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Abstract

Some Contributions to Nonparametric Estimation of Density

and Related Functionals for Biased Data

Jun Li, Ph.D.
Concordia University, 2010
Length biased sampling, as a special case of general biased sampling, occurs naturally in
many statistical applications. In problems related with such applications, two different
density functions are involved. One of them is the density of interest, which is referred
to as the unweighted density, information about which is not observable directly in prac-
tice; the other one is referred to as the weighted density, the sample from which could
be observed directly. These two densities are connected through a weight function. One
aspect regarding data from weighted density is to estimate the unweighted density from
the sample obtained using the weighted density. In this thesis we concentrate on the
weight function representing length of the sampling unit that results in a sample called
length-biased sample. Since most of such data are nonnegative, unweighted density has
a non-negative support where common kernel density estimators with symmetric kernel
may not be appropriate. Such density estimators usually generate the edge effect, which
makes these to have large bias at the lower boundary. One possible reason for this is
that symmetric kernels may assign some weights in region of zero probability.

In this thesis, we propose some new smooth density estimators based on Poisson
distribution and nonnegative asymmetric kernels for length biased data to take care of

il



the edge effect. We investigate asymptotic behavior of these proposed density estimators
as well as their finite sample performance through extensive simulation studies, that is
more meaningful in practice. Also, we compare our new density estimators with other
estimators in literature. Further, in addition to density estimators, we also consider
smooth estimators of distribution function and some other functionals of the density

such as hazard function and mean residual life function.
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Chapter 1

Introduction

1.1 Biased and Length Biased Data

In many statistical applications the observed random variable X,, may have the prob-

ability density function (pdf) given by [see Cox (1969) and Rao (1965)]

_ w(@)f(z)
Ju(@) = . (1.1)

where /1, is the expectation Ef[w(X)], f being a probability density function as well.
The distribution of X, is referred to as the weighted distribution and w(x) is called
weight function. The data generated from model (1.1) is called biased data. The weight
function w(x), usually known, must be non-negative and must have finite expectation.
Furthermore, it can be easily seen that for any other weight function w'(z) that is
proportional to w(x), f,(x) and f,/(z) are identical. If w(z) # 1, f,(x), the probability
law for recording random variable X,, ~ f,, is proportional to f(x) with a weight w(z).
However, the main objective concerns the density function f(x). In such a case, the
sampling procedure may involve some kind of selection scheme that is related to the

weight function w(z). Since the main objective of concern is the probability law f(x), a

1



natural question arises: How can we obtain the information of original random variable
X ~ f through the information of recorded random variable X,,? This is the main task
of this thesis.

The earliest concept of distribution with weight can be found retrospectively in a
classical paper of Fisher (1934). However, a more detailed account of weighted distri-
butions was given by Rao (1965); see also Rao (1977) for a natural example of weighted
binomial distribution with w(z) = x. Muttlak and Mcdonald (1990) discuss an exam-
ple of sampling shrubs in the context of ranked set sampling where the probability of
selection is proportional to the height of shrubs. Though the technique discussed in
this thesis can be easily extended to the general weighted case, we concentrate on the
special case w(z) = x.

Taking w(x) = x, (1.1) changes into

(1.2)

where 1 = E¢(X), where Ef(.) refers to expectation with respect to the density f.
When there is no ambiguity, E() will refer to expectation with respect to the density
g. This weighted distribution is well known as length biased or size biased distribution.
The recorded samples generated from the biased distribution (1.2) are called length
biased(LB) data. Since w(z) = x is an increasing function of z, the greater the value
of X, the better chance of X being observed.

Length biased data is generated naturally in many sampling problems. An interesting
example of LB data called Waiting time paradox is given in Feller (1966). In this
example, buses arrive in accordance with a Poisson process, the expected time between

consecutive buses being 1. A passenger arrives at time ¢, independent of buses. What



is the expectation (W) of the passenger’s waiting time? Two contradictory answers

are given:

(i) The lack of memory of the Poisson process implies that E(W;) should be inde-

pendent of ¢, that is E(W;) = E(W,) = 1.

(ii) The time of the passenger’s arrival is “chosen at random” in the interval between

two consecutive buses, so for reasons of symmetry E(W;) = 1/2.

Let us analyze this example precisely. We use X, to denote the recorded length of
time interval between two consecutive buses which covers the waiting passenger. For
reasons of symmetry, the conditional expectation E(W;|X,,) = X,,/2. In the solution
(ii), it is taken for granted that X, should have an exponential distribution with mean
1, that is fx,(z) = e~*. Because of this, we have two contradictory answers. Actually,
the length of the time interval X, is recorded with a kind of “choice”, that is we require
the interval to cover the time ¢ when the passenger arrives at the bus stop. It is obvious
that, as it is said in Feller (1966), “ a longer interval has a better chance to cover time

t than a short one 7.

In his book, Feller (1966) gave the accurate density function:
fx, = ze~*. Then F(X,) = 2, which is doubled, and E(W;) = 1, just same as the
solution (i) and paradox gets answered.

From the previous example, we can also see that if we ignore the bias effect, taking
biased data as direct data, large mistakes can be made. Technically, the density function
of direct data with f(z) = e * is quite different from the density of LB data with

¥ in the shape. So, in some cases, the bias effect can not be ignored.

g(x) = we”
This example also tell us, if not disregarding the bias effect, sometimes we will use

the observed samples which are with density g(x) such that g(0) = 0 to restore the



unobservable density f(z) such that f(0) # 0. This is a main difficulty in dealing with
estimation of density for LB data as well.

Actually, the field of biased or LB data is very wide in scope. The applications of
biased data arise in diverse fields that include social sciences, physics, astronomy, market
research, reliability, epidemiology, and many other fields. Cook and Martin (1974) took
visibility bias into account in studying population density of wild animals. Partil (1984)
and Patil et al. (1977, 1978) quoted several examples regarding biased data including
those generated by PPS (probability proportional to size) sampling scheme, damage-
model and sub-sampling. Eberhardt (1978) and Muttlak and McDonald (1990) studied
the LB data generated from Line-Intercepts method in studying the density of shrub
coverage. Simon (1980) considered the length biased sampling in etiologic studies. Nair
and Wang (1989) claimed that size-bias must be considered in the studies of relation
between the volume of oil under earth and some related variables. Klein and Sherman
(1997) predicted market demand of new product using biased survey data. We can say

that if there is sampling, biased data may emerge.

1.2 Nonparametric Functional Estimation for Bi-

ased Data

Nonparametric density estimation is a useful method of extracting information directly
from data. In other words, a colorful metaphor is used to say that let the data ”sing”
for themselves. These methods are useful when we can not ascertain a useful parametric
family for modeling the data. And the assumed parametric family may not be robust

with respect to deviations from the model. As a result the area of nonparametric



functional estimation including estimation of density and related functionals is one of
the most active fields in statistical research branching in the area of biased data as
well. The basic objective of the thesis is to explore various methods for nonparametric
density estimation and their application in the area of biased data in general and LB
data in particular.

In the area of functional estimation for LB data, the first stone is set by Cox. Cox
(1969) suggested

> X < o}

i=1 X,
Fn($) - : Z:Zn 1
i=1 X,

as the counterpart to the empirical distribution function for the LB data where X; (i =

(1.3)

1,...,n) are i.i.d. random variables with density g(z) such that E(X;') < oo. This
estimator is a nonparametric maximum likelihood estimator (NPMLE) of distribution
function under this situation [see Vardi (1982)]. Actually, (1.3) has some beneficial
asymptotic properties. Under the condition E(X; ') < oo, using the Kolmogorov Strong

Law of Large Numbers [see p. 251, Loeve (1977)], we have as n — oo,

1~ 1 as. 1 1
and
I~ 1 as 1 1
— — — E(—)=—. 1.
1
The right hand side (1.4) can be seen to be equal to —F(x) because
i
B (X, <2} / Loar =2 /wf(t)dt
_ €T = — = — .
X4 ' 0 tg K Jo
Therefore
1~ 1 as. 1
- ; ZI{Xi <z} 25 ;F(x). (1.6)



i x HXi<a) | a.s.
Since we can write F),(z) = = EX o) , it follows from (1.6) and (1.5), F,(z) —
=1 X’i

F(z). Furthermore, due to the fact that F),(z) is nondecreasing, we can get the uniform

strong consistency of F,(z), i.e.,

sup |, (x) — F(x)] £ 0. (1.7)

zeRT

Furthermore, we can obtain the asymptotic normality property of (1.3), namely,
Vi(Fy(x) = F(x)) = N(0,8(z)), (18)

where 62(z) = ulfi Lf(t)dt — 2F () [ Lf(t)dt + pF?(x)] and = [7° L2dt. We will
give the details of proof later.
The first kernel density estimator was given by Bhattacharyya et al. (1988). In their

literature, they proposed the following kernel density estimator for f(z).

fap(2) Zkh r—X (1.9)

where i1 = n(d] X%)_l is the consistent estimator of p proposed by Cox (1969) and
kn(x) = h'k(h~tx) [k(-) is a kernel function]. The strategy used here is very natural.
It can be considered to use two steps to obtain it. First the observed samples are used
to build an estimator of weighted density just same as in the procedure of building
kernel density estimator with direct data. Then, according to LB model, the estimator
obtained in the first step is adjusted to an estimator of unweighted density. However,
this strategy is not very satisfactory. Jones (1991) found that, in some situations
[f(0)=0], (1.9) will cause large bias near the point z = 0 [see Figure 1.1]. This huge
bias mainly has two causes. One is that, when the kernel is symmetric as is usually
the case in the usual kernel estimation approach, some weights will be assigned below
0 which causes n=!' 3" | kn(z — X;) [an estimator of g(z)] usually does not equal 0 at

6



the boundary when sample is finite; the other is the term 2!, which tends to infinity
near the boundary. Combining these facts, Bhattacharyya et al. estimator blows up

near the boundary under certain circumstances and its graph near the border looks like

a vertical line [see Figure 1.1].

0.08
0. 06

0. 04

B

0.02¢

Figure 1.1: Plots of density function of x%, and its Bhattacharyya et al. kernel estimator.

Solid line represents true density and dash line represents the estimator.

Jones (1991) presented an alternative kernel density estimator based on the theory of
Cox (1969). This alternative strategy is to smooth the distribution function estimator
for F(z) = [*__ f(t)dt, as given by Cox (1969) and then use its derivative as the smooth
estimator of f. Jones (1991) used this alternative strategy of directly estimating f(z),
resulting in the following kernel density estimator:

fos(x) = n_l,&i X e (z — X5). (1.10)

i=1
In his studies, Jones (1991) found that the integrated mean square error (IMSE) of
(1.10) is asymptotically less than that of (1.9). Moreover, Wu and Mao (1996) showed

that the mean squared error (MSE) of (1.10) is asymptotically lower than that of (1.9)

under the minimax criterion.



However, if the kernel function is symmetric, the estimator (1.10) will assign some
weights to the undesired region where the value of z is negative [see Figure 1.2]. [This
also holds for the Bhattacharyya et al. (1988) estimator.] This may cause large bias in

the neighborhood of the point z = 0.

12.5 15

Figure 1.2: Plots of density function of x3 and its Jones kernel estimator with Normal

kernel. Solid line represents true density and dash line represents the estimator.

Both of the previous two density estimators have a common defect at the boundary
caused by symmetric kernels. This problem is not specific to LB data. It has been
recognized in density estimation for nonnegative random variables using direct data
[see Silverman (1986)]. In order to overcome this defect, many methods have been
proposed particularly in recent years.

Motivated by Hille’s approximation lemma [see Lemma 1.1], Chaubey and Sen (1996)

proposed a smooth density estimator for nonnegative random variables.

Lemma 1.1 If u(z) is a bounded, continuous function on R™, then, as X\ T oo,

e u(k/N) (@A)F /K — u(x)

k>0

uniformly in any finite interval J contained in RT.
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Chen (2000) obtained two density estimators with asymmetric gamma kernels instead
of traditional symmetric kernels. Using gamma kernels

£on(@) 1, —t/b

K, mpt) = ——— 1.11
po( ),b( ) be(l‘)F(pb(x)) ( )
the density estimator proposed by Chen (2000) has the form
f@)=n""Y" Ky @a(X) (1.12)
i=1

where { X/} | denote i.i.d. regular direct data. In his literature, Chen (2000) gave two
choices for p,(z). One is

po(@) = /b+1 (1.13)

which leads to density estimator f(z); the other is

x/b if x > 2b;
py(x) = (1.14)
;l(x/b)Q 41 ifze0,2).

which leads to density estimator fo(x). And he also showed that the MISE of f, is
lower than that of fl.

Inspired by Chen’s idea and using inverse Gaussian density

VA Ay m
K (y) = Wexp (—% (E —2+4 ?)) Yy >0 (1.15)

and reciprocal inverse Gaussian density

A A 1
Kricm(2) = VA exp (—% (mz -2+ —)) ,z2>0 (1.16)

21z

as kernels, Scaillet (2004) proposed the following two density estimators

fra(w) =n7! Z Kra@a/m)(X)) (1.17)
i=1



and

fric(z) =n""! Z K Ric(1/(a—b),1/0) (X7).- (1.18)

i=1

Using generalized Hille’s lemma [see Lemma 1.2], Chaubey, Sen and Sen (2007)
suggested a density estimator with asymmetric weights generated from gamma function,

extending the estimator in Chaubey and Sen (1996).

Lemma 1.2 Let u(t) be any continuous and bounded function. Gy, n=1,2,... is a
family of distributions with mean p,(x) and variance h?(z). Then we have as p,(r) — x
and hyp(z) — 0

u(x) = /00 u(t)dGyn(t) — u(x).

[e.9]

The convergence is uniform in every subinterval in which h,(x) — 0 and a(x) is uni-

formly continuous.

Although Chaubey, Sen and Sen (2007) and Chen (2000) both use asymmetric gamma
density function as kernels, the density estimators proposed by them are quite different
in form. However, they both can be obtained by using generalized Hille’s lemma in two
different ways. The density estimators proposed by Chaubey Sen and Sen (2007) are
the derivatives of smooth estimators obtained by smoothing empirical function using
Hille’s lemma; the density estimators in Chen (2000) and Scaillet (2004) can also be
obtained by using generalized Hille’s lemma to smooth underlying density.

Besides the literature we mentioned above, there are also many other contributions
made by statisticians to functional estimation for biased data. Vardi (1982) obtained
the nonparametric maximum likelihood estimator for unweighted distribution function
based on two sample sets, one from unweighted distribution, the other from weighted

distribution. Cox’s estimator, as a NPMLE for unweighted distribution function ob-
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tained only by weighted sample set, is a special case that considered by him. Vardi
(1985) generalized his model to selection bias model. Wu (1996) proposed a nonpara-
metric maximum likelihood smooth estimator for biased data using kernel method.
Jones and Kaunamuni (1997) used fourier series method to estimate unweighted den-
sity and they found that their estimator perform better than those estimators in Bhat-
tacharyya et al. (1988) and Jones (1991). Lloyd and Jones (2000) proposed a nonpara-
metric density estimator for biased data with unknown weight function. In their studies,
the weight function is treated as a selection probability. A cross-validation method for
selecting smoothing parameter in kernel density estimator with selection biased data
was proposed by Wu (1997). Winter and Foldes (1988) derived an Kaplan-Meier type
estimator for censored biased data. Ufa-Alarez (2002) studied its asymptotic proper-

ties.

1.3 Motivation of the Estimators

The examples of biased data present themselves mostly as non-negative data where
the traditional kernel methods of density estimators may not be appropriate. Recently,
as mentioned previously, there have been significant advances in the area of density
estimation for non-negative data. We would like to incorporate the new estimators for
biased data in this thesis that is mainly motivated by the use of Hille’s lemma and
Cox’s proposal for estimating the distribution function for the biased data. Chaubey
and Sen (1996) proposed a smooth estimator of the distribution function for the i.i.d.
case using the Hille’s lemma that incorporates Poisson weights for functional smoothing

of non-negative functions. The empirical distribution function used for the i.i.d. case

11



may be replaced by Cox’s (1969) estimator of the distribution function for the LB data.
The recent generalization [Chaubey, Sen and Sen (2007)] of Chaubey and Sen (1996),
using weights generated by non-negative asymmetric kernels such as gamma kernels,

may be adapted to the case of LB data as well.

1.4 Objectives

Since the LB data are commonly non-negative, the use of traditional kernel estimator
may not be appropriate; it may cause large bias at the boundary. It is expected that
the methods developed in Chaubey and Sen (1996) and in Chaubey, Sen and Sen
(2007) can be satisfactorily adapted for the LB case and thus we have chosen to study
these in the present thesis. Actually, for LB data, there are mainly two strategies to
estimate unweighted density. One is, starting from Cox’s estimator, to directly estimate
unweighted density [as in Jones (1991)]; the other is to estimate weighted density first
and adjust it to estimate the original density [as in Bhattacharyya et al. (1988)]. Is
there a relatively better strategy or do the two strategies produce similar results? We
plan to find a answer to this question. In order to compare the proposed estimators, we
will simulate for some standard distributions and use the mean integrated squared error
(MISE) as a global measure of estimator’s behavior and mean square error (MSE) as a
local indicator of estimator’s performance. Comparison between our proposed density
estimators and other density estimators with asymmetric kernels will be carried out as
well. Our plan includes investigating estimators of other functions, such as, distribution
function estimator, hazard function estimator and mean residual life function estimator

also.
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1.5 Organization of the Thesis

This thesis is organized as follows. In Chapter 2, based on Cox’s estimator for dis-
tribution function, we propose some distribution and density estimators with Poisson
weights or asymmetric weights and study their asymptotic properties. Motivated by
Chen (2000) and Scaillet (2004), we also obtain some density estimators with asym-
metric kernels for LB data which are different from our proposed estimators in form.
An alternative method starting from the usual empirical distribution function based
on observed samples is used in Chapter 3 to find some new density and distribution
function estimators with Poisson weights or asymmetric weights. Asymptotic proper-
ties of these estimators are investigated as well. Through extensive simulation for some
standard distributions, Chapter 4 will show how the smoothing parameters in density
estimators are selected and how each density estimator performs globally and locally.
We dedicate Chapter 5 to the estimators of some functionals related to density and dis-
tribution functions and their asymptotic properties. These functionals include hazard
function and mean residual life function. Dependency or censoring, as some situations
frequently happening in statistical applications, may emerge with biased data at the
same time. In future, we are planning to consider these situations as well. The details

are contained in Chapter 6.
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Chapter 2

Smooth Estimators of Density and
Distribution Functions Based on Cox’s

Estimator

2.1 Introduction

In this chapter, we will use Cox’s estimator (F},) of the distribution function proposed
for the LB data to obtain some smooth estimators of the underlying true density and
the corresponding distribution function. Motivated through Hille’s lemma and Cox’s
proposal, it is easy to obtain smooth estimator of a distribution function in the length
bias case similar to that obtained by Chaubey and Sen (1996) for the i.i.d. direct data.
Since the smooth estimator is differentiable, it is reasonable to use its derivative as an
estimator of the underlying density. We will consider Hille’'s lemma that uses Poisson
weights as well as its generalized version that uses weights generated by asymmetric ker-

nels. Thus, based on F},, we get two kinds of density estimators, the first using Poisson
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weights and the other using weights from asymmetric kernels. In Section 2.2, we will
study theoretical properties of smooth estimators with Poisson weights, such as strong
consistency and asymptotic normality. The smooth estimators include distribution and
density estimator. Similar theoretical properties of estimators with asymmetric kernels
are investigated in Section 2.3. In this section, a perturbation and boundary correction
are applied to density estimator. They will effectively enhance the accuracy of density
estimator under certain circumstances. In Chaubey et al. (2010) extensive simulation
studies have been carried out to compare the density estimators using Poisson weights
with kernel estimators proposed by Bhattacharyya et al. (1988) and Jones (1991). The
study in the above paper demonstrates that the kernel estimators with symmetric ker-
nels do not perform very well for LB data. In order to make a fair comparison between
our proposed estimators and other estimators [see Chapter 4], we only consider density
estimators with asymmetric kernels in this thesis. Therefore, besides our proposed esti-
mators, we will apply the idea of Chen (2000) and Scailltet (2004) also to obtain some

other density estimators with asymmetric kernels in Section 2.4.

2.2 Estimators of Distribution and Density Func-

tions with Poisson Weights

2.2.1 Smooth Estimator of Cumulative Distribution Function

The raw estimator (1.3) [Cox’s estimator for distribution function] is a step function
and not differentiable. In order to obtain a smooth estimator with differentiable prop-

erty, we apply Lemma 1.1 by replacing u(-) with F,(-). Since F,,(.) is not continuous
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function, this lemma is not directly applicable, but may be considered as a motiva-
tion for the suggested estimator. As we investigate the convergence properties of the
proposed estimator, it becomes clear that it provides an stochastic approximation to
the integral in Lemma 1.1 that replaces u(z) by F(z), which is a continuous function.
The combination of Cox’s estimator and Lemma 1.1 results in the following smooth

estimator of distribution function, namely,
Fo(w) = pr@An) Fu(k/An) (2.1)
k>0
where pg(u) = ’Z—Te‘“ and A, such that, as n — oo, A\, — o0o. Actually, A, controls the

smoothness of the smooth estimator. A stochastic choice of \,, is proposed by Chaubey

and Sen (1996, 1998) as follows.

n
max{Xy,..., X,}

n

if X7 has an infinite support
Ap =

if X has a finite support
Xn—r, +1:n loglogn

where r,, = o(loglogn), provided that F(X;) < oco. Chaubey and Sen (2009) provide
a more comprehensive numerical study for the choice of A, in the context of density
estimation for the .i.d. data. We use their approach for the LB data while discussing
the smooth density estimation later in this section.

