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Abstract

Some Contributions to Nonparametric Estimation of Density

and Related Functionals for Biased Data

Jun Li, Ph.D.

Concordia University, 2010

Length biased sampling, as a special case of general biased sampling, occurs naturally in

many statistical applications. In problems related with such applications, two different

density functions are involved. One of them is the density of interest, which is referred

to as the unweighted density, information about which is not observable directly in prac-

tice; the other one is referred to as the weighted density, the sample from which could

be observed directly. These two densities are connected through a weight function. One

aspect regarding data from weighted density is to estimate the unweighted density from

the sample obtained using the weighted density. In this thesis we concentrate on the

weight function representing length of the sampling unit that results in a sample called

length-biased sample. Since most of such data are nonnegative, unweighted density has

a non-negative support where common kernel density estimators with symmetric kernel

may not be appropriate. Such density estimators usually generate the edge effect, which

makes these to have large bias at the lower boundary. One possible reason for this is

that symmetric kernels may assign some weights in region of zero probability.

In this thesis, we propose some new smooth density estimators based on Poisson

distribution and nonnegative asymmetric kernels for length biased data to take care of
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the edge effect. We investigate asymptotic behavior of these proposed density estimators

as well as their finite sample performance through extensive simulation studies, that is

more meaningful in practice. Also, we compare our new density estimators with other

estimators in literature. Further, in addition to density estimators, we also consider

smooth estimators of distribution function and some other functionals of the density

such as hazard function and mean residual life function.
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Chapter 1

Introduction

1.1 Biased and Length Biased Data

In many statistical applications the observed random variable Xw may have the prob-

ability density function (pdf) given by [see Cox (1969) and Rao (1965)]

fw(x) =
w(x)f(x)

µw

(1.1)

where µw is the expectation Ef [w(X)], f being a probability density function as well.

The distribution of Xw is referred to as the weighted distribution and w(x) is called

weight function. The data generated from model (1.1) is called biased data. The weight

function w(x), usually known, must be non-negative and must have finite expectation.

Furthermore, it can be easily seen that for any other weight function w′(x) that is

proportional to w(x), fw(x) and fw′(x) are identical. If w(x) 6= 1, fw(x), the probability

law for recording random variable Xw ∼ fw, is proportional to f(x) with a weight w(x).

However, the main objective concerns the density function f(x). In such a case, the

sampling procedure may involve some kind of selection scheme that is related to the

weight function w(x). Since the main objective of concern is the probability law f(x), a
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natural question arises: How can we obtain the information of original random variable

X ∼ f through the information of recorded random variable Xw? This is the main task

of this thesis.

The earliest concept of distribution with weight can be found retrospectively in a

classical paper of Fisher (1934). However, a more detailed account of weighted distri-

butions was given by Rao (1965); see also Rao (1977) for a natural example of weighted

binomial distribution with w(x) = x. Muttlak and Mcdonald (1990) discuss an exam-

ple of sampling shrubs in the context of ranked set sampling where the probability of

selection is proportional to the height of shrubs. Though the technique discussed in

this thesis can be easily extended to the general weighted case, we concentrate on the

special case w(x) = x.

Taking w(x) = x, (1.1) changes into

g(x) =
xf(x)

µ
(1.2)

where µ = Ef (X), where Ef (.) refers to expectation with respect to the density f.

When there is no ambiguity, E() will refer to expectation with respect to the density

g. This weighted distribution is well known as length biased or size biased distribution.

The recorded samples generated from the biased distribution (1.2) are called length

biased(LB) data. Since w(x) = x is an increasing function of x, the greater the value

of X, the better chance of X being observed.

Length biased data is generated naturally in many sampling problems. An interesting

example of LB data called Waiting time paradox is given in Feller (1966). In this

example, buses arrive in accordance with a Poisson process, the expected time between

consecutive buses being 1. A passenger arrives at time t, independent of buses. What

2



is the expectation E(Wt) of the passenger’s waiting time? Two contradictory answers

are given:

(i) The lack of memory of the Poisson process implies that E(Wt) should be inde-

pendent of t, that is E(Wt) = E(W0) = 1.

(ii) The time of the passenger’s arrival is “chosen at random” in the interval between

two consecutive buses, so for reasons of symmetry E(Wt) = 1/2.

Let us analyze this example precisely. We use Xw to denote the recorded length of

time interval between two consecutive buses which covers the waiting passenger. For

reasons of symmetry, the conditional expectation E(Wt|Xw) = Xw/2. In the solution

(ii), it is taken for granted that Xw should have an exponential distribution with mean

1, that is fXw(x) = e−x. Because of this, we have two contradictory answers. Actually,

the length of the time interval Xw is recorded with a kind of “choice”, that is we require

the interval to cover the time t when the passenger arrives at the bus stop. It is obvious

that, as it is said in Feller (1966), “ a longer interval has a better chance to cover time

t than a short one ”. In his book, Feller (1966) gave the accurate density function:

fXw = xe−x. Then E(Xw) = 2, which is doubled, and E(Wt) = 1, just same as the

solution (i) and paradox gets answered.

From the previous example, we can also see that if we ignore the bias effect, taking

biased data as direct data, large mistakes can be made. Technically, the density function

of direct data with f(x) = e−x is quite different from the density of LB data with

g(x) = xe−x in the shape. So, in some cases, the bias effect can not be ignored.

This example also tell us, if not disregarding the bias effect, sometimes we will use

the observed samples which are with density g(x) such that g(0) = 0 to restore the
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unobservable density f(x) such that f(0) 6= 0. This is a main difficulty in dealing with

estimation of density for LB data as well.

Actually, the field of biased or LB data is very wide in scope. The applications of

biased data arise in diverse fields that include social sciences, physics, astronomy, market

research, reliability, epidemiology, and many other fields. Cook and Martin (1974) took

visibility bias into account in studying population density of wild animals. Partil (1984)

and Patil et al. (1977, 1978) quoted several examples regarding biased data including

those generated by PPS (probability proportional to size) sampling scheme, damage-

model and sub-sampling. Eberhardt (1978) and Muttlak and McDonald (1990) studied

the LB data generated from Line-Intercepts method in studying the density of shrub

coverage. Simon (1980) considered the length biased sampling in etiologic studies. Nair

and Wang (1989) claimed that size-bias must be considered in the studies of relation

between the volume of oil under earth and some related variables. Klein and Sherman

(1997) predicted market demand of new product using biased survey data. We can say

that if there is sampling, biased data may emerge.

1.2 Nonparametric Functional Estimation for Bi-

ased Data

Nonparametric density estimation is a useful method of extracting information directly

from data. In other words, a colorful metaphor is used to say that let the data ”sing”

for themselves. These methods are useful when we can not ascertain a useful parametric

family for modeling the data. And the assumed parametric family may not be robust

with respect to deviations from the model. As a result the area of nonparametric
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functional estimation including estimation of density and related functionals is one of

the most active fields in statistical research branching in the area of biased data as

well. The basic objective of the thesis is to explore various methods for nonparametric

density estimation and their application in the area of biased data in general and LB

data in particular.

In the area of functional estimation for LB data, the first stone is set by Cox. Cox

(1969) suggested

Fn(x) =

∑n
i=1

1
Xi

I{Xi ≤ x}∑n
i=1

1
Xi

(1.3)

as the counterpart to the empirical distribution function for the LB data where Xi (i =

1, . . . , n) are i.i.d. random variables with density g(x) such that E(X−1
1 ) < ∞. This

estimator is a nonparametric maximum likelihood estimator (NPMLE) of distribution

function under this situation [see Vardi (1982)]. Actually, (1.3) has some beneficial

asymptotic properties. Under the condition E(X−1
1 ) < ∞, using the Kolmogorov Strong

Law of Large Numbers [see p. 251, Loève (1977)], we have as n →∞,

1

n

n∑
i=1

1

Xi

I{Xi ≤ x} a.s.−→ E
( 1

X1

I{X1 ≤ x}), (1.4)

and

1

n

n∑
i=1

1

Xi

a.s.−→ E
( 1

X1

)
=

1

µ
. (1.5)

The right hand side (1.4) can be seen to be equal to
1

µ
F (x) because

E(
1

X1

I{X1 ≤ x} =

∫ x

0

1

t
g(t)dt =

1

µ

∫ x

0

f(t)dt.

Therefore

1

n

n∑
i=1

1

Xi

I{Xi ≤ x} a.s.−→ 1

µ
F (x). (1.6)
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Since we can write Fn(x) =
1
n

∑n
i=1

1
Xi

I{Xi≤x}
1
n

∑n
i=1

1
Xi

, it follows from (1.6) and (1.5), Fn(x)
a.s.−→

F (x). Furthermore, due to the fact that Fn(x) is nondecreasing, we can get the uniform

strong consistency of Fn(x), i.e.,

sup
x∈R+

|Fn(x)− F (x)| a.s.−→ 0. (1.7)

Furthermore, we can obtain the asymptotic normality property of (1.3), namely,

√
n(Fn(x)− F (x))

D−→ N(0, δ2(x)), (1.8)

where δ2(x) = µ[
∫ x

0
1
t
f(t)dt − 2F (x)

∫ x

0
1
t
f(t)dt + µ̄F 2(x)] and µ̄ =

∫∞
0

f(t)
t

dt. We will

give the details of proof later.

The first kernel density estimator was given by Bhattacharyya et al. (1988). In their

literature, they proposed the following kernel density estimator for f(x).

fnB(x) = (nx)−1µ̂
n∑

i=1

kh(x−Xi) (1.9)

where µ̂ = n(
∑

1
Xi

)−1 is the consistent estimator of µ proposed by Cox (1969) and

kh(x) = h−1k(h−1x) [k(·) is a kernel function]. The strategy used here is very natural.

It can be considered to use two steps to obtain it. First the observed samples are used

to build an estimator of weighted density just same as in the procedure of building

kernel density estimator with direct data. Then, according to LB model, the estimator

obtained in the first step is adjusted to an estimator of unweighted density. However,

this strategy is not very satisfactory. Jones (1991) found that, in some situations

[f(0)=0], (1.9) will cause large bias near the point x = 0 [see Figure 1.1]. This huge

bias mainly has two causes. One is that, when the kernel is symmetric as is usually

the case in the usual kernel estimation approach, some weights will be assigned below

0 which causes n−1
∑n

i=1 kh(x −Xi) [an estimator of g(x)] usually does not equal 0 at
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the boundary when sample is finite; the other is the term x−1, which tends to infinity

near the boundary. Combining these facts, Bhattacharyya et al. estimator blows up

near the boundary under certain circumstances and its graph near the border looks like

a vertical line [see Figure 1.1].

5 10 15 20 25 30 35

0.02

0.04

0.06

0.08

Figure 1.1: Plots of density function of χ2
12 and its Bhattacharyya et al. kernel estimator.

Solid line represents true density and dash line represents the estimator.

Jones (1991) presented an alternative kernel density estimator based on the theory of

Cox (1969). This alternative strategy is to smooth the distribution function estimator

for F (x) =
∫ x

−∞ f(t)dt, as given by Cox (1969) and then use its derivative as the smooth

estimator of f. Jones (1991) used this alternative strategy of directly estimating f(x),

resulting in the following kernel density estimator:

fnJ(x) = n−1µ̂

n∑
i=1

X−1
i kh(x−Xi). (1.10)

In his studies, Jones (1991) found that the integrated mean square error (IMSE) of

(1.10) is asymptotically less than that of (1.9). Moreover, Wu and Mao (1996) showed

that the mean squared error (MSE) of (1.10) is asymptotically lower than that of (1.9)

under the minimax criterion.
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However, if the kernel function is symmetric, the estimator (1.10) will assign some

weights to the undesired region where the value of x is negative [see Figure 1.2]. [This

also holds for the Bhattacharyya et al. (1988) estimator.] This may cause large bias in

the neighborhood of the point x = 0.

-2.5 2.5 5 7.5 10 12.5 15

0.1

0.2

0.3

0.4

0.5

Figure 1.2: Plots of density function of χ2
2 and its Jones kernel estimator with Normal

kernel. Solid line represents true density and dash line represents the estimator.

Both of the previous two density estimators have a common defect at the boundary

caused by symmetric kernels. This problem is not specific to LB data. It has been

recognized in density estimation for nonnegative random variables using direct data

[see Silverman (1986)]. In order to overcome this defect, many methods have been

proposed particularly in recent years.

Motivated by Hille’s approximation lemma [see Lemma 1.1], Chaubey and Sen (1996)

proposed a smooth density estimator for nonnegative random variables.

Lemma 1.1 If u(x) is a bounded, continuous function on R+, then, as λ ↑ ∞,

e−λx
∑

k≥0

u(k/λ)(xλ)k/k! → u(x)

uniformly in any finite interval J contained in R+.
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Chen (2000) obtained two density estimators with asymmetric gamma kernels instead

of traditional symmetric kernels. Using gamma kernels

Kρb(x),b(t) =
tρb(x)−1e−t/b

bρb(x)Γ(ρb(x))
, (1.11)

the density estimator proposed by Chen (2000) has the form

f̂(x) = n−1

n∑
i=1

Kρb(x),b(X
′
i) (1.12)

where {X ′
i}n

i=1 denote i.i.d. regular direct data. In his literature, Chen (2000) gave two

choices for ρb(x). One is

ρb(x) = x/b + 1 (1.13)

which leads to density estimator f̂1(x); the other is

ρb(x) =





x/b if x ≥ 2b;

1

4
(x/b)2 + 1 if x ∈ [0, 2b).

(1.14)

which leads to density estimator f̂2(x). And he also showed that the MISE of f̂2 is

lower than that of f̂1.

Inspired by Chen’s idea and using inverse Gaussian density

KIG(m,λ)(y) =

√
λ√

2πy3
exp

(
− λ

2m

(
y

m
− 2 +

m

y

))
, y > 0 (1.15)

and reciprocal inverse Gaussian density

KRIG(m,λ)(z) =

√
λ√

2πz
exp

(
− λ

2m

(
mz − 2 +

1

mz

))
, z > 0 (1.16)

as kernels, Scaillet (2004) proposed the following two density estimators

f̂IG(x) = n−1

n∑
i=1

KIG(x,1/b)(X
′
i) (1.17)
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and

f̂RIG(x) = n−1

n∑
i=1

KRIG(1/(x−b),1/b)(X
′
i). (1.18)

Using generalized Hille’s lemma [see Lemma 1.2], Chaubey, Sen and Sen (2007)

suggested a density estimator with asymmetric weights generated from gamma function,

extending the estimator in Chaubey and Sen (1996).

Lemma 1.2 Let u(t) be any continuous and bounded function. Gx,n, n = 1, 2, . . . is a

family of distributions with mean µn(x) and variance h2
n(x). Then we have as µn(x) → x

and hn(x) → 0

ũ(x) =

∫ ∞

−∞
u(t)dGx,n(t) → u(x).

The convergence is uniform in every subinterval in which hn(x) → 0 and ũ(x) is uni-

formly continuous.

Although Chaubey, Sen and Sen (2007) and Chen (2000) both use asymmetric gamma

density function as kernels, the density estimators proposed by them are quite different

in form. However, they both can be obtained by using generalized Hille’s lemma in two

different ways. The density estimators proposed by Chaubey Sen and Sen (2007) are

the derivatives of smooth estimators obtained by smoothing empirical function using

Hille’s lemma; the density estimators in Chen (2000) and Scaillet (2004) can also be

obtained by using generalized Hille’s lemma to smooth underlying density.

Besides the literature we mentioned above, there are also many other contributions

made by statisticians to functional estimation for biased data. Vardi (1982) obtained

the nonparametric maximum likelihood estimator for unweighted distribution function

based on two sample sets, one from unweighted distribution, the other from weighted

distribution. Cox’s estimator, as a NPMLE for unweighted distribution function ob-
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tained only by weighted sample set, is a special case that considered by him. Vardi

(1985) generalized his model to selection bias model. Wu (1996) proposed a nonpara-

metric maximum likelihood smooth estimator for biased data using kernel method.

Jones and Kaunamuni (1997) used fourier series method to estimate unweighted den-

sity and they found that their estimator perform better than those estimators in Bhat-

tacharyya et al. (1988) and Jones (1991). Lloyd and Jones (2000) proposed a nonpara-

metric density estimator for biased data with unknown weight function. In their studies,

the weight function is treated as a selection probability. A cross-validation method for

selecting smoothing parameter in kernel density estimator with selection biased data

was proposed by Wu (1997). Winter and Földes (1988) derived an Kaplan-Meier type

estimator for censored biased data. Uña-Álarez (2002) studied its asymptotic proper-

ties.

1.3 Motivation of the Estimators

The examples of biased data present themselves mostly as non-negative data where

the traditional kernel methods of density estimators may not be appropriate. Recently,

as mentioned previously, there have been significant advances in the area of density

estimation for non-negative data. We would like to incorporate the new estimators for

biased data in this thesis that is mainly motivated by the use of Hille’s lemma and

Cox’s proposal for estimating the distribution function for the biased data. Chaubey

and Sen (1996) proposed a smooth estimator of the distribution function for the i.i.d.

case using the Hille’s lemma that incorporates Poisson weights for functional smoothing

of non-negative functions. The empirical distribution function used for the i.i.d. case
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may be replaced by Cox’s (1969) estimator of the distribution function for the LB data.

The recent generalization [Chaubey, Sen and Sen (2007)] of Chaubey and Sen (1996),

using weights generated by non-negative asymmetric kernels such as gamma kernels,

may be adapted to the case of LB data as well.

1.4 Objectives

Since the LB data are commonly non-negative, the use of traditional kernel estimator

may not be appropriate; it may cause large bias at the boundary. It is expected that

the methods developed in Chaubey and Sen (1996) and in Chaubey, Sen and Sen

(2007) can be satisfactorily adapted for the LB case and thus we have chosen to study

these in the present thesis. Actually, for LB data, there are mainly two strategies to

estimate unweighted density. One is, starting from Cox’s estimator, to directly estimate

unweighted density [as in Jones (1991)]; the other is to estimate weighted density first

and adjust it to estimate the original density [as in Bhattacharyya et al. (1988)]. Is

there a relatively better strategy or do the two strategies produce similar results? We

plan to find a answer to this question. In order to compare the proposed estimators, we

will simulate for some standard distributions and use the mean integrated squared error

(MISE) as a global measure of estimator’s behavior and mean square error (MSE) as a

local indicator of estimator’s performance. Comparison between our proposed density

estimators and other density estimators with asymmetric kernels will be carried out as

well. Our plan includes investigating estimators of other functions, such as, distribution

function estimator, hazard function estimator and mean residual life function estimator

also.
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1.5 Organization of the Thesis

This thesis is organized as follows. In Chapter 2, based on Cox’s estimator for dis-

tribution function, we propose some distribution and density estimators with Poisson

weights or asymmetric weights and study their asymptotic properties. Motivated by

Chen (2000) and Scaillet (2004), we also obtain some density estimators with asym-

metric kernels for LB data which are different from our proposed estimators in form.

An alternative method starting from the usual empirical distribution function based

on observed samples is used in Chapter 3 to find some new density and distribution

function estimators with Poisson weights or asymmetric weights. Asymptotic proper-

ties of these estimators are investigated as well. Through extensive simulation for some

standard distributions, Chapter 4 will show how the smoothing parameters in density

estimators are selected and how each density estimator performs globally and locally.

We dedicate Chapter 5 to the estimators of some functionals related to density and dis-

tribution functions and their asymptotic properties. These functionals include hazard

function and mean residual life function. Dependency or censoring, as some situations

frequently happening in statistical applications, may emerge with biased data at the

same time. In future, we are planning to consider these situations as well. The details

are contained in Chapter 6.
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Chapter 2

Smooth Estimators of Density and

Distribution Functions Based on Cox’s

Estimator

2.1 Introduction

In this chapter, we will use Cox’s estimator (Fn) of the distribution function proposed

for the LB data to obtain some smooth estimators of the underlying true density and

the corresponding distribution function. Motivated through Hille’s lemma and Cox’s

proposal, it is easy to obtain smooth estimator of a distribution function in the length

bias case similar to that obtained by Chaubey and Sen (1996) for the i.i.d. direct data.

Since the smooth estimator is differentiable, it is reasonable to use its derivative as an

estimator of the underlying density. We will consider Hille’s lemma that uses Poisson

weights as well as its generalized version that uses weights generated by asymmetric ker-

nels. Thus, based on Fn, we get two kinds of density estimators, the first using Poisson
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weights and the other using weights from asymmetric kernels. In Section 2.2, we will

study theoretical properties of smooth estimators with Poisson weights, such as strong

consistency and asymptotic normality. The smooth estimators include distribution and

density estimator. Similar theoretical properties of estimators with asymmetric kernels

are investigated in Section 2.3. In this section, a perturbation and boundary correction

are applied to density estimator. They will effectively enhance the accuracy of density

estimator under certain circumstances. In Chaubey et al. (2010) extensive simulation

studies have been carried out to compare the density estimators using Poisson weights

with kernel estimators proposed by Bhattacharyya et al. (1988) and Jones (1991). The

study in the above paper demonstrates that the kernel estimators with symmetric ker-

nels do not perform very well for LB data. In order to make a fair comparison between

our proposed estimators and other estimators [see Chapter 4], we only consider density

estimators with asymmetric kernels in this thesis. Therefore, besides our proposed esti-

mators, we will apply the idea of Chen (2000) and Scailltet (2004) also to obtain some

other density estimators with asymmetric kernels in Section 2.4.

2.2 Estimators of Distribution and Density Func-

tions with Poisson Weights

2.2.1 Smooth Estimator of Cumulative Distribution Function

The raw estimator (1.3) [Cox’s estimator for distribution function] is a step function

and not differentiable. In order to obtain a smooth estimator with differentiable prop-

erty, we apply Lemma 1.1 by replacing u(·) with Fn(·). Since Fn(.) is not continuous
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function, this lemma is not directly applicable, but may be considered as a motiva-

tion for the suggested estimator. As we investigate the convergence properties of the

proposed estimator, it becomes clear that it provides an stochastic approximation to

the integral in Lemma 1.1 that replaces u(x) by F (x), which is a continuous function.

The combination of Cox’s estimator and Lemma 1.1 results in the following smooth

estimator of distribution function, namely,

F̃n(x) =
∑

k≥0

pk(xλn)Fn(k/λn) (2.1)

where pk(u) = uk

k!
e−u and λn such that, as n →∞, λn →∞. Actually, λn controls the

smoothness of the smooth estimator. A stochastic choice of λn is proposed by Chaubey

and Sen (1996, 1998) as follows.

λn =





n

max{X1, . . . , Xn} if X1 has an infinite support

n

Xn−rn+1:n log log n
if X1 has a finite support

where rn = o(log log n), provided that E(X1) < ∞. Chaubey and Sen (2009) provide

a more comprehensive numerical study for the choice of λn in the context of density

estimation for the i.i.d. data. We use their approach for the LB data while discussing

the smooth density estimation later in this section.

Similar asymptotic results as given in Chaubey and Sen (1996) for the smooth es-

timator F̃n(x) in the non-weighted case can be established. These are given in the

following theorems. First we establish the uniform strong consistency.

Thoerem 2.1 If 0 < E(X−1
1 ) < ∞, F (x) is continuous (a.e.) and λn → ∞ ,then, as

n →∞,

‖F̃n(x)− F (x)‖ = sup
x∈R+

{|F̃n(x)− F (x)|} a.s.−→ 0
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Remark 2.1: In Theorem 3.1 of Chaubey and Sen (1996), additional condition on λn,

namely that n−1λn → 0 is assumed that is not required for the above theorem to hold.

It may be noted that the estimator in Chaubey and Sen (1996) uses truncated Poisson

weights, where such a condition may be necessary.

Next, we discuss the closeness of (2.1) to the raw estimator Fn(x). This also helps

in establishing the the asymptotic distribution of the smooth estimator. Along the

lines of the proof of Theorem 3.2 in Chaubey and Sen (1996) using Lemma 2.1 with

bn = n−
1
2 (log n)

1+θ
2 [see also the treatment in Sen (1984)], we establish the following

theorem.

Thoerem 2.2 If E(X−2
1 ) < ∞, λn →∞, and n−1λn → 0, f(x) is absolutely continu-

ous with bounded derivative f ′(x) on R+, then for some δ > 0, as n →∞,

||F̃n(x)− Fn(x)|| = O(n−3/4(log n)1+δ) a.s. ∀x ∈ R+. (2.2)

Note that

√
n(F̃n(x)− F (x)) =

√
n(Fn(x)− F (x)) +

√
n(F̃n(x)− Fn(x))

and from Theorem 2.2,

√
n(F̃n(x)− Fn(x)) = O(n−1/4(log n)1+δ, a.s..

Then we can see that the asymptotic law for F̃n(x) is same as that of Fn(x) under the

condition of Theorem 2.2. Therefore to study the asymptotic distribution of F̃n(x), we

just need to find out the asymptotic distribution of Fn(x). We can write Fn(x) as

Fn(x) =
1
n

∑n
i=1

1
Xi

I{Xi ≤ x}
1
n

∑n
i=1

1
Xi

.
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By the strong law of large numbers, we have

1

n

n∑
i=1

1

Xi

I{Xi ≤ x} a.s.→ F (x)/µ

and

1

n

n∑
i=1

1

Xi

a.s.→ 1/µ.

So we can expand Fn(x) as

Fn(x) = F (x) + µ

[
1

n

n∑
i=1

1

Xi

I{Xi ≤ x} − F (x)/µ

]
− µF (x)

[
1

n

n∑
i=1

1

Xi

− 1

µ

]

+O
(
(
1

n

n∑
i=1

1

Xi

I{Xi ≤ x} − F (x)/µ)2

+(
1

n

n∑
i=1

1

Xi

I{Xi ≤ x} − F (x)/µ)(
1

n

n∑
i=1

1

Xi

− 1

µ
)

+(
1

n

n∑
i=1

1

Xi

− 1

µ
)2

)

= F (x) +
1

n

n∑
i=1

(
µ

Xi

I{Xi ≤ x} − µF (x)

Xi

)

+O
(
(
1

n

n∑
i=1

1

Xi

I{Xi ≤ x} − F (x)/µ)2

+(
1

n

n∑
i=1

1

Xi

I{Xi ≤ x} − F (x)/µ)(
1

n

n∑
i=1

1

Xi

− 1

µ
) + (

1

n

n∑
i=1

1

Xi

− 1

µ
)2

)
(a.s.).

