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ABSTRACT 

An architecture for the integration of Wireless Actuation Capabilities with  

IP Multimedia Subsystem 

Ru Cheng Hou 

The IP Multimedia Subsystem (IMS) is an architecture that aims at seamlessly 

delivering multimedia services. It enables IP multimedia services for end-user using 

standard Internet based protocols such as Session Initiation Protocol (SIP). Examples of 

multimedia services include presence, instant messaging, enhanced voice and video, 

pervasive gaming and emergency services. 

Wireless actuators are small scale devices that can receive/accept instructions and act 

on their surrounding environment. They are broadly used in automation industry and 

intelligent control systems. With the rapid development of Internet and mobile 

telecommunication technologies, more and more actuators are being deployed in 

applications such as environment monitoring, home automation and health care to improve 

human beings’ living conditions. 

Combining actuators’ actuation capabilities with IMS will certainly enable novel 

value added services. However, the actuator networks are application specific and provide 

proprietary interfaces to the external world. Integrating wireless Actuator Networks (AN) 

with IMS to enable actuation service to IMS end users through standard protocols and 

interfaces is the objective of this thesis.  

There are several challenges related to this integration: First, there is no ready-to-use 
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architecture for the integration. New functional entities and suitable protocols for actuation 

triggering are needed. Second, there are no actuators in the market with open interfaces to 

the external world, we need to find alternative solutions for the realization of the integrated 

architecture. Third, there is no information model for abstracting actuation command 

semantics and this has to be defined. 

In this thesis we derive a set of requirements for the integration of AN actuation 

capabilities with IMS, we review and evaluate related work, and then propose a novel 

architecture. This architecture includes two new functional entities for IMS: The Actuation 

Control Function (ACF) and the Wireless Actuator Gateway (WAG). The ACF handles 

high level actuation requests from other applications. It acts as an intermediate component 

and hides the low level actuation commands from the applications. The WAG transforms 

high level actuation commands to low level, proprietary and actual actuation commands 

that can be understood and executed by actuators.  

A detailed survey and evaluation of existing protocols for actuation command 

carrying is also provided. We define an actuation command information model to abstract 

the actuation triggering instructions. We implement the key components of the proposed 

architecture. A proof of concept prototype has been implemented using simulated robots 

equipped with actuators. The average end-to-end actuation delay of our architecture is 

evaluated through experiments with the prototype.  
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Chapter 1  

Introduction 
 

1.1 Research domain 

The Third Generation Partnership Project (3GPP) IP Multimedia Subsystem (IMS) 

[1] is the cornerstone of Third Generation (3G) networks. It is an overlay layer on top of 

IP based networks and aims at seamless provisioning of multimedia services in an access 

agnostic way. It is originally designed for the convergence of Internet and mobile 

networks, later on developed as a service development and delivery platform to support 

multimedia service generation. The IMS framework specified by 3GPP makes IP 

multimedia services accessible to mobile end-user using standard Internet based 

protocols e.g. Session Initiation Protocol (SIP) [2]. Examples of multimedia services 

include presence, instant messaging, enhanced voice and video, pervasive gaming and 

emergency services.  

An actuator [3] is a mechanical device for controlling and acting on systems. It 

takes energy, usually transported by air, electric current, or liquid, and converts that into 

some kind of motion. In mechanical engineering, actuators are usually used for motion, 

or to clamp an object to prevent motion. In electronics, actuators are seen as a kind of 

transducers. Actuators are broadly used in automation industry and intelligent control 

systems. In recent years, with the rapid development of Internet and wireless 

telecommunication technologies, actuators have been deployed for applications such as 

home automation and environment monitoring to improve human beings’ living 
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conditions. 

Actuators are usually used in combination with sensors. Wireless Sensor and 

Actuator Networks (WSAN) [4] consist of sensors that can sense the environment and 

actuators that can act on it in reaction to the sensed events. There exist two categories of 

WSAN architectures [4]: automated and semi-automated. In the former case, sensors 

detect events, transmit readings to actuators that process all incoming data and initiate 

appropriate actions. In the second architecture, sensors send all the sensed data to a 

central controller that processes the data and issues instructions to actuators. 

1.2 Motivations and problem statement 

As aforementioned, wireless actuators are small scale devices that can receive 

instructions and act on their surrounding environment. These capabilities, when 

integrated to IMS, can enable novel services such as smart home or healthcare 

applications.  

An Actuator Network (AN) [5] is application specific and provides proprietary 

interfaces to the external world. Our goal is to integrate ANs with IMS such that IMS 

entities interact with the AN through standard protocols and interfaces. There has been 

some research work done on the integration of sensor networks and IMS [6] or even on 

integrating WSAN with Internet [7]. However, none of them have addressed the 

integration of actuators with IMS.  

There are several challenges related to this integration. First, there is no 

ready-to-use architecture for the integration. The functional entities and protocols for 
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actuation triggering need to be defined. Second, there are no actuators on the market that 

have open interfaces to the external, we have to seek for alternative solutions. Third, 

there is no information model for abstracting actuation command semantics. We need to 

define this model. 

1.3 Contribution of the thesis 

The contributions of the thesis are as follows: 

• We define application scenarios for the integration of AN and IMS. They are 

typical scenarios in application domains such as emergency management, 

health care and home automation. These scenarios are used to generate the 

requirements for the integrated architecture. 

• We derive a set of requirements with respect to the application scenarios. The 

requirements include those related to the actuation information model and 

actuation control protocol. The actuation conflict handling and method of 

actuation triggering are also considered. We evaluate related work according 

to these requirements.  

• We design an architecture for the integration of ANs with IMS with respect to 

the application scenarios. In the proposed architecture, we define two new 

functional entities: one is responsible for abstracting away low level actuation 

information and the other is a gateway which enables communications 

between the IMS and the heterogeneous actuators. We define a set of criteria 

for actuation control protocol selection and evaluate a few existing protocols 
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with built-in command carrying semantics. We define the actuation command 

information model to abstract the actuation triggering instructions. 

• We implement a proof of concept prototype based on the environment 

monitoring application scenario. This prototype demonstrates how to build 

new value added services over the integrated architecture. The key 

components of the proposed architecture have been implemented. The session 

control and signaling protocols for exchanging actuation commands and 

transmitting media stream have also been implemented. The end-to-end 

actuation delay is evaluated through experiments with the prototype. 

1.4 Organization of the Thesis 

The rest of the thesis is organized as follows: 

Chapter 2 provides the necessary background information. It provides an 

introduction to actuators, actuator networks, wireless sensor and actuator networks 

including architectures, hardware and applications. The IMS architecture, key functional 

entities, operations and protocols are also presented before a brief introduction to the SIP 

protocol. 

Chapter 3 provides a detailed review of related research work on WSAN 

integration and interworking with other networks. We start with application scenarios 

and derive the requirements for the evaluation of related work before the actual 

evaluation. After the evaluation, we conclude that none of the existing architectures meet 

all the requirements and there is a need for a new architecture. 
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Chapter 4 depicts the proposed architecture for the integration of ANs with IMS 

and its principles. The functional entities and interfaces are described. The design of the 

key components is also presented. 

Chapter 5 refines further the Actuation Control Protocol of the proposed 

architecture. First, the criteria for actuation control protocol selection are set. This is 

followed by the discussion of existing command semantic carrying protocols, their 

functions and their principles to deliver commands. These protocols have been evaluated 

with respect to the selection criteria. Based on this evaluation, Internet Engineering Task 

Force (IETF) Media Control Channel Framework (MCCF) [8] is chosen as the actuation 

control protocol. An XML [9] format information model is designed to abstract the 

actuation commands. 

In Chapter 6 we present the implementation of the key components of the 

proposed architecture. The proof of concept of the integrated AN-IMS architecture 

through the implementation of an environment monitoring prototype is also provided 

with some preliminary evaluation of the response time.  

Finally, Chapter 7 draws conclusions and discusses potential future work.
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Chapter 2  

Background Information on Actuators, IP Multimedia 

Subsystem and Session Initiation Protocol  

In this chapter, we provide the relevant background information that is useful to 

understand the content of this thesis. Three areas of information are presented. First, we 

introduce the definition, classification and technical issues related to actuators and 

WSAN [4]. Next, the IMS concepts, architecture and operations are provided. Finally, 

we introduce the SIP, including its entity definitions and protocol messages [2]. 

2.1 Actuators and Wireless Sensor Actuator Networks  

2.1.1 Actuators 

An actuator is a mechanical device for moving or controlling a system. It takes 

energy, usually transported by air, electric current, or liquid, and converts that into some 

kind of motion [3]. Actuator is not a brand new concept; in fact, they have been widely 

used in digital control systems and automation industry. In engineering, actuators are 

often used to introduce motion, or to clamp an object to prevent motion. In electronics, 

actuators are a subdivision of transducers. They are devices which transform an input 

signal (mainly an electrical signal) into motion. Specific examples include: electrical 

motors, pneumatic actuators, hydraulic actuators, linear actuators, comb drive, 

piezoelectric actuators, thermal bimorphs, micro-mirror devices and electro-active 

polymers [3]. 
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In [4], actor is differentiated from actuator and is defined as ‘besides being able to 

act on the environment by means of one or several actuators, actor is also a network 

entity that performs networking-related functionalities, i.e., receive, transmit, process, 

and relay data’. In this thesis, our focus is on actuation actions, we will not differentiate 

between these two concepts. Therefore, we use more general definition – actuator 

instead of actor. 

2.1.2 Wireless Sensor and Actuator Network 

WSAN consist of sensors that can sense the environment and actuators that can act 

on it in reaction to the sensed events. In such a network, sensors gather information 

about the physical world, while actuators take decisions and then perform appropriate 

actions upon the environment, which allows remote, automated interaction with the 

environment. 

There exist two categories of WSAN architectures [4]: automated and 

semi-automated. In the former case, sensors detect events, transmit readings to actuators 

that process all incoming data and initiate appropriate actions. In the second architecture 

(as shown in Figure 2.1), sensors send all the sensed data to a controller via a sink. The 

central controller processes the data and issues instructions to actuators. The research in 

this thesis is based on the second case. 
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Wireless Sensor 
Actuator Networks

Sensor 
Sink

Actuator 
Gateway

Control Server
Actuators

Sensors

Wireless Link between 
sensors and sink

Wireless Link between 
actuators and gateways

 

Figure 2.1 Semi-automated WSAN architecture 

2.1.3 Wireless Sensor and Actuator Networks vs. Wireless Sensor 

Networks 

WSAN is like Wireless Sensor Network (WSN) but include actuators that bring in 

new functionalities and issues.  

• Sensors are small, cheap devices with limited computation and 

communication capabilities, actuators are usually resource-rich devices 

equipped with stronger processing capabilities, and longer battery life. 

• In WSAN, the number of actuators is much less than the amount of sensors. 

The quantity of sensor nodes deployed in one specific application may be on 

the order of thousands.  

• In automated architecture of WSAN, to provide effective actuation, a 

distributed local coordination mechanism is a must among sensors and 
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actuators. In some situations, the sensors and actuators are integrated in one 

physical device. The coordination can be made through internal interactions. 

• In semi-automated architecture of WSAN, the physical sensor networks are in 

fact completely separate from the actuator networks and no coordination is 

required. The actuation decision is made by the central controller (control 

server). 

• WSAN is a step further. WSN collects the information and status of the 

environment, WSAN acts upon the collected event which enables wealth of 

advanced applications and services. 

2.1.4 Actuator hardware 

In digital control systems, the actuator itself is a mechanical device such as switch, 

valve, motor and wheels. In our research domain, the actuator is not a single mechanical 

device. It is compound network equipment with transceiver, A/D transformer and 

controllable interface as shown in Figure 2.2.  

Actuation Unit

A/D 
transformer

Transcceiver

Control Interface Processor & Storage

Power Unit

 
Figure 2.2 Actuator architecture and components 

In many real applications, robots are used as actuator nodes. The robots can be 
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remotely controlled. In adverse circumstances, robots can substitute human beings to 

react on some event happened on site. 

(a)
(b)

(d)(c)  

Figure 2.3 Robots developed by different research lab: (a) e-puck, (b) Robotic Mule, 
(c) robotic arms, (d) mini-robot 

The robots designed by several robotics research firms are shown in Figure 2.3. 

The e-puck robot [10] in Figure 2.3 (a) is developed for the education purposes by F. 