Similar asymptotic results as given in Chaubey and Sen (1996) for the smooth es-
timator Fn(x) in the non-weighted case can be established. These are given in the

following theorems. First we establish the uniform strong consistency.

Thoerem 2.1 If 0 < E(X; ") < oo, F(x) is continuous (a.e.) and \, — oo ,then, as
n — oo,

|Fule) = F(@)l| = sup {|Fu(z) — F(z)|} %5 0

r€ERT
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Remark 2.1: In Theorem 3.1 of Chaubey and Sen (1996), additional condition on \,,
namely that n=1\, — 0 is assumed that is not required for the above theorem to hold.
It may be noted that the estimator in Chaubey and Sen (1996) uses truncated Poisson
weights, where such a condition may be necessary.

Next, we discuss the closeness of (2.1) to the raw estimator F),(x). This also helps
in establishing the the asymptotic distribution of the smooth estimator. Along the
lines of the proof of Theorem 3.2 in Chaubey and Sen (1996) using Lemma 2.1 with

140

(logn) "

[N

b, = n~ [see also the treatment in Sen (1984)], we establish the following

theorem.

Thoerem 2.2 If B(X;?) < o0, A\, — o0, and n~'\, — 0, f(z) is absolutely continu-

ous with bounded derivative f'(x) on R, then for some § >0, as n — oo,
|Ep(z) — Fu(z)|] = O(n=*/*(logn)'*?) as. Vo € R*. (2.2)
Note that
VilFu(@) — F@)) = Va(Fa(@) — F(@)) + Va(Faz) - Falx)
and from Theorem 2.2,
Vn(E,(z) = Fy(x)) = O(n~Y4(logn)'*?, as..

Then we can see that the asymptotic law for Fj,(z) is same as that of F},(z) under the
condition of Theorem 2.2. Therefore to study the asymptotic distribution of Fn(;r), we

just need to find out the asymptotic distribution of F, (z). We can write F,,(z) as

%2?21 X%-[{Xz’ < $}
Fn(l’) = 1 Zn 1 .
n 24i=1 X,
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By the strong law of large numbers, we have

—Z—I{X <z} F(z)/p
and
%ZXLZ iy 1/p.

So we can expand F,(z) as

n

> HX <0} - Fla)

i=1

Fu(z) = F(z)+p — pk(x

+0(( 3 X < 2} = Fla) )
A I S0 - F@/m Y~ 4 (5D ¢~ 1))

n - n

=1 =1 i=1

Note that since the last term in above equation has an order op(%) the asymptotic

distribution of \/nF,(z) is same as that of

n

35 (e -25)

i=1 i

(2.3)

Therefore, to obtain the asymptotic distribution of F,(z), it is sufficient to consider the

):o

asymptotic distribution of (2.3). For the term (2.3), we have

( [%:( X <0} ui’é&:))

and




where 0%(z) = p[ [, 1 f(t)dt — 2F(x) [ 1 f(t)dt + pF*(x)] and = [}° I t)dt Then we
have
Vi(Fy(x) = F(x)) = N(0,8(z)),
Therefore we have following theorem.
Thoerem 2.3 If E(X;?) < 00, A\, — o0, and n~'\, — 0, f(z) is absolutely continu-

ous with bounded derivative f'(x) on R, then, as n — oo,

Va(F,(z) — F(z)) -2 N(0,8%(x)),
specifically
il / (0t~ 2P () / Lt + i)
where i = Ey().

From Theorem 2.1 and 2.3, we see that the some of the key asymptotic properties of

the raw estimators (1.3) may be exhibited also for the smooth estimator (2.1).

2.2.2 Smooth Density Estimator

Since fn(x) converges strongly to F'(x), it is reasonable to believe that their derivatives

should be close. Since we have

dpr(Ax) _

22— Alp(A) — s (W),

for k > 0, where we interpret p_;(.) = 0, the derivative of F,(x) is given by

dﬁ:;f) — [Zpk(Anx)Fn( ) 2 pict(At) <f )]

k>0 k>1

This simplifies to

u(z) /\n;pk()\nx) {Fn (k;l) ~ I <>\ﬁn)} '
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Hence, our proposed smooth density estimator is

Fo@) = 2 3 pin) [F (k : 1) _F, (Aﬁ)] | (2.4

k>0

as the smooth estimator of density f(x). We also obtain the asymptotic properties of

(2.4) as follows.

2.2.2.1 Asymptotic Properties of f,(z)

The strong consistency of fn() is provided in the following theorem. Note that the

moment condition used in this theorem implies the boundedness of the density f(z).

Thoerem 2.4 If B(X;?) < oo, f'(z) is bounded on R* and \, = O(n®) for some

0<a<1, then, as n — o0,

1fala) = f(2)] =0

In order to obtain the weak convergence of f,, we need f’ (x) to satisfy a Lipschitz

order o condition. That is, for some o > 0, there exits a finite positive K, such that
If'(s) — f'(t)] < K|s —t]*, for every t, s € RT. (2.5)

If A\, = O(n?/%), MSE(f,(x)) achieve the lowest order [see Remark 2.2]. We establish

the following representation theorem.

Thoerem 2.5 If B(X;?) < oo, A\, = O(n?/®)(nonstochastic) and (2.5) holds, then,
for a compact set € C R,

{(n2/5[fn(x) — f(x)] — % '(z)),z € C} 2, Gaussian process

(m23) "2 f(2)8, bz = O for

with mean zero and covariance function v28,; where > =

N =

x#tand 1 forx =t and § = lim (n"Y/5A\?)

n—oo
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Remark 2.2: In order to understand the order of bias and MSE of the density es-

h

timator, we see that under condition (2.5) for A\, = cn” using the steps in proofs of

Theorems 2.4 and 2.5, we have

Bias®(Ju(@)) ~ (' (x) /2P~ (2:6)
and
V(al) = 5y 5 f @i, (2.7)

then we have

C

MSE(fu(w)) ~ ¢ (f/(x)/2)*n 2" 4+ £ (x)ns ! (2.8)

2V mad

When )\, = cn?/®, (2.8) achieve the order O(n~%/?), which is same as classical kennel
estimators. In order to achieve the same order O(n~*°), Poisson weights estimator just
need the information of first derivative of density. However, kennel estimators require

the existence of second derivative [see Jones (1996)].

2.2.2.2 Proof of Theorems

First, we will introduce an important lemma, which plays a critical role in the proof of

strong consistency of f,(z).

Lemma 2.1 If E(X;?) < oo, f'(t) is bounded on R* and b, — 0, then for a sequence

{bn}n>1 such that 0 < b' < O(n'=7)(0 <y < 1),
sup sup {|F,(t+ B) — F.(t) = F(t+0) + F(t)|} = O(bén‘é(logn)lw) a.s.

teRT|B|<bn

where 0(> 0) is arbitrary.
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In order to prove Lemma 2.1, we need the following two lemmas. For convenience, we

denote

Uit,3) = <=1{min(t,t+5) < X; < max(t,t + 5)}

—|Ft+8)—F®t)| (i=1,...,n) (2.9)

Lemma 2.2 If E(X[?) < oo, then, for anyt >0 and t + 3 >0,
1 n
— E Ui(t, 3) = o(n~?(logn)1+9/2) q.s. (2.10)
n
i=1

Proof of Lemma 2.2: In order to prove the lemma, we need the Kolmogorov’s Propo-

sition A in M. Loeve (p. 250). We state the proposition here.

2(X
Proposition: If the integrable r.v.’s X,, are independent, then Z—U <2 ) < o0,
an
. n ESTL a.s. n 2 .
a, 1T oo, entails ———— ——= 0. where S, = Y " X; and 0°(X;) means the vari-
an

ance of X;.

Under the assumption E(X[?) < oo, for any ¢t > 0 and t + 3 > 0, we have that

- o2(U,(t, > E(X?
Z (Un(t, 8)) SZ (X, %)

< 0.
— (nl/Q(logn)(”@)/?)Q o (nl/Q(logn)(H")/?f
By the Proposition of Kolmogorov , we have
Z?:l UZ (t7 ﬁ) a.s.
W2 (logn) 02 (2.11)

It is obvious that

RS 12 a+0)/2_ i Uilts B)

- ; Ui(t,3) =n~"*(logn) 2172 (Tog )02 (2.12)

By (2.11) and (2.12), we obtain the desired result.
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Lemma 2.3 If E(X;?) < oo and f'(t) is bounded on R™, then there exits d > 0 such
1
that, for anyt >0,0 < b' < O(n*)(0 <~ < 1), =b, < < by, D = b2n2(logn)**?,

we have

P{] En:Ui(t,ﬁﬂ >2dD} < O(n™*). (2.13)

The order O(n™*) does not depend on t and (3.

Proof of Lemma 2.3: First we should verify several facts. For any 0 > 2, we have

E[ Ut B < (pllogn) )", (2.14)

since
Ld 5 5 1 P é
i=1 i=1

and, by Lemma 2.2,

1 p
};Z Ui(t, B) = o(p~"*(log p) "*7?) a.s.

i=1

At the same time, we have
E(x.(t,8))* = E(}“(—ZJ{ min(t, t + 8) < X; < max(t, t + 3)})
i
—|F(t+8) = F(1)]”

t+0 a:
= \/ Mf —|F(t+8) — Ft)P (2.15)

= 0(|8]). (2.16)

The conclusion of the last step follows because F(X;?) < oo and that f/(z) is bounded.
Since, |f(x)/z| = [f'(n)| < M, (n € (0,z) and M is finite), the first term of (2.15) has
an order O(|3]). And since f(x) is bounded, the second term of (2.15) has an order
(5 .
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So, using (2.16) and the independence of U;(t, 3)(i = 1,...,n), we can also establish

(2.7) in Lemma 2.1 of Babu and Singh (1978), that is
E(&F) < O(pbn). (2.17)

Substituting (2.4) in Lemma 2.1 of Babu and Singh (1978) with (2.14), taking 6 = 60/~
and p = [n7/?], and following the proof of Lemma 2.1 of Babu and Singh (1978), we can

obtain the result.

Remark 2.3: The second term exp(—8D?*n~1b ') in (2.1) of Babu and Singh(1978)
disappears in our inequality, because under our choice of D, this term is much smaller

than O(n™?).

Proof of Lemma 2.1 : Let
Hn(taﬁ) = Fn<t+ﬁ) _Fn(t) - F(t+ﬁ) +F<t>
Since F,(t + () — F,,(t) can be expanded as

EAt+0)—Faft) = Y R H< Xo<t45)
i=1 """

n

P+ ) - FOIG Y & - 1)
Vo([F(t+5) ~ FOI( .nl £o1) as, @19
we have
[ Hy (8, B)] < Jna(t, B) 4 Jn2(t, B) + o(Jna2(t, 3)) a.s. (2.19)
where
i (t, B) = %} i Ui(t, 8)| (2.20)
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and

n

Juolt,8) = |[F(t+ 8) = FO)(= S -l (2.21)

n <
For (2.20), first we consider that ¢ is fixed. Using Lemma 2.3, following the proof of

Lemma 1 of Bahadur (1966), we can claim that

sup {|Ju1(t, )|} = O(bin~% (log n)™**) a.s.

18]<bn
1
Furthermore, since O(b2n 2 (log n)*?) does not depend on ¢ and f(¢) is bounded, using
the same technique as in Sen and Ghosh (1971), we can extend the result for ¢ to the

whole real line, that is

sup sup {|Ju(t, )|} = O(bén’%(log n)'*%) a.s. (2.22)

tER+‘B|Sbn

At the same time, in Lemma 2.2, let t = 0 and § — 400, then we have

n

1
(=D, % — 1) = o(n”*(logn) ") a.s. (2.23)

i=1

Since f(t) is bounded(because E(X;?) < 00) as well, we have

sup sup |F(t + 3) — F(t)| = O(by). (2.24)
teRt|5|<bn

For (2.21), by (2.23) and (2.24), we have

sup sup {|Jua(t, B)[} = o(bun 2 (logn) " *972) as. (2.25)
teRT|B|<bn

By (2.19), (2.22) and (2.25), we can establish the Lemma 2.1.

After all of these preparations, we can prove the Theorem 2.4.
Proof of Theorem 2.4: By the proof of Theorem 4.1 of Chaubey and Sen (1996),
we just need to show that, when ¢ belongs to some finite interval [0,C], we have (2.4),
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since we can deliberately choose C such that when ¢ belongs to interval (C,+00), fn(t)
and f(t) can both be made sufficiently small.

We can write

fa@) = M manr ) — R
S E(S) - A - PO+ R
= Tnl_(m) + Tha(z). (2.26)

Using Lemma (2.1) by taking b, = 1/\,, we have

E+1 k E+1 k
F, CFR(Zy - F + R
(5 — i) = R R
= O\ Y*n7Y2(logn)'*?) a.s. (2.27)

By (2.27) and the fact that > pi(z\,) = 1, we have
k>0

sup {| T2 ()|} = ONY?*n=Y2(logn)'*?) a.s. (2.28)

rzeRT

which tends to 0 almost surely as n — oo provided that A\, = O(n®*)(0 < a < 1).
At the same time, according to the proof of Theorem 4.1 of Chaubey and Sen (1996),

under the assumption of boundedness of f'(x), we have

tES[lé%]{’Tnl(l') — f(z)]} =0 a.s. (2.29)

By (2.28) and (2.29), we obtain the theorem. The proof is complete.

Proof of Theorem 2.5: By (2.5), we have

fulz) = f(z) + if'm  To(z) + O, (2.30)
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Using Taylor’s expansion which is similar to (2.18), we can write

) = TR ek <x <50 - -

k>0 i=1

A n@ANPS) ~ PGS 4 = Dol >4 -1
= Tus(x) — Thulz) + 0(% % —1) as (2.31)

For the leading term T,3(x), following the proof of Theorem 4.2 of Chaubey and Sen

(1996), we can show that

V(Ths()) ~

RS

(mz®) "2 f (@) (N /n) (2.32)
and, for s # t, as n — o0,

Cov[Tys(s), Tos(1)] = 0(%). (2.33)

1

n

Yoy % —1) = o(n"Y?(log n)1+9/2) the order of T)(x)

is determined by the order of T,3(x).

Moreover, since T4(z) = O(

From (2.30), we can see that the asymptotic normality of T),2(x) leads to the asymp-
totic normality of f,(z). by proper choice of \,. By (2.30), (2.31), (2.32) and (2.33),
following the proof of Theorems 4.1 and 4.2 of Chaubey and Sen (1996), we can complete

the proof of the theorem.
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2.3 Estimators of Distribution and Density Func-

tions with Asymmetric Kernels

2.3.1 Smooth Estimator of Distribution Function with Asym-
metric Kernels

As in Chaubey, Sen and Sen (2007), let @Q,, (z) be a family of distributions on [0, c0)
with mean 1 and variance v2 where v, — 0 as n — oo. Substituting F,,(¢) and Q,,, (t/x)

for u(t) and G, (t) in Lemma 1.2 respectively, we have the following smooth estimator

of F(x):
Ff(x) = / F,(£)dQ,, (t/z). (2.34)
0
An alternative formula of (2.34) is given by
noo 1 X
Fif(z)=1- izt o Q”f( - ), (2.35)
Zi:l X,

where @), is a family of distributions as described earlier.

2.3.1.1 Asymptotic Properties

By the uniform strong convergence of (1.3)

sup | F, (z) — F(z)] %5 0

x>0
and the form of Ff(z) (2.34), it is casy to obtain the uniform strong convergence of

FF(z) as follows.

Thoerem 2.6 If0 < E(X;') < oo and F(x) is continuous (a.c.), then, as v, — 0,

IE (z) = F(a)]| = sup {|F/ (z) = F(a)]} “> 0

reERT
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The asymptotic normality of Fi¥(x) is given by the following theorem.

Thoerem 2.7 If E(X;?) < oo, /nv? — 0, f(x) is absolutely continuous with bounded

deriwative f'(x) on RT, then, as n — oo,

where
5(z) = pl / (0t~ 2P () / L+ i)

where fi = Ef(X%)

Proof: First, by (2.35), we write

Ff(z) = 2=" Ty T zll (2.36)
then we can expand ﬁn*(x) as
Fi) ~ F@)+ (B 5= Qu () - Fla))
11 1
_MF(:E)(E 2 —Z — ;)
— P+ 3 - Q5D - F. (237)
Let
&= 20— 0uEH - P 239

In order to obtain the theorem, it is sufficient to show that, as v, — 0, E(y/n&1) — 0

and V(&) — 62(x).
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u
Be) = [ H0-u) - F@lsa
_ / 1—Qvn (t)dt — F(z)
= /OOOF Qvn t @ - F( )
_ / (29)gun (4)dy — F(2). (2.39)

Using the Taylor’s expansion of F'(zy) at the point y = 1

2* f'(nx)

5 (y —1)° (2.40)

Fley) = Flx) + 2 f(x)(y —1) +

where 7 is between 1 and y, and the fact that f’(z) is bounded, we can show that

E(&) = O(v;). (2.41)

This means that E(y/né) — 0

On the other hand, we have

BE) = B(gh-@u(5) - F@)
= Blal-a.(G1)
2F@E(G - ) + PREL) e

Furthermore, we have

plei-u ) = u [ 10— g, wora
_— / HON = Qu (t/2))g0, (1)

_—" /Omm D= Qo gy (243)

dt
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where H(z) = [ i gt dt. Using the Taylor’s expansion of H(xy) with respect to y at

the point yp =1

H(zy) = H(z)+=z

— H(@)+af M)y —1) (2.44)

where 7 is between 1 and y and 7 € (0,2n). In the step above, we use a fact f(0) =0,

because E(5z) < oo. Since f'(x) is bounded, we have
1

2
E(L

Ll = QuEP) = wi

1o / 1= Qoo W)y — Dy).  (2.45)

Note that

o / QoW )y — dy)) < OE /Oooqvn<y>|y—1|dy>

< 0Cl[ a1
— O(v), (2.46)
s0, we have, as v, — 0,
Bl - Qu (GO - uit(o) (247
Similarly, we have
P B~ Qu (D) = wF@) [ Ha, )y

= 2uF(z)H(x)+ O(/OOO Qo (Y)Y — 1|dy)

— 2uF(x)H(z). (2.48)
By (2.42), (2.47) and (2.48), we have

E(&) — plH(x) - 2F(2)H(2) + iF*(2). (2.49)
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The proof is complete.

2.3.1.2 MSE

According to the proof of Theorem 2.3, we have

2

Bias(Ff(z)) = =

= @)+ ofe?)

and
V(Fr @) =Y / (0t~ 25 () / L0t + @) + o).
So

MSE(Ff(z)) = / —f(t)dt — 2F (x / —f(t)dt + pF?(x)]

T f()v+0( + )

2.3.2 Density Estimator using Asymmetric Kernels

We we can use the derivative of (2.35)

LY g (%
fula) = = Zizqu%( :

as a smooth estimator of f(z) where q,,(t) = £Q,, ().

(2.50)

(2.51)

(2.52)

(2.53)

However, (2.53) may not be defined at x = 0, except in cases where lim, g fn(az)

exists. Moreover, this limit is zero, which is acceptable only we are estimating f(z)

with f(0) = 0. This situation also occurs in estimating density with direct data [see

Chaubey, Sen and Sen (2007)]. In their paper, they considered a perturbed version of

the density estimator, replacing Q. (./z) by Q. (./(x +€)), €, | 0 as n — oo. This is

equivalent to choosing G, such that the corresponding mean is « + €, — z and the
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variance is (z + €,)*v2 — 0. Motivated by their idea, the perturbed version of (2.53) is

given by
1 Zn X
~ Tten 2 =1 qvn(m gn)
filw) = S (2.54)
i=1X,
2.3.2.1 Asymptotic property of f(z)
Thoerem 2.8 If
A. f(+) is Lipschitz continuous on [0,00) and E(X; ") < oo;
B sup,so Jy iz (e o ()]0t = o (558%) ™)
. $1D 0 18, (1) < 50
D.v,—0,e,—0asn— oo,
then we have
sup | /¥ (z) = f(z)] #= 0
x>0
as n — 0o.
Proof: We can write
- d 1 t
iy = — [ Fu(t v dt
f@) = o [ RO )
d. . 1 t
N O . dt 2.55
R e e (2.59)
Using the uniform strong convergence of F),(z)
sup |Fy,(z) — F(z)| £ 0. (2.56)

x>0

and following the proof of Theorem 3 of Chaubey, Sen and Sen (2007), we can obtain

the theorem.
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Thoerem 2.9 If
E. f(z) is Lipschtiz continuous on [0,00) and E(X|?) < oo,
F. L(g) = hmOUn o (qu, (1))2dt eists;

G1. for 1 <m <3, [~(qu,(t)™dt = O(v'™™) as v — 0;

G2. with ¢, , (t) = %,1§m§3, and as v, — 0,
yUn 0 vnw
(2) Homon = by, (D)dl =1+ O(vy)
o

(vit) sup / t4+5qfn7vn(t)dt < 00, for some § > 0, € > 0;
0

O<vp<e

Then

(a) If nv, — oo, nvd — 0, nv,e2 — 0 as n — oo, we have

V() — £@) = N0 @) fora > 0

(b) If nv,e2 — oo and nv,elt — 0 as n — oo, we have
Ve (f,(0) = f(0)) — N(0, I(q) £(0)).