Note that since the last term in above equation has an order op(
1√
n
), the asymptotic

distribution of
√

nFn(x) is same as that of

√
n

[
1

n

n∑
i=1

(
µ

Xi

I{Xi ≤ x} − µF (x)

Xi

)]
. (2.3)

Therefore, to obtain the asymptotic distribution of Fn(x), it is sufficient to consider the

asymptotic distribution of (2.3). For the term (2.3), we have

E

(
√

n

[
1

n

n∑
i=1

(
µ

Xi

I{Xi ≤ x} − µF (x)

Xi

)])
= 0

and

V

(
√

n

[
1

n

n∑
i=1

(
µ

Xi

I{Xi ≤ x} − µF (x)

Xi

)])
= δ2(x)
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where δ2(x) = µ[
∫ x

0
1
t
f(t)dt− 2F (x)

∫ x

0
1
t
f(t)dt + µ̄F 2(x)] and µ̄ =

∫∞
0

f(t)
t

dt. Then we

have

√
n(Fn(x)− F (x))

D−→ N(0, δ2(x)),

Therefore we have following theorem.

Thoerem 2.3 If E(X−2
1 ) < ∞, λn →∞, and n−1λn → 0, f(x) is absolutely continu-

ous with bounded derivative f ′(x) on R+, then, as n →∞,

√
n(F̃n(x)− F (x))

D−→ N(0, δ2(x)),

specifically

δ2(x) = µ[

∫ x

0

1

t
f(t)dt− 2F (x)

∫ x

0

1

t
f(t)dt + µ̄F 2(x)]

where µ̄ = Ef (
1
X

).

From Theorem 2.1 and 2.3, we see that the some of the key asymptotic properties of

the raw estimators (1.3) may be exhibited also for the smooth estimator (2.1).

2.2.2 Smooth Density Estimator

Since F̃n(x) converges strongly to F (x), it is reasonable to believe that their derivatives

should be close. Since we have

dpk(λx)

dx
= −λ[pk(λx)− pk−1(λx)],

for k ≥ 0, where we interpret p−1(.) = 0, the derivative of F̃n(x) is given by

dF̃n(x)

dx
= −λn

[∑

k≥0

pk(λnx)Fn

(
k

λn

)
−

∑

k≥1

pk−1(λnx)Fn

(
k

λn

)]
.

This simplifies to

dF̃n(x)

dx
= λn

∑

k≥0

pk(λnx)

[
Fn

(
k + 1

λn

)
− Fn

(
k

λn

)]
.
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Hence, our proposed smooth density estimator is

f̃n(x) = λn

∑

k≥0

pk(λnx)

[
Fn

(
k + 1

λn

)
− Fn

(
k

λn

)]
. (2.4)

as the smooth estimator of density f(x). We also obtain the asymptotic properties of

(2.4) as follows.

2.2.2.1 Asymptotic Properties of f̃n(x)

The strong consistency of f̃n(.) is provided in the following theorem. Note that the

moment condition used in this theorem implies the boundedness of the density f(x).

Thoerem 2.4 If E(X−2
1 ) < ∞, f ′(x) is bounded on R+ and λn = O(nα) for some

0 < α < 1, then, as n →∞,

‖f̃n(x)− f(x)‖ a.s.−→ 0

In order to obtain the weak convergence of f̃n, we need f ′(x) to satisfy a Lipschitz

order α condition. That is, for some α > 0, there exits a finite positive K, such that

|f ′(s)− f ′(t)| ≤ K|s− t|α, for every t, s ∈ R+. (2.5)

If λn = O(n2/5), MSE(f̃n(x)) achieve the lowest order [see Remark 2.2]. We establish

the following representation theorem.

Thoerem 2.5 If E(X−2
1 ) < ∞, λn = O(n2/5)(nonstochastic) and (2.5) holds, then,

for a compact set C ⊂ R+,

{(
n2/5[f̃n(x)− f(x)]− 1

2δ2
f ′(x)

)
, x ∈ C

} D−→ Gaussian process

with mean zero and covariance function γ2
xδxt where γ2

x =
µ

2
(πx3)−1/2f(x)δ, δxt = 0 for

x 6= t and 1 for x = t and δ = lim
n→∞

(n−1/5λ
1/2
n )
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Remark 2.2: In order to understand the order of bias and MSE of the density es-

timator, we see that under condition (2.5) for λn = cnh using the steps in proofs of

Theorems 2.4 and 2.5, we have

Bias2(f̃n(x)) ≈ c−2(f ′(x)/2)2n−2h (2.6)

and

V (f̃n(x)) ≈ µ

2

√
c

πx3
f(x)n

h
2
−1, (2.7)

then we have

MSE(f̃n(x)) ≈ c−2(f ′(x)/2)2n−2h +
µ

2

√
c

πx3
f(x)n

h
2
−1 (2.8)

When λn = cn2/5, (2.8) achieve the order O(n−4/5), which is same as classical kennel

estimators. In order to achieve the same order O(n−4/5), Poisson weights estimator just

need the information of first derivative of density. However, kennel estimators require

the existence of second derivative [see Jones (1996)].

2.2.2.2 Proof of Theorems

First, we will introduce an important lemma, which plays a critical role in the proof of

strong consistency of f̃n(x).

Lemma 2.1 If E(X−2
1 ) < ∞ , f ′(t) is bounded on R+ and bn → 0, then for a sequence

{bn}n≥1 such that 0 < b−1
n < O(n1−γ)(0 < γ < 1),

sup
t∈R+

sup
|β|≤bn

{|Fn(t + β)− Fn(t)− F (t + β) + F (t)|} = O(b
1
2
nn−

1
2 (log n)1+θ) a.s.

where θ(> 0) is arbitrary.

21



In order to prove Lemma 2.1, we need the following two lemmas. For convenience, we

denote

Ui(t, β) =
µ

Xi

I
{

min(t, t + β) < Xi ≤ max(t, t + β)
}

−|F (t + β)− F (t)| (i = 1, . . . , n) (2.9)

Lemma 2.2 If E(X−2
1 ) < ∞, then, for any t ≥ 0 and t + β ≥ 0,

1

n

n∑
i=1

Ui(t, β) = o(n−1/2(log n)(1+θ)/2) a.s. (2.10)

Proof of Lemma 2.2: In order to prove the lemma, we need the Kolmogorov’s Propo-

sition A in M. Loève (p. 250). We state the proposition here.

Proposition: If the integrable r.v.’s Xn are independent, then
∑ σ2(Xn)

a2
n

< ∞ ,

an ↑ ∞, entails
Sn − ESn

an

a.s.−→ 0. where Sn =
∑n

i=1 Xi and σ2(Xi) means the vari-

ance of Xi.

Under the assumption E(X−2
1 ) < ∞, for any t ≥ 0 and t + β ≥ 0, we have that

∞∑
n=1

σ2(Un(t, β))(
n1/2(log n)(1+θ)/2

)2 ≤
∞∑

n=1

E(X−2
n )(

n1/2(log n)(1+θ)/2
)2 < ∞.

By the Proposition of Kolmogorov , we have

∑n
i=1 Ui(t, β)

n1/2(log n)(1+θ)/2

a.s.−→ 0. (2.11)

It is obvious that

1

n

n∑
i=1

Ui(t, β) = n−1/2(log n)(1+θ)/2

∑n
i=1 Ui(t, β)

n1/2(log n)(1+θ)/2
. (2.12)

By (2.11) and (2.12), we obtain the desired result.
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Lemma 2.3 If E(X−2
1 ) < ∞ and f ′(t) is bounded on R+, then there exits d > 0 such

that, for any t ≥ 0, 0 < b−1
n < O(n1−γ)(0 < γ < 1), −bn < β < bn, D = b

1
2
nn

1
2 (log n)1+θ,

we have

P
{|

n∑
i=1

Ui(t, β)| > 2dD
} ≤ O(n−4). (2.13)

The order O(n−4) does not depend on t and β.

Proof of Lemma 2.3: First we should verify several facts. For any δ > 2, we have

E
∣∣

p∑
i=1

Ui(t, β)
∣∣δ ≤ (p(log n)1+θ)δ/2, (2.14)

since

E
∣∣

p∑
i=1

Ui(t, β)
∣∣δ = pδE

∣∣1
p

p∑
i=1

Ui(t, β)
∣∣δ

and, by Lemma 2.2,

1

p

p∑
i=1

Ui(t, β) = o(p−1/2(log p)(1+θ)/2) a.s.

At the same time, we have

E(x1(t, β))2 = E
( µ2

X2
1

I
{

min(t, t + β) < Xi ≤ max(t, t + β)
})

−|F (t + β)− F (t)|2

=
∣∣
∫ t+β

t

µf(x)

x
dx

∣∣− |F (t + β)− F (t)|2 (2.15)

= O(|β|). (2.16)

The conclusion of the last step follows because E(X−2
1 ) < ∞ and that f ′(x) is bounded.

Since, |f(x)/x| = |f ′(η)| < M, (η ∈ (0, x) and M is finite), the first term of (2.15) has

an order O(|β|). And since f(x) is bounded, the second term of (2.15) has an order

O(β2) .
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So, using (2.16) and the independence of Ui(t, β)(i = 1, . . . , n), we can also establish

(2.7) in Lemma 2.1 of Babu and Singh (1978), that is

E(ξ2
1) ≤ O(pbn). (2.17)

Substituting (2.4) in Lemma 2.1 of Babu and Singh (1978) with (2.14), taking δ = 60/γ

and p = [nγ/2], and following the proof of Lemma 2.1 of Babu and Singh (1978), we can

obtain the result.

Remark 2.3: The second term exp(−8D2n−1b−1
n ) in (2.1) of Babu and Singh(1978)

disappears in our inequality, because under our choice of D, this term is much smaller

than O(n−4).

Proof of Lemma 2.1 : Let

Hn(t, β) = Fn(t + β)− Fn(t)− F (t + β) + F (t).

Since Fn(t + β)− Fn(t) can be expanded as

Fn(t + β)− Fn(t) =
1

n

n∑
i=1

µ

Xi

I{t < Xi ≤ t + β}

−[F (t + β)− F (t)]
( 1

n

n∑
i=1

µ

Xi

− 1
)

+o
(
[F (t + β)− F (t)]

( 1

n

n∑
i=1

µ

Xi

− 1
))

a.s., (2.18)

we have

|Hn(t, β)| ≤ Jn1(t, β) + Jn2(t, β) + o(Jn2(t, β)) a.s. (2.19)

where

Jn1(t, β) =
1

n

∣∣
n∑

i=1

Ui(t, β)
∣∣ (2.20)
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and

Jn2(t, β) =
∣∣[F (t + β)− F (t)]

( 1

n

n∑
i=1

µ

Xi

− 1
)∣∣. (2.21)

For (2.20), first we consider that t is fixed. Using Lemma 2.3, following the proof of

Lemma 1 of Bahadur (1966), we can claim that

sup
|β|≤bn

{|Jn1(t, β)|} = O(b
1
2
nn−

1
2 (log n)1+θ) a.s.

Furthermore, since O(b
1
2
nn−

1
2 (log n)1+θ) does not depend on t and f ′(t) is bounded, using

the same technique as in Sen and Ghosh (1971), we can extend the result for t to the

whole real line, that is

sup
t∈R+

sup
|β|≤bn

{|Jn1(t, β)|} = O(b
1
2
nn−

1
2 (log n)1+θ) a.s. (2.22)

At the same time, in Lemma 2.2, let t = 0 and β → +∞, then we have

( 1

n

n∑
i=1

µ

Xi

− 1
)

= o(n−1/2(log n)(1+θ)/2) a.s. (2.23)

Since f(t) is bounded(because E(X−2
1 ) < ∞) as well, we have

sup
t∈R+

sup
|β|≤bn

∣∣F (t + β)− F (t)
∣∣ = O(bn). (2.24)

For (2.21), by (2.23) and (2.24), we have

sup
t∈R+

sup
|β|≤bn

{|Jn2(t, β)|} = o(bnn
− 1

2 (log n)(1+θ)/2) a.s. (2.25)

By (2.19), (2.22) and (2.25), we can establish the Lemma 2.1.

After all of these preparations, we can prove the Theorem 2.4.

Proof of Theorem 2.4: By the proof of Theorem 4.1 of Chaubey and Sen (1996),

we just need to show that, when t belongs to some finite interval [0,C], we have (2.4),
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since we can deliberately choose C such that when t belongs to interval (C,+∞), f̃n(t)

and f(t) can both be made sufficiently small.

We can write

f̃n(x) = λn

{∑

k≥0

pk(xλn)[F (
k + 1

λn

)− F (
k

λn

)]

+
∑

k≥0

pk(xλn)[Fn(
k + 1

λn

)− Fn(
k

λn

)− F (
k + 1

λn

) + F (
k

λn

)]
}

= Tn1(x) + Tn2(x). (2.26)

Using Lemma (2.1) by taking bn = 1/λn, we have

sup
k≥0
{|Fn(

k + 1

λn

)− Fn(
k

λn

) − F (
k + 1

λn

) + F (
k

λn

)|}

= O(λ−1/2
n n−1/2(log n)1+θ) a.s. (2.27)

By (2.27) and the fact that
∑
k≥0

pk(xλn) = 1, we have

sup
x∈R+

{|Tn2(x)|} = O(λ1/2
n n−1/2(log n)1+θ) a.s. (2.28)

which tends to 0 almost surely as n →∞ provided that λn = O(nα)(0 < α < 1).

At the same time, according to the proof of Theorem 4.1 of Chaubey and Sen (1996),

under the assumption of boundedness of f ′(x), we have

sup
t∈[0,C]

{|Tn1(x)− f(x)|} → 0 a.s. (2.29)

By (2.28) and (2.29), we obtain the theorem. The proof is complete.

Proof of Theorem 2.5: By (2.5), we have

f̃n(x) = f(x) +
1

2λn

f ′(x) + Tn2(x) + O(λ−1−α
n ). (2.30)

26



Using Taylor’s expansion which is similar to (2.18), we can write

Tn2(x) = λn

∑

k≥0

pk(xλn)
{( 1

n

n∑
i=1

µ

Xi

I{ k

λn

< Xi ≤ k + 1

λn

} − [F (
k + 1

λn

)− F (
k

λn

)]
)}

−λn

∑

k≥0

pk(xλn)
{
[F (

k + 1

λn

)− F (
k

λn

)]
( 1

n

n∑
i=1

µ

Xi

− 1
)}

+ o(
1

n

n∑
i=1

µ

Xi

− 1)

= Tn3(x)− Tn4(x) + o(
1

n

n∑
i=1

µ

Xi

− 1) a.s. (2.31)

For the leading term Tn3(x), following the proof of Theorem 4.2 of Chaubey and Sen

(1996), we can show that

V (Tn3(x)) ≈ µ

2
(πx3)−1/2f(x)(λ1/2

n /n) (2.32)

and, for s 6= t, as n →∞,

Cov[Tn3(s), Tn3(t)] = O(
1

n
). (2.33)

Moreover, since Tn4(x) = O(
1

n

∑n
i=1

µ

Xi

−1) = o(n−1/2(log n)(1+θ)/2), the order of Tn2(x)

is determined by the order of Tn3(x).

From (2.30), we can see that the asymptotic normality of Tn2(x) leads to the asymp-

totic normality of f̃n(x). by proper choice of λn. By (2.30), (2.31), (2.32) and (2.33),

following the proof of Theorems 4.1 and 4.2 of Chaubey and Sen (1996), we can complete

the proof of the theorem.
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2.3 Estimators of Distribution and Density Func-

tions with Asymmetric Kernels

2.3.1 Smooth Estimator of Distribution Function with Asym-

metric Kernels

As in Chaubey, Sen and Sen (2007), let Qvn(x) be a family of distributions on [0,∞)

with mean 1 and variance v2
n where vn → 0 as n →∞. Substituting Fn(t) and Qvn(t/x)

for u(t) and Gx,v(t) in Lemma 1.2 respectively, we have the following smooth estimator

of F (x):

F̃+
n (x) =

∫ ∞

0

Fn(t)dQvn(t/x). (2.34)

An alternative formula of (2.34) is given by

F̃+
n (x) = 1−

∑n
i=1

1
Xi

Qvn(Xi

x
)∑n

i=1
1

Xi

, (2.35)

where Qvn is a family of distributions as described earlier.

2.3.1.1 Asymptotic Properties

By the uniform strong convergence of (1.3)

sup
x≥0

|Fn(x)− F (x)| a.s.−→ 0

and the form of F̃+
n (x) (2.34), it is easy to obtain the uniform strong convergence of

F̃+
n (x) as follows.

Thoerem 2.6 If 0 < E(X−1
1 ) < ∞ and F (x) is continuous (a.e.), then, as vn → 0,

‖F̃+
n (x)− F (x)‖ = sup

x∈R+

{|F̃+
n (x)− F (x)|} a.s.−→ 0
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The asymptotic normality of F̃+
n (x) is given by the following theorem.

Thoerem 2.7 If E(X−2
1 ) < ∞,

√
nv2

n → 0, f(x) is absolutely continuous with bounded

derivative f ′(x) on R+, then, as n →∞,

√
n(F̃+

n (x)− F (x))
D−→ N(0, δ2(x))

where

δ2(x) = µ[

∫ x

0

1

t
f(t)dt− 2F (x)

∫ x

0

1

t
f(t)dt + µ̄F 2(x)]

where µ̄ = Ef (
1

X1
).

Proof: First, by (2.35), we write

F̃+
n (x) =

1
n

∑n
i=1

1
Xi

[1−Qvn(Xi

x
)]

1
n

∑n
i=1

1
Xi

, (2.36)

then we can expand F̃+
n (x) as

F̃+
n (x) ≈ F (x) +

(µ

n

n∑
i=1

1

Xi

[1−Qvn(
Xi

x
)]− F (x)

)

−µF (x)
( 1

n

n∑
i=1

1

Xi

− 1

µ

)

= F (x) +
1

n

n∑
i=1

µ

Xi

[1−Qvn(
Xi

x
)− F (x)]. (2.37)

Let

ξi =
µ

Xi

[1−Qvn(
Xi

x
)− F (x)]. (2.38)

In order to obtain the theorem, it is sufficient to show that, as vn → 0, E(
√

nξ1) → 0

and V (ξ1) → δ2(x).
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E(ξ1) =

∫ ∞

0

µ

t
[1−Qvn(

t

x
)− F (x)]g(t)dt

=

∫ ∞

0

[1−Qvn(
t

x
)]f(t)dt− F (x)

=

∫ ∞

0

F (t)qvn(
t

x
)
dt

x
− F (x)

=

∫ ∞

0

F (xy)qvn(y)dy − F (x). (2.39)

Using the Taylor’s expansion of F (xy) at the point y = 1

F (xy) = F (x) + xf(x)(y − 1) +
x2f ′(ηx)

2
(y − 1)2 (2.40)

where η is between 1 and y, and the fact that f ′(x) is bounded, we can show that

E(ξ1) = O(v2
n). (2.41)

This means that E(
√

nξ1) → 0.

On the other hand, we have

E(ξ2
1) = E

( µ

X1

[1−Qvn(
X1

x
)− F (x)]

)2

= E
( µ2

X2
1

[1−Qvn(
Xi

x
]2

)

−2F (x)E
( µ2

X2
1

[1−Qvn(
Xi

x
]
)

+ F 2(x)E
( µ2

X2
1

)
(2.42)

Furthermore, we have

E
( µ2

X2
1

[1−Qvn(
Xi

x
)]2

)
= µ

∫ ∞

0

f(t)

t
[1−Qvn(t/x)]2dt

= 2µ

∫ ∞

0

H(t)[1−Qvn(t/x)]qvn(t/x)
dt

x

= 2µ

∫ ∞

0

H(xy)[1−Qvn(y)]qvn(y)dy (2.43)
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where H(x) =
∫ x

0
f(t)

t
dt. Using the Taylor’s expansion of H(xy) with respect to y at

the point y0 = 1

H(xy) = H(x) + x
f(ηx)

ηx
(y − 1)

= H(x) + x
f(ηx)− f(0)

ηx
(y − 1)

= H(x) + xf ′(τ)(y − 1) (2.44)

where η is between 1 and y and τ ∈ (0, xη). In the step above, we use a fact f(0) = 0,

because E( 1
X2

1
) < ∞. Since f ′(x) is bounded, we have

E
( µ2

X2
1

[1−Qvn(
Xi

x
)]2

)
= µH(x)

+O(

∫ ∞

0

[1−Qvn(y)]qvn(y)(y − 1)dy). (2.45)

Note that

O(|
∫ ∞

0

[1−Qvn(y)]qvn(y)(y − 1)dy|) ≤ O(2

∫ ∞

0

qvn(y)|y − 1|dy)

≤ O(2[

∫ ∞

0

qvn(y)(y − 1)2dy)]1/2)

= O(vn), (2.46)

so, we have, as vn → 0,

E
( µ2

X2
1

[1−Qvn(
Xi

x
)]2

) → µH(x). (2.47)

Similarly, we have

2F (x)E
( µ2

X2
1

[1−Qvn(
Xi

x
]
)

= 2µF (x)

∫ ∞

0

H(xy)qvn(y)dy

= 2µF (x)H(x) + O(

∫ ∞

0

qvn(y)|y − 1|dy)

→ 2µF (x)H(x). (2.48)

By (2.42), (2.47) and (2.48), we have

E(ξ2
1) → µ[H(x)− 2F (x)H(x) + µ̄F 2(x)]. (2.49)
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The proof is complete.

2.3.1.2 MSE

According to the proof of Theorem 2.3, we have

Bias(F̃+
n (x)) =

x2

2
f ′(x)v2

n + o(v2
n) (2.50)

and

V (F̃+
n (x)) =

µ

n
[

∫ x

0

1

t
f(t)dt− 2F (x)

∫ x

0

1

t
f(t)dt + µ̄F 2(x)] + o(

1

n
). (2.51)

So

MSE(F̃+
n (x)) =

µ

n
[

∫ x

0

1

t
f(t)dt− 2F (x)

∫ x

0

1

t
f(t)dt + µ̄F 2(x)]

+
x4

2
f
′2(x)v4

n + o(
1

n
+ v4

n) (2.52)

2.3.2 Density Estimator using Asymmetric Kernels

We we can use the derivative of (2.35)

f̃n(x) =
1
x2

∑n
i=1 qvn(Xi

x
)∑n

i=1
1

Xi

(2.53)

as a smooth estimator of f(x) where qvn(t) = d
dt

Qvn(t).

However, (2.53) may not be defined at x = 0, except in cases where limx→0 f̃n(x)

exists. Moreover, this limit is zero, which is acceptable only we are estimating f(x)

with f(0) = 0. This situation also occurs in estimating density with direct data [see

Chaubey, Sen and Sen (2007)]. In their paper, they considered a perturbed version of

the density estimator, replacing Qvn(./x) by Qvn(./(x + ε)), εn ↓ 0 as n → ∞. This is

equivalent to choosing Gx,n such that the corresponding mean is x + εn → x and the
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variance is (x + εn)2v2
n → 0. Motivated by their idea, the perturbed version of (2.53) is

given by

f̃+
n (x) =

1
(x+εn)2

∑n
i=1 qvn( Xi

x+εn
)

∑n
i=1

1
Xi

. (2.54)

2.3.2.1 Asymptotic property of f̃+
n (x)

Thoerem 2.8 If

A. f(·) is Lipschitz continuous on [0,∞) and E(X−1
1 ) < ∞;

B. supx≥0

∫∞
0
| d
dx

[ 1
x+εn

qvn( t
x+εn

)]|dt = o(( log log n
n1/2 )−1);

C. supu>0,v>0 uqv(u) < ∞;

D. vn → 0, εn → 0 as n →∞;

then we have

sup
x≥0

|f̃+
n (x)− f(x)| a.s.−→ 0

as n →∞.

Proof: We can write

f̃+
n (x) =

d

dx

∫
Fn(t)[

1

x + εn

qvn(
t

x + εn

)]dt

=

∫
Fn(t)

d

dx
[

1

x + εn

qvn(
t

x + εn

)]dt (2.55)

Using the uniform strong convergence of Fn(x)

sup
x≥0

|Fn(x)− F (x)| a.s.−→ 0. (2.56)

and following the proof of Theorem 3 of Chaubey, Sen and Sen (2007), we can obtain

the theorem.
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Thoerem 2.9 If

E. f(x) is Lipschtiz continuous on [0,∞) and E(X−2
1 ) < ∞;

F. I2(q) , lim
vn→0

vn

∫∞
0

(qvn(t))2dt exists;

G1. for 1 ≤ m ≤ 3,
∫∞

0
(qvn(t))mdt = O(v1−m) as v → 0;

G2. with q∗m,vn
(t) = (qvn (t))m∫∞

0 (qvn (w))mdw
, 1 ≤ m ≤ 3, and as vn → 0,

(i) µm,vn =

∫ ∞

0

tq∗m,vn
(t)dt = 1 + O(vn),

(ii) σ2
m,vn

=

∫ ∞

0

(t− µm,vn)2q∗m,vn
(t)dt = O(v2

n)

(iii) sup
0<vn<ε

∫ ∞

0

t4+δq∗m,vn
(t)dt < ∞, for some δ > 0, ε > 0;

Then

(a) If nvn →∞, nv3
n → 0, nvnε

2
n → 0 as n →∞, we have

√
nvn(f+

n (x)− f(x)) → N
(
0, I2(q)

µf(x)

x2

)
, for x > 0.

(b) If nvnε
2
n →∞ and nvnε

4
n → 0 as n →∞, we have

√
nvnε2

n(f+
n (0)− f(0)) → N

(
0, I2(q)f(0)

)
.

