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ABSTRACT 

Improving Crane Safety by Agent-Based Dynamic Motion Planning Using UWB 

Real-Time Location System 

Cheng Zhang, Ph.D. 

Concordia University, 2010 

The safe operation of cranes requires not only the experience of the operator, but also 

sufficient and appropriate support in real time. Due to the dynamic nature of construction 

sites, unexpected changes in the site layout may create new obstacles for the crane that 

can result in collisions and accidents. Limited research has been done on efficient re-

planning for cranes with near real-time environment updating while considering 

communications between construction crews.   

To improve the safety of mobile crane operations and to provide more awareness on site, 

the present research proposes a near real-time monitoring and motion planning approach 

to improve crane safety on construction sites using an ultra wideband (UWB) real-time 

location system (RTLS) technology. In addition, an agent system framework is proposed 

to guide crane operators for safe crane operations by enhancing environment awareness 

and by providing intelligent re-planning. Location data are collected from tags attached to 

cranes and are processed by the agent system to identify the poses of dynamic objects, 

which is used to generate a new motion plan to guide the crane movement and thus to 

avoid potential collision.  

A motion planning algorithm, RRT-Con-Con-Mod, is proposed to efficiently generate 

safe and smooth paths for crane motions, mainly for the boom movement, while taking 

into account the engineering constraints and the path quality. A dynamic motion planning 
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algorithm, DRRT-Con-Con-Mod, is proposed to ensure safety during the execution phase 

by quickly re-planning and avoiding collisions. In addition, an anytime algorithm is 

proposed to search for better solutions during a given time period by improving the path 

smoothness and by reducing the path execution time. The proposed algorithms are 

compared with other motion planning and re-planning algorithms. The results show that 

the proposed algorithms can quickly find a safe and smooth motion plan.  

Several tests of a UWB system have been applied in the laboratory and in indoor and 

outdoor environments to investigate the requirements of applying UWB on construction 

sites, that is, requirements including accuracy, visibility, scalability, and real-time. To 

satisfy these requirements, the configuration of the UWB system has been analyzed in 

detail to decide the sensors’ and tags’ locations and numbers based on heuristic rules. 

These tests show a good potential for using UWB tracking technology in construction 

sites by processing and organizing location data into useful information for near real-time 

environment updating. 

Furthermore, the framework of an agent system is proposed to integrate the proposed 

methodologies of motion planning and near real-time tracking. Different agents are 

created to represent the equipment, to coordinate tasks, and to update the site information. 

The functions of these agents include exchanging information, deciding priorities, etc.  

The current research will benefit the construction industry by providing more awareness 

of dynamic construction site conditions, a safer and more efficient work site, and more 

reliable decision support based on good communications. 
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CHAPTER 1 INTRODUCTION 

 

 

 

1.1 GENERAL BACKGROUND 

Safety and productivity issues on construction sites are always among the major concerns 

of project managers. The complexity of on-site conditions requires careful planning and 

coordination of different equipment to ensure safety and efficiency. Previous research has 

indicated that machinery-related incidents were the fourth leading cause of traumatic 

occupational fatalities in the construction industry between 1980 and 1992, resulting in 

1,901 deaths (2.13 deaths per 100,000 workers) (NIOSH, 2007). The same research has 

indicated that the construction equipment most frequently associated with fatalities are 

cranes (17%), excavators (15%), tractors (15%), loaders (9%), and pavers (7%).  Taking 

cranes as an example, in 2006, there were 72 crane-related fatal occupational injuries in 

the U.S. (Crane-Related Occupational Fatalities, 2006). In Canada, there were 56 

accidents related to cranes in the province of British Columbia in 2006 (WorkSafeBC, 

2010); and during the period of 1974 to 2002, there were 23 accidents with injuries, 26 

accidents with death, and 13 accidents with material damage related to cranes in Quebec 

province (CSST, 2010). In addition, the numbers of reported accidents and the resulting 

deaths have been increasing during the past 10 years (Crane Accident Statistics, 2010). 

Furthermore, crane accident statistics are limited because typically only deaths and 

injuries are reported. Property damage incidents are usually not reported; however, the 

seriousness of a crane accident is self-evident (Crane Safety on Construction Sites, 1998).  
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It is estimated that one crane upset occurs during every 10,000 hours of crane use. 

Approximately 3% of upsets result in death, 8% in lost time, and 20% in damage to 

property other than the crane. Nearly 80% of these upsets can be attributed to predictable 

human errors when the operator inadvertently exceeds the crane's lifting capacity (Davis 

and Sutton, 2003). Crane operators need sufficient and appropriate training with 

instruction for safe vehicle operation. Safety should be practiced and enforced each and 

every time the equipment is used (Heavy Equipment Safety, 2005). According to Beavers 

et al. (2006), mobile cranes represented over 88% of the fatal crane-related events. 

Furthermore, “electrocution” and “crane tip over” were associated only with mobile 

cranes. These data suggest that more emphasize should be put on the operation of mobile 

cranes. 

Figures 1-1(a) and (b) show a bridge rehabilitation project (Zaki and Mailhot, 2003), 

carried out in 2001 and 2002, where groups of cranes and crews were involved in 

removing old deck sections and installing new panels. The complexity of the construction 

environment put many constraints on the mobilization, transportation, collaboration of 

equipment, work interference (multi-groups), tight schedule (traffic should be open 

during day time), spatial constraints (existing structure of the bridge), and so on. 

Consequently, the motion of the cranes was carefully planned and tested using scaled 

physical models and 3D simulation tools. As can be seen from this example, the spatio-

temporal aspects of certain construction projects need to be well planned and monitored 

to ensure safety and to improve efficiency. 
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(a)                                                     (b) 

 

Figure 1-1: Construction site of a bridge rehabilitation project (Zaki and Mailhot, 

2003) 

 

The operation of cranes is a complex job, requiring not only the experience of the 

operator, but also sufficient and appropriate support in real time. For example, the 

operator of a hydraulic crane may have some blind spots, and most of the time, he is 

engaged in concentrating on his work without full perception of the environment. 

Furthermore, the noise and vibration from the equipment impair the cognitive ability of 

the operator. To help crane operators accomplish their tasks safely and efficiently, 

researchers and engineers have been investigating various methods. Several software 

tools have been developed to select the type and location of cranes, and to plan the path 

of a lift. However, because of the dynamic nature of construction sites, unexpected 

changes in the site layout may create new obstacles for the crane that can result in 

collisions and accidents. Early in 1998, the use of computers to plan safe operations and 

to maintain the crane in a safe operating condition was proposed in a report from the 
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American Society of Civil Engineers (Crane Safety on Construction Site, 1998). 

However, at that time, the focus was only on simulating lifts for operations and for 

training purposes. The real-time monitoring issues were not considered. Nowadays, it is 

possible to think about providing a real-time planning support and about giving more 

awareness on site to the operators to improve the safety of crane operations. Using 

different types of sensors, it is possible to forecast and to avoid collisions based on 

continuously capturing and updating information about obstacles in the surrounding 

environment. These sensors can be used to obtain information about static and dynamic 

obstacles. Static obstacles are those obstacles about which information is known in 

advance so that they can be taken into account during the planning phase. Dynamic 

obstacles are objects that are moving on site, such as trucks, workers, and construction 

equipment. These dynamic obstacles need to be detected and their positions need to be 

updated while executing the initial plan, thereby necessitating re-planning because of 

potential collisions. By the utilization of a wide array of sensors, equipment operators can 

have better situation awareness and can make more informed decisions. 

1.2 RESEARCH OBJECTIVES 

The objectives of the present research are the following: (1) to propose a new approach 

for guiding crane operations taking into consideration engineering and spatial constraints 

updated from near real-time data collection and information exchange technologies; (2) 

to investigate motion planning and re-planning algorithms that can be applied to cranes to 

reduce safety risks on site; (3) to explore the usability of emerging technologies for field 

data capturing on construction sites and for detecting dynamic objects; (4) to develop an 

agent-based framework to enhance the communication and negotiation between staffs on 
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the construction site; and (5) to develop a prototype system that can be used for near real-

time support in construction by integrating the above methods and techniques. 

1.3 THESIS STRUCTURE 

The structure of this thesis is as follows: The literature review is described in Chapter 2, 

focusing on related topics in the areas of construction simulation, motion planning for 

robots and construction equipment, environment perception technologies, and agent 

technologies. Chapter 3 describes an overview of the research methodology, which 

includes the conceptual approach, the criteria for motion planning algorithm selection, 

the requirements of the sensing technology that should be satisfied in construction, and 

the framework of a multi-agent system. In Chapter 4, the proposed motion planning and 

re-planning algorithms are discussed in detail, and two case studies are used to show the 

feasibility of applying these algorithms. In Chapter 5, the near real-time environment data 

collection and analysis are described to explore how to organize these data into 

information that can be used for collision detection. Chapter 6 presents the prototype 

system design and integrated tests to validate the proposed approach in a controlled 

environment. The contributions and limitations of the present research and the direction 

of future work are discussed in Chapter 7. 
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CHAPTER 2 LITERATURE REVIEW 

 

 

 

2.1 INTRODUCTION   

The present literature review focuses on topics related to the present research in the areas 

of construction simulation, motion planning for robots and construction equipment, 

environment perception technologies, and agent technologies. The purpose is to 

investigate the trends in research and in the industry and to investigate the possibility of 

applying advanced technologies to allow crane operators to have a better awareness of 

site information and to get support from an intelligent system.  

Simulation methods and tools are used to help in selecting the cranes, in simulating the 

task, and in visually checking the spatial constraints on site. Construction engineers need 

to survey the construction site and to use 3D environment models to plan critical lifts 

aiming to improve efficiency and reduce safety risks. Many issues need to be considered 

in crane selection and path planning, such as the capacity of the crane, the location of 

temporary material storage, the crane moving path, and the vision coverage of the crane 

operator. Available methods and tools are reviewed in Section 2.2. 

A detailed lifting plan is needed for critical crane lift processes. In current practice, 

planners have to manually check the working range of the selected crane to guarantee that 

it can reach the initial and goal locations of the lift objects. In addition, a collision-free 

path is planned to execute the tasks. Five main steps are defined by Kang (2005) to 

simulate the process of moving a lift object: (1) picking the object with a series of 
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delicate crane motions, (2) lifting the object vertically to a minimum safety height, (3) 

moving the object to the top of the destination location, (4) waiting for the decrease of the 

vibration caused by the crane motions, and (5) lowering and moving the object to the 

destination location. Step three requires that there be an effective motion planning 

method for the crane, which is essential to the success of the entire task. Motion planning 

algorithms available in robotics research are reviewed in depth to evaluate their 

applicability to construction equipment, as introduced in Section 2.3. 

One problem in the current state-of-practice is that the information is insufficient during 

the planning. For example, the 3D environment model usually does not include enough 

details, such as details about electric poles and lines. Such details are important since 

electrocution is the second major cause of fatalities during the performance of hoisting 

activities (Beavers et al., 2006). In addition, the surrounding environment could change 

during construction, thereby making the original lift plan unfeasible. Hence, it is 

important to consider that the construction site is dynamic and unpredictable, and near 

real-time information updating is necessary to capture these changes. Several 

environment perception technologies are reviewed in Section 2.4. 

Once the environment has changed, fixing on-site problems can delay the schedule or 

increase the cost. These problems can be significantly reduced if efficient motion re-

planning is applied based on the updated environment information. Related motion 

planning research is reviewed in Section 2.3. 

Even though detailed motion planning and efficient re-planning in near real-time are 

applied, the safety problems may not be completely solved because cranes should not be 

considered as robots without coordinating the work of different cranes working in the 
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same area. In practice, lifting tasks are usually done through a trial-and-error process, 

based on the feedback provided by the operators’ own vision and assessment, on hand 

signals of a designated ground director at the work zone, or on radio communication. 

Standard hand signals for crane operation are shown in Appendix A. In addition, a lift 

plan is a micro plan that should be integrated with other plans to ensure that the entire 

project is done properly. Extensive communication should be undertaken on site to 

coordinate the cranes’ movement based on negotiation among construction team 

members. The priority of tasks also needs to be considered when a conflict between two 

tasks is detected. Beavers et al. (2006) have suggested that employers should have a 

system in place to assess the hazardousness of each of their construction worksites in 

relation to the potential for crane-related events. They have also suggested that a diligent 

and competent person should be assigned by the manager of the construction operations 

to be in charge of overall crane operations. This person should have complete authority to 

stop any unsafe operations. This need has inspired the research to investigate the 

possibility of an intelligent system to support all the on-site workers in a search for better 

communication and environment awareness. Therefore, in Section 2.5, agent technology 

is reviewed to explore the feasibility of its application in construction to enhance safety.  

2.2 SIMULATION OF CONSTRUCTION PROCESSES   

To achieve a better understanding of construction processes, simulation tools have been 

developed: (1) to simulate and visualize these processes (Kamat and Martinez, 2001), (2) 

to analyze and to avoid collisions between equipment (Zhang et al., 2007), (3) to test and 

to visualize equipment location and to plan the path of equipment manually (Cranimax, 

2010; LiftPlanner, 2010), and (4) to train operators of heavy equipment using virtual 
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reality (Simlog, 2010). The advantage of visualizing the work processes is that the user 

can simulate and check the functional constraints and interferences that can happen in 

reality between the 3D physical elements and virtual workspaces.  

Figure 2-1 shows an animation snapshot of a construction site. The visualization is based 

on the results of the simulation, which is not equipped with any collision-detection 

mechanism and which does not have any feedback about the unplanned environment 

changes. Therefore, if a spatial problem is detected in the visualization phase, the 

simulation has to be repeated after changing the input data.  

Figure 2-2 shows the simulation of an automatic pouring system of a concrete boom 

pump. The trajectories of the boom are analysed using inverse kinematics to select a 

feasible path of the boom; however, no collision detection is applied between the boom 

sections and the obstacles in the environment.     

 

 

Figure 2-1: VITASCOPE animation snapshot of a construction site (Kamat and 

Martinez, 2001) 
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Figure 2-2: Automatic pouring system simulation (Zhou and Zhang, 2007) 

One method to represent the physical spaces occupied by objects on site is to create 

virtual workspaces. Using such virtual workspaces enhances safety by allowing such 

equipment workspaces to be defined as safety zones for carrying out specific tasks. In a 

study of the bridge rehabilitation project mentioned in Chapter 1, simplified shapes are 

used to represent the workspaces of equipment and to analyse possible collisions between 

equipment, and between equipment and obstacles (Hammad et al., 2007). Figure 2-3 

shows a schematic representation of two cranes working together on the bridge (Zaki and 

Mailhot, 2003). Figures 2-4(a) and (b) show the side view and the top view of the 

workspaces represented on the bridge, respectively (Hammad et al., 2007). However, this 

analysis deals only with the static environment without considering the dynamic features 

on site, thus reducing the practical value of the simulation in the support of real-time 

decision-making.  

    

Figure 2-3: Schematic representation of two cranes (Zaki and Mailhot, 2003) 
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                              (a) Side view                                                 (b) Top view 

Figure 2-4: Workspace representation on the bridge (Hammad et al., 2007) 

Cranimax (2010) is crane selection software, which calculates the outrigger forces for 

mobile cranes, the distribution of ground pressures for crawling cranes, and the minimum 

and maximum radius ranges. Figure 2-5 shows an example of positioning a crane on site. 

LiftPlanner (2010) is a 3D crane and rigging planning software system, which produces 

drawings to plan and document critical lifts. However, these software systems focus on 

the engineering constraints of the crane and provide the detailed selection and 

configuration of the crane; however, they require the users to plan the path manually for 

moving the object while taking into account obstacles in the 3D environment.  

 

Figure 2-5: Crane positioned in a 3D environment (Cranimax, 2010) 
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Training simulation for equipment operation has been used as a cost-effective tool for the 

operators (Ritchie, 2004). Simlog (2010) provides training for different equipment with 

various scenarios, such as pouring concrete using a bucket lifted by a tower crane (Figure 

2-6). The shortcoming of this training software is that it does not use the real construction 

environment and it is not designed to provide motion planning.  

       

Figure 2-6: Simlog training scenario (Simlog, 2010) 

Simulating the construction environment and processes has the advantage of ensuring the 

reliability of a construction plan by visually checking for potential collisions or other 

problems. However, the simulation tools reviewed above provide only off-line support 

for the crane positioning and motion planning. Capturing and using near real-time data 

would provide new opportunities for quality control and safety assurance. Near real-time 

support for collision avoidance and re-planning is investigated in Chapters 3, 4, and 5. 

2.3 MOTION PLANNING  

The research into motion planning has a long history in robotics. One of the most 

important tasks for robot motion planning is navigation, which aims to find a collision-

free path for the robot system from one configuration (or state) to another. In the present 
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thesis, Subsection 2.3.1 reviews research into robotic motion planning; Subsection 2.3.2 

reviews motion planning algorithms; and applications of motion planning for 

construction equipment are reviewed in Subsection 2.3.3. 

2.3.1 ROBOTIC MOTION PLANNING  

To create motion plans for a robot, a search space is needed in either the actual 

workspace or a space representing the configurations of the robot, which is called the 

configuration space (C-space). Most of the current approaches for motion planning are 

based on the concept of C-space introduced by Lozano-Pérez and Wesley (1979). C-

space is the set of all possible configurations of a robot. A configuration is simply a point 

in this abstract C-space. The configuration of a robot system is the complete specification 

of the position of every point in that system. Once the motion planning problem has been 

formulated in the C-space, it becomes equivalent to finding the connected sequence of 

collision-free configurations running from the initial configuration to the goal 

configuration. The number of the degrees of freedom (DoFs) of a robot system is the 

dimension of the C-space, or the minimum number of parameters needed to specify the 

configuration.  

Figure 2-7(a) shows an obstacle in the workspace of a robot with 2 DoFs, α and β. Figure 

2-7(b) shows the representation of an obstacle in the C-space, which is a two dimensional 

representation of angles α and β. qA and qB correspond to the configurations of the 

endpoint positions A and B, respectively. The area corresponding to the unfeasible 

configurations caused by the obstacle is shown in grey in the C-space. The remaining 

part in the C-space is the set of configurations at which the robot does not intersect with 

any obstacle. This part is called the free configuration space (Cfree). Once the C-space is 
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generated, motion planning requires only a search between the pick (origin) and the place 

(destination) locations in the C-space. 

 
    (a) An obstacle in the workspace          (b) The C-space showing the obstacle and 

                  of the robot                                        the two configurations at A and B 

Figure 2-7: C-space of a two-link arm robot (Choset et al., 2005) 

One of the advantages of using the C-space is that the unfeasible configurations arising 

out of invalid joint angles are treated as obstacles modeled in the C-space (Bandi and 

Thalmann, 1997). Another advantage is the avoidance of the need to solve the inverse 

kinematics problem to find the different solutions corresponding to the DoFs of the 

manipulator for a particular location of the end-effector.  

2.3.2 MOTION PLANNING ALGORITHMS 

Many algorithms are available for generating collision-free paths in the C-space. Based 

on the data structure representation of the C-space, motion planning algorithms can be 

categorized under two major approaches (Choset et al., 2005): 

(1) Motion Planning in Discrete Space: In this case, the C-space is defined as a state-

space model with a countable finite set of states. The planning algorithms build 
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roadmaps in the free (or semi-free) state-space and search for the feasible path. Each 

of these algorithms relies on an explicit representation of the geometry of the free 

space. Because of this, as the dimension of the C-space grows, these algorithms 

become impractical. Grid A* and Visibility Graph are representative algorithms of 

discrete space planning as discussed later in this section. 