Proof: (a) Using Taylor’s expansion, we can write

1 — le=1 1 1 1 1
=S V@)Y ) oY -
nz f(:c)(n Xi M)+0(n. i M>
=1 =1 =1
where
o X
Y;n: )
($+€n)2qn($+€n)

For x > 0, since, by the Law of the Iterated Logarithm,

1 a.s. a.s.
lim sup[y/nv, (= Z— — ; = O(y/vn loglogn) = 0,

n—oo
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it is sufficient to consider the first term in (2.57). Under the conditions of the theorem,

we can show that, as v,, — 0 and ¢,, — 0,

E(Y) = 0(v;,?) (2.59)

n

and

pflz)

wB(VE) = Blo) L

(2.60)

Since Y, is nonnegative, we have

Z?:l E|Zin|3 < E[Yln + E<Y1n)]3

Do E(Z2)PR — Valvar (Vi)
E(Y]) +3E(YE)E(Yin) + 4(E(V1in))?

Vi[E(Y]) = (B(Y1n))??/?

By (2.59), (2.60) and (2.61), we can claim that

(2.61)

S O -

Then by the Theorem 7.1.2 of Chung (1974), we have

> izt Zin
(Zn 122 ) - N(()?l)
=1 “in

This means

V[ S Yin = B(in)] = N (0, (o) U2}

(2.63)

Further,

VA |B() = f@)] = Viw] [+ e) = Sl 0

< \/nan/ |(t — 1)z + te,|tqn, (t)dt
< \/nvna:L/ |t — 1|tqy, (t)dt + nvnsiL/ t2q,, (t)dt
0

0

< Vil [ (= D a0 P, a

0

+0(\/nv,e2)
= O(y/nv3) + O(y/nv,e2) (2.64)
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Using (2.57), (2.63) and (2.64), we can establish the part (a) of the theorem.

(b) Similar to (2.57), we have

n

:%;E%_f(o)(%;)%_%)‘f‘O(% M%—%) (2.65)
where
n (gi)gqun(g). (2.66)
We can show that
E(Y;3) = O(e,”) (2.67)
and
exvnB(Yi7) — Ix(q) £(0). (2.68)
Let

Zh = 2 v, - BV (2.69)

Then using (2.67), (2.68) and a similar inequality to(2.61) , we can claim that

S B2 I
s ek = e

Then by the Theorem 7.1.2 of Chung (1974), we have

) — 0. (2.70)

i1 Zin
Sy = NOD).

This means
Vnv,e2 [~ Z E(Y{,)] — N(0,15(q) £(0)). (2.71)

Furthermore,
Vol |[E(Y],) = F(0)] = v/nune]
0
< nu,e2 L /OO |len|t?q, (t)dt
0
= V@ Llea(v? + 1)
= O(y/nved) (2.72)
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Using (2.65), (2.71) and (2.72), we can establish the part (b) of the theorem.
Remark 2.4: Just as in Chaubey, Sen and Sen (2007), in this thesis we consider g, (x)

to be a family of gamma density such that

1
4, (2) = o a e

BT (a)
where o = U% and af = 1.
2.3.2.2 AMISE

In order to obtain MSE of f, we first compute the bias of f+. According to (2.57),

we have

Bias| [ (x)]

Q

- [ () st s
- [ () s - 1)

Let t/(x 4+ €,) = y, then

Bias(ft (z)] = / " Yo, (0) Iyl + )y — F(2).

Note that we have

fly@+e)] = flete)+(@+ea)f(z+e)ly—1)

i (z +26n)2
= f@)+ef (@) +af(v)(y—1)

@)= 1D+ o (5= 1) + ofen).

'z +e)(y—1)°+o(y —1)°
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Bias[fF(z)] = eof'(z)+xf'(2) /OOO y(y — Daw, (y)dy
+%2f”(a:) /OOO y(y = 1)°au, (y)dy + o(vy: + €5)

= e f (x)+af(x)T) + %Qf”(x)TQ + 0(v2 + €,).

Furthermore, we have

n - / v = 12 (9)dy + / (v - Vg, (9)dy

_ 2
= v,

and

n - / (= 1 (y)dy + / - 10, )y

= v, +o(v),
So
B 2
Bias[f(z)] = (202 + &) f' () + “% F(@)02 + o(v? + £,). (2.73)
By the proof of Theorem 2.9, it is easy to show that

L(q)pf(z)

Var[f(z)] = o e + o((nvy) ™). (2.74)

By (2.73) and (2.74), we have

r+ _ 2 / ? " 212 IQ(Q)N f(l’)
MSE[f; (2)] = [z, +ea) (@) + 5 f(@)p]” + non (@ 1)

So

Atself) = [l +e) )+ S e 2O T

nu,

f(z)
(x +ep)?

(2.75)
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For a given f, the above expression may be technically used to find the optimum
value of the smoothing parameter. However, the expressions are too complicated and
in practice we use them for cross validation to obtain data dependent value for the

smoothing parameter(s).

2.3.3 Corrected Density Estimator

Note that if we integrate (2.54) from 0 to oo, we will obtain

n o Qua(Xi/en)

* L lin R
/0 fi(x)de = S XL ) (2.76)

If €, # 0, (2.76) is not equal to 1. In this case, f;I is not a real density estimator which
is integrated to unity. In order to overcome this defect, we divide ;7 (z) by [ f, (z)dz,

which leads to a corrected estimator

£ ( ) — (x+€7l)2 Zi=1 qvn<$+€n)

folz =
Qo (Xi/en)
2 R

(2.77)

Since >, %;/6") — > X% for a given sample, as €, — 0, most of the asymptotic

properties of ff[ still hold for f;: We can establish the same theorems as Theorem 2.8

and 2.9 for f: But the biases of the two estimator are slightly different. Note that

R i
fi) = i
I
S 1 F(e)
then it is easy to show that
Bias(f(x)) = Bias(f(z)) + enf(0)f(x) + o(e,). (2.78)

Later, we will see that this boundary correction is very useful in reducing bias at the

border and improving global performance of density estimator in some cases.
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2.4 Other Density Estimators with Asymmetric Ker-

nels

In this section, we will apply Chen’s and Scaillet’s idea to obtain some density estimators
for LB data. Here we will mainly give two kinds of such density estimators. One kind
is, motivated by the idea of Chen (2000), with gamma kernels and the other is, inspired

by Scaillet (2004), with inverse and reciprocal inverse Gaussian kernels.

2.4.1 Chen Density Estimators for Length Biased Data

Note that if let F(z) = n ' I{X! < x}, an alternative form of (1.12) is

fla) = / K o1 (£)AE(1). (2.79)
0
.. . . Y = 1{Xi<a} .
Recall that the empirical distribution for LB data is F,(x) = =——=3+———. Substi-

i=1 X,

tuting F (z) with F,(z) in (2.79) will give us Chen density estimators for LB data as

follows.
fola) = / K o0 (0)AF (1), (2.80)
0

which can also be written as

2 Z?:l X%Kpb(x),b(Xz‘)

fel) = =T 2:81)
Furthermore, by (1.5), we can have
B(je@) = [ ERymumatay
= [ Kunt) s
= E(f(&)) (2.82)



where &, is a I'(pp(x), b) random variable. Similar to Chen estimator for direct data, it
is easy to show that F (fc(x)) — f(z) as b — 0.
We use fei(z) and feo(z) to denote the density estimator under the py(2)’s choices

(1.13) and (1.14) respectively.

2.4.2 Scaillet Density Estimators for Length Biased Data

Replacing gamma kernels K, proposed by Chen with inverse or reciprocal inverse
Gaussian kernels proposed by Scaillet in (2.80) , we can derive Scaillet density estimators

for LB data as follows.
>imt x Kicm (Xi)
Y X

fra(z) = (2.83)

and

> i X%KRIG(l/(a:—b)J/b) (X;)

fRIG(iE) = Zn 1
i=1 X;

(2.84)

Remark 2.5: Note that Chen and Scaillet density estimators for LB data can also
be obtain by generalized Hille’s lemma. We use f(t) and k,,(t)dt [k.p(.) represents
the kernels proposed by Chen or Scaillet] to replace u(t) and d@, ,(t) in Hille’s lemma
respectively. Actually, the their proposed kernel k, ;(t) is a density of random variable
&, such that E(&,) — z and V(&) — 0 as b — 0. This means the distribution function
of &, satisfies the conditions of distribution function G, , in generalized Hille’'s Lemma

1.2. Then we have

/0 T Okes(t)dt — F(2).
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An alternative form of the right above is

/ " ks (OAF ().

So Chen and Scaillet density estimator are easy to be established by replacing distri-

bution function F'(t) with Cox’s estimator. That is

/oo kyp(t)dF, (%)

which is the same as (2.80).

Remark 2.6: The asymptotic distributions of estimators may be generally used for
inference purpose. However, the expressions for asymptotic variance derived here are
quite complicated, hence in practice Bootstrap procedures may be useful in this con-

text. However, we have not considered such procedures in the thesis.

Remark 2.7: The asymptotic properties are quite different for x > 0 and x = 0. To
study the properties of the estimators more carefully, we may consider x as a boundary
point where x/b — k for some k£ > 0 and an interior point where z/b — oo. This will

be investigated in future research.
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Chapter 3

Smooth Estimators of Density and
Distribution Functions Based on Em-

pirical Distribution Function

3.1 Introduction

Note that an alternative form of length biased model (1.2) is given by

flz) = : (3.1)

This formula gives us an alternative strategy to estimate f(z). We can first obtain an

estimator of g(z), say g(x), then, by (3.1), a natural estimator of f(z) is given by

fay = L2 (3.2

By now s is unknown. Note that we want to obtain an estimator f (x), which should

satisfy the most basic property being integrated to unity. So integrating on both sides
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of (3.2) gives us an estimator of u based on g(z), which can be defined as

= /000 @dx. (3.3)

X

Therefore, a valid estimator of f(x) is

)
fo) =5

where g(x) must satisfy the following conditions:

(i) g(x) =0 for z <0 ;

(i) g(x)/x is integrable on [0, 00).

Bhattacharyya et al. (1988) use (3.2) with & being the harmonic mean estimator to
establish a density estimator . However, since their estimator does not satisfy condition
(ii) and even condition (i) under certain circumstances, their estimator does not perform
very well [see Chaubey et al. (2010), Jones (1991) and Wu and Mao (1996)]. Therefore,
it seems that formula (3.4) might give us some valid density estimators.

In this chapter, we will follow formula (3.4) to obtain some density estimators. Sim-
ilar to previous chapter, we will use Hille’s lemma in Poisson weights and generalized
version to build two kinds of estimators, one using Poisson weights and the other us-
ing asymmetric kernels. However the smooth technique motivated by Hille’s lemma in
Poisson weights is not suitable to be applied directly in this case. Some necessary mod-
ifications to the smooth technique should be made. The route we follow in this chapter
is the opposite of that in previous chapter. Here we first obtain smooth density estima-
tor. Then, by integrating the density estimator on interval [0, x), we can have smooth
estimator of distribution function. In Section 3.2, the modified smooth technique in
Poisson weights is applied to find a new smooth density estimator. The integration of

this estimator gives us a distribution estimator. Their asymptotic properties are stud-
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ied. Without any modification, the smooth technique using asymmetric kernels can be
directly applied to the formula (3.4). And the perturbation and boundary correction
are still necessary to be used in new density estimator. Therefore, in Section 3.3, new
density and distribution estimator using asymmetric kernels are found and their the

asymptotic properties are studied as well.

3.2 Estimators of Density and Distribution Func-

tions with Poisson Weights

3.2.1 Smooth Density Estimator

Define
1 n
Gp(z)=—)> X, <z} 3.5
@)=y L X <) (35)
Using the poisson weights
P
pr(xA,) = e <xk') : (3.6)

we can obtain a smooth estimator of G(x). Since the smooth estimator is differentiable,
we take its derivative as a smooth estimator of density function g(z). In order to let
the smooth estimator of density satisfy conditions (i) and (ii), we attach the Poisson

weight pr(xA,) to G, ((k—1)/A,). This results the following smooth estimator of G(z)

Cole) = Y pu(eAn) G (2 = L

k>0

). (3.7)

n

As in (2.4) differentiating the above expression gives us the following smooth estimator

) = MY ko0 (G () = G ()] (3.8)

k>1 n
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such that g(z) = 0 when = < 0 and g(z)/x is integrable, since

0, k k—1 1
/ #dm = A\, [Gn()\—) — Gn( S )} / Epk(:v)\n)d:r
0 =1 n n 0
k k—1,1
N S N I L)
E>1 n n

The new estimator of f(z) is given by

A Sy B G (£ - G, ()]
n(T) = A== z -
el S T[GA(E) — G (5]

k>1

(3.9)

3.2.1.1 Asymptotic Property of f,(z)

Lemma 3.1 If 0 < E(X;') < o0, A, = O(n*)(0 < a < 1) and g(x) is absolutely

continuous with a bounded derivative ¢'(x) on R™, then

/ gn(@) g ox, L (3.10)
0 z H
Proof: First we can write
< Gn(x) B ko k=1, .k k—1\,1
B = M) - G50 -6 + )
k E—1,1
e - e
k>1
First, we want to show that
T (M) =2 0. (3.12)

Note that for any 0 < o < 1, we can find a 5(0 < § < 1/2) such that

1/2

““1atp

(3.13)

For any fixed k, we apply Lemma 1 of Bahadur (1966) in the interval

[(k —1)/A\, k/A,). However, We can not use the lemma directly. Here we make some
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slight modifications. Let a, = A;1(\,/k)?, b, = n'/?/(logn)**?,
= X2 (An/ k)P0 Y2 (log n) 0 and ., = 5L + 7
First of all, we need verify a fact that is, for any s,t € [(k— 1)/, k/\,), there exits

a cg such that

|G(s) — G(t)] < caay. (3.14)

This is because

(G (s) = G)] < gmAT" = (k/X) g (AL (A /) (3.15)

where n € ((k —1)/\n, k/X\n). Note that (k/\,)*g(n) ~ (k/M\.)*g(k/\,). Since g(z)
is a density function, it is easy to know that x*’¢(z) is bounded on R*. Then we can
find a ¢, which is finite and greater than (k/\,)?*?g(n). So (3.14) holds, which means
under our modifications, we can still have the inequality z,, < cga,(0 <7 <b,) in the
proof of Bahadur’s lemma.

Following the proof Lemma 1 of Bahadur (1966), we can claim that

k k—1 k
el e medy roti ) < as (g
Then we have
T ()] < A;/Hﬂn—l/?(logn)lwzkl—lw 0.s. (3.17)
E>1

If A, =0(n*)(0 < a < 1), by (3.13) and (3.17), we can see that (3.12) holds.

On the other hand, we have, as A\, T oo,

1

Too(An) = Y (Aa/K)g(k/ ) +Z (An/k)g/ W 5

k>1 k>1

(3.18)

where & € ((k—1)/A\y, k/A). By (3.12) and (3.18), the lemma follows. The proof is

complete.
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Using the same method in the proof of Theorem 4.1 of Chaubey and Sen (1996), we
can show that when A, = O(n®)(0 < a < 1) and g(x) is absolutely continuous with a

bounded derivative ¢'(x) a.e. on RT,

19n(2) = g(@)|l = sup {|gn(x) — g(x)[} == 0 (3.19)

zeRt

as n T co. By Lemma 3.1, (3.19) and (3.9), we can obtain the following theorem.

Thoerem 3.1 If 0 < E(X;') < 0o and g(z) is absolutely continuous with a bounded

deriative g'(x) on RY and A\, = O(n*)(0 < a < 1), then

1 fu(x) = f(@)[| = sup {|fulz) = f(2)[} = 0. (3.20)

zERT

Now we suppose that ¢'(x) satisfies Lipschitz order « condition, for some a > 0,

there exits a positive K (< 00), such that

19'(t) — g'(s)| < Kt — s|*. (3.21)
We can write
) k k—1 ,
gwszE)wm@mﬁ?—G(Mbﬂ+nu) (3.22)

where T) () = A\ Y pe(zA,) [Gn(ﬁ) - Gn(k/\—;l) - G(%) + G(%)] Using (3.21) and

k>1

Taylor’s expansions of G(k/A,) and G((k — 1)/\,) at point z, then we can rewrite the

first term of (3.22) and establish

Gu(z) = g(x) - ig%x) + OO + T (2). (3.23)

So

> gn(z) 1 1 /°° g () _i
I\ - - _ 3 o T, .24
/0 ” dx Lo ), . dx + O\, ") + Thi(An) (3.24)
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It is easy to see that

VO = L 0u/EG ) - G5 )
(D OwRIGG ) = G
~ %V(%). (3.25)
By (3.23), we have
g”ix) = g(;) — 2; g’(xm) + O\ + T ()
_ Lx) . 2; gli‘”) + O + To(2) (3.26)
where
_ &;pk<xAn> Gal) = Ga(5) ~ G + 6] B21)

Using (3.23) and (3.24), we can write

/gnxd__
0

= flo)+ o~ [nf(x) = f0)f(z) —

55, T8 )] 4 o) + (M)

+O(N\, 1) a.s. (3.28)
where ji = [(f(z)/x)dz. According to Chaubey and Sen (1996), we have V(T)(z)) ~
%(27r:v)’1/29(x)()\n/ /n) and, if z # y, Cov[T!(z),T.(y)] = O(n~'). Note that T,,(z) =

T!(x)/x, then we have

V(T ) = L ra) X 12 ) (3.20)
and, if z # vy,
Cov[T,,(2), T, (y)] = O(n™1). (3.30)
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By (3.25) and (3.29), we can see that the variance of f,(z) should have an order

O()\}/ ?/n) far greater than O(1/n) the order of variance of Tp1(\,). So we can dispense

with T,;(\,) and then f,(z) behaves like T, (2). Thus from equations (3.27), (3.29)

and (3.30) we can establish the following theorem.

Thoerem 3.2 Under the same assumptions on g(x) and ¢'(x) in Theorem 3.1, if (3.21)

holds and E(X;?) < oo, when A\, = O(n*°) (nonstochastic), we have, for a compact set

CCRT,

1

{0 1fa@) = @) =5z A (@)= F(0) f () -

with covariance function 20y, where 42 =

for x =y and 6 = lim (n‘1/5)\,1/2).

n—oo

3.2.1.2 MSE

For f,(x), we have

@—f’(x)}),x € ¢} 2, Gaussian process
x
g(wx?’)*lmf(x)(?, Oy = 0 for x #y and 1

Bias(fue)) = 5o/ 0) = S0 @) — L2 — o) @
and
V(fula)) = \/A_nQ\;%n f;gfﬁ +o(‘/2_”). (3.32)
So
MSE((@) = plif@) — f0f@) - 22 = pap
+ /\HQ\;%R "22‘2 +o(\/2_” + Ain) (3.33)
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3.2.2 Distribution Function Estimator

By (3.9), we can see that the corresponding smooth estimator of distribution function

18

5 e (/R WiEA)[Ga(5) — Ga(5)]

Fo(z) = (3.34)

where

1 AnT
Wi(Anz) = m/o e vyt ldy = ij(/\nas).

izk

Next, we will discuss asymptotic property of F,(z). By (3.26), if ¢/(z) exits, we have

gnix) _ %x) + ONY) + T (). (3.35)

Integrating from 0 to x, we have

/Ox g t( gt — Fff) +/0xTn(t)dt+O()\;1). (3.36)
Note that
y/ (t)ydt] < / ;pk (tAn) Ak;) Gn(k):ll)—G<)\£n)+G(k);L1)]‘dt
<[] ;pk I [Ga(5) = Gu(5) = Gl5) + G )]
- An;uamA—i)—Gn(: ) =G+l

Then using (3.16), for any x, we have

|/ (t)dt| < A28 =12 (logn) 1+ezk1+ﬁ a.s. (3.37)

k>1

So, as A, = O0(n*)(0 <a < 1) 7 oo,

sup {| | Tn(t)dt|} =2 0. (3.38)

zERT 0
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By (3.36) and (3.38), we have

9n
zeRT 0

“nt)  F(r) as
’ P (3.39)

Combining with Lemma 3.1, we have the following theorem.

Thoerem 3.3 If A\, = O(n®)(0 < a < 1), 0 < E(X; ') < oo and g(x) is absolutely

continuous with a bounded derivative ¢'(x) a.e. on R, then, asn 1 oo,

|| F(2) — F(2)|| = sup {|Fn(x) — F(z)|} == 0. (3.40)

r€ERT

Next, we will discuss the weak asymptotic properties of F (x).

Thoerem 3.4 If \, = O(n*)(1/2 < a < 1), E(X;?) < oo and under the same

assumptions of Theorem 3.3 on g(x) and ¢'(x), when n T 0o, we have
Vil(Fu(w) = F(e) = N(0,6%(x))
where 0*(x) = p [ [y 1 f(t)dt — 2F (z) [ 1 f()dt + iF?(x)].