Proof: (a) Using Taylor’s expansion, we can write

f̃+
n (x) =

1

n

n∑
i=1

Yin − f(x)
( 1

n

n∑
i=1

1

Xi

− 1

µ

)
+ o(

1

n

n∑
i=1

1

Xi

− 1

µ
) (2.57)

where

Yin =
µ

(x + εn)2
qvn(

Xi

x + εn

) (2.58)

For x > 0, since, by the Law of the Iterated Logarithm,

lim sup
n→∞

[
√

nvn(
1

n

n∑
i=1

1

Xi

− 1

µ
)]

a.s.
= O(

√
vn log log n)

a.s.→ 0,
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it is sufficient to consider the first term in (2.57). Under the conditions of the theorem,

we can show that, as vn → 0 and εn → 0,

E(Y 3
1n) = O(v−2

n ) (2.59)

and

vnE(Y 2
1n) → I2(q)

µf(x)

x2
. (2.60)

Since Yin is nonnegative, we have

∑n
i=1 E|Zin|3

[
∑n

i=1 E(Z2
in)]3/2

≤ E[Y1n + E(Y1n)]3√
n[var(Y1n)]3/2

=
E(Y 3

1n) + 3E(Y 2
1n)E(Y1n) + 4(E(Y1n))3

√
n[E(Y 2

1n)− (E(Y1n))2]3/2
. (2.61)

By (2.59), (2.60) and (2.61), we can claim that

∑n
i=1 E|Zin|3

[
∑n

i=1 E(Z2
in)]3/2

= O(
1√
nvn

) → 0. (2.62)

Then by the Theorem 7.1.2 of Chung (1974), we have

∑n
i=1 Zin

(
∑n

i=1 Z2
in)

→ N(0, 1).

This means

√
nvn

[ 1

n

n∑
i=1

Yin − E(Y1n)
] → N

(
0, I2(q)

µf(x)

x2

)
. (2.63)

Further,

√
nvn|E(Y1n)− f(x)| =

√
nvn

∣∣∣
∫ ∞

0

[f(t(x + εn))− f(x)]tqvn(t)dt
∣∣∣

≤ √
nvnL

∫ ∞

0

|(t− 1)x + tεn|tqvn(t)dt

≤ √
nvnxL

∫ ∞

0

|t− 1|tqvn(t)dt +
√

nvnε2
nL

∫ ∞

0

t2qvn(t)dt

≤ √
nvnxL[

∫ ∞

0

(t− 1)2qvn(t)dt]1/2[

∫ ∞

0

t2qvn(t)dt]1/2

+O(
√

nvnε2
n)

= O(
√

nv3
n) + O(

√
nvnε2

n) (2.64)
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Using (2.57), (2.63) and (2.64), we can establish the part (a) of the theorem.

(b) Similar to (2.57), we have

f̃+
n (0) =

1

n

n∑
i=1

Y ′
in − f(0)

( 1

n

n∑
i=1

1

Xi

− 1

µ

)
+ o(

1

n

n∑
i=1

1

Xi

− 1

µ
) (2.65)

where

Y ′
in =

µ

(εn)2
qvn(

Xi

εn

). (2.66)

We can show that

E(Y
′3
1n) = O(ε4

nv
−2
n ) (2.67)

and

ε2
nvnE(Y

′2
1n) → I2(q)f(0). (2.68)

Let

Z ′
in =

√
vnε2

n

n
[Y ′

in − E(Y ′
in)] . (2.69)

Then using (2.67), (2.68) and a similar inequality to(2.61) , we can claim that

∑n
i=1 E|Z ′

in|3
[
∑n

i=1 E(Z
′2
in)]3/2

≤ O(
1√

nvnε2
n

) → 0. (2.70)

Then by the Theorem 7.1.2 of Chung (1974), we have

∑n
i=1 Z ′

in

(
∑n

i=1 Z
′2
in)

→ N(0, 1).

This means

√
nvnε2

n

[ 1

n

n∑
i=1

Y ′
in − E(Y ′

1n)
] → N

(
0, I2(q)f(0)

)
. (2.71)

Furthermore,

√
nvnε2

n|E(Y ′
1n)− f(0)| =

√
nvnε2

n

∣∣∣
∫ ∞

0

[f(tεn)− f(0)]tqvn(t)dt
∣∣∣

≤
√

nvnε2
nL

∫ ∞

0

|εn|t2qvn(t)dt

=
√

nvnε2
nL[εn(v2

n + 1)]

= O(
√

nvnε4
n) (2.72)
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Using (2.65), (2.71) and (2.72), we can establish the part (b) of the theorem.

Remark 2.4: Just as in Chaubey, Sen and Sen (2007), in this thesis we consider qvn(x)

to be a family of gamma density such that

qvn(x) =
1

βαΓ(α)
xα−1e−x/β

where α = 1
v2

n
and αβ = 1.

2.3.2.2 AMISE

In order to obtain MSE of f̃+
n , we first compute the bias of f̃+

n . According to (2.57),

we have

Bias[f̃+
n (x)] ≈ E(Y1n)− f(x)

=

∫ ∞

0

µ

(x + εn)2
qvn

(
t

x + εn

)
g(t)dt− f(x)

=

∫ ∞

0

t

(x + εn)2
qvn

(
t

x + εn

)
f(t)dt− f(x)

Let t/(x + εn) = y, then

Bias[f̃+
n (x)] =

∫ ∞

0

yqvn(y)f [y(x + εn)]dy − f(x).

Note that we have

f [y(x + εn)] = f(x + εn) + (x + εn)f ′(x + εn)(y − 1)

+
(x + εn)2

2
f ′′(x + εn)(y − 1)2 + o(y − 1)2

= f(x) + εnf
′(x) + xf ′(x)(y − 1)

+
x2

2
f ′′(x)(y − 1)2 + o

(
(y − 1)2

)
+ o(εn),
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Bias[f̃+
n (x)] = εnf

′(x) + xf ′(x)

∫ ∞

0

y(y − 1)qvn(y)dy

+
x2

2
f ′′(x)

∫ ∞

0

y(y − 1)2qvn(y)dy + o(v2
n + εn)

= εnf
′(x) + xf ′(x)T1 +

x2

2
f ′′(x)T2 + o(v2

n + εn).

Furthermore, we have

T1 =

∫ ∞

0

(y − 1)2qvn(y)dy +

∫ ∞

0

(y − 1)qvn(y)dy

= v2
n

and

T2 =

∫ ∞

0

(y − 1)2qvn(y)dy +

∫ ∞

0

(y − 1)3qvn(y)dy

= v2
n + o(v2

n),

So

Bias[f̃+
n (x)] = (xv2

n + εn)f ′(x) +
x2

2
f ′′(x)v2

n + o(v2
n + εn). (2.73)

By the proof of Theorem 2.9, it is easy to show that

V ar[f̃+
n (x)] =

I2(q)µf(x)

nvn(x + εn)2
+ o((nvn)−1). (2.74)

By (2.73) and (2.74), we have

MSE[f̃+
n (x)] = [(xv2

n + εn)f ′(x) +
x2

2
f ′′(x)v2

n]2 +
I2(q)µ

nvn

f(x)

(x + εn)2
.

So

AMISE[f̃+
n ] =

∫ ∞

0

[(xv2
n + εn)f ′(x) +

x2

2
f ′′(x)v2

n]2dx +
I2(q)µ

nvn

∫ ∞

0

f(x)

(x + εn)2
dx.

(2.75)
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For a given f, the above expression may be technically used to find the optimum

value of the smoothing parameter. However, the expressions are too complicated and

in practice we use them for cross validation to obtain data dependent value for the

smoothing parameter(s).

2.3.3 Corrected Density Estimator

Note that if we integrate (2.54) from 0 to ∞, we will obtain

∫ ∞

0

f̃+
n (x)dx =

∑n
i=1

Qvn (Xi/εn)
Xi∑n

i=1
1

Xi

. (2.76)

If εn 6= 0, (2.76) is not equal to 1. In this case, f+
n is not a real density estimator which

is integrated to unity. In order to overcome this defect, we divide f+
n (x) by

∫∞
0

f+
n (x)dx,

which leads to a corrected estimator

f̃ ∗n(x) =

1
(x+εn)2

∑n
i=1 qvn( Xi

x+εn
)

∑n
i=1

Qvn (Xi/εn)
Xi

. (2.77)

Since
∑n

i=1
Qvn (Xi/εn)

Xi
→ ∑n

i=1
1

Xi
for a given sample, as εn → 0, most of the asymptotic

properties of f̃+
n still hold for f̃ ∗n. We can establish the same theorems as Theorem 2.8

and 2.9 for f̃ ∗n. But the biases of the two estimator are slightly different. Note that

f̃ ∗n(x) =
f̃+

n

1− F̃+
n (εn)

≈ f̃+
n

1− F (εn)
,

then it is easy to show that

Bias(f̃ ∗n(x)) = Bias(f̃+
n (x)) + εnf(0)f(x) + o(εn). (2.78)

Later, we will see that this boundary correction is very useful in reducing bias at the

border and improving global performance of density estimator in some cases.
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2.4 Other Density Estimators with Asymmetric Ker-

nels

In this section, we will apply Chen’s and Scaillet’s idea to obtain some density estimators

for LB data. Here we will mainly give two kinds of such density estimators. One kind

is, motivated by the idea of Chen (2000), with gamma kernels and the other is, inspired

by Scaillet (2004), with inverse and reciprocal inverse Gaussian kernels.

2.4.1 Chen Density Estimators for Length Biased Data

Note that if let F ′
n(x) = n−1I{X ′

i ≤ x}, an alternative form of (1.12) is

f̂(x) =

∫ ∞

0

Kρb(x),b(t)dF ′
n(t). (2.79)

Recall that the empirical distribution for LB data is Fn(x) =
∑n

i=1
1

Xi
I{Xi≤x}

∑n
i=1

1
Xi

. Substi-

tuting F ′
n(x) with Fn(x) in (2.79) will give us Chen density estimators for LB data as

follows.

f̂C(x) =

∫ ∞

0

Kρb(x),b(t)dFn(t), (2.80)

which can also be written as

f̂C(x) =

∑n
i=1

1
Xi

Kρb(x),b(Xi)∑n
i=1

1
Xi

. (2.81)

Furthermore, by (1.5), we can have

E
(
f̂C(x)

)
≈

∫ ∞

0

µ

y
Kρb(x),b(y)g(y)dy

=

∫ ∞

0

Kρb(x),b(y)f(y)dy

= E (f(ξx)) (2.82)
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where ξx is a Γ(ρb(x), b) random variable. Similar to Chen estimator for direct data, it

is easy to show that E
(
f̂C(x)

)
→ f(x) as b → 0.

We use f̂C1(x) and f̂C2(x) to denote the density estimator under the ρb(x)’s choices

(1.13) and (1.14) respectively.

2.4.2 Scaillet Density Estimators for Length Biased Data

Replacing gamma kernels Kρ(x),b proposed by Chen with inverse or reciprocal inverse

Gaussian kernels proposed by Scaillet in (2.80) , we can derive Scaillet density estimators

for LB data as follows.

f̃IG(x) =

∑n
i=1

1
Xi

KIG(x,1/b)(Xi)∑n
i=1

1
Xi

(2.83)

and

f̃RIG(x) =

∑n
i=1

1
Xi

KRIG(1/(x−b),1/b)(Xi)∑n
i=1

1
Xi

. (2.84)

Remark 2.5: Note that Chen and Scaillet density estimators for LB data can also

be obtain by generalized Hille’s lemma. We use f(t) and kx,b(t)dt [kx,b(.) represents

the kernels proposed by Chen or Scaillet] to replace u(t) and dQx,n(t) in Hille’s lemma

respectively. Actually, the their proposed kernel kx,b(t) is a density of random variable

ξx such that E(ξx) → x and V (ξx) → 0 as b → 0. This means the distribution function

of ξx satisfies the conditions of distribution function Gx,n in generalized Hille’s Lemma

1.2. Then we have
∫ ∞

0

f(t)kx,b(t)dt → f(x).
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An alternative form of the right above is

∫ ∞

0

kx,b(t)dF (t).

So Chen and Scaillet density estimator are easy to be established by replacing distri-

bution function F (t) with Cox’s estimator. That is

∫ ∞

0

kx,b(t)dFn(t)

which is the same as (2.80).

Remark 2.6: The asymptotic distributions of estimators may be generally used for

inference purpose. However, the expressions for asymptotic variance derived here are

quite complicated, hence in practice Bootstrap procedures may be useful in this con-

text. However, we have not considered such procedures in the thesis.

Remark 2.7: The asymptotic properties are quite different for x > 0 and x = 0. To

study the properties of the estimators more carefully, we may consider x as a boundary

point where x/b → k for some k > 0 and an interior point where x/b → ∞. This will

be investigated in future research.
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Chapter 3

Smooth Estimators of Density and

Distribution Functions Based on Em-

pirical Distribution Function

3.1 Introduction

Note that an alternative form of length biased model (1.2) is given by

f(x) =
g(x)/x

µ
. (3.1)

This formula gives us an alternative strategy to estimate f(x). We can first obtain an

estimator of g(x), say ĝ(x), then, by (3.1), a natural estimator of f(x) is given by

f̂(x) =
ĝ(x)/x

µ
. (3.2)

By now µ is unknown. Note that we want to obtain an estimator f̂(x), which should

satisfy the most basic property being integrated to unity. So integrating on both sides
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of (3.2) gives us an estimator of µ based on ĝ(x), which can be defined as

µ̂ =

∫ ∞

0

ĝ(x)

x
dx. (3.3)

Therefore, a valid estimator of f(x) is

f̂(x) =
ĝ(x)/x∫

(ĝ(x)/x)dx
(3.4)

where ĝ(x) must satisfy the following conditions:

(i) ĝ(x) = 0 for x ≤ 0 ;

(ii) ĝ(x)/x is integrable on [0,∞).

Bhattacharyya et al. (1988) use (3.2) with µ̂ being the harmonic mean estimator to

establish a density estimator . However, since their estimator does not satisfy condition

(ii) and even condition (i) under certain circumstances, their estimator does not perform

very well [see Chaubey et al. (2010), Jones (1991) and Wu and Mao (1996)]. Therefore,

it seems that formula (3.4) might give us some valid density estimators.

In this chapter, we will follow formula (3.4) to obtain some density estimators. Sim-

ilar to previous chapter, we will use Hille’s lemma in Poisson weights and generalized

version to build two kinds of estimators, one using Poisson weights and the other us-

ing asymmetric kernels. However the smooth technique motivated by Hille’s lemma in

Poisson weights is not suitable to be applied directly in this case. Some necessary mod-

ifications to the smooth technique should be made. The route we follow in this chapter

is the opposite of that in previous chapter. Here we first obtain smooth density estima-

tor. Then, by integrating the density estimator on interval [0, x), we can have smooth

estimator of distribution function. In Section 3.2, the modified smooth technique in

Poisson weights is applied to find a new smooth density estimator. The integration of

this estimator gives us a distribution estimator. Their asymptotic properties are stud-
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ied. Without any modification, the smooth technique using asymmetric kernels can be

directly applied to the formula (3.4). And the perturbation and boundary correction

are still necessary to be used in new density estimator. Therefore, in Section 3.3, new

density and distribution estimator using asymmetric kernels are found and their the

asymptotic properties are studied as well.

3.2 Estimators of Density and Distribution Func-

tions with Poisson Weights

3.2.1 Smooth Density Estimator

Define

Gn(x) =
1

n

n∑
i=1

I{Xi ≤ x}. (3.5)

Using the poisson weights

pk(xλn) = e−xλn
(xλn)k

k!
, (3.6)

we can obtain a smooth estimator of G(x). Since the smooth estimator is differentiable,

we take its derivative as a smooth estimator of density function g(x). In order to let

the smooth estimator of density satisfy conditions (i) and (ii), we attach the Poisson

weight pk(xλn) to Gn((k− 1)/λn). This results the following smooth estimator of G(x)

Ĝn(x) =
∑

k≥0

pk(xλn)Gn

(k − 1

λn

)
. (3.7)

As in (2.4) differentiating the above expression gives us the following smooth estimator

ĝn(x) = λn

∑

k≥1

pk(xλn)
[
Gn

( k

λn

)−Gn

(k − 1

λn

)]
(3.8)
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such that ĝ(x) = 0 when x ≤ 0 and ĝ(x)/x is integrable, since

∫ ∞

0

ĝn(x)

x
dx = λn

∑

k≥1

[
Gn

( k

λn

)−Gn

(k − 1

λn

)] ∫ ∞

0

1

x
pk(xλn)dx

= λn

∑

k≥1

[
Gn

( k

λn

)−Gn

(k − 1

λn

)]1

k
.

The new estimator of f(x) is given by

f̂n(x) = λn

∑
k≥1

pk−1(xλn)

k

[
Gn

(
k

λn

)−Gn

(
k−1
λn

)]
∑
k≥1

1
k

[
Gn

(
k

λn

)−Gn

(
k−1
λn

)] . (3.9)

3.2.1.1 Asymptotic Property of f̂n(x)

Lemma 3.1 If 0 < E(X−1
1 ) < ∞, λn = O(nα)(0 < α < 1) and g(x) is absolutely

continuous with a bounded derivative g′(x) on R+, then

∫ ∞

0

ĝn(x)

x
dx

a.s.−→ 1

µ
. (3.10)

Proof: First we can write

∫ ∞

0

ĝn(x)

x
dx = λn

∑

k≥1

[
Gn

( k

λn

)−Gn

(k − 1

λn

)−G
( k

λn

)
+ G

(k − 1

λn

)]1

k

+λn

∑

k≥1

[
G

( k

λn

)−G
(k − 1

λn

)]1

k

= Tn1(λn) + Tn2(λn). (3.11)

First, we want to show that

Tn1(λn)
a.s.−→ 0. (3.12)

Note that for any 0 < α < 1, we can find a β(0 < β < 1/2) such that

α <
1/2

1/2 + β
. (3.13)

For any fixed k, we apply Lemma 1 of Bahadur (1966) in the interval

[(k − 1)/λn, k/λn). However, We can not use the lemma directly. Here we make some
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slight modifications. Let an = λ−1
n (λn/k)2β, bn = n1/2/(log n)1+θ,

γn = λ
−1/2
n (λn/k)βn−1/2(log n)1+θ and ηr,n = k−1

λn
+ γnr.

First of all, we need verify a fact that is, for any s, t ∈ [(k− 1)/λn, k/λn), there exits

a c2 such that

|G(s)−G(t)| ≤ c2an. (3.14)

This is because

|G(s)−G(t)| ≤ g(η)λ−1
n = (k/λn)2βg(η)λ−1

n (λn/k)2β (3.15)

where η ∈ ((k − 1)/λn, k/λn). Note that (k/λn)2βg(η) ≈ (k/λn)2βg(k/λn). Since g(x)

is a density function, it is easy to know that x2βg(x) is bounded on R+. Then we can

find a c2 which is finite and greater than (k/λn)2βg(η). So (3.14) holds, which means

under our modifications, we can still have the inequality zr,n ≤ c2an(0 ≤ r ≤ bn) in the

proof of Bahadur’s lemma.

Following the proof Lemma 1 of Bahadur (1966), we can claim that

∣∣Gn

( k

λn

)−Gn

(k − 1

λn

)−G
( k

λn

)
+ G

(k − 1

λn

)∣∣ ≤ γn a.s. (3.16)

Then we have

|Tn1(λn)| ≤ λ1/2+β
n n−1/2(log n)1+θ

∑

k≥1

1

k1+β
a.s. (3.17)

If λn = O(nα)(0 < α < 1), by (3.13) and (3.17), we can see that (3.12) holds.

On the other hand, we have, as λn ↑ ∞,

Tn2(λn) =
∑

k≥1

(λn/k)g(k/λn)
1

λn

+
∑

k≥1

(λn/k)g′(ξk)
1

2λ2
n

→ 1

µ
(3.18)

where ξk ∈ ((k − 1)/λn, k/λn). By (3.12) and (3.18), the lemma follows. The proof is

complete.
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Using the same method in the proof of Theorem 4.1 of Chaubey and Sen (1996), we

can show that when λn = O(nα)(0 < α < 1) and g(x) is absolutely continuous with a

bounded derivative g′(x) a.e. on R+,

||ĝn(x)− g(x)|| = sup
x∈R+

{|ĝn(x)− g(x)|} a.s.−→ 0 (3.19)

as n ↑ ∞. By Lemma 3.1, (3.19) and (3.9), we can obtain the following theorem.

Thoerem 3.1 If 0 < E(X−1
1 ) < ∞ and g(x) is absolutely continuous with a bounded

derivative g′(x) on R+ and λn = O(nα)(0 < α < 1), then

||f̂n(x)− f(x)|| = sup
x∈R+

{|f̂n(x)− f(x)|} a.s.−→ 0. (3.20)

Now we suppose that g′(x) satisfies Lipschitz order α condition, for some α > 0,

there exits a positive K(< ∞), such that

|g′(t)− g′(s)| ≤ K|t− s|α. (3.21)

We can write

ĝn(x) = λn

∑

k≥1

pk(xλn)
[
G

( k

λn

)−G
(k − 1

λn

)]
+ T ′

n(x) (3.22)

where T ′
n(x) = λn

∑
k≥1

pk(xλn)
[
Gn

(
k

λn

)−Gn

(
k−1
λn

)−G
(

k
λn

)
+ G

(
k−1
λn

)]
. Using (3.21) and

Taylor’s expansions of G(k/λn) and G((k − 1)/λn) at point x, then we can rewrite the

first term of (3.22) and establish

ĝn(x) = g(x)− 1

2λn

g′(x) + O(λ−1−α
n ) + T ′

n(x). (3.23)

So

∫ ∞

0

ĝn(x)

x
dx =

1

µ
− 1

2λn

∫ ∞

0

g′(x)

x
dx + O(λ−1−α

n ) + Tn1(λn) (3.24)
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It is easy to see that

V (Tn1(λn)) =
1

n

{ ∑

k≥1

(λn/k)2[G(
k

λn

)−G(
k − 1

λn

)]

−( ∑

k≥1

(λn/k)[G(
k

λn

)−G(
k − 1

λn

)]
)2}

≈ 1

n
V (

1

X
). (3.25)

By (3.23), we have

ĝn(x)

x
=

g(x)

x
− 1

2λn

g′(x)

x
+ O(λ−1−α

n ) + Tn(x)

=
f(x)

µ
− 1

2λn

g′(x)

x
+ O(λ−1−α

n ) + Tn(x) (3.26)

where

Tn(x) =
λn

x

∑

k≥1

pk(xλn)
[
Gn

( k

λn

)−Gn

(k − 1

λn

)−G
( k

λn

)
+ G

(k − 1

λn

)]
. (3.27)

Using (3.23) and (3.24), we can write

f̂n(x) =
µg(x)

x
+ µ(

ĝn(x)

x
− g(x)

x
)− µ2 g(x)

x
(

∫ ∞

0

ĝn(x)

x
dx− 1

µ
)

+o(

∫ ∞

0

ĝn(x)

x
dx− 1

µ
)

= f(x) +
1

2λn

[µ̄f(x)− f(0)f(x)− f(x)

x
− f ′(x)] + µTn(x) + µTn1(λn)

+O(λ−1−α
n ) a.s. (3.28)

where µ̄ =
∫

(f(x)/x)dx. According to Chaubey and Sen (1996), we have V (T ′
n(x)) ≈

1
2
(2πx)−1/2g(x)(λ

1/2
n /n) and, if x 6= y, Cov[T ′

n(x), T ′
n(y)] = O(n−1). Note that Tn(x) =

T ′
n(x)/x, then we have

V (Tn(x)) ≈
1

2
(πx)−1/2 g(x)

x2
(λ1/2

n /n) (3.29)

and, if x 6= y,

Cov[Tn(x), Tn(y)] = O(n−1). (3.30)
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By (3.25) and (3.29), we can see that the variance of f̂n(x) should have an order

O(λ
1/2
n /n) far greater than O(1/n) the order of variance of Tn1(λn). So we can dispense

with Tn1(λn) and then f̂n(x) behaves like µTn(x). Thus from equations (3.27), (3.29)

and (3.30) we can establish the following theorem.

Thoerem 3.2 Under the same assumptions on g(x) and g′(x) in Theorem 3.1, if (3.21)

holds and E(X−2
1 ) < ∞, when λn = O(n2/5)(nonstochastic), we have, for a compact set

C ⊂ R+,

{(
n2/5[f̂n(x)−f(x)]− 1

2δ2
[µ̄f(x)−f(0)f(x)−f(x)

x
−f ′(x)]

)
, x ∈ C

} D−→ Gaussian process

with covariance function γ2
xδxy where γ2

x =
µ

2
(πx3)−1/2f(x)δ, δxy = 0 for x 6= y and 1

for x = y and δ = lim
n→∞

(n−1/5λ
1/2
n ).

3.2.1.2 MSE

For f̂n(x), we have

Bias(f̂n(x)) =
1

2λn

[µ̄f(x)− f(0)f(x)− f(x)

x
− f ′(x)] + o(λ−1

n ) (3.31)

and

V (f̂n(x)) =
√

λn
µ

2
√

πn

f(x)

x3/2
+ o(

√
λn

n
). (3.32)

So

MSE(f̂n(x)) =
1

4λ2
n

[µ̄f(x)− f(0)f(x)− f(x)

x
− f ′(x)]2

+
√

λn
µ

2
√

πn

f(x)

x3/2
+ o(

√
λn

n
+

1

λn

). (3.33)
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3.2.2 Distribution Function Estimator

By (3.9), we can see that the corresponding smooth estimator of distribution function

is

F̂n(x) =

∑
k≥1(1/k)Wk(xλn)[Gn

(
k

λn

)−Gn

(
k−1
λn

)
]∑

k≥1
1
k
[Gn

(
k

λn

)−Gn

(
k−1
λn

)
]

(3.34)

where

Wk(λnx) =
1

Γ(k)

∫ λnx

0

e−yyk−1dy =
∑

j≥k

pj(λnx).

Next, we will discuss asymptotic property of F̂n(x). By (3.26), if g′(x) exits, we have

ĝn(x)

x
=

f(x)

µ
+ O(λ−1

n ) + Tn(x). (3.35)

Integrating from 0 to x, we have

∫ x

0

ĝn(t)

t
dt =

F (x)

µ
+

∫ x

0

Tn(t)dt + O(λ−1
n ). (3.36)

Note that

|
∫ x

0

Tn(t)dt| ≤
∫ x

0

λn

t

∑

k≥1

pk(tλn)|[Gn

( k

λn

)−Gn

(k − 1

λn

)−G
( k

λn

)
+ G

(k − 1

λn

)]|dt

≤
∫ ∞

0

λn

t

∑

k≥1

pk(tλn)|[Gn

( k

λn

)−Gn

(k − 1

λn

)−G
( k

λn

)
+ G

(k − 1

λn

)]|dt

= λn

∑

k≥1

|[Gn

( k

λn

)−Gn

(k − 1

λn

)−G
( k

λn

)
+ G

(k − 1

λn

)]|1
k
.