Mondada and M. Bonani. It is equipped with 8 infra-red sensors measuring ambient 

light and proximity of obstacles, 2 stepper motors and camera. It can move around and 

take photos of the scene which can be deployed at emergency rescue scenario and help 

the central office to instruct the rescue effectively. Possibly the world's smallest 

autonomous mini-robot [11] (1/4 cubic inch and weighing less than one ounce) has been 

developed in Sandia National Laboratories is shown in Figure 2.3 (d). Powered by three 

watch batteries, it rides on track wheels and consists of temperature sensor, and two 

motors that drive the wheels. According to Ed Heller, one of the researchers, “it may 

eventually be capable of performing difficult tasks such as locating and disabling land 
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mines or detecting chemical and biological weapons”. An example of Robotic Mule [12] 

designed for the army is given in Figure 2.3(b). These developed battlefield robots can 

detect and mark mines, collect information or even detonate explosives. Finally, robotic 

arms shown in Figure 2.3 (c) are widely used in auto industry.  

2.1.5 Wireless Sensor and Actuator Network applications 

WSANs are mostly application driven, i.e. they are deployed for specific purposes. 

Initially, they were focused on specialized applications. However, with the developments 

in micro-electro-mechanical, electronic systems and wireless communication, it is 

possible to use WSAN in commercial applications. The typical application areas 

include: 

• Environmental monitoring and controlling,  

• Medical/health-care monitoring and emergency care,  

• Military surveillance,  

• Home automation,  

• Intelligent buildings, and 

• Pervasive gaming. 

For example, a set of robots that sense the environment from distributed 

monitoring points can turn on watering system when a dry situation is sensed. Based on 

the data gathered by a sensor network, a smart parking system could redirect drivers to 

available parking spots, etc. 
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2.2 IP Multimedia Subsystem 

The IMS architectural framework specified by 3GPP enables IP multimedia 

services accessible to mobile end-user using standard Internet based protocols e.g. SIP. 

Examples of multimedia services include presence, instant messaging, enhanced voice 

and video, pervasive gaming and emergency services. Several key issues are addressed 

by IMS framework: IP Multimedia Sessions, QoS, Interworking, Roaming, Service 

Control, Rapid Service Creation, and Multiple Access. 

In the following subsections, the architecture of IMS, protocols used by IMS and 

the IMS operations are described. 

2.2.1 IP Multimedia Subsystem architecture 

In most cases, IMS is modeled in three layers: Service Layer, Control Layer, and 

Connectivity Layer, as shown in Figure 2.4. From the overlay perspective, IMS consists 

of two sub-layers over IP based mobile and fix networks: Control Layer and Service 

Layer [6].  

The service layer basically provides value-added services with a set of 

applications hosted on Application Servers (AS) [13]. It provides various IMS services 

to users. It is a home of deployed IMS services, e.g. presence, instant messaging.  

The control layer provides signaling functions in IMS. It handles the registration, 

setup and release of calls and sessions. It consists of entities such as the Call Session 

Control Function (CSCF) and the Home Subscriber Server (HSS). The HSS stores and 

handles end users and services related information including: authentication and 
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authorization information, location data, and service profiles. CSCFs are SIP servers in 

charge of routing and session management. There exist three categories of CSCFs [13]. 

The detailed information about the IMS functional entities are given in later subsections. 

The Connectivity Layer provides IP network access to end users and IMS 

functional entities. This layer is not only carrying media traffic among end users but also 

connecting end users to the session control and AS. From the interoperability 

perspective, the connectivity layer supports different network access technologies like 

Global System for Mobile communications (GSM), General Packet Radio Service 

(GPRS), Wideband Code Division Multiple Access (WCDMA), Digital Subscriber Line 

(DSL), and Wireless Local Area Network (WLAN). 

CSCFsHSS

AS AS Service 
Enablers

Interworking 
Gateways

IP Network

Access Network(GPRS,WLAN,CDMA)

Service Layer

Control Layer

Connectivity  Layer

 

Figure 2.4 Layers of IMS Architecture 

2.2.2 IP Multimedia Subsystem architecture entities  

IMS architecture is a collection of functional entities linked by standardized 

interfaces. Figure 2.5 [14] shows the functional entities included in the IP Multimedia 

Subsystem Core Network. They are: HSS and Subscriber Location Function (SLF), 

CSCFs, Media Resource Function Controller (MRFC) and Media Resource Function 

Processor (MRFP), Breakout Gateway Control Function (BGCF) and Public Switch 
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Telephone Network (PSTN) Gateways. According to the nature of functionality, these 

entities can be categorized into: signaling (CSCFs); interworking (BGCF; PSTN 

Gateways- Signaling Gateway (SGW), Media Gateway Controller Function (MGCF), 

Media Gateway (MGW)); databases (HSS, SLF); media handling (MRFC, MRFP). 

There are many interfaces defined in 3GPP IMS, most of them are using SIP as the 

transport protocol, the important ones are: ISC (interface between AS and S-CSCF); Sh 

(interface between AS and HSS); Cx (interface between S-CSCF and HSS). 

 
Figure 2.5 Overview of IMS architecture  

 

2.2.2.1 Signaling entities 

The IMS signaling functions are managed and maintained by CSCFs. They 

process SIP signaling in the IMS, generate, route and terminate SIP messages to enable 

service sessions and manage them. There are three types of CSCF according to their 

functionality: Proxy-CSCF (P-CSCF), Interrogating-CSCF (I-CSCF) and Serving-CSCF 

(S-CSCF). 

1) Proxy-CSCF 

The P-CSCF is the first point of contact between the IMS terminal and IMS Core 
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from the signaling perspective. It acts as inbound/outbound SIP proxy server. All the SIP 

messages generated by the user terminals or sent to user terminals must traverse 

P-CSCF. 

The main functions of the P-CSCF are: security management, SIP compression 

and verification. During the IMS registration period, the P-CSCF will establish few 

IPSec associations toward IMS user terminal, this can protect the integrity.  

The P-CSCF also plays a role in authenticating end users which is part of security 

association establishment. This will be fulfilled by both P-CSCF and S-CSCF during the 

registration procedure. Once the authentication has been done, the rest of the IMS 

network will not repeat authenticating of the same user, and they trust the P-CSCF. The 

mechanism to realize this function is using “P-Asserted” header. P-CSCF can also verify 

SIP requests sent by IMS terminals and handle compressing/uncompressing of SIP 

messages. 

There might be several P-CSCFs deployed in the IMS depending on the number of 

IMS terminals the P-CSCF has to serve. This makes the IMS easy to expand. 

2) Interrogating-CSCF 

The I-CSCF acts as a location server in IMS Core Network. Its main functions are: 

selecting registrar for user terminals which try to register, by consulting the HSS, and 

divert the request to the IMS registrar (normally the S-CSCF). The interface between the 

I-CSCF and the HSS is the Cx interface using DIAMETER protocol. The HSS will 

return capabilities of the required S-CSCF in initial registration request situation. 
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According to these capabilities, the I-CSCF picks up the appropriate S-CSCF. Under 

re-registering situation, the HSS returns name of the assigned S-CSCF to the I-CSCF, 

and the request will be forwarded to that S-CSCF directly. The I-CSCF also has an 

interface to application servers to route requests that are addressed to services instead of 

end users.  

Apart from the above mentioned functions, I-CSCF is located at the edge of an 

IMS domain and acts as an entry point for SIP messages coming from another domain. It 

will intercept incoming IMS call session requests from other domains (other IMS 

networks or legacy networks for example PSTN) and choose appropriate S-CSCF for 

terminating IMS sessions. 

There might be several I-CSCF deployed in the IMS which makes the IMS domain 

scalable and redundant. 

3) Serving-CSCF 

The S-CSCF is the main control entity in the signaling plane and the IMS core 

network. Being a registrar server, it authenticates and authorizes the end users as part of 

their registration requests. S-CSCF maintains subscriptions to registration state and will 

send out notifications about any changes to the registration state. Through Cx interface 

towards to HSS, each user’s IMS service profile can be downloaded from HSS to 

S-CSCF. Based on these service profiles, S-CSCF decides which application will be 

triggered and the order of the operations. The S-CSCF interacts with the IMS service 

plane (AS) over the ISC reference point. The details will be given in IMS operations 
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subsection. 

The S-CSCF acts as a SIP User Agent Server (UAS) to fulfill tasks such as 

maintaining subscriptions to registration state. As a SIP proxy server, S-CSCF is 

responsible for forwarding IMS session requests to the next hop SIP entities. The 

S-CSCF is also responsible for charging the subscriber and collecting usage records. 

2.2.2.2 Databases 

The HSS is the central database storing user related information. It maintains 

subscribe information necessary for establishing sessions between subscribers. The HSS 

exchanges user and service related information with AS through interface Sh. The 

I-CSCF and S-CSCF can access user and service related information through interface 

Cx. The HSS contains the following information: location information, security 

information, user profile information and the S-CSCF assignment. 

If more than one HSS is present in IMS, the SLF is needed which is a simple 

database. It matches users’ addresses to HSSs. 

2.2.2.3 Media handling 

The Media Resource Function (MRF) provides functions such as: announcement 

playing, adaptation between different codec schemes, mix media streams and perform 

media analysis and statistics functions. The MRF consists of MRFC which is located in 

signaling plane and MRFP which is a media plane node. The MRFC, as SIP User Agent 

(UA), has direct interface towards S-CSCF and it controls the media resources in the 

MRFP via Mp interface which is using H.248 protocol [15]. The MRFP provides media 
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processing functions like playing and mixing media streams. 

2.2.2.4 Interworking 

The BGCF controls the processing of calls to and from the circuit-switched 

network. It is only used when the IMS user terminals initiate sessions addressed to 

circuit-switched networks such as Public Land Mobile Network (PLMN).  

2.2.3 Important IP Multimedia Subsystem interfaces  

3GPP defined interfaces make the communications between the above mentioned 

entities possible in a standard way. The most important ones are the following: 

The Cx interface is located between I-/S-CSCF and HSS. Information exchanged 

through this interface is: S-CSCF assignment procedure related information, accounting 

and authorization and routing information. Further details can be found in the 3GPP 

specifications. 

The ISC interface is between the S-CSCF and SIP application servers. The SIP AS 

hosts services and uses the ISC interface to interact with S-CSCF to influence the SIP 

session. Through ISC interface, the services can be triggered by S-CSCF according to a 

set of pre-configured rules and policies in the format of initial filtering criteria (iFC) 

[16]. 

The Sh interface allows application servers to talk to HSS to access subscriber and 

service related information. 
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2.2.4 IP Multimedia Subsystem operations 

2.2.4.1 IP Multimedia Subsystem level registration 

IMS-level Registration is a procedure through which the IMS subscriber can be 

authorized to use the IMS services in the IMS network. This procedure is triggered by a 

SIP REGISTER request. During the registration, the following tasks will be fulfilled: 

• IMS binds the user’s public user identity (either a SIP URI [2] or a TEL URI 

[17]) to a URI containing host name or IP address of the terminal where the 

user can be reached;  

• The home network authenticates the user; 

• The home network authorizes the SIP registration and the right to access IMS 

resources. 

 

Figure 2.6 IMS-level Registration Signaling Flow  

The registration is mandatory before the IMS terminal can use IMS services and 
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initiate any session. This procedure is shown by Figure 2.6 [13]. 

2.2.4.2 Service Triggering 

IMS uses filter criteria and service points triggers (SPTs) [18] to trigger services. 

One of the most processing intensive operations undertaken by the S-CSCF is the iFC 

(Initial Filter Criteria) processing logic. Based on the service profile of a particular user, 

the S-CSCF needs to evaluate a set of XML fragments (iFCs), that hold the routing 

information for contacting a SIP application server that is hosting services (such as 

Presence service [19]) as depicted in Figure 2.7 [18]. This iFC evaluation takes place for 

all initial SIP requests and standalone transactions, and it takes place uniquely for each 

subscriber.  

 
Figure 2.7 Application server triggering architecture  

2.3 Session Initiation Protocol  

The SIP is an application-level signaling protocol defined by the IETF for the 

creation and management of sessions over an IP network. The term “session” refers to 

the media plane communication session. In order to setup a session, SIP messages bear 

session descriptions that allow the participants to exchange set of parameters of the 
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media communication channel (session) such as the transport address and media type. In 

most cases, the session is described by Session Description Protocol (SDP) defined in 

[20]. For the information transport, the SIP messages could be carried by User Datagram 

Protocol (UDP), Transmission Control Protocol (TCP) or Stream Control Transmission 

Protocol (SCTP) [21]. Most SIP stack implementations support UDP.  

