

An architecture for the integration of Wireless Actuation Capabilities
with IP Multimedia Subsystem

Ru Cheng Hou

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at

Concordia University
Montréal, Québec, Canada

December 2010

© Rucheng Hou, 2010

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Ru Cheng Hou

Entitled: An architecture for the Integration of Wireless Actuation Capabilities with IP
Multimedia Subsystem

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Electrical and Computer Engineering)

Complies with the regulations of the University and meets the accepted standard with respect to
originality and quality.

Signed by the final examining committee:

 Dr. Dongyu Qiu

 Chair

 Dr. Anjali Agarwal

 Examiner

 Dr. Nizar Bouguila

 Examiner

 Dr. Ferhat Khendek

 Co-Supervisor

 Dr. Mustafa K. Mehmet Ali

 Co-Supervisor

Approved by _________________________________
 Dr. W. Lynch
 Chair, Department of Electrical and Computer Engineering

___________20___ _________________________________
 Dr. R. Drew

 Dean, Faculty of Engineering and Computer Science

iii

ABSTRACT

An architecture for the integration of Wireless Actuation Capabilities with

IP Multimedia Subsystem

Ru Cheng Hou

The IP Multimedia Subsystem (IMS) is an architecture that aims at seamlessly

delivering multimedia services. It enables IP multimedia services for end-user using

standard Internet based protocols such as Session Initiation Protocol (SIP). Examples of

multimedia services include presence, instant messaging, enhanced voice and video,

pervasive gaming and emergency services.

Wireless actuators are small scale devices that can receive/accept instructions and act

on their surrounding environment. They are broadly used in automation industry and

intelligent control systems. With the rapid development of Internet and mobile

telecommunication technologies, more and more actuators are being deployed in

applications such as environment monitoring, home automation and health care to improve

human beings’ living conditions.

Combining actuators’ actuation capabilities with IMS will certainly enable novel

value added services. However, the actuator networks are application specific and provide

proprietary interfaces to the external world. Integrating wireless Actuator Networks (AN)

with IMS to enable actuation service to IMS end users through standard protocols and

interfaces is the objective of this thesis.

There are several challenges related to this integration: First, there is no ready-to-use

iv

architecture for the integration. New functional entities and suitable protocols for actuation

triggering are needed. Second, there are no actuators in the market with open interfaces to

the external world, we need to find alternative solutions for the realization of the integrated

architecture. Third, there is no information model for abstracting actuation command

semantics and this has to be defined.

In this thesis we derive a set of requirements for the integration of AN actuation

capabilities with IMS, we review and evaluate related work, and then propose a novel

architecture. This architecture includes two new functional entities for IMS: The Actuation

Control Function (ACF) and the Wireless Actuator Gateway (WAG). The ACF handles

high level actuation requests from other applications. It acts as an intermediate component

and hides the low level actuation commands from the applications. The WAG transforms

high level actuation commands to low level, proprietary and actual actuation commands

that can be understood and executed by actuators.

A detailed survey and evaluation of existing protocols for actuation command

carrying is also provided. We define an actuation command information model to abstract

the actuation triggering instructions. We implement the key components of the proposed

architecture. A proof of concept prototype has been implemented using simulated robots

equipped with actuators. The average end-to-end actuation delay of our architecture is

evaluated through experiments with the prototype.

v

ACKNOWLEDGEMENTS

Going back to school to continue studying after more than 10 years of working is not

an easy thing. Without the help and support from my supervisors, professors and team

members, I could not get this research done.

First, I would like to thank my supervisors Dr. Ferhat Khendek and Dr. Mustafa

Mehmet Ali for their ideas, great patience and tolerance, valuable discussions and guidance.

They are always supportive and they have helped me out in every step of my research.

Words are inadequate to express my thanks. Special thanks to Professor Dr. Roch Glitho.

Although he is not my formal thesis supervisor, he has been very involved in this project.

Without his constructive ideas, I would not have finished my research. His enthusiasm in

research truly inspired me and his warm encouragements helped me through the tough time

of my studies. I would like to thank Dr. Fatna Belqasmi who helped me a lot during the last

stage of my research and gave me clear guidance on implementation and saved me a lot of

time.

I would like to thank my teammates in TSE lab: Majid, Saba, for their ideas,

comments and sharing of experiences with me.

The project I have been involved with is partially supported by Natural Sciences and

Engineering Research Council of Canada (NSERC) and Ericsson Canada. I acknowledge

this financial support.

Finally, thanks to my family, my wife Wang Wei. Without her support I could not

focus on the research and cannot go through this adventure.

vi

Table of Content

LIST OF FIGURES ... IX

LIST OF TABLES ... XI

ACRONYMS AND ABBREVIATIONS .. XII

CHAPTER 1 INTRODUCTION ... 1

1.1 RESEARCH DOMAIN .. 1
1.2 MOTIVATIONS AND PROBLEM STATEMENT .. 2
1.3 CONTRIBUTION OF THE THESIS ... 3
1.4 ORGANIZATION OF THE THESIS ... 4

CHAPTER 2 BACKGROUND INFORMATION ON ACTUATORS, IP MULTIMEDIA

SUBSYSTEM AND SESSION INITIATION PROTOCOL ... 6

2.1 ACTUATORS AND WIRELESS SENSOR ACTUATOR NETWORKS .. 6
2.1.1 Actuators .. 6
2.1.2 Wireless Sensor and Actuator Network .. 7
2.1.3 Wireless Sensor and Actuator Networks vs. Wireless Sensor Networks 8
2.1.4 Actuator hardware ... 9
2.1.5 Wireless Sensor and Actuator Network applications .. 11

2.2 IP MULTIMEDIA SUBSYSTEM .. 12
2.2.1 IP Multimedia Subsystem architecture .. 12
2.2.2 IP Multimedia Subsystem architecture entities .. 13

2.2.2.1 Signaling entities .. 14
2.2.2.2 Databases .. 17
2.2.2.3 Media handling ... 17
2.2.2.4 Interworking ... 18

2.2.3 Important IP Multimedia Subsystem interfaces ... 18
2.2.4 IP Multimedia Subsystem operations .. 19

2.2.4.1 IP Multimedia Subsystem level registration ... 19
2.2.4.2 Service Triggering .. 20

2.3 SESSION INITIATION PROTOCOL .. 20
2.3.1 Addressing ... 21
2.3.2 Session Initiation Protocol entities .. 22
2.3.3 Session Initiation Protocol messages ... 24

2.4 CONCLUSIONS ... 26

CHAPTER 3 INTEGRATING ACTUATION CAPABILITIES WITH EXISTING

vii

NETWORKS: STATE OF THE ART .. 27

3.1 SCENARIOS ... 27
3.2 REQUIREMENTS .. 30
3.3 EVALUATION OF RELATED WORK .. 31

3.3.1 SENSEI Project .. 31
3.3.2 e-SENSE .. 35
3.3.3 Presence based integration of Wireless Sensor Network and IP Multimedia Subsystem... 37

3.4 EVALUATION SUMMARY .. 38
3.5 CONCLUSIONS ... 39

CHAPTER 4 INTEGRATION OF WIRELESS ACTUATOR NETWORKS WITH IP

MULTIMEDIA SUBSYSTEM .. 40

4.1 OVERALL ARCHITECTURE AND PRINCIPLES ... 40
4.2 DESIGN OF ACTUATION CONTROL FUNCTION ... 42

4.2.1 Actuation control layer .. 43
4.2.1.1 Actuation processing functions ... 43
4.2.1.2 Support functions .. 46

4.2.2 Connectivity Layer ... 47
4.3 DESIGN OF WIRELESS ACTUATOR GATEWAY .. 47

4.3.1 Actuation control layer .. 48
4.3.1.1 The actuation management functions ... 48
4.3.1.2 Support functions .. 50

4.3.2 Connectivity layer .. 51
4.4 ACTUATION APPLICATION SERVER ... 51
4.5 CONCLUSIONS ... 51

CHAPTER 5 ACTUATION CONTROL PROTOCOL AND ACTUATION CONTROL

INFORMATION MODEL ... 53

5.1 CRITERIA FOR ACTUATION CONTROL PROTOCOL SELECTION... 53
5.2 EVALUATION OF COMMAND SEMANTIC CARRYING PROTOCOLS .. 54

5.2.1 Simple Mail Transfer Protocol ... 54
5.2.2 Session Initiation Protocol with Media Server Markup Language 56
5.2.3 Megaco .. 58
5.2.4 Media Control Channel Framework .. 60

5.2.4.1 Entities and concepts .. 61
5.2.4.2 Framework messages .. 62
5.2.4.3 Media Control Channel establishment .. 62
5.2.4.4 CONTROL transactions ... 64
5.2.4.5 Control packages .. 66

5.2.5 Evaluation summary .. 66
5.3 ACTUATION CONTROL INFORMATION MODEL .. 67
5.4 ACTUATION CONTROL COMMAND DELIVERY AND PROCESSING .. 69

viii

5.5 CONCLUSIONS ... 71

CHAPTER 6 PROTOTYPE IMPLEMENTATION AND EXPERIMENTS 73

6.1 ARCHITECTURE IMPLEMENTATION .. 73
6.1.1 Implementation of the Actuation Control Function ... 73
6.1.2 Implementation of Wireless Actuator Gateway .. 75
6.1.3 Implementation of actuation application ... 76
6.1.4 The implementation environment ... 77

6.1.4.1 SIP Servlet API ... 77
6.1.4.2 Ericsson Service Development Studio .. 78
6.1.4.3 Webots Controller API .. 79

6.2 PROTOTYPE APPLICATION ... 80
6.2.1 Environment monitoring prototype scenario ... 81
6.2.2 Prototype design and implementation ... 82
6.2.3 Setup and work flow .. 83

6.3 EXPERIMENTS AND RESULTS ... 86
6.3.1 Actuation delay .. 86

6.3.1.2 Setup of the experiment environment ... 88
6.3.1.3 Experiment results .. 88

6.4 CONCLUSIONS ... 89

CHAPTER 7 CONCLUSIONS AND FUTURE WORK .. 91

7.1 SUMMARY OF CONTRIBUTIONS ... 91
7.2 FUTURE WORK .. 92

REFERENCES .. 94

ix

List of Figures
Figure 2.1 Semi-automated WSAN architecture ... 8

Figure 2.2 Actuator architecture and components ... 9

Figure 2.3 Robots developed by different research lab: (a) e-puck, (b) Robotic Mule, (c)

robotic arms, (d) mini-robot .. 10

Figure 2.4 Layers of IMS Architecture .. 13

Figure 2.5 Overview of IMS architecture .. 14

Figure 2.6 IMS-level Registration Signaling Flow .. 19

Figure 2.7 Application server triggering architecture .. 20

Figure 2.8 SIP Roles: (a) UAS, (b) UAC, (c) Proxy, (d) B2BUA 23

Figure 2.9 Structure of SIP Request and Response .. 25

Figure 3.1 Detailed SENSEI Architecture ... 33

Figure 3.2 SENSEI embedded actuation ... 34

Figure 3.3 SENSEI application based Actuation Decision .. 34

Figure 3.4 Enhanced e-SENSE protocol stack .. 35

Figure 3.5 e-SENSE enabler in IMS: (a) e-SENSE service in IMS environment, (b)

interfaces between e-SENSE entities and other IMS network components 36

Figure 3.6 WSN/IMS integrated architecture .. 37

Figure 4.1 Architecure Overview ... 42

Figure 4.2 ACF software structure ... 43

Figure 4.3 WAG software structure ... 48

Figure 5.1 SMTP structure ... 55

Figure 5.2 MSML core package scheme ... 57

Figure 5.3 Megaco Message Structure ... 60

Figure 5.4 MCCF Overview .. 61

Figure 5.5 MCC establishment .. 63

Figure 5.6 Example of SIP dialog messages and MCCF SYNC message 64

Figure 5.7 CONTROL transaction ... 65

x

Figure 5.8 CONTROL message and response ... 66

Figure 5.9 ACML Scheme ... 68

Figure 5.10 An example of a control package in ACML ... 69

Figure 5.11 Call flow of actuation command delivering and processing 71

Figure 6.1 Class diagram for the implemented ACF ... 74

Figure 6.2 WAG Java Classes diagram .. 76

Figure 6.3 Simplified actuation application Java class .. 76

Figure 6.4 SIP Servlet API role .. 77

Figure 6.5 SDS development and emulation environment .. 79

Figure 6.6 Programming model of controller in Webots simulation environment 80

Figure 6.7 Prototype application deployment structure ... 81

Figure 6.8 Implementation of the prototype components .. 82

Figure 6.9 Java class diagram of the actuation application prototype 83

Figure 6.10 The prototype information flow ... 85

Figure 6.11 Snapshots of prototype running result: (a) webpage shown on end user terminal

after the image is ready; (b) the simulated mobile phone joins the conference; (c) the

simulated robot capturing images ... 86

Figure 6.12 End-to-end actuation delay calculations ... 87

xi

List of Tables
Table 2.1 SIP Request Method and Functions ... 24

Table 2.2 SIP Response Code and Description .. 25

Table 3.1 Evaluation summary of related work ... 39

Table 4.1 Sample WAG mapping table .. 46

Table 4.2 Sample request matching table .. 46

Table 4.3 sample of mapping table at WAG .. 49

Table 5.1 SMTP commands ... 56

Table 5.2 Megaco commands and functions .. 59

Table 5.3 MCCF Messages .. 62

Table 5.4 Evaluation summary .. 67

Table 6.1 Supported SIP specifications in SIP Servlet API ... 78

Table 6.2 Test setup hardware configuration ... 88

Table 6.3 Actuation delay results ... 89

xii

Acronyms and Abbreviations
3GPP 3rd Generation Partnership Project

A/D Analogue/Digital

ACF Actuation Control Function

ACML Actuation Command Markup Language

AN Actuator Networks

API Application Programming Interface

AS Application Server

B2BUA Back to Back User Agent

B3G Beyond 3G

BGCF Breakout Gateway Control Function

CS Circuit Switch

CSCF Call Session Control Function

DSL Digital Subscriber Line

GPRS General Packet Radio Service

GSM Global System for Mobile communications

HSS Home Subscriber Server

HTTP Hyper Text Transfer Protocol

I-CSCF Interrogating CSCF

IETF Internet Engineering Task Force

iFC Initial Filter Criteria

IMS IP Multimedia Subsystem

IP Internet Protocol

MCCF Media Control Channel Framework

MGCF Media Gateway Controller Function

MGW Media Gateway

MRF Media Resource Function

MRFC Media Resource Function Controller

MRFP Media Resource Function Processor

MSML Media Server Markup Language

xiii

P-CSCF Proxy CSCF

PIDF Presence Information Data Format

PLMN Public Land Mobile Network

PSTN Public Switch Telephone Network

QoS Quality of Service

RFC Request for Comments

RTP Real-time Transport Protocol

S-CSCF Serving CSCF

SCTP Stream Control Transmission Protocol

SDP Session Description Protocol

SDS Service Development Studio

SGW Signaling Gateway

SIP Session Initiation Protocol

SLF Subscription Locator Function

SMTP Simple Mail Transfer Protocol

SPT service points triggers

TCP Transport Control Protocol

UA User Agent

UAC User Agent Client

UAS User Agent Server

UDP User Datagram Protocol

URI Uniform Resource Identifier

WAG Wireless Actuator Gateway

WCDMA Wideband Code Division Multiple Access

WLAN Wireless Local Area Network

WSAN Wireless Sensor and Actuator Network

WSN Wireless Sensor Network

XML Extensible Mark-up Language

1

Chapter 1

Introduction

1.1 Research domain

The Third Generation Partnership Project (3GPP) IP Multimedia Subsystem (IMS)

[1] is the cornerstone of Third Generation (3G) networks. It is an overlay layer on top of

IP based networks and aims at seamless provisioning of multimedia services in an access

agnostic way. It is originally designed for the convergence of Internet and mobile

networks, later on developed as a service development and delivery platform to support

multimedia service generation. The IMS framework specified by 3GPP makes IP

multimedia services accessible to mobile end-user using standard Internet based

protocols e.g. Session Initiation Protocol (SIP) [2]. Examples of multimedia services

include presence, instant messaging, enhanced voice and video, pervasive gaming and

emergency services.