Proof: According to (3.9), we have

D1 (fy Peoa(thn)dt) 3 [Ga () — G
ZkZl %[Gn(%) - n(kA__nl)]
St Uy proa (i) dt) 32 (G (£) — G (53]
o1 LG (5) = G (5]
Tin

= 3.41
T (3.41)

Fu(z) =

a.s. xr a.s. 1
Note that, by (3.36), (3.37) and Lemma 3.1, we have Ty, —> |; %g(t)dt and Ty, —> —.

v
Using the Taylor expansion of F,(z) at the point (T, Tps) where Ty, = Jy $9(t)dt and

1 ~
Toe = —, F,(x) can be approximated by
]
~ TOl 1 TOl
E, ~ — + — (T —To) — = (T2, — To2). 3.42
(z) Tos + T02( 1 01) TOQQ( 2 02) (3.42)
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So

5 Tt 1 T
E(F, N o+ = E(Ty, —Tn) — 5 E(Ton — T
(Fu()) Toy + Tos (Th 01) 2 (T3 02)
— F(z) as n — 0. (3.43)
Actually, we can show that
E(F,(2)) = F(z) + O\ ). (3.44)

From (3.44), we can see that only when 1/2 < o < 1, /n[F,(z) — F(z)] — 0.

Now we discuss the variance of F,(z). By (3.41) and (3.43), we have

~2. / pr1(EA )dt))\—; _M2(/Ox %g(t)dt)A_;]
1

"11

k>1

Gol3) = G551}

i (3.45)

VEE) Y { [ menan - e 2reRh) - ¢

- %; { [N(/O$pk_1(t/\ )dt)/\—k”] [G()\_i) _ G(k/\—nl)]}

_%Z { W(/Oxpk L(EA)db) F (2 )%HG(/\%) B G(k/\_nl)]}

+% E>1 { [MF(.Q:)%]Q[G()%) _G(k)\_nl)]}

_l(Z { [u(/oxpk 1(%)@)% _“F@)%][G()\ﬁn) _G(k;n1]})2
_ % (Tin — 2T + Tsn — Tin). (3.46)
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We write

T = Y0 [ @i ies) - e )
in o~ n o k—1 n L2 )\n /\n
* * A2 k kE—1
> - )\n/ pk_l(t)\n)dt)(An/ Pe—1(tAn)dt) 5 1G(—) — G( )]
E>1 0 0 k )‘n )\n
= 5 — 5. (3.47)
Using Hille’s Lemma, we can easily show that, as A, T oo,
Nk 1
Zpk—l(t)\n)ﬁg()\—n) — t_gg(t)
k>1
uniformly in the finite interval [0, z], then we have
Sim e [ (S o 3saGodt =i [ Loty (3.48)
1 ) < k—1 n L2 )\n o 2 . .
Next, we will show that Sy — 0 as A\, T oo.
Let N={1,2,...,n,...} and b, = /\;1/2(10gn)%(S where 6 > 0. Denote
NI = {k|k/X\, — 2 < —b,, k € N}, N2 = {k||k/\, — 2| < by, k € N} and
N3 = {k|k/Ay — & > by, k € N}
Let
9 * * A2 k k—
A = [ (1 - )‘n pk—l(t)‘n)dt)<)‘n pk—l(t)‘n)dt)ﬁ[G<)\_> - G( A )]7 (349)
0 0 n n

then we can write

SQ = Z ar + Z ar + Z Q. (350)

keNL keN?2 keNS

For any k € N, by the proof of Lemma 3.1 of Chaubey and Sen (1996), we can claim

that [1— X, [ pro1(tX,)] = S0 ' pi(aA,) < L. Then

1
0< Y ar< ~51. (3.51)

keNL
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For any k € N2, by the same lemma above, we can claim that A, [ pe—1(tA,) =

> sk PilTAn) <

(z + b,)"2 Then

. At the same time, we have [1 — X, [ pe-1(tAn)] < 1 and (k/X,)? <

2
0< > ar< %(:g + b)) (3.52)

keN3

For any k € N2, by the facts [1 — N, [ pr—1(tXn)] < 1, Ay [ pr—1(tX,) < 1 and

(k/An)? < (z —b,) ™2, we have

0< Y ap<p’(z—0b,)2[Gz +b,) — Gz —by)). (3.53)

keN2

From expressions of (3.51), (3.52) and (3.53), we can see that they all tend to zero as
An = O(n®) T oo, which means

By (3.48) and (3.54), we have

*1 “1
Tin —>u2/0 t—29(t)dt:,u/0 gf(t)dt. (3.55)

At the same time, by Hille’s lemma, we have

N1k
B = {0 ([ pereninFe) 5ol
- S ([ preninF @) a0
— MF(Q;)/O ;f(t)dt, (3.56)
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T~ {2 ol)
= S AP () el

B 357
where i = [° 1 f(t)dt, and, by (3.43),
Ty = [E(Fu(z)— F(z))? = o0. (3.58)
By (3.46), (3.55), (3.56), (3.57) and (3.58), we have
VRE@) — u [/0 %f(t)dt _9P(z) /Ox%f(t)dtJrﬁFz(a:) (359)

The proof is complete.

3.3 Estimators of Density and Distribution Func-

tions with Asymmetric Kernel

3.3.1 Smooth Density Estimator

Using generalized Hille’s lemma, we can obtain a smooth estimator of g(z) [see Chaubey,

Sen and Sen (2007)] which is given by

IR X;
gn(z) = 2 21 Xiqo, (?) (3.60)
Note that [;° Q”T(x)dz = L5 +. which is an estimator of 1/u. By (3.4), a smooth
estimator of f(z) can be formed as
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e
o) = =y ) e

;713 > i1 XiGu, (%)

P '

However, (3.61) may be reasonable for a density f(x) with f(0) = 0. For general density

(3.61)

functions, by the idea of perturbation, the acceptable estimator is given by

fi(x) = 7 (3.62)
X
3.3.1.1 Asymptotic Properties
Thoerem 3.5 If
A v, — 0,6, —0asn— oo and E(X; ") < o0;
B. sup,=g Jo |4k [ o, (55)||dt = o (“E1%2) 1),
C. SUP,50.450 UGy (u) < 00;
D. g(+) is Lipschitz continuous on [0,00);
then we have, as n — 00,
supl () — F(2)] 25 0 (3.63)

x>0
Proof: By Theorem 3 of Chaubey, Sen and Sen (2007), under the conditions of Theo-
rem 3.5, we have

igg!gi () — g(z)| == 0 (3.64)
).

On the other hand, by the strong law of large number, we have

where g} () = -1 Y1) Xiga, (55

)
n

SN s 2 (3.65)

By (3.62), (3.64) and (3.65), we can obtain the theorem.
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Thoerem 3.6 If
E. g(-) is Lipschitz continuous on [0,00) and E(X;?) < oo;
F. L(q) = lin%v 57 (qu, (1))2dt eists;

G1. for 1 <m <3, [~(qu,(t)™dt = O(v'™™) as v — 0;

: * _ (qun @)™
G2. with g, () = T (0 w)yd 1<m <3, and as v, — 0,
@Ot = [ 05, (0 = 14 O(w,)
0
(”) Oil,vn = (t - men)2q:n,vn (t)dt = O(Urzz)

g s

(vit) sup / tH0qx  (t)dt < oo, for some § > 0, £ > 0;
0

qm,vn
O<wvp<e
Then

(a) If nv, — 00, nu,e, — 00, nve — 0, nv,e2 — 0 as n — oo, we have

V(@) — F) = N (0.5 D) jora > 0

(b) If nv,e2 — oo and nv,el — 0 as n — oo, we have

V@ (£(0) = £(0)) — N (0, L(q) £(0)).

Proof: (a) Since g (x) is a density obtained by the method in Chaubey, Sen and Sen

(2007), according to the proof of Theorem 4 in Chaubey, Sen and Sen (2007), we have

V(g (z) —g(z)) = N <O, b(q)@) ,for z > 0. (3.66)

Note that v/n (}1 S XL — i) — normal. So the asymptotic normality of

i) = e (3.67)

(3

is equivalent to the the asymptotic normality of

gy (x)
et (3.68)
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Using (3.66), it is easy to show that

o ( 1 () ’”Lg(x)) N <o, Iz(q)m) for z > 0.

(z+€,) x

Then the part (a) of theorem follows.

(b)we have
. 1 — le=1 1 le-1 1
L) = 3TV = O =) ol D -
W n; (nizl g ,u) <nz:1 g ,u)
where
pX; X,
z{n (571)3%}”(5)

We can show that

and

/

envnE (Y1) — Ix(q) £(0).

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)

Using (3.72) and (3.73) and following the lines of proof of Theorem 2.8 of part (b), we

can obtain part (b) of this theorem.

3.3.1.2 MSE and AMISE

We can show that

Bias[ff(2)] = v2f(x)+ (2 + ) f'(2)
+ﬁ§ﬂ@+dﬁ+m
and
Varlf o] = 2 O o) ).
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So we have

MSE[f+(2)] ~ Ll@rf(z) + V2 f(z) + (2022 + €,) f'(x) + v2x—2f”(x)]2. (3.76)

nv,x? "2

Furthermore, we have

AMISE[f+(z)] = 1271(53“ /0 N (x‘i(il)zdx

+ /Ooo[vif(a:) + (2022 + €, f'(z) + vi% "(z))2dx

(3.77)

This expression is useful in cross validation method for obtaining data dependent

values of smoothing parameter(s).

3.3.1.3 Corrected Density Estimator

Note that if €, > 0 the integral of (3.62) is less than 1. In this case, the density
estimator seems a little left-shifted and slightly “ lose ” some weights. In order to get
the “lost ” weights back, we divide (3.62) by its integral [~ f+(x)dx and obtain the

following corrected density estimator

o Ty e X ()
I m i1 Xi, (xff—;n)da:

(3.78)

. e8] 1 n X; n 1
Since, as €, — 0, [ mzz‘=1 Xiqvn(er;n)dx — > =1 x;» We can have the same

theorem as Theorem 3.5 and 3.6 for f;f(x) Furthermore, it is easy to show that

Bias(f?) = Bias(f) + e, f(0)f(z) + o(ey). (3.79)
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3.3.2 Smooth Estimator of Distribution Function

According to (3.61), an acceptable distribution function estimator is

ﬁ+ _ ox t% Z?:l XiGu, (&)dt
i=1 X,

If g, is a gamma density, an alternative form of (3.80) is given by

Aoy 2w (U= Pgnag (5)
S

where F} /2 11,2 () is a gamma distribution function with density function mxo‘_le”/ A

(3.80)

with a = 1/v2 + 1 and 8 = v2.

Thoerem 3.7 If E(X;') < 00, v, — 0 as n — oo and f(x) is absolutely continuous

with bounded derivative f'(x) on R, then
sup |FF(z) — F(z)| 22 0.
x>0

Proof: We can write (3.80) as

o _ % Z?:l 09E t%Xiqvn (ﬁ)dt.

0 (3.81)
%Zi:l X%

Let & = [ #Xiqo, (£) dt, then

pe) = [ | [ w4 at] atwas (3.52)

Let y/t = z, then

se) = [ / ;” can (21| 2y

- / /°° can ()02 )y

- {F(y) / ;O zqvn(zmzf e [ Pwta (N2 e
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Let £ = u, then

Bl&) = % /0 Pluz)ug,, (u) du. (3.84)
Note that
Fluz) = F(e) + of(@)(u— 1) + O(u — 1%
then

E(&) = F(z) + O(vy). (3.85)

By the strong law of large number, we have that the numerator of (3.81) converges
uniformly to iF(x) and the denominator of (3.81) to % Since Ff (z) is nondecreasing,

the uniform strong convergency of Ff(z) follows.

Thoerem 3.8 If E(X;?) < oo, /nv2 — 0, f(x) is absolutely continuous with bounded

deriwative f'(x) on RT, then, as n — oo,

where
o) =ul [ $10%=2F@) [ L10d+ P )

where i = Ey(%).

Proof: We can expand (3.80) as

= F(z) +%i on t%XiQUn(%)dt— %@)}

1 1 1
N2 86
+o (n 2, ,u) (3.86)



Let n; = fox 5 Xiqu, (&)dt — %(x) Since £ (%) = i, we can show that as in the proof
of Theorem 3.7,

E(n;) = O(vp). (3.87)
Furthermore, we have

E(;) = /Ooo [/Oz t%yqun(%)dtrg(y)dy — 2l (x) /OOO [/Om %qvn(%)dt} 9(y)dy

FuF(z) /Oo t%g(t)dt

0

= T, —2uF(2)Ty + uF?(x)f. (3.88)

Let y/t = z and H(z) = [} @dt7 for T}, we have

T o= /OOO U; uzqvn(z)dzr %dy
= W ) Oozqyn(Z)dZQMdy
IRTAEECE
- u[H(y) { /;oqud]r
—p /OOO H(y)d [/y;: zqvn(Z)dzr

_ _N/OOO H(y)d U; zqvn(z)dzr. (3.89)

Let y/x = u, then we have

Ty = —p /O " Hizw)d [ / N zqvn(z)dzr. (3.90)

Note that we have
H(zu) = H(x) + f(2)(u—1) + o(u— 1),

then

2

T~ i) - pf(e) [ va | [T

— pH() - pf (@)D, (3.91)
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For T3, we have

T = 2| [Cw- [ /umzq%(z)dz} g, (u)du |

2/0 |u(u — 1)|qy, (u)du

IA

IN

o(v). (3.92)

So, as v, — 0,

Ty — pH(x). (3.93)

Similarly we have

T, = /OOOH(xu)uqvn(u)du
H(

x) + o(vy) (3.94)

By (3.86), (3.87), (3.88), (3.93) and (3.94), we can obtain the theorem.
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Chapter 4

A Numerical Study of the New Esti-

mators

4.1 Introduction

In this chapter, we propose to compare various density estimators described in the
previous chapters through extensive simulation. The basic criteria are mean squared

error (M SE) and mean integrated squared error (M ISFE) of the estimator f, given by

MSE(fu(x)) = E[(fa(z) — f(2))*] (4.1)

and
MISE(f. f) = E [ / " ule) = f@))da (1.2)

Note that M SFE may be considered to measure the local performance of the estimator
fn and MISE may be considered to measure the global performance. In practical
applications, since f is to be estimated, data-dependent choices corresponding to the

above criteria are considered. These are commonly known as “cross validation” methods
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that attempt to estimate above quantities based on the observed sample which are
in turn minimized (numerically) as a function of smoothing parameters. Such cross-
validation method may consider another measure of departure of the estimator f,, from
f instead of the integrated squared error and that would give a different choice of the
parameters. So the question may be which measure of departure may be better suited
to amplify the differences between the estimators and the true density?

Hence we first study this question in the next section where the candidate estimator is
the Poisson based smoothing of the Cox estimator. The conclusion from the simulation
studies points towards the conjecture that the the data dependent integrated error
(ISE) cross-validation methods provide optimal choice of the smoothing parameter(s)
for large samples in the sense of minimizing the MISE and that the choice of departure
measure is not of much relevance.

The next section, Section 4.3 therefore considers ISE cross-validation methods for all
the density estimators and presents a comparison of MISE and MSE for some known
standard densities and Section 4.4 presents the conclusions.

In these expositions, we will mainly proposed two kinds of data-driven methods, one
being unbiased cross-validation method, the other being biased cross-validation method
as commonly used in the literature dealing with kernel density estimation [see Scott
and Terrell (1987)].

It seen that the performance of an estimator based on F;,, may be better than that
based on (G, over some region but not on another region. Hence, in Section 4.5, we
propose a linear combination of two competing density estimators and investigate its

properties numerically through simulation.
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4.2 A Comparison of Different Criteria for Selecting

Smoothing Parameters: The Case of f,

Selection of smoothing parameters is an old and challenging topic in nonparametric
functional estimator. Since smoothing parameter determines the performances of es-
timator under finite samples, it is an important issue in practice and many methods
have been proposed proposed for this purpose. In this area, the early work was done by
Kronmal and Tarter (1968). Rudemo (1982) proposed a least squares cross-validation
method. Bowman (1984), using Kullback-Liebler divergence, proposed an alternative
cross-validation method. Using asymptotic M1SFE, Scott and Terrell (1987) proposed
biased cross-validation method. The further modification of this method was made by
Park and Marron (1990). Here we will propose and study several selection methods for
our proposed density estimator of LB data.

A convenient stochastic choice of A, was proposed by Chaubey and Sen (1996) as

n

max{Xy,..., X, } (43)

An(1) =

provided that F(X) < oo and X has an infinite support. However, if X has a finite
support, Chaubey and Sen (1998) noticed that the choice (4.3) will not satisfy that

n=t\, — 0 as n — oo. To cover these cases they proposed the choice

n

An(2) = (4.4)

Xp—r,+1n loglogn

where 7, = o(loglogn). Based on the asymptotic property of MSE of f,(z), a non-
stochastic choice is
)\n(g) = cn2/5 (45)
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These choices are based on the asymptotic theory, however, in finite sample case they
may not be satisfactory. In the procedure of using direct data to estimate density,
Chaubey and Sen (2009) find that the choices A,(1y and A, 2) may be very large so that
they create problems in computation. Our study shows that they may also cause the
same problems in the procedure of using LB data to estimate density. The purpose of
this subsection is to give the choices of A, for finite samples. We will investigate two
kinds of cross-validation methods, one is unbiased cross-validation method, the other is

biased cross-validation method.

4.2.1 Unbiased Cross-Validation Method

Here we investigate two unbiased cross-validation methods, one being based on Kullback-
Liebler divergence, the other being based on integrated squared error. We also use the
Hellinger distance defined between two densities to compare the closeness of a density

estimator to its true population density.

4.2.1.1 Kullback-Liebler Divergence Cross Validation

The Kullback-Liebler divergence between the two density functions f(z) and g(x) is

defined as

KL(f,q) = / () log g Eg d (4.6)

So the Kullback-Liebler divergence between the estimator f,(z) and the true density

f(x) is given by

KL(f..) = / f(2) log f(x)dz — / F(2) log fo(x)da (4.7)
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By the fact that f(z) = pg(x)/x, we can also write (4.7) as

KL(f.fo) = [ $@)og fahdo ~ [(ngta)/o)log ofa)de— (48)

The leave-one-out estimator of the second term is

1% - ]En—l(Xu)\n;@i)
—— | 4.
- Z_; 0g X (4.9)

where D; denotes data with X; removed from D. Since the first term in (4.8) does

not depend on \,, dispensing with the constant ¢ and n in (4.9), minimizing (4.8) is

equivalent to minimize

CVikr(Mn) = — Zlog(.fn—l(Xiy i Di) [ X5) (4.10)

i=1

The solution of the above minimization problem will be denoted by A, k1.

4.2.1.2 Integrated Squared Error Cross Validation

The integrated squared error between fn(x) and f(z) is given by

ISE(f,f,) = / f(@) — Fula))da

= /f2 dx—Q/fn dx+/f3(x)dx (4.11)

In the studies of bandwidth choice for kernel density estimates with selection biased

data, Wu (1997) used the leave-one-out estimator

i=1

to estimate the second term in (4.11) where Z; = Zig—j Substituting the leave-one-out
J#i
estimator (4.12) for the second term in (4.11) and subtracting the first term which does
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not depend on )\, gives us the following cross-validation function for ISE criteria

CVise(An) = / h fa@)de =2 fao1(Xi, A Di) /2 (4.13)
0 i=1

The solution of the above minimization problem will be denoted by \,;sg.

4.2.1.3 Hellinger Distance

The Hellinger distance between two density functions f(x) and g(z) is given by

H(f.g) = / (VI@) - Va@)’da (4.14)

This measure has a good property, as shown in Chaubey and Sen (2009), that is
0<H(fg)<2 (4.15)

We will use this measure to establish the closeness of the estimated density to the true

density in finite samples.

4.2.1.4 Simulation Studies for Optimal Smoothing Parameter: The Case
of fn

Lognormal Density

To understand the possible numerical intricacies in obtaining the value of the smooth-
ing parameter \,, we simulate samples from a standard Lognormal density for sample
size n=10, 20, 30, 40, 50, 100. For each sample we obtain the optimum choice of A, by

KL and ISE cross validation methods. To judge the closeness between the estimated
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density and the true density we list the Hellinger distance H ( for f ) for each choice of
An. Here we use the routine optimise of R language to obtain the optimum solution of
A, for KL and ISE cross validation methods. However, we must be careful because the
function C'V'(\,) is a rough function [For details see Chaubey and Sen (2009)].

For 100 samples, we use routine optimise with an interval (1,20) to obtain optimum
solutions 6.482327 and 5.770364 for KL and ISE criterion, respectively. In this case,
the optimum solution of H( o, f) is 5.750105. To make sure of these solutions, we
plot the CV(\,) functions [see Figure 4.1]. Checking these plots, the solutions see
reasonable. At the same time, Chaubey-Sen choice is 3.445616. The Hellinger distance
of the estimated density using Chaubey-Sen, KL, ISE with the true lognormal density
are given by 0.05391589, 0.05036821 and 0.04514759 respectively which are close to the
true distance 0.04298512 if we know the density.