SIP is a client-server and request-response protocol: client sends a request to 

server and waits for a reply. Requests can take arbitrarily complex path and responses 

take the same path in reverse direction. Requests and responses have the same structure: 

first line contains key information, message headers contain supplementary information, 

and message body contains application information [22]. 

2.3.1 Addressing 

SIP is in many ways similar to HTTP [23]. As Universal Resource Identifier (URI) 

is used to identify a resource on a web server, SIP URI is used to identify the users or 

servers. A SIP URI is a URI. It complies with the general rules for URIs defined in [24], 

for example: sip:Alice@ece.concordia.ca. 

A SIP URI uses the “sip:” scheme, and contains two parts split by the “@” sign. 

The two parts are: 

• An optional user part to identify a particular user or resource at the host where 

the other part points. In the above example: Alice. 

• A host part, which identifies the machine holding the resource. It could be a 

fully qualified domain name or an IP address plus an optional port value. In the 

above example: ece.concordia.ca. 
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SIP URI can be used to represent: 

• Public User Identity of a user, the universal ID that anyone can establish 

multimedia communications with that user; 

• A sip server- SIP URIs can also be used to represent SIP servers, for instance: 

sip:scscf.tse.concordia.ca or sip:192.168.1.3;  

• A group of users, for instance, the URI sip:services@abc.com can be used to 

represent the customer service department in the company ABC. When a 

request is addressed to this URI, the server will try all the members of the group 

until someone can accept the request.  

• A service-A SIP URI can also represent a service, as described in [25]. 

2.3.2 Session Initiation Protocol entities 

In SIP specifications, SIP applications will assume one of the predefined roles and 

act on the events (received messages) according to the SIP protocol state machine. As 

shown in Figure 2.8, most of the SIP applications will be classified into the following 

roles: 

• User Agent Client (UAC) 

• UAS 

• Proxy 

• Back-to-Back User Agents (B2BUAs) 

The UAC and UAS are collectively known as User Agents (UA). They are SIP 

endpoints that exchange messages to establish or terminate sessions. The UAC is 
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responsible for the generation of new SIP requests and the reception of the associated 

responses. The UAC acts as a SIP client, and unlike a Proxy, it is an initiator and sender 

of a SIP request message, instead of being an entity that simply receives and forwards. 

On the contrary, the UAS generates a response to a SIP request. The response accepts, 

rejects, or redirects the request. 

UAS UAC

Incoming SIP 
messages

Outgoing SIP 
messages

Proxy

Outgoing SIP messagesIncoming SIP messages

B2BUA

Outgoing SIP 
messages

Incoming SIP 
messages

Response

Response Response

UAS UAC

(a) UAS (b) UAC

(c) Proxy (d) 
B2BUA

Response

 
Figure 2.8 SIP Roles: (a) UAS, (b) UAC, (c) Proxy, (d) B2BUA 

SIP proxies, an intermediary entity responsible for routing of SIP messages to the 

appropriate next hop towards their destinations. Normally, the proxy has no impact on 

the end-to-end interaction. This is enough when the application server hosts service logic 

that takes the duty of authorization, target selection and ensures the end-to-end SIP 

signaling proceeds without any interference. It may consult location server in SIP 

architecture to acquire the contact address of the end user to find out the next hop. 

When the application server hosts service that demands more controls on the 
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end-to-end SIP interaction, it has to support back-to-back user agent (routing B2BUA) 

behavior. The B2BUA role behaves as an endpoint to both parties in the SIP session. The 

following examples show the situations where a B2BUA role is necessary: to modify an 

ongoing SIP request (e.g. in multimedia phone session, turn off the video channel and 

keep the audio part), to divert a session during its valid period (e.g. to an 

announcement). 

2.3.3 Session Initiation Protocol messages 

The core SIP functions are carried by SIP messages. The core specification of SIP 

defines six basic SIP messages shown in the first six rows in Table 2.1. The rest of the 

messages in the table are heavily used SIP extensions which are defined in several IETF 

specifications [26, 27, and 28].  

SIP 
Methods 

Description 

INVITE Invites the parties to join a session. It carries the description 
of the media session to establish.  

ACK Acknowledges the final response of media session 
BYE Terminate an existing media session 

OPTIONS Query capabilities of SIP server, such as methods supported, 
session description protocol, message encoding, etc. 

REGISTER To register a user to the network  
CANCEL To request a cancellation of a pending transaction  

SUBSCRIBE Subscribe to a resource (event) 
NOTIFY Notifies about subscribed resource (event) 

PUBLISH Publish info about resource (event) 

MESSAGE Send IM messages to other clients 
Table 2.1 SIP Request Method and Functions 

SIP responses are messages generated by a SIP user agent or SIP server (e.g. proxy) 

in response to client requests. The request and response together are known as a SIP 
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transaction. In fact, one request can generate several replies and still be counted as one 

transaction. There are provisional responses and final response. The response type may 

vary depending on request type and session context on the server side which is same as a 

HTTP session. The response messages are categorized into six types as shown in Table 

2.2. 

Response Code Description 
1xx Provisional and Informational responses 
2xx Successful responses 
3xx Redirect response 
4xx Client error 
5xx Server error 
6xx Global failure 

Table 2.2 SIP Response Code and Description 

INVITE sip:Alice@ece.concordia.ca SIP/2.0

Via: SIP/2.0/UDP Concordia.ca:5060
From: Bob <sip:Bob@tse.concordia.ca>;tag=123
To: Alice <sip:Alice@ece.concordia.ca >
Call-ID: 12345600@tse.concordia.ca 
CSeq: 1 INVITE
Subject: Happy Christmas
Contact: Bob <sip:Bob@tse.concordia.ca>
Content-Type: application/sdp
Content-Length: 155

v=0
o=UserA 2890844526 2890844526 IN IP4 
tse.concordia.ca
s=Session SDP
c=IN IP4 192.168.1.103
t=0 0
M=audio 49172 RTP/AVP 0
a=rtpmap:0 PCMU/8000

Request

SIP/2.0 200 OK

Via: SIP/2.0/UDP Concordia.ca:5060
From: Bob <sip:Bob@tse.concordia.ca>;tag=123
To: Alice <sip:Alice@ece.concordia.ca >;tag=65a35
Call-ID: 12345600@tse.concordia.ca 
CSeq: 1 INVITE
Subject: Happy Christmas
Contact: Alice <sip:Alice@ece.concordia.ca>
Content-Type: application/sdp
Content-Length: 141

v=0
O=UserA 2890844526 2890844526 IN IP4         
  ece.concordia.ca
s=Session SDP
c=IN IP4 192.168.1.106
t=0 0
M=audio 3456 RTP/AVP 0
a=rtpmap:0 PCMU/8000

Response

Start Line:

Message Header:

Message 
Content(SDP):

 

Figure 2.9 Structure of SIP Request and Response 

Figure 2.9 depicts the structure of a SIP message. A typical SIP message has the 

format of: start line with the method name, request URI and SIP protocol versions; SIP 

headers; message content which is session description (could be SDP descriptions).  
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2.4 Conclusions 

In this chapter we discussed Actuators, WSAN including its architecture and 

hardware components. We presented an overview of the IMS architecture, entities and 

its operations. Finally, SIP was described. The next chapter will deal with the state of the 

art work for the integration of WSAN with existing networks including IMS. 
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Chapter 3   

Integrating actuation capabilities with existing 

networks: state of the art  

This chapter describes WSAN integration with existing networks such as Internet, 

and IMS using state of the art technologies. First, we describe the application scenarios 

of interest and then derive a set of requirements related to these application scenarios. 

Following that, we review and evaluate related work with respect to these requirements. 

3.1 Scenarios  

This research started by determining a set of application scenarios to abstract the 

requirements for the integration. Applications may be divided into many domains which 

are difficult to enumerate all. Among the domains of interest are: Emergency 

Management, Health Care, and Home Automation. Based on the ambient information 

sensed by sensors, the action to the surroundings by actuators could make wide-spread 

services available to end users through IMS network. Some typical scenarios among 

those domains are: 

• Building Fire Control Scenario 

This scenario is based on the following assumptions: A huge building equipped 

with smoke detectors, thermal sensors, humidity sensors and remote-controlled sprinkles, 

fire alarm controller, camera with motor arms, fire gate motors. Scenario is described as 

follows: Smoke sensors detect smoke in one of the office rooms in the building. Smoke 
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sensors trigger alarm system in the building immediately and fire gates are closed. The 

application deployed over the integrated architecture stores and processes fire location 

information, and the application notifies fire brigade. The application actuates fire 

extinguish devices, adjusts Closed Circuit Television (CCTV) camera near the fire scene, 

turns on the emergency lighting and escape route indication. Thermal, hazardous gas and 

structure force-sensors are sensing temperature, gas density and pressure and keep the 

application informed. The application queries intelligent building management system 

about the structure stress, safety information and updates fire fighters with 

environmental information. 

• Patient Monitoring Scenario 

The scenario assumption: Patients with chronic disease equipped with body 

sensors, such as: physiological sensors (heart beat rate, breath rate, blood glucose, and 

blood pressure). The patient’s house equipped with sensors: humidity sensor, 

temperature sensor, air pressure sensor and actuators: window with motor, ventilation 

switch, camera with motor arms. Doctors have Liquid Crystal Display (LCD) monitors, 

‘patient call’ alarm device at their clinics. Scenario is described as follow: Environment 

information at patient’s house is sensed and sent to IMS where the health care 

application is deployed. The patient’s physiological information is sensed and sent to 

IMS. IMS stores patient’s home environment information and physiological information 

and processes them. In case of an unusual situation, doctor’s ‘patient call’ alarm device 

will be triggered and doctor’s LCD monitor will be switched on. IMS will issue 

commands to turn on and adjust patient’s camera, open windows and switch on 
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ventilation devices if necessary. IMS queries patient’s history health records from patient 

information management system (external). In emergency, the IMS will notify the 

hospital emergency department, ambulance will be dispatched and the patient’s 

conditions will be monitored by the doctor during transportation.  

• Smart Home Scenario 

The scenario assumption: home is equipped with location, thermal, humidity, gas 

and motion sensors and remotely controlled switches to control TV, light, heating, 

ventilating (actuators). Scenario is described as below: Family members arrive home 

(location sensor at entrance captures the info and send to IMS). The IMS instructs to 

switch on the light. Home environmental information (temperature, humidity) continues 

to be sensed and sent to IMS.  IMS stores and processes the environmental information 

based on location, switch on/off the heating and dehumidifier based on the calculations. 

When gas leak is sensed, IMS will notify Gas Company, switch on ventilation, turn off 

electricity and trigger alarm device. Based on the family members’ location (sensed by 

location sensors) TV/light in relevant rooms will be turned on/off. When anti-theft alarm 

device is set, motion detectors will be working and any intrusion will be detected and 

alarm devices will be triggered. 

These three scenarios share some commonalities: there are various sensors and 

actuators involved; in emergency situation, the sensors could interact with actuators 

directly and make the efficient actuation available; IMS is responsible to deal with 

actuation coordination to avoid conflict; A lot of interactions among the IMS, WSN and 

AN, therefore a standardized mechanism for these interactions is a must to enable the 
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expandability and flexibility. 

3.2 Requirements  

From the above scenarios, we derived the requirements for the integration 

architecture: 

Requirement 1: The architecture should support a wide range of actuators, e.g. 

switches, motors and valves.  

Requirement 2: Low level actuation details, of specific actuators, should be 

transparent to high level entities and applications. Developers of applications should not 

be concerned about low level properties of actuators. 

Requirement 3: The architecture should be able to support two actuation models:  

The automated actuation, i.e. standard actuation service based on context information 

sensed by sensors, and the semi-automated actuation, i.e. actuation service with 

intervention of end users or applications.  

Requirement 4: The architecture should also support actuation arbitration to avoid 

collisions when several actuation requests are made in parallel. Furthermore, the 

framework should provide actuation aggregation and de-aggregation, which will enable 

simultaneous actuations on multiple actuators from the application perspective.  