Then using (3.16), for any x, we have

|
∫ x

0

Tn(t)dt| ≤ λ1/2+β
n n−1/2(log n)1+θ

∑

k≥1

1

k1+β
a.s. (3.37)

So, as λn = O(nα)(0 < α < 1) ↑ ∞,

sup
x∈R+

{|
∫ x

0

Tn(t)dt|} a.s.−→ 0. (3.38)
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By (3.36) and (3.38), we have

sup
x∈R+

{|
∫ x

0

ĝn(t)

t
− F (x)

µ
|} a.s.−→ 0. (3.39)

Combining with Lemma 3.1, we have the following theorem.

Thoerem 3.3 If λn = O(nα)(0 < α < 1), 0 < E(X−1
1 ) < ∞ and g(x) is absolutely

continuous with a bounded derivative g′(x) a.e. on R+, then, as n ↑ ∞,

||F̂n(x)− F (x)|| = sup
x∈R+

{|F̂n(x)− F (x)|} a.s.−→ 0. (3.40)

Next, we will discuss the weak asymptotic properties of F̂ (x).

Thoerem 3.4 If λn = O(nα)(1/2 < α < 1), E(X−2
1 ) < ∞ and under the same

assumptions of Theorem 3.3 on g(x) and g′(x), when n ↑ ∞, we have

√
n(F̂n(x)− F (x))

D−→ N(0, δ2(x))

where δ2(x) = µ
[∫ x

0
1
t
f(t)dt− 2F (x)

∫ x

0
1
t
f(t)dt + µ̄F 2(x)

]
.

Proof: According to (3.9), we have

F̂n(x) =

∑
k≥1(

∫ x

0
pk−1(tλn)dt)λn

k

[
Gn

(
k

λn

)−Gn

(
k−1
λn

)]
∑

k≥1
1
k
[Gn

(
k

λn

)−Gn

(
k−1
λn

)
]

=

∑
k≥1(

∫ x

0
pk−1(tλn)dt)λ2

n

k

[
Gn

(
k

λn

)−Gn

(
k−1
λn

)]
∑

k≥1
λn

k
[Gn

(
k

λn

)−Gn

(
k−1
λn

)
]

=
T1n

T2n

. (3.41)

Note that, by (3.36), (3.37) and Lemma 3.1, we have T1n
a.s.−→ ∫ x

0
1
t
g(t)dt and T2n

a.s.−→ 1

µ
.

Using the Taylor expansion of F̂n(x) at the point (T01, T02) where T01 =
∫ x

0
1
t
g(t)dt and

T02 =
1

µ
, F̂n(x) can be approximated by

F̂n(x) ≈ T01

T02

+
1

T02

(T1n − T01)− T01

T 2
02

(T2n − T02). (3.42)
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So

E(F̂n(x)) ≈ T01

T02

+
1

T02

E(T1n − T01)− T01

T 2
02

E(T2n − T02)

→ F (x) as n →∞. (3.43)

Actually, we can show that

E(F̂n(x)) = F (x) + O(λ−1
n ). (3.44)

From (3.44), we can see that only when 1/2 < α < 1,
√

n[F̂n(x)− F (x)] → 0.

Now we discuss the variance of F̂n(x). By (3.41) and (3.43), we have

F̂n(x)− F (x) ≈
∑

k≥1

{
[µ(

∫ x

0

pk−1(tλn)dt)
λ2

n

k
− µ2(

∫ x

0

1

t
g(t)dt)

λn

k
]

[Gn

( k

λn

)−Gn

(k − 1

λn

]
}

=
∑

k≥1

{
[µ(

∫ x

0

pk−1(tλn)dt)
λ2

n

k
− µF (x)

λn

k
]

[Gn

( k

λn

)−Gn

(k − 1

λn

]
}
. (3.45)

Then

V (F̂n(x)) ≈ 1

n

∑

k≥1

{
[µ(

∫ x

0

pk−1(tλn)dt)
λ2

n

k
− µF (x)

λn

k
]2[G

( k

λn

)−G
(k − 1

λn

]
}

− 1

n

( ∑

k≥1

{
[µ(

∫ x

0

pk−1(tλn)dt)
λ2

n

k
− µF (x)

λn

k
][G

( k

λn

)−G
(k − 1

λn

]
})2

=
1

n

∑

k≥1

{
[µ(

∫ x

0

pk−1(tλn)dt)
λ2

n

k
]2[G

( k

λn

)−G
(k − 1

λn

)
]
}

− 2

n

∑

k≥1

{
[µ2(

∫ x

0

pk−1(tλn)dt)F (x)
λ3

n

k2
][G

( k

λn

)−G
(k − 1

λn

)
]
}

+
1

n

∑

k≥1

{
[µF (x)

λn

k
]2[G

( k

λn

)−G
(k − 1

λn

)
]
}

− 1

n

( ∑

k≥1

{
[µ(

∫ x

0

pk−1(tλn)dt)
λ2

n

k
− µF (x)

λn

k
][G

( k

λn

)−G
(k − 1

λn

]
})2

=
1

n

(
T1n − 2T2n + T3n − T4n

)
. (3.46)
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We write

T1n =
∑

k≥1

µ2(λn

∫ x

0

pk−1(tλn)dt)
λ2

n

k2
[G

( k

λn

)−G
(k − 1

λn

)
]

−
∑

k≥1

µ2(1− λn

∫ x

0

pk−1(tλn)dt)(λn

∫ x

0

pk−1(tλn)dt)
λ2

n

k2
[G

( k

λn

)−G
(k − 1

λn

)
]

= S1 − S2. (3.47)

Using Hille’s Lemma, we can easily show that, as λn ↑ ∞,

∑

k≥1

pk−1(tλn)
λ2

n

k2
g(

k

λn

) → 1

t2
g(t)

uniformly in the finite interval [0, x], then we have

S1 ≈ µ2

∫ x

0

( ∑

k≥1

pk−1(tλn)
λ2

n

k2
g(

k

λn

)
)
dt → µ2

∫ x

0

1

t2
g(t)dt. (3.48)

Next, we will show that S2 → 0 as λn ↑ ∞.

Let N = {1, 2, . . . , n, . . .} and bn = λ
−1/2
n (log n)

1+δ
2 where δ > 0. Denote

N1
x = {k

∣∣k/λn − x < −bn, k ∈ N}, N2
x = {k

∣∣|k/λn − x| ≤ bn, k ∈ N} and

N3
x = {k

∣∣k/λn − x > bn, k ∈ N}.

Let

ak = µ2(1− λn

∫ x

0

pk−1(tλn)dt)(λn

∫ x

0

pk−1(tλn)dt)
λ2

n

k2
[G

( k

λn

)−G
(k − 1

λn

)
], (3.49)

then we can write

S2 =
∑

k∈N1
x

ak +
∑

k∈N2
x

ak +
∑

k∈N3
x

ak. (3.50)

For any k ∈ N1
x, by the proof of Lemma 3.1 of Chaubey and Sen (1996), we can claim

that [1− λn

∫ x

0
pk−1(tλn)] =

∑k−1
0 pi(xλn) < 1

n
. Then

0 <
∑

k∈N1
x

ak <
1

n
S1. (3.51)
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For any k ∈ N3
x, by the same lemma above, we can claim that λn

∫ x

0
pk−1(tλn) =

∑∞
i≥k pi(xλn) < 1

n
. At the same time, we have [1− λn

∫ x

0
pk−1(tλn)] < 1 and (k/λn)2 <

(x + bn)−2. Then

0 <
∑

k∈N3
x

ak <
µ2

n
(x + bn)−2. (3.52)

For any k ∈ N2
x, by the facts [1 − λn

∫ x

0
pk−1(tλn)] < 1 , λn

∫ x

0
pk−1(tλn) < 1 and

(k/λn)2 < (x− bn)−2, we have

0 <
∑

k∈N2
x

ak < µ2(x− bn)−2[G(x + bn)−G(x− bn)]. (3.53)

From expressions of (3.51), (3.52) and (3.53), we can see that they all tend to zero as

λn = O(nα) ↑ ∞, which means

S2 → 0. (3.54)

By (3.48) and (3.54), we have

T1n → µ2

∫ x

0

1

t2
g(t)dt = µ

∫ x

0

1

t
f(t)dt. (3.55)

At the same time, by Hille’s lemma, we have

T2n ≈
∑

k≥1

{
[µ2(

∫ x

0

pk−1(tλn)dt)F (x)
λ3

n

k2
]
1

λn

g(
k

λn

)

=
∑

k≥1

{
[µ2(

∫ x

0

pk−1(tλn)dt)F (x)
λ2

n

k2
]g(

k

λn

)

→ µF (x)

∫ x

0

1

t
f(t)dt, (3.56)
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T3n ≈
∑

k≥1

{
[µF (x)

λn

k
]2

1

λn

g(
k

λn

)

=
∑

k≥1

{
[µF (x)]2

1

λn

( k

λn

)−2
g(

k

λn

)

→ µF 2(x)

∫ ∞

0

1

t
f(t)dt

= µµ̄F 2(x) (3.57)

where µ̄ =
∫∞

0
1
t
f(t)dt, and, by (3.43),

T4n = [E(F̂n(x)− F (x))]2 → 0. (3.58)

By (3.46), (3.55), (3.56), (3.57) and (3.58), we have

V (
√

nF̂n(x)) → µ

[∫ x

0

1

t
f(t)dt− 2F (x)

∫ x

0

1

t
f(t)dt + µ̄F 2(x)

]
. (3.59)

The proof is complete.

3.3 Estimators of Density and Distribution Func-

tions with Asymmetric Kernel

3.3.1 Smooth Density Estimator

Using generalized Hille’s lemma, we can obtain a smooth estimator of g(x) [see Chaubey,

Sen and Sen (2007)] which is given by

gn(x) =
1

nx2

n∑
i=1

Xiqvn

(Xi

x

)
. (3.60)

Note that
∫∞

0
gn(x)

x
dx = 1

n

∑n
i=1

1
Xi

, which is an estimator of 1/µ. By (3.4), a smooth

estimator of f(x) can be formed as
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fn(x) =
gn(x)/x∫∞

0
(gn(x)/x)dx

=
1
x3

∑n
i=1 Xiqvn

(
Xi

x

)
∑n

i=1
1

Xi

. (3.61)

However, (3.61) may be reasonable for a density f(x) with f(0) = 0. For general density

functions, by the idea of perturbation, the acceptable estimator is given by

f̂+
n (x) =

1
(x+εn)3

∑n
i=1 Xiqvn

(
Xi

x+εn

)
∑n

i=1
1

Xi

(3.62)

3.3.1.1 Asymptotic Properties

Thoerem 3.5 If

A. vn → 0, εn → 0 as n →∞ and E(X−1
1 ) < ∞;

B. supx≥0

∫∞
0
| d
dx

[ 1
x+εn

qvn( t
x+εn

)]|dt = o(( log log n
n1/2 )−1);

C. supu>0,v>0 uqv(u) < ∞;

D. g(·) is Lipschitz continuous on [0,∞);

then we have, as n →∞,

sup
x>0
|f̂+

n (x)− f(x)| a.s.−→ 0 (3.63)

Proof: By Theorem 3 of Chaubey, Sen and Sen (2007), under the conditions of Theo-

rem 3.5, we have

sup
x>0
|g+

n (x)− g(x)| a.s.−→ 0 (3.64)

where g+
n (x) = 1

n(x+εn)2

∑n
i=1 Xiqvn

(
Xi

x+εn

)
.

On the other hand, by the strong law of large number, we have

1

n

n∑
i=1

1

Xi

a.s.−→ 1

µ
(3.65)

By (3.62), (3.64) and (3.65), we can obtain the theorem.
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Thoerem 3.6 If

E. g(·) is Lipschitz continuous on [0,∞) and E(X−2
1 ) < ∞;

F. I2(q) , lim
v→0

v
∫∞

0
(qvn(t))2dt exists;

G1. for 1 ≤ m ≤ 3,
∫∞

0
(qvn(t))mdt = O(v1−m) as v → 0;

G2. with q∗m,vn
(t) = (qvn (t))m∫∞

0 (qvn (w))mdw
, 1 ≤ m ≤ 3, and as vn → 0,

(i) µm,vn =

∫ ∞

0

tq∗m,vn
(t)dt = 1 + O(vn),

(ii) σ2
m,vn

=

∫ ∞

0

(t− µm,vn)2q∗m,vn
(t)dt = O(v2

n)

(iii) sup
0<vn<ε

∫ ∞

0

t4+δq∗m,vn
(t)dt < ∞, for some δ > 0, ε > 0;

Then

(a) If nvn →∞, nvnεn →∞, nv3
n → 0, nvnε

2
n → 0 as n →∞, we have

√
nvn(f̂+

n (x)− f(x)) → N
(
0, I2(q)

µf(x)

x2

)
, for x > 0.

(b) If nvnε
2
n →∞ and nvnε

4
n → 0 as n →∞, we have

√
nvnε2

n(f+
n (0)− f(0)) → N

(
0, I2(q)f(0)

)
.

Proof: (a) Since g+
n (x) is a density obtained by the method in Chaubey, Sen and Sen

(2007), according to the proof of Theorem 4 in Chaubey, Sen and Sen (2007), we have

√
nvn(g+

n (x)− g(x)) → N

(
0, I2(q)

g(x)

x

)
, for x > 0. (3.66)

Note that
√

n
(

1
n

∑n
i=1

1
Xi
− 1

µ

)
→ normal. So the asymptotic normality of

f̂+
n (x) =

g+
n (x)

(x + εn) 1
n

∑n
i=1

1
Xi

(3.67)

is equivalent to the the asymptotic normality of

µg+
n (x)

(x + εn)
. (3.68)
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Using (3.66), it is easy to show that

√
nvn

(
µg+

n (x)

(x + εn)
− µg(x)

x

)
→ N

(
0, I2(q)

µf(x)

x2

)
, for x > 0. (3.69)

Then the part (a) of theorem follows.

(b)we have

f̂+
n (0) =

1

n

n∑
i=1

Y ′
in − f(0)

( 1

n

n∑
i=1

1

Xi

− 1

µ

)
+ o(

1

n

n∑
i=1

1

Xi

− 1

µ
) (3.70)

where

Y ′
in =

µXi

(εn)3
qvn(

Xi

εn

). (3.71)

We can show that

E(Y
′3
1n) = O(ε4

nv
−2
n ) (3.72)

and

ε2
nvnE(Y

′2
1n) → I2(q)f(0). (3.73)

Using (3.72) and (3.73) and following the lines of proof of Theorem 2.8 of part (b), we

can obtain part (b) of this theorem.

3.3.1.2 MSE and AMISE

We can show that

Bias[f̂+
n (x)] = v2

nf(x) + (2v2
nx + εn)f ′(x)

+v2
n

x2

2
f ′′(x) + o(v2

n + εn) (3.74)

and

V ar[f̂+
n (x)] =

I2(q)µf(x)

nvn(x + εn)2
+ o

(
(nvn)−1

)
. (3.75)
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So we have

MSE[f̂+
n (x)] ≈ I2(q)µf(x)

nvnx2
+ [v2

nf(x) + (2v2
nx + εn)f ′(x) + v2

n

x2

2
f ′′(x)]2. (3.76)

Furthermore, we have

AMISE[f̂+
n (x)] =

I2(q)µ

nvn

∫ ∞

0

f(x)

(x + εn)2
dx

+

∫ ∞

0

[v2
nf(x) + (2v2

nx + εn)f ′(x) + v2
n

x2

2
f ′′(x)]2dx

(3.77)

This expression is useful in cross validation method for obtaining data dependent

values of smoothing parameter(s).

3.3.1.3 Corrected Density Estimator

Note that if εn > 0 the integral of (3.62) is less than 1. In this case, the density

estimator seems a little left-shifted and slightly “ lose ” some weights. In order to get

the “ lost ” weights back, we divide (3.62) by its integral
∫∞

0
f̂+

n (x)dx and obtain the

following corrected density estimator

f̂ ∗n(x) =

1
(x+εn)3

∑n
i=1 Xiqvn

(
Xi

x+εn

)
∫∞

0
1

(x+εn)3

∑n
i=1 Xiqvn

(
Xi

x+εn

)
dx

. (3.78)

Since, as εn → 0,
∫∞

0
1

(x+εn)3

∑n
i=1 Xiqvn

(
Xi

x+εn

)
dx → ∑n

i=1
1

Xi
, we can have the same

theorem as Theorem 3.5 and 3.6 for f̂ ∗n(x). Furthermore, it is easy to show that

Bias(f̂ ∗n) = Bias(f̂+
n ) + εnf(0)f(x) + o(εn). (3.79)
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3.3.2 Smooth Estimator of Distribution Function

According to (3.61), an acceptable distribution function estimator is

F̂+
n (x) =

∫ x

0
1
t3

∑n
i=1 Xiqvn

(
Xi

t

)
dt∑n

i=1
1

Xi

. (3.80)

If qvn is a gamma density, an alternative form of (3.80) is given by

F̂+
n (x) =

∑n
i=1

1
Xi

(
1− F1/v2

n+1,v2
n

(
Xi

x

))
∑n

i=1
1

Xi

where F1/v2
n+1,v2

n
(x) is a gamma distribution function with density function 1

βαΓ(α)
xα−1e−x/β

with α = 1/v2
n + 1 and β = v2

n.

Thoerem 3.7 If E(X−1
1 ) < ∞, vn → 0 as n → ∞ and f(x) is absolutely continuous

with bounded derivative f ′(x) on R+, then

sup
x≥0

|F̂+
n (x)− F (x)| a.s.−→ 0.

Proof: We can write (3.80) as

F̂+
n (x) =

1
n

∑n
i=1

∫ x

0
1
t3

Xiqvn

(
Xi

t

)
dt

1
n

∑n
i=1

1
Xi

. (3.81)

Let ξi =
∫ x

0
1
t3

Xiqvn

(
Xi

t

)
dt, then

E(ξi) =

∫ ∞

0

[∫ x

0

1

t3
yqvn

(y

t

)
dt

]
g(y)dy. (3.82)

Let y/t = z, then

E(ξi) =

∫ ∞

0

[∫ ∞

y/x

zqvn(z)dz

]
g(y)

y
dy

=
1

µ

∫ ∞

0

[∫ ∞

y/x

zqvn(z)dz

]
f(y)dy

=
1

µ

[
F (y)

∫ ∞

y/x

zqvn(z)dz

]∞

0

+
1

µ

∫ ∞

0

F (y)
y

x
qvn

(y

x

) dy

x
. (3.83)
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Let y
x

= u, then

E(ξi) =
1

µ

∫ ∞

0

F (ux)uqvn (u) du. (3.84)

Note that

F (ux) = F (x) + xf(x)(u− 1) + O(u− 1)2,

then

E(ξi) = F (x) + O(v2
n). (3.85)

By the strong law of large number, we have that the numerator of (3.81) converges

uniformly to 1
µ
F (x) and the denominator of (3.81) to 1

µ
. Since F̂+

n (x) is nondecreasing,

the uniform strong convergency of F̂+
n (x) follows.

Thoerem 3.8 If E(X−2
1 ) < ∞,

√
nv2

n → 0, f(x) is absolutely continuous with bounded

derivative f ′(x) on R+, then, as n →∞,

√
n(F̂+

n (x)− F (x))
D−→ N(0, δ2(x))

where

δ2(x) = µ[

∫ x

0

1

t
f(t)dt− 2F (x)

∫ x

0

1

t
f(t)dt + µ̄F 2(x)]

where µ̄ = Ef (
1
X

).

Proof: We can expand (3.80) as

F̂+
n (x) = F (x) +

[
µ

n

n∑
i=1

∫ x

0

1

t3
Xiqvn

(Xi

t

)
dt− F (x)

]

−µF (x)

(
1

n

n∑
i=1

1

Xi

− 1

µ

)
+ o

(
1

n

n∑
i=1

1

Xi

− 1

µ

)

= F (x) +
1

n

n∑
i=1

[∫ x

0

µ

t3
Xiqvn

(Xi

t

)
dt− µF (x)

Xi

]

+o

(
1

n

n∑
i=1

1

Xi

− 1

µ

)
(3.86)
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Let ηi =
∫ x

0
µ
t3

Xiqvn

(
Xi

t

)
dt− µF (x)

Xi
. Since E

(
1

Xi

)
= 1

µ
, we can show that as in the proof

of Theorem 3.7,

E(ηi) = O(v2
n). (3.87)

Furthermore, we have

E(η2
i ) =

∫ ∞

0

[∫ x

0

µ

t3
yqvn

(y

t

)
dt

]2

g(y)dy − 2µF (x)

∫ ∞

0

[∫ x

0

µ

t3
qvn

(y

t

)
dt

]
g(y)dy

+µF 2(x)

∫ ∞

0

µ

t2
g(t)dt

= T1 − 2µF (x)T2 + µF 2(x)µ̄. (3.88)

Let y/t = z and H(x) =
∫ x

0
f(t)

t
dt, for T1, we have

T1 =

∫ ∞

0

[∫ ∞

y/x

µzqvn(z)dz

]2
g(y)

y2
dy

= µ

∫ ∞

0

[∫ ∞

y/x

zqvn(z)dz

]2
f(y)

y
dy

= µ

[
H(y)

[∫ ∞

y/x

zqvn(z)dz

]2
]∞

0

−µ

∫ ∞

0

H(y)d

[∫ ∞

y/x

zqvn(z)dz

]2

= −µ

∫ ∞

0

H(y)d

[∫ ∞

y/x

zqvn(z)dz

]2

. (3.89)

Let y/x = u, then we have

T1 = −µ

∫ ∞

0

H(xu)d

[∫ ∞

u

zqvn(z)dz

]2

. (3.90)

Note that we have

H(xu) = H(x) + f(x)(u− 1) + o(u− 1),

then

T1 ≈ µH(x)− µf(x)

∫ ∞

0

(u− 1)d

[∫ ∞

u

zqvn(z)dz

]2

= µH(x)− µf(x)T3. (3.91)
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For T3, we have

|T3| = 2 |
∫ ∞

0

(u− 1)

[∫ ∞

u

zqvn(z)dz

]
uqvn(u)du |

≤ 2

∫ ∞

0

|u(u− 1)|qvn(u)du

≤ o(vn). (3.92)

So, as vn → 0,

T1 → µH(x). (3.93)

Similarly we have

T2 =

∫ ∞

0

H(xu)uqvn(u)du

= H(x) + o(vn) (3.94)

By (3.86), (3.87), (3.88), (3.93) and (3.94), we can obtain the theorem.
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Chapter 4

A Numerical Study of the New Esti-

mators

4.1 Introduction

In this chapter, we propose to compare various density estimators described in the

previous chapters through extensive simulation. The basic criteria are mean squared

error (MSE) and mean integrated squared error (MISE) of the estimator fn given by

MSE(fn(x)) = E[(fn(x)− f(x))2] (4.1)

and

MISE(fn, f) = E

[∫ ∞

0

(fn(x)− f(x))2dx

]
(4.2)

Note that MSE may be considered to measure the local performance of the estimator

fn and MISE may be considered to measure the global performance. In practical

applications, since f is to be estimated, data-dependent choices corresponding to the

above criteria are considered. These are commonly known as “cross validation” methods
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that attempt to estimate above quantities based on the observed sample which are

in turn minimized (numerically) as a function of smoothing parameters. Such cross-

validation method may consider another measure of departure of the estimator fn from

f instead of the integrated squared error and that would give a different choice of the

parameters. So the question may be which measure of departure may be better suited

to amplify the differences between the estimators and the true density?

Hence we first study this question in the next section where the candidate estimator is

the Poisson based smoothing of the Cox estimator. The conclusion from the simulation

studies points towards the conjecture that the the data dependent integrated error

(ISE) cross-validation methods provide optimal choice of the smoothing parameter(s)

for large samples in the sense of minimizing the MISE and that the choice of departure

measure is not of much relevance.

The next section, Section 4.3 therefore considers ISE cross-validation methods for all

the density estimators and presents a comparison of MISE and MSE for some known

standard densities and Section 4.4 presents the conclusions.

In these expositions, we will mainly proposed two kinds of data-driven methods, one

being unbiased cross-validation method, the other being biased cross-validation method

as commonly used in the literature dealing with kernel density estimation [see Scott

and Terrell (1987)].

It seen that the performance of an estimator based on Fn may be better than that

based on Gn over some region but not on another region. Hence, in Section 4.5, we

propose a linear combination of two competing density estimators and investigate its

properties numerically through simulation.
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4.2 A Comparison of Different Criteria for Selecting

Smoothing Parameters: The Case of f̃n

Selection of smoothing parameters is an old and challenging topic in nonparametric

functional estimator. Since smoothing parameter determines the performances of es-

timator under finite samples, it is an important issue in practice and many methods

have been proposed proposed for this purpose. In this area, the early work was done by

Kronmal and Tarter (1968). Rudemo (1982) proposed a least squares cross-validation

method. Bowman (1984), using Kullback-Liebler divergence, proposed an alternative

cross-validation method. Using asymptotic MISE, Scott and Terrell (1987) proposed

biased cross-validation method. The further modification of this method was made by

Park and Marron (1990). Here we will propose and study several selection methods for

our proposed density estimator of LB data.

A convenient stochastic choice of λn was proposed by Chaubey and Sen (1996) as

λn(1) =
n

max{X1, . . . , Xn} (4.3)

provided that E(X) < ∞ and X has an infinite support. However, if X has a finite

support, Chaubey and Sen (1998) noticed that the choice (4.3) will not satisfy that

n−1λn → 0 as n →∞. To cover these cases they proposed the choice

λn(2) =
n

Xn−rn+1:n log log n
(4.4)

where rn = o(log log n). Based on the asymptotic property of MSE of f̃n(x), a non-

stochastic choice is

λn(3) = cn2/5 (4.5)
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These choices are based on the asymptotic theory, however, in finite sample case they

may not be satisfactory. In the procedure of using direct data to estimate density,

Chaubey and Sen (2009) find that the choices λn(1) and λn(2) may be very large so that

they create problems in computation. Our study shows that they may also cause the

same problems in the procedure of using LB data to estimate density. The purpose of

this subsection is to give the choices of λn for finite samples. We will investigate two

kinds of cross-validation methods, one is unbiased cross-validation method, the other is

biased cross-validation method.

