows:

lim
λ→∞

Z(t) = lim
λ→∞

Z(t1) + e−δt1 lim
λ→∞

Z(t2 − t1) + · · ·+ e−(m−1)δt1 lim
λ→∞

Z(t− tm−1) , (5.19)

this is because Remark 5.2 shows that asymptotically N(t) has independent increments,

hence so does Z(t). Since S(t1) approximates Z(t1) and Proposition 5.1.1 shows that S(t1)

is asymptotic normal with mean λt1µX and variance
√
λt1(µ2

X + σ2
X), hence Z(t) is also

asymptotically normal with mean

(1 + e−δt1 + e−2δt1 + · · ·+ e−(m−1)δt1)λt1µX =
1− e−mδt1

1− e−δt1
λt1µX =

1− e−δt

1− e−δt1
λt1µX . (5.20)

Taylor’s series gives, for small t,

1− e−δt1 ≈ 1− 1 + δt1 . (5.21)

Substituting (5.21) into (5.20) yields

1− e−δt

1− e−δt1
λt1µX =

1− e−δt

δt1
λt1µX =

1− e−δt

δ
λµX . (5.22)

Similarly arguments applied to the variance Z(t) give an approximate asymptotic variance

(1 + e−2δt1 + · · ·+ e−2(m−1)δt1)λt1(µ
2
X + σ2

X) =
1− e−2mδt1

1− e−2δt1
λt1(µ

2
X + σ2

X)

=
1− e−2δt

1− e−2δt1
λt1(µ

2
X + σ2

X) ≈
1− e−2δt1

2δt1
λt1(µ

2
X + σ2

X) =
1− e−2δt

2δ
λ(µ2

X + σ2
X) .

(5.23)

Hence we have the following theorem for the discounted compound Poisson processes.

Theorem 5.1.1. For a fixed t > 0,

√
2δ√

λ(1− e−2δt)(µ2
X + σ2

X)

[
Z(t)− λµX

δ
(1− e−δt)

]
D−→ N(0, 1) , as λ −→ ∞ . (5.24)

Remark 5.3. For both the classical compound Poisson process and the discounted com-

pound Poisson process, the approximations of the mean and variance in Proposition 5.1.1

and Theorem 5.1.1 are unbiased.
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Example 5.1.1. Consider a compound Poisson process with exponential claim severities,

and let the mean inter–arrival time and mean claim size be 0.01 and 1000, respectively.

The exact distribution of the classical compound Poisson process and discounted compound

Poisson process are obtained by the transformation method discussed in Section 4.1.1. The

following graphs show the conditional density functions for the compound Poisson sums.
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Figure 5.1: Cond. d. of S(4) in Example 5.1.1:

exact [red], asymptotic [blue]
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Figure 5.2: Cond. d. of S(t) in Example 5.1.1:

exact [red], asymptotic [blue]

Figure 5.1 shows their close match at time t = 4. The same accuracy is obtained in Figure

5.2, for 3-dimensional density function graphs. In similar comparisons the asymptotic and

exact conditional densities remain close, when the mean inter–arrival time is equal or smaller

than 0.01.

In the next section we generalize the above results to a discounted compound renewal process.

Normality still exits if the mean inter–arrival time goes to zero.

5.2 Compound Renewal Processes

To prove the asymptotic normality for discounted compound renewal processes, we need the

following assumptions on inter–arrival times τn with mean 1
λ
:

1. E[τ kn ] < ∞, for k = 1, 2, 3 and 4,
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2. limλ→∞ E[τ kn ]λk = γk, for k = 1, 2, 3 and 4, where γk is some finite number .

Remark 5.4. Exponential, Erlang(n), generalized Erlang(n), mixture of exponentials, log-

normal, Weilbull and inverse Gaussian random variables satisfy these assumptions. These

are reasonable assumptions, in particular since any continuous positive random variable can

be approximated by a mixture of exponential or of Erlang(n).

The following lemma is given by Loève (1977).

Lemma 5.2.1. Lyapunov’s central limit theorem

Let ξk, for k ∈ N, be independent random variables, mk = E[ξk] and σ2
k = V[ξk]. Denote

Sn =
∑n

k=1 ξk and s2 =
∑n

k=1 σ
2
k. If Lyapunov’s condition is satisfied:

1

s2+ε

n∑
k=1

E|ξk −mk|2+ε −→ 0 , as n −→ ∞ ,

for some ε > 0, then the central limit theorem:

Sn − E[Sn]√
V ar[Sn]

D−→ N(0, 1) , as n −→ ∞.

holds.