Requirement 5: The target architecture should rely on standard communication 

protocols which can easily inter-operate with IMS (e.g. SIP) and enable both 

synchronous and asynchronous modes of communication. 
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3.3 Evaluation of related work 

This section discusses some of the research on integration wireless sensors and/or 

actuators with existing networks including IMS and Internet.  

3.3.1 SENSEI Project 

The SENSEI project is developing an architecture for globally scalable web 

resources for machines, sensors and actuators - the Real World Internet.  This 

framework offers two fundamental services for the future Internet: context information 

services and actuation services [29]. 

The SENSEI architecture provides necessary network and information 

management services to enable reliable and accurate context information retrieval and 

interaction with the physical environment.  By adding mechanisms for accounting, 

security, privacy and trust, it enables an open and secure environment for 

context-awareness and real world interaction through WSAN islands [30].  

The SENSEI framework abstracts sensors and actuators as resources [31]. In the 

SENSEI domain, a resource is a conceptual representation of any information source 

that enables real world sensing or has the ability to act upon the environment. In addition 

to resources that have direct access to the physical world, the concept covers also 

indirect information sources that acquire context information via aggregation, fusion or 

even inference (composing) from existing SENSEI resources. The SENSEI framework 

has been designed using fundamental concepts of the World-Wide Web. In order to 

enable the SENSEI framework even on the most constrained devices like sensors and 
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networks such as IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) 

[32], the SENSEI embedded resource concept is used to extend the web resource model 

to minimal IPv6 [33] nodes with very little overhead. It also maintains end-to-end IP 

principles and easy interoperability with existing web protocols. 

The detailed SENSEI architecture is shown in Figure 3.1 [29]. There are several 

core components defined in SENSEI: 

Resource Directory: Serving as a linking point for resources and resource users, it 

stores descriptions of all available resources. XML is used to describe the resources. It 

has direct interface with WSAN islands gateways. The 6LowPAN is selected as the 

interface protocol for the interactions between the WSAN islands gateways and the 

Resource Directory.  

Semantic Query Resolver: Responsible for analysis of high level user queries and 

discovery of suitable and available resources capable of providing information required 

to respond to the queries. It will consult Dynamic Resource Creator (DRC) for resource 

composition when the requested resource does not exist. 

WSAN islands interact with the framework via their respective gateways. 
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Figure 3.1 Detailed SENSEI Architecture  

For the actuation service, SENSEI framework supports the following actuation 

models: 

1) Embedded actuation 

Under this model, the actuation task can be started and normally parameterized, 

but the sources of context information (real-world sensor) as well as the control logic are 

embedded in the real-world actuation device. Most of the actuators are embedded in the 

objects without interface to third party applications (see Figure 3.2 [29]). This is the 

predominant situation on the market. 
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Figure 3.2 SENSEI embedded actuation  

2) Application based actuation decision 

If the Application is performing the actuation control function, neither the 

real-world actuator and sensor devices are aware of the control logic, nor is the SENSEI 

framework (see Figure 3.3 [29]). 

 

Figure 3.3 SENSEI application based Actuation Decision  

The SENSEI framework provides a way of integrating sensors and actuators with 

Internet. It addresses the interfaces and components for accessing the physical devices 

through the linking services (resource directory, entity directory). It supports both 

automated and semi-automated actuation, its main goal is to integrate WSAN with 

Internet via gateways, but the proposed gateway model and actuation task model is 
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specific to the Internet and does not consider IMS specific requirements for WSAN/IMS 

integration. Further it is still ongoing and the protocol for components interactions is yet 

to be decided. 

3.3.2 e-SENSE 

The e-SENSE project [34] defines open gateway architecture to facilitate 

connectivity and integration of information offered by WSN with Beyond Third 

Generation (B3G) wireless networks. In its later evolution, it proposes architectural 

extensions for the integration of e-SENSE systems with IMS based service platforms. 

Within the IMS domain an e-SENSE Service Enabler has been introduced as a new 

functional element [34]. 

 

Figure 3.4 Enhanced e-SENSE protocol stack  

Figure 3.4 [34] shows the structure of the e-SENSE protocol stack. It is divided 
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into four logical sub-systems, namely the connectivity (CO), middleware (MI), 

management (MA), and application (AP) subsystem. Each subsystem comprises various 

protocol entities, which offer a wide range of services at various service access points 

(SAPs) to other sub-systems. The services and respective protocol entities can be 

combined in many ways to configure the protocol stack according to the role of the 

sensor node and application requirements. 

Figure 3.5 shows the relationship of the e-SENSE service enabler with respect to 

other service enablers in an IMS domain. A context aware application, typically hosted 

on an IMS AS, is able to use the e-SENSE service enabler as a service building block, 

similar to other IMS service enablers such as the presence service, instant messaging 

(IM) service and group management (GM) service. 

  
(a)

(b)

 
Figure 3.5 e-SENSE enabler in IMS: (a) e-SENSE service in IMS environment, (b) 

interfaces between e-SENSE entities and other IMS network components 

Although e-SENSE project extends its initial architecture by introducing open 

gateways towards IMS enable its integration with IMS as a service enabler, it does not 

offer any support for actuation. Further, wrapping everything in a gateway is not an 

efficient way of information access, for the context information, this may incur repeat 
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adaptation when it has to go through two levels of gateways: WSN level (to e-SENSE) 

and e-SENSE level (to IMS).  

3.3.3 Presence based integration of Wireless Sensor Network and IP 

Multimedia Subsystem 

This project proposes a presence based architecture for the integration of WSN and 

IMS, focusing on how the information is conveyed from the WSN to the presence 

infrastructure in IMS.  

To enable the integration of WSNs in the IMS, this architecture assigns the role of 

Presence External Agent (PEA) to the WSN gateway, which publishes information 

provided by the WSN about different entities (user and non-user entities) to an extended 

Presence Server (PS). The PS manages the different types of context information 

provided by the sensors. Other entities such as other IMS ASs, IMS core network 

entities (e.g. CSCFs), and IMS user applications can act as watchers to the information 

published in the presence server, and use this information to provide value-added 

services to end users. Figure 3.6 [6] depicts the proposed architecture. 

 

 
Figure 3.6 WSN/IMS integrated architecture  

The architecture divides the interface between the WSN gateway and the PS into 
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two sub-interfaces: Pexa, and Pexb. Pexa is used for the exchange of contextual 

information between the gateway and the PS, via a trusted node (a presence proxy). PS 

directly interacts with the gateway through Pexb interface. The proposed architecture 

also defines interfaces between the PS and watchers: the Pw and the Pwn interfaces. Pw 

is an enhancement of the existing 3GPP interface which enables end user applications 

and IMS AS to access presence information on the PS, via presence proxies. Pwn is a 

new interface that enables network entities acting as watchers to get direct access to 

presence information from the PS. 

However, the sensing is focus on the context information acquiring and providing 

while the actuation is command based and there should be input from the third party to 

trigger it. The architecture designed by this project intends to integrate sensing 

capabilities and enrich the context aware services in IMS, but it does not address issues 

relevant to actuation. 

3.4 Evaluation summary 

In the previous sections, we discussed three projects most relevant to our targeted 

architecture. These projects aim to integrate sensors with either IMS or Internet. But 

none of them directly addresses the protocols and information models needed for 

integration of actuators with IMS. In fact, as mentioned in the introduction chapter, our 

target is to find a solution for enabling actuation service for the end users or applications 

through a ubiquitous mechanism. The evaluation of the three approaches with regard to 

the requirements set in the beginning of this chapter is shown in Table 3.1. As we can 

see from the table, none of these approaches come close to meeting all the requirements. 
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Thus, we have to develop a new architecture dealing with the stated objectives. 

             Related Work 
Criteria 

SENSEI e-SENSE 
Presence Based integration 
of WSN and IMS 

Criterion 1: support a wide range of 
actuators 

Not 
mentioned No No 

Criterion 2: two levels of actuation 
abstraction No No No 

Criterion 3: two actuation models  
Yes No No 

Criterion 4: support actuation arbitration  
Yes No No 

Criterion 5: support standard session 
control protocol-SIP  No Yes Yes 

Table 3.1 Evaluation summary of related work 

3.5 Conclusions 

This chapter considered related research projects on the integration of actuation 

capability with existing networks or integration of sensing ability with IMS. According 

to the evaluation, none of the existing projects meet for the targeted architecture 

requirements. In the rest of the thesis, we present a new architecture, demonstrate that it 

meets the requirements and give its implementation.
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Chapter 4  

Integration of Wireless Actuator Networks with IP 

Multimedia Subsystem 

The evaluation of related work in the previous chapter showed that there is no 

existing architecture that meets the requirements of the integration. Thus, we need to 

develop a novel architecture. This chapter presents the proposed architecture and its 

principles and the key architecture components.  

4.1 Overall architecture and principles  

Figure 4.1 depicts the integrated architecture with two new entities, the Actuation 

Control Function (ACF) and the IMS/Wireless Actuator Gateway (WAG), as well as 

actuation command interfaces-Aa and Ag.  

According to the Requirement 5 mentioned in the previous chapter, we try to 

leverage existing components of IMS as much as possible in our architecture to ensure 

the compatibility. To meet the Requirement 2, we introduce the ACF to IMS to provide 

two levels of abstraction: the low level for the proprietary and actual commands used to 

control an actuator via the WAG and the high level which enables requests from AS.  

The applications do not need to know how to control an actuator directly and which 

actuator the command should be sent to. The applications see the ANs at a high level of 

abstraction and from a logical point of view. With regards to the Requirement 1 and 2, 

we use gateway based solution to hide heterogeneity of actuator network structures and 
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technologies. The rest of the architecture remains the same as in the IMS.  

The ACF acts as an application server from the IMS perspective and handles high 

level actuation requests from other applications. It decomposes the requests into 

actuation commands targeting specific ANs. The ACF receives actuation responses from 

the WAGs, aggregates them and feeds them back to the appropriate applications. 

The WAG transforms the actuation commands sent by the ACF to low level, 

proprietary and actual actuation commands that can be understood and executed by 

actuators. It dispatches these commands to individual actuators and collects the 

responses. The WAG is not necessarily an entity in IMS. It could be part of the actuation 

infrastructure or even belong to a third party. The actuators act on the environment in 

reaction to the commands. The main reason for introducing the WAG into our 

architecture lies in two aspects: providing support functions, such as actuation 

arbitration; and taking care of the low level actuation commands to lighten the load of 

other IMS entities. These entities do not need to know or handle the physical commands 

for controlling specific actuators. 

Like other application deployed in the IMS, the ACF can be invoked by the 

S-CSCF through the ISC interface based on SIP protocol. Other applications interact 

with the ACF via the Aa interface through which actuation requests and responses are 

carried. The ACF can also interact with HSS via the Sh interface which carries actuation 

service related control information, such as subscription, authorization and accounting. 

Through the Ag interface, the ACF interacts directly with the WAG exchanging 

decomposed actuation commands and actuation feedbacks. Ac, the interface between 
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P-CSCF and the WAG, carries registration information and facilitates the interaction 

between the ACF and the WAG using standard SIP protocol. The other entities in the 

architecture remain the same as in the existing IMS framework. 

 
Figure 4.1 Architecure Overview 

 

4.2 Design of Actuation Control Function 

ACF is an intermediate entity between other applications deployed on an IMS AS 

and WAG. It is an application level entity that provides standard interfaces (Ag, Aa) for 

actuation command transporting. Figure 4.2 shows the proposed ACF structure which 

consists of two layers, namely connectivity layer and actuation control layer.  
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Figure 4.2 ACF software structure 

4.2.1 Actuation control layer 

The actuation control layer is the core functional layer of the ACF. It is responsible 

for handling and dispatching actuation requests from other applications or services 

deployed on a SIP AS. It consists of two categories of functions: actuation processing 

functions and actuation support functions.  

4.2.1.1 Actuation processing functions 

The actuation processing functions are realized by the following modules: 

actuation request handler, actuation request dispatcher, response composition via 

response listener function and an Actuation Command Markup Language (ACML) 

parser/formatter.  

When the ACF receives a request from an application, it decomposes it into 

actuation requests according to its knowledge of the actuators distribution, i.e. the 



 

44 

mapping table of the targeted objects versus actuator gateways; the actuation request 

dispatcher will then send the decomposed requests to the appropriate gateways. Upon 

reception of the responses from the gateways, the response listener forwards them to the 

response composition module, which will combine them and send a response to the 

originator of the request via the MCCF. The detailed process is explained in the 

following paragraphs. 