(2) Motion Planning in Continuous Space: In this case, the algorithm is not limited to a 

pre-defined finite search space representation of the C-space. Instead, a variety of 

strategies are utilized for generating samples (collision-free configurations) and for 

connecting the samples with paths to obtain solutions to path-planning problems in a 

continuous C-space. Sampling-based algorithms are capable of dealing with robots 

with many DoFs and with many different constraints. Such algorithms do not attempt 

to explicitly construct the boundaries of the C-space obstacles or to represent cells of 

the free space. Instead, they rely on a procedure that can decide whether a given 

configuration of the robot is in collision with the obstacle or not. Efficient collision 

detection procedures ease the implementation of sampling-based algorithms and 

increase the range of their applicability. PRM (Probabilistic Roadmap Planner) and 

RRT (Rapidly-exploring Random Trees) are representative algorithms of continuous 

space planning. 

The following paragraphs briefly summarize the major representative algorithms. 

Grid A*  

Grid A* is a classical search method that finds the optimal path with respect to metrics 

such as energy, time, traversability, safety, etc., as well as combinations of them. The 

input of the search is a graph. The algorithm searches the graph efficiently with respect to 
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a chosen heuristic, which hypothesizes an expected, but not necessarily actual, cost to the 

goal node. It is often applied to grids where each of the cells has its heuristic distance to 

the goal. As shown in Figure 2-8, a vertical or horizontal step between free space cells 

has a relatively low cost whereas the cost for travelling from a free space cell to an 

obstacle cell is made arbitrarily high. The detailed description of this algorithm can be 

found in Choset et al. (2005).  

 

Figure 2-8: Grid example of A* algorithm (Adapted from Bruce, 2004) 

Visibility Graph  

The standard visibility graph is defined in a two-dimensional polygonal C-space. The 

nodes vi of the visibility graph include the initial location, the goal location, and all the 

vertices of the C-space obstacles. The graph edges eij are straight-line segments that 

connect two line-of-sight nodes vi and vj. Note that the nodes and edges are embedded in 

the free space, and the edges of the polygonal obstacles also serve as edges in the 

visibility graph. The visibility graph is connected in a free space where all the 

components are connected.  



   

 

17 

 

 

Figure 2-9: Example of a visibility graph (Choset et al., 2005) 

Figure 2-9 shows an example of a visibility graph where the thin solid lines delineate the 

edges of the visibility graph for the three obstacles, which are represented as filled 

polygons. The thick dotted line represents the shortest path between the initial and goal 

nodes. Using the standard Euclidean distance, the visibility graph can be searched for the 

shortest path (Choset et al., 2005). 

Probabilistic RoadMap planner (PRM) 

The basic PRM first constructs a roadmap in a probabilistic way in the Cfree. The roadmap 

is represented by an undirected graph. Figure 2-10 shows the steps of the basic PRM 

algorithm: (a) Find random sample of free configurations (vertices); (b) Attempt to 

connect pairs of nearby vertices. If a valid plan is found, add an edge to the graph; (c) 

Find local connections to the graph from the initial and goal nodes; and (d) Search the 

roadmap graph. The nodes of the roadmap are configurations in Cfree, and the edges of the 

roadmap correspond to the free paths. The objective of the first phase (learning phase) is 

to capture the connectivity of Cfree so that path-planning queries can be answered 

efficiently. In the query phase, the roadmap is used to solve individual path-planning 

problems (Choset et al., 2005). 

qinit 

qgoal 
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(a)    (b)    (c)      (d) 

Figure 2-10: Example of PRM algorithm steps (Adapted from Bruce, 2004) 

Rapidly-Exploring Random Trees (RRTs) 

RRT algorithms incrementally construct a search tree rooted either at qinit or qgoal by 

incrementally branching to collision-free nodes. At each iteration, a random 

configuration, qrand, is sampled uniformly in Cfree. The nearest configuration, qnear, to qrand 

in the tree is found, and an attempt is made to make progress, and finally connect qinit and 

qgoal.  This method was originally developed by LaValle (1998). Figure 2-11 shows the 

steps of the basic RRT algorithm:  (1) Start with the initial configuration as the root of a 

tree; (2) Pick a random state in the C-space; (3) Find the closest node in the tree; (4) 

Extend that node toward the state if possible; and (5) Goto step (2). Figure 2-12 shows an 

example of an RRT with 2000 vertices (LaValle and Kuffner, 1999).  

 

 

Figure 2-11: Steps of the basic RRT algorithm (Bruce and Veloso, 2006) 

Step 1 Step 2 Step 8 

Start with qinit 
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Learning Phase Query Phase 
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Figure 2-12: Example of an RRT with 2000 vertices (LaValle and Kuffner, 1999) 

The comparison of the four algorithms above is shown in Table 2-1, which is based on 

the following criteria: 

(1) Completeness: Complete planning approaches are guaranteed to find a solution when 

it exists, or correctly report failure if one does not exist (LaValle, 2006). For 

sampling-based algorithms (e.g. RRT), completeness depends on the probability of 

finding a solution. As more time is spent, the probability of producing a solution 

approaches 1. Improvements to the standard RRT can be carried out to address this 

issue (Cheng and LaValle, 2002). For Grid A*, finding the solution depends on the 

resolution of the grid representing the C-space; low resolution grids may result in the 

failure to find the solution even if it exists. PRM combines both cases of being 

probabilistic and resolution complete. This is due to its nature of finding the path in 

two phases. 

(2) Optimality: Algorithm optimality is its ability to return an optimal path with respect 

to some metrics. Single-query sampling-based algorithms (e.g. RRT) are not able to 

guarantee the generation of an optimal path based on pre-defined criteria; an 

optimization update is required to address this point. Fortunately, for many of these 
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algorithms, the solutions produced are not too far from optimal in practice (LaValle, 

2006). 

(3) Efficient environment updates: Because of dynamic obstacles, changes in the 

environment are very common cases. Therefore, efficiency in re-planning the path 

after updating the environment is important. Among the algorithms reviewed in this 

research, RRT is the best even though it is considered semi-efficient (Bruce, 2004). 

RRT is a single query algorithm, which attempts to solve a query as fast as possible 

but does not focus on the exploration of the entire free space. A* efficiency in world 

updates can be improved with D* (Choset et al., 2005), by propagating cost changes, 

while maintaining the optimality of A* and making minimal changes to the universal 

plan. Literature has shown that RRTs are much faster than grid-based searching 

algorithms (Brandt, 2006). 

(4) Efficient query updates: In addition to environment updates, query update efficiency 

is important for cases like re-planning to new goals while fixing environment 

constraints. The PRM algorithm is efficient in this type of query, since it can reuse 

the roadmap that it constructed in the preprocessing phase. 

(5) Good DoF scalability: The DoFs directly affect the complexity of C-space; thus many 

algorithms are not able to solve problems involving configurations with high DoFs 

efficiently. Grid A* and Visibility Graph are not suitable for solving configurations 

with high DoFs, thereby limiting realistic kinematic modeling for construction 

equipment. 

(6) Non-holonomic: The capability of solving non-holonomic configurations is a key 

feature in path-planning algorithms, where the algorithm is not only limited by 
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considerations of global constraints that are generated from explicit obstacles in the 

environment (Kuffner and LaValle, 2000), but algorithms should also be able to 

address local/differential constraints that may be found in some types of construction 

equipment. Among all reviewed algorithms, RRT stands out because of its high 

ability in solving non-holonomic configurations. 

Other criteria could be related to one or more of the criteria above. For example, 

complexity could be related to the criteria of DoF scalability and the efficient world 

updates.  

Table 2-1: Summary of the comparison between algorithms (Bruce, 2004) 

Algorithm Completeness Optimality 
Efficient 

Environment 

Updates 

Efficient 

Query 

Updates 

Good DoF 

Scalability 

Non-

Holonomic 

Grid A∗  res  grid  no  no  no  no  

Visibility 

Graph  

yes  yes  no  no  no no  

PRM  prob, res  graph  no  yes  yes  semi  

RRT  prob  no  semi  semi  yes  yes  

     Res: Resolution Complete, Prob: Probabilistic Complete 

 

2.3.3 MOTION PLANNING FOR CONSTRUCTION EQUIPMENT 

Although motion planning algorithms have been studied in computer science and robotics 

for more than thirty years, little research has focused on motion planning for construction 

equipment. Construction equipment can be treated as robots, and the same motion 

planning algorithms can be applied; however, appropriate domain heuristics should be 
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added to find a good/optimal plan within a reasonable time (Reddy and Varghese, 2002), 

and no industry-wide standard exists for heavy lift path-planning practices (Varghese et 

al., 1997). 

Tserng et al. (2000) have proposed a methodology and several algorithms for interactive 

motion planning that are developed for multi-equipment landfill operations in an 

Automated Landfill System (ALS). This methodology simulates the operational 

processes of landfill vehicles and equipment in planning a landfill project. Based on this 

simulation, efficient and collision-free motion patterns are found to control autonomous 

landfill equipment during the construction phase. However, this system depends on pre-

defined patterns to do motion planning for the equipment, which prevents the system 

from solving actual cases where there could be equipment on site that does not follow 

any of the specified moving patterns. 

Kim and Paulson (2003) have introduced a path-planning method for a mobile 

construction robot to find a continuous collision-free path from the initial position of the 

construction robot to its goal position. This work presents an improved Bug-based 

algorithm, called SensBug, which can produce an effective and short path in an unknown 

environment with both stationary and moving obstacles because of the following 

characteristics: (1) An improved method to decide a local direction, which allows the 

mobile construction robot to generate an effective path in the environment with both 

stationary and mobile obstacles; (2) A reverse mode, which can provide a mobile 

construction robot with a way to overcome the problem of obstacles in a complex 

configuration; and (3) A simple leaving condition, which allows the mobile construction 

robot to leave the obstacle boundary as soon as possible. These improvements make it 
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possible to overcome the weak points of the previous algorithms. However, these 

improvements did not overcome the safety issue in all variations of bug algorithms where 

generated paths touch the obstacles. This issue is caused by how the bug algorithm 

navigates through the environment where it depends on wall-hugging the obstacles until 

it reaches the specified goal. 

Sivakumar et al. (2003) have tried different algorithms, such as A* and Genetic 

Algorithms (GAs) to optimize the collision-free path for cooperative lifting with two 

cranes. In the research of Ali et al. (2005), a GA is used and compared with the A* 

algorithm, and the former is considered a better solution for two cranes working together. 

Figure 2-13 shows the paths traced by the hooks’ ends of two cooperative manipulators 

using a GA. However, the authors have assumed that the site contains only static 

obstacles, and the proposed solutions provide only off-line planning, rather than real-time 

control of the movement.  

 

Figure 2-13: Paths of cooperative manipulators using GA (Ali et al., 2005) 
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One specific issue should be considered when planning the motion for construction 

equipment in multi-equipment environments. The multi-equipment problem deals with 

motion planning for many pieces of equipment, where each piece of equipment can be a 

moving obstacle for other equipment. When obstacles are in motion, a continuous 

function of time specifying the equipment’s configuration at each instant must be 

generated. A collision-free path from an initial configuration to a goal configuration 

implies that at every step there is no collision between the equipment and an obstacle or 

between different pieces of equipment. A solution to the multi-equipment problem must 

be able to coordinate these paths so that no two pieces of equipment enter into collision. 

This requirement makes the problem significantly harder than in the case of a single piece 

of equipment.  

One way to deal with multiple equipment operating in the same workspace is centralized 

planning, which treats the multiple equipment as single multi-bodied equipment 

(Latombe, 1991). The composite C-space is the set product of the C-spaces of the 

individual equipment. Every configuration in the composite C-space determines a unique 

position and orientation for each piece of equipment. The difficulty of centralized 

planning arises from the high dimensionality of the composite C-space.  

Another approach to motion planning with multiple equipment is decoupled planning, 

which consists of planning the motion of each equipment independently and considering 

the interactions among the paths in a second phase of planning. Decoupled planning 

works in two stages: initially, collision-free paths are computed for each piece of 

equipment individually, not taking into account the other equipment but simply 

considering the obstacles of the workspace. In the second stage, coordination is achieved 
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by computing the relative velocities of the equipment along their individual paths so as to 

avoid collision among them (Choset et al., 2005).  

Kang and Miranda (2006) have proposed an incremental decoupled method to plan 

motions for multiple cranes so that collisions among any of the cranes are avoided as are 

possible collisions between the cranes and the transported objects. In the case of two 

cranes, first, plans are generated for each crane individually by ignoring the other crane 

during a small period δ, and then coordinating both of the cranes by tuning their relative 

velocities to avoid collisions. If successful, the system plans the next time period δ until 

the entire project is finished. Otherwise, a new δ is considered and steps are repeated for 

the entire project.  

Three different algorithms, QuickLink, QuickGuess, and RandomGuess, were integrated 

to find a path efficiently (Kang and Miranda, 2006). However, these three algorithms are 

conceptually similar to the RRT algorithm but are simplified for the specific case of a 

tower crane. Path-refining algorithms were developed to optimize a given path, as shown 

in Figure 2-14. Although this research considered dynamic changes on site to make the 

path more realistic, it was assumed that the environment information was known by 

exactly following the work schedule.  

 

Figure 2-14: An example of the path refining process (top view) (Kang and Miranda, 

2006) 
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The real situation on site is that unknown objects should also be monitored and taken into 

account to ensure the collision-free movement of equipment. Information about unknown 

objects can be collected by sensors. In robotics research, sensor-based motion planning 

incorporates sensor information, reflecting the current state of the environment, into a 

robot's planning process, as opposed to classical planning, where full knowledge of the 

world's geometry is assumed to be known prior to the planning event (Choset and 

Burdick, 2000). In sensor-based motion planning, prior knowledge of the world is not 

available, is inaccurate, or changes rapidly, where the robot is supposed to sense the data 

in real-time and make quick responses.  

There are many algorithms for solving motion planning problems; however, many of 

them are not amenable to sensor-based interpretation. It is not possible to simply add a 

step to acquire sensory information and then to construct a plan from the acquired model 

using a classical technique when the world model is unknown, since the robot needs a 

path planning strategy in the first place to acquire the world model. To address this 

problem, Khatib (1986) has proposed an artificial potential field (APF) to guide the 

movement of robots in real time. Choset and Burdick (2000) have developed an 

incremental approach to constructing the Generalized Voronoi Graph (GVG) from sensor 

data.  

In the case of motion planning for equipment on construction sites, the model-based 

approach is used during the planning stage. In this approach, a 3D model of the site is 

available and full information about the geometry of the equipment and the obstacles is 

given beforehand, so path planning becomes a one-time off-line operation. During the 

execution stage, the dynamic environment needs sensor-based planning on the 
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assumption that some obstacles are unknown. This lack of information is compensated 

for by local on-line (real-time) information coming from sensory feedback (Spong et al., 

1992). The difference between motion planning for equipment on construction sites and 

the robotic exploration in an unknown environment is that every task carried out on a 

construction site has a schedule; therefore, the unknown information can be assumed to 

be minor or less essential to the whole plan, and a motion re-planning approach can 

efficiently modify the off-line plan based on real-time sensed data.  

2.4 ENVIRONMENT PERCEPTION TECHNOLOGIES 

A construction site has two types of obstacles: static and dynamic. Static obstacles are 

those obstacles that do not move, and about which information is known in advance. 

They can, therefore, be considered during the planning phase. Examples of these 

obstacles include buildings, electrical poles, etc. Dynamic obstacles are objects that move 

on site, such as trucks, workers, and construction equipment. These dynamic obstacles 

should be detected and updated while the initial plan is being executed. Such obstacles 

may necessitate re-planning because of potential collisions. By the utilization of a wide 

array of sensors, equipment operators can have better situation awareness and can make 

more informed decisions. Researchers have been trying different technologies to create 

accurate 3D models of construction sites and to track and control equipment 

automatically.  

Methods used for modeling static objects and for tracking moving objects are reviewed in 

Subsections 2.4.1 and 2.4.2, respectively. Subsection 2.4.3 briefly reviews research 

related to the automation of construction equipment. 
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2.4.1 MODELING STATIC OBJECTS 

Several methods can be used to create the 3D models of static objects. Photogrammetry is 

used for calculating geometric properties of objects based on photographic images 

(Photogrammetry, 2007). 3D modeling using Geographic Information Systems (GIS) is 

also used to create an urban model based on extruding polygons representing the 

footprints of buildings on maps according to the heights of the buildings (ArcGIS 3D 

Analyst, 2010).  

As shown in Figure 2-15, the downtown campus of Concordia University is highlighted 

in a partial 3D model of Montreal City. These data are becoming more available in some 

cities. However, these models include buildings mainly and miss other small objects, 

such as traffic signs, fire hydrants, and electric poles and lines. Consequently, researchers 

are trying different technologies to create detailed 3D models of construction sites. 3D 

laser scanners are used to collect point clouds, which can be transformed by software 

tools into volumetric objects, representing a precise 3D model, including all the buildings 

and other objects. Repeated work should be carried out to update the model over time. 

Gordon and Akinci (2005) have collected data using a 3D laser scanner to support 

inspection and quality control on construction sites. Figure 2-16 shows a 3D scanner and 

a sample of point cloud collected for the Jacques Cartier Bridge shown in Figure 1-1. 

These point clouds can be used to create the 3D model of the bridge to avoid collision 

between cranes and the bridge structures during rehabilitation projects of the bridge. 
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Figure 2-15: GIS-based partial 3D model of downtown area in Montreal 

 

 

Figure 2-16: Laser scanner and point cloud collected for a part of a bridge 

Researchers at NIST have been studying the performance and applicability of 3D range 

cameras. The cameras measure the distance to an object by measuring the time needed 

for light to travel from the instrument to the object and back. They can capture the 3D 

scene in real time at video frame rates (MESA Imaging, 2010). Lytle et al. (2005) have 

(a) Laser scanner 

(Trimble GX, 2010) 

(b) Point cloud sample  

(Mailhot and Busuio, 2006) 
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evaluated the performance of a 3D range camera for construction applications. Some 

important parameters are indicated to optimize the accuracy and to minimize errors (Price 

et al., 2007). Teizer et al. (2006) have used a 3D range camera to model static and 

dynamic construction resources. Figure 2-17 shows an example of 3D range cameras.  

 

 

Figure 2-17: Range cameras (Price et al., 2007) 

2.4.2 TRACKING MOVING OBJECTS  

As explained earlier, construction sites are dynamic, requiring the continuous updating of 

the location data of all moving objects, including equipment and workers, to mitigate 

safety risks. Subsection 2.4.2.1 reviews research related to tracking of construction 

equipment. Subsections 2.4.2.2 and 2.4.2.3 introduce ultra wideband technology and its 

applications in construction.  

2.4.2.1 Tracking of Construction Equipment 

The most popular tracking technologies used on construction sites is the Global 

Positioning System (GPS), which is widely used in construction, mining, surveying, and 

infrastructure projects. For example, in earthmoving projects, GPS and total station 

technology are used to accurately position the blade of the excavator in real time, 
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significantly reducing material overages and dramatically improving contractors' 

productivity and profitability (Trimble GCS900, 2010). Navon et al. (2004) have 

developed a tracking and control system using GPS and on-board instrumentation (OBI) 

to monitor, in real-time, the activity of major construction equipment, such as tower 

cranes, concrete pumps, etc. Alshibani and Moselhi (2007) have used GPS for tracking 

earthmoving equipment to forecast performance. Riaz et al. (2006) have tracked vehicles 

and workers using GPS and sensors to reduce accident rates. GPS is also used to locate 

equipment world wide as shown in Figure 2-18 (Komtrax, 2010).  