An actuator [3] is a mechanical device for controlling and acting on systems. It

takes energy, usually transported by air, electric current, or liquid, and converts that into

some kind of motion. In mechanical engineering, actuators are usually used for motion,

or to clamp an object to prevent motion. In electronics, actuators are seen as a kind of

transducers. Actuators are broadly used in automation industry and intelligent control

systems. In recent years, with the rapid development of Internet and wireless

telecommunication technologies, actuators have been deployed for applications such as

home automation and environment monitoring to improve human beings’ living

2

conditions.

Actuators are usually used in combination with sensors. Wireless Sensor and

Actuator Networks (WSAN) [4] consist of sensors that can sense the environment and

actuators that can act on it in reaction to the sensed events. There exist two categories of

WSAN architectures [4]: automated and semi-automated. In the former case, sensors

detect events, transmit readings to actuators that process all incoming data and initiate

appropriate actions. In the second architecture, sensors send all the sensed data to a

central controller that processes the data and issues instructions to actuators.

1.2 Motivations and problem statement

As aforementioned, wireless actuators are small scale devices that can receive

instructions and act on their surrounding environment. These capabilities, when

integrated to IMS, can enable novel services such as smart home or healthcare

applications.

An Actuator Network (AN) [5] is application specific and provides proprietary

interfaces to the external world. Our goal is to integrate ANs with IMS such that IMS

entities interact with the AN through standard protocols and interfaces. There has been

some research work done on the integration of sensor networks and IMS [6] or even on

integrating WSAN with Internet [7]. However, none of them have addressed the

integration of actuators with IMS.

There are several challenges related to this integration. First, there is no

ready-to-use architecture for the integration. The functional entities and protocols for

3

actuation triggering need to be defined. Second, there are no actuators on the market that

have open interfaces to the external, we have to seek for alternative solutions. Third,

there is no information model for abstracting actuation command semantics. We need to

define this model.

1.3 Contribution of the thesis

The contributions of the thesis are as follows:

• We define application scenarios for the integration of AN and IMS. They are

typical scenarios in application domains such as emergency management,

health care and home automation. These scenarios are used to generate the

requirements for the integrated architecture.

• We derive a set of requirements with respect to the application scenarios. The

requirements include those related to the actuation information model and

actuation control protocol. The actuation conflict handling and method of

actuation triggering are also considered. We evaluate related work according

to these requirements.

• We design an architecture for the integration of ANs with IMS with respect to

the application scenarios. In the proposed architecture, we define two new

functional entities: one is responsible for abstracting away low level actuation

information and the other is a gateway which enables communications

between the IMS and the heterogeneous actuators. We define a set of criteria

for actuation control protocol selection and evaluate a few existing protocols

4

with built-in command carrying semantics. We define the actuation command

information model to abstract the actuation triggering instructions.

• We implement a proof of concept prototype based on the environment

monitoring application scenario. This prototype demonstrates how to build

new value added services over the integrated architecture. The key

components of the proposed architecture have been implemented. The session

control and signaling protocols for exchanging actuation commands and

transmitting media stream have also been implemented. The end-to-end

actuation delay is evaluated through experiments with the prototype.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows:

Chapter 2 provides the necessary background information. It provides an

introduction to actuators, actuator networks, wireless sensor and actuator networks

including architectures, hardware and applications. The IMS architecture, key functional

entities, operations and protocols are also presented before a brief introduction to the SIP

protocol.

Chapter 3 provides a detailed review of related research work on WSAN

integration and interworking with other networks. We start with application scenarios

and derive the requirements for the evaluation of related work before the actual

evaluation. After the evaluation, we conclude that none of the existing architectures meet

all the requirements and there is a need for a new architecture.

5

Chapter 4 depicts the proposed architecture for the integration of ANs with IMS

and its principles. The functional entities and interfaces are described. The design of the

key components is also presented.

Chapter 5 refines further the Actuation Control Protocol of the proposed

architecture. First, the criteria for actuation control protocol selection are set. This is

followed by the discussion of existing command semantic carrying protocols, their

functions and their principles to deliver commands. These protocols have been evaluated

with respect to the selection criteria. Based on this evaluation, Internet Engineering Task

Force (IETF) Media Control Channel Framework (MCCF) [8] is chosen as the actuation

control protocol. An XML [9] format information model is designed to abstract the

actuation commands.

In Chapter 6 we present the implementation of the key components of the

proposed architecture. The proof of concept of the integrated AN-IMS architecture

through the implementation of an environment monitoring prototype is also provided

with some preliminary evaluation of the response time.

Finally, Chapter 7 draws conclusions and discusses potential future work.

6

Chapter 2

Background Information on Actuators, IP Multimedia

Subsystem and Session Initiation Protocol

In this chapter, we provide the relevant background information that is useful to

understand the content of this thesis. Three areas of information are presented. First, we

introduce the definition, classification and technical issues related to actuators and

WSAN [4]. Next, the IMS concepts, architecture and operations are provided. Finally,

we introduce the SIP, including its entity definitions and protocol messages [2].

2.1 Actuators and Wireless Sensor Actuator Networks

2.1.1 Actuators

An actuator is a mechanical device for moving or controlling a system. It takes

energy, usually transported by air, electric current, or liquid, and converts that into some

kind of motion [3]. Actuator is not a brand new concept; in fact, they have been widely

used in digital control systems and automation industry. In engineering, actuators are

often used to introduce motion, or to clamp an object to prevent motion. In electronics,

actuators are a subdivision of transducers. They are devices which transform an input

signal (mainly an electrical signal) into motion. Specific examples include: electrical

motors, pneumatic actuators, hydraulic actuators, linear actuators, comb drive,

piezoelectric actuators, thermal bimorphs, micro-mirror devices and electro-active

polymers [3].

7

In [4], actor is differentiated from actuator and is defined as ‘besides being able to

act on the environment by means of one or several actuators, actor is also a network

entity that performs networking-related functionalities, i.e., receive, transmit, process,

and relay data’. In this thesis, our focus is on actuation actions, we will not differentiate

between these two concepts. Therefore, we use more general definition – actuator

instead of actor.

2.1.2 Wireless Sensor and Actuator Network

WSAN consist of sensors that can sense the environment and actuators that can act

on it in reaction to the sensed events. In such a network, sensors gather information

about the physical world, while actuators take decisions and then perform appropriate

actions upon the environment, which allows remote, automated interaction with the

environment.

There exist two categories of WSAN architectures [4]: automated and

semi-automated. In the former case, sensors detect events, transmit readings to actuators

that process all incoming data and initiate appropriate actions. In the second architecture

(as shown in Figure 2.1), sensors send all the sensed data to a controller via a sink. The

central controller processes the data and issues instructions to actuators. The research in

this thesis is based on the second case.

8

Wireless Sensor
Actuator Networks

Sensor
Sink

Actuator
Gateway

Control Server
Actuators

Sensors

Wireless Link between
sensors and sink

Wireless Link between
actuators and gateways

Figure 2.1 Semi-automated WSAN architecture

2.1.3 Wireless Sensor and Actuator Networks vs. Wireless Sensor

Networks

WSAN is like Wireless Sensor Network (WSN) but include actuators that bring in

new functionalities and issues.

• Sensors are small, cheap devices with limited computation and

communication capabilities, actuators are usually resource-rich devices

equipped with stronger processing capabilities, and longer battery life.

• In WSAN, the number of actuators is much less than the amount of sensors.

The quantity of sensor nodes deployed in one specific application may be on

the order of thousands.

• In automated architecture of WSAN, to provide effective actuation, a

distributed local coordination mechanism is a must among sensors and

9

actuators. In some situations, the sensors and actuators are integrated in one

physical device. The coordination can be made through internal interactions.

• In semi-automated architecture of WSAN, the physical sensor networks are in

fact completely separate from the actuator networks and no coordination is

required. The actuation decision is made by the central controller (control

server).

• WSAN is a step further. WSN collects the information and status of the

environment, WSAN acts upon the collected event which enables wealth of

advanced applications and services.

2.1.4 Actuator hardware

In digital control systems, the actuator itself is a mechanical device such as switch,

valve, motor and wheels. In our research domain, the actuator is not a single mechanical

device. It is compound network equipment with transceiver, A/D transformer and

controllable interface as shown in Figure 2.2.

Actuation Unit

A/D
transformer

Transcceiver

Control Interface Processor & Storage

Power Unit

Figure 2.2 Actuator architecture and components

In many real applications, robots are used as actuator nodes. The robots can be

10

remotely controlled. In adverse circumstances, robots can substitute human beings to

react on some event happened on site.

(a)
(b)

(d)(c)

Figure 2.3 Robots developed by different research lab: (a) e-puck, (b) Robotic Mule,
(c) robotic arms, (d) mini-robot

The robots designed by several robotics research firms are shown in Figure 2.3.

The e-puck robot [10] in Figure 2.3 (a) is developed for the education purposes by F.

Mondada and M. Bonani. It is equipped with 8 infra-red sensors measuring ambient

light and proximity of obstacles, 2 stepper motors and camera. It can move around and

take photos of the scene which can be deployed at emergency rescue scenario and help

the central office to instruct the rescue effectively. Possibly the world's smallest

autonomous mini-robot [11] (1/4 cubic inch and weighing less than one ounce) has been

developed in Sandia National Laboratories is shown in Figure 2.3 (d). Powered by three

watch batteries, it rides on track wheels and consists of temperature sensor, and two

motors that drive the wheels. According to Ed Heller, one of the researchers, “it may

eventually be capable of performing difficult tasks such as locating and disabling land

11

mines or detecting chemical and biological weapons”. An example of Robotic Mule [12]

designed for the army is given in Figure 2.3(b). These developed battlefield robots can

detect and mark mines, collect information or even detonate explosives. Finally, robotic

arms shown in Figure 2.3 (c) are widely used in auto industry.

2.1.5 Wireless Sensor and Actuator Network applications

WSANs are mostly application driven, i.e. they are deployed for specific purposes.

Initially, they were focused on specialized applications. However, with the developments

in micro-electro-mechanical, electronic systems and wireless communication, it is

possible to use WSAN in commercial applications. The typical application areas

include:

• Environmental monitoring and controlling,

• Medical/health-care monitoring and emergency care,

• Military surveillance,

• Home automation,

• Intelligent buildings, and

• Pervasive gaming.

For example, a set of robots that sense the environment from distributed

monitoring points can turn on watering system when a dry situation is sensed. Based on

the data gathered by a sensor network, a smart parking system could redirect drivers to

available parking spots, etc.

12

2.2 IP Multimedia Subsystem

The IMS architectural framework specified by 3GPP enables IP multimedia

services accessible to mobile end-user using standard Internet based protocols e.g. SIP.

Examples of multimedia services include presence, instant messaging, enhanced voice

and video, pervasive gaming and emergency services. Several key issues are addressed

by IMS framework: IP Multimedia Sessions, QoS, Interworking, Roaming, Service

Control, Rapid Service Creation, and Multiple Access.

In the following subsections, the architecture of IMS, protocols used by IMS and

the IMS operations are described.

2.2.1 IP Multimedia Subsystem architecture

In most cases, IMS is modeled in three layers: Service Layer, Control Layer, and

Connectivity Layer, as shown in Figure 2.4. From the overlay perspective, IMS consists

of two sub-layers over IP based mobile and fix networks: Control Layer and Service

Layer [6].

The service layer basically provides value-added services with a set of

applications hosted on Application Servers (AS) [13]. It provides various IMS services

to users. It is a home of deployed IMS services, e.g. presence, instant messaging.

The control layer provides signaling functions in IMS. It handles the registration,

setup and release of calls and sessions. It consists of entities such as the Call Session

Control Function (CSCF) and the Home Subscriber Server (HSS). The HSS stores and

handles end users and services related information including: authentication and

13

authorization information, location data, and service profiles. CSCFs are SIP servers in

charge of routing and session management. There exist three categories of CSCFs [13].

The detailed information about the IMS functional entities are given in later subsections.

The Connectivity Layer provides IP network access to end users and IMS

functional entities. This layer is not only carrying media traffic among end users but also

connecting end users to the session control and AS. From the interoperability

perspective, the connectivity layer supports different network access technologies like

Global System for Mobile communications (GSM), General Packet Radio Service

(GPRS), Wideband Code Division Multiple Access (WCDMA), Digital Subscriber Line

(DSL), and Wireless Local Area Network (WLAN).

CSCFsHSS

AS AS Service
Enablers

Interworking
Gateways

IP Network

Access Network(GPRS,WLAN,CDMA)

Service Layer

Control Layer

Connectivity Layer

Figure 2.4 Layers of IMS Architecture

2.2.2 IP Multimedia Subsystem architecture entities

IMS architecture is a collection of functional entities linked by standardized

interfaces. Figure 2.5 [14] shows the functional entities included in the IP Multimedia

Subsystem Core Network. They are: HSS and Subscriber Location Function (SLF),

CSCFs, Media Resource Function Controller (MRFC) and Media Resource Function

Processor (MRFP), Breakout Gateway Control Function (BGCF) and Public Switch

14

Telephone Network (PSTN) Gateways. According to the nature of functionality, these

entities can be categorized into: signaling (CSCFs); interworking (BGCF; PSTN

Gateways- Signaling Gateway (SGW), Media Gateway Controller Function (MGCF),

Media Gateway (MGW)); databases (HSS, SLF); media handling (MRFC, MRFP).

There are many interfaces defined in 3GPP IMS, most of them are using SIP as the

transport protocol, the important ones are: ISC (interface between AS and S-CSCF); Sh

(interface between AS and HSS); Cx (interface between S-CSCF and HSS).

Figure 2.5 Overview of IMS architecture

2.2.2.1 Signaling entities

The IMS signaling functions are managed and maintained by CSCFs. They

process SIP signaling in the IMS, generate, route and terminate SIP messages to enable

service sessions and manage them. There are three types of CSCF according to their

functionality: Proxy-CSCF (P-CSCF), Interrogating-CSCF (I-CSCF) and Serving-CSCF

(S-CSCF).

1) Proxy-CSCF

The P-CSCF is the first point of contact between the IMS terminal and IMS Core

15

from the signaling perspective. It acts as inbound/outbound SIP proxy server. All the SIP

messages generated by the user terminals or sent to user terminals must traverse

P-CSCF.

The main functions of the P-CSCF are: security management, SIP compression

and verification. During the IMS registration period, the P-CSCF will establish few

IPSec associations toward IMS user terminal, this can protect the integrity.

The P-CSCF also plays a role in authenticating end users which is part of security

association establishment. This will be fulfilled by both P-CSCF and S-CSCF during the

registration procedure. Once the authentication has been done, the rest of the IMS

network will not repeat authenticating of the same user, and they trust the P-CSCF. The

mechanism to realize this function is using “P-Asserted” header. P-CSCF can also verify

SIP requests sent by IMS terminals and handle compressing/uncompressing of SIP

messages.

There might be several P-CSCFs deployed in the IMS depending on the number of

IMS terminals the P-CSCF has to serve. This makes the IMS easy to expand.