ACML Parser/Formatter Function: This module performs message content 

abstraction, ACML parsing or ACML formatting depending on whether it is receiving or 

sending a message. When an actuation request carried by CONTROL message reaches 

ACF, the control package in the content part of the message will be analyzed and the 

values of the elements will be put into an object as attributes. According to the ACML 

definition, the elements are: Object Name, Civic Address, Index, etc. The ACML will be 

explained in more detail in the next chapter. Once the Actuation Request Handler 

module finishes its processing, a new request will be generated. This module will then 

be used to build the control package and embed it into the new message.  

Actuation Request Handler Function: Based on the result of the ACML parser, 

this module will perform the following tasks: first, it will do mapping. According to the 

element values, it will look into the preconfigured mapping table and try to find out 

which WAG is involved and its IMS identity (SIP URI). At the same time, if more than 

one WAG entries are found, it has to keep records of the request for each entry for 

reverse mapping. The reverse mapping is used for response composition. This module 

will built the actuation request content in ACML with the SIP URI of WAG as its 
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destination and hand over to Actuation Request Dispatcher for sending.  

Actuation Request Dispatcher Function: Acting as SIP UA and later as control 

client, the ACF through this function module sends out a request message addressed to 

specific WAGs. It will act as control client towards WAG and start a new SIP INVITE 

session to establish an MCC. It stores the unique MCCF Dialog ID (from the 

CONTROL message header) together with the ID of the new MCCF Dialog established 

towards WAG. The main function of this module is to liaise with Connectivity layer 

functions and trigger new SIP and CONTROL sessions. It also manages a request queue 

when there is more than one request towards the same WAG. 

Response Listener and Composition Functions: The response listener monitors 

the response from WAG. Once the response arrives to ACF from WAG, this module will 

get the unique dialog id from the response, then hand over the id and the status code to 

the Composition module. The composition module will build the overall response to the 

original request according to the reverse mapping table established by Actuation Request 

Handler Function. Then it will trigger the CONTROL session to send the response to the 

original applications which sent out the request. 

Actuation Mapping Tables: There are two types of mapping tables: WAG 

mapping table, and request matching table (reverse mapping). WAG mapping table is 

used to locate the specific WAG to which a request from an AS addresses, it is 

preconfigured and static. Request matching table is used during response composition 

process. Through the entries of this table, a response message from WAG will be related 

to an existing request from AS which involves multiple requests to WAG. This table is 
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dynamically built by Actuation Request Handler Function.  

WAG mapping table entries will have the following format: (civic location, object 

name, WAG IMS identity). A sample WAG mapping table is shown in table 4.1. 

Civic location Object name WAG IMS identity 

A.11.08 Camera wag_a@ericsson.com 

B.12 Sprinkler wag_b_sprinkler@ericsson.com 

Table 4.1 Sample WAG mapping table 

Request matching table entries will have the following format: (id of original 

MCCF Dialog from AS to ACF, id of generated MCCF Dialog from ACF to WAG). 

The id is generated by the message initiator and negotiated by SDP during the 

establishment of MCC. It was carried by “cfw-id” attribute. It is key information for the 

MCCF dialogs which will be referred to by both control client and control server. A 

sample request matching table is shown in table 4.2. 

Original MCCF Dialog ID Generated MCCF Dialog ID 

6e5e86f95609 518ba6047880 

6e5e86f95609 5feb6486792a 

4hrn7490012c 2b4dd8724f27 

Table 4.2 Sample request matching table 

4.2.1.2 Support functions 

The support functions include: Actuation Log module, Actuation Authorization 

and Authentication module. 
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Actuation Log function: This module keeps records of actuation service usage for 

accounting purpose and tracks the problem or request failure and events, similar to the 

server log on application server. 

Authorization and Authentication function:

4.2.2 Connectivity Layer 

 This function performs actuation 

service authorization and authentication. It interacts with HSS to update service access 

profile which is used to judge whether an application has the right access authorization. 

It also performs the actuation request verification to ensure the request has the right 

format and integrity of necessary parameters. 

The connectivity layer implements IMS communication stack (SIP) which is used 

to establish connectivity to IMS network. It also implements MCCF protocol, which is 

used to interact with application servers and WAG. 

4.3 Design of Wireless Actuator Gateway 

WAG masks the details of the heterogeneous ANs and makes standard access to 

actuation service from applications possible through the integration with IMS. It is an 

application layer gateway and performs translation of actuation request to proprietary 

commands that actuators can accept. The software architecture of the WAG is depicted 

in Figure 4.3. It has similar structure to the ACF and also consists of two layers: 

connectivity layer and actuation control layer.  
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Figure 4.3 WAG software structure 

4.3.1 Actuation control layer   

The core of the WAG is the actuation control layer functions, which consists of 

two groups of functions: actuation management functions and actuation support 

functions.  

4.3.1.1 The actuation management functions   

The actuation management functions are performed by the following modules: a 

set of actuation processing modules (request mapping, actuation arbitration, and 

actuation scheduler), a response composer, a set of monitor modules, capability 

management and an ACML parser. The ACML parser has the same function as the one 

in ACF. 

The actuation request mapping module: Performs mapping of logical entities to 
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physical actuators. It looks up the preconfigured mapping table and find out the relevant 

actuators. Later on, the mapping table can be updated dynamically based on the 

capability management events. An example of the mapping table is shown in Table 4.3: 

Civic 

location 

Object 

name 

index  Actuator identity Status  

A.11.08 Camera 02 Camera02 Active 

B.12 Sprinkler 03 Sprinkler03 Inactive 

Table 4.3 sample of mapping table at WAG 

 The index element is optional. If no index appears, it means all the actuators at 

the location. The actuator identity format may vary in different actuator networks. In an 

IP-enabled actuator network, WAG will talk to the actuators via IP connections. The IP 

address can be found through the actuator ID. Then the communication will be 

established based on the IP address.  

Capability Management: Monitors status of actuators in real time through an 

event monitor module. If some actuators fail, the actuators’ status will be changed from 

“active” to “inactive” in the mapping tables. 

Actuation scheduler: It interacts with capability management module to acquire 

the current availability of specific actuators. When the actuation request mapping 

completes, one or more actuation commands related to the request will be dispatched to 

specified actuators via the actuation scheduler.  

Actuation Arbitration: 
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In the situation of multiple requests addressed to the same actuators in parallel, 

this module will put all the requests into a queue and resolve the conflict using ‘First 

Come First Service’ policy. 

Response Listener and Composition:

(ID of MCCF Dialog from ACF to WAG, actuator ID). 

 The Response Listener and Composition 

modules have similar functionality with their namesakes in ACF. There are though some 

differences: The Response Listener receives the response message through the 

proprietary interface, and the mapping table is different, it is using actuator ID to match 

with the MCCF dialog ID. The mapping table entries are in the following format: 

When the results and feedbacks from the actuators come in, an overall response 

will be sent by the response composition module to the ACF. 

4.3.1.2 Support functions 

Security functions: Besides authorization and authentication functions, this 

module acts as firewall to actuator networks. It will force the security policy 

preconfigured in the WAG to avoid being attacked. 

Registration Function: This module is for future expansion. Currently this 

architecture implements static (preconfigured) WAG mapping that means all the WAGs 

are configured into the system before being put into service. In the future, we will 

implement dynamic joining or leaving of WAG by using IMS registration operation 

procedure. 
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4.3.2 Connectivity layer 

In the connectivity layer, the standardized actuation control interface (composed of 

SIP stack and MCCF) and proprietary actuator control interface are combined together 

to enable communication between IMS entities and individual actuators.  

SIP and MCCF: This interface implements IMS communication stack (SIP) and 

establishes connectivity to the IMS network. The IMS interface interacts with IMS 

network entities, CSCFs (Proxies). It also implements MCCF, established by SIP 

INVITE sessions [8], which will be used to interact with ACF. 

Actuator proprietary interface: This interface implements communication stack of 

ANs. The communication interfaces between actuator nodes are proprietary. It should 

support different proprietary interfaces to communicate with heterogeneous actuator 

platforms such as Zigbee actuators, 6LowPAN actuators, Robots. In our implementation, 

we implement an interface to a simulated robot. 

4.4 Actuation application server 

In order to use the actuation service, the application has to implement MCCF and 

send the request via CONTROL messages. The rest part of the application deployed in 

the IMS remains unchanged.  

4.5 Conclusions 

In this chapter, we have proposed an architecture for the integration of actuation 

capabilities with IMS. The architecture introduces two new functional entities into the 

IMS framework: the ACF and the WAG. Then the design of the key architecture 
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components is presented. The software functions of these components are depicted 

thoroughly.  

This architecture is designed to meet the requirements we set in chapter 3. First, it 

can support wide range of actuators via gateways (the WAGs). Second, it introduces two 

levels of actuation command abstraction through the ACF and the WAG, which masks 

the physical details of the actuators. This provides service developers flexibility to 

develop actuation enabled applications. Third, it supports both actuation models: 

automated and semi-automated. The actuation arbitration is also supported at the WAG 

level. Finally, this architecture is based on the IMS, it supports standard session control 

protocol-SIP.   

The implementation of the architecture is described in chapter 6. The next chapter 

gives detailed explanation of the Actuation Control Protocol and the information model 

we developed. 
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Chapter 5  

Actuation Control Protocol and Actuation Control 

Information Model 

In this chapter, we will determine actuation control protocol and information 

model for the architecture described in the previous chapter. In order to select the 

appropriate protocol to carry the actuation commands, we first set criteria for evaluating 

potential solutions. Then a few of existing protocols that deal with command semantics 

are evaluated with regards to the selection criteria. Later, the actuation information 

model is presented. Finally, the data flow of the actuation task delivery and processing is 

described. 

5.1 Criteria for actuation control protocol selection 

Based on the functionality of Aa and Ag interfaces specified in chapter 4, we set 

the following criteria for the protocol evaluation:  

Criterion 1: The protocol should be stateful. The stateful requirement comes from 

the fact that application may cancel actuation requests or trigger a sequence of 

actuations with some kind of dependency.  

Criterion 2:  The protocol is supposed to leverage IMS capabilities as much as 

possible. IMS has already defined a number of supporting facilities to ease the service 

delivery, such as authentication, authorization functions. Instead of choosing protocols 

alien to the IMS scheme, try protocols compatible with IMS networks which will ease 
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the implementation and improve expandability. 

Criterion 3: The protocol should support conditional actuation requests. Under 

certain circumstances, the user could request an actuation to be triggered at a later time 

or under certain conditions to increase service flexibility. 

Criterion 4: The protocol should support complex actuation requests. It should 

allow conditional actuation and compound actuation. For instance, a user could request 

actuation A or actuation B executed under condition 1, both of them to be executed 

under condition 2. This should rely on the information model. However, the protocol 

should be able to support carrying of such information model. 

Criterion 5: Actuators should be transparent to the integrated architecture entities 

(IMS AS, ACF) as much as possible.  

Criterion 6: In order to minimize processing time and ease its implementation, the 

actuation control protocol should be as simple as possible.  

5.2 Evaluation of command semantic carrying protocols 

 A few existing protocols can be considered for actuation controlling: Megaco 

[35], Simple Mail Transfer Protocol (SMTP) [36], Standard SIP, and MCCF [8]. All of 

them except SIP can carry command semantics. Standard SIP plus command semantic 

carrying information model could also be an option. Next we evaluate each of these 

protocols with regard to the set criteria in the above. 

5.2.1 Simple Mail Transfer Protocol 

SMTP is a relatively simple, text-based, application level protocol. Figure 5.1 
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shows the SMTP structure. It uses a limited set of commands (as shown in table 5.1) and 

reply codes for its communication. The objective of SMTP is to transfer mail reliably, 

efficiently and easily. Under SMTP, a mail sender communicates with a mail receiver by 

issuing command strings and supplying necessary data over a reliable channel, typically 

a TCP connection.  

 

Figure 5.1 SMTP structure 

An SMTP session contains commands initiated by an SMTP client and 

corresponding responses from the SMTP server. A session may include zero or more 

SMTP transactions. It is stateful and contains three states: session initiation, mail 

transactions and session termination. An SMTP mail transaction consists of three 

command/reply sequences. They are: 

1) MAIL command, to establish the return address.  

2) RCPT command, to establish a recipient of this message.  

3) DATA to send the text content of the message. It consists of a message header 

and a message body separated by an empty line.  