Proposition 5.2.1. Let τn be the inter–arrival times with mean 1
λ
and variance σ2(λ) that

we will denote σ2 for simplicity. If N(t) forms a renewal process, then

1

σ
√
λt

[N(t)

λ
− t
]
=

1

σ
√
λ3t

[
N(t)− λt

] D−→ N(0, 1) , as λ −→ ∞ . (5.25)

Proof. Let mt = λt+ yσ(λ)
√
λ3t. From the definition of a renewal process, we have

P
(
N(t) < mt

)
= P

(
Tmt > t

)
= P

(Tmt −mt
1
λ

σ
√
mt

>
t−mt

1
λ

σ
√
mt

)
. (5.26)

Since

t−mt
1

λ
= t− (λt+ yσ

√
λ3t)

1

λ
= −yσ

√
λt ,

then
t−mt

1
λ

σ
√
mt

=
−yσ

√
λt

σ

√
λt+ yσ

√
λ3t

=
−y√

1 + yσ(λt−1)
1
2

. (5.27)
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Now

σ2λ2 =
[
E[τ 2n]− (

1

λ
)2
]
λ2 = E[τ 2n]λ2 − 1 , (5.28)

hence Assumption 2 gives that (5.28) is a finite number. Then taking square root implies

that

σ(λ)
√
λ = σ(λ)

√
λ =

σ(λ)λ√
λ

−→ 0 , as λ −→ ∞ , (5.29)

which implies that
−y√

1 + σ(λ)(λt−1)
1
2

−→ −y , as λ −→ ∞. (5.30)

We can show that

1

σ
√
mt

(Tmt −mt
1

λ
)

D−→ N(0, 1) , as λ −→ ∞ . (5.31)

Let s2 = σ2mt and a4 = E[(τn − 1
λ
)4]mt, then

a4

s4
=

E[(τn − 1
λ
)4]mt

σ(λ)4m2
t

=
E[τ 4n]− 4 1

λ
E[τ 3n] + 6 1

λ2E[τ 2n]− 4 1
λ3E[τn] + 1

λ4

σ(λ)4mt

=
λ4
(
E[τ 4n]− 4 1

λ
E[τ 3n] + 6 1

λ2E[τ 2n]− 4 1
λ3E[τn] + 1

λ4

)
λ4σ(λ)4mt

=
λ4E[τ 4n]− 4λ3E[τ 3n] + 6λ2E[τ 2n]− 4λE[τn] + 1

λ4
(
E[τ 2n]− 1

λ2

)2
mt

. (5.32)

By Assumption 2, simplifying (5.32) produces

lim
λ→∞

a4

s4
= lim

λ→∞

γ4 − 4γ3 + 6γ2 − 4γ1 + 1

(γ2 − 1)2mt

. (5.33)

Since γn, for n = 1, 2, 3 and 4 are finite and mt −→ ∞, as λ −→ ∞, then

a4

s4
−→ 0 , as λ −→ ∞. (5.34)

(5.34) satisfies Lyapounov’s central limit theorem condition, where ε = 2, then (5.31) holds.

Combining (5.27), (5.30) and (5.31), we conclude that (5.25) holds.

Remark 5.5. Note that in the above proof uses ϵ = 2 in Lyapounov’s condition, however

this power could be reduced to ϵ = 1 by changing Assumption 2 to:

lim
λ→∞

E[|τn −
1

λ
|3]λ3 = γ⋆

3 ,
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where γ⋆
3 is a finite number. Exponential, Erlang(n), generalized Erlang(n), mixture of

exponentials, lognormal, Weilbull and inverse Gaussian random variables satisfy these as-

sumptions.

The variance of the number of claims N(t) is then asymptotically σ2λ3t, since

lim
λ→∞

V[N(T )]

σ2λ3t
= 1 ,

for Exponential, Erlang(n), generalized Erlang(n) or mixture of exponential inter–arrival

times. The conditions can even apply more generally as any continuous positive random

variable can be approximated by a mixture of exponentials or of Erlang(n).

Proposition 5.2.2. For a fixed t > 0,

N(t)

λ

P−→ t , as λ −→ ∞ . (5.35)

Proof. Proposition 5.2.1 shows that N(t) is an asymptotically normal with mean λt and

variance σ(λ)2λ3t, then N(t)
λ

is also asymptotically normal with mean t and variance σ(λ)2λt.

Chebyshev’s inequality gives

P
(
|N(t)

λ
− E[N(t)]

λ
| > ε

)
≤

V[N(t)
λ

]

ε2
, for any ε > 0 , (5.36)

which implies that

P
(
|N(t)

λ
− t| > ε

)
≤ σ(λ)2λt

ε2
, for any ε > 0 . (5.37)

From (5.29) we have limλ−→∞ σ(λ)2λ = 0, then (5.37) goes to 0 as λ goes to ∞. Thus (5.35)

holds.