Here we also plot the estimated densities and compare with the histogram of Log-

normal distribution. The histogram estimator of Lognormal distribution is given by

Fo(x;) — Fn(%)

$i—Ij

fhis(x> =

if e (x,x))

where F,(z) is defined as in (1.3). Looking at the Figure 4.2, we can find that there is
almost no difference in them qualitatively. It may conclude that as long as the value of
An is in the close neighborhood of minima, the estimated density does not differ very

much from the optimum choice.
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Some Other Standard Distributions

Next we consider the following densities in place of the Lognormal density and repeat
the steps described earlier in selecting the smoothing parameter:

(7). Exponential Distribution

f(x) = exp(=x)[{z > 0}

(7). Lognormal Distribution

f(z) = ﬂl_ﬂ exp{—(logx — 1)?/2} I{z > 0}

(¢74). Gamma Distribution

(1v). Weibull Distribution
f(z) = az® ' exp(—2*)I[{z > 0}
(v). Mixtures of Two Exponential Distribution

f(z) = [Wel exp(—x/601) + (1 — ﬂ)elz exp(—x/02)I{x > 0}

1
The methods of generating corresponding LB data are given by, respectively,

(7). X ~T(2,1)
(ii'). X =e¥ where Y ~ N(u+1,1);
(ii'). X ~T(a+1,1);
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(iv). X =YY" where Y ~ (141, 1);

(v). X =7Y1 + (1 —7m)Ys, where Y7 ~ I'(2,6,) and Y5 ~ I'(2,6,).
Remark 4.1: The methods of generating LB data (i'), (iii’), (v') are straightforward.
Here we give brief proofs of (ii') and (iv'). For (ii’), if let f,(x) denote the density

of LB data, then we need to show that f,(z) oc exp{—(logz — p)?/2}I{z > 0}. Let

Y ~ N(p+1,1), then

S0 fu(x) ox e~ (ose=n=1)*/2 /4 ¢ o= (logz—p)?/2,

For (iv'), let Y ~ T(1 4 1,1), F*(z) be the distribution function of X, then

Fo(z)=P(X <z) = P(Y& <u)

So we have the density of LB f,(z) oc 2% ",
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Conclusions

Denote by Ao the value which minimizing the expected Kullback-Liebler divergence

KL(\,) =E / log %dﬁ’(w)

Ago the minimizer of

MISEQ) =E [ (Fla) - f(a)ds

and A3p the minimizer of the expected Hellinger distance

2O =E [ (/F,(0) = VF@) ds

We will have the following conclusions which are the same as conclusions in using

direct data to estimate density.

1. Chaubey-Sen choice usually produces large values of the smoothing parameters,

especially, for large samples.

2. Chaubey-Sen choice is much more variable when samples are large even in the

cases on an average it is close to the true optimum.
3. The two cross-validation criteria generally produce similar results, especially for
larger samples and they converge to the true optimum under the known density.

4. We conjecture that suppose \;o denotes the true value of A, which minimizes

criterion ¢, ¢ = 1,2, 3 and \;, is the minima based on the data, then

(1) nlLOO izg =1 as

g Ao A20

1 lim — lim — =1 as
G e~
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4.2.2 Biased Cross-Validation Method

Regarding f,(z), we have the following asymptotic mean integrated square error(AMISE)

AMMEGm:An/)( p(m+vréwm wighm (4.16)

We can write the integral in the last term as

PR g P
0

2372 1

= ,u/ 175 g(x)dr = pE,(X5/?). (4.17)
0

So we can use Monte Carlo method to estimate the integral, that is

> f@) 2 - —5/2
de ~ = X, =uMCE,,. 4.1
x 71;1 i pMC (4.18)

372
Note that f;(x) is differentiable with respect to z. In (4.16), replacing f'(z) and

fooo (@) szdxr with their estimators f/(z) and MCE, respectively, we can obtain the fol-

lowing biased cross-validation function

BCV(\,) = /'(} (4.19)

Since p is unknown, we can substitute p with its estimator ﬁ in the procedure of
computation.

For now, we have two crossed validation methods related to ISE (4.11). One is based
on asymptotic mean ISFE and has the form as (4.19) referred as to BCV method. The
other is based on ISE and has the form as (4.13) referred as to UCV method. In this
thesis, we mainly use MISE = E [(f,(z)— f(x))*dz to judge the global performance of
estimators. We will pay more attention to parameter selection methods UCV and BCV

related to ISE. We certainly concern which method is better. We will use extensive

simulation to answer this question.
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4.2.2.1 Simulation Studies

In this subsection, we will do extensive simulation with diverse sample size to compare
UCV and BCV methods. We have simulated from the following underlying densities
with sample size 30, 50, 100, 200, 300, and 500. For each sample size, we obtain 1000
samples of smooth parameter. Under each chosen parameter, we computer the ISFE as
well and take the average of ISEs as the approximation of MISFE to evaluate UCV
and BCV methods.

(¢). Chi-Square Distribution

f(z) = —= 2> Vexp(—x/2)I[{z > 0}

(77). Lognormal Distribution

1

Ty P~ (logx — )*/2}I{x > 0)

fx) =

(77i). Weibull Distribution
f(z) = az® "t exp(—2*)I[{x > 0}
(1v). Mixtures of Two Exponential Distribution

fz) = [Wel exp(—z/6) + (1 — ﬂ)elz exp(—x/0s)I{x > 0}

1

The methods of generating corresponding LB data are given by, respectively,

(@). X ~ Xi+25

(ii'). X =e¥ where Y ~ N(u+1,1);
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(iii'). X =YV where Y ~ T(1+ 1,1);

(). X =7Y1 + (1 — m)Ys, where Y7 ~ I'(2,0;) and Yy ~ I'(2,02).
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4.2.3 Choice Between UCV and BCV Methods

From the extensive simulation studies, we find that biased cross-validation method
usually produces smaller MISE than unbiased cross-validation method, particularly
when the sample size is small. So measured by MISE, BCV method performs better
than UCV method when sample size is small. This is partly due to the facts that
UCV function is rougher, which cause more difficulty in searching optimal solution.
Furthermore, we find that with small sample size UCV function sometimes might gives
us a great parameter value [see Figure 4.19], which causes the estimator rough [see
Figure 4.21] and produces larger ISE [see Table 4.1]. This is why we can see more
outliers on the ISE boxplots of UCV. However, under this circumstance, BCV function
is smoother [see Figure 4.20] and gives us an acceptable optimal choice which generate

much smaller ISE and smoother estimator.

Plot of Unbiased Cross—Validation Function

-0.115
|

ucv

-0.125
|

Figure 4.19: UCV function for xZ, sample size=100.
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Table 4.1: Parameter and ISE

Method A,  Value of CV ISE

UCV  74.04 -0.1254 0.02694
BCV ~ 1.884 0.002267  0.0006223

Plots of Density and Estimator

Figure 4.20: BCV function for x2, sample size=100.
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Figure 4.21: Density and estimators for yg.
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Through our studies, we may obtain the following conclusions.

1. UCV function is rougher than BCV, which cause more difficulty in searching
optimal solution by optimise and the choices are more variable;

2. The leave-one-out estimator in UCV is complicated, which causes to take more
time to search optimal solution of UCV function, particularly when sample size is great;

3. BCV function is smoother, which is easier to search optimal solution and saves
time in the procedure of computation;

4. BCV method produces smaller MISEs than UCV method when sample size is
small. When sample size is great enough, the MISEs generated by two methods are
very close;

5. If we denote by A, the optimal solution

MISE(\,) = E / () — F())de.

A the optimal solution of BCV function and A the optimal solution of UCV

npcv nycv

function, we might conjecture that

A

nBcv

A

nycv

lim = lim =1 a.s.

n—0o00 o n—00 )\no

4.3 Parameter Selection for Other Density Estima-

tors

4.3.1 Parameter Selection for f;(z) and f'(x)

In f(z) and f(z), there are two parameters. One is v, controlling the smoothness of

the estimator and the other is g, controlling the bias of the estimator at boundary. In

97



order to find a proper choice of (v,,&,), for f: () we investigate two cross-validation
methods. One is Biased Cross-Validation based on AMISE of f,j and the other is

Unbiased Cross-Validation based on ISE of f.

4.3.1.1 Biased Cross-Validation

For f(x), we have

%02

AMISE[f}] = / T} e ) + T )

L Llop / AN (4.20)

nuy, (x+¢en)?

In the AMISE of f, (4.20), replacing f(x), f'(z) and f”(z) with ft(z), /' (z) and

f+"(x) respectively, we obtain the following Biased Cross-Validation function

BCV (vn,€0) = /OO[(:m;,% +e)fi () + ﬁf:”(x)]%l:v | bloi /“’ fal@) ..
0 0

2 n, (x+e,)?

(4.21)

-1
where i = (% Yo X%) , being an estimator of u. We can minimize (4.21) with re-

spect to (v,,&,) to find a choice of (v,,e,).

4.3.1.2 Unbiased Cross-Validation

Let us consider the Integrated Squared Error

ISE(ne) = [ [ule) = f@)Pda
0
~ | Bwis-z [ R@i@dss [ Fad
0 0 0
Disregarding the last constant term, substituting the second term with its Leave-One-

Out estimator, we obtain the following Unbiased Cross-Validation function

UCV (v, ) = / h fH2(x)de —2 i (X D)) Z; (4.22)
0 i=1
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where D; denotes data set with X; removed from the original complete data set D,

f+ (;D;) denotes the density estimator built on D; and Z; = >- %, Minimizing
i

(4.22) will give us a choice of (v,,&,).

4.3.1.3 Numerical Comparison

In order to compare the two methods, we simulate for x3 and x?, with sample size
100, 300, 500 and 1000. For each sample, we minimize (2.76) and (4.22) to obtain the
choices of (v2,&,). At the same, for comparison, we also compute the ISE under each
choice. We repeat the procedure 1000 times and obtain 1000 samples of (v2,¢,) and

ISE.
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Figure 4.25: Plot of MISE for 2.
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Through the simulation, we can see that, in the first example in which the true den-
sity satisfies f(0) # 0, unbiased and biased cross-validation method both give similar
optimal solutions for €,,. However, unbiased cross-validation method usually produces
smaller optimal solutions for v, than biased cross-validation method does, which gen-
erates greater MISE [see Figure 4.24]. In the second example where f(0) = 0, two
methods have very similar results. Technically, when sample size is small, BCV is
slightly better than UCV according to MISE. In our opinion, we prefer BCV method

to choose parameter.

4.3.2 Parameter Selection for f*(z)

Note that f* have the same asymptotic normality as f(z) and slightly different bias.

Therefore, according to (2.78), the BCV function for f* seems to be

BOV*(u,.2,) = Iz((])ﬂ/“mdx

noy, (x4 ¢ep)?

x2v?

(@) + e f, (0) fi (2))2da.

+Aﬂ@%+%MH@+ 5

(4.23)

4.3.3 Parameter Selection for f,(z)

For estimator with Poisson weights based on G,,, we have the following BC'V' function

BOVL) = Vhig= 5_nMCE
b [0 1 OR - - fapa Gy
where 1 = W, MCE, =1 El 1 X 5/2 being an estimator of fo 3/2d9€ and
= %RZTW being an estimator of [ fi’”) dx
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4.3.4 Parameter Selection for f(z) and f*(x)

According to the AMISE of f(z), we can obtain the following BCV for f(z)

~ Liga [~ f;(@
BCV (vn,€,) = m}n/o (x+€n>2d:1:

[ee) 2
+/0 [W2fH () + (2022 + ) fF (2) + vi%ﬁf” (z))*dx.

(4.25)

Furthermore, using the relation of bias between f:(x) and f*(z) , we can establish the

following BC'V function for f*(z)

) _ LQp [~ fi(2) Y
BCV*(v,,€,) = m]n/o (x+en)2dx+/0 [Uif;r(x)

HEn e f (@) + 2 @)+ e 0 @) o

(4.26)

4.3.5 Parameter Selection for Chen and Scaillet Estimators

In both Chen and Scaillet estimators there is a parameter b which controls the smooth-
ness of density estimator. The way to choose the parameter is UCV method. Plugging

in the corresponding Chen or Scaillet estimators and minimizing

i=1

,where Z; = Zﬁg—, will give us the optimal solution of b. BCV method which involves
g

the derivative of density estimator is not applicable for them.
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4.4 A Comparison Between Different Estimators:

Simulation Studies

In this section, we will compare these different density estimators through extensive
simulations. First we generate LB data. Based on generated data, we choose the values
of parameters. For our proposed estimators, we use BCV method and minimize BCV
functions by optimise or optim in R to obtain the optimal solutions of parameters.
For density estimators motivated by Chen and Scaillet’s idea, we use UCV criterion to

select parameters. Under the chosen parameters, we compute

ISE(fy, f) = / T fule) — F(@)Pde

and

SE (fu(x), f(2)) = [falz) — f(2)]*
at some chosen points. We obtain 1000 samples of /SE and SE and use the averages
of them as approximations of MISE and MSE. Here, MISFE give us the global
performance of density estimator. M SFE let us to see how the density estimator performs

locally at the points in which we might be interested. It is no doubt that we particularly

want to know the behavior of density estimators near the lower boundary.

4.4.1 Simulation for Y3 and 2

First we simulate for y? distribution

1

= —Qa/2r(2)xa/2_l exp{—x/2}[{z > 0}

()
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with @ = 2 and @ = 6. When a = 2, f(z) is also an exponential distribution. The

LB data has distributions of x% and x2 respectively. Note that estimator with inverse

Gaussian kernel does not perform very well for direct data [see Kulasekera and Padgett

(2006)]. Our computation show that similar things happens to LB data. Here we do

not include the simulation for IG estimator.

Table 4.2: Simulated MISE for x3

Sample Size

Distribution Estimator

30 20 100 200 300 500
Chen-1 0.13358 0.08336 0.07671 0.03900 0.03056 0.02554
Chen-2 0.11195 0.08592 0.05642 0.03990 0.03301 0.02298
RIG 0.14392 0.11268 0.07762 0.06588 0.05466 0.04734
Poisson(F)  0.04562 0.03623 0.02673 0.01888 0.01350 0.01220
) Poisson(G)  0.08898 0.06653 0.04594 0.03127 0.02487 0.01885
. Gamma(F) 0.06791 0.05863 0.03989 0.03135 0.02323 0.01589
Gamma*(F) 0.02821 0.01964 0.01224 0.00796 0.00609 0.00440
Gamma(G) 0.09861 0.07663 0.05168 0.03000 0.02007 0.01317
Gamma*(G) 0.02370 0.01244 0.00782 0.00537 0.00465 0.00356
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Table 4.6: Simulated MISE for xZ

Sample Size

Distribution = Estimator

30 50 100 200 300 500
Chen-1 0.01592 0.01038 0.00578 0.00338 0.00246 0.00165
Chen-2 0.01419 0.00973 0.00528 0.00303 0.00224 0.00153
RIG 0.01438 0.00871 0.00482 0.00281 0.00208 0.00148
Poisson(F)  0.00827 0.00582 0.00382 0.00241 0.00178 0.00119
. Poisson(G)  0.00834 0.00562 0.00356 0.00216 0.00166 0.00117
Gamma(F) 0.01109 0.00805 0.00542 0.00327 0.00249 0.00181
Gamma*(F) 0.01141 0.00844 0.00578 0.00345 0.00264 0.00193
Gamma(G) 0.01536 0.01063 0.00688 0.00398 0.00303 0.00213
Gamma*(G) 0.01536 0.01063 0.00688 0.00398 0.00303 0.00213

110



(D)ewrures) pa1oolIo) -, JTA ﬁm@mEE@U-E\/ ‘(] yewrmrer) pajodLIo)) -, A

((A)pmmen-TA ‘(D)uossiog-A

JUOSSIOJ-AT “OTI-TIT ‘Z-UouD-1 ‘T-UoyD-T

0T X0°€ 0L XxX6L ¥0000 F000°0 LEOOO o 0T XET 000070 «[IA

0T X0°€ ¢ 0L XxX6L ¥0000 F000°0 LEOOO o 0T XET 000070 ITA

0T X¢'€ 00 XxX€S 600000 80000 910070 g100°0 9000°0 *IA

0L X T€ ¢ 00XxX94G 600000 800070 910070 G000°0 G000°0 IA

00T X LT 100070 €000°0 G000°0 ¢100°0 ¢-0T x L9 0000°0 A 0g=u
0T X 0T 0L X¥8 F000°0 80000 0OTO00 1100°0 1100°0 Al

00T X &9 1000°0 G000°0  TIO0°0 90000 ¢-0T XL'G ¢ O0IxX97F II1

0T X €1 100070 G000°0  TTO0°0 80000 ¢100°0 €100°0 II

001 X T€ 100070 L000°0  ¢T00°0  STO00 €100°0 ¢100°0 I

o-0L X T'F 1000°0 90000 8000°0 8000 ,-0T xX9€ 000070 *[IA

o0 X T'F 100070 9000°0 8000°0 8S00°0 ,-0T X9€ 0000°0 ITA

0T XC&F 0L XxX6L CI00°0 <¢T100°0 020070 12000 G100°0 «IA

0L X 67T - 00XxX98 TI00°0 <1000 610070 010070 L100°0 IA

0-01 X 6°¢ 1000°0 70000 8000°0 L1000 ¢-0T X 9°¢ 000070 A 0e=u
0T X 6T 100070 9000°0 ¢100°0 ¢100°0 9100°0 9100°0 Al

0T X T'T ¢000°0 80000 LT00°0 90000 ¢-0T X L9 -0 X9¢ II1

o-0T X 9°¢ ¢000°0 8000°0  LT00°0 TTOO0 L100°0 81000 II

00T X 9°G 100070 T100°0 61000  8TO0°0 8100°0 L100°0 I

02 ot 9 4 ! 1o 0 Ioyewnsy  ozIg ojdureg

2X 10§ FSIN Pore[nwig ¥ O[qe],

111



(D)ewrures) pa1oolIo) -, JTA ﬁm Jewuren)-T A “(])eWmes) pajodrIo) -, A
L) mossi0d- AT DI 209 11 1010311

((A)pmmen-TA ‘(D)uossiog-A

-0 X ¥ T ¢-0TX0€ T00000 TOO00 <€100°0 £000°0 0000°0 «ITA

-0 X ¥ T ¢-0TX0€ T00000 TOO00 <1000 £000°0 00000 ITA

0T XCT ¢ 0T XGT €00000 €0000 L0000 G000°0 0T X 0°C « A

0L XCT 0L X¥%T €0000 €0000 L0000 ¢-O0TX0L ¢-0IX0€C IA

0T X9F 0L X¥E T00000 <0000 %0000 10000 000070 A 00z=u
9-0T XC'¢ ¢-0TX0€ T0000 €0000 ¥000°0 G000°0 G000°0 Al

-0 X T T ¢-0TXxX9% T0000 €0000 €0000 ¢-0IX6C ¢-0IX07C 11

-0 X 6T ¢-0T xX€C T0000 €0000 F000°0 €000°0 €000°0 II

0T XG99 ¢ 0IxL¢ ¢0000 €0000 L0000 7000°0 €000°0 I

9-0T X 0¢ ¢-0T X6F <0000 <0000 €c00°0 ¢c00°0 000070 «[IA

9-0T X 0C ¢-0IX6F <0000 <0000 €c000 ¢c00°0 000070 ITA

-0 XC¢ ¢-0T X8¢ 90000 90000 <¢100°0 71000 10000 «IA

0T XC¢ ¢-0T X8¢C 90000 90000 <¢100°0 1000°0 100070 IA

10T X L8 -0 xX6¢ <¢00000 €000°0 80000 ¢000°0 00000 A 00T=U
o-0T X L¥ ¢ 0T X6F <0000 S000°0 L0000 8000°0 8000°0 Al

9-0T X 8C ¢-0T X6°6 <¢0000 90000 90000 ¢-0T XG¥ 0 X¥€E 11

9-0T X' GG ¢ 0T X€6 <¢0000 90000 L0000 8000°0 8000°0 I1

-0 XF'T ¢-0T X8F €000°0 90000 <¢100°0 60000 8000°0 I

0¢ 0T 9 i ! 10 0

Ioyewnsy  ozIg ojdureg

2X 10§ FSIN Pore[nWIg §F SR,

112



_, (D)eurmren) paoatio) A *
() ewuren)-TA ‘(5))uossiog-A

(¥

ruIen)-T[A ‘()emures) pojoolio) -, JA
JUOSSIOL-AT “OII-IIT ‘G-UWOUD-IT ‘T-uoYD-T

10T XLL 0T X9T ¢ 0IX66 ¢-0IXT8 90000 90000 0000°0 «ITA

10T XLL ¢ 0T X9T ¢ 0IX66 ¢-0IXT8 90000 900070 000070 ITA

9-0T X 6°¢ o 0T X G'L 1000°0 1000°0 700070 ¢000°0 0T X 6°€¢ «IA

9-0L X €G- 0T X89 1000°0 1000°0 700070 100070 9-01 X €6 IA

101 X0¢C ¢ 0IX9T ¢-0IxG99 100070 0000 ¢-0IT X 19 0000°0 A 0oc=u
10T XF9 0L XGT 0 X9L 1000°0 ¢000°0 ¢000°0 ¢000°0 Al

0L XGT 01 X9C 01 XxXG9 1000°0 €0000 ¢-OT X8T o0 X¥6 III

0L X LY 01 XGC 00 xX99 1000°0 €000°0 1000°0 1000°0 IT

9-0T X €T 0Ll XET ¢ 0IXG6 100070 700070 ¢000°0 100070 I

o-0L X 0T ¢ 0T X€EC 1000°0 1000°0 8000°0 110070 0000°0 «IIA

o-0T X 0T ¢ 0IX€C 100070 100070 8000°0 110070 0000°0 ITA

9-0T X 88 0T XT'T ¢000°0 ¢000°0 G000°0 700070 0T X €1 «IA

o-0T X 78 ¢ 01T X0 ¢000°0 ¢000°0 G000°0 1000°0 0T X P71 IA

0L XLE 0L X¥PC 01 xXL6 1000°0 €0000 ¢-0I X€8 000070 A 00e=u
o-0T X €T ¢ 0T X€C 100070 ¢000°0 €000°0 €000°0 €000°0 Al

0T X T8 0T X0V 1000°0 €000°0 €0000 ¢-0T XCT - 0IXVT III

9-0T X 0T ¢-0T X8€ 1000°0 ¢000°0 700070 ¢000°0 ¢000°0 IT

0L X0 0L X061 1000°0 ¢000°0 90000 €000°0 ¢000°0 I

02 01 9 4 ! o 0 Ioyewnysyy  ozIg oduwreg

2X 105 FSIN Pore[nWIS Y SR,

113



From Tables 4.2-4.9, we can see that, for x2 density, two Chen estimators are slightly
different. fcg has smaller M SFEs at the boundary and MISFEs than fm. This means
fcg performs better locally and globally than fm. This adapts to Chen (2000) in
direct data case which shows that fg should have smaller M ISFE than fl. Overall, the
density estimators motivated by Chen or Scaillet’s idea do not perform very well either
globally or locally near lower boundary. Generally, estimators using Chen’s idea have
similar M SE's at the origin to Poisson estimator based on F,, and their performances at
the lower boundary are comparable. However, in some cases for example n = 200 and
n = 300, PWE is much better. Poisson weights estimator based on F;, behave much well
at the rest points. So it has much smaller M ISFEs than Chen and Scaillet estimators.
Scaillet estimator has huge M SFEs at the boundary and the largest M ISFEs. Although
Poisson weight estimator based on (,, has relatively smaller M I SE’s, it has great M SFEs
at the boundary as well, just like Scaillet estimator. Therefore, they might not be
suitable for estimating the density whose value does not equal to zero at the boundary.
Two original gamma estimator perform similarly to PWE based F},. Even though they
have two parameters, their behaviors quite differ from what are expected. This is due
to the fact that, in this case the parameter €,s are usually not zero, which causes the

7

estimators to ¢ lose 7 some weights and not to be a valid density estimators [Their

4

integrals from 0 to oo is less than 1]. In this example, two “ stars ” are two corrected
gamma estimators, which perform best locally and globally. The boundary corrections
are very necessary and effective. They reduce dramatically estimators’ M .S Es near the
boundary and relatively slightly at the rest points. Therefore, two estimators have the

smallest M IS FEs. The corrected gamma estimator based on F),, behave better near the

boundary than the corrected gamma estimator based on G,. However, at the points
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away from the origin, it is just the opposite. The estimator based G, is better than the
estimator based on F,,. Overall, estimator based on G,, has slightly smaller M IS FEs.