The SMTP has limitations: It does not support for the server proactively notifying 

client about special events, and does not have any delayed and periodical command 

execution mechanism. It is not compatible with standard protocols used in the IMS. 
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SMTP 
Commands 

Description 

HELO / EHLO This command is used to identify the sender (client) to the SMTP server. 
MAIL FROM: Specifies the sender's e-mail address (and name, if used). 

RCPT TO: Specifies the recipient's e-mail address (and name, if used). 
DATA Starts the transfer of the actual data (body text, attachments etc). 

RSET (RESET) Specifies that the current mail transaction will be aborted. 

VRFY (VERIFY) Asks the receiver to confirm that the argument identifies a user or 
mailbox. 

HELP This command causes the server to send helpful information to the 
client. 

QUIT Quits the session. 

Table 5.1 SMTP commands 

SMTP is specifically tailor made for mail transfer, the commands it defines serves 

that goal well but does not offer any support to other complex control semantics. If we 

consider inserting command in the message content, the plain text message is not able to 

carry any command semantics and provides no help to our problem domain. 

5.2.2 Session Initiation Protocol with Media Server Markup Language 

The Media Server Markup Language (MSML) [37] provides a way to control 

media servers independent of transport protocols, although it is normally carried by a 

SIP INFO [38] message or an MCCF message [39]. It can be used to control and invoke 

many different types of services on IP media servers. The Clients can use it to define 

how multimedia sessions interact on a media server.  MSML can be used, for example, 

to control media server conferencing features such as video layout and audio mixing, 

create sidebar conferences or personal mixes, and set the properties of media streams 

[37]. 
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It abstracts the media server as Media Server Object Model. This model assumes 

that there exists one single control context within a media server. This control context is 

aware of the state of all media objects and media streams within the media server. The 

objects are endpoints of one or more media streams. There are four types of such objects: 

network connections, conferences, dialogs and operators. The single control context 

receives and processes all MSML requests and events generated internally by media 

objects and sends them to the appropriate SIP dialog. 

The IETF draft presents two alternative ways to transport MSML: One is by SIP 

INFO messages and the other is using the MCCF. MSML commands are sent from a 

client to the media server via SIP messages (most notably the INFO message). The body 

of the SIP message contains the XML control syntax. The MSML request may carry 

several actions (elements) to be processed or a single command. 

The language structure of MSML is based on a package and a profile scheme as 

shown below: 

 

Figure 5.2 MSML core package scheme 

Not all devices and applications using MSML need to support the entire MSML 
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schema.  For example, a media processing device might support only audio 

announcements, or only multimedia IVR.  It is highly desirable to have a system for 

describing what portion of MSML a particular media processing device or control agent 

supports. The MSML profile scheme is designed for this purpose and it defines subset of 

a given MSML package with specific definitions of elements and attributes.  

From the functional perspective, the MSML is more like definition of an 

information model. It was designed specifically for the media server controlling, to 

support actuation service, we have to define a new package. And the SIP INFO method 

is not suitable for carrying control messages for the following reasons: SIP INFO is an 

opaque request with no specific semantics. A SIP endpoint that receives an INFO request 

does not know what to do with it if only based on SIP state machine. It was not created 

to carry generic session control information along the signaling path, and it should only 

really be used for optional application information. It traverses the signaling path, which 

is an inefficient use for control messages that can be routed directly between the 

controller and the controlled. 

5.2.3 Megaco 

Megaco, officially called H.248, is a mature and complex protocol and specifically 

designed for a media server to control media gateways. It specifies the relationship 

between the Media Gateway Controller (MGC) and the Media Gateway (MG), which 

initially defined with function of converting circuit-switched voice to packet-based 

traffic, and later on it was also assigned the responsibility of mixing streams for 

multimedia conferencing.  
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Megaco/H.248 defines two basic components: terminations and contexts [35]. 

Terminations represent streams entering or leaving the MG (for example, analog 

telephone lines, and RTP streams [40]). Terminations have properties, which can be 

inspected and modified by the MGC.  

Megaco/H.248 uses a series of commands to manipulate terminations, contexts, 

events, and signals. Table 5.2 shows a list of the commands. 

Megaco commands Function 
Add Add a termination to a context 

Modify Modify the properties, events and signals of a termination 
Subtract Disconnect a termination from its context 
Move Atomically move a termination to another context 

AuditValue Return the current status of properties, events, signals and 
statistics of Terminations 

AuditCapabilities Return all the possible values for termination properties, 
events and signals 

Notify Inform the MGC of the events happened in the MG  
ServiceChange Notify the MGC of any service related status change, e.g. a 

Termination is about to leave service or has returned to 
service; MG is available or restarted.   
The MGC may use ServiceChange to announce a handover 
to the MG or instruct the MG to take a Termination in or 
out of service. 

Table 5.2 Megaco commands and functions 

Megaco message structure is depicted in Figure 5.3, multiple transactions could be 

assembled in one single Megaco message and each transaction may contain several 

actions. One or more commands embedded with multiple descriptors could be inserted 

into a single action. The termination properties, event descriptors and other controllable 

parameters are modeled as descriptors, which can be defined in a package. This structure 

made Megaco a complicated protocol to operate and under which the efficiency is 

affected. 
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Figure 5.3 Megaco Message Structure 

The Megaco/H.248 protocol is ideally designed as a media gateway control 

protocol. The defined packages are specifically focused on telephony applications. To 

support actuation, existing packages have to be extended and redefined. This is a 

complicated process and the complex structure of the protocol also limits the 

performance of high-efficiency demand applications. Again, like SMTP, it is not easy to 

interact with SIP. 

5.2.4 Media Control Channel Framework  

MCCF is specified in [8]. It defines mechanism of using SIP/SDP for establishing, 

using, terminating reliable connection (channel) to control an external server. The initial 

objective of this protocol was to replace Megaco in certain media control situation to 

simplify the procedure, however, it is not limited to that objective. It can be easily 

expanded to support the control of a general external server [8]. Three entities are 

defined in this framework: Control Client, Control Server and Control Channel as 

depicted in Figure 5.4. 
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Figure 5.4 MCCF Overview 

5.2.4.1 Entities and concepts 

Few entities and concepts are introduced in MCCF which are described below,  

Control Server: A Control Server is an entity that performs a service, such as 

media processing, on behalf of a Control Client. For example, a media server offers 

mixing; announcement; tone detection and generation; play and record services. The 

Control Server has a direct RTP relationship with the source or sink of the media flow.  

Control Client: A Control Client is an entity that requests processing from a 

Control Server. The Control Client might not have any processing capabilities. For 

example, the Control Client may be a SIP Application Server (B2BUA) or other 

endpoint requesting manipulation of a third-party’s media stream, which terminates on a 

media server acting in the role of a Control Server.  

Control Channel: A Control Channel is a reliable connection between a Control 

Client and Control Server that is used to exchange framework messages. 

Framework Message: A Framework Message is a message on a Control Channel 

that has a type corresponding to one of the Methods defined in [8]. A Framework 

message is often referred to by its method, such as a "CONTROL message". 

Control Command: A Control Command is an application level request from a 
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Client to a Server. Control Commands are carried in the body of CONTROL messages. 

Control Commands are defined in separate specifications known as "Control Packages". 

5.2.4.2 Framework messages 

Four methods are defined in this framework: SYNC, CONTROL, REPORT, and 

K-ALIVE as listed in Table 5.3. They are defined in separate specifications known as 

"Control Packages". Currently, there are few control packages defined in [39, 41, 42]. 

MCCF Message Function 
SYNC used to negotiate the timeout period for the 

control-channel keep alive mechanism, to 
allow clients and servers to learn the 
Control Packages that each supports and 
most important, to associate SIP dialog 
with control channel 

CONTROL used by the Control Client to pass control 
related information to a Control Server; 
also used as the event reporting mechanism 

K-ALIVE enables the control channel to be kept 
active during time of inactivity; also 
provides the ability for application level 
failure detection 

REPORT used by a Control Server when processing 
of a CONTROL Command extends beyond 
the Transaction-Timeout, as measured from 
the Client 

Table 5.3 MCCF Messages 

5.2.4.3 Media Control Channel establishment 

SIP provides the ideal mechanism for establishing and maintaining control 

connections to external server components. The control connections can then be used to 

exchange explicit command/response interactions that allow for media control and 

associated command response results. 
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Figure 5.5 MCC establishment 

As shown in Figure 5.5, the control client (AS) and the control server (ACF) 

establish a Media Control Channel (MCC) through a SIP dialog which usually originates 

in the AS. The AS generates a SIP INVITE message which contains in its SDP body 

information about the MCC that it wants to establish with the ACF. In the provided 

example (see Figure 5.6), the AS wants to actively open a new TCP connection, which 

on his side will be bound to port 5757. If the request reaches the ACF successfully (in 

time and no error), the ACF responds with its own offer by communicating to the AS the 

transport address to connect to in order to establish the TCP connection. In the provided 

example, the ACF will listen on port 7575. Once this negotiation is over, the AS can 

effectively connect to the ACF. The negotiation includes additional attributes, the most 

important is the ’cfw-id’ attribute, since it specifies the dialog id which will be 

subsequently referred to by both the AS and ACF, as specified in the core framework 

draft [8]. 
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1. AS -> ACF (SIP INVITE)
------------------------
INVITE sip:acf@ericsson.com:5060 SIP/2.0
Via: SIP/2.0/UDP 192.168.1.15:5060;\
branch=w3ef4qb-c6308z-4g06d3412h8sd224-1---c6308z-
;rport=5060
Max-Forwards: 70
Contact: sip:ApplicationServer@192.168.1.10:5060

To: <sip:acf@ericsson.com:5060>
From: 
<sip:ApplicationServer@ericsson.com:5060>;tag=3456rt24
Call-ID: SGf3LKU1HDT3UnKkZjgzYTQwYmJlNjE5NTA4ZDQ1OGY.
CSeq: 1 INVITE
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, UPDATE, 
REGISTER
Content-Type: application/sdp
Content-Length: 263
v=0
o=lminiero 2890844526 2890842807 IN IP4 ericsson.com
s=MediaCtrl
c=IN IP4 ericsson.com
t=0 0
m=application 5757 TCP cfw
a=connection:new
a=setup:active
a=cfw-id:5feb6486792a
a=ctrl-package:actuation-camera/1.0

2. AS <- ACF (SIP 200 OK)
------------------------
SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.1.10:5060; \
branch=z9hG4bK-d8754z-9b07c8201c3aa510-1---d8754z-
;rport=5060
Contact: <sip:acf@ericsson.com:5060>
To: <sip:acf@ericsson.com:5060>;tag=499a5b74
From: 
<sip:ApplicationServer@ericsson.com:5060>;tag=4354ec63
Call-ID: MDk2YTk1MDU3YmVkZjgzYTQwYmJlNjE5NTA4ZDQ1OGY.
CSeq: 1 INVITE
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, UPDATE, 
REGISTER
Content-Type: application/sdp
Content-Length: 296
v=0

o=lminiero 2890844526 2890842808 IN IP4 ericsson.com
s=MediaCtrl
c=IN IP4 ericsson.com
t=0 0
m=application 7575 TCP cfw
a=connection:new
a=setup:passive
a=cfw-id:5feb6486792a
a=ctrl-package:actuation-camera/1.0

3. AS -> ACF (CFW SYNC)
----------------------
CFW 6e5e86f95609 SYNC
Dialog-ID: 5feb6486792a
Keep-Alive: 100
Packages: actuation-camera/1.0

4. AS <- ACF (CFW 200)
---------------------
CFW 6e5e86f95609 200
Keep-Alive: 100
Packages: actuation-camera/1.0
Supported: actuation-camera/1.0

 

Figure 5.6 Example of SIP dialog messages and MCCF SYNC message 

5.2.4.4 CONTROL transactions 

A CONTROL message is used by the Control Client to pass control related 
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information to a Control Server. It is also used as the event reporting mechanism in the 

control framework. Reporting events is simply another usage of the CONTROL message 

which is permitted to be sent in either direction between two participants in a session, 

carrying the appropriate payload for an event. The message is constructed in the same 

way as any standard framework CONTROL message, as shown in Figure 5.7. In most 

cases, a CONTROL message contains a message body. The explicit control command(s) 

contained in the message payload of a CONTROL message should be specified in a 

separate Control Package.  