2) Interrogating-CSCF

The I-CSCF acts as a location server in IMS Core Network. Its main functions are:

selecting registrar for user terminals which try to register, by consulting the HSS, and

divert the request to the IMS registrar (normally the S-CSCF). The interface between the

I-CSCF and the HSS is the Cx interface using DIAMETER protocol. The HSS will

return capabilities of the required S-CSCF in initial registration request situation.

16

According to these capabilities, the I-CSCF picks up the appropriate S-CSCF. Under

re-registering situation, the HSS returns name of the assigned S-CSCF to the I-CSCF,

and the request will be forwarded to that S-CSCF directly. The I-CSCF also has an

interface to application servers to route requests that are addressed to services instead of

end users.

Apart from the above mentioned functions, I-CSCF is located at the edge of an

IMS domain and acts as an entry point for SIP messages coming from another domain. It

will intercept incoming IMS call session requests from other domains (other IMS

networks or legacy networks for example PSTN) and choose appropriate S-CSCF for

terminating IMS sessions.

There might be several I-CSCF deployed in the IMS which makes the IMS domain

scalable and redundant.

3) Serving-CSCF

The S-CSCF is the main control entity in the signaling plane and the IMS core

network. Being a registrar server, it authenticates and authorizes the end users as part of

their registration requests. S-CSCF maintains subscriptions to registration state and will

send out notifications about any changes to the registration state. Through Cx interface

towards to HSS, each user’s IMS service profile can be downloaded from HSS to

S-CSCF. Based on these service profiles, S-CSCF decides which application will be

triggered and the order of the operations. The S-CSCF interacts with the IMS service

plane (AS) over the ISC reference point. The details will be given in IMS operations

17

subsection.

The S-CSCF acts as a SIP User Agent Server (UAS) to fulfill tasks such as

maintaining subscriptions to registration state. As a SIP proxy server, S-CSCF is

responsible for forwarding IMS session requests to the next hop SIP entities. The

S-CSCF is also responsible for charging the subscriber and collecting usage records.

2.2.2.2 Databases

The HSS is the central database storing user related information. It maintains

subscribe information necessary for establishing sessions between subscribers. The HSS

exchanges user and service related information with AS through interface Sh. The

I-CSCF and S-CSCF can access user and service related information through interface

Cx. The HSS contains the following information: location information, security

information, user profile information and the S-CSCF assignment.

If more than one HSS is present in IMS, the SLF is needed which is a simple

database. It matches users’ addresses to HSSs.

2.2.2.3 Media handling

The Media Resource Function (MRF) provides functions such as: announcement

playing, adaptation between different codec schemes, mix media streams and perform

media analysis and statistics functions. The MRF consists of MRFC which is located in

signaling plane and MRFP which is a media plane node. The MRFC, as SIP User Agent

(UA), has direct interface towards S-CSCF and it controls the media resources in the

MRFP via Mp interface which is using H.248 protocol [15]. The MRFP provides media

18

processing functions like playing and mixing media streams.

2.2.2.4 Interworking

The BGCF controls the processing of calls to and from the circuit-switched

network. It is only used when the IMS user terminals initiate sessions addressed to

circuit-switched networks such as Public Land Mobile Network (PLMN).

2.2.3 Important IP Multimedia Subsystem interfaces

3GPP defined interfaces make the communications between the above mentioned

entities possible in a standard way. The most important ones are the following:

The Cx interface is located between I-/S-CSCF and HSS. Information exchanged

through this interface is: S-CSCF assignment procedure related information, accounting

and authorization and routing information. Further details can be found in the 3GPP

specifications.

The ISC interface is between the S-CSCF and SIP application servers. The SIP AS

hosts services and uses the ISC interface to interact with S-CSCF to influence the SIP

session. Through ISC interface, the services can be triggered by S-CSCF according to a

set of pre-configured rules and policies in the format of initial filtering criteria (iFC)

[16].

The Sh interface allows application servers to talk to HSS to access subscriber and

service related information.

19

2.2.4 IP Multimedia Subsystem operations

2.2.4.1 IP Multimedia Subsystem level registration

IMS-level Registration is a procedure through which the IMS subscriber can be

authorized to use the IMS services in the IMS network. This procedure is triggered by a

SIP REGISTER request. During the registration, the following tasks will be fulfilled:

• IMS binds the user’s public user identity (either a SIP URI [2] or a TEL URI

[17]) to a URI containing host name or IP address of the terminal where the

user can be reached;

• The home network authenticates the user;

• The home network authorizes the SIP registration and the right to access IMS

resources.

Figure 2.6 IMS-level Registration Signaling Flow

The registration is mandatory before the IMS terminal can use IMS services and

20

initiate any session. This procedure is shown by Figure 2.6 [13].

2.2.4.2 Service Triggering

IMS uses filter criteria and service points triggers (SPTs) [18] to trigger services.

One of the most processing intensive operations undertaken by the S-CSCF is the iFC

(Initial Filter Criteria) processing logic. Based on the service profile of a particular user,

the S-CSCF needs to evaluate a set of XML fragments (iFCs), that hold the routing

information for contacting a SIP application server that is hosting services (such as

Presence service [19]) as depicted in Figure 2.7 [18]. This iFC evaluation takes place for

all initial SIP requests and standalone transactions, and it takes place uniquely for each

subscriber.

Figure 2.7 Application server triggering architecture

2.3 Session Initiation Protocol

The SIP is an application-level signaling protocol defined by the IETF for the

creation and management of sessions over an IP network. The term “session” refers to

the media plane communication session. In order to setup a session, SIP messages bear

session descriptions that allow the participants to exchange set of parameters of the

21

media communication channel (session) such as the transport address and media type. In

most cases, the session is described by Session Description Protocol (SDP) defined in

[20]. For the information transport, the SIP messages could be carried by User Datagram

Protocol (UDP), Transmission Control Protocol (TCP) or Stream Control Transmission

Protocol (SCTP) [21]. Most SIP stack implementations support UDP.

SIP is a client-server and request-response protocol: client sends a request to

server and waits for a reply. Requests can take arbitrarily complex path and responses

take the same path in reverse direction. Requests and responses have the same structure:

first line contains key information, message headers contain supplementary information,

and message body contains application information [22].

2.3.1 Addressing

SIP is in many ways similar to HTTP [23]. As Universal Resource Identifier (URI)

is used to identify a resource on a web server, SIP URI is used to identify the users or

servers. A SIP URI is a URI. It complies with the general rules for URIs defined in [24],

for example: sip:Alice@ece.concordia.ca.

A SIP URI uses the “sip:” scheme, and contains two parts split by the “@” sign.

The two parts are:

• An optional user part to identify a particular user or resource at the host where

the other part points. In the above example: Alice.

• A host part, which identifies the machine holding the resource. It could be a

fully qualified domain name or an IP address plus an optional port value. In the

above example: ece.concordia.ca.

22

SIP URI can be used to represent:

• Public User Identity of a user, the universal ID that anyone can establish

multimedia communications with that user;

• A sip server- SIP URIs can also be used to represent SIP servers, for instance:

sip:scscf.tse.concordia.ca or sip:192.168.1.3;

• A group of users, for instance, the URI sip:services@abc.com can be used to

represent the customer service department in the company ABC. When a

request is addressed to this URI, the server will try all the members of the group

until someone can accept the request.

• A service-A SIP URI can also represent a service, as described in [25].

2.3.2 Session Initiation Protocol entities

In SIP specifications, SIP applications will assume one of the predefined roles and

act on the events (received messages) according to the SIP protocol state machine. As

shown in Figure 2.8, most of the SIP applications will be classified into the following

roles:

• User Agent Client (UAC)

• UAS

• Proxy

• Back-to-Back User Agents (B2BUAs)

The UAC and UAS are collectively known as User Agents (UA). They are SIP

endpoints that exchange messages to establish or terminate sessions. The UAC is

23

responsible for the generation of new SIP requests and the reception of the associated

responses. The UAC acts as a SIP client, and unlike a Proxy, it is an initiator and sender

of a SIP request message, instead of being an entity that simply receives and forwards.

On the contrary, the UAS generates a response to a SIP request. The response accepts,

rejects, or redirects the request.

UAS UAC

Incoming SIP
messages

Outgoing SIP
messages

Proxy

Outgoing SIP messagesIncoming SIP messages

B2BUA

Outgoing SIP
messages

Incoming SIP
messages

Response

Response Response

UAS UAC

(a) UAS (b) UAC

(c) Proxy (d)
B2BUA

Response

Figure 2.8 SIP Roles: (a) UAS, (b) UAC, (c) Proxy, (d) B2BUA

SIP proxies, an intermediary entity responsible for routing of SIP messages to the

appropriate next hop towards their destinations. Normally, the proxy has no impact on

the end-to-end interaction. This is enough when the application server hosts service logic

that takes the duty of authorization, target selection and ensures the end-to-end SIP

signaling proceeds without any interference. It may consult location server in SIP

architecture to acquire the contact address of the end user to find out the next hop.

When the application server hosts service that demands more controls on the

24

end-to-end SIP interaction, it has to support back-to-back user agent (routing B2BUA)

behavior. The B2BUA role behaves as an endpoint to both parties in the SIP session. The

following examples show the situations where a B2BUA role is necessary: to modify an

ongoing SIP request (e.g. in multimedia phone session, turn off the video channel and

keep the audio part), to divert a session during its valid period (e.g. to an

announcement).

2.3.3 Session Initiation Protocol messages

The core SIP functions are carried by SIP messages. The core specification of SIP

defines six basic SIP messages shown in the first six rows in Table 2.1. The rest of the

messages in the table are heavily used SIP extensions which are defined in several IETF

specifications [26, 27, and 28].

SIP
Methods

Description

INVITE Invites the parties to join a session. It carries the description
of the media session to establish.

ACK Acknowledges the final response of media session
BYE Terminate an existing media session

OPTIONS Query capabilities of SIP server, such as methods supported,
session description protocol, message encoding, etc.

REGISTER To register a user to the network
CANCEL To request a cancellation of a pending transaction

SUBSCRIBE Subscribe to a resource (event)
NOTIFY Notifies about subscribed resource (event)

PUBLISH Publish info about resource (event)

MESSAGE Send IM messages to other clients
Table 2.1 SIP Request Method and Functions

SIP responses are messages generated by a SIP user agent or SIP server (e.g. proxy)

in response to client requests. The request and response together are known as a SIP

25

transaction. In fact, one request can generate several replies and still be counted as one

transaction. There are provisional responses and final response. The response type may

vary depending on request type and session context on the server side which is same as a

HTTP session. The response messages are categorized into six types as shown in Table

2.2.

Response Code Description
1xx Provisional and Informational responses
2xx Successful responses
3xx Redirect response
4xx Client error
5xx Server error
6xx Global failure

Table 2.2 SIP Response Code and Description

INVITE sip:Alice@ece.concordia.ca SIP/2.0

Via: SIP/2.0/UDP Concordia.ca:5060
From: Bob <sip:Bob@tse.concordia.ca>;tag=123
To: Alice <sip:Alice@ece.concordia.ca >
Call-ID: 12345600@tse.concordia.ca
CSeq: 1 INVITE
Subject: Happy Christmas
Contact: Bob <sip:Bob@tse.concordia.ca>
Content-Type: application/sdp
Content-Length: 155

v=0
o=UserA 2890844526 2890844526 IN IP4
tse.concordia.ca
s=Session SDP
c=IN IP4 192.168.1.103
t=0 0
M=audio 49172 RTP/AVP 0
a=rtpmap:0 PCMU/8000

Request

SIP/2.0 200 OK

Via: SIP/2.0/UDP Concordia.ca:5060
From: Bob <sip:Bob@tse.concordia.ca>;tag=123
To: Alice <sip:Alice@ece.concordia.ca >;tag=65a35
Call-ID: 12345600@tse.concordia.ca
CSeq: 1 INVITE
Subject: Happy Christmas
Contact: Alice <sip:Alice@ece.concordia.ca>
Content-Type: application/sdp
Content-Length: 141

v=0
O=UserA 2890844526 2890844526 IN IP4
 ece.concordia.ca
s=Session SDP
c=IN IP4 192.168.1.106
t=0 0
M=audio 3456 RTP/AVP 0
a=rtpmap:0 PCMU/8000

Response

Start Line:

Message Header:

Message
Content(SDP):

Figure 2.9 Structure of SIP Request and Response

Figure 2.9 depicts the structure of a SIP message. A typical SIP message has the

format of: start line with the method name, request URI and SIP protocol versions; SIP

headers; message content which is session description (could be SDP descriptions).

26

2.4 Conclusions

In this chapter we discussed Actuators, WSAN including its architecture and

hardware components. We presented an overview of the IMS architecture, entities and

its operations. Finally, SIP was described. The next chapter will deal with the state of the

art work for the integration of WSAN with existing networks including IMS.

27

Chapter 3

Integrating actuation capabilities with existing

networks: state of the art

This chapter describes WSAN integration with existing networks such as Internet,

and IMS using state of the art technologies. First, we describe the application scenarios

of interest and then derive a set of requirements related to these application scenarios.

Following that, we review and evaluate related work with respect to these requirements.

3.1 Scenarios

This research started by determining a set of application scenarios to abstract the

requirements for the integration. Applications may be divided into many domains which

are difficult to enumerate all. Among the domains of interest are: Emergency

Management, Health Care, and Home Automation. Based on the ambient information

sensed by sensors, the action to the surroundings by actuators could make wide-spread

services available to end users through IMS network. Some typical scenarios among

those domains are:

• Building Fire Control Scenario

This scenario is based on the following assumptions: A huge building equipped

with smoke detectors, thermal sensors, humidity sensors and remote-controlled sprinkles,

fire alarm controller, camera with motor arms, fire gate motors. Scenario is described as

follows: Smoke sensors detect smoke in one of the office rooms in the building. Smoke

28

sensors trigger alarm system in the building immediately and fire gates are closed. The

application deployed over the integrated architecture stores and processes fire location

information, and the application notifies fire brigade. The application actuates fire

extinguish devices, adjusts Closed Circuit Television (CCTV) camera near the fire scene,

turns on the emergency lighting and escape route indication. Thermal, hazardous gas and

structure force-sensors are sensing temperature, gas density and pressure and keep the

application informed. The application queries intelligent building management system

about the structure stress, safety information and updates fire fighters with

environmental information.

• Patient Monitoring Scenario

The scenario assumption: Patients with chronic disease equipped with body

sensors, such as: physiological sensors (heart beat rate, breath rate, blood glucose, and

blood pressure). The patient’s house equipped with sensors: humidity sensor,

temperature sensor, air pressure sensor and actuators: window with motor, ventilation

switch, camera with motor arms. Doctors have Liquid Crystal Display (LCD) monitors,

‘patient call’ alarm device at their clinics. Scenario is described as follow: Environment

information at patient’s house is sensed and sent to IMS where the health care

application is deployed. The patient’s physiological information is sensed and sent to

IMS. IMS stores patient’s home environment information and physiological information

and processes them. In case of an unusual situation, doctor’s ‘patient call’ alarm device

will be triggered and doctor’s LCD monitor will be switched on. IMS will issue

commands to turn on and adjust patient’s camera, open windows and switch on

29

ventilation devices if necessary. IMS queries patient’s history health records from patient

information management system (external). In emergency, the IMS will notify the

hospital emergency department, ambulance will be dispatched and the patient’s

conditions will be monitored by the doctor during transportation.