4.2.1 Unbiased Cross-Validation Method

Here we investigate two unbiased cross-validation methods, one being based on Kullback-

Liebler divergence, the other being based on integrated squared error. We also use the

Hellinger distance defined between two densities to compare the closeness of a density

estimator to its true population density.

4.2.1.1 Kullback-Liebler Divergence Cross Validation

The Kullback-Liebler divergence between the two density functions f(x) and g(x) is

defined as

KL(f, g) =

∫
f(x) log

f(x)

g(x)
dx (4.6)

So the Kullback-Liebler divergence between the estimator f̃n(x) and the true density

f(x) is given by

KL(f, f̃n) =

∫
f(x) log f(x)dx−

∫
f(x) log f̃n(x)dx (4.7)
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By the fact that f(x) = µg(x)/x, we can also write (4.7) as

KL(f, f̃n) =

∫
f(x) log f(x)dx−

∫
(µg(x)/x) log f̃n(x)dx (4.8)

The leave-one-out estimator of the second term is

−µ

n

n∑
i=1

log
f̃n−1(Xi, λn; Di)

Xi

(4.9)

where Di denotes data with Xi removed from D. Since the first term in (4.8) does

not depend on λn, dispensing with the constant µ and n in (4.9), minimizing (4.8) is

equivalent to minimize

CVKL(λn) = −
n∑

i=1

log(f̃n−1(Xi, λn; Di)/Xi) (4.10)

The solution of the above minimization problem will be denoted by λnKL.

4.2.1.2 Integrated Squared Error Cross Validation

The integrated squared error between f̃n(x) and f(x) is given by

ISE(f, f̃n) =

∫
(f(x)− f̃n(x))2dx

=

∫
f 2(x)dx− 2

∫
f̃n(x)f(x)dx +

∫
f̃ 2

n(x)dx (4.11)

In the studies of bandwidth choice for kernel density estimates with selection biased

data, Wu (1997) used the leave-one-out estimator

2
n∑

i=1

f̃n−1(Xi, λn; Di)/Zi (4.12)

to estimate the second term in (4.11) where Zi =
∑
j 6=i

Xi

Xj
. Substituting the leave-one-out

estimator (4.12) for the second term in (4.11) and subtracting the first term which does
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not depend on λn gives us the following cross-validation function for ISE criteria

CVISE(λn) =

∫ ∞

0

f̃ 2
n(x)dx− 2

n∑
i=1

f̃n−1(Xi, λn; Di)/Zi (4.13)

The solution of the above minimization problem will be denoted by λnISE.

4.2.1.3 Hellinger Distance

The Hellinger distance between two density functions f(x) and g(x) is given by

H(f, g) =

∫ (√
f(x)−

√
g(x)

)2
dx (4.14)

This measure has a good property, as shown in Chaubey and Sen (2009), that is

0 ≤ H(f, g) ≤ 2 (4.15)

We will use this measure to establish the closeness of the estimated density to the true

density in finite samples.

4.2.1.4 Simulation Studies for Optimal Smoothing Parameter: The Case

of f̃n

Lognormal Density

To understand the possible numerical intricacies in obtaining the value of the smooth-

ing parameter λn, we simulate samples from a standard Lognormal density for sample

size n=10, 20, 30, 40, 50, 100. For each sample we obtain the optimum choice of λn by

KL and ISE cross validation methods. To judge the closeness between the estimated
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density and the true density we list the Hellinger distance H(f̃n, f) for each choice of

λn. Here we use the routine optimise of R language to obtain the optimum solution of

λn for KL and ISE cross validation methods. However, we must be careful because the

function CV (λn) is a rough function [For details see Chaubey and Sen (2009)].

For 100 samples, we use routine optimise with an interval (1, 20) to obtain optimum

solutions 6.482327 and 5.770364 for KL and ISE criterion, respectively. In this case,

the optimum solution of H(f̃n, f) is 5.750105. To make sure of these solutions, we

plot the CV (λn) functions [see Figure 4.1]. Checking these plots, the solutions see

reasonable. At the same time, Chaubey-Sen choice is 3.445616. The Hellinger distance

of the estimated density using Chaubey-Sen, KL, ISE with the true lognormal density

are given by 0.05391589, 0.05036821 and 0.04514759 respectively which are close to the

true distance 0.04298512 if we know the density.

Here we also plot the estimated densities and compare with the histogram of Log-

normal distribution. The histogram estimator of Lognormal distribution is given by

f̂his(x) =
Fn(xi)− Fn(xj)

xi − xj

if x ∈ (xi, xj)

where Fn(x) is defined as in (1.3). Looking at the Figure 4.2, we can find that there is

almost no difference in them qualitatively. It may conclude that as long as the value of

λn is in the close neighborhood of minima, the estimated density does not differ very

much from the optimum choice.

71



5 10 15 20

92
94

96
98

Plot of CV(lambda) for KL Criterion

lambda
Length−biased Sample Based on Lognormal, n=100

C
V

(la
m

bd
a)

5 10 15 20

−
0.

33
−

0.
30

−
0.

27

Plot of CV(lambda) for ISE Criterion

lambda
Length−biased Sample Based on Lognormal, n=100

C
V

(la
m

bd
a)

5 10 15 20

0.
06

0.
10

Plot of CV(lambda) for Hellinger Distance Criterion

lambda
Length−biased Sample Based on Lognormal, n=100

C
V

(la
m

bd
a)

Figure 4.1: CV (λ) Plots, Sample Size=100
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Figure 4.2: Smooth Density Plots, Sample Size=100
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Some Other Standard Distributions

Next we consider the following densities in place of the Lognormal density and repeat

the steps described earlier in selecting the smoothing parameter:

(i). Exponential Distribution

f(x) = exp(−x)I{x > 0}

(ii). Lognormal Distribution

f(x) =
1√
2πx

exp{−(log x− µ)2/2}I{x > 0}

(iii). Gamma Distribution

f(x) =
1

Γ(α)
xα−1 exp(−x)I{x > 0}

(iv). Weibull Distribution

f(x) = αxα−1 exp(−xα)I{x > 0}

(v). Mixtures of Two Exponential Distribution

f(x) = [π
1

θ1

exp(−x/θ1) + (1− π)
1

θ2

exp(−x/θ2]I{x > 0}

The methods of generating corresponding LB data are given by, respectively,

(i′). X ∼ Γ(2, 1);

(ii′). X = eY where Y ∼ N(µ + 1, 1);

(iii′). X ∼ Γ(α + 1, 1);
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(iv′). X = Y 1/α where Y ∼ Γ(1 + 1
α
, 1);

(v′). X = πY1 + (1− π)Y2, where Y1 ∼ Γ(2, θ1) and Y2 ∼ Γ(2, θ2).

Remark 4.1: The methods of generating LB data (i′), (iii′), (v′) are straightforward.

Here we give brief proofs of (ii′) and (iv′). For (ii′), if let fw(x) denote the density

of LB data, then we need to show that fw(x) ∝ exp{−(log x − µ)2/2}I{x > 0}. Let

Y ∼ N(µ + 1, 1), then

Fw(x) = P (X ≤ x) = P (eY ≤ x)

= P (Y ≤ log x)

=
1√
2π

∫ log x

−∞
e−(z−µ−1)2/2dz.

So fw(x) ∝ e−(log x−µ−1)2/2/x ∝ e−(log x−µ)2/2.

For (iv′), let Y ∼ Γ(1 + 1
α
, 1), Fw(x) be the distribution function of X, then

Fw(x) = P (X ≤ x) = P (Y
1
α ≤ x)

= P (Y ≤ xα)

=
1

Γ(1 + 1
α
)

∫ xα

0

z1/αe−zdx.

So we have the density of LB fw(x) ∝ xαe−xα
.
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Figure 4.3: Box Plot for λn for 100 Samples, Underlying Density: Exponential, lam1:

For Chaubey-Sen Choice, lam2: KL Cross Validation, lam3: ISE Cross Validation,

lam4: Optimum Hellinger Distance
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Validation, lam3: ISE Cross Validation, lam4: Optimum Hellinger Distance

80



lam1 lam2 lam3 lam4

2
4

6
8

Sample Size=10

lam1 lam2 lam3 lam4

2
4

6
8

Sample Size=20

lam1 lam2 lam3 lam4

2
4

6
8

10

Sample Size=30

lam1 lam2 lam3 lam4

4
6

8
10

Sample Size=40

lam1 lam2 lam3 lam4

4
6

8
10

14

Sample Size=50

lam1 lam2 lam3 lam4

5
10

15
20

Sample Size=100
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Mixture, θ1 = 10, θ2 = 1, π = 0.2, lam1: For Chaubey-Sen Choice, lam2: KL Cross

Validation, lam3: ISE Cross Validation, lam4: Optimum Hellinger Distance
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Conclusions

Denote by λ1O the value which minimizing the expected Kullback-Liebler divergence

KL(λn) = E
∫

log
f(x)

f̃n(x)
dF (x)

λ2O the minimizer of

MISE(λn) = E
∫

(f̃n(x)− f(x))2dx

and λ3O the minimizer of the expected Hellinger distance

H(λn) = E
∫ (√

f̃n(x)−
√

f(x)
)2

dx

We will have the following conclusions which are the same as conclusions in using

direct data to estimate density.

1. Chaubey-Sen choice usually produces large values of the smoothing parameters,

especially, for large samples.

2. Chaubey-Sen choice is much more variable when samples are large even in the

cases on an average it is close to the true optimum.

3. The two cross-validation criteria generally produce similar results, especially for

larger samples and they converge to the true optimum under the known density.

4. We conjecture that suppose λiO denotes the true value of λn which minimizes

criterion i, i = 1, 2, 3 and λin is the minima based on the data, then

(i) lim
n→∞

λin

λiO

= 1 a.s.

(ii) lim
n→∞

λ1O

λ3O

= lim
n→∞

λ2O

λ3O

= 1 a.s.
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4.2.2 Biased Cross-Validation Method

Regarding f̃n(x), we have the following asymptotic mean integrated square error(AMISE)

AMISE(f̃n) = λ−2
n

∫ ∞

0

(f ′(x)/2)2dx +
√

λn
µ

2
√

πn

∫ ∞

0

f(x)

x3/2
dx. (4.16)

We can write the integral in the last term as

∫ ∞

0

f(x)

x3/2
dx = µ

∫ ∞

0

x−5/2xf(x)

µ
dx

= µ

∫ ∞

0

x−5/2g(x)dx = µEg(X
−5/2). (4.17)

So we can use Monte Carlo method to estimate the integral, that is

∫ ∞

0

f(x)

x3/2
dx ≈ µ

n

n∑
i=1

X
−5/2
i = µMCEn. (4.18)

Note that f̃+
n (x) is differentiable with respect to x. In (4.16), replacing f ′(x) and

∫∞
0

f(x)

x3/2 dx with their estimators f̃ ′n(x) and MCEn respectively, we can obtain the fol-

lowing biased cross-validation function

BCV (λn) = λ−2
n

∫ ∞

0

(f̃ ′n(x)/2)2dx +
√

λn
µ2

2
√

πn
MCEn. (4.19)

Since µ is unknown, we can substitute µ with its estimator n∑n
i=1

1
Xi

in the procedure of

computation.

For now, we have two crossed validation methods related to ISE (4.11). One is based

on asymptotic mean ISE and has the form as (4.19) referred as to BCV method. The

other is based on ISE and has the form as (4.13) referred as to UCV method. In this

thesis, we mainly use MISE = E
∫

(fn(x)−f(x))2dx to judge the global performance of

estimators. We will pay more attention to parameter selection methods UCV and BCV

related to ISE. We certainly concern which method is better. We will use extensive

simulation to answer this question.
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4.2.2.1 Simulation Studies

In this subsection, we will do extensive simulation with diverse sample size to compare

UCV and BCV methods. We have simulated from the following underlying densities

with sample size 30, 50, 100, 200, 300, and 500. For each sample size, we obtain 1000

samples of smooth parameter. Under each chosen parameter, we computer the ISE as

well and take the average of ISEs as the approximation of MISE to evaluate UCV

and BCV methods.

(i). Chi-Square Distribution

f(x) =
1

2
α
2 Γ(α

2
)
x

α
2
−1 exp(−x/2)I{x > 0}

(ii). Lognormal Distribution

f(x) =
1√
2πx

exp{−(log x− µ)2/2}I{x > 0}

(iii). Weibull Distribution

f(x) = αxα−1 exp(−xα)I{x > 0}

(iv). Mixtures of Two Exponential Distribution

f(x) = [π
1

θ1

exp(−x/θ1) + (1− π)
1

θ2

exp(−x/θ2]I{x > 0}

The methods of generating corresponding LB data are given by, respectively,

(i′). X ∼ χ2
α+2;

(ii′). X = eY where Y ∼ N(µ + 1, 1);

84



(iii′). X = Y 1/α where Y ∼ Γ(1 + 1
α
, 1);

(iv′). X = πY1 + (1− π)Y2, where Y1 ∼ Γ(2, θ1) and Y2 ∼ Γ(2, θ2).
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Figure 4.9: Boxplots of parameter and ISE for χ2
2.

100 200 300 400 500

0.
00

0.
04

0.
08

MISE for Chi−square

Sample Size

M
IS

E

BCV
UCV

Figure 4.10: Plots of BCV and UCV MISE for χ2
2.

86



BCV UCV

0
10

20

Sample Size=30

λ n

BCV UCV

0.
00

0.
10

Sample Size=30

IS
E

BCV UCV

0
10

20

Sample Size=50

λ n

BCV UCV

0.
00

0.
06

Sample Size=50

IS
E

BCV UCV

0
10

20

Sample Size=100

λ n

BCV UCV

0.
00

0.
06

Sample Size=100

IS
E

BCV UCV

0
10

20

Sample Size=200

λ n

BCV UCV

0.
00

0.
03

Sample Size=200

IS
E

87



BCV UCV

0
10

20

Sample Size=300

λ n

BCV UCV

0.
00

0
0.

02
5

Sample Size=300

IS
E

BCV UCV

0
10

20

Sample Size=500

λ n

BCV UCV

0.
00

0
0.

01
2

Sample Size=500

IS
E

Figure 4.11: Boxplots of parameter and ISE for χ2
6.
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Figure 4.12: Plots of BCV and UCV MISE for χ2
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Figure 4.13: Boxplots of parameter and ISE for Lognormal with parameter 1.
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Figure 4.14: Plots of BCV and UCV MISE for Lognormal with parameter 1.
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Figure 4.15: Boxplots of parameter and ISE for Weibull with parameter 2.
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Figure 4.16: Plots of BCV and UCV MISE for Weibull with parameter 2.

92



BCV UCV

0
10

20

Sample Size=30

λ n

BCV UCV

0
2

4
6

Sample Size=30

IS
E

BCV UCV

0
10

20

Sample Size=50

λ n

BCV UCV

0.
0

0.
6

Sample Size=50

IS
E

BCV UCV

0
10

20

Sample Size=100

λ n

BCV UCV

0.
0

1.
5

Sample Size=100

IS
E

BCV UCV

0
10

20

Sample Size=200

λ n

BCV UCV

0
2

Sample Size=200

IS
E

93



BCV UCV

0
10

20

Sample Size=300

λ n

BCV UCV

0.
0

1.
5

Sample Size=300

IS
E

BCV UCV

0
15

Sample Size=500

λ n

BCV UCV

0.
0

1.
0

Sample Size=500

IS
E

Figure 4.17: Boxplots of parameter and ISE for mixtures of two exponential distribu-

tions, π = 0.4, θ1 = 2, θ2 = 1.
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Figure 4.18: Plots of BCV and UCV MISE for mixtures of two exponential distributions,

π = 0.4, θ1 = 2, θ2 = 1.

94



4.2.3 Choice Between UCV and BCV Methods

From the extensive simulation studies, we find that biased cross-validation method

usually produces smaller MISE than unbiased cross-validation method, particularly

when the sample size is small. So measured by MISE, BCV method performs better

than UCV method when sample size is small. This is partly due to the facts that

UCV function is rougher, which cause more difficulty in searching optimal solution.

Furthermore, we find that with small sample size UCV function sometimes might gives

us a great parameter value [see Figure 4.19], which causes the estimator rough [see

Figure 4.21] and produces larger ISE [see Table 4.1]. This is why we can see more

outliers on the ISE boxplots of UCV. However, under this circumstance, BCV function

is smoother [see Figure 4.20] and gives us an acceptable optimal choice which generate

much smaller ISE and smoother estimator.
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Figure 4.19: UCV function for χ2
6, sample size=100.
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Figure 4.20: BCV function for χ2
6, sample size=100.

Table 4.1: Parameter and ISE

Method λn Value of CV ISE

UCV 74.04 -0.1254 0.02694

BCV 1.884 0.002267 0.0006223
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Figure 4.21: Density and estimators for χ3
6.
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Through our studies, we may obtain the following conclusions.

1. UCV function is rougher than BCV, which cause more difficulty in searching

optimal solution by optimise and the choices are more variable;

2. The leave-one-out estimator in UCV is complicated, which causes to take more

time to search optimal solution of UCV function, particularly when sample size is great;

3. BCV function is smoother, which is easier to search optimal solution and saves

time in the procedure of computation;

4. BCV method produces smaller MISEs than UCV method when sample size is

small. When sample size is great enough, the MISEs generated by two methods are

very close;

5. If we denote by λno the optimal solution

MISE(λn) = E
∫

(f̃n(x)− f(x))2dx,

λnBCV
the optimal solution of BCV function and λnUCV

the optimal solution of UCV

function, we might conjecture that

lim
n→∞

λnBCV

λno

= lim
n→∞

λnUCV

λno

= 1 a.s.

4.3 Parameter Selection for Other Density Estima-

tors

4.3.1 Parameter Selection for f̃+
n (x) and f̃ ∗n(x)

In f̃+
n (x) and f̃ ∗n(x), there are two parameters. One is vn controlling the smoothness of

the estimator and the other is εn controlling the bias of the estimator at boundary. In
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order to find a proper choice of (vn, εn), for f̃+
n (x) we investigate two cross-validation

methods. One is Biased Cross-Validation based on AMISE of f̃+
n and the other is

Unbiased Cross-Validation based on ISE of f̃+
n .

4.3.1.1 Biased Cross-Validation

For f̃+
n (x), we have

AMISE[f̃+
n ] =

∫ ∞

0

[(xv2
n + εn)f ′(x) +

x2v2
n

2
f ′′(x)]2dx

+
I2(q)µ

nvn

∫ ∞

0

f(x)

(x + εn)2
dx (4.20)

In the AMISE of f̃n (4.20), replacing f(x), f ′(x) and f ′′(x) with f̃+
n (x), f̃+′

n (x) and

f̃+′′
n (x) respectively, we obtain the following Biased Cross-Validation function

BCV (vn, εn) =

∫ ∞

0

[(xv2
n + εn)f̃+′

n (x) +
x2v2

n

2
f̃+′′

n (x)]2dx +
I2(q)µ̂

nvn

∫ ∞

0

f̃+
n (x)

(x + εn)2
dx.

(4.21)

where µ̂ =
(

1
n

∑n
i=1

1
Xi

)−1

, being an estimator of µ. We can minimize (4.21) with re-

spect to (vn, εn) to find a choice of (vn, εn).

4.3.1.2 Unbiased Cross-Validation

Let us consider the Integrated Squared Error

ISE(vn, εn) =

∫ ∞

0

[f̃n(x)− f(x)]2dx

=

∫ ∞

0

f̃ 2
n(x)dx− 2

∫ ∞

0

f̃n(x)f(x)dx +

∫ ∞

0

f 2(x)dx.

Disregarding the last constant term, substituting the second term with its Leave-One-

Out estimator, we obtain the following Unbiased Cross-Validation function

UCV (vn, εn) =

∫ ∞

0

f̃+2
n (x)dx− 2

n∑
i=1

f̃+
n−1(Xi; Di)/Zi (4.22)
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where Di denotes data set with Xi removed from the original complete data set D,

f̃+
n−1(x; Di) denotes the density estimator built on Di and Zi =

∑
j 6=i

Xi

Xj
. Minimizing

(4.22) will give us a choice of (vn, εn).

4.3.1.3 Numerical Comparison

In order to compare the two methods, we simulate for χ2
2 and χ2

12 with sample size

100, 300, 500 and 1000. For each sample, we minimize (2.76) and (4.22) to obtain the

choices of (v2
n, εn). At the same, for comparison, we also compute the ISE under each

choice. We repeat the procedure 1000 times and obtain 1000 samples of (v2
n, εn) and

ISE.
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Figure 4.22: Plots of samples of (v2
n, εn) and ISE for χ2

2.
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Figure 4.23: Plots of samples of (v2
n, εn) and ISE for χ2
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Figure 4.24: Plot of MISE for χ2
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Figure 4.25: Plot of MISE for χ2
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Through the simulation, we can see that, in the first example in which the true den-

sity satisfies f(0) 6= 0, unbiased and biased cross-validation method both give similar

optimal solutions for εn. However, unbiased cross-validation method usually produces

smaller optimal solutions for vn than biased cross-validation method does, which gen-

erates greater MISE [see Figure 4.24]. In the second example where f(0) = 0, two

methods have very similar results. Technically, when sample size is small, BCV is

slightly better than UCV according to MISE. In our opinion, we prefer BCV method

to choose parameter.

4.3.2 Parameter Selection for f̃ ∗n(x)

Note that f̃ ∗n have the same asymptotic normality as f̃+
n (x) and slightly different bias.

Therefore, according to (2.78), the BCV function for f̃ ∗n seems to be

BCV ∗(vn, εn) =
I2(q)µ̂

nvn

∫ ∞

0

f̃+
n (x)

(x + εn)2
dx

+

∫ ∞

0

[(xv2
n + εn)f̃+′

n (x) +
x2v2

n

2
f+′′

n (x) + εnf̃
+
n (0)f̃+

n (x)]2dx.

(4.23)

4.3.3 Parameter Selection for f̂n(x)

For estimator with Poisson weights based on Gn, we have the following BCV function

BCV (λn) =
√

λn
µ̂2

2
√

πn
MCEn

+
1

2λn

∫ ∞

0

[ˆ̄µf̂n(x)− f̂n(0)f̂n(x)− f̂n(x)

x
− f̂ ′n(x)]2dx (4.24)

where µ̂ = 1
1
n

∑n
i=1 X−1

i

, MCEn = 1
n

∑n
i=1 X

−5/2
i being an estimator of

∫∞
0

f(x)

µx3/2 dx and

ˆ̄µ =
1
n

∑n
i=1 X−2

i

µ̂
being an estimator of

∫∞
0

f(x)
x

dx
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4.3.4 Parameter Selection for f̂+
n (x) and f̂ ∗n(x)

According to the AMISE of f̂+
n (x), we can obtain the following BCV for f̂+

n (x)

BCV (vn, εn) =
I2(q)µ̂

nvn

∫ ∞

0

f̂+
n (x)

(x + εn)2
dx

+

∫ ∞

0

[v2
nf̂

+
n (x) + (2v2

nx + εn)f̂+′
n (x) + v2

n

x2

2
f̂+′′

n (x)]2dx.

(4.25)

Furthermore, using the relation of bias between f̂+
n (x) and f̂ ∗n(x) , we can establish the

following BCV function for f̂ ∗n(x)

BCV ∗(vn, εn) =
I2(q)µ̂

nvn

∫ ∞

0

f̂+
n (x)

(x + εn)2
dx +

∫ ∞

0

[
v2

nf̂
+
n (x)

+(2v2
nx + εn)f̂+′

n (x) + v2
n

x2

2
f̂+′′

n (x) + εnf̂
+
n (0)f̂+

n (x)
]2

dx.

(4.26)

4.3.5 Parameter Selection for Chen and Scaillet Estimators

In both Chen and Scaillet estimators there is a parameter b which controls the smooth-

ness of density estimator. The way to choose the parameter is UCV method. Plugging

in the corresponding Chen or Scaillet estimators and minimizing

UCV (b) =

∫ ∞

0

f 2
n(x)dx− 2

n∑
i=1

fn−1(Xi, b; Di)/Zi

,where Zi =
∑
j 6=i

Xi

Xj
, will give us the optimal solution of b. BCV method which involves

the derivative of density estimator is not applicable for them.
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4.4 A Comparison Between Different Estimators:

Simulation Studies

In this section, we will compare these different density estimators through extensive

simulations. First we generate LB data. Based on generated data, we choose the values

of parameters. For our proposed estimators, we use BCV method and minimize BCV

functions by optimise or optim in R to obtain the optimal solutions of parameters.

For density estimators motivated by Chen and Scaillet’s idea, we use UCV criterion to

select parameters. Under the chosen parameters, we compute

ISE(fn, f) =

∫ ∞

0

[fn(x)− f(x)]2dx

and

SE (fn(x), f(x)) = [fn(x)− f(x)]2

at some chosen points. We obtain 1000 samples of ISE and SE and use the averages

of them as approximations of MISE and MSE. Here, MISE give us the global

performance of density estimator. MSE let us to see how the density estimator performs

locally at the points in which we might be interested. It is no doubt that we particularly

want to know the behavior of density estimators near the lower boundary.

4.4.1 Simulation for χ2
2 and χ2

6

First we simulate for χ2 distribution

f(x) =
1

2α/2Γ(2)
xα/2−1 exp{−x/2}I{x > 0}
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with α = 2 and α = 6. When α = 2, f(x) is also an exponential distribution. The

LB data has distributions of χ2
4 and χ2

8 respectively. Note that estimator with inverse

Gaussian kernel does not perform very well for direct data [see Kulasekera and Padgett

(2006)]. Our computation show that similar things happens to LB data. Here we do

not include the simulation for IG estimator.