For x2, all estimators have comparable global results. At the lower boundary, RIG
estimator, gamma estimators, Poisson weights estimator based on G,, have similar re-
sults. Chen estimators behave like PWE based on F,,. They are slightly worse than
previous estimators. Tow Poisson weights estimators, which have the smallest M IS FEs,
perform similarly and very well globally. In this case, original gamma estimators are
almost as same as the corrected gamma estimators. This is because, in this example,
€ns are almost zero. When ¢, is 0, the corrected gamma estimators are the same as
original gamma estimators which has a value of zero at the lower boundary.

In the first example with density such that f(0) > 0, the corrected gamma estimators
perform much better than the original estimators. In the second example with density
such that f(0) = 0, the corrected estimators have similar local and global behaviors
to the original ones. So we can use the corrected estimators to replace the original

estimators without hesitation.

4.4.2 Simulation for Some Other Standard Distributions

We have simulated for the following standard distribution as well.

(7). Lognormal Distribution

@) = o= exp{~(logz = p)*/2}{x > 0}

(71). Weibull Distribution

f(z) = ax® texp(—2*)I{z > 0};
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(73i). Mixtures of Two Exponential Distribution

(@) = - exp

(=2/6) + (1 — )

1
— exp

02

(—x/05]I{x > 0}.

Table 4.10: Simulated MISE for Lognormal with p =0

Sample Size

Distribution  Estimator
30 50 100 200 300 500
Chen-1 0.12513 0.08416 0.05109 0.03450 0.02514 0.01727
Chen-2 0.12327 0.08886 0.05200 0.03545 0.02488 0.01717
RIG 0.14371 0.09733 0.05551 0.03308 0.02330 0.01497
Lognormal  Poisson(F) 0.05559 0.04379 0.02767 0.01831 0.01346 0.01001
Poisson(G)  0.06952 0.04820 0.03158 0.01470 0.01474 0.01061
Gamma*(F) 0.06846 0.05614 0.03963 0.02640 0.01998 0.01470
Gamma*(G) 0.16365 0.12277 0.07568 0.04083 0.029913 0.02035
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Table 4.14: Simulated MISE for Weibull with o = 2

Sample Size

Distribution Estimator
30 50 100 200 300 500

Chen-1 0.10495 0.06636 0.03884 0.02312 0.01700 0.01167

Chen-2 0.08651 0.05719 0.03595 0.02225 0.01611 0.01111

RIG 0.08530 0.05532 0.03227 0.01984 0.01470 0.01045

Weibull Poisson(F)  0.04993 0.03658 0.02432 0.01459 0.01179 0.00856
Poisson(G)  0.05288 0.03548 0.02268 0.01392 0.01106 0.00810

Gamma*(F) 0.08358 0.06671 0.04935 0.03169 0.02652 0.01694

Gamma*(G) 0.12482 0.08526 0.05545 0.03402 0.02731 0.02188
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Table 4.18: Simulated MSE for Mixture of Two Exponential Distributions with 7 = 0.4,

0 =2and 6, =1

Sample Size

Distribution  Estimator
30 50 100 200 300 500
Chen-1 0.22876 0.17045 0.08578 0.06718 0.05523 0.03811
Chen-2 0.17564 0.15083 0.07331 0.08029 0.04931 0.03808
RIG 0.25284 0.20900 0.13843 0.10879 0.09344 0.07776
Mixture Poisson(F)  0.06838 0.05746 0.04116 0.02612 0.01896 0.01179
Poisson(G)  0.11831 0.09274 0.06863 0.05019 0.03881 0.03044
Gamma*(F) 0.04147 0.02645 0.01375 0.00758 0.00532 0.00361
Gamma*(G) 0.02534 0.01437 0.01091 0.01223 0.01132 0.00994
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4.4.3 Discussions and Conclusions

From the simulation results given in tables, we can see that two Chen estimators have
similar performances at the edge. Usually fog have smaller MISFE than f(;l. For
direct data, Chen (2000) show that density estimator under parameter choice (1.14)
has a better global performance than that under choice (1.13). This property might be
adapted to LB data. The simulated M S FEs show that the fCQ preform better than fgl
in the neighborhood of origin, so M ISFE of fcg is lower. However, the two Chen density
estimators do not perform very well globally and locally near the origin comparing with
other density estimators. They have relatively great M ISEs and M .S FEs near the lower
edge. Judged by the simulated M SFEs at the boundary, the two estimators can not
completely remove the bias at the edge, even in the case that underlying density such
that f(0) = 0 [see simulation for x2, Lognormal].

Replacing gamma kernels with RIG kernels, Scaillet estimator have a great advance in
reducing M SFEs at the origin for underlying density such that f(0) = 0 [see simulation
for x2, Lognormal and Weibull distributions]. In some cases, the estimator even has
zero error at the origin. So, under this circumstance, Scaillet estimator have smaller
MI1SFEs than Chen estimators. It seems that RIG density are more suitable as kernels
than gamma density in these cases. However, the advantage becomes disadvantage in
estimating underlying density such f(0) # 0. In this kind of cases, Scaillet estimator
has huge MSEs at the origin [see simulation for x3 and mixture of two exponential
distributions]. According to the examples we have here, it seems to be concluded that
Scaillet estimator might be just suitable to estimate density with zero value at the

border.
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For xZ, Lognormal and Weibull distributions, Poisson weights estimator (PWE) based
on F, have the smallest M1SFEs. If we just consider MISFE, this estimator is perfect
in these examples. However, if looking into M SFEs, we find that it is not that perfect.
It still has relatively great MSFEs at the origin. But the MSFEs at these points away
from origin are much smaller. So it has smallest M ISFEs. From this example, we can
see that M SFEs give us a valid method to observe the local performance of estimator,
especially the performance at these points in which we are interested. For y3 and
mixtures distributions, although this estimator performs better than Chen estimators,
it still has relatively great MSFEs at the border. Note that the Scaillet estimators’
value at the lower boundary is always zero or close to zero. If we look into the plots of
Poisson weights [Figure 4.26] near zero and the gamma kernels used in Chen estimators

[see Chen (2000)], we find that PWE and Chen estimators use a similar strategy to

aaaaaaaaaaaaaaaaaaaaa

Figure 4.26: Plots of distribution of Poisson weights with A = 2.

avoid the defect in Scaillet estimators, that is they both change the shape of kernels or
weights near zero into exponential-like density shape. Although changing the shape of
kernels or weights is a valid way to avoid such a defect in Scaillet estimators, it is not
a perfect strategy to remove the bias at the boundary. This strategy might be more

suitable for the true underlying density which has an exponential-like shape. For some
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other kinds of true underlying density, they may have less efficiency in exploring the
true underlying density’s character of f(0) = 0 when sample size is small [see simulated
MSFEs at the boundary for Lognormal and Weibull distributions].

For PWE based on G,,, in the simulation for x2, Lognormal and Weibull distributions,
it has similar M ISFEs to PWE based on F), and at the boundary has smaller M SFEs.
However, it does not perform very well in the simulation for x3 and mixtures of two
exponential distributions, especially at the boundary. Therefore, it may be suitable to
estimate true underlying density with f(0) = 0.

The corrected gamma estimator based on F), performs very well locally and globally
in the simulation for y3 and mixtures distributions. The parameter ¢, and boundary
correction effectively reduce the bias at the boundary and result in the dramatic decrease
of MISFEs. For the rest distributions, this estimator has comparable MISFEs to other
estimators and satisfactory M.SEs at the boundary. The BCV method is valid to decide
whether the optimal solution of €, is zero or not. So that this estimator can accurately
explore the characters of underly density at the boundary behind the data. Inspired by
Scaillet estimator, in order to further reduce MISFE, we can substitute gamma kernels
with RIG or IG kernels. Actually, RIG or IG kernels are completely adapted to our
estimator.

The corrected gamma estimator based on G,, has the smallest MISFEs in the sim-
ulation for y3. However, the MSEs at the boundary are little worse than corrected
gamma estimator based on F),. Further simulation shows that, although this estima-
tor has zero error at the boundary in some cases, it has relatively great M SFEs in the
neighborhood of origin. This estimator may not be very stable in this area. Recall-

ing PWE based on G,,, we may conclude that, using the same smooth technique, the
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density estimator obtained by smoothing F, performs better than that obtained by
smoothing G,,. This seems to be true for kernel method as well, since Jones estimator
is better than Bhattacharyya et al. estimator. If we first obtain g, (x) the estimator of
weighted density, then, we divide the estimator by = to obtain the unweighted density.
Because the existence of bias of g,(x), it is not easy to control the ratio g,(x)/x to be
close to f(z)/p near the lower border. Besides, because of the term 1/z, the bias will
be enlarged and even blows up [see Bhattacharyya et al. estimator|. Therefore, the
estimators based on (G, may have more difficulties in exploring characters of underlying
density near boundary in some cases. For the bias data, if the weight function is more
complicated than z, or has a term with a higher order than z, say x2, the situation
will become more worse. For LB data or biased data, a better way is smoothing Cox
estimator to estimate unweighted density. So, through this point, we can see that the

Cox’s estimator plays an important role in estimating density function for LB data.

4.5 A Linear Combination of Two Density Estima-

tors

Through the simulation studies given in the previous section, we can see that two
corrected gamma estimator perform well. Looking into SFEs, we find that gamma
estimator based on Fj, has smaller bias near the lower boundary. However, gamma
estimator based on G, has smaller error at the tail. In order to take a full advantage
of the two estimators’ merits, we consider the linear combination of the two estimators

as follows.
f(x) = afi(x) + (1 —a)f;(x). (4.27)
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where 0 < a < 1. Note that five parameters are involved in fC: two pairs of (v,,€,)
in f;: and f,;“ respectively; one parameter a connecting two density estimators. We
consider to use two steps to choose these parameters. In first step, using BCV methods
described above to select the parameters in f;: and f;, say (Un1, €n1) and (vng, €,2); then
select parameter a. We hope that the chosen parameter a would make the variance of

f¢ as small as possible. Note that

V(fy (2)) = a®V(fi () + 2a(1 = a)Cou(f;(2), (@) + (1 = a*V(fi (). (4.28)
According to (4.23) and (4.26), we have

Iy(q)j f;j(x)

N1 (T 4 €p1)?

V(f(x)) ~ (4.29)

and

L(@)i  fi(x)

Vi)~ S

(4.30)

Furthermore, we have f; (r) ~ m Z?zl Qu,, ( 2 >> and

T+€nl

F ~ n X
fi(x) =~ m S X, (Hm), then we can compute

CWGx>ﬁw»w1&;ﬁﬁﬁgmmm0%xmwwﬂ>ﬂ.

n | (r+€en

So we can estimate Cov(f*(x), f(x)) by

fi(@) [
m/ﬂ £, (£, (t)dt — (fF () ] (4.31)

So integrated variance of f¢ can be approximated by

b [~ Fie)
AlV(a) = /0 ( d

NUp1 T+ E711)2

all —a 00 + 0 < g
+¥ [ﬂ/{; ﬁdl’/{; tqvnl( )qvnQ( )dt _/0 (f,j(x))de]
O e (4'32)
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Minimizing (4.32) between 0 and 1 will give us an optimal solution of parameter a.
We also present some results of the new estimator’s MISE and SFE based on a

simulation study.

Table 4.22: Simulated MISE for Standard Distributions

Sample Size

Distribution

Estimator

30

20

100

200

300

200

Gamma*(F)
Gamma*(G)

Combination

0.02821

0.02370

0.01638

0.01964

0.01244

0.00927

0.01224

0.00782

0.00597

0.00796

0.00537

0.00440

0.00609

0.00465

0.00363

0.00440

0.00356

0.00286

Gamma*(F)
Gamma*(G)

Combination

0.01141

0.01536

0.01133

0.00844

0.01063

0.00838

0.00578

0.00688

0.00574

0.00345

0.00398

0.00343

0.00264

0.00303

0.00263

0.00193

0.00213

0.00192

Lognormal

Gamma*(F)
Gamma*(G)

Combination

0.06846

0.16365

0.06845

0.05614

0.12277

0.05616

0.03963

0.07568

0.03962

0.02640

0.04083

0.02555

0.01998

0.029913

0.01950

0.01470

0.02035

0.01444

Weibull

Gamma*(F)
Gamma*(G)

Combination

0.08358

0.12482

0.07868

0.06671

0.08526

0.06351

0.04935

0.05545

0.04727

0.03169

0.03402

0.03038

0.02652

0.02731

0.02429

0.01694

0.02188

0.01861

Mixture

Gamma*(F)
Gamma*(G)

Combination

0.04147

0.02534

0.01861

0.02645

0.01437

0.01165

0.01375

0.01091

0.00689

0.00758

0.01223

0.00458

0.00532

0.01132

0.00346

0.00361

0.00994

0.00242
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From the simulation results given in above tables, we can see that the combination
estimator has the merits of two corrected Gamma estimators at the same time. The
combination estimator performs very well for x3 and mixtures of two exponential dis-
tributions. Table 4.22 shows that the M IS FEs decrease obviously. At the same time, if
we look into the table of M SFEs, we will find that MSFEs at each point are improved
in a certain extent as well. For yZ the two estimators perform very well separately
and MISFE may be very close to the lowest bound. So, the MISFEs of combination
estimator are not improved very much. For Lognormal and Weibull distribution, the
corrected gamma estimator based on G, is little worse than gamma estimator on F,.
The combination estimator has slightly better M ISFEs than gamma estimator on F,.
This seems that the combination estimator will choose the best automatically for us.
So, the recently introduced parameter a, which combines the two gamma estimators,
seems to improve the performance of combination estimator and make the combination

estimator have the goodness of two gamma estimators.
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Chapter 5

Smooth Estimators of Some Function-

als of the Distribution Function

5.1 Introduction

Survival analysis is a branch of statistics. In engineering, economics or sociology, it is

called reliability theory. In survival analysis, cumulative hazard function
H(z) = — log (S(2)) (5.1)

where survival function S(x) =1 — F(z) and hazard function

ha) = L&) (5.2)

occupy an important position. They have many applications in engineering, industrial
reliability, biomedical science, economic, life insurance and so on. In survival analysis,

mean residual life (MRL) function



also has some important applications [see Abdous and Berred (2005)]. In some situa-
tions, it is more useful than hazard function [see Calabria and Pulcini (1987)].

In this chapter, we will propose some smooth estimators of cumulative hazard, haz-
ard, and MRL functions using Hille’s lemma in Poisson weights and generalized version.
In Section 5.2, we will first study the estimators of hazard function theoretically, pre-
senting some properties of the proposed estimators, such as strong consistency and
asymptotic normality. These properties shows the behaviors of estimators with infinite
samples. In order to show the performances of these estimators under finite samples,
numerical results of a simulation study are presented as well. The comparison of dif-
ferent estimators is carried out based on MSFE. In Section 5.3, we will propose three
smooth estimators of MRL function and investigate their asymptotic properties. At

the same time, results of the simulation study are given as well.

5.2 Smooth Estimators of Hazard Function

5.2.1 Estimators with Poisson Weights

Define the estimator of survival function as

It is easy to see that the smooth estimator of survival function §n(x) has the same
asymptotic properties as the smooth estimator of distribution function ﬁn(x) Taking
advantage of the relationship between cumulative hazard, hazard and survival, density

function, a natural thought is that, using

H,(z) = —log S,(x) (5.4)
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and
ha(z) = ful(@)/Su(@) (5.5)

to estimate H(z) and h(x) respectively.

5.2.1.1 Asymptotic Property of ﬁn(x) and h,, ()

Note that, because of the strong convergence of S, (z) and f,(z), if S(z) # 0, we have

o) = H(w) + g (Sule) = S(a)) + o(Su(a) = 5() s (5.6)
and
i) = ho) + g7 Unle) = ) = S ot = 5(a)
tolgy(ole) = 1) = 75 5ul) = S@) as. (57

By (5.6) and (5.7), we can see that the strong convergence of S,(z) and f,(z) leads to

the the strong convergence of H,(z) and h,(z). So we have following theorem.

Thoerem 5.1 Under the same assumptions on f(x) and f'(x) in Theorem 2.4, if A\, =
O(n®) and 0 < a < 1, E(X;?) < oo and € C R* is a compact set such that when

x €€, S(x) #0, then, as n — oo, we have

|, () — H()||e = S;lelglffn(w) — H(z)] =50 (5.8)
and
() = h(z)]|e = ilélg\ﬁn(x) — h(z)] == 0 (5.9)

From (5.6), we also note the weak convergence of H,(z) led by S,(z).
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Thoerem 5.2 Under the same assumptions on f(x) and f'(x) in Theorem 2.3, if
E(X;?) < oo, n7'A\, — 0 and C C R* is a compact set such that when t € €,

S(x) #0, then, as n — oo, we have

Vn(H,(z) — H(z)) 2 N(0,8 (x)) (5.10)

52
where ¢'(z) = (z) and 62(x) is defined same as in Theorem 2.3.

52 (x)

Now we suppose f'(z) satisfies the Lipschitz order « condition (2.5). Under this

assumption, we can write

S(/A) = (@) = —F@)k/A — ) = DD 5, — )2 1 Ok /Ay — 2)1+7) (5.11)

Furthermore, using (5.11), we can also write

Sp(z) — Sp(z) = T (x) — %:Z) + O\, (5.12)

where

To(x) = ) pu(adn) [Sa(Aa/k) = Su(@) = S(An/k) + S(@)].

Following along the lines of the proof of Theorem 3.2 in Chaubey and Sen (1996) using

_1
Lemma 2.1 with b, = A\, 2(log n)#, we can show that

sup [T, (z)| = O\, *n~ ' (log n)"*%).
x>0

Then the variance V(77 (z)) < O(An/*n=(logn)*?)). By (2.30), (5.7) and (5.12), we

have

ho(2) — h(z) ~ 2)\‘12552@ (S(x) + f(z)) + 7:2,2(55) (5.13)
-I—é;((xx)) [T! () + Sy (z) — S(x)] (5.14)



where T,o(x) is defined as in (2.26). Since the variance of (5.14) does not exceed

O(n™1) and covariance with T5(x) not exceed O(/\}/ *n=1), the order of variance of

fu(zx) is determined by the order of variance of T,5(x)/S(x). So we have

V(h(z)) =~ % ~ g(ﬁx?’)l/?;(—g)(x,ﬁ/?/n) (5.15)
and
Covlin(s), hn(z)] ~ CO”[?(?)?(?(“’” _ 0(%) (5.16)

From the previous analysis about T),2(x), we can obtain the following theorem.