 

 

Figure 2-18: Historical record of machine locations (Komtrax, 2010) 

 

However, GPS requires direct line of sight from the satellites to the receiver, and accurate 

GPS receivers are expensive to install on every moving object on site. Therefore, other 

tracking technologies have been applied in several research projects, such as infrared, 

optical, ultrasound, and Radio Frequency Identification (RFID) technologies. Chae and 

Yoshida (2008) have discussed collecting data on site using RFID active tags to prevent 
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collision accidents (Figure 2-19). BodyGuard - Vehicle Proximity Alert and Collision 

Avoidance System (Orbit Communications, 2008) is an RFID-based system that offers 

continuous detection and notification of proximity between moving objects and other 

moving or fixed objects by setting up protection zones around a vehicle, equipment, and 

buildings to offer continuous protection for valuable resources. However, RFID can give 

only approximate locations. 

 

  

Figure 2-19: Construction site equipped with RFID devices (Chae and Yoshida, 

2008) 
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The Real-time Automated Project Information and Decision Systems (RAPIDS) lab at 

Georgia Institute of Technology is testing 3D laser scanners, 3D range cameras, total 

stations, GPS, RFID, and other types of sensors and technologies for automated 

collection and processing of data for applications in construction projects (Figure 2-20) 

(Teizer et al., 2005; Teizer et al., 2006; Teizer and Castro-Lacouture, 2007). However, 

most of this research is still at the initial testing stage.  

 

 

Figure 2-20: Tracking devices used in construction research (Teizer, 2006) 

 

Recently, real-time location systems (RTLSs) have been applied in various areas, such as 

in logistics and manufacturing. RTLSs can track and identify the location of objects in 

real time using tags attached to objects and sensors fixed at known locations. The sensors 

detect signals emitted by the tags and calculate the locations of these tags. Figure 2-21 

compares different location technologies, such as the following: passive RFID, 

electromagnetic, laser, ultrasound, infrared (IR) proximity, conventional Radio 

Frequency (RF) timing, UWB, Wireless Local Area Network (WLAN), Received Signal 
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Strength (RSS), and assisted GPS (A-GPS). This comparison is carried out based on the 

accuracy and the coverage offered by each technology to identify the ideal technology 

(Ward, 2007). According to Muthukrishnan and Hazas (2009), ultra wideband (UWB) 

technology delivers a robust localization with an accuracy of up to 15 cm in good 

conditions. 
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Figure 2-21: Comparison of location technologies (adapted from Ward, 2007) 

Other than those general purpose sensors, specific sensors are designed and used in the 

industry for monitoring the physical condition of the equipment. In recent research, 

wireless sensors are installed on the boom of a crane to make sure the boom can 

withstand the varying stresses and strains as it turns, lifts, lowers, and reaches 

(Machinedesign, 2004). A locking mechanism based on OBI is applied to some cranes to 

limit the movement of the boom when it is approaching the target (Hirschmann, 2010). 

However, not all the cranes are equipped with OBI and, even when it is available OBI 

only provides the kinematic geometry of the cranes without the location relative to other 
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objects. Therefore, this information is not enough for collision avoidance. In addition, 

sensors for detecting ground support settlements are applied during the lifting to ensure 

safety. Topcon Grading Control System (Topcon, 2008) is a two-dimensional system that 

consists of four tilt sensors. Whether the boom, stick and bucket of an excavator are fully 

extended or close to the cab, the distance of the bucket teeth from the final grade is 

clearly displayed, allowing total control of the job. Dialog Visu (Potain, 2008) is a tool 

for the man/machine dialogue with a complete display of the crane’s operational 

characteristics in graphic and numerical forms. It provides direct reading of the load 

curve on the screen showing either the permitted load for a given range, or the permitted 

range for a given load. The load, height and range values are detected by three sensors 

linked by electrical connection. Increased safety on construction sites is expected by 

using these tools. However, these sensors are designed to give the physical condition of 

the equipment and cannot be directly used for collision avoidance.  

2.4.2.2 UWB Technology  

UWB is a wireless technology for transmitting large amounts of digital data over a wide 

spectrum of frequency bands at very low power (less than 0.5 milliwatts) (Ghavami et al., 

2004). UWB has the ability to carry signals through doors and other obstacles that tend to 

reflect signals at more limited bandwidths and at a higher power. The Federal 

Communication Commission of the USA has limited communication coverage zone for 

pulse UWB systems by implementing power density mask on all transmitting devices. As 

a result, the UWB coverage area cannot exceed 100 meters (Bunin and Valikov, 2006). 

As shown in Figure 2-22, with conventional RF, the reflections in in-building 

environments distort the direct path signal, making accurate pulse timing difficult, 
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whereas if UWB is used, the direct path signal can be distinguished from the reflections, 

making pulse timing easier. Thus, the accuracy of the UWB system can be up to 15 cm in 

good conditions. These conditions include the absence of multi-path problems because of 

the availability of direct line-of-sight signals from tags to sensors and the absence of 

metallic objects in the vicinity of the UWB system (Muthukrishnan and Hazas, 2009). In 

addition, UWB works better with metals than do other RF devices. These advantages 

make it possible to attach UWB tags to construction equipment and to other moving 

objects on site and collect accurate location data. 

 

Figure 2-22: Multi-path problem with conventional RF and UWB (Ubisense, 2010) 

In a UWB RTLS system, a sensor cell is composed of several sensors connected together 

into a single operating unit, which captures the location of tracked objects. Sensors are 

synchronized using a timing signal (distributed by timing cables) from each sensor to the 

timing source. The master sensor receives and synchronizes the timing data from the 

other slave sensors. Each tag registers with its containing sensor cell and is inserted into 

(b) Conventional RF 

(c) UWB 
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the schedule for that cell. The schedule determines when the tag should emit UWB 

signals to be located by the cell. The schedule is optimized to give attention to each tag as 

close as possible to its requested quality of service, while maintaining enough space in 

the schedule for new tags to register. The data radio channel is used to manage this 

location schedule. The UWB channel is used to transmit radio signals from tags to 

sensors at the scheduled time for each tag. These signals are used in calculating the 

locations of tags. When a tag emits a signal, this signal is picked up by one or more 

sensors in the cell, as shown in Figure 2-23. The slave sensors decode the UWB signal 

and send the angle of arrival and the timing information back to the master sensor 

through an Ethernet connection. The master sensor accumulates all sensed data and 

computes the location based on trilateration.  

 

 

Figure 2-23: Signals sent to sensors are used to calculate the 3D position of a tag 

(Ubisense, 2010) 

 

Several methods are used to measure the distance between the sensors and the tags, such 

as Time Difference of Arrival (TDOA) and Angle-of-Arrival (AOA). With a known 

position of the sensor, the objects on site with tags attached to them can be located. In the 

TDOA method, the difference in time at which the signal from the tag to be positioned 
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arrives at different receivers is measured. Each time difference is then converted into a 

hyperboloid with a constant distance difference between two receivers. The position is 

found by solving equations to find the intersection of the corresponding hyperboloids. In 

3D, at least four receivers are required because this technique requires the 

synchronization of the receivers’ clocks (Ghavami et al., 2004). In AOA method, the 

angle of arrival of the signal sent by the tag is measured at several stationary receivers. 

Each measurement forms a radial line from the receiver to the tag. In 2D positioning, the 

position of the tag is defined at the intersection of two directional lines of bearing. This 

method has the advantage of not requiring synchronization of the receivers nor an 

accurate timing reference. On the other hand, receivers require regular calibration in 

order to compensate for temperature variations and mismatches (Ghavami et al., 2004). 

Location estimate of the tag is calculated at the intersection of these lines. In theory, 

direction-finding systems require only two receiving sensors to locate a tag, but in 

practice, to improve accuracy and compensate for finite angular resolution, multipath and 

noise, more than two sensors are needed (Munoz et al., 2009). Commercial products, 

such as Ubisense (2010) and Multispectral Solutions (2010) are available for evaluating 

the usability of UWB technology. 

Research about the UWB tracking technology has been carried out in different domains. 

For example, a prototype UWB tracking system is under development at NASA Johnson 

Space Center (Ni et al., 2010). The system is being studied for use in tracking of 

lunar/Mars rovers and astronauts during early exploration missions when satellite 

navigation systems are not available. Field tests demonstrated that the prototype system is 
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feasible for providing positioning-awareness information in a 3D space to a robotic 

control system. 

2.4.2.3 Applications of UWB Tracking in Construction  

Fontana (2007) has proposed that UWB could be used for improving crane safety. Teizer 

et al. (2007) have investigated the usability of a UWB tag attached to a crane hook to 

track the position of the hook. The tag is attached to the top of the hook, as indicated by 

the arrow in Figure 2-24.  

 

 

Figure 2-24: UWB tag on hook (Teizer et al., 2007) 

 

Giretti et al. (2009) have indicated that UWB behaviour is rather constant during most 

parts of the construction progress. They note that, in an open area, tests confirm an 

accuracy of about 30 cm. They have also discussed a safety management system that 

gives an alarm when a worker is approaching a static, known dangerous area. Fullerton et 

al., (2009) have proposed using UWB for proactive safety, which works in real time to 

alert personnel of the dangers arising, and for reactive safety, which collects data to be 
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analyzed in order to determine the best practices and to make process improvements. 

Carbonari et al. (2009) have proposed safety management systems for tracking workers’ 

trajectories to prevent accidents. Cho et al. (2010) have discussed error modeling for an 

untethered UWB system for indoor construction asset tracking. Based on their 

experiment, elevated tags give a better line-of-sight path between the tag and the sensors. 

The average accuracy is 17 cm, while the tethered system gives 10 cm accuracy in open 

space. They conclude that the accuracy seems sensitive mainly to the location and the 

facing angle of sensors, which affect the chance of having a line-of-sight transmission 

path from mobile tags.  

However, previous research did not investigate the requirements of using UWB RTLSs 

for improving crane and other construction equipment safety, where the dynamic and 

complex aspects of construction sites need to be considered. For example, tracking only 

the hook of a crane is not enough for collision avoidance. The full kinematic 

configuration of the crane should be identified to prevent collision with other equipment 

or workers. Therefore, the raw location data of tags should be processed to calculate the 

poses of the crane. Furthermore, the setting of the sensor’s location and orientation and 

the number and location of tags should be investigated in detail to get more visibility of 

tags and to improve the accuracy of object locations. 

2.4.3 AUTOMATION OF CONSTRUCTION EQUIPMENT 

Unmanned construction is work performed by remotely operated construction machinery 

that corresponds to an operator-controlled robot. Unmanned construction was used in 

civil engineering work for the first time in Japan in 1969 when an underwater bulldozer 

was used to excavate and move deposited soil during emergency restoration work at the 
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Toyama Bridge that had been blocked by the Joganji River disaster. Since then, 

unmanned construction by excavators inside pneumatic caissons and by backhoes has 

been carried out. However, the restoration works following the volcanic eruptions that 

began in 1994 at the Unzen-fugendake Volcano and the eruption of the Usuzan Volcano 

in 2000 were the first examples of large-scale unmanned construction and have spurred 

rapid progress in unmanned construction technologies and encouraged their wide use 

(Ban, 2002). 

Much research about construction automation has been carried out at the National 

Institute of Standards and Technology (NIST, 2010) in the U.S. The Construction 

Metrology and Automation Group (CMAG) is involved in the development of 

position/orientation tracking systems and sensor interface protocols. The Computer 

Integrated Construction (CIC) group is doing research on the visual representation and 

simulation of construction models (Furlani et al., 2002). Intelligent Systems Division with 

CMAG are researching a robotic structural steel placement project called Automated Steel 

Construction Testbed (Lytle et al., 2002; 2004). CMAG has been conducting research in 

crane automation since the mid 1980’s. A robotic crane (RoboCrane) based on an 

inverted, cable-actuated Stewart-Gough platform (Angeles, 1997) principle was invented 

at NIST at that time. Since then several versions of the RoboCrane concept have been 

developed for various applications. Recently, CMAG is developing a generic crane 

controller using NIST real-time control system methodology in order to test and evaluate 

various automated crane control schemes. In addition, CMAG is working on methods and 

algorithms to identify construction components from high-resolution 3D laser scanning 

data and to determine their position and orientation. The use of low-resolution 3D range 
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cameras for obstacle avoidance and crane load docking are also being investigated (Saidi 

and Lytle, 2008). Computer Integrated Road Construction (CIRC) project has been 

aiming at introducing a new generation of control and monitoring tools for road 

pavement construction. Two prototypes have been developed: CIRCOM for compactors 

(Bouvel et al., 2001), and CIRPAV for asphalt pavers (Peyret et al., 2000). Figure 2-25 

shows a compactor instrumented with a GPS antenna, a gyro, a radar, etc. 

 

Figure 2-25: Instrumented compactor (Bouvel et al., 2001) 

Unmanned and semi-automated construction systems could be used not only at disaster 

restoration sites, but also to increase safety and efficiency at ordinary construction sites. 

However, it is mentioned that the efficiency of unmanned construction is roughly 60% to 

70% of that of manned construction, but sharply decreases in cases where the machinery 

moves or high precision work is necessary (Ban, 2002). Therefore, the full automation of 

heavy equipment is unnecessary in construction projects. Artificial intelligence (AI) 

methods can be used as an auxiliary tool to support the equipment operators, as is 

explained in Section 2.5. 
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There are other applications of construction automation for a variety of purposes. For 

example, the RC Truck Club (RC-Truck-Club, 2010) in Switzerland has been working on 

automated construction equipment models. The Moon Outpost Project of NASA requires 

small robots to level sites and roads, to clear obstacles, and to construct berms (Moon 

construction, 2010). A lunar surface manipulation system (LSMS) is being developed by 

NASA’s Exploration Technology Development Program Office. It is designed for lifting 

purposes on the moon, where it can operate autonomously, can be remotely operated 

from a base, or can be operated manually (NASA, 2010). The Canadarm (2009), which is 

a crane used in space, is significantly more sophisticated than many of the ones found on 

Earth. It was built in Canada and sponsored by the Canadian Space Agency and used on 

the space shuttle to transfer cargo and to release satellites. A remote control system for 

large track-type tractors has been developed by Caterpillar to improve safety and 

productivity (Caterpillar, 2010). Critical information normally displayed in the cab (in 

gauge clusters and on display panels) is replicated on the remote console. An immediate 

stop is applied in emergency cases to enhance safety.    

2.5 AGENT TECHNOLOGIES 

The concept of agent comes from developing a thinking machine with the capability of 

solving a problem on its own. An agent can be a piece of software that is capable of 

accomplishing tasks on behalf of its user. AI has provided the foundation for computers 

to deal with complex tasks, such as monitoring and controlling industrial processes, 

assisting in medical diagnoses, or designing new machines. As Russell and Norvig (2003) 

have described, agents are relatively independent and autonomous entities that operate 
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within communities in accordance with complex modes of cooperation, conflict, and 

competition in order to survive and perpetuate themselves.  

Agents are capable of perceiving their environment, but only to a limited extent. By 

exchanging information with other agents, they can acquire more information about the 

environment. Actions are taken by the agent to satisfy its objectives based on some 

satisfaction/survival function which it tries to optimise using its skills. The actions carried 

out by an agent change the agents’ environment and thus its future decision making. 

Agents are endowed with autonomy, which means that they are not directed by 

commands coming from a user, but by a set of tendencies, which can take the form of 

individual goals to be achieved or of satisfaction or survival functions which the agent 

attempts to optimise. 

Subsection 2.5.1 briefly introduces Multi-Agent Systems (MAS) research. Subsection 

2.5.2 reviews planning in MAS, focusing on path planning. Subsection 2.5.3 briefly 

introduces communications between agents, and agent research in construction is 

reviewed in Subsection 2.5.4. 

2.5.1 MULTI-AGENT SYSTEMS (MAS) 

MAS is a branch of AI that aims to answer the following questions: How do agents 

cooperate? What methods of communication are required for them to distribute tasks and 

coordinate their actions? What architecture can they be given so that they can achieve 

their goals? The term multi-agent system is applied to a system comprising the following 

elements (Ferber, 1999): 

(1) An environment space, E, which generally has a volume; e.g., a construction site; 
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(2) A set of objects, O. These objects are situated, which means it is possible at a 

given moment to associate any object with a position in E. These objects can be 

perceived, created, destroyed, and modified by the agents; e.g., equipment on the 

construction site; 

(3) An assembly of agents, A, which are specific objects (A   O), representing the 

active entities of the system; e.g., a Crane Agent and a Coordinator Agent; 

(4) An assembly of relations, R, which link objects (and thus agents) to each other; 

e.g., priority among different equipment and relationships among groups; 

(5) An assembly of operations, Op, making it possible for the agents of A to perceive, 

produce, consume, transform and manipulate objects from O; e.g., sensing, data 

processing, message exchanging, and control; and 

(6) Operators with the task of representing the application of these operations and the 

reaction of the world to this attempt at modification; e.g., commands of executing 

a motion plan. 

MAS can be applied to numerous areas, such as problem solving, multi-agent simulation, 

building artificial worlds, collective robotics, and so on. Among them, problem solving 

actually concerns all situations in which software agents accomplish tasks that are of use 

to human beings (Ferber, 1999).  

2.5.2 PLANNING IN MULTI-AGENT SYSTEMS 

There are several ways of planning for MAS either in a centralised or a distributed 

manner.  The centralised method treats the entire team as a single complex agent and then 

generates plans for this agent whereas the distributed method generates plans for 
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individual agents and uses coordination techniques to combine these plans. Due to the 

intelligence of agents, each agent can generate a partial plan independently and the 

coordination of these partial plans can be centralized or distributed to form a single 

coherent overall plan (Ferber, 1999).  

Figure 2-26(a) shows a distributed approach in which three agents communicate with 

each other and make decisions based on the result of their negotiation. Distributed 

problem solving involves multiple agents that combine their knowledge, information, and 

capabilities so as to develop solutions to problems that are difficult to solve by a single 

agent. An agent is unable to accomplish its own tasks alone, or it can accomplish its tasks 

better (more quickly, completely, precisely, or certainly) when working with others. 

Durfee (1999) has discussed the motivations for using a distributed problem-solving 

approach. These motivations are the following: (1) using parallelism, problem solving 

can be accelerated, (2) expertise or other problem-solving capabilities can be inherently 

distributed, (3) data are distributed, and (4) the results of problem solving or planning 

might need to be distributed in order to be acted upon by multiple agents (Durfee, 1999). 
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Figure 2-26: Different approaches for planning 

Figure 2-26(b) shows a centralized approach where A is acting as a team coordinator to 

communicate with the team members and is responsible for producing an overall plan. 
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The team members transmit data to the coordinator to form a global view. However, this 

centralized approach may cause tremendous amounts of unnecessary communication 

compared to allowing the exchange of information directly among team members. 

Moreover, the complexity of the problem increases rapidly with the size of the team or 

the DoFs of the equipment; therefore, centralized approaches are typically used in dealing 

with small teams or simple problems. A variation of the centralized approach is that team 

members draw up their own partial plans independently and send them to the coordinator. 