Table 4.2: Simulated MISE for χ2
2

Distribution Estimator
Sample Size

30 50 100 200 300 500

χ2
2

Chen-1 0.13358 0.08336 0.07671 0.03900 0.03056 0.02554

Chen-2 0.11195 0.08592 0.05642 0.03990 0.03301 0.02298

RIG 0.14392 0.11268 0.07762 0.06588 0.05466 0.04734

Poisson(F) 0.04562 0.03623 0.02673 0.01888 0.01350 0.01220

Poisson(G) 0.08898 0.06653 0.04594 0.03127 0.02487 0.01885

Gamma(F) 0.06791 0.05863 0.03989 0.03135 0.02323 0.01589

Gamma*(F) 0.02821 0.01964 0.01224 0.00796 0.00609 0.00440

Gamma(G) 0.09861 0.07663 0.05168 0.03000 0.02007 0.01317

Gamma*(G) 0.02370 0.01244 0.00782 0.00537 0.00465 0.00356
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Table 4.6: Simulated MISE for χ2
6

Distribution Estimator
Sample Size

30 50 100 200 300 500

χ2
6

Chen-1 0.01592 0.01038 0.00578 0.00338 0.00246 0.00165

Chen-2 0.01419 0.00973 0.00528 0.00303 0.00224 0.00153

RIG 0.01438 0.00871 0.00482 0.00281 0.00208 0.00148

Poisson(F) 0.00827 0.00582 0.00382 0.00241 0.00178 0.00119

Poisson(G) 0.00834 0.00562 0.00356 0.00216 0.00166 0.00117

Gamma(F) 0.01109 0.00805 0.00542 0.00327 0.00249 0.00181

Gamma*(F) 0.01141 0.00844 0.00578 0.00345 0.00264 0.00193

Gamma(G) 0.01536 0.01063 0.00688 0.00398 0.00303 0.00213

Gamma*(G) 0.01536 0.01063 0.00688 0.00398 0.00303 0.00213
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From Tables 4.2-4.9, we can see that, for χ2
2 density, two Chen estimators are slightly

different. f̂C2 has smaller MSEs at the boundary and MISEs than f̂C1. This means

f̂C2 performs better locally and globally than f̂C1. This adapts to Chen (2000) in

direct data case which shows that f̂2 should have smaller MISE than f̂1. Overall, the

density estimators motivated by Chen or Scaillet’s idea do not perform very well either

globally or locally near lower boundary. Generally, estimators using Chen’s idea have

similar MSEs at the origin to Poisson estimator based on Fn and their performances at

the lower boundary are comparable. However, in some cases for example n = 200 and

n = 300, PWE is much better. Poisson weights estimator based on Fn behave much well

at the rest points. So it has much smaller MISEs than Chen and Scaillet estimators.

Scaillet estimator has huge MSEs at the boundary and the largest MISEs. Although

Poisson weight estimator based on Gn has relatively smaller MISEs, it has great MSEs

at the boundary as well, just like Scaillet estimator. Therefore, they might not be

suitable for estimating the density whose value does not equal to zero at the boundary.

Two original gamma estimator perform similarly to PWE based Fn. Even though they

have two parameters, their behaviors quite differ from what are expected. This is due

to the fact that, in this case the parameter εns are usually not zero, which causes the

estimators to “ lose ” some weights and not to be a valid density estimators [Their

integrals from 0 to ∞ is less than 1]. In this example, two “ stars ” are two corrected

gamma estimators, which perform best locally and globally. The boundary corrections

are very necessary and effective. They reduce dramatically estimators’ MSEs near the

boundary and relatively slightly at the rest points. Therefore, two estimators have the

smallest MISEs. The corrected gamma estimator based on Fn behave better near the

boundary than the corrected gamma estimator based on Gn. However, at the points
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away from the origin, it is just the opposite. The estimator based Gn is better than the

estimator based on Fn. Overall, estimator based on Gn has slightly smaller MISEs.

For χ2
6, all estimators have comparable global results. At the lower boundary, RIG

estimator, gamma estimators, Poisson weights estimator based on Gn have similar re-

sults. Chen estimators behave like PWE based on Fn. They are slightly worse than

previous estimators. Tow Poisson weights estimators, which have the smallest MISEs,

perform similarly and very well globally. In this case, original gamma estimators are

almost as same as the corrected gamma estimators. This is because, in this example,

εns are almost zero. When εn is 0, the corrected gamma estimators are the same as

original gamma estimators which has a value of zero at the lower boundary.

In the first example with density such that f(0) > 0, the corrected gamma estimators

perform much better than the original estimators. In the second example with density

such that f(0) = 0, the corrected estimators have similar local and global behaviors

to the original ones. So we can use the corrected estimators to replace the original

estimators without hesitation.

4.4.2 Simulation for Some Other Standard Distributions

We have simulated for the following standard distribution as well.

(i). Lognormal Distribution

f(x) =
1√
2πx

exp{−(log x− µ)2/2}I{x > 0};

(ii). Weibull Distribution

f(x) = αxα−1 exp(−xα)I{x > 0};
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(iii). Mixtures of Two Exponential Distribution

f(x) = [π
1

θ1

exp(−x/θ1) + (1− π)
1

θ2

exp(−x/θ2]I{x > 0}.

Table 4.10: Simulated MISE for Lognormal with µ = 0

Distribution Estimator
Sample Size

30 50 100 200 300 500

Lognormal

Chen-1 0.12513 0.08416 0.05109 0.03450 0.02514 0.01727

Chen-2 0.12327 0.08886 0.05200 0.03545 0.02488 0.01717

RIG 0.14371 0.09733 0.05551 0.03308 0.02330 0.01497

Poisson(F) 0.05559 0.04379 0.02767 0.01831 0.01346 0.01001

Poisson(G) 0.06952 0.04820 0.03158 0.01470 0.01474 0.01061

Gamma*(F) 0.06846 0.05614 0.03963 0.02640 0.01998 0.01470

Gamma*(G) 0.16365 0.12277 0.07568 0.04083 0.029913 0.02035
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Table 4.14: Simulated MISE for Weibull with α = 2

Distribution Estimator
Sample Size

30 50 100 200 300 500

Weibull

Chen-1 0.10495 0.06636 0.03884 0.02312 0.01700 0.01167

Chen-2 0.08651 0.05719 0.03595 0.02225 0.01611 0.01111

RIG 0.08530 0.05532 0.03227 0.01984 0.01470 0.01045

Poisson(F) 0.04993 0.03658 0.02432 0.01459 0.01179 0.00856

Poisson(G) 0.05288 0.03548 0.02268 0.01392 0.01106 0.00810

Gamma*(F) 0.08358 0.06671 0.04935 0.03169 0.02652 0.01694

Gamma*(G) 0.12482 0.08526 0.05545 0.03402 0.02731 0.02188
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Table 4.18: Simulated MSE for Mixture of Two Exponential Distributions with π = 0.4,

θ1 = 2 and θ2 = 1

Distribution Estimator
Sample Size

30 50 100 200 300 500

Mixture

Chen-1 0.22876 0.17045 0.08578 0.06718 0.05523 0.03811

Chen-2 0.17564 0.15083 0.07331 0.08029 0.04931 0.03808

RIG 0.25284 0.20900 0.13843 0.10879 0.09344 0.07776

Poisson(F) 0.06838 0.05746 0.04116 0.02612 0.01896 0.01179

Poisson(G) 0.11831 0.09274 0.06863 0.05019 0.03881 0.03044

Gamma*(F) 0.04147 0.02645 0.01375 0.00758 0.00532 0.00361

Gamma*(G) 0.02534 0.01437 0.01091 0.01223 0.01132 0.00994
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4.4.3 Discussions and Conclusions

From the simulation results given in tables, we can see that two Chen estimators have

similar performances at the edge. Usually f̂C2 have smaller MISE than f̂C1. For

direct data, Chen (2000) show that density estimator under parameter choice (1.14)

has a better global performance than that under choice (1.13). This property might be

adapted to LB data. The simulated MSEs show that the f̂C2 preform better than f̂C1

in the neighborhood of origin, so MISE of f̂C2 is lower. However, the two Chen density

estimators do not perform very well globally and locally near the origin comparing with

other density estimators. They have relatively great MISEs and MSEs near the lower

edge. Judged by the simulated MSEs at the boundary, the two estimators can not

completely remove the bias at the edge, even in the case that underlying density such

that f(0) = 0 [see simulation for χ2
6, Lognormal].

Replacing gamma kernels with RIG kernels, Scaillet estimator have a great advance in

reducing MSEs at the origin for underlying density such that f(0) = 0 [see simulation

for χ2
6, Lognormal and Weibull distributions]. In some cases, the estimator even has

zero error at the origin. So, under this circumstance, Scaillet estimator have smaller

MISEs than Chen estimators. It seems that RIG density are more suitable as kernels

than gamma density in these cases. However, the advantage becomes disadvantage in

estimating underlying density such f(0) 6= 0. In this kind of cases, Scaillet estimator

has huge MSEs at the origin [see simulation for χ2
2 and mixture of two exponential

distributions]. According to the examples we have here, it seems to be concluded that

Scaillet estimator might be just suitable to estimate density with zero value at the

border.
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For χ2
6, Lognormal and Weibull distributions, Poisson weights estimator (PWE) based

on Fn have the smallest MISEs. If we just consider MISE, this estimator is perfect

in these examples. However, if looking into MSEs, we find that it is not that perfect.

It still has relatively great MSEs at the origin. But the MSEs at these points away

from origin are much smaller. So it has smallest MISEs. From this example, we can

see that MSEs give us a valid method to observe the local performance of estimator,

especially the performance at these points in which we are interested. For χ2
2 and

mixtures distributions, although this estimator performs better than Chen estimators,

it still has relatively great MSEs at the border. Note that the Scaillet estimators’

value at the lower boundary is always zero or close to zero. If we look into the plots of

Poisson weights [Figure 4.26] near zero and the gamma kernels used in Chen estimators

[see Chen (2000)], we find that PWE and Chen estimators use a similar strategy to
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Figure 4.26: Plots of distribution of Poisson weights with λ = 2.

avoid the defect in Scaillet estimators, that is they both change the shape of kernels or

weights near zero into exponential-like density shape. Although changing the shape of

kernels or weights is a valid way to avoid such a defect in Scaillet estimators, it is not

a perfect strategy to remove the bias at the boundary. This strategy might be more

suitable for the true underlying density which has an exponential-like shape. For some
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other kinds of true underlying density, they may have less efficiency in exploring the

true underlying density’s character of f(0) = 0 when sample size is small [see simulated

MSEs at the boundary for Lognormal and Weibull distributions].

For PWE based on Gn, in the simulation for χ2
6, Lognormal and Weibull distributions,

it has similar MISEs to PWE based on Fn and at the boundary has smaller MSEs.

However, it does not perform very well in the simulation for χ2
2 and mixtures of two

exponential distributions, especially at the boundary. Therefore, it may be suitable to

estimate true underlying density with f(0) = 0.

The corrected gamma estimator based on Fn performs very well locally and globally

in the simulation for χ2
2 and mixtures distributions. The parameter εn and boundary

correction effectively reduce the bias at the boundary and result in the dramatic decrease

of MISEs. For the rest distributions, this estimator has comparable MISEs to other

estimators and satisfactory MSEs at the boundary. The BCV method is valid to decide

whether the optimal solution of εn is zero or not. So that this estimator can accurately

explore the characters of underly density at the boundary behind the data. Inspired by

Scaillet estimator, in order to further reduce MISE, we can substitute gamma kernels

with RIG or IG kernels. Actually, RIG or IG kernels are completely adapted to our

estimator.

The corrected gamma estimator based on Gn has the smallest MISEs in the sim-

ulation for χ2
2. However, the MSEs at the boundary are little worse than corrected

gamma estimator based on Fn. Further simulation shows that, although this estima-

tor has zero error at the boundary in some cases, it has relatively great MSEs in the

neighborhood of origin. This estimator may not be very stable in this area. Recall-

ing PWE based on Gn, we may conclude that, using the same smooth technique, the
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density estimator obtained by smoothing Fn performs better than that obtained by

smoothing Gn. This seems to be true for kernel method as well, since Jones estimator

is better than Bhattacharyya et al. estimator. If we first obtain gn(x) the estimator of

weighted density, then, we divide the estimator by x to obtain the unweighted density.

Because the existence of bias of gn(x), it is not easy to control the ratio gn(x)/x to be

close to f(x)/µ near the lower border. Besides, because of the term 1/x, the bias will

be enlarged and even blows up [see Bhattacharyya et al. estimator]. Therefore, the

estimators based on Gn may have more difficulties in exploring characters of underlying

density near boundary in some cases. For the bias data, if the weight function is more

complicated than x, or has a term with a higher order than x, say x2, the situation

will become more worse. For LB data or biased data, a better way is smoothing Cox

estimator to estimate unweighted density. So, through this point, we can see that the

Cox’s estimator plays an important role in estimating density function for LB data.

4.5 A Linear Combination of Two Density Estima-

tors

Through the simulation studies given in the previous section, we can see that two

corrected gamma estimator perform well. Looking into SEs, we find that gamma

estimator based on Fn has smaller bias near the lower boundary. However, gamma

estimator based on Gn has smaller error at the tail. In order to take a full advantage

of the two estimators’ merits, we consider the linear combination of the two estimators

as follows.

fC
n (x) = af̃ ∗n(x) + (1− a)f̂ ∗n(x). (4.27)
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where 0 ≤ a ≤ 1. Note that five parameters are involved in fC
n : two pairs of (vn, εn)

in f̃ ∗n and f̂ ∗n respectively; one parameter a connecting two density estimators. We

consider to use two steps to choose these parameters. In first step, using BCV methods

described above to select the parameters in f̃ ∗n and f̂ ∗n, say (vn1, εn1) and (vn2, εn2); then

select parameter a. We hope that the chosen parameter a would make the variance of

fC
n as small as possible. Note that

V (fC
n (x)) = a2V (f̃ ∗n(x)) + 2a(1− a)Cov(f̃ ∗n(x), f̂ ∗n(x)) + (1− a)2V (f̂ ∗n(x)). (4.28)

According to (4.23) and (4.26), we have

V (f̃ ∗n(x)) ≈ I2(q)µ̂

nvn1

f̃+
n (x)

(x + εn1)2
(4.29)

and

V (f̂ ∗n(x)) ≈ I2(q)µ̂

nvn2

f̂+
n (x)

(x + εn2)2
. (4.30)

Furthermore, we have f̃ ∗n(x) ≈ µ
n(x+εn1)2

∑n
i=1 qvn1

(
Xi

x+εn1

)
, and

f̂ ∗n(x) ≈ µ
n(x+εn1)3

∑n
i=1 Xiqvn2

(
Xi

x+εn1

)
, then we can compute

Cov(f̃ ∗n(x), f̂ ∗n(x)) ≈ 1

n

[
f(x)

(x + εn1)2

∫ ∞

0

tqvn1(t)qvn2(t)dt− (f(x))2

]
.

So we can estimate Cov(f̃ ∗n(x), f̂ ∗n(x)) by

Ĉov(f̃ ∗n(x), f̂ ∗n(x)) =
1

n

[
f̃+

n (x)

(x + εn1)2

∫ ∞

0

tqvn1(t)qvn2(t)dt− (f̃+
n (x))2

]
. (4.31)

So integrated variance of fC
n can be approximated by

AIV (a) = a2 I2(q)µ̂

nvn1

∫ ∞

0

f̃+
n (x)

(x + εn1)2
dx

+
2a(1− a)

n

[
µ̂

∫ ∞

0

f̃+
n (x)

(x + εn1)2
dx

∫ ∞

0

tqvn1(t)qvn2(t)dt−
∫ ∞

0

(f̃+
n (x))2dx

]

+(1− a)2 I2(q)µ̂

nvn2

∫ ∞

0

f̂+
n (x)

(x + εn2)2
dx. (4.32)
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Minimizing (4.32) between 0 and 1 will give us an optimal solution of parameter a.

We also present some results of the new estimator’s MISE and SE based on a

simulation study.

Table 4.22: Simulated MISE for Standard Distributions

Distribution Estimator
Sample Size

30 50 100 200 300 500

χ2
2

Gamma*(F) 0.02821 0.01964 0.01224 0.00796 0.00609 0.00440

Gamma*(G) 0.02370 0.01244 0.00782 0.00537 0.00465 0.00356

Combination 0.01638 0.00927 0.00597 0.00440 0.00363 0.00286

χ2
6

Gamma*(F) 0.01141 0.00844 0.00578 0.00345 0.00264 0.00193

Gamma*(G) 0.01536 0.01063 0.00688 0.00398 0.00303 0.00213

Combination 0.01133 0.00838 0.00574 0.00343 0.00263 0.00192

Lognormal

Gamma*(F) 0.06846 0.05614 0.03963 0.02640 0.01998 0.01470

Gamma*(G) 0.16365 0.12277 0.07568 0.04083 0.029913 0.02035

Combination 0.06845 0.05616 0.03962 0.02555 0.01950 0.01444

Weibull

Gamma*(F) 0.08358 0.06671 0.04935 0.03169 0.02652 0.01694

Gamma*(G) 0.12482 0.08526 0.05545 0.03402 0.02731 0.02188

Combination 0.07868 0.06351 0.04727 0.03038 0.02429 0.01861

Mixture

Gamma*(F) 0.04147 0.02645 0.01375 0.00758 0.00532 0.00361

Gamma*(G) 0.02534 0.01437 0.01091 0.01223 0.01132 0.00994

Combination 0.01861 0.01165 0.00689 0.00458 0.00346 0.00242
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From the simulation results given in above tables, we can see that the combination

estimator has the merits of two corrected Gamma estimators at the same time. The

combination estimator performs very well for χ2
2 and mixtures of two exponential dis-

tributions. Table 4.22 shows that the MISEs decrease obviously. At the same time, if

we look into the table of MSEs, we will find that MSEs at each point are improved

in a certain extent as well. For χ2
6 the two estimators perform very well separately

and MISE may be very close to the lowest bound. So, the MISEs of combination

estimator are not improved very much. For Lognormal and Weibull distribution, the

corrected gamma estimator based on Gn is little worse than gamma estimator on Fn.

The combination estimator has slightly better MISEs than gamma estimator on Fn.

This seems that the combination estimator will choose the best automatically for us.

So, the recently introduced parameter a, which combines the two gamma estimators,

seems to improve the performance of combination estimator and make the combination

estimator have the goodness of two gamma estimators.
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Chapter 5

Smooth Estimators of Some Function-

als of the Distribution Function

5.1 Introduction

Survival analysis is a branch of statistics. In engineering, economics or sociology, it is

called reliability theory. In survival analysis, cumulative hazard function

H(x) = − log (S(x)) (5.1)

where survival function S(x) = 1− F (x) and hazard function

h(x) =
f(x)

S(x)
(5.2)

occupy an important position. They have many applications in engineering, industrial

reliability, biomedical science, economic, life insurance and so on. In survival analysis,

mean residual life (MRL) function

m(x) = E(X − x|X > x) (5.3)
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also has some important applications [see Abdous and Berred (2005)]. In some situa-

tions, it is more useful than hazard function [see Calabria and Pulcini (1987)].

In this chapter, we will propose some smooth estimators of cumulative hazard, haz-

ard, and MRL functions using Hille’s lemma in Poisson weights and generalized version.

In Section 5.2, we will first study the estimators of hazard function theoretically, pre-

senting some properties of the proposed estimators, such as strong consistency and

asymptotic normality. These properties shows the behaviors of estimators with infinite

samples. In order to show the performances of these estimators under finite samples,

numerical results of a simulation study are presented as well. The comparison of dif-

ferent estimators is carried out based on MSE. In Section 5.3, we will propose three

smooth estimators of MRL function and investigate their asymptotic properties. At

the same time, results of the simulation study are given as well.

5.2 Smooth Estimators of Hazard Function

5.2.1 Estimators with Poisson Weights

Define the estimator of survival function as

S̃n(x) = 1− F̃n(x).

It is easy to see that the smooth estimator of survival function S̃n(x) has the same

asymptotic properties as the smooth estimator of distribution function F̃n(x). Taking

advantage of the relationship between cumulative hazard, hazard and survival, density

function, a natural thought is that, using

H̃n(x) = − log S̃n(x) (5.4)

141



and

h̃n(x) = f̃n(x)/S̃n(x) (5.5)

to estimate H(x) and h(x) respectively.

5.2.1.1 Asymptotic Property of H̃n(x) and h̃n(x)

Note that, because of the strong convergence of S̃n(x) and f̃n(x), if S(x) 6= 0, we have

H̃n(x) = H(x) +
1

S(x)
(S̃n(x)− S(x)) + o(S̃n(x)− S(x)) a.s. (5.6)

and

h̃n(x) = h(x) +
1

S(x)
(f̃n(x)− f(x))− f(x)

S2(x)
(S̃n(x)− S(x))

+o
( 1

S(x)
(f̃n(x)− f(x))− f(x)

S2(x)
(S̃n(x)− S(x))

)
a.s. (5.7)

By (5.6) and (5.7), we can see that the strong convergence of S̃n(x) and f̃n(x) leads to

the the strong convergence of H̃n(x) and h̃n(x). So we have following theorem.

Thoerem 5.1 Under the same assumptions on f(x) and f ′(x) in Theorem 2.4, if λn =

O(nα) and 0 < α < 1, E(X−2
1 ) < ∞ and C ⊂ R+ is a compact set such that when

x ∈ C, S(x) 6= 0, then, as n →∞, we have

‖H̃n(x)−H(x)‖C = sup
t∈C
|H̃n(x)−H(x)| a.s.−→ 0 (5.8)

and

‖h̃n(x)− h(x)‖C = sup
x∈C
|h̃n(x)− h(x)| a.s.−→ 0 (5.9)

From (5.6), we also note the weak convergence of H̃n(x) led by S̃n(x).
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Thoerem 5.2 Under the same assumptions on f(x) and f ′(x) in Theorem 2.3, if

E(X−2
1 ) < ∞, n−1λn → 0 and C ⊂ R+ is a compact set such that when t ∈ C,

S(x) 6= 0, then, as n →∞, we have

√
n(H̃n(x)−H(x))

D−→ N(0, δ
′
(x)) (5.10)

where δ′(x) =
δ2(x)

S2(x)
and δ2(x) is defined same as in Theorem 2.3.

Now we suppose f ′(x) satisfies the Lipschitz order α condition (2.5). Under this

assumption, we can write

S(k/λn)− S(x) = −f(x)(k/λn − x)− f ′(x)

2
(k/λn − x)2 + O

(
[(k/λn − x)2]1+α

)
(5.11)

Furthermore, using (5.11), we can also write

S̃n(x)− Sn(x) = T ′
n(x)− f ′(x)

2λn

+ O(λ−1−α
n ) (5.12)

where

T ′
n(x) =

∑

k≥0

pk(xλn) [Sn(λn/k)− Sn(x)− S(λn/k) + S(x)] .

Following along the lines of the proof of Theorem 3.2 in Chaubey and Sen (1996) using

Lemma 2.1 with bn = λ
− 1

2
n (log n)

1+θ
2 , we can show that

sup
x≥0

|T ′
n(x)| = O(λ−1/4

n n−1/2(log n)1+θ).

Then the variance V (T ′
n(x)) ≤ O(λ

−1/2
n n−1(log n)1+θ)). By (2.30), (5.7) and (5.12), we

have

h̃n(x)− h(x) ∼ f ′(x)

2λnS2(x)
(S(x) + f(x)) +

Tn2(x)

S(x)
(5.13)

+
f(x)

S2(x)
[T ′

n(x) + Sn(x)− S(x)] (5.14)

143



where Tn2(x) is defined as in (2.26). Since the variance of (5.14) does not exceed

O(n−1) and covariance with Tn2(x) not exceed O(λ
1/4
n n−1), the order of variance of

f̃n(x) is determined by the order of variance of Tn2(x)/S(x). So we have

V (h̃n(x)) ≈ V (Tn2(x))

S2(x)
≈ µ

2
(πx3)−1/2 f(x)

S2(x)
(λ1/2

n /n) (5.15)

and

Cov[h̃n(s), h̃n(x)] ≈ Cov[Tn2(s), Tn2(x)]

S(s)S(x)
= O(

1

n
) (5.16)

From the previous analysis about Tn2(x), we can obtain the following theorem.

Thoerem 5.3 If λn = O(n2/5)(nonstochatic) and (2.5) holds, and the set C ⊂ R+ is

a compact set such that when x ∈ C, S(x) 6= 0, then, as n →∞,

{(
n2/5[h̃n(x)− h(x)]− (S(x) + xf(x))

2δ2S2(x)
f ′(x)

)
, x ∈ C

} D−→ Gaussian process

with covariance function γ2
xδsx where γ2

x =
µ

2
(πx3)−1/2 f(x)

S2(x)
δ, δsx = 0 for s 6= x and 1

for s = x and δ = lim
n→∞

(n−1/5λ
1/2
n )

5.2.1.2 MSE

Similar to density function, we have

MSE(h̃n(x)) ≈ λ−2
n

[f ′(x)(S(x) + f(x))

2S2(x)

]2
+

µλ
1/2
n

2n
(πx3)−1/2 f(x)

S2(x)
(5.17)

5.2.2 Estimator with Asymmetric Kernels

Using the definition of hazard function h(x) = f(x)/S(x), a natural smooth estimator

of hazard function with asymmetric weights is given by

h̃∗n(x) =
f̃ ∗n(x)∫∞

x
f̃ ∗n(t)dt

. (5.18)
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5.2.2.1 Asymptotic Properties of h̃∗n(x)

Using Theorem 2.6 and 2.8, it is easy to obtain the following theorem regarding strong

convergence of h̃∗n(x).

Thoerem 5.4 Under the assumption of Theorem 2.6 and 2.8, for a compact set C ⊂

R+ such that when x ∈ C, S(x) 6= 0, we have

‖h̃∗n(x)− h(x)‖C = sup
x∈C
|h̃n(x)− h(x)| a.s.−→ 0

Using the Taylor expansion of (5.18)

h̃∗n(x) ≈ h(x) +
1

S(x)
(f̃ ∗n(x)− f(x))− f(x)

S2(x)
(S̃+

n (x)− S(x)) (5.19)

where S̃+
n (x) = 1− F̃+

n (x), we can show the following theorem regard weak convergence

of h̃∗n(x).

Thoerem 5.5 Under the assumptions of Theorem 2.9, we have

√
nvn(h̃∗n(x)− h(x)) → N

(
0, I2(q)

µf(x)

x2S2(x)

)
, for x > 0.

5.2.2.2 MSE

According to the proofs of Theorem 2.7 and 2.9, we have

Bias(h̃∗n(x)) = [(xv2
n + εn)f ′(x) +

x2

2
f ′′(x)v2

n + εnf(0)f(x)]/S(x)

−x2f ′(x)f(x)

2S2(x)
v2

n + o(v2
n + εn). (5.20)

So

MSE(h̃∗n(x)) =
[(xv2

n + εn)f ′(x) + x2

2
f ′′(x)v2

n + εnf(0)f(x)

S(x)

−x2f ′(x)f(x)

2S2(x)
v2

n

]2

+
I2(q)µf(x)

nvn(x + εn)2S2(x)
+ o(v2

n + εn) (5.21)
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5.2.3 Numerical Comparison

In this section, we compare the two proposed smooth hazard function estimators through

the simulation for the following standard distributions.