Remark 5.6. Since 1
λ
is the mean inter–arrival time and N(t) is the total number of claims

up to time t, then 1
λ
N(t) is the average arrival time, which asymptotically equals to t. This

proposition also demonstrates that limλ→∞ P
(
N(t) = ∞

)
= 1 and N(t)

P−→ E[N(t)].

Theorem 5.2.1. Let Xk, k ∈ N, be iid claim severities with mean µX and variance σ2
X ,

Define

S⋆(t) =
1

σX

√
E[N(t)]

[
S(t)−N(t)µX

]
,

where S(t) =
∑N(t)

k=1 Xk, then

S⋆(t)
D−→ N(0, 1) , as λ−→∞. (5.38)
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Proof. Let Yi = Xi − µX , then

S⋆(t) =
1

σX

√
E[N(t)]

N(t)∑
k=1

Yk .

The mgf of S⋆(t) is denoted by MS⋆(t)(s), then

MS⋆(t)(s) = E
[
esS

⋆(t)
]

=
∞∑
n=0

E
[
esS

⋆(t)
∣∣N(t) = n

]
P
(
N(t) = n

)
=

∞∑
n=0

E
[
e
s 1
σX

√
n

∑n
k=1 Yk

∣∣N(t) = n
]
P
(
N(t) = n

)
=

∞∑
n=0

[
1 +

s

σX

√
n
E[Y1] +

s2

2σ2
Xn

E[Y 2
1 ] + o(

1

λ
)
]n
P
(
N(t) = n

)
=

∞∑
n=0

[
1 +

s2

2n
+ o(

1

λ
)
]n
P
(
N(t) = n

)
. (5.39)

Since for any x ∈ R

lim
n→∞

(1 +
x

n
)n = ex ,

and (1 + x
n
)n is increasing function in n, then for ϵ > 0, there exists a number M > 0, such

that, when n > M

(1 +
1

n
)n > e− ε . (5.40)

Hence (5.39) can be written as:

MS⋆(t)(s) =
M∑
n=0

[
1 +

s2

2n
+ o(

1

λ
)
]n
P
(
N(t) = n

)
+

∞∑
n=M+1

[
1 +

s2

2n
+ o(

1

λ
)
]n
P
(
N(t) = n

)
Proposition 5.2.2 and Remark 5.6 give that limλ→∞ P

(
N(t) = ∞

)
= 1, which implies that

limλ→∞ P
(
N(t) = k

)
= 0, for k < ∞, then

lim
λ→∞

MS⋆(t)(s) = lim
λ→∞

M∑
n=0

[
1 +

s2

2n
+ o(

1

λ
)
]n
P
(
N(t) = n

)
+ lim

λ→∞

∞∑
n=M+1

[
1 +

s2

2n
+ o(

1

λ
)
]n
P
(
N(t) = n

)
. (5.41)

Combining (5.40) and (5.41) yields

e
s2

2 − ε ≤ lim
λ→∞

MS⋆(t)(s) ≤ e
s2

2
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Hence

lim
λ→∞

MS⋆(t)(s) = e
1
2
s2 ,

which implies that (5.38) holds.

Theorem 5.2.2. Let Xk, k ∈ N, be iid claim severities, N(t) forms a renewal process, then

1√
λt(σ2

x + σ2λ2µ2
X)

[ N(t)∑
k=1

Xk − λµXt
]

D−→ N(0, 1) , as λ −→ ∞ . (5.42)

Proof. Based on Proposition 5.2.1 and Theorem 5.2.1, composition gives (5.42).

Now consider the relationship between the classical compound Poisson process and com-

pound renewal process. Let SP (t) and SR(t) be compound Poisson and compound renewal

processes, respectively.

Corollary 5.2.1. For a fixed t > 0, SP (t) can be approximated asymptotically by the sum

of SR(t) and µX

√
λt(1− σ(λ)2λ2)N(0, 1), if 1 − σ(λ)2λ2 > 0, where SR(t) and N(0, 1)

are independent; or SR(t) can be approximated asymptotically by the sum of SP (t) and

µX

√
λt(σ(λ)2λ2 − 1)N(0, 1), if σ(λ)2λ2 − 1 > 0, where SP (t) and N(0, 1) are independent.

Proof. Proposition 5.1.1 shows that SP (t) is asymptotically normal with mean λµXt and

variance λt(µX + σ2
X). Theorem 5.2.2 demonstrates that SR(t) is also the same, asymp-

totically normal with mean λµXt and variance
√

λt(σ2
x + σ(λ)2λ2µ2

X). They have the same

asymptotic mean with different asymptotic variances. By adding the difference between two

variances, we have Corollary 5.2.1.