 INVITE

Application Server ACF

ACK

200 OK

SIP Media Control Channel 
(TCP Connection)

200OK

SYNC

processing

200OK

CONTROL

processing  

Figure 5.7 CONTROL transaction 

A sample CONTROL message is shown in Figure 5.8.  
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1. AS -> ACF (CFW CONTROL)
----------------------
CFW 101fbbd62c35 CONTROL
Control-Package: actuation-camera/1.0
Content-Type: application/acml+xml
Content-Length: 178

<actuation-camera version=”1.0” 
xmlns=”urn:ericsson:xml:ns:actuation-camera”
<commandTuple>
    <action>
       <name>switch</name>
       <attribute>on</attribute>
    </action>
    <Objeccts>
       <object>
           <name>camera</name>
           <location>a.11.08</location>
       </object>
    </objects>
</commandTuple>
</actuation-camera> 

2. AS <- ACF (CFW 200)
---------------------
CFW 101fbbd62c35 200

 

Figure 5.8 CONTROL message and response 

5.2.4.5 Control packages 

As aforementioned, the MCCF requires specific control packages to be designed 

to support expected service. In fact according to the definition in [8], the control 

packages are in the form of XML. In MCCF, multiple control packages can be 

embedded in one CONTROL message payload. Through this mechanism, MCCF can 

easily be extended to support new control services and logics. 

5.2.5 Evaluation summary 

The evaluation summary of the control protocols candidate is given in Table 5.4. 

From the evaluation, the MCCF seems the closest option in meeting the criteria of the 

actuation control protocol selection. It uses SIP/SDP for establishing, maintaining 

reliable sessions for controlling actuators. By using SIP as session control protocol, 
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Protocols 
  
 

Criteria SMTP SIP+MSML Megaco/H.248 MCCF 

Criterion 1: Stateful Yes Yes Yes Yes 
Criterion 2:  
Leverage IMS 
capabilities as much 
as possible No Yes No Yes 
Criterion 3:  
Support conditional 
actuation requests No Extension required Extension required 

Extension 
required 

Criterion 4:  
Support complex 
actuation requests  No Extension required Extension required 

Extension 
required 

Criterion 5:  
Transparency No No No Yes 
Criterion 6: 
 Simplicity Yes Yes No Yes 

Table 5.4 Evaluation summary 

it has inherent compatibility with IMS networks. Through properly designed information 

model (control packages), it can support actuation command provisioning well. It is 

simple and with some extensions it can meet all the criteria we set. Therefore we select it 

as the actuation control protocol. The remainder of this chapter will explain the 

information model and the actuation command delivery operations. 

5.3 Actuation Control Information Model 

In order to model actuation command properly, we have done some research on 

Presence Information Data Format (PIDF) [43] and extended PIDF [6]. Then we design 

our information model -ACML, which can be embedded into the content of the 

CONTROL message in MCCF. The structure of ACML is shown in Figure 5.9.  
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Figure 5.9 ACML Scheme 

In ACML, each actuation command is organized as a tuple like the situation in 

PIDF. The structure elements are: 

• Action-actuation command type, e.g. switch (on/off) for entity with switch,  

set (speed) (mandatory); 

• Object-targets on which the actuation will be applied (mandatory); 

• Location-specify particular place where the objects are located , e.g. place 

names(mandatory); 

• Time-whether this command should be executed ‘immediately’, ‘some time 

later’, etc. (optional). When no time is specified the command is executed 

immediately. 

A simple example of actuation control package is given in Figure 5.10. The 

actuation control package is carried by the CONTROL messages. 
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<?xml version="1.0"?>
<actuation  xmlns=’http://encs.concordia.ca/tse/acim’>
<commandtuple>
        <action>
              <name>switch</name>
          <attribute>on</attribute>

        </action>
        <objects>
              <object>
                     <name>camera</name>
                     <index>3rd</index>
                     <properties>
                              <property>
                                     <name>power</name>
                                     <value></value>
                              </property>
                      </properties>
                      <location>building A room118</location>
                      <timer>
                              <starttime> Nov 25, 2009,10:00</starttime>
                      </timer>
               </object>
         </objects>
< /commandtuple>
</actuation>

 
Figure 5.10 An example of a control package in ACML 

 In the proposed architecture, interfaces Aa and Ag use SIP MCCF. Aa will carry 

aggregated actuation commands which will be decomposed by ACF into commands 

targeting a specific AN. For instance, an AS may request to switch on lights in all rooms 

in a given building, and this will be done in a single request through the Aa interface; 

when ACF receives the message it will decompose the request into commands targeting 

a specific AN according to pre-established mapping rules. 

5.4 Actuation control command delivery and processing 

The delivery and processing of an actuation control command based on the 

selected protocol is as follows: 

Upon reception of a request, the application server will initiate the establishment 

of the MCC with the ACF using an INVITE message (shown in Figure 5.11). When the 

channel is established, the AS sends the SYNC message before sending actuation control 

command (simply command, hereafter) to confirm the control packages it supports. 

When the CONTROL message reaches the ACF, it extracts the command, processes it 
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and initiates the establishment of a separate channel with a specific WAG. Similarly, 

once the channel is established, after sending out the SYNC message, a CONTROL 

message carrying the command is sent to the WAG. The WAG extracts the command and 

sends it to a specific actuator. The results or actuation feedbacks will be returned in the 

opposite direction via response messages. A channel is set for the lifetime of the 

application. 

Our architecture offers the possibility of delivering continuously captured data to 

applications. During the lifetime of the media control channel, the applications could 

send sequences of commands and request real-time data to be collected by actuators 

from the scene. The collected data belongs to the media plane and we use RTP as the 

transport protocol to transfer the captured data. 

At the end, the application sends BYE message to the ACF to terminate the media 

control session. The ACF does the same as the WAG. Finally, after receiving 

confirmation from actuators, the WAG responds to the ACF with 200 (OK) message and 

the ACF does the same with the application. The application session ends. 
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Figure 5.11 Call flow of actuation command delivering and processing 

5.5 Conclusions 

In this chapter, a set of criteria for actuation control protocol selection is carefully 

chosen. A number of potential actuation control protocols have been described and 

evaluated with regard to the selection criteria. Based on the evaluation, MCCF protocol 

is selected as our actuation control protocol. The information model is discussed and 

finally the detailed data flow of actuation command delivery and processing is 
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determined. The next chapter will present a proof of concept prototype implementation 

and experiments to verify the proposed architecture. 
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Chapter 6  

Prototype Implementation and Experiments 

This chapter describes the implementation of key architecture components. We 

also describe the proof of concept prototype application demonstrating the usage of the 

architecture. Experiment results are briefly discussed at the end. 

6.1 Architecture implementation 

In this section we discuss the implementation of ACF, WAG and the 

implementation environment.   

6.1.1 Implementation of the Actuation Control Function 

For the implementation, we chose Java SIP Servlet API [44] and Java Socket API 

[45] toolkits to realize the function blocks of ACF. All the functions of ACF have been 

implemented except actuation support functions. In this implementation, the function 

blocks are structured into Java classes. Figure 6.1 (generated by an Eclipse plug-in UML 

tool - ObjectAID [46]) shows the implemented Java classes. 
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Figure 6.1 Class diagram for the implemented ACF 

The main application logic of ACF is implemented by the ‘AcfSipServlet’ class. It 

deals with SIP signaling related session control. The ‘ActReqHandler’ and 

‘ActReqDispatcher’ classes will be triggered respectively by the ‘AcfSipServlet’ class 

according to the message received.   

 The MCCF is implemented by a separate class ‘MccfAcf’. It deals with all the 

MCCF interactions. After the MCC is established, the ‘MccfAcf’ is ready to receive 

actuation request from application servers. The message content will be analyzed by 

‘AcmlParser’ class and the result will be delivered to class ‘ActReqHandler’ in the form 

of ‘ActionCom’ class which is a data class. After being processed by the 

‘ActReqHandler’, new requests addressed towards specific WAG will be generated and 

sent by the ‘ActReqDispatcher’ class. The class ‘MccfAcfClient’ will be subsequently 

triggered to deal with the MCCF interactions with WAGs. In this case, the ACF acts as a 
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control client and sends actuation requests to specific WAGs. 

The remaining ‘ResponseListener’ and ‘ResponseComposition’ classes implement 

the functions exactly the same as in the design described in section 4.2. The 

‘ResponseListener’ class receives individual responses and the ‘ResponseComposition’ 

class gathers all relevant responses to an existing actuation request by an application and 

composes them into a complete response according to a reverse mapping mechanism. 

6.1.2 Implementation of Wireless Actuator Gateway 

Similarly for the implementation of the WAG, we also chose Java SIP Servlet API 

to realize the SIP interactions between the ACF and the WAG. All the functions of WAG 

gateway have been implemented except capability management and support functions. 

The actuation arbitration function is simplified and implemented by the ‘ActScheduler’ 

class using First come-First service policy. 

All the function blocks of WAG gateway are structured into Java classes. Figure 

6.2 shows the implemented Java classes. 

In class ‘ActScheduler’, we implemented one proprietary interface to an actuator 

network (Webots Simulated Robots) based on the Controller API provided by Webots 

[47]. The interface is identical to the one on real robot-e-puk (shown in Figure 2.3(a)).  

The ‘JpegImagesToMovie’ class transforms a series of static images captured by 

camera actuator on a simulated robot into a QuickTime movie. This is because the 

simulation environment can only store a series of jpeg images instead of media streams. 
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Figure 6.2 WAG Java Classes diagram 

6.1.3 Implementation of actuation application 

In order to use actuation service provided by the integrated architecture, the only 

change to the existing IMS application structure is to add MCCF support. We use Java 

SIP Servlet API to implement the SIP signaling interactions. Same as in the ACF 

implementation, Java Socket API is used to implement the MCCF. Figure 6.3 shows the 

simplified class diagram of actuation application. 

 
Figure 6.3 Simplified actuation application Java class 
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6.1.4 The implementation environment 

In this section, several software tools used in the implementation will be 

described.  

6.1.4.1 SIP Servlet API 

A SIP servlet [44] is a Java-based application component which is managed by a 

SIP servlet container that performs SIP signaling. Like other Java-based components, 

servlets are platform independent Java classes that are compiled to platform neutral byte 

code that can be loaded dynamically into and run by a Java-enabled SIP application 

server. Containers, sometimes called servlet engines, are server extensions that provide 

servlet functionality. Servlets interact with (SIP) clients by exchanging request and 

response messages through the servlet container. Figure 6.4 provides a high-level 

illustration of the API layer’s role. In our implementation, we use SailFin server [48] as 

the SIP Servlet Container. 

Application A

SIP Servlet API

Application B Application C

SIP Servlet Container

Application Server

SIP Servlet API Interactions

 

Figure 6.4 SIP Servlet API role 

The new version of SIP Servlet API standard is defined in JSR289, which supports 
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the RFC specifications listed in Table 6.1.  

SIP Specification  SIP Feature 
RFC 3261 SIP Session Initiation protocol core features 
RFC 2976 INFO method 
RFC 3262 Support reliability of provisional (1xx) responses 
RFC 3265 SIP Event Notification Framework 
RFC 3428 MESSAGE method 
RFC 3311 UPDATE method 
RFC 3515 REFER method 
RFC 3903 PUBLISH method 

Table 6.1 Supported SIP specifications in SIP Servlet API 

6.1.4.2 Ericsson Service Development Studio 

The Ericsson service development studio (SDS) [49] offers a comprehensive 

developing environment for design, implementation and end-to-end testing of new 

convergent all-IP (IMS) value added services.  

SDS runs in a PC Windows environment and supports the creation of both client 

and server sides IMS applications using built-in IMS emulators. SDS provides 

high-level APIs to hide device and network complexity and includes a multitude of 

templates and wizards to help the developer shorten project lead times.  

The SDS consists of two client side components, the IMS Client Platform (ICP) or 

IMS JME Client Utility (IJCU) [50] and the developed IMS Device Client. On the 

server side, applications can be built on an open architecture based on Java with support 

for SIP/HTTP Servlets using SailFin as the default container. In addition, with the SDS, 

developers can use the high-level APIs to control and access advanced capabilities such 

as Presence and Group Management (PGM), Push-to-Talk (PTT), IMS Messaging 
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(IMS-M), Internet Protocol Television (IPTV) [51]. 

Figure 6.5 [49] illustrates a high-level view of the SDS functionality, components, 

and steps in the design, debugging, testing, and deployment. 