(i). Chi-Square Distribution

f(x) =
1

2
α
2 Γ(α

2
)
x

α
2
−1 exp(−x/2)I{x > 0}

(ii). Lognormal Distribution

f(x) =
1√
2πx

exp{−(log x− µ)2/2}I{x > 0}

(iii). Gamma Distribution

f(x) =
1

Γ(α)
xα−1 exp(−x)I{x > 0}

(iv). Weibull Distribution

f(x) = αxα−1 exp(−xα)I{x > 0}

We use the same selection methods of parameters in f̃ ∗n(x) and f̃n(x) to choose the

parameters in h̃∗n(x) and h̃n(x) respectively. Under the chosen parameters, we compute

SE (hn(x)) = [hn(x)− h(x)]2

at some fixed points where hn(x) could be h̃∗n(x) or h̃n(x). The fixed points are Qqs

(q = 0, 0.10, 0.25, 0.50, 0.75, 0.90). [We refer to Q0 as 0, Q0.50 as the median, Q0.25 ,

Q0.75 as the the first and third quartiles and Q0.10, Q0.90 as the first and ninth deciles].

We present the simulation results in the following tables.
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Table 5.1: Simulated MSE for χ2
2

n Estimator
Quantile

Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90

30
h̃∗n(x) 0.03294 0.03429 0.03879 0.05216 0.08115 0.10952

h̃n(x) 0.17339 0.10311 0.04620 0.01707 0.01013 0.01008

50
h̃∗n(x) 0.01967 0.02139 0.02743 0.04363 0.07183 0.10042

h̃n(x) 0.18529 0.09515 0.03242 0.01076 0.00711 0.00794

100
h̃∗n(x) 0.01052 0.01226 0.01733 0.03145 0.05575 0.08239

h̃n(x) 0.17330 0.06228 0.01924 0.00674 0.00474 0.00519

200
h̃∗n(x) 0.00625 0.00767 0.01143 0.02199 0.04123 0.06420

h̃n(x) 0.14181 0.03928 0.01050 0.00442 0.00338 0.00367

300
h̃∗n(x) 0.00489 0.00587 0.00874 0.01732 0.03368 0.05416

h̃n(x) 0.12227 0.02746 0.00768 0.00337 0.00276 0.00301

500
h̃∗n(x) 0.00359 0.00434 0.00642 0.01285 0.02594 0.04338

h̃n(x) 0.10463 0.01788 0.00519 0.00247 0.00217 0.00247
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Table 5.2: Simulated MSE for χ2
6

n Estimator
Quantile

Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90

30
h̃∗n(x) 0.00151 0.00190 0.00191 0.00750 0.02048 0.03697

h̃n(x) 0.00046 0.00151 0.00194 0.00347 0.00519 0.00659

50
h̃∗n(x) 0.00070 0.00138 0.00123 0.00564 0.01653 0.03103

h̃n(x) 0.00094 0.00091 0.00137 0.00279 0.00443 0.00591

100
h̃∗n(x) 0.00025 0.00078 0.00073 0.00397 0.01235 0.02414

h̃n(x) 0.00061 0.00048 0.00085 0.00195 0.00321 0.00426

200
h̃∗n(x) 1.2× 10−5 0.00049 0.00049 0.00237 0.00777 0.01612

h̃n(x) 0.00033 0.00028 0.00056 0.00131 0.00212 0.00286

300
h̃∗n(x) 1.4× 10−5 0.00040 0.00038 0.00169 0.00578 0.01238

h̃n(x) 0.00025 0.00022 0.00045 0.00100 0.00162 0.00221

500
h̃∗n(x) 4.5× 10−5 0.00028 0.00027 0.00120 0.00420 0.00922

h̃n(x) 0.00018 0.00015 0.00032 0.00072 0.00115 0.00159
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Table 5.3: Simulated MSE for Lognormal(0,1)

n Estimator
Quantile

Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90

30
h̃∗n(x) 0.05778 0.10281 0.10571 0.09779 0.07517 0.04962

h̃n(x) 0.13073 0.10778 0.12258 0.06855 0.02499 0.01121

50
h̃∗n(x) 0.05294 0.08226 0.07455 0.07455 0.06015 0.03986

h̃n(x) 0.13272 0.08194 0.08175 0.03930 0.01381 0.00754

100
h̃∗n(x) 0.03970 0.05107 0.04717 0.05571 0.04651 0.03092

h̃n(x) 0.10536 0.05460 0.04460 0.01850 0.00704 0.00515

200
h̃∗n(x) 0.02459 0.03009 0.03168 0.04069 0.03391 0.02248

h̃n(x) 0.06632 0.03623 0.02693 0.01041 0.00426 0.00331

300
h̃∗n(x) 0.01697 0.02099 0.02459 0.03212 0.02679 0.01774

h̃n(x) 0.04367 0.02659 0.01867 0.00697 0.00337 0.00246

500
h̃∗n(x) 0.01092 0.01407 0.01879 0.02443 0.02018 0.01341

h̃n(x) 0.03619 0.01877 0.01313 0.00495 0.00228 0.00168
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Table 5.4: Simulated MSE for Γ(2, 1)

n Estimator
Quantile

Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90

30
h̃∗n(x) 0.01239 0.02497 0.01822 0.04918 0.12183 0.20781

h̃n(x) 0.03585 0.02587 0.02037 0.02219 0.02522 0.02898

50
h̃∗n(x) 0.01022 0.01820 0.01230 0.04152 0.10741 0.18688

h̃n(x) 0.03017 0.01707 0.01359 0.01588 0.01883 0.02271

100
h̃∗n(x) 0.00705 0.01045 0.00843 0.03328 0.08966 0.16072

h̃n(x) 0.02213 0.00909 0.00837 0.01028 0.01270 0.01577

200
h̃∗n(x) 0.00443 0.00607 0.00584 0.02573 0.07163 0.13236

h̃n(x) 0.01712 0.00520 0.00515 0.00710 0.00911 0.01069

300
h̃∗n(x) 0.00295 0.00447 0.00458 0.02044 0.05945 0.11310

h̃n(x) 0.01684 0.00360 0.00446 0.00713 0.00960 0.01168

500
h̃∗n(x) 0.00261 0.00346 0.00311 0.01417 0.04338 0.08653

h̃n(x) 0.01269 0.00271 0.00295 0.00434 0.00536 0.00668
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Table 5.5: Simulated MSE for Weibull(4)

n Estimator
Quantile

Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90

30
h̃∗n(x) 2.0× 10−7 0.10168 0.07904 1.09960 7.13035 22.6114

h̃n(x) 0.00353 0.04884 0.10895 1.92473 9.71302 27.2550

50
h̃∗n(x) 0.00000 0.07516 0.05898 0.64748 4.92443 17.1557

h̃n(x) 0.00164 0.04943 0.05817 1.40755 7.87478 23.2188

100
h̃∗n(x) 0.00000 0.04147 0.04663 0.24293 2.37609 9.86292

h̃n(x) 0.00017 0.04085 0.02726 0.93694 5.94016 18.6429

200
h̃∗n(x) 0.00000 0.02565 0.03284 0.10989 1.20060 5.72528

h̃n(x) 0.00000 0.02798 0.01287 0.51189 3.82420 13.1161

300
h̃∗n(x) 0.00000 0.01980 0.02481 0.07362 0.82973 4.19847

h̃n(x) 0.00000 0.02221 0.00908 0.37122 2.99963 10.7567

500
h̃∗n(x) 0.00000 0.01313 0.01737 0.04767 0.55880 3.01171

h̃n(x) 0.00000 0.01538 0.00643 0.23763 2.12960 8.10190

The results of simulation show that h̃∗n(x) perform better than h̃n(x) between Q0

and Q0.5. This is because the density estimator f̃ ∗n(x) perform much better than f̃n(x)

near the lower boundary. At the tail, it is the opposite, which leads hazard function

estimator h̃n(x) is better than h̃∗n(x). But the difference is not significant.
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5.3 Smooth Estimator of Mean Residual Life

In this section, we propose three smooth estimators of MRL function, two using Poisson

weights ,one using gamma kernels. Numerical comparison is given at the end of this

section.

5.3.1 Smooth Estimator of MRL with Poisson Weights Based

on Fn

If we define

SG(x) =

∫ ∞

x

g(t)dt (5.22)

and

SF (x) =

∫ ∞

x

f(t)dt (5.23)

then the mean residual life function is given by

m(x) =

∫∞
x

tf(t)dt∫∞
x

f(t)dt
− x

=
µSG(x)

SF (x)
− x

= M(x)− x (5.24)

The empirical estimators of SG(x) and SF (x)/µ are given by, respectively,

SG
n (x) = 1

n

∑n
i=1 I{Xi > x} and DF

n (x) = 1
n

∑n
i=1

1
Xi

I{Xi > x}. Using the discrete

version of Hille’s lemma, we can obtain the following two smooth estimators

S̃G
n (x) =

∑

k≥0

pk(xλn)SG
n (k/λn) (5.25)
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and

D̃F
n (x) =

∑

k≥0

pk(xλn)DF
n (k/λn) (5.26)

If we substitute the two smooth estimators for the corresponding functions in (5.24),

then we have the following smooth estimator of m(x)

m̃n(x) =

∑
k≥0 pk(xλn)SG

n (k/λn)∑
k≥0 pk(xλn)DF

n (k/λn)
− x (5.27)

Thoerem 5.6 If λn →∞, E(X−1
1 ) < ∞, then for any compact set C such that S(x) 6=

0 when x ∈ C, as n ↑ ∞,

||m̃n(x)−m(x)||C = sup
x∈C
{|m̃n(x)−m(x)|} a.s.−→ 0

Proof: The proof is straightforward. As λn ↑ ∞, we have

sup
x∈C
{|

∑

k≥0

pk(xλn)SG
n (k/λn)−

∫ ∞

x

g(t)dt|} a.s.−→ 0 (5.28)

and

sup
x∈C
{|

∑

k≥0

pk(xλn)DF
n (k/λn)− 1

µ

∫ ∞

x

f(t)dt|} a.s.−→ 0 (5.29)

By (5.28) and (5.29), we have

sup
x∈C
{|m̃(x)−m(x)|} = sup

x∈C

{∣∣∣
∑

k≥0 pk(xλn)SG
n (k/λn)∑

k≥0 pk(xλn)DF
n (k/λn)

−
∫∞

x
g(t)dt

1
µ

∫∞
x

f(t)dt

∣∣∣
}

a.s.−→ 0 (5.30)

Thoerem 5.7 If
√

nλ−1
n → 0, E(X−2

1 ) < ∞ and f(x) is absolutely continuous with a

bounded derivative f ′(x) a.e. on R+ , then

√
n(m̃n(x)−m(x))

D−→ N(0, δ2(x))

where δ2(x) =
µ

(SF (x))2

[
M2(x)

∫∞
x

f(t)
t

dt− ∫∞
x

tf(t)dt
]
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Proof: Using Taylor expansion, we can approximate m̃n(x) by

m̃n(x) ≈ m(x) +
µ

SF (x)
[
∑

k≥0

pk(xλn)SG
n (k/λn)−

∫ ∞

x

g(t)dt

−µM(x)

SF (x)
[
∑

k≥0

pk(xλn)DF
n (k/λn)− 1

µ
S(x)]

= m(x) +
µ

SF (x)

[∑

k≥0

pk(xλn)SG
n (k/λn)

−M(x)
∑

k≥0

pk(xλn)DF
n (k/λn)

]
(5.31)

Actually, we can write

∑

k≥0

pk(xλn)SG
n (k/λn) =

∑

k≥0

(

∫ ∞

x

λnpk(tλn)dt)[SG
n (k/λn)− SG

n ((k + 1)/λn)] (5.32)

and

∑

k≥0

pk(xλn)DF
n (k/λn) =

∑

k≥0

(

∫ ∞

x

λnpk(tλn)dt)[DF
n (k/λn)−DF

n ((k + 1)/λn)] (5.33)

Let

ξi =
∑

k≥0

(

∫ ∞

x

λnpk(tλn)dt)[1− M(x)

Xi

]I{ k

λn

≤ Xi <
k + 1

λn

} (5.34)

then

E(ξi) =
∑

k≥0

(

∫ ∞

x

λnpk(tλn)dt)[SG((k)/λn)− SG((k + 1)/λn)]

−M(x)

µ

∑

k≥0

(

∫ ∞

x

λnpk(tλn)dt)[SF ((k)/λn)− SF ((k + 1)/λn)]

=
∑

k≥0

pk(xλn)SG(k/λn)− M(x)

µ

∑

k≥0

pk(xλn)SF (k/λn)

→ SG(x)− M(x)

µ
SF (x) = 0 (5.35)

So, by (5.31), we have

E(m̃n(x)) = m(x) + Eξi → m(x) (5.36)
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On the other hand, we have

ξ2
i =

∑

k≥0

(

∫ ∞

x

λnpk(tλn)dt)2[1− M(x)

Xi

]2I{ k

λn

≤ Xi <
k + 1

λn

}

=
∑

k≥0

(

∫ ∞

x

λnpk(tλn)dt)2I{ k

λn

≤ Xi <
k + 1

λn

}

−2M(x)
∑

k≥0

(

∫ ∞

x

λnpk(tλn)dt)2 1

Xi

I{ k

λn

≤ Xi <
k + 1

λn

}

+M2(x)
∑

k≥0

(

∫ ∞

x

λnpk(tλn)dt)2 1

X2
i

I{ k

λn

≤ Xi <
k + 1

λn

} (5.37)

then

E(ξ2
i ) =

∑

k≥0

(

∫ ∞

x

λnpk(tλn)dt)2[SG(k/λn)− SG((k + 1)/λn)]

−2
M(x)

µ

∑

k≥0

(

∫ ∞

x

λnpk(tλn)dt)2[SF (k/λn)− SF ((k + 1)/λn)]

+
M2(x)

µ

∑

k≥0

(

∫ ∞

x

λnpk(tλn)dt)2

∫ (k+1)/λn

k/λn

1

t
f(t)dt

= T1 − 2
M(x)

µ
T2 +

M2(x)

µ
T3 (5.38)

Furthermore,

T1 =
∑

k≥0

∫ ∞

x

λnpk(tλn)dt[SG(k/λn)− SG((k + 1)/λn)]

−
∑

k≥0

(1−
∫ ∞

x

λnpk(tλn)dt)

∫ ∞

x

λnpk(tλn)dt[SG(k/λn)− SG((k + 1)/λn)]

= S1 − S2 (5.39)

Calculating the integration in S1 and rearranging the sum give us

S1 =
∑

k≥0

pk(xλn)SG(k/λn) (5.40)

By Hiller’s theorem, we can claim that, as λn ↑ ∞,

S1 =
∑

k≥0

pk(xλn)SG(k/λn) → SG(x). (5.41)
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Next, we will show that S2 → 0.

Let N = {0, 1, . . . , n, . . .} and bn = λ
−1/2
n (log n)

1+δ
2 where δ > 0. Denote

N1
x = {k

∣∣k/λn − x < −bn, k ∈ N}, N2
x = {k

∣∣|k/λn − x| ≤ bn, k ∈ N} and

N3
x = {k

∣∣k/λn − x > bn, k ∈ N}.

Let

ak = (1− λn

∫ ∞

x

pk(tλn)dt)(λn

∫ ∞

x

pk(tλn)dt)[SG(k/λn)− SG((k + 1)/λn)], (5.42)

then we can write

S2 =
∑

k∈N1
x

ak +
∑

k∈N2
x

ak +
∑

k∈N3
x

ak. (5.43)

For any k ∈ N1
x, by the proof of Lemma 3.1 of Chaubey and Sen(1996), we can claim

that(λn

∫∞
x

pk(tλn)dt) = [1− λn

∫ x

0
pk(tλn)dt] =

∑k
0 pi(xλn) < 1

n
. Then

0 <
∑

k∈N1
x

ak <
1

n
(1 + S1). (5.44)

For any k ∈ N3
x, by the same lemma above, we can claim that [1− λn

∫∞
x

pk(tλn)dt] =

∑∞
i≥k+1 pi(xλn) < 1

n
. At the same time, we have [1− λn

∫ x

0
pk(tλn)dt] < 1. Then

0 <
∑

k∈N3
x

ak <
1

n
S1. (5.45)

For any k ∈ N2
x, by the facts [1− λn

∫∞
x

pk(tλn)dt] < 1 , λn

∫∞
x

pk(tλn)dt < 1, we have

0 <
∑

k∈N2
x

ak < [SG(x + bn)− SG(x− bn)]. (5.46)

By (5.44), (5.45) and (5.46), we can see that as λn ↑ ∞,
∑

k∈Ni
x
ak(i = 1, 2, 3) all

tend to 0. This means

S2 → 0 (5.47)

By (5.41) and (5.47), we have

T1 → SG(x) (5.48)
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Similarly, we have

T2 → SF (x) (5.49)

and

T3 →
∫ ∞

x

f(t)

t
dt (5.50)

By (5.35), (5.38), (5.48),(5.49) and (5.50) and a little work of algebra, we have

V (ξi) → δ2(x). (5.51)

Finally, by the fact that V (
√

nm̃n(x)) = µ2

S2(x)
V (ξi), we can obtain the theorem.

Remark 5.1: Note that an empirical estimator of m(x) =
∫∞

x tf(t)dt∫∞
x f(t)dt

− x is

mn(x) =

∑n
i=1 I{Xi > x}∑n

i=1
1

Xi
{Xi > x} − x. (5.52)

Smoothing this empirical estimator will also give us an alternative smooth estimator

with Poisson weights as follows.

m̃′
n(x) =

∑

k≥0

pk(xλn)mn(k/λn)− x. (5.53)

Using Taylor’s expansion, we can expand (5.53) as (5.31). This means that m̃′
n has

the same asymptotic properties as m̃n. So for m̃′
n, we can still establish theorems as

Theorem 5.6 and 5.7.

Remark 5.2: According to the proof, we have

Bias(m̃n(x)) =
x2

2µλn

[M(x)f ′(x)− xf ′(x)− f(x)] + o(λ−1
n )

and

V (m̃n(x)) =
µ

n(SF (x))2

[
M2(x)

∫ ∞

x

f(t)

t
dt−

∫ ∞

x

tf(t)dt

]
+ o(

1

n
).
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So

MSE(m̃n(x)) =

{
x2

2µλn

[M(x)f ′(x)− xf ′(x)− f(x)]

}2

+
µ

n(SF (x))2

[
M2(x)

∫ ∞

x

f(t)

t
dt−

∫ ∞

x

tf(t)dt

]
+ o(

1

n
+ λ−2

n )

(5.54)

5.3.2 Smooth Estimator of MRL with Poisson Weights Based

on Gn

Note that, for LB data, the mean residual life function can be defined as

m(x) =

∫∞
x

yf(y)dy

S(x)
− x (5.55)

where S(x) =
∫∞

x
f(t)dt. Using the smooth estimators based on Gn with Poisson

weights to replace the corresponding functions in (5.55) gives us the following smooth

estimator of m(x)

m̂n(x) =
1−∑

k≥1 pk(xλn)Gn

(
k−1
λn

)

λn

∑
k≥1 Gn

(
k

λn

)
[Pk−1(xλn)

k
− Pk(xλn)

k+1
]
− x. (5.56)

where

Pk−1(λnx) =
1

Γ(k)

∫ ∞

λnx

e−yyk−1dy =
∑

0≤j<k

pj(λnx).

Note that a computational version of (5.56) is given by

m̂n(x) =
p0(λnx) +

∑N
k=1 pk(λnx)SG

n

(
k−1
λn

)

λn

∑N
k=1

Pk−1(λnx)

k

[
SG

n

(
k−1
λn

)
− SG

n

(
k

λn

)] − x

where SG
n (x) = 1

n

∑n
i=1 I{Xi > x} and N = [λnXn:n] + 1.

Regarding the strong consistence of m̂n(x), we have the following theorem.
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Thoerem 5.8 If λn = O(nα)(0 < α < 1) , E(X−1
1 ) < ∞ and f(x) is absolutely

continuous with a bounded derivative f ′(x) a.e. on R+, then for any compact set C

such that S(x) 6= 0 when x ∈ C, as n ↑ ∞,

||m̂n(x)−m(x)||C = sup
x∈C
{|m̂n(x)−m(x)|} a.s.−→ 0.

Proof: The proof is straight forward. Uniformly in any compact set C such that

S(x) 6= 0 when x ∈ C, we have

1−
∑

k≥1

pk(xλn)Gn

(k − 1

λn

) a.s.−→
∫ ∞

x

g(y)dy (5.57)

and

λn

∑

k≥1

Gn

( k

λn

)
[
Pk−1(xλn)

k
− Pk(xλn)

k + 1
]

a.s.−→ 1

µ
S(x). (5.58)

So

m̂n(x)
a.s.−→

∫∞
x

g(y)dy
1
µ
S(x)

− x =

∫∞
x

yf(y)dy

S(x)
− x (5.59)

uniformly in any compact set C. The proof is complete.

Regarding the weak convergence of m̂n(x), we have the following theorem.

Thoerem 5.9 If
√

nλ−1
n → 0 , E(X−2

1 ) < ∞ and f(x) is absolutely continuous with a

bounded derivative f ′(x) a.e. on R+, then, as λn ↑ ∞,

√
n(m̂n(x)−m(x))

D−→ N(0, δ2(x))

where δ2(x) =
µ

(S(x))2

[
M2(x)

∫∞
x

f(t)
t

dt− ∫∞
x

tf(t)dt
]
.
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Proof: First, we have

m̂n(x) ≈ m(x) +
µ

S(x)
[(1−

∑

k≥1

pk(xλn)Gn

(k − 1

λn

)
)− (1−G(x))]

−µM(x)

S(x)
[(λn

∑

k≥1

Gn

( k

λn

)
[
Pk−1(xλn)

k
− Pk(xλn)

k + 1
])− 1

µ
S(x)]

= m(x) +
µ

S(x)

{ ∑

k≥1

(

∫ ∞

x

λnpk−1(tλn)dt)[Gn

( k

λn

)−Gn

(k − 1

λn

)
]− (1−G(x))

}

−µM(x)

S(x)

{ ∑

k≥1

(

∫ ∞

x

λ2
n

k
pk−1(tλn)dt)[Gn

( k

λn

)−Gn

(k − 1

λn

)
]− 1

µ
S(x)

}

= m(x) +
µ

S(x)

{ ∑

k≥1

(

∫ ∞

x

λnpk−1(tλn)dt)[Gn

( k

λn

)−Gn

(k − 1

λn

)
]
}

−µM(x)

S(x)

{ ∑

k≥1

(

∫ ∞

x

λ2
n

k
pk−1(tλn)dt)[Gn

( k

λn

)−Gn

(k − 1

λn

)
]
}
. (5.60)

Let

ξi =
∑

k≥1

[

∫ ∞

x

λnpk−1(tλn)dt−M(x)

∫ ∞

x

λ2
n

k
pk−1(tλn)dt]I{k − 1

λn

< Xi ≤ k

λn

}. (5.61)

Note that, as λn ↑ ∞,

E(ξi) → [(1−G(x))−M(x)
S(x)

µ
] = 0 (5.62)

and using (3.23), we can show

E(ξi) = O(λ−1
n ). (5.63)

So

E(m̂n(x)) = m(x) + O(λ−1
n ). (5.64)
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Moreover,

E(ξ2
i ) =

∑

k≥1

[

∫ ∞

x

λnpk−1(tλn)dt−M(x)

∫ ∞

x

λ2
n

k
pk−1(tλn)dt]2[G

( k

λn

)−G
(k − 1

λn

)
]

=
∑

k≥1

[

∫ ∞

x

λnpk−1(tλn)dt]2[G
( k

λn

)−G
(k − 1

λn

)
]

−2M(x)
∑

k≥1

[

∫ ∞

x

λnpk−1(tλn)dt

∫ ∞

x

λ2
n

k
pk−1(tλn)dt][G

( k

λn

)−G
(k − 1

λn

)
]

+M2(x)
∑

k≥1

[

∫ ∞

x

λ2
n

k
pk−1(tλn)dt]2[G

( k

λn

)−G
(k − 1

λn

)
]

= T1n − 2M(x)T2n + M2(x)T3n. (5.65)

T1n =
∑

k≥1

[

∫ ∞

x

λnpk−1(tλn)dt][G
( k

λn

)−G
(k − 1

λn

)
]

−
∑

k≥1

[

∫ ∞

x

λnpk−1(tλn)dt][1−
∫ ∞

x

λnpk−1(tλn)dt][G
( k

λn

)−G
(k − 1

λn

)
]

= S1 − S2. (5.66)

It is obvious that, as λn ↑ ∞,

S1 → [1−G(x)]. (5.67)

Using the same method in the proof of (3.54), we can show that S2 → 0. So

T1n → [1−G(x)]. (5.68)

At the same time, we have

T2n =
∑

k≥1

[

∫ ∞

x

λnpk−1(tλn)dt]
λn

k
[G

( k

λn

)−G
(k − 1

λn

)
]

−
∑

k≥1

[

∫ ∞

x

λnpk−1(tλn)dt

∫ x

0

λ2
n

k
pk−1(tλn)dt][G

( k

λn

)−G
(k − 1

λn

)
].

(5.69)

we can similarly claim that

T2n →
∫ ∞

x

1

t
g(t)dt. (5.70)
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Since

T3n =
∑

k≥1

[λn

∫ ∞

x

pk−1(tλn)dt]
λ2

n

k2
[G

( k

λn

)−G
(k − 1

λn

)
]

−
∑

k≥1

[λn

∫ ∞

x

pk−1(tλn)dt][λn

∫ x

0

pk−1(tλn)dt]
λ2

n

k2
[G

( k

λn

)−G
(k − 1

λn

)
],

(5.71)

we can also claim

T3n →
∫ ∞

x

1

t2
g(t)dt. (5.72)

So

E(ξ2
i ) →

1

µ

[
M2(x)

∫ ∞

x

f(t)

t
dt−

∫ ∞

x

tf(t)dt

]
. (5.73)

By (5.62) and (5.73), we have

V (ξi) → 1

µ

[
M2(x)

∫ ∞

x

f(t)

t
dt−

∫ ∞

x

tf(t)dt

]
. (5.74)

By (5.60), we can see that m̂n(x) = m(x) + µ
S(x)

( 1
n

∑n
i=1 ξi), so

V (
√

nm̂n(x)) =
µ2

S2(x)
V (ξi). (5.75)

Then, as λn ↑ ∞, V (
√

nm̂n(x)) → δ2(x). Combining with (5.64), we can establish the

theorem. The proof is complete.