Remark 5.7. Theorem 5.2.2 gives the asymptotic distribution of compound renewal risk

processes. If the inter–arrival time is exponentially distributed with parameter λ, then

σ(λ)2λ3 = λ and the compound renewal process reduces to the compound Poisson processes.

As we mentioned before, the asymptotic mean and variance of compound Poisson processes

is unbiased. Since asymptotically limλ−→∞ λt and limλ−→∞(λt− c) are equal, with c a finite

number, the same idea is applied to the variance of compound renewal risk processes. The

result in Theorem 5.2.2 may increase or decrease the mean and variance of S(t), compared

to its real mean and variance. For example, if inter–arrival times are Erlang(2), we have that

E[N(t)] = λt − 1
4
+ 1

4
e−4λt and V[N(t)] = 1

2
λt + 1

16
− λte−4λt − 1

16
e−8λt, then the difference

between the asymptotic mean in Theorem 5.2.2 and the real mean is −1
4
µX and the difference
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between the asymptotic variance is 1
16
µ2
X − 1

4
σ2
X . In practice, λ can not be ∞, which means

that the mean and variance of the distribution in Theorem 5.2.2 is biased for some compound

renewal processes. Hence we can rewrite Theorem 5.2.2 in the form of a central limit theorem

for adjusted mean and variance to make them unbiased.

Theorem 5.2.3.

1

V[S(t)]

(
S(t)− E[S(t)]

)
D−→ N(0, 1) , as λ −→ ∞ .

5.3 Discounted Compound Renewal Sums

In this section, the normality of the discounted compound renewal risk processes is inves-

tigated. The asymptotic distribution for the discounted compound renewal sum is given,

when the mean of inter–arrival times is small enough.

The asymptotic approximation of Z(t1) by S(t1) is discussed in Section 5.1, for a very small

value of t1. Theorem 5.2.2 shows that S(t1) are approximately asymptotic normal with mean

λµXt1 and variance λt1(σ
2
x + σ(λ)2λ2µ2

X). Hence the asymptotic mean of Z(t1) is λµXt1,

then Z(t) has the same mean as (5.22). For the variance, Theorem 5.2.2 and (5.23) give

1− e−2δt

2δt1
λt1(σ

2
X + σ(λ)2λ2µ2

X) =
1− e−2δt

2δ
λ(σ2

X + σ(λ)2λ2µ2
X) . (5.43)

This leads us to the following central limit theorem for the discounted compound renewal

process.

Theorem 5.3.1. For a fixed t > 0,

√
2δ√

λ(1− e−2δt)(σ2
X + σ(λ)2λ2µ2

X)

[
Z(t)− λµX

δ
(1− e−δt)

]
D−→ N(0, 1) , as λ −→ ∞ .

(5.44)

Let ZP (t) and ZR(t) be the discounted compound Poisson and discounted compound re-

newal processes, respectively. By similar arguments to those of Corollary 5.1.2, we have the

following result.
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Corollary 5.3.1. ZP (t) can be approximated asymptotically by the sum of ZR(t) and

µX

√
λ1−e−2δt

2δ
(1− σ(λ)2λ2)N(0, 1), if 1 − σ(λ)2λ2 > 0, where ZR(t) and N(0, 1) are inde-

pendent; or ZR(t) can be approximated asymptotically by the sum of random variable ZP (t)

and µX

√
λ1−e−2δt

2δ
(σ(λ)2λ2 − 1)N(0, 1), if σ(λ)2λ2−1 > 0, where SP (t) and N(0, 1) are also

independent.

Proof. Theorem 5.1.1 shows that ZP (t) is asymptotically normal with mean λµX
1−e−δt

δ
and

variance λ(µ2
X + σ2

X)
1−e−2δt

2δ
. Theorem 5.2.2 demonstrates that ZR(t) is also asymptotically

normal with mean λµX
1−e−δt

δ
and variance λ(σ2

x+σ(λ)2λ2µ2
X)(

1−e−2δt

2δ
). They have the same

asymptotic mean, but different asymptotic variances. By adding the difference between the

two variances, we get Corollary 5.3.1.

A similar argument applied to Theorem 5.3.1 gives a central limit theorem with adjusted

mean and variance, for the discounted compound renewal process.

Theorem 5.3.2.

1

V[Z(t)]

(
Z(t)− E[Z(t)]

)
D−→ N(0, 1) , as λ −→ ∞ .

Remark 5.8. Note that Theorems 5.3.1 and 5.3.2 prove that the distribution of normal-

ized discounted compound renewal process converges to the normal distribution, which is

consistent with Figures 4.1 and 4.2.