• Smart Home Scenario

The scenario assumption: home is equipped with location, thermal, humidity, gas

and motion sensors and remotely controlled switches to control TV, light, heating,

ventilating (actuators). Scenario is described as below: Family members arrive home

(location sensor at entrance captures the info and send to IMS). The IMS instructs to

switch on the light. Home environmental information (temperature, humidity) continues

to be sensed and sent to IMS. IMS stores and processes the environmental information

based on location, switch on/off the heating and dehumidifier based on the calculations.

When gas leak is sensed, IMS will notify Gas Company, switch on ventilation, turn off

electricity and trigger alarm device. Based on the family members’ location (sensed by

location sensors) TV/light in relevant rooms will be turned on/off. When anti-theft alarm

device is set, motion detectors will be working and any intrusion will be detected and

alarm devices will be triggered.

These three scenarios share some commonalities: there are various sensors and

actuators involved; in emergency situation, the sensors could interact with actuators

directly and make the efficient actuation available; IMS is responsible to deal with

actuation coordination to avoid conflict; A lot of interactions among the IMS, WSN and

AN, therefore a standardized mechanism for these interactions is a must to enable the

30

expandability and flexibility.

3.2 Requirements

From the above scenarios, we derived the requirements for the integration

architecture:

Requirement 1: The architecture should support a wide range of actuators, e.g.

switches, motors and valves.

Requirement 2: Low level actuation details, of specific actuators, should be

transparent to high level entities and applications. Developers of applications should not

be concerned about low level properties of actuators.

Requirement 3: The architecture should be able to support two actuation models:

The automated actuation, i.e. standard actuation service based on context information

sensed by sensors, and the semi-automated actuation, i.e. actuation service with

intervention of end users or applications.

Requirement 4: The architecture should also support actuation arbitration to avoid

collisions when several actuation requests are made in parallel. Furthermore, the

framework should provide actuation aggregation and de-aggregation, which will enable

simultaneous actuations on multiple actuators from the application perspective.

Requirement 5: The target architecture should rely on standard communication

protocols which can easily inter-operate with IMS (e.g. SIP) and enable both

synchronous and asynchronous modes of communication.

31

3.3 Evaluation of related work

This section discusses some of the research on integration wireless sensors and/or

actuators with existing networks including IMS and Internet.

3.3.1 SENSEI Project

The SENSEI project is developing an architecture for globally scalable web

resources for machines, sensors and actuators - the Real World Internet. This

framework offers two fundamental services for the future Internet: context information

services and actuation services [29].

The SENSEI architecture provides necessary network and information

management services to enable reliable and accurate context information retrieval and

interaction with the physical environment. By adding mechanisms for accounting,

security, privacy and trust, it enables an open and secure environment for

context-awareness and real world interaction through WSAN islands [30].

The SENSEI framework abstracts sensors and actuators as resources [31]. In the

SENSEI domain, a resource is a conceptual representation of any information source

that enables real world sensing or has the ability to act upon the environment. In addition

to resources that have direct access to the physical world, the concept covers also

indirect information sources that acquire context information via aggregation, fusion or

even inference (composing) from existing SENSEI resources. The SENSEI framework

has been designed using fundamental concepts of the World-Wide Web. In order to

enable the SENSEI framework even on the most constrained devices like sensors and

32

networks such as IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN)

[32], the SENSEI embedded resource concept is used to extend the web resource model

to minimal IPv6 [33] nodes with very little overhead. It also maintains end-to-end IP

principles and easy interoperability with existing web protocols.

The detailed SENSEI architecture is shown in Figure 3.1 [29]. There are several

core components defined in SENSEI:

Resource Directory: Serving as a linking point for resources and resource users, it

stores descriptions of all available resources. XML is used to describe the resources. It

has direct interface with WSAN islands gateways. The 6LowPAN is selected as the

interface protocol for the interactions between the WSAN islands gateways and the

Resource Directory.

Semantic Query Resolver: Responsible for analysis of high level user queries and

discovery of suitable and available resources capable of providing information required

to respond to the queries. It will consult Dynamic Resource Creator (DRC) for resource

composition when the requested resource does not exist.

WSAN islands interact with the framework via their respective gateways.

33

Figure 3.1 Detailed SENSEI Architecture

For the actuation service, SENSEI framework supports the following actuation

models:

1) Embedded actuation

Under this model, the actuation task can be started and normally parameterized,

but the sources of context information (real-world sensor) as well as the control logic are

embedded in the real-world actuation device. Most of the actuators are embedded in the

objects without interface to third party applications (see Figure 3.2 [29]). This is the

predominant situation on the market.

34

Figure 3.2 SENSEI embedded actuation

2) Application based actuation decision

If the Application is performing the actuation control function, neither the

real-world actuator and sensor devices are aware of the control logic, nor is the SENSEI

framework (see Figure 3.3 [29]).

Figure 3.3 SENSEI application based Actuation Decision

The SENSEI framework provides a way of integrating sensors and actuators with

Internet. It addresses the interfaces and components for accessing the physical devices

through the linking services (resource directory, entity directory). It supports both

automated and semi-automated actuation, its main goal is to integrate WSAN with

Internet via gateways, but the proposed gateway model and actuation task model is

35

specific to the Internet and does not consider IMS specific requirements for WSAN/IMS

integration. Further it is still ongoing and the protocol for components interactions is yet

to be decided.

3.3.2 e-SENSE

The e-SENSE project [34] defines open gateway architecture to facilitate

connectivity and integration of information offered by WSN with Beyond Third

Generation (B3G) wireless networks. In its later evolution, it proposes architectural

extensions for the integration of e-SENSE systems with IMS based service platforms.

Within the IMS domain an e-SENSE Service Enabler has been introduced as a new

functional element [34].

Figure 3.4 Enhanced e-SENSE protocol stack

Figure 3.4 [34] shows the structure of the e-SENSE protocol stack. It is divided

36

into four logical sub-systems, namely the connectivity (CO), middleware (MI),

management (MA), and application (AP) subsystem. Each subsystem comprises various

protocol entities, which offer a wide range of services at various service access points

(SAPs) to other sub-systems. The services and respective protocol entities can be

combined in many ways to configure the protocol stack according to the role of the

sensor node and application requirements.

Figure 3.5 shows the relationship of the e-SENSE service enabler with respect to

other service enablers in an IMS domain. A context aware application, typically hosted

on an IMS AS, is able to use the e-SENSE service enabler as a service building block,

similar to other IMS service enablers such as the presence service, instant messaging

(IM) service and group management (GM) service.

(a)

(b)

Figure 3.5 e-SENSE enabler in IMS: (a) e-SENSE service in IMS environment, (b)

interfaces between e-SENSE entities and other IMS network components

Although e-SENSE project extends its initial architecture by introducing open

gateways towards IMS enable its integration with IMS as a service enabler, it does not

offer any support for actuation. Further, wrapping everything in a gateway is not an

efficient way of information access, for the context information, this may incur repeat

37

adaptation when it has to go through two levels of gateways: WSN level (to e-SENSE)

and e-SENSE level (to IMS).

3.3.3 Presence based integration of Wireless Sensor Network and IP

Multimedia Subsystem

This project proposes a presence based architecture for the integration of WSN and

IMS, focusing on how the information is conveyed from the WSN to the presence

infrastructure in IMS.

To enable the integration of WSNs in the IMS, this architecture assigns the role of

Presence External Agent (PEA) to the WSN gateway, which publishes information

provided by the WSN about different entities (user and non-user entities) to an extended

Presence Server (PS). The PS manages the different types of context information

provided by the sensors. Other entities such as other IMS ASs, IMS core network

entities (e.g. CSCFs), and IMS user applications can act as watchers to the information

published in the presence server, and use this information to provide value-added

services to end users. Figure 3.6 [6] depicts the proposed architecture.

Figure 3.6 WSN/IMS integrated architecture

The architecture divides the interface between the WSN gateway and the PS into

38

two sub-interfaces: Pexa, and Pexb. Pexa is used for the exchange of contextual

information between the gateway and the PS, via a trusted node (a presence proxy). PS

directly interacts with the gateway through Pexb interface. The proposed architecture

also defines interfaces between the PS and watchers: the Pw and the Pwn interfaces. Pw

is an enhancement of the existing 3GPP interface which enables end user applications

and IMS AS to access presence information on the PS, via presence proxies. Pwn is a

new interface that enables network entities acting as watchers to get direct access to

presence information from the PS.

However, the sensing is focus on the context information acquiring and providing

while the actuation is command based and there should be input from the third party to

trigger it. The architecture designed by this project intends to integrate sensing

capabilities and enrich the context aware services in IMS, but it does not address issues

relevant to actuation.

3.4 Evaluation summary

In the previous sections, we discussed three projects most relevant to our targeted

architecture. These projects aim to integrate sensors with either IMS or Internet. But

none of them directly addresses the protocols and information models needed for

integration of actuators with IMS. In fact, as mentioned in the introduction chapter, our

target is to find a solution for enabling actuation service for the end users or applications

through a ubiquitous mechanism. The evaluation of the three approaches with regard to

the requirements set in the beginning of this chapter is shown in Table 3.1. As we can

see from the table, none of these approaches come close to meeting all the requirements.

39

Thus, we have to develop a new architecture dealing with the stated objectives.

 Related Work
Criteria

SENSEI e-SENSE
Presence Based integration
of WSN and IMS

Criterion 1: support a wide range of
actuators

Not
mentioned No No

Criterion 2: two levels of actuation
abstraction No No No

Criterion 3: two actuation models
Yes No No

Criterion 4: support actuation arbitration
Yes No No

Criterion 5: support standard session
control protocol-SIP No Yes Yes

Table 3.1 Evaluation summary of related work

3.5 Conclusions

This chapter considered related research projects on the integration of actuation

capability with existing networks or integration of sensing ability with IMS. According

to the evaluation, none of the existing projects meet for the targeted architecture

requirements. In the rest of the thesis, we present a new architecture, demonstrate that it

meets the requirements and give its implementation.

40

Chapter 4

Integration of Wireless Actuator Networks with IP

Multimedia Subsystem

The evaluation of related work in the previous chapter showed that there is no

existing architecture that meets the requirements of the integration. Thus, we need to

develop a novel architecture. This chapter presents the proposed architecture and its

principles and the key architecture components.

4.1 Overall architecture and principles

Figure 4.1 depicts the integrated architecture with two new entities, the Actuation

Control Function (ACF) and the IMS/Wireless Actuator Gateway (WAG), as well as

actuation command interfaces-Aa and Ag.

According to the Requirement 5 mentioned in the previous chapter, we try to

leverage existing components of IMS as much as possible in our architecture to ensure

the compatibility. To meet the Requirement 2, we introduce the ACF to IMS to provide

two levels of abstraction: the low level for the proprietary and actual commands used to

control an actuator via the WAG and the high level which enables requests from AS.

The applications do not need to know how to control an actuator directly and which

actuator the command should be sent to. The applications see the ANs at a high level of

abstraction and from a logical point of view. With regards to the Requirement 1 and 2,

we use gateway based solution to hide heterogeneity of actuator network structures and

41

technologies. The rest of the architecture remains the same as in the IMS.

The ACF acts as an application server from the IMS perspective and handles high

level actuation requests from other applications. It decomposes the requests into

actuation commands targeting specific ANs. The ACF receives actuation responses from

the WAGs, aggregates them and feeds them back to the appropriate applications.

The WAG transforms the actuation commands sent by the ACF to low level,

proprietary and actual actuation commands that can be understood and executed by

actuators. It dispatches these commands to individual actuators and collects the

responses. The WAG is not necessarily an entity in IMS. It could be part of the actuation

infrastructure or even belong to a third party. The actuators act on the environment in

reaction to the commands. The main reason for introducing the WAG into our

architecture lies in two aspects: providing support functions, such as actuation

arbitration; and taking care of the low level actuation commands to lighten the load of

other IMS entities. These entities do not need to know or handle the physical commands

for controlling specific actuators.

Like other application deployed in the IMS, the ACF can be invoked by the

S-CSCF through the ISC interface based on SIP protocol. Other applications interact

with the ACF via the Aa interface through which actuation requests and responses are

carried. The ACF can also interact with HSS via the Sh interface which carries actuation

service related control information, such as subscription, authorization and accounting.

Through the Ag interface, the ACF interacts directly with the WAG exchanging

decomposed actuation commands and actuation feedbacks. Ac, the interface between

42

P-CSCF and the WAG, carries registration information and facilitates the interaction

between the ACF and the WAG using standard SIP protocol. The other entities in the

architecture remain the same as in the existing IMS framework.

Figure 4.1 Architecure Overview

4.2 Design of Actuation Control Function

ACF is an intermediate entity between other applications deployed on an IMS AS

and WAG. It is an application level entity that provides standard interfaces (Ag, Aa) for

actuation command transporting. Figure 4.2 shows the proposed ACF structure which

consists of two layers, namely connectivity layer and actuation control layer.

43

SIP Stack

MCCF Protocol

Actuation Request
Handler

ACML
Parser/Formatter

Actuation
Request

Dispatcher

 Actuation
Mapping

Table

Response
Listener

Response
Composition

Connectivity Layer

Actuation Control Layer
Actuation Support

Functions

Actuation Log
Function

Authentication &
Authorization

Function

Actuation Processing
Functions

Figure 4.2 ACF software structure

4.2.1 Actuation control layer

The actuation control layer is the core functional layer of the ACF. It is responsible

for handling and dispatching actuation requests from other applications or services

deployed on a SIP AS. It consists of two categories of functions: actuation processing

functions and actuation support functions.

4.2.1.1 Actuation processing functions

The actuation processing functions are realized by the following modules:

actuation request handler, actuation request dispatcher, response composition via

response listener function and an Actuation Command Markup Language (ACML)

parser/formatter.

When the ACF receives a request from an application, it decomposes it into

actuation requests according to its knowledge of the actuators distribution, i.e. the

44

mapping table of the targeted objects versus actuator gateways; the actuation request

dispatcher will then send the decomposed requests to the appropriate gateways. Upon

reception of the responses from the gateways, the response listener forwards them to the

response composition module, which will combine them and send a response to the

originator of the request via the MCCF. The detailed process is explained in the

following paragraphs.

ACML Parser/Formatter Function: This module performs message content

abstraction, ACML parsing or ACML formatting depending on whether it is receiving or

sending a message. When an actuation request carried by CONTROL message reaches

ACF, the control package in the content part of the message will be analyzed and the

values of the elements will be put into an object as attributes. According to the ACML

definition, the elements are: Object Name, Civic Address, Index, etc. The ACML will be

explained in more detail in the next chapter. Once the Actuation Request Handler

module finishes its processing, a new request will be generated. This module will then

be used to build the control package and embed it into the new message.

Actuation Request Handler Function: Based on the result of the ACML parser,

this module will perform the following tasks: first, it will do mapping. According to the

element values, it will look into the preconfigured mapping table and try to find out

which WAG is involved and its IMS identity (SIP URI). At the same time, if more than

one WAG entries are found, it has to keep records of the request for each entry for

reverse mapping. The reverse mapping is used for response composition. This module

will built the actuation request content in ACML with the SIP URI of WAG as its

45

destination and hand over to Actuation Request Dispatcher for sending.

Actuation Request Dispatcher Function: Acting as SIP UA and later as control

client, the ACF through this function module sends out a request message addressed to

specific WAGs. It will act as control client towards WAG and start a new SIP INVITE

session to establish an MCC. It stores the unique MCCF Dialog ID (from the

CONTROL message header) together with the ID of the new MCCF Dialog established

towards WAG. The main function of this module is to liaise with Connectivity layer

functions and trigger new SIP and CONTROL sessions. It also manages a request queue

when there is more than one request towards the same WAG.