Remark 5.3: According to the proof, we have

Bias(m̂n(x)) =
1

2µλn

{
xf(x) + M(x)[f(x)−

∫ ∞

x

f(t)

t
dt]

}
+ o(λ−1

n )

and

V (m̂n(x)) =
µ

n(S(x))2

[
M2(x)

∫ ∞

x

f(t)

t
dt−

∫ ∞

x

tf(t)dt

]
+ o(n−1).
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So

MSE(m̂n(x)) =
1

4µ2λ2
n

{
xf(x) + M(x)[f(x)−

∫ ∞

x

f(t)

t
dt]

}2

+
µ

n(S(x))2

[
M2(x)

∫ ∞

x

f(t)

t
dt−

∫ ∞

x

tf(t)dt

]
+ o(n−1 + λ−2

n )

(5.76)

5.3.3 Smooth Estimator of MRL with Asymmetric Kernels

If we apply generalized Hille’s lemma to smooth SG
n (x) = 1

n

∑n
i=1 I{Xi > x} and

DF
n (x) = 1

n

∑n
i=1

1
Xi

I{Xi > x} and combine them, we can obtain the following smooth

estimator of MRL function.

m̃∗
n(x) =

∑n
i=1 Qvn(Xi

x
)∑n

i=1
1

Xi
Qvn(Xi

x
)
− x. (5.77)

Thoerem 5.10 If λn → ∞ and 0 < E(X−1
1 ) < ∞ , then for any compact set C such

that S(x) 6= 0 when x ∈ C, as n ↑ ∞,

||m̃∗
n(x)−m(x)||C = sup

x∈C
{|m̃∗

n(x)−m(x)|} a.s.−→ 0

Proof: Under the conditions of the theorem, using the facts 1
n

∑n
i=1 I{Xi > x} a.s.−→

SG(x) and 1
n

∑n
i=1

1
Xi

I{Xi > x} a.s.−→ SF (x)/µ, it is easy to show that

sup
x∈C
{| 1

n

n∑
i=1

Qvn(
Xi

x
)− SG(x)|} a.s.−→ 0 (5.78)

and

sup
x∈C
{| 1

n

n∑
i=1

1

Xi

Qvn(
Xi

x
)− SF (x)/µ|} a.s.−→ 0. (5.79)

By (5.78), (5.79) and m(x) = SG(x)
SF (x)/µ

− x, we can obtain the theorem.

The weak convergence of F̃n(x) is given by the following theorem.
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Thoerem 5.11 If E(X−2
1 ) < ∞,

√
nv2

n → 0, f(x) is absolutely continuous with

bounded derivative f ′(x), then, as n →∞,

√
n(m̃∗

n(x)−m(x))
D−→ N(0, δ2(x)) (5.80)

where δ2(x) =
µ

(SF (x))2

[
M2(x)

∫∞
x

f(t)
t

dt− ∫∞
x

tf(t)dt
]
.

Proof: Note that

m̃∗
n(x) ≈ m(x) +

µ

SF (x)

[
1

n

n∑
i=1

Qvn(
Xi

x
)− SG(x)

]

−µM(x)

SF (x)

[
1

n

n∑
i=1

1

Xi

Qvn(
Xi

x
)− 1

µ
SF (x)

]

= m(x) +
µ

SF (x)

1

n

[
n∑

i=1

Qvn(
Xi

x
)−M(x)

n∑
i=1

1

Xi

Qvn(
Xi

x
)

]
(5.81)

Let ξi = Qvn(Xi

x
) −m(x) 1

Xi
Qvn(Xi

x
). In order to obtain the theorem, it is sufficient to

show that E(ξi) = O(v2
n) and E(ξ2

i ) → 1
µ

[
M2(x)

∫∞
x

f(t)
t

dt− ∫∞
x

tf(t)dt
]
.

Note that, for ξi we have

E(ξi) =

∫ ∞

0

Q(t/x)g(t)dt− M(x)

µ

∫ ∞

0

Q(t/x)f(t)dt

= T1(x)− M(x)

µ
T2(x). (5.82)

For T1(x), using integration by parts, we have

T1(x) =

∫ ∞

0

SG(xy)qvn(y)dy

≈
∫ ∞

0

[
SG(x)− xg(x)(y − 1)− x2g′(x)(y − 1)2/2

]
qvn(y)dy

= SG(x) + O(v2
n). (5.83)

Similarly, for T2(x), we have

T2(x) = SF (x) + O(v2
n). (5.84)
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By (5.82) and (5.84),

E(ξi) = O(v2
n). (5.85)

Furthermore,

E(ξ2
i ) =

∫ ∞

0

Q2
vn

(t/x)g(t)dt− 2
M(x)

µ

∫ ∞

0

Q2
vn

(t/x)f(t)dt

+
M2(x)

µ

∫ ∞

0

Q2
vn

(t/x)
f(t)

t
dt

= J1(x)− 2
M(x)

µ
J2(x) +

M2(x)

µ
J3(x). (5.86)

For J1(x), we have

J1(x) = 2

∫ ∞

0

SG(xy)Qvn(y)qvn(y)dy

=

∫ ∞

0

[
SG(x)− xg(x)(y − 1) + o(y − 1)

]
2Qvn(y)qvn(y)dy

= SG(x) + xg(x)

∫ ∞

0

(y − 1)2Qvn(y)qvn(y)dy

+o(

∫ ∞

0

(y − 1)2Qvn(y)qvn(y)dy)

= SG(x) + J4(x) + o(J4(x)). (5.87)

By the fact that O(|J4(x)|) ≤ O(
√∫∞

0
(y − 1)2qvn(y)dy) = O(vn), we have, as vn → 0,

J1(x) → SG(x). (5.88)

Similarly, we have

J2(x) → SF (x) (5.89)

and

J3(x) →
∫ ∞

x

f(t)

t
dt. (5.90)

By (5.86), (5.88), (5.89) and (5.90), we have

E(ξ2
i ) →

1

µ

[
M2(x)

∫ ∞

x

f(t)

t
dt−

∫ ∞

x

tf(t)dt

]
. (5.91)
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By (5.85) ,(5.91) and V (m̃∗
n(x)) = µ2

(SF (x))2
V (ξi), the theorem follows.

Remark 5.4: According to the proof, we have

Bias(m̃∗
n(x)) =

x2

2µ
[M(x)f ′(x)− xf ′(x)− f(x)]v2

n + o(v2
n)

and

V (m̃∗
n(x)) =

µ

n(SF (x))2

[
M2(x)

∫ ∞

x

f(t)

t
dt−

∫ ∞

x

tf(t)dt

]
+ o(

1

n
).

So

MSE(m̃∗
n(x)) =

{
x2

2µ
[M(x)f ′(x)− xf ′(x)− f(x)]v2

n

}2

+
µ

n(SF (x))2

[
M2(x)

∫ ∞

x

f(t)

t
dt−

∫ ∞

x

tf(t)dt

]
+ o(

1

n
+ v4

n)

(5.92)

5.3.4 Numerical Comparison

To compare the proposed three MRL function estimators numerically, we simulate for

the following distributions with sample sizes n = 30, 50, 100, 200, 300, 500.

(i). Chi-Square Distribution

f(x) =
1

2
α
2 Γ(α

2
)
x

α
2
−1 exp(−x/2)I{x > 0}.

(ii). Lognormal Distribution

f(x) =
1√
2πx

exp{−(log x− µ)2/2}I{x > 0}.

(iii). Gamma Distribution

f(x) =
1

Γ(α)
xα−1 exp(−x)I{x > 0}.

(iv). Weibull Distribution

f(x) = αxα−1 exp(−xα)I{x > 0}.
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Note that it is not easy to develop a valid method to choose smoothing parameters like

in the simulation for density estimators, since the SE(mn(x),m(x)) defined in (5.93)

is usually not integrable on [0,∞). Here we use the smoothing parameters selected

by BCV methods for the density estimators f̃n(x), f̂n(x) and f̃ ∗n(x) as the values of

parameters in m̃n(x), m̂n(x) and m̃∗
n(x) respectively. Under the selected smoothing

parameters, we computer

SE (mn(x),m(x)) = [mn(x)−m(x)]2 (5.93)

at points Qq(q = 0, 0.1, 0.25, 0.5, 0.75, 0.9) where mn(.) represents MRL function esti-

mator and m(.) the true MRL function . For each point, we obtain 1000 replications

and take their average as simulated MSE. We present the results in the Tables from

5.6 to 5.10.

From the results of simulation, we can see that, overall, in the most cases two esti-

mators using Poisson weights perform better than the estimator using gamma kernels.

Similar things happen in simulation for density estimators, where although it does

not perform very well at the boundary in some cases, density estimators with Pois-

son weights usually have smaller MSEs at most points. We may conclude that Hille’s

lemma in Poisson weights provide us a very valid smoothing technique. In most cases, it

can give us some very satisfactory smooth estimators. If we look at the MSEs between

Q0 and Q0.5, we find that three estimators have comparative MSEs. Specially at the

point Q0, the MSEs are very close. The main difference among these estimators is

at the two rear points Q0.75 and Q0.9. m̂n(x) perform much better than the two other

estimators.
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Table 5.6: Simulated MSE for χ2
2

n Estimator
Quantile

Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90

30

m̃n(x) 0.28469 0.22589 0.19305 0.27717 0.67733 1.63454

m̂n(x) 0.30650 0.19798 0.13439 0.11073 0.13713 0.22175

m̃∗
n(x) 0.28469 0.17852 0.14188 0.36044 2.21863 8.78077

50

m̃n(x) 0.18729 0.14154 0.12591 0.21236 0.54582 1.30629

m̂n(x) 0.19665 0.11102 0.07220 0.06603 0.08365 0.14264

m̃∗
n(x) 0.18729 0.10114 0.08132 0.27625 1.93104 7.98868

100

m̃n(x) 0.10018 0.07458 0.07356 0.14225 0.38805 0.94850

m̂n(x) 0.11175 0.05708 0.03816 0.03450 0.04234 0.06987

m̃∗
n(x) 0.10018 0.04722 0.04147 0.18097 1.43907 6.38956

200

m̃n(x) 0.06504 0.05121 0.05994 0.12484 0.33662 0.81487

m̂n(x) 0.08125 0.03778 0.02582 0.02190 0.02317 0.03871

m̃∗
n(x) 0.06504 0.02343 0.02087 0.11072 1.00699 4.82878

300

m̃n(x) 0.04821 0.03891 0.04857 0.10582 0.29588 0.73288

m̂n(x) 0.06917 0.03178 0.02072 0.01532 0.01587 0.02568

m̃∗
n(x) 0.04821 0.01632 0.01478 0.08323 0.80137 4.01270

500

m̃n(x) 0.03481 0.02920 0.03877 0.08811 0.24995 0.62073

m̂n(x) 0.05406 0.02353 0.01486 0.01071 0.01104 0.01602

m̃∗
n(x) 0.03481 0.00983 0.00897 0.05753 0.59842 3.14847
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Table 5.7: Simulated MSE for χ2
6

n Estimator
Quantile

Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90

30

m̃n(x) 0.56425 0.36577 0.33011 0.67652 2.25749 5.94781

m̂n(x) 0.67831 0.45272 0.38014 0.32527 0.35531 0.55924

m̃∗
n(x) 0.28469 0.17668 0.13708 0.28653 1.63022 6.71116

50

m̃n(x) 0.33973 0.20905 0.19641 0.52031 1.90966 5.08080

m̂n(x) 0.39580 0.24668 0.21103 0.19388 0.22311 0.33589

m̃∗
n(x) 0.18729 0.10039 0.074943 0.20795 1.42166 6.15694

100

m̃n(x) 0.16392 0.09440 0.09567 0.34788 1.39640 3.75535

m̂n(x) 0.18459 0.11133 0.09888 0.09647 0.11318 0.17530

m̃∗
n(x) 0.10018 0.04770 0.04087 0.16578 1.29348 5.76687

200

m̃n(x) 0.08119 0.04947 0.04988 0.21372 0.90319 2.45378

m̂n(x) 0.09166 0.05887 0.05206 0.04938 0.06035 0.09507

m̃∗
n(x) 0.06504 0.02397 0.02293 0.13632 1.17829 5.38536

300

m̃n(x) 0.05614 0.03425 0.03462 0.16518 0.71140 1.92673

m̂n(x) 0.06177 0.04021 0.03390 0.03350 0.04183 0.06712

m̃∗
n(x) 0.04821 0.01673 0.01694 0.11925 1.07117 4.98145

500

m̃n(x) 0.03570 0.02129 0.02193 0.11576 0.50631 1.37372

m̂n(x) 0.03883 0.02599 0.02162 0.02052 0.02623 0.03808

m̃∗
n(x) 0.03481 0.01001 0.01078 0.09527 0.91658 4.41602
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Table 5.8: Simulated MSE for Γ(2)

n Estimator
Quantile

Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90

30

m̃n(x) 0.11315 0.07632 0.06777 0.13851 0.47183 1.27887

m̂n(x) 0.12788 0.07910 0.06046 0.05218 0.05906 0.09913

m̃∗
n(x) 0.11315 0.06888 0.06526 0.18962 0.94600 3.23575

50

m̃n(x) 0.07117 0.04564 0.04401 0.11070 0.39078 1.04265

m̂n(x) 0.07562 0.04310 0.03318 0.03045 0.03640 0.06316

m̃∗
n(x) 0.07117 0.03897 0.04060 0.15237 0.82954 2.91363

100

m̃n(x) 0.03408 0.02047 0.02094 0.06516 0.24796 0.67109

m̂n(x) 0.03562 0.02082 0.01622 0.01525 0.01851 0.03250

m̃∗
n(x) 0.03408 0.01804 0.01995 0.10486 0.66127 2.44700

200

m̃n(x) 0.01811 0.01045 0.01087 0.04129 0.16803 0.45966

m̂n(x) 0.01970 0.01113 0.00854 0.00790 0.01028 0.01783

m̃∗
n(x) 0.01811 0.00929 0.01077 0.07511 0.52142 2.01298

300

m̃n(x) 0.01200 0.00696 0.00776 0.03189 0.13362 0.36695

m̂n(x) 0.01248 0.00728 0.00560 0.00526 0.00652 0.01108

m̃∗
n(x) 0.01200 0.00640 0.00760 0.05958 0.43353 1.72104

500

m̃n(x) 0.00767 0.00407 0.00479 0.02258 0.09649 0.26412

m̂n(x) 0.00803 0.00474 0.00374 0.00328 0.00402 0.00661

m̃∗
n(x) 0.00767 0.00392 0.00445 0.03979 0.31560 1.31721
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Table 5.9: Simulated MSE for Lognormal(0)

n Estimator
Quantile

Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90

30

m̃n(x) 0.16723 0.13876 0.12771 0.22797 0.70043 1.75035

m̂n(x) 0.19097 0.14539 0.11928 0.13120 0.21252 0.57104

m̃∗
n(x) 0.16723 0.12604 0.11635 0.25019 1.44315 7.29962

50

m̃n(x) 0.09739 0.07739 0.07635 0.16257 0.50335 1.19923

m̂n(x) 0.11168 0.08378 0.06897 0.07780 0.12630 0.34518

m̃∗
n(x) 0.09739 0.07040 0.06657 0.17498 1.14222 6.03014

100

m̃n(x) 0.04326 0.03233 0.03326 0.07551 0.21161 0.46069

m̂n(x) 0.04782 0.03544 0.03016 0.03425 0.06165 0.17379

m̃∗
n(x) 0.04326 0.03001 0.03093 0.11896 0.90914 4.96370

200

m̃n(x) 0.02293 0.01550 0.01535 0.03664 0.09948 0.20858

m̂n(x) 0.02645 0.01818 0.01566 0.01738 0.03235 0.08444

m̃∗
n(x) 0.02293 0.01465 0.01582 0.08222 0.69572 3.89849

300

m̃n(x) 0.01425 0.00969 0.00986 0.02257 0.05695 0.11898

m̂n(x) 0.01765 0.01268 0.01093 0.01231 0.02224 0.05600

m̃∗
n(x) 0.01425 0.00954 0.01057 0.06365 0.56762 3.25099

500

m̃n(x) 0.00942 0.00631 0.00682 0.01609 0.04011 0.08261

m̂n(x) 0.01159 0.00834 0.00699 0.00699 0.01289 0.03329

m̃∗
n(x) 0.00942 0.00630 0.00743 0.05061 0.45736 2.63676
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Table 5.10: Simulated MSE for Weibull(4)

n Estimator
Quantile

Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90

30

m̃n(x) 0.00284 0.00177 0.00226 0.00998 0.03402 0.07485

m̂n(x) 0.00359 0.00401 0.00511 0.00653 0.00763 0.00820

m̃∗
n(x) 0.00284 0.00154 0.00200 0.00574 0.02180 0.05265

50

m̃n(x) 0.00160 0.00093 0.00132 0.00729 0.02680 0.06105

m̂n(x) 0.00195 0.00231 0.00315 0.00426 0.00514 0.00562

m̃∗
n(x) 0.00160 0.00084 0.00087 0.00354 0.01491 0.03831

100

m̃n(x) 0.00079 0.00047 0.00063 0.00448 0.01850 0.04456

m̂n(x) 0.00101 0.00135 0.00192 0.00270 0.00335 0.00371

m̃∗
n(x) 0.00079 0.00044 0.00036 0.00118 0.00617 0.01858

200

m̃n(x) 0.00042 0.00024 0.00029 0.00267 0.01221 0.03102

m̂n(x) 0.00061 0.00103 0.00156 0.00230 0.00293 0.00332

m̃∗
n(x) 0.00042 0.00022 0.00017 0.00051 0.00299 0.00999

300

m̃n(x) 0.00029 0.00015 0.00018 0.00193 0.00935 0.02454

m̂n(x) 0.00047 0.00093 0.00148 0.00222 0.00286 0.00325

m̃∗
n(x) 0.00029 0.00014 0.00011 0.00032 0.00201 0.00703

500

m̃n(x) 0.00018 9.9× 10−5 0.00011 0.00126 0.00650 0.01779

m̂n(x) 0.00037 0.00086 0.00141 0.00216 0.00280 0.00318

m̃∗
n(x) 0.00018 9.1× 10−5 7.0× 10−5 0.00020 0.00135 0.00493
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Chapter 6

Future Research

The methods discussed earlier may be applied to other topics that we plan to investigate

in future. Some of these topics are described in detail in the following sections.

6.1 Dependent Data

All the results we have obtained are based on the assumption that the samples are i.i.d.

random variables. In some practice, we may have some dependent samples. Actually,

our results are easy to extend to stationary ϕ-mixing process.

Definition 6.1 A stationary stochastic process {Xi}∞i=1 is called ϕ-mixing process, if,

for all B ∈ M∞
k+n with probability 1

|P (B|Mk
1)− P (B)| ≤ ϕ(n) ↓ 0, as n →∞ (6.1)

where Ma
b denotes the σ-algebra generated by Xi(b ≤ i ≤ a).

Now we suppose that {Xi}∞i=1 is a stationary ϕ-mixing process satisfying

∑
n

(
ϕ(n)

)1/2
< ∞ (6.2)
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and

EX−2
i < ∞. (6.3)

Then we can slightly change the proof of of Lemma 2.3 and establish an almost same

lemma for ϕ-mixing process {Xi}∞i=1. Using this lemma, we can obtain similar results to

i.i.d. case. The conditions of ϕ-mixing process might be too strong. We can consider

some associated sequence with some slightly weak conditions as well. For example,

Bagai and Prakasa Rao (1991) investigate strong and weak consistency of empirical

function for stationary associated sequence. The dependence of samples is described

by the covariances of samples instead of (6.1). This kind of conditions in their paper

might be more universal and practical.

6.2 Censored Data

In analyzing times duration, LB data and censored data may emerge at the same time

[see Asgharian et al. (2002), Uña-Álvarez (2002)]. The presence of censored data is very

natural in many application of statistics. Here, we plan to consider random censorship.

Suppose that X1, . . . , Xn are i.i.d. random variables with distribution function G(x).

In practice, we may observe

Zi = min(Xi, Yi) and δi = I{Xi ≤ Yi}, 1 ≤ i ≤ n,

where {Yi}n
i=1 is another i.i.d. sequence with censoring pdf H(x) being independent of

the sequence {Xi}n
i=1 as well and δi points out whether Xi has been observed or not.

Then the well known product-limit estimator of G(x), being nonparametric maximum
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likelihood estimator as well, proposed by Kaplan and Meier (1958) is given by

1−Gn(x) =
n∏

i=1

[
1− δ[i:n]

n− i + 1

]I{Zi:n≤x}
(6.4)

where {Zi:n}n
i=1 are the order statistics of {Zi}n

i=1 and δ[i:n] is the value of δ corresponding

to Zi:n. Stute and Wang (1993) studied the strong convergence of (6.4). Stute (1995)

gave the central limit theorem of (6.4). Combining random censorship with length

biased data may result in the following estimator for distribution function F (x) which

we are interested in.

Fn(x) =

∫ x

0
1
t
dGn(t)∫∞

0
1
t
dGn(t)

. (6.5)

An alternative form of (6.5) is given by

Fn(x) =

∑n
i=1 WinZ

−1
i:n I{Zi:n ≤ x}∑n

i=1 WinZ
−1
i:n

(6.6)

where for 1 ≤ i ≤ n,

Win =
δ[i:n]

n− i + 1

i−1∏
j=1

[
n− j

n− j + 1

]δ[j:n]

.

Using Hille’s lemma to smooth (6.6) will give us a smooth estimator of distribution

function. We can obtain smooth estimator of density function by taking the advantage

of the derivative of smooth pdf estimator. Furthermore, we can achieve other smooth

estimator related to smooth density and distribution estimator.

Length biased data is a special case of biased data by taking the weight function

w(x) = x in biased data model

fw(x) =
w(x)f(x)

µw

.

If we are looking for method estimating density with general biased data, a valid method

is first to smooth the generalized Cox estimator for distribution function in biased data
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case

Fn(x) =

∑n
i=1

1
w(Xi)

I{Xi ≤ x}
∑n

i=1
1

w(Xi)

(6.7)

where {Xi}n
i=1 are i.i.d. random variables or associate sequence satisfying certain de-

pendence conditions with the same weighted density fw(x). Then take the derivative of

smooth estimator of distribution function as density estimator. For randomly censored

biased data, the raw estimator of unweighted distribution function F (x) might have the

following form.

Fn(x) =

∑n
i=1 Win

1
w(Zi:n)

I{Zi:n ≤ x}
∑n

i=1 Win
1

w(Zi:n)

. (6.8)

6.3 Unknown Weight Function

For now, we have all these discussions based on the assumption that the weight function

is known. Lloyd and Jones (2000) gave a nonparametric density estimator for biased

data with unknown weight function w(x) ≤ 1. In their article, they treated weight

function w(x) as a selection probability that the sample xi is chosen with probabil-

ity w(xi). They obtain two independent samples denoted as S1 and S2 from original

population with nonrandom size. Each individual xi belonging to S1 or S2 is with a

selection probability w(xi). Then each individual xi in S11 = S1

⋂
S2 is with a selection

probability w2(xi). Using the samples in S1 or S2, it is easy to obtain density estima-

tors of weighted density fw(x) = µ−1
w w(x)f(x). Since the selection probability in S11

is w2(x), a density estimator of weighted density fw2(x) = µ−1
w2w

2(x)f(x) can be built

by using the samples in S11. After having the estimators of fw and fw2 , the estimator

of density function f(x) and weight w(x) can be found by the facts (fw)2/fw2 ∝ f(x)

and fw2/fw ∝ w(x) respectively. However, their density estimators are obtained by
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the traditional kernel method. If using density estimators proposed in this thesis, we

should obtain some better estimator for biased data with unknown weight function.

6.4 Estimation of Other Functionals and Their In-

tegrals

In the area of nonparametric functional estimation, the estimation of derivatives of a

density is an active field as well. Singh (1977a) mentioned that estimation of derivatives

of a density has many applications, such as estimation of regression curves, estimation

of Fisher Information and other quantities related to minimum expected loss estima-

tion. Therefore, the estimation of derivatives of a density has drawn a lot of attention

in statistical literature. Actually, the estimation of derivatives of a density has almost

as long a history as nonparametric density estimation. Bhattacharya (1967) suggested

using the pth derivative of traditional kernel density estimator as the estimator of the

pth derivative of underlying density and studied their asymptotic properties. These

properties were further investigated by Schuster (1969). Also Singh (1977b) studied

asymptotic properties of the derivatives of kernel density estimator under some con-

ditions weaker than that in Bhattacharya (1967) and Schuster (1969). Note that the

smooth density estimators proposed in this thesis are differentiable. Hence, intuitively

we can think of using these derivatives as estimators of the corresponding derivatives

of underlying density. Besides the applications of estimators of derivatives mentioned

in Singh (1977a), estimators of derivatives are also required for selecting smoothing

parameter(s) in our proposed estimators. It might be proper to investigate asymptotic

properties of all these procedures.
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Another topic related to estimation of derivatives of a density is to estimate the

integral involving density derivatives. Cheng (1997) considered estimation of integrated

products of density derivatives in general and estimation of integrated squared density

derivative in particular. Namely, he considered estimation of the following integral:

θγ,ν =

∫
f (γ)(x)f (ν)(x)dx, (6.9)

where f (p)(x) represents the pth derivative of density f(x), γ and ν are two nonnegative

integers such that γ + ν is an even number. The most direct application of the esti-

mation of integral (6.9) is in bandwidth selection method for nonparametric functional

estimators. The plug-in bandwidth selection method for density estimator has such

an integral as (6.9) in the special case γ = ν = 2 [see Scott and Terrell (1987), Park

and Marron (1990)]. Given a better estimator of integral, a better optimal bandwidth

can be obtained. So a lot of work regarding the estimation of integral (6.9) is going

on. To estimate the integral (6.9) based on biased data, one way is that we plug-in

the corresponding derivative estimators into (6.9) directly. An alternative way may be

based on local polynomial fitting as proposed by Cheng (1997). The comparison of the

two methods is an interesting future project.
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