Example 5.3.1. Consider Erlang(2) inter–arrival times with mean 100 and δ = 0.04, while

claim severities are exponential with mean µX = 1000. By the transformation method

discussed in Section 4.1.2, we have

MZ(t)(s) = e−200tg1(t; s) ,

where the function g1(t; s) is given by the following second–order differential equation:

∂2

∂t2
g1(t; s) = b1(t; s, 2)

∂

∂t
g1(t; s) + b0(t; s, 2)g1(t; s) ,

and the coefficients are given by:

b1(t; s, 2) =
0.00008

−0.001 + se−0.04t
, b0(t; s, 2) = − 40.016

−0.001 + se−0.04t
, (5.45)
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with initial values g1(0, s) = 1 and ∂
∂t
g1(t; s)| t=0 = 200.

For the distribution of S(t), without considering the effect of interest and inflation, we also

have

MS(t)(s) = e−200tg2(t; s) ,

where the function g2(t; s) is given by the following second–order differential equation:

∂2

∂t2
g2(t; s) = b1(t; s, 2)

∂

∂t
g2(t; s) + b0(t; s, 2)g2(t; s) . (5.46)

Here the coefficients are different from (5.45) and are given by:

b1(t; s, 2) = 0 , b0(t; s, 2) = − 40

−0.001 + s
,

with initial values g2(0, s) = 1 and ∂
∂t
g2(t; s)| t=0 = 200. Solving (5.46) by the series method

gives the function g2(t; s). Inverting the corresponding Laplace transform of e−200tg2(t; s)

gives the distribution of S(t). Similarly the same method can be applied to get the distri-

bution of Z(t). The following means and variances are obtained for S(2).

Mean Variance

Exact distribution 199, 750 299, 812, 500

Theorem 5.2.2 200, 000 300, 000, 000

Theorem 5.2.3 199, 750 299, 812, 500

Table 5.1: Mean and variance of S(2) for different models in Example 5.3.1

In Table 5.1, the asymptotic distribution of Theorem 5.2.2 has larger mean and variance,

compared to those of the exact distribution or those given by Theorem 5.2.3. The differences

in mean and variance between results in Theorems 5.2.2 and 5.2.3 can be used to adjust the

mean, decreasing it by 1
4
µX = 250, and the variance by 1

4
σ(λ)2 − 1

16
µ2
X = 187, 500.
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Mean Variance

Exact distribution 191, 959 277, 033, 690

Theorem 5.3.1 192, 209 277, 230, 395

Theorem 5.3.2 191, 959 277, 042, 895

Table 5.2: Mean and variance of Z(2) for different models in Example 5.3.1

Table 5.2 shows that the asymptotic distribution in Theorem 5.3.1, for the discounted com-

pound sum Z(t), produces a mean that is larger by 1
4
µX = 250 than the one for the distri-

bution in Theorem 5.3.2. For the variance, the asymptotic distribution in Theorem 5.3.2 is

closer to the exact distribution, than the asymptotic distribution in Theorem 5.3.1
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Figure 5.3: Cond. d. of Z(5) in Example 5.3.1:

exact [red], asymptotic [blue]
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Figure 5.4: Cond. d. of Z(t) in Example 5.3.1:
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Figures 5.3 and 5.4 report the conditional density function of Z(t) in red, and the normal

approximation in Theorem 5.3.1 From Figure 5.3, we can conclude that the two density

functions match well for time t = 5, when the mean inter–arrival time is 0.01 per year. The

same conclusion seems hold for other t values in Figure 5.4, which shows the conditional

density functions at different t from 1 to 5. Hence if the mean inter–arrival time is greater

than or equal to 0.01 per year, the distribution of the discounted compound renewal sum

can be approximated by the result in Theorem 5.3.1.

93



In conclusion, this chapter studies the normal limit distribution of the compound renewal

sum and the discounted compound renewal sum, when the mean inter–arrival time is small.

This limit distribution is then used as an approximation of the compound renewal sum and

the corresponding discounted compound sum. This result is consistent with our observations

in Figures 4.1 and 4.2. In addition, we prove that the compound Poisson sum can be written

in a convolution formulas as the sum of the compound renewal sum and an independent

normal distribution. This result also holds for the discounted compound sums, which gives

an analytical justification to our numerical results in Section 3.4.
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Conclusion

This thesis investigates the distribution of the discounted compound PH–renewal process.

PH distributions form an interesting family of distributions, since they are represented by

matrices and vectors, which are easily computed numerically. Using basic properties of ma-

trices and vectors, we derive formulas for the mgf of the discounted compound PH–renewal

process. Particularly we obtain homogeneous and ordinary differential equations or differ-

ential systems for the mgf of Z(t). Some numerical examples illustrate these results.

In addition, the truncated series method is proposed to help solve the differential equations.

The coefficients of these truncated series solutions are rational polynomial functions in s.