Thoerem 5.3 If \, = O(n*°)(nonstochatic) and (2.5) holds, and the set € C R* is

a compact set such that when x € C, S(x) # 0, then, as n — oo,

2/5(7, (S(z) +zf(z)) D ,
{(n /5[ (x) — h(z)] — 20252 z) f'(x)),z € €} — Gaussian process

with covariance function v20s, where > = g(ﬂx?))*lﬂ 52(2)5, 0se = 0 for s # x and 1

for s =z and § = lim (n=°\/?)

n—oo

5.2.1.2 MSE

Similar to density function, we have

f@)(S(z) + f(z))y: Y )12 £(2)

252(x) i (wz S2(x)

MSE(ha(7)) = 2| o

(5.17)

5.2.2 Estimator with Asymmetric Kernels

Using the definition of hazard function h(z) = f(z)/S(z), a natural smooth estimator

of hazard function with asymmetric weights is given by

;L:L(x) - falz)

= i (5.18)
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5.2.2.1 Asymptotic Properties of B:(x)

Using Theorem 2.6 and 2.8, it is easy to obtain the following theorem regarding strong

convergence of h* ().

Thoerem 5.4 Under the assumption of Theorem 2.6 and 2.8, for a compact set € C

R* such that when x € C, S(x) # 0, we have

17y, () = B()lle = sup|hn(x) = h(x)] == 0

zeC

Using the Taylor expansion of (5.18)

Bila) % W) + s (i) = f0) - S0 Gy~ s@)  (5.19)

where S(z) = 1 — FF(z), we can show the following theorem regard weak convergence

of h(z).

Thoerem 5.5 Under the assumptions of Theorem 2.9, we have

VT a) = bia) = N (0. L) T or .

5.2.2.2 MSE

According to the proofs of Theorem 2.7 and 2.9, we have

Bias(h;,(x)) = [(xv; +ea)f'(2) + %Qf”(x)vi +enf(0)f(2)]/5(x)

2 f'(x)f(z) , 2
~ o) n + o(v2 + £5). (5.20)

So

(20 + ) ' (2) + 5" (@)vi + e f(0)f ()
S(x)

_2f(@)f() 212 DB(@ef()

252(z) " nu, (T + €,)%252(x)

MSE(R,(2) = |

+o(v2 +¢,) (5.21)
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5.2.3 Numerical Comparison

In this section, we compare the two proposed smooth hazard function estimators through
the simulation for the following standard distributions.

(7). Chi-Square Distribution

1

f(z) = 23F(%)I21 exp(—x/2)I{z > 0}
(7). Lognormal Distribution
F(z) = —a— exp{—(log — p)*/2}I{z > 0}

\V2mx

(77i). Gamma Distribution

(iv). Weibull Distribution
f(z) = az® texp(—2*)[{x > 0}

We use the same selection methods of parameters in f*(x) and f,(z) to choose the

parameters in iL; (x) and B (x) respectively. Under the chosen parameters, we compute

at some fixed points where h,(z) could be k% (x) or h,(z). The fixed points are Qs
(¢ = 0,0.10,0.25,0.50,0.75,0.90). [We refer to Qy as 0, Q50 as the median, Qg5 ,
Qo.75 as the the first and third quartiles and Qo 10, Qo.00 as the first and ninth deciles].

We present the simulation results in the following tables.
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Table 5.1: Simulated MSE for X%

Quantile

n Estimator

Q0.00 QOAIO Q0.25 Q0.50 QO.75 QO.QO

ﬁ*(x) 0.03294 0.03429 0.03879 0.05216 0.08115 0.10952

. ﬁn(x) 0.17339 0.10311 0.04620 0.01707 0.01013 0.01008
ﬁ;(x) 0.01967 0.02139 0.02743 0.04363 0.07183 0.10042
" ﬁn(x) 0.18529 0.09515 0.03242 0.01076 0.00711 0.00794
ﬁ;(x) 0.01052 0.01226 0.01733 0.03145 0.05575 0.08239
e ﬁn(x) 0.17330 0.06228 0.01924 0.00674 0.00474 0.00519
ﬁ;(x) 0.00625 0.00767 0.01143 0.02199 0.04123 0.06420
- ﬁn(x) 0.14181 0.03928 0.01050 0.00442 0.00338 0.00367
71;(96) 0.00489 0.00587 0.00874 0.01732 0.03368 0.05416
. ﬁn(x) 0.12227 0.02746 0.00768 0.00337 0.00276 0.00301
ﬁ;(as) 0.00359 0.00434 0.00642 0.01285 0.02594 0.04338
200

fzn(:c) 0.10463 0.01788 0.00519 0.00247 0.00217 0.00247
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Table 5.2: Simulated MSE for X%

Quantile
n  Estimator
(o.00 (o.10 Qo.25 Qo.50 Qo.75 (o.90

0.00151  0.00190 0.00191 0.00750 0.02048 0.03697
v 0.00046  0.00151 0.00194 0.00347 0.00519 0.00659
0.00070  0.00138 0.00123 0.00564 0.01653 0.03103
" 0.00094  0.00091 0.00137 0.00279 0.00443 0.00591
0.00025  0.00078 0.00073 0.00397 0.01235 0.02414
100 0.00061  0.00048 0.00085 0.00195 0.00321 0.00426
1.2 x 107° 0.00049 0.00049 0.00237 0.00777 0.01612
- 0.00033  0.00028 0.00056 0.00131 0.00212 0.00286
1.4 x 107 0.00040 0.00038 0.00169 0.00578 0.01238
o 0.00025  0.00022 0.00045 0.00100 0.00162 0.00221
4.5 x 107> 0.00028 0.00027 0.00120 0.00420 0.00922
. 0.00018  0.00015 0.00032 0.00072 0.00115 0.00159
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Table 5.3: Simulated MSE for Lognormal(0,1)

Quantile
n  Estimator
(o.00 Qo.10 Qo.2s Qo.50 Qo.75 (0.90
h:(x) 0.05778 0.10281 0.10571 0.09779 0.07517 0.04962
. ﬁn(x) 0.13073 0.10778 0.12258 0.06855 0.02499 0.01121
h:(x) 0.05294 0.08226 0.07455 0.07455 0.06015 0.03986
! 71“(1') 0.13272 0.08194 0.08175 0.03930 0.01381 0.00754
h:(z) 0.03970 0.05107 0.04717 0.05571 0.04651 0.03092
e fzn(x) 0.10536  0.05460 0.04460 0.01850 0.00704 0.00515
ﬁ;(:zr) 0.02459 0.03009 0.03168 0.04069 0.03391 0.02248
. ﬁn(x) 0.06632 0.03623 0.02693 0.01041 0.00426 0.00331
h*(x) 0.01697 0.02099 0.02459 0.03212 0.02679 0.01774
o ﬁn(x) 0.04367 0.02659 0.01867 0.00697 0.00337 0.00246
ﬁ;(as) 0.01092 0.01407 0.01879 0.02443 0.02018 0.01341
500 ﬁn(:c) 0.03619 0.01877 0.01313 0.00495 0.00228 0.00168
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Table 5.4: Simulated MSE for I'(2, 1)

Quantile
n  Estimator
(o.00 Qo.10 Qo.2s Qo.50 Qo.75 (0.90
h:(x) 0.01239 0.02497 0.01822 0.04918 0.12183 0.20781
. ﬁn(x) 0.03585 0.02587 0.02037 0.02219 0.02522 0.02898
h:(x) 0.01022 0.01820 0.01230 0.04152 0.10741 0.18688
. 71“(1') 0.03017 0.01707 0.01359 0.01588 0.01883 0.02271
h:(z) 0.00705 0.01045 0.00843 0.03328 0.08966 0.16072
e fzn(x) 0.02213 0.00909 0.00837 0.01028 0.01270 0.01577
ﬁ;(:zr) 0.00443 0.00607 0.00584 0.02573 0.07163 0.13236
. ﬁn(x) 0.01712 0.00520 0.00515 0.00710 0.00911 0.01069
h*(x) 0.00295 0.00447 0.00458 0.02044 0.05945 0.11310
o ﬁn(x) 0.01684 0.00360 0.00446 0.00713 0.00960 0.01168
ﬁ;(as) 0.00261 0.00346 0.00311 0.01417 0.04338 0.08653
500 ﬁn(:c) 0.01269 0.00271 0.00295 0.00434 0.00536 0.00668
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Table 5.5: Simulated MSE for Weibull(4)

Quantile

n  Estimator

Q0.00 C20.10 QO.25 QO.ESO QO.?S Q0.90

hi(z)  2.0x 1077 0.10168 0.07904 1.09960 7.13035 22.6114

. B () 0.00353  0.04884 0.10895 1.92473 9.71302 27.2550
h () 0.00000  0.07516 0.05898 0.64748 4.92443 17.1557
" B () 0.00164  0.04943 0.05817 1.40755 7.87478 23.2188
h(z) 0.00000  0.04147 0.04663 0.24293 2.37609 9.86292
100 B () 0.00017  0.04085 0.02726 0.93694 5.94016 18.6429
h(x) 0.00000  0.02565 0.03284 0.10989 1.20060 5.72528
- I () 0.00000  0.02798 0.01287 0.51180 3.82420 13.1161
hr(x) 0.00000  0.01980 0.02481 0.07362 0.82973 4.19847
- I (2) 0.00000  0.02221 0.00908 0.37122 2.99963 10.7567
h () 0.00000  0.01313 0.01737 0.04767 0.55880 3.01171
500

ﬁn(aj) 0.00000  0.01538 0.00643 0.23763 2.12960 8.10190

The results of simulation show that A*(z) perform better than h,(x) between Q
and Qq5. This is because the density estimator f*(z) perform much better than f,(x)
near the lower boundary. At the tail, it is the opposite, which leads hazard function

estimator h,(z) is better than A% (z). But the difference is not significant.
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5.3 Smooth Estimator of Mean Residual Life

In this section, we propose three smooth estimators of MRL function, two using Poisson
weights ,one using gamma kernels. Numerical comparison is given at the end of this

section.

5.3.1 Smooth Estimator of MRL with Poisson Weights Based

on F,
If we define
SY(z) = / g(t)dt (5.22)
and
SE(x) = / f(t)dt (5.23)
then the mean residual life function is given by
Ftf(t)dt
mie) = L0V,
L7 f(t)dt
o pSCx)
T ST
= M(z)—=x (5.24)

The empirical estimators of S¢(x) and S¥(z)/u are given by, respectively,
SG(x) = L3 I{X; > 2} and DE(z) = 237" | +1{X; > x}. Using the discrete

n —n i=1 X;

version of Hille’s lemma, we can obtain the following two smooth estimators

S5(@) =D pe(aAa) Sy (k/An) (5.25)

k>0
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and

=" pe(aa) DY (k/ M) (5.26)

k>0

If we substitute the two smooth estimators for the corresponding functions in (5.24),

then we have the following smooth estimator of m/(x)

- o Zkzo pk(xAn)Sg(k//\n) .
() = S ) DE (/) (5-27)

Thoerem 5.6 If \, — oo, E(X;') < oo, then for any compact set C such that S(z) #

0 when x € C, asn T oo,

[ (2) = m(z)|le = sup{|,(z) — m(z)[} == 0

zeC

Proof: The proof is straightforward. As A, T oo, we have

sup(] Yo pu(eA)SEb/A) — [ glt)atl} =20 (5.28)
z€eC k>0 T

and
sup{| 3 p(A)DE R/ An) = [ a0 (5.29)
zel k>0 " HJ g

By (5.28) and (5.29), we have

{ Zk>0pk n) Sy (k/An) B f g(t)dt ‘}
xe@ Zk>0pk )DF (k/ ) flLf f(t)dt

LI (5.30)

iléle)ﬂm(x) —m(z)|}

Thoerem 5.7 If \/n\;! — 0, B(X{?) < oo and f(x) is absolutely continuous with a

bounded derivative f'(x) a.e. on RT | then
V(i () = m(x)) = N(0,6*(x))
where §2(z) = — - Tar2(z) [ Qg — [
here 8°(2) = cryyy | MP(0) [ B — [ 7 (@)

153



Proof: Using Taylor expansion, we can approximate m,(x) by

G /0) — /Oog(t)dt

k>0

F(k/A) — ;S@:)]

Ic>0

v (k/An)

k;>0

Zpk 2A) DE (k/\)] (5.31)

k>0

Actually, we can write

S neM)SE A = S [ At [SE (/A = S+ D] (532

k>0 k>0 V7T

and

S A DEE/A) = Y[ ApeltAn)anDE e/ 3) = DE((k+ D] (533)

E>0 k>0 YT
Let
= (o - S < X< G
then
BE) = ([ Apultn 0[S A) - S+ /)
k>0 YT
S AT ((8)/A) = S (-4 1))
M E>0 x
= > pr(@A) S (k/ ) — (k/An)
k>0 k>0
— S%x) — %{B)SF(Z’) =0 (5.35)
So, by (5.31), we have
E(mp(z)) = m(x) + B — m(x) (5.36)
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On the other hand, we have

9 ~ 2 M(x) o,k _k+1
¢ = X | At - P < X< )

= Z(/w )\npk(t/\n)dt)gl{)\ﬁ < X; <

k>0

_QM(;L-)Z(/OO AP (tA ) dt)? X%]{)\n < Xi < . }

k>0

+M?(z) Z(/Oo )\npk(t/\n)dt)ZXQI{/\ﬁ < X; < N, ¥

£>0 i
then

BE&) = ([ Apultrn)at? (s (b/0) = SOk + 1)/

k>0

_oM(=) > ( / T AP AN[ST (/) — ST ((k+ 1)/ An)]

K k>0
M2 s (k+1)/An 1
LS o [ Lo
H k>0 Ve k/An
M M?
_ o M@ M)
1

Furthermore,

T = Z / Mk (EA)AESE e/ An) — SE((K +1)/A,)]

= 5 -5
Calculating the integration in S; and rearranging the sum give us

= pe(ad)S(k/ M)
k>0
By Hiller’s theorem, we can claim that, as A, T oo,

= pe(eX) S (k/A,) — S%(x).

k>0
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(5.38)

—Z (1 —/ A (A )dt)/ AP (EAG)dE[SE (k) Xn) — S9((k + 1) /M)

(5.39)

(5.40)

(5.41)



Next, we will show that Sy — 0.

Let N={0,1,...,n,...} and b, = /\ﬁl/z(logn)%é where 6 > 0. Denote
NI = {k|k/\, — x < —by, k € N}, N2 = {k||k/\, — | < b,,k € N} and
N3 = {k|k/X, — & > by, k € N}

Let

o= (= [ 0 [ pESEE/N) - S+ DA, (542)

then we can write

SQ = Z a + Z ar + Z Qg . (543)

keN] keNZ2 keNZ

For any k& € N, by the proof of Lemma 3.1 of Chaubey and Sen(1996), we can claim

that(\, [ pr(tAa)dt) = [L — X, [ pe(tAn)dt] = 34 pi(ah,) < L. Then

0< ) ar< %(1 +5). (5.44)

keN]

For any k € N2, by the same lemma above, we can claim that [1 — X, [ pp(tA,)dt] =

> i1 PilTAn) < . At the same time, we have [1 — A, [" pi(tAn)dt] < 1. Then
0< ap < lSl (545)
n
For any k € N2, by the facts [1— X, [ pp(tA,)dt] < 1, Xy [0 pe(tA,)dt < 1, we have

0< Y ar < [Sx+by) — Sz — by)). (5.46)

keN2

By (5.44), (5.45) and (5.46), we can see that as A\, T 00, >, i ax(i = 1,2,3) all
tend to 0. This means

By (5.41) and (5.47), we have
T, — S%(x) (5.48)
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Similarly, we have

Ty — S*(x) (5.49)
and
T, /Oo @dt (5.50)

By (5.35), (5.38), (5.48),(5.49) and (5.50) and a little work of algebra, we have

V(&) — 6% (x). (5.51)

2

Finally, by the fact that V(y/nm,(z)) = Sé‘—(w)V(fi), we can obtain the theorem.

[ tf(t)dt

Remark 5.1: Note that an empirical estimator of m(z) = g — L1

>y X > 2}

2?21 X%{XZ > x} - (5.52)

my(z) =

Smoothing this empirical estimator will also give us an alternative smooth estimator

with Poisson weights as follows.

() =Y pre(An)ma(k/A,) — . (5.53)

k>0
Using Taylor’s expansion, we can expand (5.53) as (5.31). This means that m/ has

the same asymptotic properties as m,. So for m/, we can still establish theorems as

n’

Theorem 5.6 and 5.7.
Remark 5.2: According to the proof, we have

Bias(rin(x)) = 25)\” [M(2)f'(z) = 2f'(x) = f(2)] + 0o(A,")

and

Viin(a) = —tis lMQ(x) /; @dt _ /OO tf(t)dt] ol

T
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So

MSE(m(z)) = { o [M<x>f'<x>—xf’<x>—f<x>]}

Fggt e [T [T o)

(5.54)

5.3.2 Smooth Estimator of MRL with Poisson Weights Based
on GG,

Note that, for LB data, the mean residual life function can be defined as

m(z) = Jo yf)dy
S(x)

(5.55)
where S(z) = [ f(t)dt. Using the smooth estimators based on G, with Poisson

weights to replace the corresponding functions in (5.55) gives us the following smooth

estimator of m(x)

1= 31 (@) G (51)

- Pr_1(2hn Pp(zhn
)‘nZkzl Gn(%)[ : 115 ) — kk(+1 )]

it () _z (5.56)

where
1 ok
P 1(Mpz) = m/}\ 9Je Yy" dy = Z pi(Anz).
n 0<j<k

Note that a computational version of (5.56) is given by

polhr) + S, (M) $E (552)

A
M o, B [ 56 (522) - ¢ (&)

where SS(z) = 3" I{X; > x} and N = [A\, X)) + 1.

my,(x) = —x

Regarding the strong consistence of m,,(z), we have the following theorem.
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Thoerem 5.8 If \, = O(n®)(0 < a < 1), E(X;") < oo and f(x) is absolutely
continuous with a bounded derivative f'(x) a.e. on RT, then for any compact set C

such that S(z) # 0 when x € C, asn T oo,

[l () = m(z)|le = ilég{\mn(x) —m(z)[} == 0.

Proof: The proof is straight forward. Uniformly in any compact set C such that

S(x) # 0 when z € C, we have

L= Zpk(“n)Gn(k; 5 o /OO 9(y)dy (5.57)
and
An ZGn(Aﬁ)[Pk_ll(fA") - PZ(?{‘)] LEN %S(x). (5.58)
k>1 n
So
i (z) 255 fxlg((?;))dy R A ZJ(" J(:z)/)dy B 550

uniformly in any compact set €. The proof is complete.

Regarding the weak convergence of m,,(x), we have the following theorem.

Thoerem 5.9 If /n\;! — 0, BE(X;?) < oo and f(x) is absolutely continuous with a

bounded derivative f'(x) a.e. on RT, then, as A, T oo,

V(i (x) — m(z)) 2 N(0,8%(z))

where () = 75 (’;))2 [M?(x) [ LDar — < tf(t)dt]
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Proof: First, we have

i) = )+ gl -3 1) - 1= Gt
—”gﬁf) w36 Aﬁ [P’Hé o) BBy st
_ {z/ M (IAD[Go () = (5] = (1= Gla))}
> b (G (1) — G5 - L(0)
- S A G (50) = G5 )
—“ﬁfgﬁf ) { Z( / ) %pkmw)dw[@(%) —a(Sh (5.60)
Let _
(=3 [ st =21 [T ittt < x5 s
Note that, as A\, T oo
B(6) — 11— 6la) - M) 2] (562
and using (3.23), we can show
B(&) = 001, (5.6
So
E(in()) = m(z) + OO, (5.64)
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Moreover,

Be) = YUf T b (At — M () / T e () - et

k>1 n

- Z[/m Anpk_l(tAn)dt]Q[G()\ﬁ) _ G(kz)\—n1)]

E>1 n

—2M () Z[/OO AnPr—1(tA,)dt /OO %pk—l(t/\n)dt] [G(Aﬁ) - G(k = 1)]

k>1 n An

w0 Y[ oo - a5

n >\TL
= T, — ZMEJ:)T% + M?(2)Ts,. (5.65)
T = YU Apa G (50) - 6]
_ ;[/j M1 (A )de][1 — /:o i1 (A1) [G(Aﬁn) _ G(k)\_n b
— 5 -5, (5.66)

It is obvious that, as A\, T oo,
S1 — [1 = G(x)]. (5.67)

Using the same method in the proof of (3.54), we can show that Sy — 0. So
T, — [1 — G(2)]. (5.68)

At the same time, we have

T = U Apca)HEGG) - 6(5 )

k>1

_ Z[/:o AnPr—1(tAy)dl /Om /\%ka—l(t)\n)dt] [G(Aﬁ) -6l An )

k>1 n

we can similarly claim that

1
Ty — / So(t)dr. (5.70)
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Ty = Z[An/xmpkm )dt];[G(Aﬁn)—G( )]

k>1

_Z / Pr—1(tA )dt][)\n/:pk_l(tk )dt]zz [G(f ) _G(k;nl)],

k>1 n

(5.71)

we can also claim

n—>/ 39(%) (5.72)

Ao [ M [ood]. o

So

By (5.62) and (5.73), we have

Ao [0 [

By (5.60), we can see that 1, (z) = m(z) + 55 (L3, &), s0

V(Vnii,(z)) = V(&) (5.75)

Then, as A, T oo, V(y/nr,(z)) — 6%(z). Combining with (5.64), we can establish the
theorem. The proof is complete.

