Breadcrumb

 
 

Kronig-Penney model on bilayer graphene: Spectrum and transmission periodic in the strength of the barriers

Title:

Kronig-Penney model on bilayer graphene: Spectrum and transmission periodic in the strength of the barriers

Barbier, M. and Vasilopoulos, P. and Peeters, F. (2010) Kronig-Penney model on bilayer graphene: Spectrum and transmission periodic in the strength of the barriers. Physical Review B, 82 (23). 235408-1-235408-10. ISSN 1098-0121

[img]
Preview
PDF - Published Version
4Mb

Official URL: http://dx.doi.org/10.1103/PhysRevB.82.235408

Abstract

We show that the transmission through single and double δ-function potential barriers of strength P=VWb/ℏvF in bilayer graphene is periodic in P with period π. For a certain range of P values we find states that are bound to the potential barrier and that run along the potential barrier. Similar periodic behavior is found for the conductance. The spectrum of a periodic succession of δ-function barriers (Kronig-Penney model) in bilayer graphene is periodic in P with period 2π. For P smaller than a critical value Pc, the spectrum exhibits two Dirac points while for P larger than Pc an energy gap opens. These results are extended to the case of a superlattice of δ-function barriers with P alternating in sign between successive barriers; the corresponding spectrum is periodic in P with period π.

Divisions:Concordia University > Faculty of Arts and Science > Physics
Item Type:Article
Refereed:Yes
Authors:Barbier, M. and Vasilopoulos, P. and Peeters, F.
Journal or Publication:Physical Review B
Date:15 December 2010
Keywords:PACS:73.21.-b, 71.10.Pm, 72.80.Vp
ID Code:7135
Deposited By:DANIELLE DENNIE
Deposited On:14 Mar 2011 13:42
Last Modified:14 Mar 2011 13:42
References:
1.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).

2.O. Klein, Z. Phys. 53, 157 (1929).

3.M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nat. Phys. 2, 620 (2006).

4.N. Stander, B. Huard, and D. Goldhaber-Gordon, Phys. Rev. Lett. 102, 026807 (2009); A. F. Young and P. Kim, Nat. Phys. 5, 222 (2009).

5.A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009); C. W. J. Beenakker, ibid. 80, 1337 (2008).

6.J. M. Pereira, Jr., P. Vasilopoulos, and F. M. Peeters, Appl. Phys. Lett. 90, 132122 (2007).

7.E. McCann, D. S. L. Abergel, and V. I. Fal’ko, Solid State Commun. 143, 110 (2007).

8.C.-H. Park, L. Yang, Y.-W. Son, M. L. Cohen, and S. G. Louie, Nat. Phys. 4, 213 (2008).

9.S. Ghosh and M. Sharma, J. Phys.: Condens. Matter 21, 292204 (2009).

10.Y. P. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, Phys. Rev. B 79, 075123 (2009).

11.I. Snyman, Phys. Rev. B 80, 054303 (2009).

12.R. Nasir, K. Sabeeh, and M. Tahir, Phys. Rev. B 81, 085402 (2010).

13.M. Barbier, F. M. Peeters, P. Vasilopoulos, and J. M. Pereira, Jr., Phys. Rev. B 77, 115446 (2008).

14.C. Bai and X. Zhang, Phys. Rev. B 76, 075430 (2007).

15.M. Barbier, P. Vasilopoulos, F. M. Peeters, and J. M. Pereira, Jr., Phys. Rev. B 79, 155402 (2009).

16.C. Kittel, Introduction to Solid State Physics, 5th ed. (Wiley, New York, 1976).

17.M. Barbier, P. Vasilopoulos, and F. M. Peeters, Phys. Rev. B 80, 205415 (2009).

18.E. McCann and V. I. Fal’ko, Phys. Rev. Lett. 96, 086805 (2006).

19.A. Matulis and F. M. Peeters, Phys. Rev. B 77, 115423 (2008).

20.A. V. Shytov, M. S. Rudner, and L. S. Levitov, Phys. Rev. Lett. 101, 156804 (2008); P. G. Silvestrov and K. B. Efetov, ibid. 98, 016802 (2007).

21.I. Snyman and C. W. J. Beenakker, Phys. Rev. B 75, 045322 (2007).

22.M. Ramezani Masir, P. Vasilopoulos, and F. M. Peeters, Phys. Rev. B 82, 115417 (2010).

23.S. Latil and L. Henrard, Phys. Rev. Lett. 97, 036803 (2006).
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Document Downloads

More statistics for this item...

Concordia University - Footer