These can be inverted easily to approximate the distribution of Z(t). To reduce computing

time, the transformation method for differential equations is used. From our numerical ex-

amples, we see that this method produces accurate and fast results.

In applications, we calculate stop–loss premiums for reinsurance contracts. Since risk mea-

sures are used by insurance companies or financial institutions to analyze the riskiness for

their businesses, then Value-at-Risk (VaR) and Conditional Tail Expectation (CTE) are

studied in the thesis. We compare the riskiness under different net interest rates for different

risk models. We conclude that the discounted compound Poisson model is more risky than

any other discounted compound PH–renewal models.

In this last chapter we prove the asymptotic normality of discounted compound renewal

sums, when the mean inter–arrival time is very small. This normal limit distribution was

observed empirically in Figures 4.1 and 4.2. Furthermore the asymptotic relationship be-

tween the discounted compound Poisson sum and the discounted compound renewal sum is
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studied.

For future research, a natural extension would be to consider the stochastic process proper-

ties of Z(t). For instance, an asymptotic diffusion result could be established to generalize

the results in Chapter 5.

Another interesting aspect would be to study the distribution of discounted compound PH–

renewal sums with heavy tail claim severities. This is very important for insurance applica-

tions. Since PH distributions are dense in the family of densities on the positive real line,

these could be used to fit even heavy tailed distributions.

For the financial study of insurance portfolios, it would also be interesting to extend the

results in this thesis to random interest rates δ. This would help assess the combined effect

of the insurance and financial risks on the solvency of insurance companies.

Finally, the dependence structure between inter–arrival times and claim sizes is a problem

of interest for these discounted compound renewal models. In all the above mentioned

extensions the technical difficulties have limited, so far, the results that can be found in the

literature. Further research in these directions in definitely needed.
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under exponential phase–type Lévy models. Stochastic Processes and their Applications,

109: 79-111.

[7] Bellman, R. (1997) Introduction to Matrix Analysis (2nd ed.). Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA.

[8] Bening, V.E. and Korolev, V.Y. (2002) Generalized Poisson Models and their Applica-

tions in Insurance and Finance. VSP, Utrecht.

[9] Bernstein, D. (2005) Matrix Mathematics. Princeton University Press, Princeton, N.J.

[10] Bladt, M., Gonzalez, A. and Lauritzen, S.L. (2003) The estimation of phase–type related

functionals using Markov chain Monte Carlo methods. Scandinavian Actuarial Journal,

4: 280-300.

97



[11] Bowers, N.L., Gerber, H.U., Hickman, J.C., Jones, D.A. and Nesbitt, C.J. (1997).Actu-

arial Mathematics . The Society of Actuaries. Chicago.

[12] Cai, J. and Tan, K.S. (2007) Optimal retention for a stop-loss reinsurance under the

VaR and CTE risk measures. Astin Bulletin, 37(1): 93-112.

[13] Cox, D.R. (1970) Renewal Theory. Chapman and Hall, London.

[14] Delbaen, F. and Haezendonck, J. (1987) Classical risk theory in an economic environ-

ment. Insurance: Mathematics and Economics, 6, 85-116.

[15] Dickson, D.C.M. and Hipp, C. (2000) Ruin Problems for Phase-Type(2) Risk Processes.

Scandinavian Actuarial Journal, 2: 147-167.

[16] Dufresne, D. (2007) Fitting combinations of exponentials to probability distributions.

Applied Stochastic Modeling in Business and Industry, 23: 23-48.

[17] Englung, G. (1983) A remainder term estimate in a random-sum central limit theorem.

Theory of Probability and its Applications, 28: 149-157.

[18] Fackrell, M.W. (2003) Characterization of Matrix-Exponential Distributions, Ph.D the-

sis (Applied Mathematics), University of Adelaide, Australia.

[19] Frostig, E. (2004) Upper bounds on the expected time to ruin and on the expected

recovery time. Advances in Applied Probability, 36: 377-397.

[20] Furrer, H., Michna, Z. andWeron, A. (1997) Stable lé motion approximation in collective
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[35] Léveillé, G., Garrido, J. and Wang, Y.F. (2010) Moment generating functions of com-

pound renewal sums with discounted claims. Scandinavian Actuarial Journal, 3, 165-

184.

99



[36] Li, S.M. and Garrido, J. (2005) On the Gerber–Shiu function for a Sparre Andersen

risk process perturbed by diffusion. Scandinavian Actuarial Journal, 3: 161-186..
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Appendix A

Matrix Exponential

Matrices play a crucial role in PH distributions. The characteristics of the distribution de-

pend on a matrix A. This is illustrated by the examples of Chapter 1. Hence we give here

a brief introduction to matrices. We discuss some basic properties and definitions that are

used in this thesis.