Then the coordinator tries to synthesize all the partial plans into an overall plan by 

solving the contradictions among the partial plans. An example is that of using a 

distributed approach to generate paths for each individual agent. Then a centralised 

planner schedules the movement of all the agents along their respective paths to ensure 

there are no collisions (O’Donnell and Lozano-Pérez, 1989). Taking advantage of both 

centralised and distributed approaches contributes to the hybrid approach, as shown in 

Figure 2-26(c). Kalra et al. (2005) have discussed that the team can work faster if the 

team members make decisions more locally and achieve coordination via a mechanism 

that is light on both communication and computation. More complex interactions 

between teammates and a more complex coordination mechanism are needed for more 

complex scenarios. Two types of coordination mechanism are proposed: one for 

teammates acting in a self-interested manner and another for a team plan that consists of 

actions that its teammates could take. By doing so, the robots efficiently vet candidate 

solutions and choose the coordination mechanism that best matches the current demands 

of the task. Clark et al. (2003) have proposed a complex hybrid approach where 

centralised planning is performed for dynamically-formed subgroups of agents. This 
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approach enables the agents to decide which subgroups to form based on the relative 

positioning of the agents in the team.   

2.5.2.1 Path Planning in MAS 

One of the major and complex planning problems in MAS is the path planning problem. 

Ferguson (2006) has addressed the problem of path planning and re-planning in realistic 

scenarios in the case of single agent and multiple agents. Centralized algorithms are 

explored to deal with the planning problems for teams of agents. To efficiently cope with 

the high-dimension state spaces involving multiple agents, RRT algorithms have been 

selected for path planning and re-planning. Tavakoli et al. (2008) have proposed a 

cellular automata-based algorithm for path planning in MAS with a centralized approach. 

Several geographically distributed agents with the same priorities move towards a 

common goal location. The proposed algorithm distributes the agents to avoid long 

queues where only a few possible paths are available towards the goal. These researchers 

have claimed that the new proposed algorithm is faster than the traditional A* when 

several agents have a common goal. Marsh et al. (2005) have introduced a simulation to 

test real-time path planning in a road network. Distributed architecture has been adopted 

to avoid system failure caused by the central agent failure. Each agent broadcasts its 

sensed data to other agents to reduce the completion time. Gireesh and Vijayan (2007) 

have proposed a fuzzy logic approach to secure a collision-free path avoiding multiple 

dynamic obstacles. A robot is equipped with several sensors, and decisions are taken at 

each step in the pre-defined path in the environment. Sud et al. (2007) have presented a 

novel approach by introducing a new data structure, called Multi-agent Navigation Graph, 

which is constructed from Voronoi diagrams. Simulation scenarios consisting of 
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hundreds of moving agents, each with a distinct goal, are used to test the proposed 

approach for real-time multi-agent planning. In the above-mentioned literature, it can be 

seen that researchers have been actively exploring different methods and trying to 

effectively solve path planning problems by considering specific applications. There is no 

one method that can be thought of as superior in general; therefore, it is important to 

select a suitable method and improve it to solve our own research problem efficiently.  

2.5.3 COMMUNICATION BETWEEN AGENTS 

Communication between agents is essential for the coordination of the behaviour of the 

agents in time and space. Such communication basically requires the exchange of 

messages between agents. Wireless communication technologies are needed for agents to 

communicate with each other on site. Many types of wireless networks are available, 

such as wireless personal area networks (WPANs), wireless metropolitan area networks, 

and wireless local area networks (WLANs), also called Wi-Fi. Wi-Fi networks are able to 

solve many of the communication problems caused by the “islands of information” in 

construction (Lee and Bernold, 2008). As shown in Figure 2-27, the dotted lines show 

wireless communication between different components of an agent-based crane alert 

model. 

One of the new Wi-Fi standards, known as 802.11n, supports actual data rates up to 100 

Mbps. Another WLAN technique is ad-hoc wireless networking, in which some mobile 

devices are part of the network only for the duration of a communication session while 

they are in close proximity to the rest of the network. Yang and Hammad (2007) have 

investigated problems related to deploying ad-hoc wireless networks that support 

communication and onsite data collection. Hammad et al. (2009) have designed an 
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outdoor distributed Augmented Reality (AR) system to support the interaction of two 

users operating two virtual cranes and communicating with each other by using an ad-hoc 

network as shown schematically in Figure 2-28. 

 

Figure 2-27: Agent-based crane alert model (Lee and Bernold, 2008) 
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Figure 2-28: Distributed augmented reality system for supporting multi-user 

interaction using ad-hoc wireless networking (Hammad et al., 2009) 
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2.5.4 AGENT SYSTEMS IN CONSTRUCTION 

Some research involving agents has been done to enhance communication between team 

workers and to solve problems in the construction industry. For example, agent systems 

have been used for construction claims negotiation (Ren and Anumba, 2002) and 

dynamic rescheduling negotiation between subcontractors (Kim and Paulson, 2003). 

Bilek and Hartmann (2003) have presented an agent-based approach to support complex 

design processes in Architecture, Engineering, and Construction (AEC). Wing (2006) has 

presented some research on the application of software agents together with RFID 

technology in construction. Lee and Bernold (2008) have presented an agent-based 

communication system on site for collecting weather information and sending warning 

messages. To the best knowledge of the author, no research has focused on near real-time 

path planning of construction equipment operation using agents.  

2.6 SUMMARY  

A wide range of literature in civil engineering, computer science, and robotics areas are 

reviewed in this chapter, including simulation in construction, path planning for cranes, 

automation of construction equipment, available field data capturing technologies, and 

current research trends. Simulation in construction has the limitation of not supporting 

real-time applications, and the simulated environment is static and does not consider 

dynamic objects. Motion planning algorithms are studied in terms of discrete or 

continuous space searching to select the most suitable one for motion planning of cranes. 

Not much research has been done in motion planning for construction equipment. Safety 

issues have not been discussed enough in motion planning. Furthermore, real-time 

support is not available when potential collisions may occur. In this case, unknown and 
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dynamic objects should be monitored and taken into account to ensure collision-free 

movement of the equipment. Therefore, environment perception technologies are 

reviewed to find the feasibility of tracking static and dynamic objects on site. Several 

RTLSs are investigated including RFID and UWB to track moving objects on site. UWB 

technology can provide a relatively high accuracy and applying UWB in construction is 

in a preliminary stage. Finally, agent technology is reviewed for the management of the 

collaboration of path planning of construction equipment. Different aspects of multi-

agent systems have been reviewed. There are not much agent applications in construction 

to support decision-making.  
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CHAPTER 3 OVERVIEW OF PROPOSED 

METHODOLOGY AND REQUIREMENTS DEFINITION 

 

 

 

3.1 INTRODUCTION 

The present chapter introduces the methodology used in the present research. Section 3.2 

provides a summary of the proposed methodology. Section 3.3 discusses the criteria used 

in the selection of the motion planning algorithm to meet the requirements of cranes, 

especially the re-planning phase, which needs a quick response on site to avoid obstacles 

and to re-plan a new path. In Section 3.4, the requirements of applying UWB technology 

for crane safety are defined to collect the necessary and accurate data in near real-time 

considering the advantages and limitations of the technology. The framework of a multi-

agent system is proposed in Section 3.5 to aid the equipment operators with near real-

time information exchange and decision-making. 

3.2 PROPOSED METHEDOLOGY 

Figure 3-1 shows the concept of the proposed methodology for the near real-time 

environment updating, motion planning and re-planning of cranes. During the planning 

stage, a 3D model of the static environment is available, and a collision-free motion plan 

is generated for the crane, taking into account engineering constraints and operation rules 

(Zhang et al., 2009). During the actual construction work, a UWB RTLS is used to 

capture on-site data. Multiple UWB tags with identification numbers (IDs) are attached to 

the different components of cranes and other equipment and workers, at predefined 
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locations, to monitor their positions and orientations. Updated environment information is 

used to check the motion plan for any potential collision. In the case an obstacle is 

detected, the equipment involved is stopped to ensure safety and a new motion plan is 

generated in near real time according to the updated environment. Near real-time re-

planning is defined as finding a new collision-free path of the crane based on the sensed 

data in a short period of time (a few seconds) after detecting the obstacles by the sensors. 

The short delay is caused by certain relatively low update rates of tags and the calculation 

time. To improve the safety of crane operations and to provide more awareness on site, 

the following important issues should be considered using the data collected from the 

RTLS.  

(1) Identifying the poses of obstacles by using multiple tags attached to different 

components of equipment. Consequently, moving objects can be tracked, identified, 

and modeled in such a way that the full geometry, speed, moving direction, and all 

the related information of the task are used to prevent collision accidents. Buffers are 

added to the obstacles for collision detection. The size of the buffer can be adjusted 

according to the accuracy and the update frequency of the UWB system, and to the 

moving velocity of the crane. Less accurate data, lower update frequency and higher 

velocity require selecting a bigger buffer around obstacles.  

(2) Checking the compliance with safety regulations and engineering constraints to 

prevent accidents, as explained in Chapter 1. By providing the feasible configurations 

of cranes within the capacity limits, the risk of tip over can be reduced; by applying 

collision-detection for the next movement of the crane, the risk of electrocution can 

be reduced.  
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(3) Providing an advanced intelligent support by integrating motion planning algorithms 

to generate a collision-free path. Once a potential collision is detected, re-planning of 

the equipment motion can be carried out according to the updated environment 

information. The present research focuses on the crane boom movement when the 

crane base is fixed.  

The present research focuses on near real-time data collection and processing using UWB 

technology. However, the proposed methodology can be extended to capture the progress 

of the construction work by accommodating other types of sensing technologies, such as 

laser scanners (Gordon and Akinci, 2005). 

To provide effective near real-time intelligent support to the crane operators, agent-based 

technology (Ferber, 1999) is proposed that encapsulates knowledge, organizes the 

information, makes decisions and translates the motion plan into actions that can be 

applied by the operators. In a multi-agent system, agents carry out separate, but 

interdependent tasks to meet their final objective. Every agent needs to send and receive 

messages and to make decisions (such as changing priorities for motion planning and re-

planning) based on near real-time on site situations. Communication between agents 

expands the perceptive capacities of agents by allowing them to benefit from the 

information and the know-how of other agents (Ferber, 1999). Each construction staff is 

represented as an agent in the system and gets support for the near real-time decision 

making. 
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Figure 3-1: Conceptual near real-time environment updating and intelligent 

assistance for cranes 

The motion planning and re-planning algorithms selection criteria are discussed in 

Section 3.3, and the details of the algorithms are described in Chapter 4. The 

requirements of using UWB technology in construction for crane safety are defined in 

Section 3.4. The details involved in the application of the UWB system for near real-time 

data collection and processing are given in Chapter 5. The details about the proposed 

framework of the agent-based system are given in Section 3.5. 

3.3 MOTION PLANNING AND RE-PLANNING FOR CRANES 

As discussed in Section 2.3, most implementations of motion planning algorithms are 

assisted by appropriate domain heuristics to find a good/optimal path within a reasonable 

time, and no industry-wide standard exists for heavy lift path planning practices. 

Consequently, experts rely primarily on experience to develop the plans or to perform 

optimization. The present research focuses on investigating a new method for crane 
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motion planning and re-planning by adapting robotic motion planning algorithms, taking 

into consideration the engineering constraints of cranes.   

3.3.1 CRANE MODELING 

To apply motion planning algorithms, a crane is modeled as a robot composed of a series 

of links (rigid bodies) connected by joints that allow the relative motion of neighboring 

links. Using this robotic model, kinematic properties are defined including the following: 

the hierarchal structure of the links, the local coordinate systems (frames), and the joint 

type, which is either a sliding joint (prismatic joint) or a rotational joint (revolute joint). 

These properties can be defined mathematically in a homogeneous transformation matrix 

using DH-notation (Denavit and Hartenberg, 1955), as shown in Figure 3-2. 

 

 

Figure 3-2: Relationship between links in D-H notation (Craig, 2004) 

The relationship between Link i-1 and Link i is essentially the transformation matrix 

between coordinate system {i-1} and coordinate system {i}. This matrix can be 

represented in a homogeneous transformation matrix 
i-1

Ti as follows: 

Axis i Axis i-1 

Link i-1 

Link i Zi-1 

Yi-1 
Yi Zi 

Xi Xi-1 

αi-1 

θi-1 

ai-1 di 
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                                    (3-1) 

 

 

where cθi represents cos(θi), sθi represents sin(θi), sαi-1 represents sin(αi-1), and cαi-1 

represents cos(αi-1). Once the transformation matrix for each link has been developed, the 

forward kinematics function of the robot can be found by multiplying all the link 

transformation matrices. The result is a computational model that is used to control the 

simulation model.  

As discussed in Subsection 2.3.1, the number of DoFs of a crane defines the dimensions 

of the C-space. Therefore, the greater the number of DoFs considered, the more complex 

the C-space is. For example, a loaded crane has a maximum of eight DoFs, and a path 

planning for manipulators having more than four DoFs is considered to be complex 

(Hwang and Ahuja, 1992). Figure 3-3 shows the kinematic modeling of a hydraulic crane 

for which four DoFs are defined and for which there are two revolute joints (the swing of 

the boom θ1 and the angle to the ground θ2) and two prismatic joints (the boom extension 

d3 and the cable extension d4) (AlBahnassi and Hammad, 2010). A local coordinate 

system is attached to each joint. This kinematic model includes an additional motion 

constraint that re-orients the cable along the gravity vector as the boom rotates up and 

down. This motion constraint avoids having an additional revolute DoF for controlling 

the orientation of the cable with respect to the boom (θ4); in that case, the C-space 

becomes a five-dimension space, and the configuration vector is q = (θ1, θ2, d3,  θ4, d5) 

while the controllable DoFs are only (θ1, θ2, d3, d4). This leads to solving the motion 
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planning problem as if it is non-holonomic, a condition which is not true because the 

cable motion constraint can be expressed as a configuration constraint, as follows: 

θ4 = 90° - θ2                                                              (3-2) 

 

  

(a) Frames attached to the crane 

components 

(b) Schematic for the hydraulic crane based 

on DH-notation 

Figure 3-3: Defining the kinematic structure for a hydraulic crane (AlBahnassi and 

Hammad, 2010) 

 

Once the transformation matrix for each link has been developed, the forward kinematics 

function of the hydraulic crane can be found by multiplying all four joint transformation 

matrices. Since the matrix is essentially transferring the coordinate system from {0} to 

{4}, we denote it by 
0
T4 as shown in Equation (3.3).  

 

  
   

                               

                             

              

    

   (3.3) 
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where cθ1 represents cos(θ1), cθ2 represents cos(θ2), sθ1 represents sin(θ1), sθ2 represents 

sin(θ2), θ1 represents the swing of the boom, θ2 represents the angle to the ground, d3 

represents the length of the boom, and d4 represents the length of the cable. The matrix 

0
T4 is a homogeneous transformation matrix, which can be used to represent both the 

orientation and the position of the cable with respect to the coordinate system {0}. 

3.3.2 CRITERIA FOR SELECTING THE MOTION PLANNING ALGORITHM 

Several criteria are taken into consideration in selection of the motion planning algorithm 

of the cranes. There are four major criteria that are taken into account in the present 

research. They are the following: efficiency, optimality, reusability, and safety. 

(1) Efficiency: Path planning has been proven to be a hard problem (Reif, 1979). In 

the last decade, more interest has grown in developing practical path planners 

(Latombe, 1991; Barraquand et al., 1997). These planners embed weaker notions 

of completeness (e.g., probabilistic completeness) and/or can be partially adapted 

to specific problem domains in order to boost performance in those domains. In 

re-planning, efficiency is the most important factor because decisions usually 

need to be taken in near real time to cope with the dynamic nature of the 

environment. Based on the literature review in Subsection 2.3.2, Rapidly-

Exploring Random Trees (RRTs) have been shown to be effective for solving 

single-shot path planning problems in complex C-spaces by combining random 

sampling of the C-space with biased sampling around the goal configuration. 

RRTs efficiently provide solutions to problems involving vast, high-dimensional 

C-space.  These solutions would be intractable using deterministic approaches. 
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(2) Optimality: Optimality is considered as the ability to find an optimal path with 

respect to some metrics. Single-query sampling-based algorithms are not able to 

guarantee the generation of an optimal path based on pre-defined criteria. An 

optimization updates are required to address this point (LaValle, 2006). The basic 

RRT algorithm does not take path quality into account during its search, which 

may produce paths that are grossly suboptimal (Ferguson, 2006). To improve the 

quality of the solution path, Urmson and Simmons (2003) have proposed 

modified RRT algorithms that take the cost of the path into account. Berg et al. 

(2006) have considered adding the cost of the path in navigating a mobile robot. 

(3) Reusability: This requirement is specific to motion re-planning when a new 

obstacle appears. An efficient re-planning algorithm should be able to plan 

optimal traverses in near real time by incrementally repairing the paths of the 

equipment as new information is discovered. Re-planning algorithms should focus 

on the repairs to significantly reduce the total time required for the initial path 

calculation and subsequent re-planning operations (Stentz, 1995). Deterministic 

re-planning algorithms such as D* efficiently repair previous planning solutions 

when changes occur in the environment (Choset et al., 2005). They do this by 

determining which parts of the solution are still valid and which parts need to be 

recomputed. However, as the number of the dimensions of the search space 

increases, for example, in the case of multiple cranes working together, 

deterministic algorithms simply cannot cope with the size of the corresponding 

state space. On the other hand, RRT algorithms abandon the original tree and 

grow a new RRT path from scratch if the environment is dynamic. This can be a 
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very time-consuming operation, particularly if the planning problem is complex. 

In such a case, researchers have started implementing the Dynamic RRT (DRRT) 

algorithm as a probabilistic analog to D* for navigation in unknown or dynamic 

environments (Ferguson, 2006). DRRT depends on repairing the current RRT 

when new information concerning the C-space is received instead of abandoning 

the current RRT entirely. DRRT removes the invalid part of the path and grows 

the remaining tree until a new solution is found (Ferguson et al., 2006). 

(4) Safety: To ensure the generation of safe paths for cranes, the algorithm needs to 

consider the engineering constraints of the crane. Taking the motion planning of 

hydraulic cranes as an example, the working range, the load charts, and the rules 

of action should be followed to ensure on-site safety. 

3.3.3 PROPOSED MOTION PLANNING ALGORITHM 

Based on the criteria for selecting the motion planning algorithm discussed in Subsection 

3.3.2, RRTs have been shown to satisfy most of those criteria. For that reason, RRT 

algorithms have been selected as the basic algorithms for motion planning in the present 

research, but modifications have been made to improve the performance and to take into 

consideration the specific requirements of cranes.  

There are many variations of RRT in terms of improved efficiency and path quality. For 

example, multiple trees are used to reduce the planning time and to improve the success 

rate of finding a path. The aspect of cost function for evaluating path quality is applied to 

produce a path with better quality. Clifton et al. (2008) have evaluated the performance of 

multiple RRTs. They have indicated that, when many obstacles are present, the time 
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required to find a complete path can increase significantly; hence, in the present research, 

a dual-tree structure is used for the motion planning algorithm, thereby reducing the 

planning time. Building two trees starting from the initial and goal states separately aims 

to precisely select the goal state instead of assuming that the goal state will be reached by 

generating nodes randomly, especially when a manipulator must reach a specific end-

effector position and orientation.  

One of the advantages of using an RRT algorithm is that it does not need an explicit 

representation of the C-space (Choset et al., 2005). It is enough to define the range of 

each DoF of the equipment based on the engineering constraints, for example, the load 

charts and working ranges of a crane. As introduced in Subsection 2.3.1, the 

configuration of a crane is a complete specification of the position of every point of that 

crane. The C-space of the crane is the space of all possible configurations of the crane; 

and a configuration is simply a point in this abstract C-space. Unlike robotics, the 

engineering constraints of a crane further narrow down the C-space into a feasible space, 

thereby fulfilling the feasibility of the movement according to the load charts and the 

working ranges of the crane. Therefore, the feasible C-space can be defined according to 

the crane-specific conditions, e.g., the lift weight, the counterweight, and the outrigger 

radius. In this way, safe and realistic motion plans for cranes are generated by taking into 

account the engineering constraints.  