Response Listener and Composition Functions: The response listener monitors

the response from WAG. Once the response arrives to ACF from WAG, this module will

get the unique dialog id from the response, then hand over the id and the status code to

the Composition module. The composition module will build the overall response to the

original request according to the reverse mapping table established by Actuation Request

Handler Function. Then it will trigger the CONTROL session to send the response to the

original applications which sent out the request.

Actuation Mapping Tables: There are two types of mapping tables: WAG

mapping table, and request matching table (reverse mapping). WAG mapping table is

used to locate the specific WAG to which a request from an AS addresses, it is

preconfigured and static. Request matching table is used during response composition

process. Through the entries of this table, a response message from WAG will be related

to an existing request from AS which involves multiple requests to WAG. This table is

46

dynamically built by Actuation Request Handler Function.

WAG mapping table entries will have the following format: (civic location, object

name, WAG IMS identity). A sample WAG mapping table is shown in table 4.1.

Civic location Object name WAG IMS identity

A.11.08 Camera wag_a@ericsson.com

B.12 Sprinkler wag_b_sprinkler@ericsson.com

Table 4.1 Sample WAG mapping table

Request matching table entries will have the following format: (id of original

MCCF Dialog from AS to ACF, id of generated MCCF Dialog from ACF to WAG).

The id is generated by the message initiator and negotiated by SDP during the

establishment of MCC. It was carried by “cfw-id” attribute. It is key information for the

MCCF dialogs which will be referred to by both control client and control server. A

sample request matching table is shown in table 4.2.

Original MCCF Dialog ID Generated MCCF Dialog ID

6e5e86f95609 518ba6047880

6e5e86f95609 5feb6486792a

4hrn7490012c 2b4dd8724f27

Table 4.2 Sample request matching table

4.2.1.2 Support functions

The support functions include: Actuation Log module, Actuation Authorization

and Authentication module.

47

Actuation Log function: This module keeps records of actuation service usage for

accounting purpose and tracks the problem or request failure and events, similar to the

server log on application server.

Authorization and Authentication function:

4.2.2 Connectivity Layer

 This function performs actuation

service authorization and authentication. It interacts with HSS to update service access

profile which is used to judge whether an application has the right access authorization.

It also performs the actuation request verification to ensure the request has the right

format and integrity of necessary parameters.

The connectivity layer implements IMS communication stack (SIP) which is used

to establish connectivity to IMS network. It also implements MCCF protocol, which is

used to interact with application servers and WAG.

4.3 Design of Wireless Actuator Gateway

WAG masks the details of the heterogeneous ANs and makes standard access to

actuation service from applications possible through the integration with IMS. It is an

application layer gateway and performs translation of actuation request to proprietary

commands that actuators can accept. The software architecture of the WAG is depicted

in Figure 4.3. It has similar structure to the ACF and also consists of two layers:

connectivity layer and actuation control layer.

48

Actuation Request
Mapping

ACML Parser

Actuation
Requests

Actuation Scheduler

 Actuation
Mapping Table

Response
Listener

Response
Composition

Actuator Proprietary API

Event
Monitor

Actuation
Arbitration

Capability
Management

Registration

MCCF Protocol

SIP Stack

Support Functions Actuation Management
Functions

Connectivity Layer

Actuation Control Layer

Security

Figure 4.3 WAG software structure

4.3.1 Actuation control layer

The core of the WAG is the actuation control layer functions, which consists of

two groups of functions: actuation management functions and actuation support

functions.

4.3.1.1 The actuation management functions

The actuation management functions are performed by the following modules: a

set of actuation processing modules (request mapping, actuation arbitration, and

actuation scheduler), a response composer, a set of monitor modules, capability

management and an ACML parser. The ACML parser has the same function as the one

in ACF.

The actuation request mapping module: Performs mapping of logical entities to

49

physical actuators. It looks up the preconfigured mapping table and find out the relevant

actuators. Later on, the mapping table can be updated dynamically based on the

capability management events. An example of the mapping table is shown in Table 4.3:

Civic

location

Object

name

index Actuator identity Status

A.11.08 Camera 02 Camera02 Active

B.12 Sprinkler 03 Sprinkler03 Inactive

Table 4.3 sample of mapping table at WAG

 The index element is optional. If no index appears, it means all the actuators at

the location. The actuator identity format may vary in different actuator networks. In an

IP-enabled actuator network, WAG will talk to the actuators via IP connections. The IP

address can be found through the actuator ID. Then the communication will be

established based on the IP address.

Capability Management: Monitors status of actuators in real time through an

event monitor module. If some actuators fail, the actuators’ status will be changed from

“active” to “inactive” in the mapping tables.

Actuation scheduler: It interacts with capability management module to acquire

the current availability of specific actuators. When the actuation request mapping

completes, one or more actuation commands related to the request will be dispatched to

specified actuators via the actuation scheduler.

Actuation Arbitration:

50

In the situation of multiple requests addressed to the same actuators in parallel,

this module will put all the requests into a queue and resolve the conflict using ‘First

Come First Service’ policy.

Response Listener and Composition:

(ID of MCCF Dialog from ACF to WAG, actuator ID).

 The Response Listener and Composition

modules have similar functionality with their namesakes in ACF. There are though some

differences: The Response Listener receives the response message through the

proprietary interface, and the mapping table is different, it is using actuator ID to match

with the MCCF dialog ID. The mapping table entries are in the following format:

When the results and feedbacks from the actuators come in, an overall response

will be sent by the response composition module to the ACF.

4.3.1.2 Support functions

Security functions: Besides authorization and authentication functions, this

module acts as firewall to actuator networks. It will force the security policy

preconfigured in the WAG to avoid being attacked.

Registration Function: This module is for future expansion. Currently this

architecture implements static (preconfigured) WAG mapping that means all the WAGs

are configured into the system before being put into service. In the future, we will

implement dynamic joining or leaving of WAG by using IMS registration operation

procedure.

51

4.3.2 Connectivity layer

In the connectivity layer, the standardized actuation control interface (composed of

SIP stack and MCCF) and proprietary actuator control interface are combined together

to enable communication between IMS entities and individual actuators.

SIP and MCCF: This interface implements IMS communication stack (SIP) and

establishes connectivity to the IMS network. The IMS interface interacts with IMS

network entities, CSCFs (Proxies). It also implements MCCF, established by SIP

INVITE sessions [8], which will be used to interact with ACF.

Actuator proprietary interface: This interface implements communication stack of

ANs. The communication interfaces between actuator nodes are proprietary. It should

support different proprietary interfaces to communicate with heterogeneous actuator

platforms such as Zigbee actuators, 6LowPAN actuators, Robots. In our implementation,

we implement an interface to a simulated robot.

4.4 Actuation application server

In order to use the actuation service, the application has to implement MCCF and

send the request via CONTROL messages. The rest part of the application deployed in

the IMS remains unchanged.

4.5 Conclusions

In this chapter, we have proposed an architecture for the integration of actuation

capabilities with IMS. The architecture introduces two new functional entities into the

IMS framework: the ACF and the WAG. Then the design of the key architecture

52

components is presented. The software functions of these components are depicted

thoroughly.

This architecture is designed to meet the requirements we set in chapter 3. First, it

can support wide range of actuators via gateways (the WAGs). Second, it introduces two

levels of actuation command abstraction through the ACF and the WAG, which masks

the physical details of the actuators. This provides service developers flexibility to

develop actuation enabled applications. Third, it supports both actuation models:

automated and semi-automated. The actuation arbitration is also supported at the WAG

level. Finally, this architecture is based on the IMS, it supports standard session control

protocol-SIP.

The implementation of the architecture is described in chapter 6. The next chapter

gives detailed explanation of the Actuation Control Protocol and the information model

we developed.

53

Chapter 5

Actuation Control Protocol and Actuation Control

Information Model

In this chapter, we will determine actuation control protocol and information

model for the architecture described in the previous chapter. In order to select the

appropriate protocol to carry the actuation commands, we first set criteria for evaluating

potential solutions. Then a few of existing protocols that deal with command semantics

are evaluated with regards to the selection criteria. Later, the actuation information

model is presented. Finally, the data flow of the actuation task delivery and processing is

described.

5.1 Criteria for actuation control protocol selection

Based on the functionality of Aa and Ag interfaces specified in chapter 4, we set

the following criteria for the protocol evaluation:

Criterion 1: The protocol should be stateful. The stateful requirement comes from

the fact that application may cancel actuation requests or trigger a sequence of

actuations with some kind of dependency.

Criterion 2: The protocol is supposed to leverage IMS capabilities as much as

possible. IMS has already defined a number of supporting facilities to ease the service

delivery, such as authentication, authorization functions. Instead of choosing protocols

alien to the IMS scheme, try protocols compatible with IMS networks which will ease

54

the implementation and improve expandability.

Criterion 3: The protocol should support conditional actuation requests. Under

certain circumstances, the user could request an actuation to be triggered at a later time

or under certain conditions to increase service flexibility.

Criterion 4: The protocol should support complex actuation requests. It should

allow conditional actuation and compound actuation. For instance, a user could request

actuation A or actuation B executed under condition 1, both of them to be executed

under condition 2. This should rely on the information model. However, the protocol

should be able to support carrying of such information model.

Criterion 5: Actuators should be transparent to the integrated architecture entities

(IMS AS, ACF) as much as possible.

Criterion 6: In order to minimize processing time and ease its implementation, the

actuation control protocol should be as simple as possible.

5.2 Evaluation of command semantic carrying protocols

 A few existing protocols can be considered for actuation controlling: Megaco

[35], Simple Mail Transfer Protocol (SMTP) [36], Standard SIP, and MCCF [8]. All of

them except SIP can carry command semantics. Standard SIP plus command semantic

carrying information model could also be an option. Next we evaluate each of these

protocols with regard to the set criteria in the above.

5.2.1 Simple Mail Transfer Protocol

SMTP is a relatively simple, text-based, application level protocol. Figure 5.1

55

shows the SMTP structure. It uses a limited set of commands (as shown in table 5.1) and

reply codes for its communication. The objective of SMTP is to transfer mail reliably,

efficiently and easily. Under SMTP, a mail sender communicates with a mail receiver by

issuing command strings and supplying necessary data over a reliable channel, typically

a TCP connection.

Figure 5.1 SMTP structure

An SMTP session contains commands initiated by an SMTP client and

corresponding responses from the SMTP server. A session may include zero or more

SMTP transactions. It is stateful and contains three states: session initiation, mail

transactions and session termination. An SMTP mail transaction consists of three

command/reply sequences. They are:

1) MAIL command, to establish the return address.

2) RCPT command, to establish a recipient of this message.

3) DATA to send the text content of the message. It consists of a message header

and a message body separated by an empty line.

The SMTP has limitations: It does not support for the server proactively notifying

client about special events, and does not have any delayed and periodical command

execution mechanism. It is not compatible with standard protocols used in the IMS.

56

SMTP
Commands

Description

HELO / EHLO This command is used to identify the sender (client) to the SMTP server.
MAIL FROM: Specifies the sender's e-mail address (and name, if used).

RCPT TO: Specifies the recipient's e-mail address (and name, if used).
DATA Starts the transfer of the actual data (body text, attachments etc).

RSET (RESET) Specifies that the current mail transaction will be aborted.

VRFY (VERIFY) Asks the receiver to confirm that the argument identifies a user or
mailbox.

HELP This command causes the server to send helpful information to the
client.

QUIT Quits the session.

Table 5.1 SMTP commands

SMTP is specifically tailor made for mail transfer, the commands it defines serves

that goal well but does not offer any support to other complex control semantics. If we

consider inserting command in the message content, the plain text message is not able to

carry any command semantics and provides no help to our problem domain.

5.2.2 Session Initiation Protocol with Media Server Markup Language

The Media Server Markup Language (MSML) [37] provides a way to control

media servers independent of transport protocols, although it is normally carried by a

SIP INFO [38] message or an MCCF message [39]. It can be used to control and invoke

many different types of services on IP media servers. The Clients can use it to define

how multimedia sessions interact on a media server. MSML can be used, for example,

to control media server conferencing features such as video layout and audio mixing,

create sidebar conferences or personal mixes, and set the properties of media streams

[37].

57

It abstracts the media server as Media Server Object Model. This model assumes

that there exists one single control context within a media server. This control context is

aware of the state of all media objects and media streams within the media server. The

objects are endpoints of one or more media streams. There are four types of such objects:

network connections, conferences, dialogs and operators. The single control context

receives and processes all MSML requests and events generated internally by media

objects and sends them to the appropriate SIP dialog.

The IETF draft presents two alternative ways to transport MSML: One is by SIP

INFO messages and the other is using the MCCF. MSML commands are sent from a

client to the media server via SIP messages (most notably the INFO message). The body

of the SIP message contains the XML control syntax. The MSML request may carry

several actions (elements) to be processed or a single command.

The language structure of MSML is based on a package and a profile scheme as

shown below:

Figure 5.2 MSML core package scheme

Not all devices and applications using MSML need to support the entire MSML

58

schema. For example, a media processing device might support only audio

announcements, or only multimedia IVR. It is highly desirable to have a system for

describing what portion of MSML a particular media processing device or control agent

supports. The MSML profile scheme is designed for this purpose and it defines subset of

a given MSML package with specific definitions of elements and attributes.

From the functional perspective, the MSML is more like definition of an

information model. It was designed specifically for the media server controlling, to

support actuation service, we have to define a new package. And the SIP INFO method

is not suitable for carrying control messages for the following reasons: SIP INFO is an

opaque request with no specific semantics. A SIP endpoint that receives an INFO request

does not know what to do with it if only based on SIP state machine. It was not created

to carry generic session control information along the signaling path, and it should only

really be used for optional application information. It traverses the signaling path, which

is an inefficient use for control messages that can be routed directly between the

controller and the controlled.

5.2.3 Megaco

Megaco, officially called H.248, is a mature and complex protocol and specifically

designed for a media server to control media gateways. It specifies the relationship

between the Media Gateway Controller (MGC) and the Media Gateway (MG), which

initially defined with function of converting circuit-switched voice to packet-based

traffic, and later on it was also assigned the responsibility of mixing streams for

multimedia conferencing.

59

Megaco/H.248 defines two basic components: terminations and contexts [35].

Terminations represent streams entering or leaving the MG (for example, analog

telephone lines, and RTP streams [40]). Terminations have properties, which can be

inspected and modified by the MGC.

Megaco/H.248 uses a series of commands to manipulate terminations, contexts,

events, and signals. Table 5.2 shows a list of the commands.

Megaco commands Function
Add Add a termination to a context

Modify Modify the properties, events and signals of a termination
Subtract Disconnect a termination from its context
Move Atomically move a termination to another context

AuditValue Return the current status of properties, events, signals and
statistics of Terminations

AuditCapabilities Return all the possible values for termination properties,
events and signals

Notify Inform the MGC of the events happened in the MG
ServiceChange Notify the MGC of any service related status change, e.g. a

Termination is about to leave service or has returned to
service; MG is available or restarted.
The MGC may use ServiceChange to announce a handover
to the MG or instruct the MG to take a Termination in or
out of service.

Table 5.2 Megaco commands and functions

Megaco message structure is depicted in Figure 5.3, multiple transactions could be

assembled in one single Megaco message and each transaction may contain several

actions. One or more commands embedded with multiple descriptors could be inserted

into a single action. The termination properties, event descriptors and other controllable

parameters are modeled as descriptors, which can be defined in a package. This structure

made Megaco a complicated protocol to operate and under which the efficiency is

affected.