A.1 Definition

In this section first we introduce some definitions, especially that of the matrix exponential

function and some of its properties. We also prove theorems that are used in the thesis. For

more details on matrix theory, readers can refer to the book Bernstein (2005), that gives

formulas and applications to the theory of linear systems. An alternative choice is Ortega

(1987).

Definition A.1.1. Nonsingular and singular matrices

If the determinant |A| ̸= 0, we call A nonsingular, otherwise it is called singular.

Note that throughout this thesis, we assume that A is a nonsingular matrix, hence its inverse

A−1 exists.

Definition A.1.2. Eigenvalues and Eigenvectors

102



An eigenvalue of a square matrix A of order n is a real or complex scalar λ satisfying the

equation:

Ax = λx ,

for some nonzero vector x, we call λ an eigenvalue and x an eigenvector of A.

Definition A.1.3. Spectral radius of a matrix A of order n

Let λ1 , λ1 , . . . , λn be eigenvalues of A, we define the spectral radius of A as

ρ (A) = max {|λi| , 1 ≤ i ≤ n} .

Definition A.1.4. Matrix exponential

Let A be square matrix of order n, then we call matrix exponential, denoted eA or exp(A) ,

the matrix:

eA =
∞∑
k=0

1

k!
Ak , (A.1)

with e0 = In , where 0 is a zero matrix of order n.

Definition A.1.5. Logarithm of A

Let A be square matrix with order n , then we call B a logarithm of A if matrix B satisfies:

eB = A . (A.2)

Then if sprad(A− I) < 1 , we can define

B = lnA =
∞∑
i=1

(−1)i+1

i
(A− I)i . (A.3)

This leads to the following notion of ln(I−A) and ln(I+A)

ln(I−A) = −
∞∑
i=1

Ai

i
, (A.4)

and

ln(I+A) =
∞∑
i=1

(−1)i+1

i
Ai , (A.5)

if sprad(A) < 1 .

103



A.2 Lemmas

Lemma A.2.1. If λ is an eigenvalue ofA, then λ−1 is eigenvalue of A−1.

Proof. Since A is nonsingular, then λ−1 exits, and we have:

|λI−A| = |λAA−1 −A| = |A||λA−1 − I| = −|A||λ||λ−1I−A−1| .

Hence λ−1 is an eigenvalue of A−1.

Lemma A.2.2. If A is a matrix of order n with sprad(A) < 1, then (I−A)−1 exists and

we have

(I−A)−1 = lim
k→∞

k∑
i=0

Ak =
∞∑
k=0

Ak .

Proof. See Ortega (1987).

Lemma A.2.3. Let A and B be square matrices of order n. Then

etAetB = et(A+B) , t ∈ R , (A.6)

if AB = BA .

Proof. See Bernstein (2005).

Lemma A.2.4. The derivative of a matrix exponential function is given by:

d

dt
eAt = eAtA , t ∈ Ω . (A.7)

Proof. Take a derivative term by term in the series expansion in Definition A.1.4.

Lemma A.2.5. Let A be a square nonsingular matrix of order n and ρ(I−A) < 1. Then

we have the following result:

− lnA = lnA−1 . (A.8)

Proof.

lnA = (A− I)− 1

2
(A− I)2 +

1

3
(A− I)3 + · · ·+ (−1)k+1 1

k
(A− I)k + · · ·

− lnA = −[(A− I)− 1

2
(A− I)2 +

1

3
(A− I)3 + · · ·

+(−1)k+1 1

k
(A− I)k + · · · ] , (A.9)
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then

lnA−1 = (A−1 − I)− 1

2
(A−1 − I)2 +

1

3
(A−1 − I)3 + · · ·+ (−1)k+1 1

k
(A−1 − I)k + · · · .

Since A−1 =
[
I+ (A− I)

]−1
, from Lemma A.2.2 we have:

A−1 = [I+ (A− I)]−1

= I− (A− I) + (A− I)2 − (A− I)3 + · · ·+ (−1)k(A− I)k + · · · ,

and hence

ln A−1 =
[
− (A− I) + (A− I)2 − (A− I)3 + · · ·+ (−1)k(A− I)k + · · ·

]
−1

2

[
− (A− I) + (A− I)2 − (A− I)3 + · · ·+ (−1)k(A− I)k + · · ·

]2
+
1

3

[
− (A− I) + (A− I)2 − (A− I)3 + · · ·+ (−1)k(A− I)k + · · ·

]3
+ · · ·+ (−1)k+1 1

k

[
− (A− I) + (A− I)2 − (A− I)3 + · · ·

+(−1)k(A− I)k + · · ·
]k

+ · · · . (A.10)

By comparing the polynomial series in (A.9) and (A.10) for (A − I), we see that they are

exactly the same, hence

− lnA = lnA−1.