 

 

Figure 6.5 SDS development and emulation environment  

6.1.4.3 Webots Controller API 

Webots [52] is a professional mobile robot simulation software package developed 

by Cyberbotics Ltd. It offers a prototyping environment that allows the user to create 

mobile robots equipped with a number of sensor and actuator devices, such as distance 

sensors, drive wheels, cameras, servos, touch sensors, grippers, emitters and receivers. 

That is why we choose this environment to implement our proof of concept prototype. 

The camera actuator is simulated by Webots. The WAG communicates with the actuators 

via Webots controller API. One example of the controller API is shown in Figure 6.6. 

Webots contains a large number of robot models and a number of interfaces to real 
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mobile robots, once the simulated robot behaves as expected, control programs can be 

downloaded to a real robot like e-puck and Aibo. We use its camera actuator simulations 

in this research. 

A Webots simulation is composed of three components: 

1)  A Webots world file that define one or more 3D robot and their environment. 

2)  Controller programs for the above robots. 

3)  An optional Supervisor. 

We use the first two features to develop our application. In fact, the WAG is 

utilizing the controller API to send actuation commands to the simulated robots, like 

switch on a camera, capture images, move robots forward and backward or turn around. 

 

Figure 6.6 Programming model of controller in Webots simulation environment 

6.2 Prototype application 

The integrated architecture provides a framework for quick development of 

actuation services to IMS service developers. Through the gateway (WAG) and the ACF, 

this architecture abstracts away all the device specific and lower level details and 

physical complexities for interacting with actuators. Through this architecture, the 
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service developers no longer need to deal with the proprietary factors of heterogeneous 

actuators. They can implement multimedia services with actuation capabilities in a 

standard and persistent way. Figure 6.7 shows the deployment model of the proposed 

architecture. 

 
Figure 6.7 Prototype application deployment structure 

The design and implementation of the prototype application will demonstrate how 

this architecture can be used to create attractive services to customers in a convenient 

and standard way. In the following sections, a motivating scenario will be developed and 

implemented using the integrated architecture to demonstrate proof of concept.  

6.2.1 Environment monitoring prototype scenario 

Environment monitoring cannot always be performed with humans on the scene. 

This is the case for volcano surveillance or earthquakes, for instance. Robots equipped 

with sensors and actuators can help in such cases. An application scenario can be as 

follows: robots with camera, light sensors and differential wheel devices, are remotely 

deployed on an earthquake zone. Upon the receiving an end user request, the application 
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will instruct the robot to turn on cameras through switch actuator, move robot using 

motor actuators and take pictures of the scene. The robot can then send back the pictures 

to the application. The pictures can be sent to an end user and displayed. The end-user 

can initiate a conference call via IMS where the pictures are shared and discussed and 

rescue staff could be dispatched to the appropriate locations. Robots can be instructed to 

move around and take pictures of targeted zones.  

6.2.2 Prototype design and implementation  

We leveraged Cyberbotics’ Webots and Ericsson’s Service Development Studio 

(SDS) to develop the proof of concept prototype of the proposed architecture. The 

camera actuator in the scenario is simulated by Webots. The WAG communicates with 

the actuators via Webots controller API as mentioned in 6.1. Figure 6.8 shows the 

prototype components.  

 

Figure 6.8 Implementation of the prototype components 

At the user side, there are two parts: One part is a web application which presents 

user with a web page showing the parameters related to the actuation requests. The user 
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can fill in the fields and send the request to actuation application triggering the 

actuations. The other part is the X-Lite [53] which simulates IMS user terminals and is 

able to register with IMS, interacts with the application using SIP. The server side 

consists of a conference application and an actuation application which is an HTTP 

server and SIP server. The conference application was developed by a PhD student in 

our lab. It is triggered by the actuation application. The prototype actuation application 

was implemented as a set of java classes which is shown in Figure 6.9.  

 

Figure 6.9 Java class diagram of the actuation application prototype 

 

6.2.3 Setup and work flow  

The setup consists of three laptops and one desktop. One laptop runs X-Lite 

simulation and the second one hosts another X-Lite simulation, the SDS, the conference 

and actuation applications in parallel. The ACF is deployed on the third laptop, while the 

robots simulation and the WAG are deployed on the desktop. The following interactions 

are successfully tested:  

1) two end users registered with IMS, 
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2) one user initiated a request to the application requesting to turn on the simulated 

camera,  

3) the application established a dedicated control channel for carrying the 

actuation requests to the ACF, 

4) a control channel between the ACF and the WAG was then established and an 

actuation request was delivered to the latter, 

5) the WAG issued an actuation command to the camera actuator through the 

controller interface method Camera.enable(), 

6) the camera captured the image and sent it to the WAG, 

7) the image file was sent back to the application using RTP,  

8) The application acted as B2BUA and triggered the establishment of a 

conference call using SIP INVITE message between two end users. The 

subsequent captured images were continuously transferred to end users until 

the termination of the conference call.  

The detailed information flow diagram is shown in Figure 6.10. 
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Figure 6.10 The prototype information flow 

Few snapshots of the prototype running results are shown in Figure 6.11. The 

small square window frame in Figure 6.11 (c) is the camera lens scope which set the 

image size, this is the weak point of the simulation environment. Figure 6.11 (a) shows 

the webpage when the captured video arrives at the application and immediately before 

the conference begins and Figure 6.11 (b) shows that the conference has been 

established. 
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(a) (b)

(c)

 
Figure 6.11 Snapshots of prototype running result: (a) webpage shown on end user 

terminal after the image is ready; (b) the simulated mobile phone joins the 
conference; (c) the simulated robot capturing images 

6.3 Experiments and results 

In this section, we conduct experiments based on the prototype application. The 

purpose of the experiments is to collect data on end-to-end actuation delays (actuation 

delay hereafter) and calculate the average actuation delay. 

6.3.1 Actuation delay 

The QoS requirements for the actuation service depend on the nature of the 
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application. In most cases, applications requesting actuation services are time sensitive 

and may impose constraints on the response time. The end-to-end actuation delay is 

probably one of the key performance metrics for the integrated architecture. It is defined 

as the span of time from the moment an actuation request is sent by an application to the 

moment an actuation response carrying the actuation results is received. 
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Figure 6.12 End-to-end actuation delay calculations 

As shown in Figure 6.12, the actuation delay is calculated in the following way: 

We denote the actuation delay by Tact. It is calculated as the time between the moment 

the application send out the MCCF CONTROL messages toward the ACF (Tas) and the 

moment a relevant response is received from the ACF (Tae). It includes the delay 

between the ACF and the WAG.    
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6.3.1.2 Setup of the experiment environment 

The experimental setup consists of: Webots 6.5 robot simulation which acts as the 

actuator network, Ericsson SDS 4.1 simulates the IMS environment including the HSS 

and CSCFs and the integrated SailFin server as the SIP container. The actuation 

application, ACF and WAG are deployed over SDS. The hardware specifications are 

shown in Table 6.2. 

Computers Hardware configuration Software 

Laptop 1 Athlon Dual-Core, 1.9GHz/4G 

RAM/ 802.11a/g Wi-Fi 

Application Server: Actuation Application, 

Conferencing;  

IMS simulation: Ericsson SDS4.1, NetBeans 

6.5, Windows Vista 64 

Laptop2 Intel Dual-Core, 1.8GHz/3G RAM/ 

802.11a/g Wi-Fi 

ACF, X-Lite cell phone simulator 

Ericsson SDS4.1, Windows XP 

Desktop Intel Quad-Core, 1.9GHz/4G RAM/ 

802.11a/g Wi-Fi 

WAG, Simulated Robots with camera device, 

X-Lite cell phone simulator 

Ericsson SDS4.1, Webots 6.5, Windows Vista  

Table 6.2 Test setup hardware configuration 

6.3.1.3 Experiment results 

Fifteen experiments have been performed for the prototype application. Table 6.3 

shows the results: the actuation delays (Tact). The Java Date object is used to acquire the 

time moment in milliseconds.  

Due to the limitations of the Webots simulation environment, we can only capture 
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static JPEG image. We have to transform the static JPEG image into Quicktime video 

stream which will be transmitted to the application via RTP. This took a lot of time. In 

our experiments, the image processing time is around 27s. 

 

 

 

 

 

 

 
 
 
 
 
 

 

 

Table 6.3 Actuation delay results  

From the experiments above, we can see that for the prototype scenario, the 

average actuation delay is about 30 seconds. If we remove the impact of the image 

processing, the average actuation delay will be about 3 seconds. This result shows the 

performance of the prototype alike application over the integrated architecture is 

acceptable. 

6.4 Conclusions 

In this chapter we presented the implementation of the architecture components 

and discussed the implementation environment. This integrated architecture provides 

service developers with a convenient and efficient way of building new actuation 

Experiment 
Runs Tas(ms) Tae(ms) Tact(s) 

1 1286250955969 1286250986850 30.88 
2 1286504278943 1286504309552 30.61 
3 1286547253595 1286547284549 30.95 
4 1286556268967 1286556299662 30.70 
5 1286569174402 1286569205264 30.86 
6 1286589114094 1286589145719 31.63 
7 1286572272947 1286572303842 30.90 
8 1286572706334 1286572737122 30.79 
9 1286590318666 1286590348954 30.29 
10 1286591113068 1286591143849 30.78 
11 1286591548192 1286591578462 30.27 
12 1286592055698 1286592085736 30.04 
13 1286592826389 1286592856690 30.30 
14 1286593314441 1286593344770 30.33 
15 1286598113202 1286598143288 30.09 



 

90 

enabled value added services. A proof of concept prototype application has been 

implemented for the environment monitoring application scenario.  

As a key factor affecting the performance, the actuation delay is evaluated 

experimentally. The result shows that the performance of the prototype alike application 

over the integrated architecture is acceptable. However, a more realistic set up or more 

formal analysis study of the architecture needs to be carried in the future. 
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Chapter 7  

Conclusions and Future Work 

In this chapter, we summarize the contribution of the thesis and discuss potential 

future work. 

7.1 Summary of contributions  

Research on WSANs has been very active in recent years. The main motivation is 

the possibility of novel applications. IMS alone enables attractive multimedia 

applications. The integration of the heterogeneous actuators with the IMS will enable 

more. However, this integration is a challenging task. This thesis focuses on the 

integration of actuation capabilities with the IMS. The main contributions of this thesis 

are as follows. 

• We examined existing solutions related to integration of WSAN and other 

networks including IMS and Internet. In order to conduct the evaluation, a set 

of requirements has been derived for the integration of AN with IMS based on 

the application scenarios we are interested in. This evaluation concluded that 

none of the existing solutions fulfills all the requirements. We therefore 

decided to develop a new architecture based as much as possible on existing 

standards.  

• We proposed an architecture for the integration. The architecture includes two 

key components: the ACF and the WAG. In this architecture, two levels of 

abstraction are required based on the derived requirements. The introduction 
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of the ACF is motivated by the requirement of abstracting away the lower 

level details of actuation from the applications and other IMS entities. We 

introduced the WAG to make ANs accessible to the external world.  

• Existing command carrying protocols and information models have been 

evaluated with respect to a set of derived requirements. Based on this 

evaluation, MCCF has been selected for actuation command delivery. We 

designed a new information model - ACML to abstract the actuation 

triggering instructions. 

• Finally, as a proof of concept, a prototype has been developed for the 

environment monitoring scenario. This prototype demonstrates the possibility 

of new value added services with the integrated architecture. The key 

components of the proposed architecture have been implemented. The session 

control and signaling protocols for exchanging actuation commands and 

transmitting media stream have also been implemented. The end-to-end 

actuation delay is evaluated through experiments with the prototype. The 

result shows that the performance of the prototype alike application over the 

integrated architecture is acceptable. 

7.2 Future work 

The research on integrating actuators with existing networks is still evolving. The 

future work would be to implement the remaining features of the integrated architecture 

and perform an overall performance evaluation and a thorough analysis.  

In our prototype, the actuation is triggered by the end user intervention. In the 
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future we plan to introduce sensor based triggering mechanism into the architecture to 

increase the efficiency and enrich the application domain.  

We also assumed a simplified business model which is: one operator owns the 

IMS and the actuator networks, the WAGs are preconfigured and known to the ACF.  

As future work, it will be interesting to relax this constraint and extend the architecture.  

It will also be interesting to work with “real open” actuators when they become 

available. 
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