Path quality improvement is also investigated in the present research by evaluating the 

smoothness of the path and execution time. The smoothness value of each node can be 

calculated. The nodes with better smoothness are selected and connected to the tree. The 

details of the proposed motion planning algorithm are given in Chapter 4. 
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When a random node is generated in the feasible C-space, the position of each 

component of the crane in the work space is defined, and then a collision detection 

algorithm is used to detect whether there is any collision between the crane and the 

obstacles on site. Current collision detection methods applied in robotics and computer 

graphics are generally more complex than necessary for construction purposes and are 

relatively difficult to implement efficiently (Kang and Miranda, 2006). Therefore, 

bounding boxes of the components of the crane are considered enough for collision 

detection with objects in the environment.  Buffers added to the bounding boxes can 

ensure the safety on site in near real-time planning, as mentioned in Section 3.2. 

3.3.4 PROPOSED MOTION RE-PLANNING ALGORITHM  

Planning motions for navigating the crane on the actual construction site is more 

challenging than planning motions off-line. The main challenges come from incomplete 

or imperfect information, limited deliberation time, and the dynamic environment 

(Ferguson, 2006). In the present research, multiple tags are attached to different 

components of objects, as explained in Section 3.4; therefore, the poses of an obstacle are 

assumed to be fully known and are used for collision detection.   

As discussed in Subsection 3.3.2, DRRT depends on repairing the current RRT when new 

information concerning the C-space is received instead of abandoning the current RRT 

entirely. DRRT efficiently removes just the invalid part of the path and grows the 

remaining tree until a new solution is found (Ferguson et al., 2006). However, the DRRT 

algorithm is based on growing one tree, and the direction of growing the tree is reversed 

to reuse the previous tree when the current configuration changes. This algorithm does 

not support the case of growing two trees rooted at the initial configuration and the goal 
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configuration. Furthermore, when an obstacle is detected, the whole tree is checked to 

mark invalid nodes, and then the solution path is checked to see if it contains any of the 

invalid nodes. If invalid nodes are found, the whole tree is trimmed and re-grown. It is 

time consuming to trim the entire tree for all new obstacles that may affect far later nodes 

on the path. Some of the detected obstacles can become non-obstacles at a later time 

because they are continuously moving in space. 

In the present research, a dynamic motion re-planning algorithm is proposed, which starts 

by executing a motion plan generated during the planning phase. Each movement of the 

crane is checked for potential collision. If it is collision free, the crane is moved to the 

next configuration. Otherwise, the remaining path is checked to find collision-free nodes 

and rebuild two trees between the current crane configuration node and the collision-free 

node. If a path between these two nodes is found successfully, this partial path is 

combined with the remaining path and the crane resumes the movement to execute the 

new motion plan. This algorithm ensures the safety of the crane throughout its movement 

on the path considering the near obstacles and it ignores other obstacles that are far away 

from the current node on the path since these obstacles may move before the crane 

reaches that part of the path. Thus, this algorithm reduces the time for trimming the 

whole tree. Details of the motion re-planning algorithm are given in Section 4.6.  

3.4 REQUIREMENTS OF UWB TECHNOLOGY FOR CRANE SAFETY 

As explained in Subsection 2.4.2.2, UWB is becoming available for precise RTLS, which 

offers several distinct advantages over traditional tracking systems. The UWB RTLS is 

superior to other location systems in providing a long reliable readability range, offering 

accurate near real-time positioning, and being more robust to the multipath problems. 
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Based on the literature review and our experimentation with the Ubisense system 

(Ubisense, 2010), the present research examines the following requirements for the 

application of UWB in construction to improve safety: accuracy, visibility, scalability 

and real-time, tag form factors, power consumption, and networking requirements. The 

number of tags, the number of sensors, and the location and orientation of sensors should 

be decided to satisfy these requirements, as is discussed in Chapter 5.  

(1) Accuracy requirement: Accuracy is the most important requirement guaranteeing 

that valuable data are collected. AOA and TDOA are used in UWB RTLS to locate tags 

based on trilateration. If only the AOA method is used, two sensors are theoretically 

enough to locate a tag in 3D; however, to improve accuracy, more sensors are needed in 

practice to reduce the influence of multipath and noise (Munoz et al., 2009). If only the 

TDOA method is used, at least three sensors are required for 2D positioning and four 

sensors are required for 3D positioning (Ghavami et al., 2004). Table 3-1 summarizes the 

combinations of the location methods and the results. The combination of AOA and 

TDOA yields the highest possible accuracy (Abdul-Latif et al., 2007). With this 

combination, two sensors deliver a robust localization with an accuracy of up to 15 cm 

under ideal conditions (Ubisense, 2010). In practice, more sensors enable both a greater 

confidence in the accuracy and a higher availability, leading to a more robust solution. 

Figure 3-4 shows an example in which four sensors receive signals from a tag and locate 

its position. The AOA vectors originating from the tag towards the sensors are drawn in 

green, while the TDOA curves are drawn in blue. The intersection marks the position of 

the tag, shown as a red dot.  
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Table 3-1: Combinations of the location methods and the results (adapted from 

Ubisense, 2010) 

Location method 
Number of sensors 

detecting tag 

Other information 

required 
Result 

Single-sensor AOA 1 Known height of tag 
2D horizontal position  

(+ known height) 

AOA 2 or more None 3D position 

TDOA only 3 Known height of tag 
2D horizontal position  

(+ known height) 

TDOA only 4 or more None 3D position 

TDOA+AOA 2 or more None 
3D position (highest 

accuracy) 

 

 

   

    (a) 2D view                                                              (b) 3D view 

Figure 3-4: Four sensors locating a tag in a room 

To gain accurate location data, calibration of the sensors is essential. A local coordinate 

system is defined and the coordinates of each sensor are measured precisely using 

surveying tools, such as a total station. Each sensor should be levelled after the 

installation with a zero roll angle. One tag should be placed at a location with known 
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coordinates in the local coordinate system. As a result, the pitch and yaw angles (Figure 

3-5) of each sensor can be calculated and recorded in the system. 

 

Figure 3-5: Yaw, Roll and Pitch angles of a sensor (Ubisense, 2010) 

Moreover, data filtering should be applied in real time to reduce errors and improve the 

accuracy. This filtering can validate the individual AOA and TDOA measurements 

against a predicted position, and then these measurements can be used to calculate a new 

estimate of the position. The motion model for the filter has to be defined by specifying 

the constraints on the motion that the tracked object can undergo. For example, a tag can 

be free to move in 3D or can be constrained to move horizontally with a certain motion 

model of position and velocity and Gaussian noise on velocity (Ubisense, 2009). Filtering 

can be also applied on the location data resulting from the trilateration. For example, Cho 

et al. (2010) have claimed that the total accuracy is improved by 25% after applying an 

error model using a Kalman smoother. However, the application of these filters is based 

on several assumptions about the motion model. Applying these assumptions is not easy 

in the case of the movement of cranes. 

 

Yaw 

Pitch Roll 
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(2) Visibility requirement: The sensors should be set in a way to utilize their field of 

view (FoV) both in the azimuth and the elevation. The FoV may be different from one 

UWB system to another. The maximum range of sensors can be potentially up to 100 m; 

therefore, a reasonable monitoring area should be defined taking into consideration the 

coverage of the sensor cell. If the area to cover is very big, more sensors should be 

installed to cover the whole area divided into two or more cells. In addition, attaching 

multiple tags to the same object should be considered as a way to improve the visibility 

of that object by increasing the probability of detecting the tags. For example, multiple 

tags can be attached to a worker’s hardhat or the boom of a crane as is explained in 

Subsections 5.4.2 and 5.4.3. 

 (3) Scalability and real-time requirements: Since in commercial UWB systems there 

is only a single UWB channel used in time division mode, only one tag can be located at 

a time in each sensor cell. As mentioned in the visibility requirement, multiple tags can 

be used even for an individual object; therefore, the suitable number of tags attached to 

an object should be decided based on the frequency of the system and the size of the 

sensor cell. The number of time slots per second depends on the cell frequency of the 

UWB system. For the Ubisense system with a nominal cell frequency of R = 160 Hz, one 

second is divided into 153 time slots. Each has a duration of 6.5 ms. Different slot 

intervals can be selected to determine how often the tags’ locations are updated, i.e., how 

often the system listens for data and schedules messages from the master sensor. The 

shortest slot interval can be set to 4 slots, which means the update interval is 26 ms, 

corresponding to a maximum update rate per tag of approximately 38 Hz (Ubisense, 

2009).  
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With a large number of tags in a sensor cell, the update rate of tags decreases to allow the 

system to cover all tags with the fixed total number of time slots. For example, if the time 

slot is set to 4 and only 4 tags are in the cell, the four tags are updated every 26 ms (38 

Hz). When more tags are detected in the cell, e.g., 8 tags, the update rate is decreased to 

19 Hz. The more tags included in the cell, the bigger the required slot interval, and the 

lower the update rate. Figure 3-6 shows how the system assigns updates for 4 tags with a 

slot interval of 4 time slots.  Table 3-2 shows the update intervals and rates for different 

slot intervals for Ubisense 160 Hz system (Ubisense 2010).  

A specific update rate can be set for an individual tag or a group of tags. One 

consideration when setting the update rate is the moving velocity of the object. Objects 

with high velocity need more frequent updates to accurately track their traces. Therefore, 

it is essential to select a suitable number of tags with an appropriate update rate based on 

their velocity in order to achieve a balance between the conflicting requirements of 

visibility and accuracy in near real time. 

 

…...

 4 time slots 4 time slots 4 time slots

 1 second = 153 time slots 

Tag 1 Tag 2 Tag 3 Tag 4

 

 

Figure 3-6: Tag updates for a 160 Hz system with slot interval of 4 time slots 
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Table 3-2: Update intervals and rates for different slot intervals for Ubisense 160 Hz 

system (adapted from Ubisense, 2010) 

Slot interval    Update interval (ms)   
Update rate for each 

tag (Hz) 

4 26 38 

8 52 19 

16 104 10 

32 208 5 

64 416 2.4 

128 832 1.2 

… … … 

 

To maximize the update rate for the Ubisense system, one heuristic rule can be defined as 

follows: 

m ≤ 4 × 2
n
                                                   (3-4) 

where m is the number of tags in the cell, n is the minimum value that meets the 

inequality, and 4 × 2
n
 is the time slot interval that should be set. For example, if there are 

10 tags in the cell, the minimum value of n is 2; therefore, the time slot interval should be 

set to 16 (i.e., update rate of 10 Hz).  

On the other hand, if the update rate is defined, another heuristic rule can be established 

as follows: 

R/r ≥ 4 × 2
n
                                                   (3-5) 

where R and r are the update rates of the cell and the tags, respectively, n is the maximum 

value that meets the inequality, and 4 × 2
n
 is the time slot interval that should be set. For 

example, if an update rate of r = 8 Hz is required for the tags in a 160 Hz system, the 

maximum value of n is 2, and the time slot interval can be set to 16. According to 

inequality (3-4), a maximum of 16 tags can be used in the system to obtain this update 

rate. Similar inequalities can be derived for other UWB systems. 
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As mentioned above, r should be set according to the velocity of the objects. For 

example, in the case of tracking a crane boom, if the velocity of the tip of the boom is 0.6 

m/s, with a UWB system that has an accuracy of 15 cm, at least 4 Hz is needed to update 

the location of the boom’s tip to avoid potential collisions.   

(4) Tag form factor and function requirements: Even if the basic functionality of the 

tags is the same, tags come with different form factors. Some tags are specifically 

designed to be worn by a person as a badge; others are ruggedly designed to be attached 

to objects in a harsh environment. In addition to their tracking function, tags can include 

a buzzer or an LED to provide basic messaging functions and push buttons that trigger 

events. These tags can be used in safety applications in which, for example, a buzzer 

signal indicates that a worker is entering a dangerous zone. Specific examples of tags are 

given in Section 5.4. 

(5) Power requirement: The sensors must be connected to a stable power source for 

precision measurements. Tags require a battery, the life of which depends on the update 

rate established for the system. The tag’s update rate can be dynamically and 

automatically varied depending on the activity of the tag. If the tag moves quickly, a high 

update rate can be assigned for best tracking; if it moves slowly, the update can be 

reduced for best battery lifetime. When stationary, tags go into sleep mode to conserve 

power, and an in-built motion detector ensures that the tag transmits again as soon as it is 

moved.   

(6) Networking requirement: The sensors can be connected by cables or wirelessly to 

the location server. Both data cables and timing cables are needed for a wired system. 

The length of the cables should not exceed the maximum length recommended by the 



   

 

73 

 

manufacturer to avoid noise problems (Ubisense, 2009). The wireless system depends 

only on AOA calculations since wireless communication is not fast enough to support 

TDOA calculations. The choice of the type of the network (wired vs. wireless) has a 

direct impact on accuracy (Cho et al., 2010). 

3.5 FRAMEWORK OF AGENT-BASED SYSTEM   

The concept of the proposed methodology discussed in Section 3.2 can benefit from 

agent technology as discussed in Section 2.5. The framework of the proposed agent-based 

system is shown in Figure 3-7. This figure demonstrates the concept of a hybrid planning 

approach, according to which two Crane Agents plan their paths separately and a 

Coordinator Agent is used to coordinate the two cranes.  

Location data 

processing

Knowledge Base

Static objects

Dynamic objects

Site State Agent

Environment Data

Goal/Commands/Plan

Object 

Location 

Information

Messages/Partial Plan

Part of a construction site 

Kinematic constraints, 

Engineering constraints, 

Rules for actions

Knowledge Base

Kinematic constraints, 

Engineering constraints, 

Rules for actions

Knowledge Base

Project Information

Task Information

Coordination strategies

Knowledge Base

Crane Agent-2

Crane Agent -1

Coordinator 

Agent

Messages/

Partial Plan 

Messages/Partial Plan

Goal/Commands/Plan

 

Figure 3-7: Framework of agent-based system 
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In a part of the construction site, several agents are involved in one or more tasks: Crane 

Agent-1, Crane Agent-2, Coordinator Agent, and Site State Agent. Each agent has a 

knowledge base, which consists of domain-specific knowledge that supports decision-

making. The design of this framework assumes that the agents can be activated or 

deactivated by the system based on the physical locations of the objects they represent, 

i.e., inside or outside the monitored area, as discussed in Subsection 3.5.4. 

3.5.1 CRANE AGENTS 

A Crane Agent has the knowledge base that includes the kinematic constraints, the 

engineering constraints, and the rules for actions of the crane. Taking hydraulic cranes as 

an example, the kinematic constraints, i.e., the degrees of freedom (DoFs), can be defined 

according to the specifications. Engineering constraints are based mainly on the working 

range and load charts. The working range shows the minimum and maximum boom angle 

according to the length of the boom and the counterweight. Load charts give the lifting 

capacity based on the boom length, the boom angle to the ground, and the counterweight. 

Crane manufacturers and large construction companies usually have databases of the 

different cranes used in their work. These databases include the specifications about the 

different models of certain types of cranes. The D-Crane has a database that serves as a 

good example (Al-Hussein, 1999). The rules of actions are based on expert rules. For 

example, in the case of two cranes lifting together the same object, the combinations of 

hoisting and swinging or hoisting and luffing at the same time should be avoided 

(Shapiro et al., 2000). Tags are attached to different components of the crane (e.g., the 

boom, the hook, and the lift object) to monitor the poses (i.e., the position and 

orientation) of those components. These poses are used by the Crane Agents to detect 
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potential collisions with obstacles on the path to ensure safety. The Crane Agents can 

communicate with each other and with the Coordinator Agent by exchanging messages 

or partial plans. 

3.5.2 SITE STATE AGENT 

The Site State Agent is responsible for collecting and processing data about static and 

dynamic objects on the construction site. Information about static objects includes the 3D 

model of the site created during the planning stage. The information can be updated when 

necessary. For example, newly built structures become obstacles for the next operation. 

Information about dynamic objects includes the positions of tags attached to moving 

objects on site, such as cranes, workers, and materials transported by the equipment. 

Location data are collected by the Site State Agent and processed into useful information 

to update the state of the environment model. As discussed in Section 2.4, several field 

data capture technologies have been proposed in recent years to create the 3D model of a 

construction site in near real time. Field data capture technologies include 3D imaging 

technologies (e.g., 3D scanners, 3D range cameras and photogrammetry) and radio-based 

identification and tracking technologies (e.g., RFID and UWB technologies). The quality 

of field data and the ability to capture in near real time decide the accuracy and feasibility 

of the system. The knowledge base of the Site State Agent includes location data 

processing algorithms. The Site State Agent classifies information for each object based 

on the tag IDs. Raw location data from the sensors are processed to describe the full 

geometry and poses of objects, as is explained in Chapter 5. For example, a simplified 

bounding box can be generated according to location data transmitted from multiple tags 

attached to the boom of a crane. Furthermore, based on the location of each object, the 
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Site State Agent decides to which agent the information of that object should be sent so 

that each agent gets the information necessary to ensure safety and to avoid 

overwhelming the communication bandwidth. 

3.5.3 COORDINATOR AGENT 

The knowledge base of the Coordinator Agent includes information about the project and 

task schedules (macro and micro levels), the operating cost of equipment, and the safety 

regulations. The knowledge base also includes coordination strategies to guide the 

movement of two cranes. Several strategies can be used including the leader-follower 

strategy (Zheng, 1989), time delay strategy (Chang et al., 1994), and speed alteration 

strategy (Hwang et al., 2003; Kamezaki et al., 2009). The Coordinator Agent works 

differently in the following two cases: (1) two or more cranes working together to lift one 

object; and (2) two or more cranes working on different tasks in the same area, where 

coordination is needed to avoid conflicts. In the first case, collaborative requirements 

limit the possible movement of each crane; accordingly, in a centralized approach to 

reduce collaboration complexity, the Coordinator Agent generates plans for the cranes 

based on the data sent. One important rule that should be considered in this case is that 

the distance between the two hooks should be equal to the length between the two 

attachment points, and crane load lines must be kept plumb at all times for multiple crane 

lifts (Shapiro et al., 2000).  

In the second case, the Coordinator Agent is not responsible for motion planning. It only 

coordinates the work by deciding the priorities of the cranes. Once a potential conflict 

occurs, the Crane Agents communicate with the Coordinator Agent by exchanging 

messages and they make decisions based on negotiation in a hybrid approach. One 
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efficient method to avoid collision is to adjust velocity instead of re-planning the path. As 

introduced in Subsection 2.3.3, Kang (2005) has proposed a decoupled method of 

planning for multiple cranes. Plans are generated for each crane separately by ignoring 

the other one during a short period δ, and then by coordinating the two cranes by tuning 

their relative velocities to avoid collisions. If successful, the system plans the next time 

period δ until the entire project is finished. Otherwise, a new δ is considered and steps are 

repeated for the entire project. The same method can be applied to re-planning when two 

Crane Agents can negotiate with each other to adjust their velocity and avoid collision. If 

there is no way to avoid collision by adjusting the velocities, re-planning should be done 

by one of the Crane Agents. In this case, the priority is decided by the Coordinator Agent, 

and the agent that has the lower priority has to re-plan the path for the corresponding 

crane. In the present research, only the second case (i.e., the hybrid approach) is 

considered.  