60

Figure 5.3 Megaco Message Structure

The Megaco/H.248 protocol is ideally designed as a media gateway control

protocol. The defined packages are specifically focused on telephony applications. To

support actuation, existing packages have to be extended and redefined. This is a

complicated process and the complex structure of the protocol also limits the

performance of high-efficiency demand applications. Again, like SMTP, it is not easy to

interact with SIP.

5.2.4 Media Control Channel Framework

MCCF is specified in [8]. It defines mechanism of using SIP/SDP for establishing,

using, terminating reliable connection (channel) to control an external server. The initial

objective of this protocol was to replace Megaco in certain media control situation to

simplify the procedure, however, it is not limited to that objective. It can be easily

expanded to support the control of a general external server [8]. Three entities are

defined in this framework: Control Client, Control Server and Control Channel as

depicted in Figure 5.4.

61

Control Client Control Server

SIP Stack SIP Stack

SIP Traffic

Media Control Channel

Figure 5.4 MCCF Overview

5.2.4.1 Entities and concepts

Few entities and concepts are introduced in MCCF which are described below,

Control Server: A Control Server is an entity that performs a service, such as

media processing, on behalf of a Control Client. For example, a media server offers

mixing; announcement; tone detection and generation; play and record services. The

Control Server has a direct RTP relationship with the source or sink of the media flow.

Control Client: A Control Client is an entity that requests processing from a

Control Server. The Control Client might not have any processing capabilities. For

example, the Control Client may be a SIP Application Server (B2BUA) or other

endpoint requesting manipulation of a third-party’s media stream, which terminates on a

media server acting in the role of a Control Server.

Control Channel: A Control Channel is a reliable connection between a Control

Client and Control Server that is used to exchange framework messages.

Framework Message: A Framework Message is a message on a Control Channel

that has a type corresponding to one of the Methods defined in [8]. A Framework

message is often referred to by its method, such as a "CONTROL message".

Control Command: A Control Command is an application level request from a

62

Client to a Server. Control Commands are carried in the body of CONTROL messages.

Control Commands are defined in separate specifications known as "Control Packages".

5.2.4.2 Framework messages

Four methods are defined in this framework: SYNC, CONTROL, REPORT, and

K-ALIVE as listed in Table 5.3. They are defined in separate specifications known as

"Control Packages". Currently, there are few control packages defined in [39, 41, 42].

MCCF Message Function
SYNC used to negotiate the timeout period for the

control-channel keep alive mechanism, to
allow clients and servers to learn the
Control Packages that each supports and
most important, to associate SIP dialog
with control channel

CONTROL used by the Control Client to pass control
related information to a Control Server;
also used as the event reporting mechanism

K-ALIVE enables the control channel to be kept
active during time of inactivity; also
provides the ability for application level
failure detection

REPORT used by a Control Server when processing
of a CONTROL Command extends beyond
the Transaction-Timeout, as measured from
the Client

Table 5.3 MCCF Messages

5.2.4.3 Media Control Channel establishment

SIP provides the ideal mechanism for establishing and maintaining control

connections to external server components. The control connections can then be used to

exchange explicit command/response interactions that allow for media control and

associated command response results.

63

 INVITE

Application Server ACF

ACK

200 OK

SIP Media Control Channel
(TCP Connection)

200OK

SYNC

processing

Figure 5.5 MCC establishment

As shown in Figure 5.5, the control client (AS) and the control server (ACF)

establish a Media Control Channel (MCC) through a SIP dialog which usually originates

in the AS. The AS generates a SIP INVITE message which contains in its SDP body

information about the MCC that it wants to establish with the ACF. In the provided

example (see Figure 5.6), the AS wants to actively open a new TCP connection, which

on his side will be bound to port 5757. If the request reaches the ACF successfully (in

time and no error), the ACF responds with its own offer by communicating to the AS the

transport address to connect to in order to establish the TCP connection. In the provided

example, the ACF will listen on port 7575. Once this negotiation is over, the AS can

effectively connect to the ACF. The negotiation includes additional attributes, the most

important is the ’cfw-id’ attribute, since it specifies the dialog id which will be

subsequently referred to by both the AS and ACF, as specified in the core framework

draft [8].

64

1. AS -> ACF (SIP INVITE)

INVITE sip:acf@ericsson.com:5060 SIP/2.0
Via: SIP/2.0/UDP 192.168.1.15:5060;\
branch=w3ef4qb-c6308z-4g06d3412h8sd224-1---c6308z-
;rport=5060
Max-Forwards: 70
Contact: sip:ApplicationServer@192.168.1.10:5060

To: <sip:acf@ericsson.com:5060>
From:
<sip:ApplicationServer@ericsson.com:5060>;tag=3456rt24
Call-ID: SGf3LKU1HDT3UnKkZjgzYTQwYmJlNjE5NTA4ZDQ1OGY.
CSeq: 1 INVITE
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, UPDATE,
REGISTER
Content-Type: application/sdp
Content-Length: 263
v=0
o=lminiero 2890844526 2890842807 IN IP4 ericsson.com
s=MediaCtrl
c=IN IP4 ericsson.com
t=0 0
m=application 5757 TCP cfw
a=connection:new
a=setup:active
a=cfw-id:5feb6486792a
a=ctrl-package:actuation-camera/1.0

2. AS <- ACF (SIP 200 OK)

SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.1.10:5060; \
branch=z9hG4bK-d8754z-9b07c8201c3aa510-1---d8754z-
;rport=5060
Contact: <sip:acf@ericsson.com:5060>
To: <sip:acf@ericsson.com:5060>;tag=499a5b74
From:
<sip:ApplicationServer@ericsson.com:5060>;tag=4354ec63
Call-ID: MDk2YTk1MDU3YmVkZjgzYTQwYmJlNjE5NTA4ZDQ1OGY.
CSeq: 1 INVITE
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, UPDATE,
REGISTER
Content-Type: application/sdp
Content-Length: 296
v=0

o=lminiero 2890844526 2890842808 IN IP4 ericsson.com
s=MediaCtrl
c=IN IP4 ericsson.com
t=0 0
m=application 7575 TCP cfw
a=connection:new
a=setup:passive
a=cfw-id:5feb6486792a
a=ctrl-package:actuation-camera/1.0

3. AS -> ACF (CFW SYNC)

CFW 6e5e86f95609 SYNC
Dialog-ID: 5feb6486792a
Keep-Alive: 100
Packages: actuation-camera/1.0

4. AS <- ACF (CFW 200)

CFW 6e5e86f95609 200
Keep-Alive: 100
Packages: actuation-camera/1.0
Supported: actuation-camera/1.0

Figure 5.6 Example of SIP dialog messages and MCCF SYNC message

5.2.4.4 CONTROL transactions

A CONTROL message is used by the Control Client to pass control related

65

information to a Control Server. It is also used as the event reporting mechanism in the

control framework. Reporting events is simply another usage of the CONTROL message

which is permitted to be sent in either direction between two participants in a session,

carrying the appropriate payload for an event. The message is constructed in the same

way as any standard framework CONTROL message, as shown in Figure 5.7. In most

cases, a CONTROL message contains a message body. The explicit control command(s)

contained in the message payload of a CONTROL message should be specified in a

separate Control Package.

 INVITE

Application Server ACF

ACK

200 OK

SIP Media Control Channel
(TCP Connection)

200OK

SYNC

processing

200OK

CONTROL

processing

Figure 5.7 CONTROL transaction

A sample CONTROL message is shown in Figure 5.8.

66

1. AS -> ACF (CFW CONTROL)

CFW 101fbbd62c35 CONTROL
Control-Package: actuation-camera/1.0
Content-Type: application/acml+xml
Content-Length: 178

<actuation-camera version=”1.0”
xmlns=”urn:ericsson:xml:ns:actuation-camera”
<commandTuple>
 <action>
 <name>switch</name>
 <attribute>on</attribute>
 </action>
 <Objeccts>
 <object>
 <name>camera</name>
 <location>a.11.08</location>
 </object>
 </objects>
</commandTuple>
</actuation-camera>

2. AS <- ACF (CFW 200)

CFW 101fbbd62c35 200

Figure 5.8 CONTROL message and response

5.2.4.5 Control packages

As aforementioned, the MCCF requires specific control packages to be designed

to support expected service. In fact according to the definition in [8], the control

packages are in the form of XML. In MCCF, multiple control packages can be

embedded in one CONTROL message payload. Through this mechanism, MCCF can

easily be extended to support new control services and logics.

5.2.5 Evaluation summary

The evaluation summary of the control protocols candidate is given in Table 5.4.

From the evaluation, the MCCF seems the closest option in meeting the criteria of the

actuation control protocol selection. It uses SIP/SDP for establishing, maintaining

reliable sessions for controlling actuators. By using SIP as session control protocol,

67

Protocols

Criteria SMTP SIP+MSML Megaco/H.248 MCCF

Criterion 1: Stateful Yes Yes Yes Yes
Criterion 2:
Leverage IMS
capabilities as much
as possible No Yes No Yes
Criterion 3:
Support conditional
actuation requests No Extension required Extension required

Extension
required

Criterion 4:
Support complex
actuation requests No Extension required Extension required

Extension
required

Criterion 5:
Transparency No No No Yes
Criterion 6:
 Simplicity Yes Yes No Yes

Table 5.4 Evaluation summary

it has inherent compatibility with IMS networks. Through properly designed information

model (control packages), it can support actuation command provisioning well. It is

simple and with some extensions it can meet all the criteria we set. Therefore we select it

as the actuation control protocol. The remainder of this chapter will explain the

information model and the actuation command delivery operations.

5.3 Actuation Control Information Model

In order to model actuation command properly, we have done some research on

Presence Information Data Format (PIDF) [43] and extended PIDF [6]. Then we design

our information model -ACML, which can be embedded into the content of the

CONTROL message in MCCF. The structure of ACML is shown in Figure 5.9.

68

Actuation

CommandTuple

Objects

Timer

Action

Civic
Location

Name Attribute

Name

Start
Time

Properties

Name Value

Object

Index

Property

Figure 5.9 ACML Scheme

In ACML, each actuation command is organized as a tuple like the situation in

PIDF. The structure elements are:

• Action-actuation command type, e.g. switch (on/off) for entity with switch,

set (speed) (mandatory);

• Object-targets on which the actuation will be applied (mandatory);

• Location-specify particular place where the objects are located , e.g. place

names(mandatory);

• Time-whether this command should be executed ‘immediately’, ‘some time

later’, etc. (optional). When no time is specified the command is executed

immediately.

A simple example of actuation control package is given in Figure 5.10. The

actuation control package is carried by the CONTROL messages.

69

<?xml version="1.0"?>
<actuation xmlns=’http://encs.concordia.ca/tse/acim’>
<commandtuple>
 <action>
 <name>switch</name>
 <attribute>on</attribute>

 </action>
 <objects>
 <object>
 <name>camera</name>
 <index>3rd</index>
 <properties>
 <property>
 <name>power</name>
 <value></value>
 </property>
 </properties>
 <location>building A room118</location>
 <timer>
 <starttime> Nov 25, 2009,10:00</starttime>
 </timer>
 </object>
 </objects>
< /commandtuple>
</actuation>

Figure 5.10 An example of a control package in ACML

 In the proposed architecture, interfaces Aa and Ag use SIP MCCF. Aa will carry

aggregated actuation commands which will be decomposed by ACF into commands

targeting a specific AN. For instance, an AS may request to switch on lights in all rooms

in a given building, and this will be done in a single request through the Aa interface;

when ACF receives the message it will decompose the request into commands targeting

a specific AN according to pre-established mapping rules.

5.4 Actuation control command delivery and processing

The delivery and processing of an actuation control command based on the

selected protocol is as follows:

Upon reception of a request, the application server will initiate the establishment

of the MCC with the ACF using an INVITE message (shown in Figure 5.11). When the

channel is established, the AS sends the SYNC message before sending actuation control

command (simply command, hereafter) to confirm the control packages it supports.

When the CONTROL message reaches the ACF, it extracts the command, processes it

70

and initiates the establishment of a separate channel with a specific WAG. Similarly,

once the channel is established, after sending out the SYNC message, a CONTROL

message carrying the command is sent to the WAG. The WAG extracts the command and

sends it to a specific actuator. The results or actuation feedbacks will be returned in the

opposite direction via response messages. A channel is set for the lifetime of the

application.

Our architecture offers the possibility of delivering continuously captured data to

applications. During the lifetime of the media control channel, the applications could

send sequences of commands and request real-time data to be collected by actuators

from the scene. The collected data belongs to the media plane and we use RTP as the

transport protocol to transfer the captured data.

At the end, the application sends BYE message to the ACF to terminate the media

control session. The ACF does the same as the WAG. Finally, after receiving

confirmation from actuators, the WAG responds to the ACF with 200 (OK) message and

the ACF does the same with the application. The application session ends.

71

 INVITE

Application Server ACF Gateway Actuators

ACK

200 OK

SIP Media Control Channel
established

CONTROL
 INVITE

ACK

200 OK

SIP Media Control Channel
established

Proprietary Command

Response
200 OK

200 OK

Captured Data/|RTP

Bye Bye

Proprietary Command

200 OK
Response

SYNC

SYNC

Captured Data

200 OK

CONTROL

200 OK

CONTROL

Proprietary Command

Response200 OK
200 OK

Figure 5.11 Call flow of actuation command delivering and processing

5.5 Conclusions

In this chapter, a set of criteria for actuation control protocol selection is carefully

chosen. A number of potential actuation control protocols have been described and

evaluated with regard to the selection criteria. Based on the evaluation, MCCF protocol

is selected as our actuation control protocol. The information model is discussed and

finally the detailed data flow of actuation command delivery and processing is

72

determined. The next chapter will present a proof of concept prototype implementation

and experiments to verify the proposed architecture.

73

Chapter 6

Prototype Implementation and Experiments

This chapter describes the implementation of key architecture components. We

also describe the proof of concept prototype application demonstrating the usage of the

architecture. Experiment results are briefly discussed at the end.

6.1 Architecture implementation

In this section we discuss the implementation of ACF, WAG and the

implementation environment.

6.1.1 Implementation of the Actuation Control Function

For the implementation, we chose Java SIP Servlet API [44] and Java Socket API

[45] toolkits to realize the function blocks of ACF. All the functions of ACF have been

implemented except actuation support functions. In this implementation, the function

blocks are structured into Java classes. Figure 6.1 (generated by an Eclipse plug-in UML

tool - ObjectAID [46]) shows the implemented Java classes.

74

Figure 6.1 Class diagram for the implemented ACF

The main application logic of ACF is implemented by the ‘AcfSipServlet’ class. It

deals with SIP signaling related session control. The ‘ActReqHandler’ and

‘ActReqDispatcher’ classes will be triggered respectively by the ‘AcfSipServlet’ class

according to the message received.

 The MCCF is implemented by a separate class ‘MccfAcf’. It deals with all the

MCCF interactions. After the MCC is established, the ‘MccfAcf’ is ready to receive

actuation request from application servers. The message content will be analyzed by

‘AcmlParser’ class and the result will be delivered to class ‘ActReqHandler’ in the form

of ‘ActionCom’ class which is a data class. After being processed by the

‘ActReqHandler’, new requests addressed towards specific WAG will be generated and

sent by the ‘ActReqDispatcher’ class. The class ‘MccfAcfClient’ will be subsequently

triggered to deal with the MCCF interactions with WAGs. In this case, the ACF acts as a

75

control client and sends actuation requests to specific WAGs.

The remaining ‘ResponseListener’ and ‘ResponseComposition’ classes implement

the functions exactly the same as in the design described in section 4.2. The

‘ResponseListener’ class receives individual responses and the ‘ResponseComposition’

class gathers all relevant responses to an existing actuation request by an application and

composes them into a complete response according to a reverse mapping mechanism.