Remark 5.3: According to the proof, we have

Bms(ﬁ%(gc)):2;A {xf( / Jt dt}+o )

and

V(i (x)) = [MQ /f —/x )dt] +o(n™).
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So

MSE(i(z) — ﬁ {:cf(:c) b M@)[f (@) - /:o %t)dt]}?
bty M) [T I [Tero] ot

(5.76)

5.3.3 Smooth Estimator of MRL with Asymmetric Kernels

If we apply generalized Hille’s lemma to smooth S¢(z) = 15" I{X; > z} and

Di(z) =231, X%_I{Xi > x} and combine them, we can obtain the following smooth

estimator of MRL function.

k() — > i1 Qua (51) -
My, (x) = ERONES (5.77)

Thoerem 5.10 If )\, — oo and 0 < E(X; ') < oo , then for any compact set € such

that S(z) # 0 when x € C, asn T oo,

I,

iy, () —m(z)lle = ilelle)ﬂmi(x) —m(z)[} =0

Proof: Under the conditions of the theorem, using the facts 13"  I{X; > 2} =%

n

SG(z) and £ 30" LI{X; > 2} =5 SF(x)/p, it is easy to show that

i=1 X;
] — X,
- o (=2) = 8¢ 250 5.78
ilég“n;Q"(x) (z)[} (5.78)
and
1 1 X; .
igg{lg ; X Qo () = 5" @)/ul} == 0. (5.79)

By (5.78), (5.79) and m(z) = Siig)ﬂ — x, we can obtain the theorem.

The weak convergence of ﬁn(x) is given by the following theorem.
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Thoerem 5.11 If E(X;?) < oo, /nv? — 0, f(x) is absolutely continuous with

bounded derivative f'(x), then, as n — oo,

V(i (x) — m(x)) = N(0,6%(x)) (5.80)

n

where §(x) = (SF'I(;))Q [M2<ZL‘) [ @dt - [ tf(t)dt} .

Proof: Note that

S
X
&

X
=4
&
+

n
—~|=
&
—

S|
I'M:

QO
§

| >
|

N
P

&

L

d %[ Qu. ()~ M(2) i,w%)] (5.81)

Let & = Qu,(22) — m(z)3+Q,, (32). In order to obtain the theorem, it is sufficient to

show that E(¢) = O(v2) and E(€2) — 1 [M?(@ [ LW g [ f(t)dt} .

t

Note that, for & we have

B€) = [ Qa2 [7owm s
- Tl(x)—Mlim)Tg(m). (5.82)

For T} (z), using integration by parts, we have

Tix) = / " 5% (ay)gu, (n)dy

[ 1590 w9010 1)~ 5 )0~ 17/2] ()

Q

= S%x) + O(v?). (5.83)
Similarly, for T5(z), we have

To(x) = S (x) + O(v2). (5.84)
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By (5.82) and (5.84),

Furthermore,

B(&) = / Q2 (t/x)g(t)dt

T %
= x) — Mz) T —M2($) x
= Ji(r) -2 L Jo () + . J3()

For Ji(z), we have

L) = 2 / " S () Qu, (9)0, (1) y

= /oo [SG(LC) —zg(x)(y — 1) + o(y — 1)] 2Qu, (¥)qu, (y)dy

0

— 59) + 2g(a) / (- 1200, ()4, (v)dy
ol / 0 = 1)2Qu, (4)a, (1)dy)

= S%(x) + Ju(x) + o(Ju()).

(5.85)

(5.86)

(5.87)

By the fact that O(|Jy(x)]) < O(\/fooo(y —1)2qy, (y)dy) = O(v,), we have, as v,, — 0,

Ji(z) — S (x).

Similarly, we have
Ja(x) — 8" (x)

and

J3(x) — /00 %t)dt.

By (5.86), (5.88), (5.89) and (5.90), we have

Hfo o]

(5.88)

(5.89)

(5.90)

(5.91)



2

By (5.85) ,(5.91) and V (i} (x)) = (SFMWV(@)’ the theorem follows.

Remark 5.4: According to the proof, we have

Bias(i®(z)) = ;C—M[M(x)f'(:c) —xf'(x) = f(x)]v} + o(v})
and
V(mi(x)) = m [M%x) /:o @dt - /:o tf(t)dt} + o(%)-
So
MsBG (@) = { M) - ) - f(:v)]vi}2

(5.92)

5.3.4 Numerical Comparison

To compare the proposed three MRL function estimators numerically, we simulate for
the following distributions with sample sizes n = 30, 50, 100, 200, 300, 500.

(7). Chi-Square Distribution

flz) = = )x%_l exp(—z/2)I{z > 0}.

(77). Lognormal Distribution

@) = o= exp{~(logz = p)*/2}{z > 0},
(74). Gamma Distribution
flz) = F(la)a:o‘_l exp(—z)I{z > 0}.

(1v). Weibull Distribution

f(z) = az® P exp(—2®)[{x > 0}.
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Note that it is not easy to develop a valid method to choose smoothing parameters like
in the simulation for density estimators, since the SE(m,(z), m(x)) defined in (5.93)
is usually not integrable on [0,00). Here we use the smoothing parameters selected
by BCV methods for the density estimators f,(z), fu(x) and f*(z) as the values of
parameters in m,(x), m,(z) and m}(x) respectively. Under the selected smoothing

parameters, we computer
SE (mn(x),m(x)) = [my, () —m(z)]* (5.93)

at points Q,(¢ = 0,0.1,0.25,0.5,0.75,0.9) where m,,(.) represents MRL function esti-
mator and m(.) the true MRL function . For each point, we obtain 1000 replications
and take their average as simulated M SE. We present the results in the Tables from
5.6 to 5.10.

From the results of simulation, we can see that, overall, in the most cases two esti-
mators using Poisson weights perform better than the estimator using gamma kernels.
Similar things happen in simulation for density estimators, where although it does
not perform very well at the boundary in some cases, density estimators with Pois-
son weights usually have smaller MSFEs at most points. We may conclude that Hille’s
lemma in Poisson weights provide us a very valid smoothing technique. In most cases, it
can give us some very satisfactory smooth estimators. If we look at the MSEs between
Qo and g5, we find that three estimators have comparative MSFEs. Specially at the
point @y, the MSFEs are very close. The main difference among these estimators is
at the two rear points Qg75 and Qgg9. M, (z) perform much better than the two other

estimators.

167



Table 5.6: Simulated MSE for X%

Quantile
n Estimator
Qo.00 Qo.10 Qo.25 Qo.75 (0.90
0.28469 0.22589 0.19305 0.67733 1.63454
30 0.30650 0.19798 0.13439 0.13713 0.22175
0.28469 0.17852 0.14188 2.21863 8.78077
0.18729 0.14154 0.12591 0.54582 1.30629
50 0.19665 0.11102 0.07220 0.08365 0.14264
0.18729 0.10114 0.08132 1.93104 7.98868
0.10018 0.07458 0.07356 0.38805 0.94850
100 0.11175 0.05708 0.03816 0.04234 0.06987
0.10018 0.04722 0.04147 1.43907 6.38956
0.06504 0.05121 0.05994 0.33662 0.81487
200 0.08125 0.03778 0.02582 0.02317 0.03871
0.06504 0.02343 0.02087 1.00699 4.82878
0.04821 0.03891 0.04857 0.29588 0.73288
300 0.06917 0.03178 0.02072 0.01587 0.02568
0.04821 0.01632 0.01478 0.80137 4.01270
0.03481 0.02920 0.03877 0.24995 0.62073
500 0.05406 0.02353 0.014%6 0.01104 0.01602
0.03481 0.00983 0.00897 0.59842 3.14847
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Table 5.7: Simulated MSE for X%

n

Estimator

30

20

100

200

300

500

Quantile
Qo.00 Qo.25 Qo.50 Qo.90
0.56425 0.33011  0.67652 5.94781
0.67831 0.38014  0.32527 0.55924
0.28469 0.13708  0.28653 6.71116
0.33973 0.19641  0.52031 5.08080
0.39580 0.21103  0.19388 0.33589
0.18729 0.074943 0.20795 6.15694
0.16392 0.09567  0.34788 3.75535
0.18459 0.09888  0.09647 0.17530
0.10018 0.04087  0.16578 5.76687
0.08119 0.04988  0.21372 2.45378
0.09166 0.05206  0.04938 0.09507
0.06504 0.02293  0.13632 5.38536
0.05614 0.03462  0.16518 1.92673
0.06177 0.03390  0.03350 0.06712
0.04821 0.01694  0.11925 4.98145
0.03570 0.02193  0.11576 1.37372
0.03883 0.02162  0.02052 0.03808
0.03481 0.01078  0.09527 4.41602
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Table 5.8: Simulated MSE for I'(2)

Quantile
n Estimator
Qo.00 Qo.10 Qo.25 Qo.50 Qo.75 (0.90
My, (x) 0.11315 0.07632 0.06777 0.13851 0.47183 1.27887
30 My, (x) 0.12788 0.07910 0.06046 0.05218 0.05906 0.09913
m(x) 0.11315 0.06888 0.06526 0.18962 0.94600 3.23575
My, (x) 0.07117 0.04564 0.04401 0.11070 0.39078 1.04265
50 My, () 0.07562 0.04310 0.03318 0.03045 0.03640 0.06316
m(z) 0.07117 0.03897 0.04060 0.15237 0.82954 2.91363
M, (2) 0.03408 0.02047 0.02094 0.06516 0.24796 0.67109
100 M () 0.03562 0.02082 0.01622 0.01525 0.01851 0.03250
m(z) 0.03408 0.01804 0.01995 0.10486 0.66127 2.44700
M, (2) 0.01811 0.01045 0.01087 0.04129 0.16803 0.45966
200 M (2) 0.01970 0.01113 0.00854 0.00790 0.01028 0.01783
m}(z) 0.01811 0.00929 0.01077 0.07511 0.52142 2.01298
M, () 0.01200 0.00696 0.00776 0.03189 0.13362 0.36695
300 M (2) 0.01248 0.00728 0.00560 0.00526 0.00652 0.01108
m}(z) 0.01200 0.00640 0.00760 0.05958 0.43353 1.72104
M, (2) 0.00767 0.00407 0.00479 0.02258 0.09649 0.26412
500 M (2) 0.00803 0.00474 0.00374 0.00328 0.00402 0.00661
m(z) 0.00767 0.00392 0.00445 0.03979 0.31560 1.31721
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Table 5.9: Simulated MSE for Lognormal(0)

Quantile

n  Estimator

Q0.00 QO.IO C\?0.25 QO.E}O QO.75 QO.QO

My, (x) 0.16723 0.13876 0.12771 0.22797 0.70043 1.75035
30 My, (x) 0.19097 0.14539 0.11928 0.13120 0.21252 0.57104
m(x) 0.16723 0.12604 0.11635 0.25019 1.44315 7.29962

M, () 0.09739 0.07739 0.07635 0.16257 0.50335 1.19923
50 M () 0.11168 0.08378 0.06897 0.07780 0.12630 0.34518
m; (x) 0.09739 0.07040 0.06657 0.17498 1.14222 6.03014

M () 0.04326 0.03233 0.03326 0.07551 0.21161 0.46069
100 M () 0.04782 0.03544 0.03016 0.03425 0.06165 0.17379
m;(x) 0.04326 0.03001 0.03093 0.11896 0.90914 4.96370

() 0.02293 0.01550 0.01535 0.03664 0.09948 0.20858
200 () 0.02645 0.01818 0.01566 0.01738 0.03235 0.08444
m;(x) 0.02293 0.01465 0.01582 0.08222 0.69572 3.89849

() 0.01425 0.00969 0.00986 0.02257 0.05695 0.11898
300 () 0.01765 0.01268 0.01093 0.01231 0.02224 0.05600
m}(z) 0.01425 0.00954 0.01057 0.06365 0.56762 3.25099

M, (2) 0.00942 0.00631 0.00682 0.01609 0.04011 0.08261
500 M (2) 0.01159 0.00834 0.00699 0.00699 0.01289 0.03329
m(z) 0.00942  0.00630 0.00743 0.05061 0.45736 2.63676
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Table 5.10: Simulated MSE for Weibull(4)

Quantile

n  Estimator

QOAOO QO.IO QO.25 QO.5O Q0.75 QOAQO

M () 0.00284  0.00177 0.00226  0.00998 0.03402 0.07485
30 M () 0.00359  0.00401 0.00511  0.00653 0.00763 0.00820
m(x) 0.00284  0.00154 0.00200  0.00574 0.02180 0.05265

M () 0.00160  0.00093 0.00132  0.00729 0.02680 0.06105
50 M () 0.00195  0.00231 0.00315  0.00426 0.00514 0.00562
m(x) 0.00160  0.00084 0.00087  0.00354 0.01491 0.03831

M () 0.00079  0.00047 0.00063  0.00448 0.01850 0.04456
100 () 0.00101  0.00135 0.00192  0.00270 0.00335 0.00371
m(x) 0.00079  0.00044 0.00036  0.00118 0.00617 0.01858

() 0.00042  0.00024 0.00029  0.00267 0.01221 0.03102
200 () 0.00061  0.00103 0.00156  0.00230 0.00293 0.00332
m(x) 0.00042  0.00022 0.00017  0.00051 0.00299 0.00999

() 0.00029  0.00015 0.00018  0.00193 0.00935 0.02454
300 1 () 0.00047  0.00093 0.00148  0.00222 0.00286 0.00325
(x) 0.00029  0.00014 0.00011  0.00032 0.00201 0.00703

M, () 0.00018 9.9 x 10°  0.00011  0.00126 0.00650 0.01779
500 M () 0.00037  0.00086 0.00141  0.00216 0.00280 0.00318
m(z) 0.00018 9.1 x 1075 7.0 x 1075 0.00020 0.00135 0.00493
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Chapter 6

Future Research

The methods discussed earlier may be applied to other topics that we plan to investigate

in future. Some of these topics are described in detail in the following sections.

6.1 Dependent Data

All the results we have obtained are based on the assumption that the samples are i.4.d.
random variables. In some practice, we may have some dependent samples. Actually,

our results are easy to extend to stationary p-mixing process.

Definition 6.1 A stationary stochastic process {X;}2, is called p-mizing process, if,

for all B € M35, with probability 1
|P(B|MY) — P(B)| < ¢(n) L 0, as n— oo (6.1)
where MY denotes the o-algebra generated by X;(b <i < a).

Now we suppose that {X;}5°, is a stationary p-mixing process satisfying

3 (em)"? < (6.2)

n
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and

EX;? < co. (6.3)

Then we can slightly change the proof of of Lemma 2.3 and establish an almost same
lemma for ¢-mixing process {X;}°,. Using this lemma, we can obtain similar results to
1.7.d. case. The conditions of ¢-mixing process might be too strong. We can consider
some associated sequence with some slightly weak conditions as well. For example,
Bagai and Prakasa Rao (1991) investigate strong and weak consistency of empirical
function for stationary associated sequence. The dependence of samples is described
by the covariances of samples instead of (6.1). This kind of conditions in their paper

might be more universal and practical.

6.2 Censored Data

In analyzing times duration, LB data and censored data may emerge at the same time
[see Asgharian et al. (2002), Unia-Alvarez (2002)]. The presence of censored data is very
natural in many application of statistics. Here, we plan to consider random censorship.
Suppose that Xi,..., X, are i.i.d. random variables with distribution function G(zx).

In practice, we may observe
Z; =min(X;,Y;) and §; = [{X; <Y;}, 1 <i<n,

where {Y;}" , is another i.i.d. sequence with censoring pdf H(x) being independent of
the sequence {X;}" ; as well and §; points out whether X; has been observed or not.

Then the well known product-limit estimator of G(z), being nonparametric maximum
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likelihood estimator as well, proposed by Kaplan and Meier (1958) is given by

n 5. {Z;.n<z}
1—Ga(z) =] [1 ¢1 (6.4)

Pl Cn—i+1
where {Z;.,, }1-, are the order statistics of {Z;}_; and dj;.,y) is the value of 0 corresponding
to Zin. Stute and Wang (1993) studied the strong convergence of (6.4). Stute (1995)
gave the central limit theorem of (6.4). Combining random censorship with length
biased data may result in the following estimator for distribution function F'(x) which
we are interested in.
Jo 13Ga(®)

Fo(z) = TG (6.5)

An alternative form of (6.5) is given by

Fn(l') Zn W Z—l
=1 mgn

(6.6)

where for 1 <17 <n,

Sfien] Sl o j o 10w
Win = : . :
n—z—l—lH [n—j—i—l]

j=1
Using Hille’s lemma to smooth (6.6) will give us a smooth estimator of distribution
function. We can obtain smooth estimator of density function by taking the advantage
of the derivative of smooth pdf estimator. Furthermore, we can achieve other smooth
estimator related to smooth density and distribution estimator.

Length biased data is a special case of biased data by taking the weight function

w(z) = z in biased data model

If we are looking for method estimating density with general biased data, a valid method

is first to smooth the generalized Cox estimator for distribution function in biased data
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case
> wxg X < @}

(3

> i w(ﬁ(i)

where { X}, are i.i.d. random variables or associate sequence satisfying certain de-

F.(z) = (6.7)

pendence conditions with the same weighted density f,,(z). Then take the derivative of
smooth estimator of distribution function as density estimator. For randomly censored
biased data, the raw estimator of unweighted distribution function F'(x) might have the

following form.

Fo(z) = = ) (6.8)

6.3 Unknown Weight Function

For now, we have all these discussions based on the assumption that the weight function
is known. Lloyd and Jones (2000) gave a nonparametric density estimator for biased
data with unknown weight function w(x) < 1. In their article, they treated weight
function w(z) as a selection probability that the sample x; is chosen with probabil-
ity w(x;). They obtain two independent samples denoted as S; and Sy from original
population with nonrandom size. Each individual x; belonging to S; or S, is with a
selection probability w(x;). Then each individual z; in S;; = S1 () Ss is with a selection
probability w?(z;). Using the samples in S} or Sy, it is easy to obtain density estima-
tors of weighted density f,(z) = u,'w(z)f(x). Since the selection probability in Si;
is w?(z), a density estimator of weighted density f,2(z) = u;%wz(as) f(z) can be built
by using the samples in S1;. After having the estimators of f,, and f,2, the estimator
of density function f(z) and weight w(z) can be found by the facts (fu)?/ fu2 o< f(x)

and f,2/fw o< w(x) respectively. However, their density estimators are obtained by
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the traditional kernel method. If using density estimators proposed in this thesis, we

should obtain some better estimator for biased data with unknown weight function.

6.4 Estimation of Other Functionals and Their In-

tegrals

In the area of nonparametric functional estimation, the estimation of derivatives of a
density is an active field as well. Singh (1977a) mentioned that estimation of derivatives
of a density has many applications, such as estimation of regression curves, estimation
of Fisher Information and other quantities related to minimum expected loss estima-
tion. Therefore, the estimation of derivatives of a density has drawn a lot of attention
in statistical literature. Actually, the estimation of derivatives of a density has almost
as long a history as nonparametric density estimation. Bhattacharya (1967) suggested
using the pth derivative of traditional kernel density estimator as the estimator of the
pth derivative of underlying density and studied their asymptotic properties. These
properties were further investigated by Schuster (1969). Also Singh (1977b) studied
asymptotic properties of the derivatives of kernel density estimator under some con-
ditions weaker than that in Bhattacharya (1967) and Schuster (1969). Note that the
smooth density estimators proposed in this thesis are differentiable. Hence, intuitively
we can think of using these derivatives as estimators of the corresponding derivatives
of underlying density. Besides the applications of estimators of derivatives mentioned
in Singh (1977a), estimators of derivatives are also required for selecting smoothing
parameter(s) in our proposed estimators. It might be proper to investigate asymptotic

properties of all these procedures.
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Another topic related to estimation of derivatives of a density is to estimate the
integral involving density derivatives. Cheng (1997) considered estimation of integrated
products of density derivatives in general and estimation of integrated squared density

derivative in particular. Namely, he considered estimation of the following integral:

6, = / £ (@) £ (), (6.9)

where f)(z) represents the pth derivative of density f(x), v and v are two nonnegative
integers such that v + v is an even number. The most direct application of the esti-
mation of integral (6.9) is in bandwidth selection method for nonparametric functional
estimators. The plug-in bandwidth selection method for density estimator has such
an integral as (6.9) in the special case v = v = 2 [see Scott and Terrell (1987), Park
and Marron (1990)]. Given a better estimator of integral, a better optimal bandwidth
can be obtained. So a lot of work regarding the estimation of integral (6.9) is going
on. To estimate the integral (6.9) based on biased data, one way is that we plug-in
the corresponding derivative estimators into (6.9) directly. An alternative way may be
based on local polynomial fitting as proposed by Cheng (1997). The comparison of the

two methods is an interesting future project.
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