During the plan execution stage, obstacles not taken into account in the planning stage 

are detected in real time. Agents are used to dynamically guide the actions of the 

equipment and to find collision-free paths respecting the engineering constraints and 

action rules. If re-planning is necessary, the priority of the Crane Agents should be 

decided according to the following scenarios in order to select which agent should re-plan 

the path: 

(1) Safety-based priority: The equipment with critical safety issues has a higher 

priority. For example, the crane with the heavier load or the narrower work space 

should be given higher priority. 
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(2) Task-based priority: The tasks on the critical path have priority over other tasks. 

Based on the project schedule, the tasks on the critical path cannot be delayed 

because the whole project will be delayed. In this case, the Coordinator Agent 

should give the priority for the use of the work space to the equipment that 

executes the tasks on the critical path.  

(3) Time-based priority: The equipment that has a shorter time in a given work space 

for its task should be given a higher priority for movement. For example, 

compared with the equipment working intensively in one workspace, the 

equipment that has a one-time access to the area is not to appear again in the same 

area has the priority to finish its task. 

(4) Cost-based priority: The equipment with a higher operating cost has the higher 

priority in order to optimize the budget of the project.  

(5) Alternating priority: If all the conditions are the same for both pieces of 

equipment, priority can be circulated between them so that each piece of 

equipment has the priority for a certain time period, e.g., one hour.  

These priority scenarios have been identified according to our discussion with crane 

engineers. In certain cases, more than one priority rule can be applied resulting in a 

conflict between these priorities. However, these cases are beyond of the scope of the 

present research. Figure 3-8 describes a scenario of re-planning when two cranes have 

potential collision on their paths.  
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Cranes are stopped and the current 

configuration of the cranes are retrieved  

Crane with higher priority is 

identified by the coordinator agent

Need to re-plan path?

Adjusting velocity by  

the two agents

No

Continue executing the 

plan

Crane agents communicate and send 

information to the coordinator agent

Yes

Start executing plan

Potential collision is detected by 

crane agents

Resume the path of the high 

priority crane and re-plan the 

path of the low priority crane

Goal reached?

No

Yes

Stop

 

Figure 3-8: Flowchart of re-planning scenario 

The Crane Agents start executing their plans and continuously detect potential collisions 

for the next movements. Once a potential collision is detected, the Crane Agents send 

signals to stop the cranes and retrieve the current cranes’ configurations. The Crane 

Agents communicate with the Coordinator Agent to get information about the obstacle 

and to send information about their paths and tasks to the Coordinator Agent. The 

Coordinator Agent decides whether re-planning is needed or adjusting velocity can solve 
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the conflict. If there is no need for re-planning, the two Crane Agents negotiate with each 

other and with the Coordinator Agent to avoid collision by adjusting their velocities. In 

the extreme scenario of the case one crane fully stops and waits till the other crane leaves 

the conflict area. If re-planning is needed, the Coordinator Agent decides which crane has 

higher priority. The agent of the higher-priority crane resumes its path and the other agent 

re-plans the path of the other crane. 

3.5.4 AGENT ACTIVATION 

Tags with IDs are attached to moving objects, such as cranes, and are linked to the agents 

representing the specific objects they are attached to. Different parts of the construction 

site are monitored using different sensor cells. All the activities scheduled during a 

specific time period within a cell are retrieved from the project database. Accordingly, all 

the workers and equipment expected within the cells are identified and represented by 

agents in the system. Object identification is important since safety rules are generally 

applied differently to different object types (Chi and Caldas, 2009). In addition, the 

system monitors each object within the monitored area and initializes their agents when 

they are detected for the first time. Once the object leaves the monitored area, the 

corresponding agent is deactivated from the system, and the next time it enters the area, 

the agent is activated again. Information about an object can be retrieved from its agent, 

such as its ID, its tasks, and the duration of its task, and possibly the path of the object.  

3.5.5 COMMUNICATION AND NEGOTIATION BETWEEN AGENTS 

The communication is limited to agents within a part of the construction site where a task 

is carried out. This partitioning of the site space is necessary to avoid communication 
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bottlenecks. Furthermore, because the dynamic agent system activates and deactivates 

agents based on the boundary of the monitored area, ad-hoc wireless networking is a 

good solution for the proposed method, as explained in Subsection 2.5.3. Based on the 

location of each object, the Site State Agent decides to which agent the information of 

that object should be sent. The Coordinator Agent communicates with all Crane Agents 

that are under its control and receives messages and partial plans from these agents.  In 

addition, it decides the priorities for movement if any conflict occurs, and it sends 

commands to the Crane Agents to avoid collisions. A Crane Agent can also communicate 

with the other Crane Agent to inform the path of the crane for re-planning.  

Negotiation between agents occurs in two scenarios: (1) if potential collision is detected 

between the two cranes, the two Crane Agents negotiate with each other and adjust the 

velocity of the crane boom to avoid collisions; (2) negotiation also happens when a Crane 

Agent rejects the decision made by the Coordinator Agent. The Crane Agent may suggest 

other options based on its own interest. The Coordinator Agent selects the best one or 

adjusts it using coordination strategies.    

3.5.6 ACTIONS BASED ON MOTION PLAN 

The motion plan is represented by a series of configurations that the crane needs to take 

in a sequence to achieve the goal. The initial configuration and the goal configuration of 

the crane should be defined according to the task (i.e., the initial and goal locations of the 

lift object). In order to help the crane operator, the configuration of each step on the path 

should be translated into a series of actions that can be understood by the operator, such 

as the instruction to swing the boom clockwise by 10 degrees. Taking a hydraulic crane 

as an example, the movement of the crane during lifting includes the following actions: 
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Boom movement: BoomUp, BoomDown, BoomExtend, BoomRetract, 

BoomSwingClockwise, BoomSwingCounterclockwise, BoomStop; 

Hook movement: HookUp, HookDown, HookAttach, HookRelease, HookStop. 

Each of these actions is quantified by a value, e.g., BoomSwingClockwise (10°). 

Based on the actions taken by the equipment, the configurations of the crane can be 

translated into states in the physical work space for collision detection. For example, at 

time j, the state of crane i can be represented as CraneStateij = [Pij, Φij, θij, αij, lij, Hij], 

which means that crane i is at location Pij, with base orientation Φij, boom swing angle θij, 

boom angle to the ground αij, boom length lij, and hook position Hij. Figure 3-9 shows a 

simple example for the movement of crane i from one state to another by raising its boom 

by Δα and by swinging its boom clockwise by Δθ.  

Sj-1 Sj Sj+1

BoomUp(cranei, ∆α) BoomSwingClockwise(cranei, ∆θ)

 

Figure 3-9: Actions and states changes 

3.6 SUMMARY AND CONCLUSIONS 

The present chapter has presented an overview of the proposed methodology and defined 

several requirements for the use of this methodology in construction to improve crane 

safety. The following issues have been discussed for the motion planning and re-planning 

of cranes: (1) Crane modeling has been described in detail following the robotic 

kinematic properties to apply motion planning algorithms; (2) Four criteria, which are 

efficiency, optimality, reusability, and safety, have been defined for the selection of the 

appropriate motion planning algorithm for cranes. Based on these criteria, RRT 
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algorithms have been selected as the basic algorithms used in this research due to their 

quick calculation time and the ability of dealing with high dimensional problems; (3) 

Motion planning and re-planning for cranes have been described briefly to give an 

overview of the proposed methodology.  

On the other hand, the requirements of the deployment of UWB RTLS on construction 

sites have been defined. These requirements are accuracy, visibility, scalability, and real-

time requirements, tag form and function requirements, power, and networking 

requirements. These requirements have been defined based on the literature review and 

on our experience acquired by using a UWB system. Heuristic rules have been defined to 

balance the requirements of visibility, scalability, and real-time by clarifying the 

relationship between the number of tags, the update rate, and the velocity of objects. 

Crane motion planning and real-time environment updates have been integrated by 

developing a framework of an agent-based system to improve the safety of cranes. This 

framework has several agents supporting the crane operations. The functionalities of the 

Crane Agents, Coordinator Agent, and Site State Agent have been described in detail for 

sensing, communication and decision-making. The main characteristics of the agent-

based system have been described as the following: (1) A hybrid approach has been used 

in the system to gain the flexibility of distributing motion planning to each Crane Agent 

based on the priorities decided by the Coordinator Agent; (2) Priority patterns have been 

defined to decide which agent should re-plan the equipment’s path to avoid potential 

collisions; and (3) In order to guide the crane operators, motion plans can be translated 

into actions based on the crane’s configurations. 
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CHAPTER 4 MOTION PLANNING AND RE-PLANNING 

 

 

 

4.1 INTRODUCTION 

Based on the discussion in Section 3.3, RRT algorithms have been selected as the basic 

algorithms used in this research for crane motion planning and dynamic re-planning in 

near real time. In the present chapter, a more detailed review of the RRT algorithms and 

their different variations for improving planning time and path quality is presented. In 

this research, dual-tree RRT algorithms have been used to gain efficiency while ensuring 

safety by taking into account crane-specific engineering constraints. In addition, path 

smoothness is considered in this research to provide a realistic path for cranes and to 

reduce unnecessary movements. The proposed algorithms are compared with other 

available algorithms to evaluate their performance in terms of planning and re-planning 

time and the cost of the path. Based on the literature review, this is the first time that the 

dual-tree RRT algorithm has been applied to crane motion planning.  

4.2 BASIC RRT ALGORITHM 

RRT algorithms incrementally construct a search tree rooted either at an initial 

configuration qinit or a goal configuration qgoal. As shown in Figure 4-1, at each iteration 

from 1 to m (lines 2 to 4), a random configuration, qrand, is sampled uniformly in the 

search space. The nearest configuration, qnear, to qrand in the tree is found and an attempt 

is made to extend the tree, and finally connect qinit and qgoal.  This method was originally 

developed by LaValle (1998).  
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Figure 4-1: The basic RRT algorithm (adapted from LaValle and Kuffner, 2001) 

In this basic RRT algorithm, the Extend function selects the node qnear in the tree that is 

nearest to the sampled node qrand, as shown in Figure 4-2. Then a motion toward qrand 

with some fixed incremental distance ε is applied. If this motion is collision-free, a new 

node qnew is added to the tree and the Extend function returns one of the following two 

values: Reached if qrand is reached or Advanced if qrand is not reached. If qnew is not 

collision-free, a Trapped value is returned.  

 

Figure 4-2: The Extend operation (LaValle and Kuffner, 2001) 

qnear 

qnew 

qinit 
qrand 

ε 

Build-RRT(qinit) 

   1. T.add(qinit); 

   2. for i = 1 to m do 

   3.    qrand = Choose-Target(); 

   4.    Extend(T, qrand); 

   5. return T; 

 

Choose-Target() 

   6.   return Random-Node(); 

 

Extend(T, q) 

   7.   qnear = Nearest-Neighbor(q, T); 

   8.   qnew = New-Node(T, qnear, q); 

   9.   if Collision-Free(qnew) == true 

   10.        T.add(qnew);   

   11.        if qnew ≈ q then 

   12.                   return Reached; 

   13.             else 

   14.                   return Advanced; 
   15.  return Trapped;  
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4.3 DUAL-TREE ALGORITHMS 

Several variations of RRT have been developed to reduce the planning calculation time. 

For example, Clifton et al. (2008) have evaluated the performance of multiple RRTs, and 

they have indicated that when many obstacles are present, the time required to find a 

complete path can increase significantly; therefore, having more than one tree growing 

simultaneously can greatly reduce the calculation time. Two of these algorithms are 

discussed in the following. 

4.3.1 RRT-CONNECT ALGORITHM 

Kuffner and LaValle (2000) have proposed the RRT-Connect algorithm, in which two 

trees rooted at the initial configuration and the goal configuration are built, as shown in 

Figure 4-3.  

 

 

Figure 4-3: Growing two trees towards each other (Kuffner and LaValle, 2000) 
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The procedure of developing two trees consists of the following steps: (1) growing tree 

Tinit (rooted in the initial state) toward a random sample node qrand, resulting in a new 

node qnew; (2) growing tree Tgoal (rooted in the goal state) toward the new node qnew in 

Tinit; (3) growing Tgoal toward another random sample node q
’
rand, resulting in a new node 

q
’
new; (4) growing tree Tinit toward the new node q

’
new in Tgoal. This method is a kind of 

biasing the direction of the tree generation. It is expected that growing the two trees 

towards each other is a faster way of finding a solution. Furthermore, building two trees 

from the initial and goal configurations aims to precisely select the goal state instead of 

assuming that the goal state will be reached by generating nodes randomly, especially 

when a manipulator must reach a specific end-effector position and orientation.  

In RRT-Connect, instead of attempting to extend the tree by an ε step, the Connect 

heuristic function iterates the Extend step until qrand is reached or an obstacle is detected. 

Figure 4-4 shows the RRT-Connect algorithm. In each iteration, one tree is Extended, and 

an attempt is made to Connect the nearest node of the other tree to the new node, and 

then vice versa.  

 

Figure 4-4: RRT-Connect algorithm (Kuffner and LaValle, 2000) 

RRT-Connect(qinit, qgoal) 

   1. Ta.add(qinit); Tb.add(qgoal); 

   2. for i = 1 to m do 

   3.        qrand = Choose-Target(); 

   4.        if not (Extend(Ta, qrand) == Trapped)  then 

   5.                if (Connect(Tb, qnew) == Reached)  then 

   6.                          return Path(Ta, Tb); 

   7.        Swap(Ta, Tb); 
   8. return Failed; 

 

Connect(T, q) 

   9.    repeat 

   10.        Status = Extend(T, q); 

   11.  until not (Status == Advanced)   

   12.  return Status;  
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Figure 4-5 shows the merging of two trees. The configuration qrand is generated 

randomly; the configuration q1 has been extended to qnew; q2 is the closest configuration 

to qnew in Tgoal. If it is possible to connect q2 to qnew, Tinit and Tgoal are merged and a path is 

successfully found.  

 

Figure 4-5: Merging two RRTs (Adapted from Choset et al., 2005) 

This greedy heuristic results in reducing calculation time by a factor of three or four, 

especially in an uncluttered environment (Kuffner and LaValle, 2000). It works most 

effectively in a relatively open space for the majority of planning queries. In very 

cluttered environments, the Connect heuristic slightly increases the calculation time in 

comparison to using the Extend function to construct the two trees. Therefore, when the 

advantages and disadvantages of the Connect heuristic are weighed, using the Connect 

heuristic is worthwhile. Furthermore, this algorithm is theoretically proved to be 

probabilistically complete. The vertices tend to follow a uniform distribution over the 

free configuration space (Kuffner and LaValle, 2000).  

4.3.2 RRT-CONNECT-CONNECT ALGORITHM 

The greediest dual-tree RRT algorithm is RRT-Connect-Connect (RRT-Con-Con) 

(Kuffner and LaValle, 2000), which replaces the Extend function in line 4 of the RRT-

Connect algorithm (Figure 4-4) with the Connect function and leads to a greedier 

q1 q2 

qinit 

qnew 

qgoal 
Tinit Tgoal 

qrand 
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heuristic. However, this greediness may result in an increased randomness of the whole 

path and makes the movement unrealistic. Additionally, an error tolerance value is set to 

directly connect the two trees when they are close enough to each other. This value 

should be selected carefully; if it is too large, collision may not be detected for the edge 

of the connection of the two trees; if it is too small, calculation time is wasted or a path 

that is unnecessarily long is generated.  

4.4 PATH QUALITY IMPROVEMENT 

As mentioned in the Optimality critieron in Subsection 3.3.2, the original RRT algorithm 

does not take the cost of the path into account during its search. It almost always 

converges to a suboptimal solution (Karaman and Frazzoli, 2010). To improve the quality 

of the path, it is often the case that a feasible path is found quickly. Additional 

computational time is devoted to improving the solution with heuristics depending on 

how much time is allowed in the application, which is called anytime algorithm. 

Examples can be found in Zilberstein and Russell (1995) and Berg et al. (2006). Berg et 

al. (2006) have considered adding the cost of the path in navigating a mobile robot. Time 

taken to execute the path (tpath) and the cost of the path (cpath), based on all relevant 

metrics other than time, are considered to contribute to the overall cost of the path. 

Examples of the metrics included in cpath  are the proximity to adversaries or friendly 

agents and communication access. Equation (4-1) shows the cost function of the path.   

Cpath = wt * tpath + wc * cpath                                                                     (4-1) 

where wt and wc are weights which add up to 1. It should be noted that the term cost 

function is equivelent to objective function used in optimization. However, although the 
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quality of the path is improved using the cost function, the time needed for finding a 

solution increases significantly when the costs of different paths are calculated and 

compared (Ferguson, 2006). In recent research, Karaman and Frazzoli (2010) have 

claimed that the algorithm they proposed, Rapidly-exploring Random Graph (RRG), is 

asymptotically optimal in the sense that it converges to an optimal solution almost surely 

as the number of samples approaches infinity. However, the authors did not discuss the 

planning time needed to reach the optimal path. Thus, that research is impractical and not 

applicable for solving problems involving the motion planning of cranes in near real time. 

Consequently, in this research, the advantage of the greediest dual-tree algorithm RRT-

Con-Con is taken and a cost function is used to improve the path quality. 

4.5 DYNAMIC RRT 

During re-planning, the equipment must either wait for the new path to be computed or 

move in an uncertain direction; therefore, rapid re-planning is essential. As described in 

the reusability criterion in Subsection 3.3.2, Ferguson et al. (2006) have proposed the 

DRRT algorithm, which depends on repairing the current RRT when new information is 

received. It removes just the invalid part of the path and grows the remaining tree until a 

new solution is found. As shown in Figure 4-6, the steps of DRRT are the following: (a) 

an initial RRT is generated from a start position to a goal position, (b) a new obstacle is 

detected in the C-space, (c) parts of the previous tree that are invalidated by the new 

obstacle are marked, (d) the tree is trimmed and invalid parts are removed, (e) the 

trimmed tree is grown until a new solution is generated. Whenever an obstacle is detected, 

the whole tree is checked to mark invalid nodes. The solution path is then checked to see 
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if it contains any of the invalid nodes. If invalid nodes are found, the whole tree is 

trimmed and re-grown.      

 

Figure 4-6: DRRT steps for re-planning (Adapted from Ferguson et al., 2006) 

This DRRT is specific to one tree structure. The direction of growing the tree is reversed 

to avoid changing the root of the tree when doing re-planning. The new direction is from 

the goal configuration to the current configuration of the robot. Otherwise, the root of the 

tree changes constantly and the entire tree needs to be re-grown. For this reason, this 

DRRT cannot be directly used in the dual-tree algorithm. Furthermore, it is time 

consuming to trim the entire tree for all new obstacles, which may affect the far later 

nodes on the path. Some of the detected obstacles can become non-obstacles at a later 

time because they continuously move in the space. Therefore, in the proposed algorithm 

for re-planning, only the next several nodes on the path are checked for collision to 

ensure immediate safety. 
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4.6 PROPOSED MOTION PLANNING AND RE-PLANNING ALGORITHMS 

The proposed motion planning algorithm is named RRT-Connect-Connect-Modified 

(RRT-Con-Con-Mod). This algorithm is a modified version of the RRT-Con-Con 

algorithm, which generates two trees from the initial and goal configurations. A new 

sampled node is selected to be connected to one of the trees based on its smoothness 

value as explained in the next subsection. An anytime algorithm is applied to find a better 

solution by using a cost function to evaluate the quality of the path. Furthermore, 

engineering constraints are taken into account to generate a feasible path. In the case of 

re-planning, a dynamic re-planning algorithm is proposed to efficiently repair the path 

when obstacles are detected.  