6.1.2 Implementation of Wireless Actuator Gateway

Similarly for the implementation of the WAG, we also chose Java SIP Servlet API

to realize the SIP interactions between the ACF and the WAG. All the functions of WAG

gateway have been implemented except capability management and support functions.

The actuation arbitration function is simplified and implemented by the ‘ActScheduler’

class using First come-First service policy.

All the function blocks of WAG gateway are structured into Java classes. Figure

6.2 shows the implemented Java classes.

In class ‘ActScheduler’, we implemented one proprietary interface to an actuator

network (Webots Simulated Robots) based on the Controller API provided by Webots

[47]. The interface is identical to the one on real robot-e-puk (shown in Figure 2.3(a)).

The ‘JpegImagesToMovie’ class transforms a series of static images captured by

camera actuator on a simulated robot into a QuickTime movie. This is because the

simulation environment can only store a series of jpeg images instead of media streams.

76

Figure 6.2 WAG Java Classes diagram

6.1.3 Implementation of actuation application

In order to use actuation service provided by the integrated architecture, the only

change to the existing IMS application structure is to add MCCF support. We use Java

SIP Servlet API to implement the SIP signaling interactions. Same as in the ACF

implementation, Java Socket API is used to implement the MCCF. Figure 6.3 shows the

simplified class diagram of actuation application.

Figure 6.3 Simplified actuation application Java class

77

6.1.4 The implementation environment

In this section, several software tools used in the implementation will be

described.

6.1.4.1 SIP Servlet API

A SIP servlet [44] is a Java-based application component which is managed by a

SIP servlet container that performs SIP signaling. Like other Java-based components,

servlets are platform independent Java classes that are compiled to platform neutral byte

code that can be loaded dynamically into and run by a Java-enabled SIP application

server. Containers, sometimes called servlet engines, are server extensions that provide

servlet functionality. Servlets interact with (SIP) clients by exchanging request and

response messages through the servlet container. Figure 6.4 provides a high-level

illustration of the API layer’s role. In our implementation, we use SailFin server [48] as

the SIP Servlet Container.

Application A

SIP Servlet API

Application B Application C

SIP Servlet Container

Application Server

SIP Servlet API Interactions

Figure 6.4 SIP Servlet API role

The new version of SIP Servlet API standard is defined in JSR289, which supports

78

the RFC specifications listed in Table 6.1.

SIP Specification SIP Feature
RFC 3261 SIP Session Initiation protocol core features
RFC 2976 INFO method
RFC 3262 Support reliability of provisional (1xx) responses
RFC 3265 SIP Event Notification Framework
RFC 3428 MESSAGE method
RFC 3311 UPDATE method
RFC 3515 REFER method
RFC 3903 PUBLISH method

Table 6.1 Supported SIP specifications in SIP Servlet API

6.1.4.2 Ericsson Service Development Studio

The Ericsson service development studio (SDS) [49] offers a comprehensive

developing environment for design, implementation and end-to-end testing of new

convergent all-IP (IMS) value added services.

SDS runs in a PC Windows environment and supports the creation of both client

and server sides IMS applications using built-in IMS emulators. SDS provides

high-level APIs to hide device and network complexity and includes a multitude of

templates and wizards to help the developer shorten project lead times.

The SDS consists of two client side components, the IMS Client Platform (ICP) or

IMS JME Client Utility (IJCU) [50] and the developed IMS Device Client. On the

server side, applications can be built on an open architecture based on Java with support

for SIP/HTTP Servlets using SailFin as the default container. In addition, with the SDS,

developers can use the high-level APIs to control and access advanced capabilities such

as Presence and Group Management (PGM), Push-to-Talk (PTT), IMS Messaging

79

(IMS-M), Internet Protocol Television (IPTV) [51].

Figure 6.5 [49] illustrates a high-level view of the SDS functionality, components,

and steps in the design, debugging, testing, and deployment.

Figure 6.5 SDS development and emulation environment

6.1.4.3 Webots Controller API

Webots [52] is a professional mobile robot simulation software package developed

by Cyberbotics Ltd. It offers a prototyping environment that allows the user to create

mobile robots equipped with a number of sensor and actuator devices, such as distance

sensors, drive wheels, cameras, servos, touch sensors, grippers, emitters and receivers.

That is why we choose this environment to implement our proof of concept prototype.

The camera actuator is simulated by Webots. The WAG communicates with the actuators

via Webots controller API. One example of the controller API is shown in Figure 6.6.

Webots contains a large number of robot models and a number of interfaces to real

80

mobile robots, once the simulated robot behaves as expected, control programs can be

downloaded to a real robot like e-puck and Aibo. We use its camera actuator simulations

in this research.

A Webots simulation is composed of three components:

1) A Webots world file that define one or more 3D robot and their environment.

2) Controller programs for the above robots.

3) An optional Supervisor.

We use the first two features to develop our application. In fact, the WAG is

utilizing the controller API to send actuation commands to the simulated robots, like

switch on a camera, capture images, move robots forward and backward or turn around.

Figure 6.6 Programming model of controller in Webots simulation environment

6.2 Prototype application

The integrated architecture provides a framework for quick development of

actuation services to IMS service developers. Through the gateway (WAG) and the ACF,

this architecture abstracts away all the device specific and lower level details and

physical complexities for interacting with actuators. Through this architecture, the

81

service developers no longer need to deal with the proprietary factors of heterogeneous

actuators. They can implement multimedia services with actuation capabilities in a

standard and persistent way. Figure 6.7 shows the deployment model of the proposed

architecture.

Figure 6.7 Prototype application deployment structure

The design and implementation of the prototype application will demonstrate how

this architecture can be used to create attractive services to customers in a convenient

and standard way. In the following sections, a motivating scenario will be developed and

implemented using the integrated architecture to demonstrate proof of concept.

6.2.1 Environment monitoring prototype scenario

Environment monitoring cannot always be performed with humans on the scene.

This is the case for volcano surveillance or earthquakes, for instance. Robots equipped

with sensors and actuators can help in such cases. An application scenario can be as

follows: robots with camera, light sensors and differential wheel devices, are remotely

deployed on an earthquake zone. Upon the receiving an end user request, the application

82

will instruct the robot to turn on cameras through switch actuator, move robot using

motor actuators and take pictures of the scene. The robot can then send back the pictures

to the application. The pictures can be sent to an end user and displayed. The end-user

can initiate a conference call via IMS where the pictures are shared and discussed and

rescue staff could be dispatched to the appropriate locations. Robots can be instructed to

move around and take pictures of targeted zones.

6.2.2 Prototype design and implementation

We leveraged Cyberbotics’ Webots and Ericsson’s Service Development Studio

(SDS) to develop the proof of concept prototype of the proposed architecture. The

camera actuator in the scenario is simulated by Webots. The WAG communicates with

the actuators via Webots controller API as mentioned in 6.1. Figure 6.8 shows the

prototype components.

Figure 6.8 Implementation of the prototype components

At the user side, there are two parts: One part is a web application which presents

user with a web page showing the parameters related to the actuation requests. The user

83

can fill in the fields and send the request to actuation application triggering the

actuations. The other part is the X-Lite [53] which simulates IMS user terminals and is

able to register with IMS, interacts with the application using SIP. The server side

consists of a conference application and an actuation application which is an HTTP

server and SIP server. The conference application was developed by a PhD student in

our lab. It is triggered by the actuation application. The prototype actuation application

was implemented as a set of java classes which is shown in Figure 6.9.

Figure 6.9 Java class diagram of the actuation application prototype

6.2.3 Setup and work flow

The setup consists of three laptops and one desktop. One laptop runs X-Lite

simulation and the second one hosts another X-Lite simulation, the SDS, the conference

and actuation applications in parallel. The ACF is deployed on the third laptop, while the

robots simulation and the WAG are deployed on the desktop. The following interactions

are successfully tested:

1) two end users registered with IMS,

84

2) one user initiated a request to the application requesting to turn on the simulated

camera,

3) the application established a dedicated control channel for carrying the

actuation requests to the ACF,

4) a control channel between the ACF and the WAG was then established and an

actuation request was delivered to the latter,

5) the WAG issued an actuation command to the camera actuator through the

controller interface method Camera.enable(),

6) the camera captured the image and sent it to the WAG,

7) the image file was sent back to the application using RTP,

8) The application acted as B2BUA and triggered the establishment of a

conference call using SIP INVITE message between two end users. The

subsequent captured images were continuously transferred to end users until

the termination of the conference call.

The detailed information flow diagram is shown in Figure 6.10.

85

 INVITE

Application Server ACF Gateway Actuators

ACK

200 OK

SIP Media Control Channel
established

CONTROL
 INVITE

ACK

200 OK

SIP Media Control Channel
established

Proprietary Command

Response
200 OK200 OK

Captured Data/|RTP

Bye Bye

Proprietary Command

200 OK
Response

SYNC

SYNC

Captured Data

200 OK

CONTROL

200 OK

CONTROL

Proprietary Command

Response200 OK
200 OK

 INVITE

 INVITE

User 1

User 2

200 OK

200 OK

ACK

ACK

Conference Media /RTP

Conference Media/RTP

HTTP GET

HTTP Response

HTTP GET

HTTP GET
HTTP Response

Conference Media Stream Actuation Application Media HTTP session

Control Channel Control Channel session SIP session

Figure 6.10 The prototype information flow

Few snapshots of the prototype running results are shown in Figure 6.11. The

small square window frame in Figure 6.11 (c) is the camera lens scope which set the

image size, this is the weak point of the simulation environment. Figure 6.11 (a) shows

the webpage when the captured video arrives at the application and immediately before

the conference begins and Figure 6.11 (b) shows that the conference has been

established.

86

(a) (b)

(c)

Figure 6.11 Snapshots of prototype running result: (a) webpage shown on end user

terminal after the image is ready; (b) the simulated mobile phone joins the
conference; (c) the simulated robot capturing images

6.3 Experiments and results

In this section, we conduct experiments based on the prototype application. The

purpose of the experiments is to collect data on end-to-end actuation delays (actuation

delay hereafter) and calculate the average actuation delay.

6.3.1 Actuation delay

The QoS requirements for the actuation service depend on the nature of the

87

application. In most cases, applications requesting actuation services are time sensitive

and may impose constraints on the response time. The end-to-end actuation delay is

probably one of the key performance metrics for the integrated architecture. It is defined

as the span of time from the moment an actuation request is sent by an application to the

moment an actuation response carrying the actuation results is received.

 INVITE

Application Server ACF Gateway Actuators

ACK

200 OK

SIP Media Control
Channel established

CONTROL
 INVITE

ACK

200 OK

SIP Media Control
Channel established

CONTROL Proprietary Command

Response

200 OK
200 OK

SYNC

SYNC

200 OK

200 OK

Tas

Tae

Tip
Tia

Tie

Tact’

Figure 6.12 End-to-end actuation delay calculations

As shown in Figure 6.12, the actuation delay is calculated in the following way:

We denote the actuation delay by Tact. It is calculated as the time between the moment

the application send out the MCCF CONTROL messages toward the ACF (Tas) and the

moment a relevant response is received from the ACF (Tae). It includes the delay

between the ACF and the WAG.

88

6.3.1.2 Setup of the experiment environment

The experimental setup consists of: Webots 6.5 robot simulation which acts as the

actuator network, Ericsson SDS 4.1 simulates the IMS environment including the HSS

and CSCFs and the integrated SailFin server as the SIP container. The actuation

application, ACF and WAG are deployed over SDS. The hardware specifications are

shown in Table 6.2.

Computers Hardware configuration Software

Laptop 1 Athlon Dual-Core, 1.9GHz/4G

RAM/ 802.11a/g Wi-Fi

Application Server: Actuation Application,

Conferencing;

IMS simulation: Ericsson SDS4.1, NetBeans

6.5, Windows Vista 64

Laptop2 Intel Dual-Core, 1.8GHz/3G RAM/

802.11a/g Wi-Fi

ACF, X-Lite cell phone simulator

Ericsson SDS4.1, Windows XP

Desktop Intel Quad-Core, 1.9GHz/4G RAM/

802.11a/g Wi-Fi

WAG, Simulated Robots with camera device,

X-Lite cell phone simulator

Ericsson SDS4.1, Webots 6.5, Windows Vista

Table 6.2 Test setup hardware configuration

6.3.1.3 Experiment results

Fifteen experiments have been performed for the prototype application. Table 6.3

shows the results: the actuation delays (Tact). The Java Date object is used to acquire the

time moment in milliseconds.

Due to the limitations of the Webots simulation environment, we can only capture

89

static JPEG image. We have to transform the static JPEG image into Quicktime video

stream which will be transmitted to the application via RTP. This took a lot of time. In

our experiments, the image processing time is around 27s.

Table 6.3 Actuation delay results

From the experiments above, we can see that for the prototype scenario, the

average actuation delay is about 30 seconds. If we remove the impact of the image

processing, the average actuation delay will be about 3 seconds. This result shows the

performance of the prototype alike application over the integrated architecture is

acceptable.

6.4 Conclusions

In this chapter we presented the implementation of the architecture components

and discussed the implementation environment. This integrated architecture provides

service developers with a convenient and efficient way of building new actuation

Experiment
Runs Tas(ms) Tae(ms) Tact(s)

1 1286250955969 1286250986850 30.88
2 1286504278943 1286504309552 30.61
3 1286547253595 1286547284549 30.95
4 1286556268967 1286556299662 30.70
5 1286569174402 1286569205264 30.86
6 1286589114094 1286589145719 31.63
7 1286572272947 1286572303842 30.90
8 1286572706334 1286572737122 30.79
9 1286590318666 1286590348954 30.29
10 1286591113068 1286591143849 30.78
11 1286591548192 1286591578462 30.27
12 1286592055698 1286592085736 30.04
13 1286592826389 1286592856690 30.30
14 1286593314441 1286593344770 30.33
15 1286598113202 1286598143288 30.09

90

enabled value added services. A proof of concept prototype application has been

implemented for the environment monitoring application scenario.

As a key factor affecting the performance, the actuation delay is evaluated

experimentally. The result shows that the performance of the prototype alike application

over the integrated architecture is acceptable. However, a more realistic set up or more

formal analysis study of the architecture needs to be carried in the future.

91

Chapter 7

Conclusions and Future Work

In this chapter, we summarize the contribution of the thesis and discuss potential

future work.

7.1 Summary of contributions

Research on WSANs has been very active in recent years. The main motivation is

the possibility of novel applications. IMS alone enables attractive multimedia

applications. The integration of the heterogeneous actuators with the IMS will enable

more. However, this integration is a challenging task. This thesis focuses on the

integration of actuation capabilities with the IMS. The main contributions of this thesis

are as follows.

• We examined existing solutions related to integration of WSAN and other

networks including IMS and Internet. In order to conduct the evaluation, a set

of requirements has been derived for the integration of AN with IMS based on

the application scenarios we are interested in. This evaluation concluded that

none of the existing solutions fulfills all the requirements. We therefore

decided to develop a new architecture based as much as possible on existing

standards.

• We proposed an architecture for the integration. The architecture includes two

key components: the ACF and the WAG. In this architecture, two levels of

abstraction are required based on the derived requirements. The introduction

92

of the ACF is motivated by the requirement of abstracting away the lower

level details of actuation from the applications and other IMS entities. We

introduced the WAG to make ANs accessible to the external world.

• Existing command carrying protocols and information models have been

evaluated with respect to a set of derived requirements. Based on this

evaluation, MCCF has been selected for actuation command delivery. We

designed a new information model - ACML to abstract the actuation

triggering instructions.