Lemma A.2.6. Let A and B be square nonsingular matrices. If AB = BA , then we have

lnA− lnB = lnAB−1 .

Proof.

elnA−lnB = elnAe− lnB = AelnB−1

= AB−1 ,

from Lemmas A.2.4 and A.2.5 and using that elnAB−1
= AB−1, then lnA−lnB = lnAB−1.

Lemma A.2.7. Let A and B be the same order of square matrices, if the inverse of A+sB

exists then
d

ds
(A+ sB)−1 = −(A+ sB)−1B(A+ sB)−1 . (A.11)

For the proof see Bernstein (2005).

105



A.3 Kronecker Product and Sum

In this thesis we use the Kronecker product and sum, hence here we introduce these defini-

tions. Some properties are also given. For more detail please refer to Bernstein (2005).

Definition A.3.1. Kronecker Product

Consider matrix A = (aij) where aij ∈ R for i = 1, 2, · · · , n and j = 1, 2, · · · ,m and matrix

B ∈ Rl×k. Then the Kronecker product A⊗B ∈ Rnl×mk of A is the partitioned matrix

A⊗B =


a11B a12B · · · a1mB

...
...

. . .
...

an1B an2B · · · anmB

 .

For example, let matrices A and B be given as follows:

A =

 3 2

1 −5

 , B =

 1 4 6

2 0 9

0 3 −4

 ,

then the order of Kronecker product is 4× 6, and by the Definition A.3.1, it is

A⊗B =

 3B 2B

1B −5B

 .

Because

3B =

 3 12 18

6 0 27

0 9 −12

 , 2B =

 2 8 12

4 0 18

0 6 −8

 , and − 5B =

 5 20 30

10 0 45

0 15 −20


we have

A⊗B =



3 12 18 2 8 12

6 0 27 4 0 18

0 9 −12 0 6 −8

1 4 6 5 20 30

2 0 9 10 0 45

0 3 −4 0 15 −20
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Definition A.3.2. Kronecker Sum

Let matrix A ∈ Ωn×n and B ∈ Rm×m. Then the Kronecker sum A⊕B ∈ Ωnm×nm of A and

B is

A⊕B = A⊗ Im + In ⊗B .

Consider A and B in previous example, then we have

A⊗ I3 =



3 0 0 2 0 0

0 3 0 0 2 0

0 0 3 0 0 2

1 0 0 −5 0 0

0 1 0 0 −5 0

0 0 1 0 0 −5


, and I2 ⊗B =



1 4 6 0 0 0

2 0 9 0 0 0

0 3 −4 0 0 0

0 0 0 1 4 6

0 0 0 2 0 9

0 0 0 0 3 −4


.

Hence the Kronecker sum is

A⊕B =



4 4 6 2 0 0

2 3 9 0 2 0

0 0 3 0 0 2

1 0 0 −4 4 6

0 1 0 2 −5 9

0 0 1 0 3 −9


.

Proposition A.3.1. Let A = (aij) for i = 1, 2, · · · , n and j = 1, 2, · · · ,m, B ∈ Rl×k,

C = (cij) for i = 1, 2, · · · ,m and j = 1, 2, · · · , k and D ∈ Rk×p. Then

(
A⊗B

)(
C⊗D

)
= AC⊗ BD .

Proof. The ij block of
(
A⊗B

)(
C⊗D

)
is given by

((
A⊗B

)(
C⊗D

))
ij

=
(

ai1B · · · aimB
)

c1jD

...

cmjD


=

m∑
k=1

aikckjBD =
(
AC

)
ij
BD

=
(
AC⊗ BD

)
ij
.
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Proposition A.3.2. Let A ∈ Rn×n and B ∈ Rm×m. Then

eA⊗Im = eA ⊗ Im , (A.12)

eIn⊗B = In ⊗ eB , (A.13)

eA⊕B = eA ⊗ eB . (A.14)

Proof. From Definition A.1.4 we have that

eA⊗Im = Inm +A⊗ Im +
1

2!

(
A⊗ Im

)2
+ · · ·

= In ⊗ Im +A⊗ Im +
1

2!

(
A2 ⊗ Im

)
+ · · ·

=
(
In +A+

1

2!
A2 + · · ·

)
⊗ Im

= eA ⊗ Im ,

and similarly for (A.13). To prove (A.14), from Proposition A.3.1 we have that

(
A⊗ Im

)(
In ⊗B

)
= A⊗B ,(

In ⊗B
)(
A⊗ Im

)
= A⊗B ,

which shows that A⊗ Im and In ⊗B commute. Hence, by Lemma A.2.3

eA⊕B = eA⊗Im+In⊗B =
(
eA⊗Im

)(
eIn⊗eB

)
= eA ⊗B .
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