4.6.1 PATH SMOOTHNESS 

Due to the randomness nature of sampling-based algorithms and the greediness of the 

Connect function of RRT-Con-Con, the jaggedness of the path is inevitable and some 

movements of the crane may be unnecessary. These problems make the RRT-Con-Con 

algorithm impratical for crane operation. Therefore, in this research, the smoothness of 

the path is used as a metric to evaluate the path. Smoothness can be improved by keeping 

the difference between the coordinates of two subsequent nodes at a minimum or 

relatively small. Ali et al. (2005) have introduced a fitness function in a Genetic 

Algorithm for crane path planning. The fitness function calculates the total angular 

displacement of the robotic joints while the crane moves from a pick-up location to a 

place location. In the present research, the smoothness of a path is calculated by 

introduing a function s(qi, qi+1) representing the smoothness of the movement from node 

qi to the next node qi+1 on the path, as shown in the following equation (4-2). 
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s (qi, qi+1) =         

 
    

 
 
 

 
                                                           (4-2) 

where m is the number of DoFs of the equipment;    

 
 and      

 
 are the normalized values 

of the movement along the jth DoF of nodes qi and qi+1, respectively. The purpose of 

normalization is to consider the effects of all movements of the boom represented by 

polar coordinates that have different units and different ranges. For example, in the case 

study discussed in Section 4.7, the swing angle of the boom of the hydraulic crane is in 

the range of [-180, 180] degrees and the boom entension is in the range of [10.97, 33.53] 

meters. However, after normalization, both movements are in the unitless range of [0,1]. 

The smoothness of the path spath is the sum of the smoothness of movements between all 

couples of consecutive nodes on the path, as shown in Equation (4-3).  

spath =            
   
                                                                              (4-3) 

where k is the number of nodes on the path. spath should be minimized to improve the 

smoothness of the crane movement. 

4.6.2 COST FUNCTION 

Considering plan execution time and path smoothness, the overall cost of a path can be 

calculated using a cost function, as shown in Equation (4-4), which is used to evaluate 

each path and to select a better path. A path with less executing time and less smoothness 

value is considered to be a better path. 

Cpath = α · wt · tpath + β · ws · spath                                                         (4-4) 
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tpath is calculated based on the path and velocity along each DoF. For example, the 

velocities of extending the boom and swinging the boom are different; therefore, the time 

of executing a path should be calculated according to the equipment specifications.  

The weights of execution time wt  and path smoothness ws can be based on a  preference 

of shorter time or better smoothness. For example, if better smoothness is preferrable, wt 

= 0.4 and ws = 0.6 can be selected. Other weights (α and β) are used to adjust the values 

of tpath and spath to the same order of magnitude. For example, if the range of the values of 

tpath is within 100 to 1000, and the range of the values of spath is within 1 to 10, α = 

0.01and β =1 can be applied to tpath and spath, respectively.  

4.6.3 SELECTIVE NODE SAMPLING 

After randomly sampling nodes over the whole C-space, only nodes that are expected to 

result in a smoother path are selected as nodes that will be connected to the tree. The 

smoothness of a newly sampled node q is evaluated by calculating the summation of the 

smoothness values from this node to the roots (qinit and qgoal) of the two trees Tinit and 

Tgoal.  

S (q) = s (q, qinit) + s (q, qgoal)                                                                 (4-5) 

A threshold is set by multiplying the smoothness value between the initial and the goal 

nodes (s(qinit, qgoal)) by an amplifier (γ). The first sampled node that meets the following 

inequality is selected as the node to be connected to the tree.  

S (q) ≤ γ ·s (qinit, qgoal)                                                                                (4-6) 

However, to restrain the calculation time, if the algorithm failed to find a node satisfying 

this condition after k trials, the node with the minimum smoothness value is selected. 
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Figure 4-7 shows a 2D schematic example of nodes with different smoothness values. 

Each γ value defines an area where the nodes inside a smaller area are expected to 

contribute to a better solution. According to this criterion, the smaller the γ value, the 

better the smoothness of the node.   

 

Figure 4-7: Nodes with different smoothness values 

4.6.4 ENGINEERING CONSTRAINTS 

For cranes, the engineering constraints are mainly created by the working range and by 

the load charts in order to avoid tip-over problems. Figure 4-8 shows examples of a 

working range graph and of a load chart. The working range shows the minimum and 

maximum boom angles according to the length of the boom and to the size of the 

counterweight. Load charts give the lifting capacity based on the boom length, the boom 

angel to the ground and the size of the counterweight. For example, for a Groove crane 

TSM870 (Groove Crane, 2008), if the lift object is 15,000 lbs (6.8 metric tons) and the 

counterweight is 18,000 lbs (8.2 metric tons), the ranges of the three DoFs for this lifting 

task are the following: (1) boom length: 36 to 110 ft (10.97 to 33.53 m); (2) luffing angle: 

23 to 80 degrees; (3) swing angle: -180 to 180 degrees, as shown in Table 4-1. 

qinit qgoal 

qrand 

γ=1.3 

γ=1.2 

γ=1.1 
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Figure 4-8: Examples of working range and load chart of a crane (Groove Crane, 

2006) 

Table 4-1: Ranges of crane boom length and luffing angles 

Boom length (ft) Luffing angle limits (degree) 

36 32.5-68 

50 24.5-75 

60 23-78 

70 32-80 

80 37.5-78.5 

90 46.5-80 

100 53-79 

110 54.5-80 

 

The original load chart is given in Appendix B. Furthermore, the range of luffing angles 

varies according to the boom length; therefore, node sampling should be constrained 

within these ranges. When connecting the sampled node to the tree, the intermediate 

nodes are also checked to make sure that they meet these engineering constraints. The 

Connect function discussed in Section 4.3 is modified to check these constraints for the 

intermediate nodes on the connection edge between the sampled node and the tree. 

(a) Working range (b) Load chart 

 



   

 

97 

 

4.6.5 PROPOSED MOTION PLANNING ALGORITHM 

The proposed RRT-Con-Con-Mod is a modified version of RRT-Con-Con, which uses 

selective node sampling and considers the engineering constraitnts introduced above. 

Figures 4-9 and 4-10 show the flowchart and the pseudo code of the RRT-Con-Con-Mod 

algorithm, respectively. First of all, the load charts and the working range data are read 

after the parameters of the lift task are defined including the lift weight, the 

counterweight of the crane, and the initial and goal configurations of the crane. Based on 

the required capacity, the working range of the crane is defined. A node qrand is sampled 

randomly within the range of the engineering constraints. Then the smoothness value of 

qrand is calculated based on Equation (4-5). If this value is less than the threshold value γ·s 

(qinit, qgoal), qrand is selected as the node that one tree should grow towards. If the value is 

bigger than the threshold, this value is compared with the smallest smoothness value of 

other sampled nodes. Then, after several trials, the node with the smallest smoothness 

value is returned and connected to the tree. Next, the nearest node on one tree Ta is found 

to connect to qrand and to extend the tree using a modified Connect function shown in 

Figure 4-4. This Connect-Mod function checks if every intermediate node is within the 

working range. After Ta is extended to qnew, the node on Tb nearest to qnew is found and 

the gap between the two trees is checked to see if it is less than the predefined error 

tolerance. In that case, the two trees are connected directly and the path between the 

initial and the goal states is returned. Otherwise, Tb tries to extend towards qnew. If the two 

trees are connected successfully, a path is returned, otherwise, Ta and Tb are swapped and 

another round of sampling and connecting starts untill the maximum number of path 

generation trials m is reached. 
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Figure 4-9: Flowchart of motion planning algorithm RRT-Con-Con-Mod 
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Figure 4-10: Pseudo code of motion planning algorithm RRT-Con-Con-Mod 

Due to the randomness of the RRT-Con-Con-Mod algorithm, it is difficult to guarantee 

that better solutions can be found using a specific γ value with one trial using one specific 

random seed number. A large number of tests have been carried out by changing the 

RRT-Con-Con-Mod(qinit, qgoal) 

   1. Ta.add(qinit); Tb.add(qgoal); 

   2. for i = 1 to m do 

   3.        qrand = Choose-Better-Node(); 

   4.        if not (Connect-Mod(Ta, qrand) == Trapped)   

   5.                if (Connect-Mod(Tb, qnew) == Reached)   

   6.                          return Path(Ta, Tb); 

   7.        Swap(Ta, Tb); 
   8. return Failed; 

 

Choose-Better-Node() 

9.  So = s(qinit, qgoal); 

 10.  Sless = ∞; 

 11.  qbetter = null; 

 12.  for i = 1 to k 

 13.         q = Random-Node-Satisfy-Eng-Const(); 

 14.         S = s(q, qinit ) + s(q, qgoal); 

 15.         if S ≤ γ · So 

 16.                  return q; 

 17.         else 

 18.                  if S < Sless 

 19.                       qbetter = q; 

 20.   return qbetter; 

 

Connect-Mod(T, q) 

 21.  repeat 

 22.        Status = Extend(T, q); 

 23.  until not (Status == Advanced and Eng-Const-Satisfied(q) == true)   

 23.  return Status; 

Extend(T, q) 

 24.   qnear = Nearest-Neighbor(q, T); 

 25.   qnew = New-Node(T, qnear, q); 

 26.   if Collision-Free(qnew) == true 

 27.        T.add(qnew);   

 28.        if qnew ≈ q  

 29.                   return Reached; 

 30.             else 

 31.                   return Advanced; 
 32.   return Trapped;  
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random seed number and the γ value. It was found that the paths generated by using the 

same random seed number are the same when γ value is large, e.g., γ = 2.0 in the first 

case study introduced in Section 4.7. These paths are the same as the paths generated by 

the RRT-Con-Con algorithm. It was also found that when the γ value is gradually reduced 

the smoothness of the path in the majority of the cases decreases to some extent and then 

starts to increase again at a certain value of γ. This γ value varies depending on the value 

of the random seed number. This behavior occurs because small γ values can result in 

over-constraining the dual-tree generation mechanism. Consequently, in order to obtain 

the best feasible path, an anytime algorithm is applied to investigate the improvement of 

the proposed RRT-Con-Con-Mod algorithm by changing the random seed number and 

the γ value. Figure 4-11 shows the flowchart of this algorithm. Instead of reading the load 

charts and the working range data every time when calling RRT-Con-Con-Mod, they are  

read only once after defining the task parameters. Based on this information, the working 

range of the task is defined. A path Pbest is initialized by calling RRT-Con-Con to find a 

feasible path. By reducing the γ value, nodes with less smoothness value are selected and 

connected to the tree; in this way, a better path is expected. After several loops of 

reducing γ, no more improvement can be realized with the same random seed number. If 

there is enough time to search for a better path, the random seed number is changed to 

find other feasible paths, and the loop of improving the smoothness of the path is 

repeated until time is over.  
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Figure 4-11: Flowchart of anytime motion planning algorithm 

4.6.6 PROPOSED MOTION RE-PLANNING ALGORITHM 

During the execution of the motion plan of a crane, static and dynamic obstacles not 

considered in the planning, such as other equipment in the vicinity of the crane, 

necessitate the re-planning of its path. In the framework discussed in Subsection 3.5, the 
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Coordinator Agent decides the priorities of movements based on different criteria. As 

discussed in Section 4.5, an efficient re-planning algorithm should be able to plan optimal 

traverses in near real time by incrementally repairing paths of the equipment as new 

information is discovered. Reusing a part of the previously generated plan is a good 

option to reduce the time of re-planning. Since RRT-Con-Con-Mod has been proposed in 

the present research for rapid motion planning for cranes, a dynamic version of this 

algorithm is proposed to solve the re-planning problem.  

Figures 4-12 and 4-13 show the dynamic re-planning algorithm called DRRT-Con-Con-

Mod. RRT-Con-Con-Mod is used twice: first to generate the initial plan (Line 1 in Figure 

4-12) and, then, to repair the path if necessary (Line 15 in Figure 4-12). The path is 

repaired by re-growing two trees rooted at the current node qcrane (current configuration 

of the crane) and the first collision-free node qnewgoal on the remaining path (Line 14 in 

Figure 4-12) while detecting collisions for the remaining path based on updated 

environment information.  

The main function starts by growing two trees from the initial qinit configuration and the 

goal qgoal configuration taking into account the engineering constraints and the 

smoothness value. If the two trees connect successfully, a path P is obtained and is 

executed using a loop until the equipment reaches the goal (Lines 4 to 25). Before the 

next movement, environment information is updated (Line 8) to check whether the next 

movement is collision-free or not. If there is no obstacle, the crane is moved to the next 

configuration (Lines 10 and 11); otherwise, the remaining path Premaining is evaluated to 

remove the affected nodes on it (Line 13). Once a collision-free node is found, this node 

is recorded as a temporary goal node qnewgoal, and together with the crane’s current 



   

 

103 

 

configuration qcrane as an initial node, two new trees are developed to connect these two 

configurations. If the connection succeeds, the new partial path Pnew is merged with the 

remaining path to form a new path (Line 24). If the connection fails, the following nodes 

on the remaining path are evaluated and attempts are made until successful connection is 

made between that node and the current configuration node. 

 

Figure 4-12: Dynamic re-planning algorithm DRRT-Con-Con-Mod 

DRRT-Con-Con-Mod(qinit, qgoal) 
1. P = RRT-Con-Con-Mod (qinit, qgoal); 
2. if P = Failed 
3.     return Failed; //There is no feasible path 
4. while (qcrane ≠ qgoal)    //Start to execute the path 
5.     qnext = Read-Next-Node(P); 
6.     while (qcrane ≠ qnext) 
7.          qinter = Interpolate(qcrane, qnext); //Calculate intermediate node 
8.          Update-Environment();  
9.          if Collision-Free(qinter) == True 
10.              Move-Crane(qinter); 
11.              qcrane= qinter; 
12.        else  
13.              Premaining = Validate-Nodes(Premaining);  
14.              qnewgoal  = First-Node(Premaining); 
15.              Pnew = RRT-Con-Con-Mod(qcrane, qnewgoal); 
16.              while Pnew == Failed 
17.                    if qnewgoal = qgoal 
18.                          return Failed; 
19.                    else 
20.                          Premaining.Remove(qnewgoal); 
21.                          Premaining = Validate-Nodes (Premaining); 
22.                          qnewgoal  = First-Node(Premaining); 
23.                          Pnew = RRT-Con-Con-Mod (qcrane, qnewgoal); 
24.               P = Merge-Path(Pnew, Premaining); 
25.               qnext = Read-Next-Node(P); 
 
Validate-Nodes (path) 
26.  repeat for all the nodes q on path 
27.       if Collision-Free(q) == False 
28.            path.Remove(q); 
29.       else 
30.            return path; 
31.  return Stop; 
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Figure 4-13: Flowchart of re-planning algorithm DRRT-Con-Con-Mod 



   

 

105 

 

The differences between the proposed dynamic motion planning algorithm and the DRRT 

algorithm (Ferguson et al., 2006) discussed in Subsection 3.3.4 are the following: (1) a 

dual-tree algorithm is used in the present research to find a solution. This algorithm is 

faster than the one-tree DRRT algorithm; (2) the proposed algorithm ensures immediate 

safety and ignores obstacles that are far away from the current node on the path since 

these obstacles may move before the crane reaches that part of the path. Thus, the 

proposed algorithm reduces the calculation time compared with the DRRT algorithm 

since it does not trim the entire tree. Due to the greediness of RRT-Con-Con-Mod, 

regenerating a small part of the path is expected to be very quick. To the best of our 

knowledge, no research has considered dual-tree RRT algorithms for dynamic motion 

planning.   

4.7 CASE STUDIES 

A simulation environment is built in Autodesk Softimage (2010), where a scene is 

created with two identical hydraulic cranes (TMS870/TTS870) (Groove Crane, 2008). 

CAD models of the cranes are imported into Softimage. A hierarchy of components and 

kinematics is created in a 3D environment. Four DoFs are considered in the current work, 

as shown in Figure 3-3(a). In addition, a model of a steel structure with 596 elements is 

created in the simulation environment. Static objects are defined by grouping them under 

a specific model with the name obstacles. The algorithm then considers all objects in this 

model as static obstacles and performs collision checking during the planning stage. 

Dynamic objects are defined by applying motion information to 3D objects (AlBahnassi, 

2009). Details about the prototype system are given in Chapter 6.  
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The ranges of the dimensions of the C-space vary according to the size of the 

counterweight and the size of the lift weight. The example shown in Subsection 4.6.4 is 

used in the present case study. The length of the cable could vary between 0 and the 

distance from the tip of the boom to the ground. In the present research, a critical volume 

under the boom is considered for collision detection, taking into account the cable and the 

hook. The initial and goal configurations of the crane are shown in Figure 4-14. It should 

be noticed that the fourth DoF does not contribute to the smoothness of the path; 

therefore, it is not used in the calculation of the cost. 

4.7.1 CASE STUDY – 1: MOTION PLANNING 

To evaluate the proposed motion planning algorithm, two major criteria are considered: 

calculation time and path quality. Calculation time should be as short as possible in near 

real-time applications. Path quality is evaluated in terms of smoothness and plan 

execution time, as discussed in Subsection 4.6.2. 

 
Figure 4-14: Initial and goal configurations of the crane 

Fifty-one random seed numbers (0-50) were used to compare the planning time for each 

algorithm. As shown in Table 4-2, times spent for finding a feasible path using RRT, 

RRT-Con-Con and RRT-Con-Con-Mod are listed. It was found that RRT took more time 

(a) Initial configuration (b) Goal configuration 



   

 

107 

 

to find a path, whereas the dual-tree algorithms found a path much faster due to the 

greediness of the dual-tree structure and the Connect function. The RRT-Con-Con-Mod 

spent slightly more time than RRT-Con-Con to check the threshold of the smoothness of 

the nodes. 

Table 4-2: Comparison of calculation time of three algorithms 

Algorithm 

Average 

calculation 

time (s) 

Shortest 

time (s) 

Longest 

time (s) 

Std. 

dev. (s) 

RRT 16.95 3.56 39.53 8.302 

RRT-Con-Con 1.59 0.61 3.16 0.594 

RRT-Con-Con-Mod 1.91 0.61 4.11 0.718 

 

The same random seed numbers were used sequentially in the anytime algorithm to 

evaluate the improvement that can be achieved using RRT-Con-Con-Mod. The γ value 

was initialized with the value of 1.7 and was reduced by a step of 0.1. No time limit was 

set in order to evaluate the performance of the anytime algorithm. The program stopped 

after finishing the calculations using all of the 51 random seed numbers. The results were 

sorted according to smoothness values. It was found that in the top 14 cases, where the 

paths are smoother, there was no improvement when applying the threshold. By contrast, 

in the remaining 37 cases, an average improvement of 11.51% better smootheness 

occurred in 24 cases compared with the paths found using RRT-Con-Con. The best 

solution among these cases was 29.89% better than the path generated by RRT-Con-Con. 