• Finally, as a proof of concept, a prototype has been developed for the

environment monitoring scenario. This prototype demonstrates the possibility

of new value added services with the integrated architecture. The key

components of the proposed architecture have been implemented. The session

control and signaling protocols for exchanging actuation commands and

transmitting media stream have also been implemented. The end-to-end

actuation delay is evaluated through experiments with the prototype. The

result shows that the performance of the prototype alike application over the

integrated architecture is acceptable.

7.2 Future work

The research on integrating actuators with existing networks is still evolving. The

future work would be to implement the remaining features of the integrated architecture

and perform an overall performance evaluation and a thorough analysis.

In our prototype, the actuation is triggered by the end user intervention. In the

93

future we plan to introduce sensor based triggering mechanism into the architecture to

increase the efficiency and enrich the application domain.

We also assumed a simplified business model which is: one operator owns the

IMS and the actuator networks, the WAGs are preconfigured and known to the ACF.

As future work, it will be interesting to relax this constraint and extend the architecture.

It will also be interesting to work with “real open” actuators when they become

available.

94

REFERENCES

[1] 3GPP. TS23.228. “IP Multimedia Subsystem (IMS); Stage 2 (release 8)”, Sep. 2009

[2] Rosenberg et al., “SIP: Session Initiation Protocol”, IETF RFC 3261, June 2002

[3] Wikipedia, “Actuator”, available at http://en.wikipedia.org/wiki/Actuator

[4] I.F. Akyildiz, I.H. Kasimoglu, “Wireless Sensor and Actor Networks: Research

Challenges”, Ad Hoc Networks 2 (2004), pp. 351–367

[5] J. Schiff, et al., “Actuator Networks for Navigating an Unmonitored Mobile Robot”,

IEEE Conference on Automation Science and Engineering (CASE), August 2008

[6] M. El Barachi, A. Kadiwal, R. Glitho, F. Khendek, and R. Dssouli, “A

Presence-based Architecture for the Integration of the Sensing Capabilities of

Wireless Sensor Networks in the IP Multimedia Subsystem”, Proceedings of IEEE

WCNC, April 2008, pp. 3116-3121

[7] SENSEI Consortium, “The SENSEI Real World Internet Architecture”, March

2010

[8] C. Boulton, et al., “Media Control Channel Framework”, IETF Internet Draft <

draft-ietf-mediactrl-sip-control-framework-11>, October 2009

[9] W3C, “Extensible Markup Language (XML) 1.0 (Third Edition)”, W3C

Recommendation, Feb. 2004

[10] E-puck project, available online at http://www.e-puck.org/

[11] Mini-robot Research, available online at

http://sandia.gov/media/NewsRel/NR2001/minirobot.htm

[12] Military robot, available online at http://en.wikippedia.org/wiki/Military_robot

[13] G. Camarillo, M. A. Garcia-Martin, “The 3G IP Multimedia Subsystem (IMS)

Merging the Internet and the Cellular Worlds”, John Wiley & Sons, 2008

95

[14] R. Hou, R. Glitho, F. Khendek, and M. Ali, “Integrating Wireless Actuation

Capabilities with the 3GPP IP Multimedia Subsystem for Enhanced Multimedia

Services”, IEEE PIMR 2010, Sep. 2010

[15] H.248.1, “Gateway control protocol: Version 3”, ITU-T Recommendation, Sep.

2002

[16] Syed A.Ahson, and Mohammad Ilyas, “IP Multimedia Subsystem (IMS)

Handbook”, CPC Press, 2009

[17] H. Schulzrinne, et al., “The tel URI for Telephone Numbers”, IETF RFC 3966, Dec.

2004

[18] 3GPP TS 23.218, “IP multimedia session handling: IM call model; Stage 2 (Release

9)”, June 2010

[19] 3GPP TS 24.141, “Presence service using the IP multimedia (IM) core network (CN)

subsystem; Stage 3 (Release 9)”, Dec. 2009

[20] M. Handley, et al., “SDP: Session Description Protocol”, IETF RFC 4566, July

2006

[21] R. Stewart, et al., “Stream Control Transmission Protocol”, IETF RFC 2960,

October 2000

[22] J.Kuthan, D. Sisalem, “SIP: more than you ever wanted to know about”, March

2007

[23] R. Fielding, et al., “Hypertext Transfer Protocol - HTTP/1.1”, IETF RFC 2616, June

1999

[24] T. Berners-Lee, et al., “Uniform Resource Identifier (URI): Generic Syntax”, IETF

RFC 3986, Jan. 2005

[25] B. Campbell, et al., “Control of Service Context using SIP Request-URI”, IETF

RFC 3087, April 2001

96

[26] A. B. Roach, “Session Initiation Protocol (SIP)-Specific Event Notification”, IETF

RFC 3265, June 2002

[27] B. Campbell, Ed. , “Session Initiation Protocol (SIP) Extension for Instant

Messaging”, IETF RFC 3428, Dec. 2002

[28] A. Niemi, Ed., “Session Initiation Protocol (SIP) Extension for Event State

Publication”, IETF RFC 3903, October 2004

[29] F. Carrez, Ed., “D.3.2 –Reference Architecture”. SENSEI, Public Deliverable D.3.2,

2009, available online at http://www.sensei‐project.eu/

[30] R. Gold, Ed, “D.3.1-State of the art – Sensor frameworks and future Internet”,

SENSEI Public Deliverable D.3.1, 2008, available online

at http://www.sensei‐project.eu/

[31] Mirco Rossi, et al., “D.2.3-Components for Context Modeling and Interfaces”,

SENSEI Public Deliverable D.2.3, 2009, available online

at http://www.sensei‐project.eu/

[32] N. Kushalnagar, et al, “IPv6 over Low-Power Wireless Personal Area Networks

(6LoWPANs): Overview, Assumptions, Problem Statements and Goals”, IETF RFC

4919, Aug. 2007

[33] S. Deering et al, “Internet Protocol, Version 6 (IPv6) Specification”, RFC 2460,

IETF, Dec. 1998

[34] A. Gluhak et al. “e-SENSE Reference Model for Sensor Networks in B3G Mobile

Communication Systems”, Information society technologies (IST), 2006.

[35] C. Groves, et al., “Gateway Control Protocol Version 1”, IETF RFC 3525, June

2003

[36] J. Klensin, “Simple Mail Transfer Protocol”, IETF RFC 5321 October 2008

[37] A. Saleem, et al., “Media Server Markup Language (MSML)”, IETF RFC5707, Feb.

2010

http://www.sensei‐project.eu/�
http://www.sensei‐project.eu/�
http://www.sensei‐project.eu/�

97

[38] S. Donovan, “The SIP INFO Method”, IETF RFC2796, October 2000

[39] S. McGlashan, et al., “An Interactive Voice Response (IVR) Control Package for the

Media Control Channel Framework”, IETF Internet Draft<

draft-ietf-mediactrl-ivr-control-package- 09>, Nov. 2010

[40] H. Schulzrinne, et al., “RTP: A Transport Protocol for Real-Time Applications”,

IETF RFC3550, July 2003

[41] S. McGlashan, et al., “A Mixer Control Package for the Media Control Channel

Framework”, IETF Internet Draft < draft-ietf-mediactrl-mixer-control-package-11>,

February 2010

[42] A. Amirante, et al., “Media Control Channel Framework (CFW) Call Flow

Examples”, IETF Internet Draft< draft-ietf-mediactrl-call-flows-03>, Feb. 2010

[43] H. Schulzrinne, et al., “Extensions to the Presence Information Data Format

(PIDF)”, IETF RFC 4480, July 2006

[44] Java Community Process, “SIP Servlet API Specification, Version 1.1”, JSR 289,

August 2008

[45] Elliotte Rusty Harold, “JAVA Network Programming, Third Edition”, O'Reilly,

November 2004.

[46] The ObjectAid UML Explorer for Eclipse, online at http://www.objectaid. com/

[47] Cyberbotics Ltd., “Webots Reference Manual”, March 2010

[48] SailFin Project, available online at: https://sailfin.dev.java.net/

[49] Ericsson AB., “Service Development Studio (SDS) 4.1 Tutorial”, February2009

[50] Ericsson AB., “Service Development Studio (SDS) 4.1 Technical Description”,

February, 2009

[51] Ericsson AB., “Service Development Studio (SDS) 4.1 Developer’s Guide”,

February, 2009

[52] Cyberbotics Ltd., “Webots User Guide”, June 2009

https://sailfin.dev.java.net/�

98

[53] X-Lite, available online at http://www.counterpath.com/x-lite.html

http://www.counterpath.com/x-lite.html�

	List of Figures
	List of Tables
	Acronyms and Abbreviations
	Chapter 1
	Introduction
	1.1 Research domain
	1.2 Motivations and problem statement
	1.3 Contribution of the thesis
	1.4 Organization of the Thesis

	Chapter 2
	Background Information on Actuators, IP Multimedia Subsystem and Session Initiation Protocol
	2.1 Actuators and Wireless Sensor Actuator Networks
	2.1.1 Actuators
	2.1.2 Wireless Sensor and Actuator Network
	Figure 2.1 Semi-automated WSAN architecture

	2.1.3 Wireless Sensor and Actuator Networks vs. Wireless Sensor Networks
	2.1.4 Actuator hardware
	Figure 2.2 Actuator architecture and components
	Figure 2.3 Robots developed by different research lab: (a) e-puck, (b) Robotic Mule, (c) robotic arms, (d) mini-robot

	2.1.5 Wireless Sensor and Actuator Network applications

	2.2 IP Multimedia Subsystem
	2.2.1 IP Multimedia Subsystem architecture
	Figure 2.4 Layers of IMS Architecture

	2.2.2 IP Multimedia Subsystem architecture entities
	Figure 2.5 Overview of IMS architecture
	2.2.2.1 Signaling entities
	2.2.2.2 Databases
	2.2.2.3 Media handling
	2.2.2.4 Interworking

	2.2.3 Important IP Multimedia Subsystem interfaces
	2.2.4 IP Multimedia Subsystem operations
	2.2.4.1 IP Multimedia Subsystem level registration
	Figure 2.6 IMS-level Registration Signaling Flow

	2.2.4.2 Service Triggering
	Figure 2.7 Application server triggering architecture

	2.3 Session Initiation Protocol
	2.3.1 Addressing
	2.3.2 Session Initiation Protocol entities
	Figure 2.8 SIP Roles: (a) UAS, (b) UAC, (c) Proxy, (d) B2BUA

	2.3.3 Session Initiation Protocol messages
	Table 2.1 SIP Request Method and Functions
	Table 2.2 SIP Response Code and Description
	Figure 2.9 Structure of SIP Request and Response

	2.4 Conclusions

	Chapter 3
	Integrating actuation capabilities with existing networks: state of the art
	3.1 Scenarios
	3.2 Requirements
	3.3 Evaluation of related work
	3.3.1 SENSEI Project
	Figure 3.1 Detailed SENSEI Architecture
	Figure 3.2 SENSEI embedded actuation
	Figure 3.3 SENSEI application based Actuation Decision

	3.3.2 e-SENSE
	Figure 3.4 Enhanced e-SENSE protocol stack
	Figure 3.5 e-SENSE enabler in IMS: (a) e-SENSE service in IMS environment, (b) interfaces between e-SENSE entities and other IMS network components

	3.3.3 Presence based integration of Wireless Sensor Network and IP Multimedia Subsystem
	Figure 3.6 WSN/IMS integrated architecture

	3.4 Evaluation summary
	Table 3.1 Evaluation summary of related work

	3.5 Conclusions

	Chapter 4
	Integration of Wireless Actuator Networks with IP Multimedia Subsystem
	4.1 Overall architecture and principles
	Figure 4.1 Architecure Overview

	4.2 Design of Actuation Control Function
	Figure 4.2 ACF software structure
	4.2.1 Actuation control layer
	4.2.1.1 Actuation processing functions
	Table 4.1 Sample WAG mapping table
	Table 4.2 Sample request matching table

	4.2.1.2 Support functions

	4.2.2 Connectivity Layer

	4.3 Design of Wireless Actuator Gateway
	Figure 4.3 WAG software structure
	4.3.1 Actuation control layer
	4.3.1.1 The actuation management functions
	Table 4.3 sample of mapping table at WAG

	4.3.1.2 Support functions

	4.3.2 Connectivity layer

	4.4 Actuation application server
	4.5 Conclusions

	Chapter 5
	Actuation Control Protocol and Actuation Control Information Model
	5.1 Criteria for actuation control protocol selection
	5.2 Evaluation of command semantic carrying protocols
	5.2.1 Simple Mail Transfer Protocol
	Figure 5.1 SMTP structure
	Table 5.1 SMTP commands

	5.2.2 Session Initiation Protocol with Media Server Markup Language
	Figure 5.2 MSML core package scheme

	5.2.3 Megaco
	Table 5.2 Megaco commands and functions
	Figure 5.3 Megaco Message Structure

	5.2.4 Media Control Channel Framework
	Figure 5.4 MCCF Overview
	5.2.4.1 Entities and concepts
	5.2.4.2 Framework messages
	Table 5.3 MCCF Messages

	5.2.4.3 Media Control Channel establishment
	Figure 5.5 MCC establishment
	Figure 5.6 Example of SIP dialog messages and MCCF SYNC message

	5.2.4.4 CONTROL transactions
	Figure 5.7 CONTROL transaction
	Figure 5.8 CONTROL message and response

	5.2.4.5 Control packages

	5.2.5 Evaluation summary
	Table 5.4 Evaluation summary

	5.3 Actuation Control Information Model
	Figure 5.9 ACML Scheme
	Figure 5.10 An example of a control package in ACML

	5.4 Actuation control command delivery and processing
	Figure 5.11 Call flow of actuation command delivering and processing

	5.5 Conclusions

	Chapter 6
	Prototype Implementation and Experiments
	6.1 Architecture implementation
	6.1.1 Implementation of the Actuation Control Function
	Figure 6.1 Class diagram for the implemented ACF

	6.1.2 Implementation of Wireless Actuator Gateway
	Figure 6.2 WAG Java Classes diagram

	6.1.3 Implementation of actuation application
	Figure 6.3 Simplified actuation application Java class

	6.1.4 The implementation environment
	6.1.4.1 SIP Servlet API
	Figure 6.4 SIP Servlet API role
	Table 6.1 Supported SIP specifications in SIP Servlet API

	6.1.4.2 Ericsson Service Development Studio
	Figure 6.5 SDS development and emulation environment

	6.1.4.3 Webots Controller API
	Figure 6.6 Programming model of controller in Webots simulation environment

	6.2 Prototype application
	Figure 6.7 Prototype application deployment structure
	6.2.1 Environment monitoring prototype scenario
	6.2.2 Prototype design and implementation
	Figure 6.8 Implementation of the prototype components
	Figure 6.9 Java class diagram of the actuation application prototype

	6.2.3 Setup and work flow
	Figure 6.10 The prototype information flow
	Figure 6.11 Snapshots of prototype running result: (a) webpage shown on end user terminal after the image is ready; (b) the simulated mobile phone joins the conference; (c) the simulated robot capturing images

	6.3 Experiments and results
	6.3.1 Actuation delay
	Figure 6.12 End-to-end actuation delay calculations
	6.3.1.2 Setup of the experiment environment
	Table 6.2 Test setup hardware configuration

	6.3.1.3 Experiment results
	Table 6.3 Actuation delay results

	6.4 Conclusions

	Chapter 7
	Conclusions and Future Work
	7.1 Summary of contributions
	7.2 Future work

	REFERENCES