Table 4-3 shows the results of the improved cases and the average improvement 

percentage with the corresponding γ value. Figure 4-15 shows the smoothness 

improvement during the time taken for running 51 cases with 320 run times (447.5 

seconds). An original path is found with a smoothness value of 3.025. After 9 run times 
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(16.31 seconds) by reducing γ value and changing the random seeds, a better path is 

found with a smoothness value of 2.563. Then at run time 89 (146.75 seconds), a better 

path is found with a smoothness value of 2.372. Table 4-4 shows the smoothness values 

and the execution times of these three paths (P1, P2, P3) and the improvement pecentages 

of P3 compared to P1. The execution time is calculated by assuming the speeds of the 

movements of the boom as 3.75°/second for swinging, 1.04°/second for luffing, and 

0.124 meter/second for extending the boom (Manitowoc, 2010). It can be seen that the 

smoothness and the execution time are improved by 21.59% and 16.86%, respectively. 

Using α = β = 1 and wt = ws = 0.5 in Equation (4-4), the costs of the three paths are 

calculated and shown in the same table. The improvement of the path cost is 18.32%. As 

explained in Subsection 4.6.2, other weights can be used in Equation (4-4).   

Table 4-3: Path smoothness using different threshold values 

Threshold Multiplier (γ) 

used in RRT-Con-Con-Mod 
1.6 1.5 1.4 1.3 1.2 1.1 

Cases improved 2 3 5 4 7 3 

Averaged improvement (%) 9.603 6.729 10.565 6.769 11.927 16.183 

 

 

 

Figure 4-15: Smoothness improvement 

Smoothness 

value 

Time (second) 

2.372 
2.563 3.025 

16.31 146.75 447.5

2 
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Table 4-4: Smoothness values, execution times, and costs of three paths 

              Path 

Path cost values 

P1 P2 P3 
Improvement of P3 

compared to P1 (%) 

Smoothness value 3.025 2.563 2.372 21.59 

Execution time (min) 6.82 6.54 5.67 16.86 

Cost of the path 4.923 4.55 4.021 18.32 

 

Figure 4-16 shows eight snapshots of path P1 at sereval frames of the simulation. This 

path includes several backward movements due to the randomness of the algorithm. T 

represents the time frame used in the simulation where 32 frames equal to 1 second. 

Between frame 1 and 108, the crane extends its boom, and then raises its boom until 

frame 150. After that, the crane starts rotating the boom clockwise until frame 209. 

However, a counterclockwise rotation occurs between frames 209 and 237. Next, the 

crane continues rotation clockwise until frame 298 and raises the boom until frame 309. 

Then, again, the crane rotates the boom counterclockwise to reach the goal. Because of 

the counterclockwise rotation, the smoothness value is large and redundant movements 

occur.  

After applying the anytime algorithm, the improved path (P3) is shown in Figure 4-17. 

The smoothness value of this path is 2.372, which is the best path found by using RRT-

Con-Con-Mod. The motion path starts by rotating the boom clockwise; and, then, at 

frame 80, the boom is extended. After that, at frame 152, the boom is raised until frame 

194, and finally the boom is extended to reach the goal. 
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Figure 4-17: The improved path (P3) 

4.7.2 CASE STUDY – 2: MOTION RE-PLANNING  

The present case study focuses on testing the motion re-planning algorithm introduced in 

Subsection 4.6.6. In this case, as shown in Figure 4-18, a second crane (Crane-2) is 

located in the same area of Crane-1 used in Case Study-1. It is assumed that Crane-2 has 

a higher priority than Crane-1. While swinging its boom 90° clockwise, Crane-2 may 

become an obstacle for Crane-1. When a potential collision is detected as shown in 

Figure 4-18(b), re-planning is triggered to re-plan the path for Crane-1 by raising its 

boom to avoid collision as shown in Figures 4-18(c) and (d).  

(a) 3D view of motion path 

(b) Top view of motion path 

T = 1 T = 80 T = 152 T = 194 T = 240 
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Figure 4-18: Two cranes working in the same area 

A comparison is carried out between the proposed dynamic algorithm DRRT-Con-Con-

Mod and the basic DRRT algorithm  based on the concept of Furguson (2006). The same 

random seed numbers are used for both algorithms to generate initial motion plans for 

Crane-1. Due to the randomness of the algorithms, the potential collision of the two 

cranes does not always occur. However, in some cases, more than one re-planning 

occured during the task when Crane-2 was detected several times as an obstacle. In these 

cases, the calculation time of each re-planning was taken into account in calculating the 

average re-planning time. The average re-planning time of the DRRT-Con-Con-Mod 

algorithm was 1.47 seconds compared with 5.98 seconds for DRRT, resulting in a 

reduction in re-planning time by a factor of four. Furthermore, DRRT cannot guarantee 

that a feasible path will be found in each re-planning case. In the 22 cases in which re-

(a) Initial configuration 

Crane-1 

Crane-2 
T = 0 T = 138 

T = 170 

(d) Goal configuration 

(b) Potential collision detected 

(c) Collision avoided 

T = 336 
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planning occured, there were 10 cases in which the DRRT failed to find a new path. 

Whereas in all the re-planning cases (23 cases) of DRRT-Con-Con-Mod, the algorithm 

sucessfully found a new path. Table 4-5 shows the comparison of re-planning times 

produced by DRRT and DRRT-Con-Con-Mod. 

Table 4-5: Comparison of re-planning times  

Algorithm 

Average 

calculation 

time (s) 

Shortest 

time (s) 

Longest 

time (s) 

Std. 

dev. (s) 

DRRT 5.98 0.17 26.97 9.63 

DRRT-Con-Con-Mod 1.47 0.11 5.27 1.40 

  

4.8 SUMMARY AND CONCLUSIONS 

In this chapter, RRT algorithms have been investigated in depth and several variations 

have been reviewed, such as dual-tree algorithms and algorithms for path quality 

improvement. Based on these reviews, we have developed a new algorithm called RRT-

Connect-Connect-Modified (RRT-Con-Con-Mod) for crane motion planning. The main 

charastistics of this algorithm are the following: (1) It is a dual-tree RRT algorithm, 

which geneartes two trees from the initial and goal configurations; (2) A cost function is 

used to evaluate the quality of the path by taking into account the smoothness of the path 

and the time taken to execute the path; (3) Engineering constraints are considered to 

generate safe paths for the cranes and to avoid tip over due to overloading.  

In the case of re-planning, a dynamic re-planning algorithm has been proposed to 

efficiently repair the path when the environment is updated. Compared with the DRRT 

algorithm proposed by Furguson (2006), the proposed dynamic algorithm maintains a 

focus on the path instead of the entire tree by regenerating a partial path to replace the 
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part that is not collision-free due to new obstacles. The advantage of the proposed 

algorithm is that the time for trimming the entire tree is eliminated and an immediate 

collision-free movement is ensured for the crane, thereby reducing safety risks. 

Regenerating the trees and finding a feasible partial plan are carried out quickly thanks to 

the greediness of the dual-tree structure and the Connect-Mod function.  

Comparisons have been made between RRT, RRT-Con-Con and RRT-Con-Con-Mod for 

motion planning, and between DRRT and DRRT-Con-Con-Mod for re-planning. The 

results show that the path smoothness is improved by applying the anytime algorithm 

while gradually narrowing the area for node sampling based on the smoothness value. An 

average improvement of 11.51% better smoothness has been obtained compared with the 

paths found by using RRT-Con-Con. The calculation time of RRT-Con-Con-Mod was 

much less than that of the RRT algorithm. The best path found using the anytime 

algorithm shows an improvement in smoothenss and execution time of 21.59% and 

16.86%, respectively. The cost of the path is consequently reduced by 18.32%. As for re-

planning, a reduction in re-planning time by a factor of four is achieved by using the 

proposed dynamic algorithm. Furthermore, the DRRT-Con-Con-Mod algorithm was 

always able to find a new path during re-planning. 
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CHAPTER 5 TRACKING CRANE POSES USING UWB 

SYSTEM 

 

 

 

5.1 INTRODUCTION 

To apply the proposed approach to construction, the UWB RTLS needs to be tested and 

the collected data need to be processed in near real-time to calculate the crane poses used 

for collision detection. According to the system requirements defined in Section 3.4, the 

UWB system setting is explored in depth in Section 5.2. A systematic method of data 

processing in near real time is discussed in Section 5.3 to investigate how to improve data 

accuracy and usability. Several tests were applied to investigate the performance of the 

system and to collect data in different indoor or outdoor environments, as will be 

discussed in Section 5.4. In Section 5.5, the detailed data analysis of an outdoor crane test 

is described to calculate crane boom poses.  

5.2 UWB SYSTEM SETTING 

As discussed in Section 3.4, the requirements of a UWB system for crane safety include: 

accuracy, visibility, scalability, and real-time, etc. The present section investigates the 

setting method of the UWB system to satisfy these requirements (Hammad et al., 2010). 

5.2.1 TAG LOCATIONS 

As discussed in Chapter 3, in the case of monitoring the movement of a hydraulic crane, 

multiple tags should be attached to its different components to identify its poses. Tags 

can be attached to the base of the first part of the boom and its tip for easy installation 

and to avoid damaging the tags. Figure 5-1 shows a schematic boom with three sets of 
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tags (S
1
, S

2
, S

3
) attached to it. Each set S

i
 includes four tags (    

 ,     
 ,     

 , and 

    
 ) fixed on each side of the boom. This redundancy improves the visibility of the tags 

attached to the boom by the sensors when the boom rotates.  The approximate location of 

the center point of a cross section P
i'
 can be calculated by averaging the locations of all or 

some of the four tags of set S
i
. The orientation and the length of the boom can be obtained 

by connecting the two axis points P
1'
 and P

3'
. The purpose of having an additional set of 

tags S
2
 is to get a third point P

2'
 on the axis of the boom so as to increase the accuracy by 

having more points along the axis, thereby allowing for the interpolation of the line 

representing the axis. 

 

Figure 5-1: Locations of tags on the boom and the cross section of the boom 

5.2.2 SENSOR COVERAGE 

The four sensors of a cell are usually located at the corners of a rectangular monitoring 

area at a high position facing down towards the center of the area. In the case of 

S3 

 Axis of boom 

S1 

 

S2 
Tagi

1 

Tagi
2 

 

Tagi
3 

 

Tagi
4 

 

Pi 

P1 

P2 

 

P3 

 

P3’ 

P2’ 

P1’ 

 

(a) Schematic representation of tags on a boom (b) Boom cross section with set of tags 
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monitoring the movement of a large hydraulic crane, the sensors should be fixed at a high 

position and their pitch angle should be adjusted to cover all the tags attached to the 

crane, as shown in the upper set of sensors in Figure 5-2. Furthermore, a second cell 

could be necessary to monitor workers working on the ground because tags attached to 

them may not be detected by the upper cell due to obstruction by the crane or the limited 

FoV of the sensors. This two-cell setting to monitor the same area at two elevations is 

needed in sites where a large vertical area should be monitored. 

 

 

Figure 5-2: Vertical coverage of sensors at two elevations 

However, in other cases, using only one cell at the ground level is suitable. In this case, 

the pitch angle of the sensors should be set to cover all the tags on site. Figure 5-3 shows 

a 2D projection of a sensor facing a crane. The sensor having a vertical FoV of ±β is 

mounted on a tripod at a height Hs with a pitch angle of θ. The areas out of the lines of 

sight are not covered by this sensor but can be covered by other sensors in the same cell. 

The working range of the crane should be considered to decide the appropriate position 

Sensor-1' 

Sensor-2' Sensor-3' 

Sensor-4' 

Sensor-1 

Sensor-2 
Sensor-3 

Sensor-4 
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and the orientation of the sensors based on the maximum boom length and maximum tip 

height.  

 

Figure 5-3: Parameters for defining sensor position and orientation 

The horizontal distance between the sensor and the base of the boom L should satisfy the 

following condition: 

L ≥ Hs·tan(90º - β + θ) + Lb                            (5-1) 

where Lb can be simplified as the maximum boom length Lmax when the boom is almost 

horizontal. The height of the sensor Hs should meet the requirement of covering the 

height of the boom tip Hb:  

Hs + (L-Lb) /tan(90º -β - θ) ≥ Hb                                                           (5-2) 

Hb is based on the maximum angle to the ground of the boom according to the working 

range of the crane. In an extreme scenario, Hb can be replaced by the maximum height of 

the boom Hmax. Based on these conditions, a set of L, Hs and θ can be defined to improve 

the coverage of the sensors. In practice, the system setting will start by assuming the 

initial values for Hs and θ and the value of L will be the larger of the two values 

90°-β  

90°-β  

β 

β 

Hs 

L  

Hb  

Lb  

θ 

Ls  

Field of 

View 
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calculated from inequalities (5-1) and (5-2). Furthermore, the size of a cell should satisfy 

the conditions of the maximum range of the UWB system and the length of the data and 

timing cables used for networking between the sensors as explained in Section 3.4. 

If information about the crane working range is not available, the maximum coverage 

above the sensor is needed, and therefore the upper line of sight should be vertical. The 

simulation software (Autodesk Softimage) used for crane path planning can be also used 

to visually check the sensor coverage with respect to tags attached to the crane before the 

actual setting of the UWB system.Figure 5-4 shows an example of a test setting for 

monitoring a crane. This setting includes the locations of the sensors and the tags with 

respect to an accurate model of the crane. The lines, connecting the sensors to the tags 

attached to the boom and the hook, are used for visibility checking.  

 

 

Figure 5-4: Example of a test setting for monitoring a crane 

5.3 UWB DATA PROCESSING 

Raw location data captured from the UWB system cannot be directly used to compute the 

pose of the monitored object they are attached to for the following reasons:  
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(1) Lack of synchronization: The data from different tags are not synchronized. As 

explained in Section 3.4, the UWB radio signals are emitted from each tag based on a 

precise schedule where only one tag can emit a signal at any point in time in a 

predefined cycle. To approximately synchronize the locations of different tags, we 

define a small time period T based on the actual update rate r of a tag. Assuming t = 

1/r, T should be equal to t or a multiplication of t big enough to capture at least one 

reading of each tag in the UWB cell and small enough for near real-time applications 

(e.g., if r is high enough and the application can tolerate a delay of δt =2t, then T 

could be set to 2t). If more than one location is captured for the same tag within T, 

these locations can be averaged to obtain a single reading for that period.  Figure 5-5 

shows the near real-time location data processing of two tags (Tagi and Tagi') in the 

simplified case of tags allowed to move only on the x axis, and where t = 1/r and T = 

2t. Figure 5-5(a) shows the raw traces where points  
 

  
 and  

  

  
represent the locations 

of Tagi and Tagi’ at time tj, respectively. Figure 5-5(b) shows the processed traces 

where points   
   and    

  represent the average locations of Tagi and Tagi’ at time Tk, 

respectively. As shown in the upper-left part of Figure 5-5(a), there is a shift in the 

timing of the readings of the two tags because of the scheduling of the UWB system. 

(2) Accuracy errors: Each tag location has certain errors because of radio reflections, 

etc. These accuracy errors could be filtered in two stages: First, they could be filtered 

from raw locations captured by the UWB system based on the data of a single tag 

before synchronization. Second, they could be filtered after synchronization by 

exploiting geometric constraints between the tags attached to the same object. 
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Figure 5-5: Near real-time data processing of two tags 

 

Filtering based on the data of a single tag can be done by using one of the following 

methods: (a) Applying the filters provided by the UWB system during trilateration (as 

discussed in Section 3.4); (b) Checking if the reading of a tag location is outside the 
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monitored area or outside the expected height range of the object to which it is 

attached; (c) Checking the patterns of movement where a location does not satisfy 

certain heuristic rules. For example, assume that the maximum expected velocity vmax 

of an object is known and that the measured velocity based on the distance between 

the past captured location  
 

    
 of Tagi at time tj-1 and the new one   

 

  
 is out of range. 

These conditions indicate that   
 

  
 has an accuracy error and should be eliminated. 

This elimination results in a missing-point error that is processed as explained below. 

Other heuristic rules can be applied based on the specific constraints of the movement 

of tags, such as the acceleration of movement.  

Filtering based on comparing data from different tags can be achieved by applying 

geometric constraints between multiple tags attached to a solid object at known 

locations. These constraints can be used to check the accuracy of the location data. 

For example, in Figure 5-1(b), the calculated distance between the two tags attached 

to the top and bottom sides of a section of the boom should be almost equal to the 

actual distance. Figure 5-6 shows a two dimensional example of the actual paths of 

two tags (Tagi and Tagi') attached to the same object. These paths are parallel with a 

fixed distance     . The figure also shows the traces based on the locations of tags at 

time Tk after averaging. It is noticed that all points   
  and    

  have a certain number 

of accuracy errors. However, the distances between the traces     
  are expected to be 

within the range of [     - 2ε,      + 2 ε], where ε is the nominal accuracy of the UWB 

system (e.g., 30 cm). If     
   is outside this range, then   

  and/or    
   should be 

checked for possible elimination. For example, in Figure 5-6, if     
   is out of range 
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compared with      , and    
   has been calculated based on an extrapolated point, there 

is a higher probability that     
   should be eliminated. 

 

 

Figure 5-6: Example of using geometric constraints to detect errors 

(3) Missing-point errors: There can be some missing data because of lack of visibility 

(i.e., the tag is not detected during a certain period tj because of the lack of a direct 

line of sight to some sensors) or because of the filtering of data. Extrapolation can be 

used after filtering to fill in the missing points for one or more periods assuming that 

the object is moving with a known velocity. However, this can affect the quality of 

the location data if several points are missing in a row. Another type of 

extrapolation/interpolation can be carried out based on a geometric relationship 

between the tags attached to the same object. For example, in Figure 5-1(a), if the 

locations of the tags     
  and     

  at the upper side of cross sections S
2
 and S

3
 are 

known at time tj, the location of     
  in cross section S

1
 can be calculated by 

extrapolation. As an example of missing-point errors, Figure 5-5 shows that an 

accuracy error occurred in t3, where the velocity of Tagi  exceeded the maximum 

expected velocity. Extrapolation is used to calculate a new location     
  for Tagi  
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based on its previous locations and on the assumption that the tag is moving with the 

same velocity. Another missing-point error occurred in t5 for Tagi. Extrapolation is 

also used here to calculate a new location    
   for Tagi at time t5. 

Based on the discussion above, the steps shown in Figure 5-7 can be applied to improve 

data quality and compute the pose of an object in near real time: (1) The tag IDs are 

identified and grouped according to their geometric relationship with respect to the 

objects they are attached to (e.g., tags attached to three sections of the boom). T is defined 

according to the updated rate for the purpose of synchronization; (2) Readings of each tag 

are filtered within time tj according to the methods described in Accuracy Errors; (3) 

Missing data for each tag caused by missing-point errors or accuracy errors are calculated 

using extrapolation according to the tag’s previous locations; (4) Tag locations are 

averaged during Tk to synchronize different tags; (5) Errors are filtered according to 

geometric constraints of multiple tags; (6) After filtering, missing data can be calculated 

based on extrapolation/interpolation of the data of other tags either in the same group or 

in different groups as explained above; (7) Locations of multiple tags in the same group 

are averaged (e.g., averaging the locations of the tags shown in Figure 5-1(b) to get the 

center point of the cross section); and (8) The pose of the object is calculated according to 

the positions of the tags attached to it. For example, the pose of the boom can be found 

according to the calculated center points on the axis of the boom. This pose is used for 

near real-time motion re-planning as explained in Section 3.3. 
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(4) Synchronize data by 

averaging data within Tk  

(7) Average locations 

of multiple tags in the 

same group 

(1) Identify tag IDs on 

different components 

(2) Filter readings for 

each tag based on 

heuristics

(8) Compute pose of 

object

(3) Calculate missing 

data  for each tag 

using extrapolation  

(5) Filter errors  based 

on geometric constraints 

of multiple tags 

(6) Calculate  missing 

data based on 

geometric constraints

 

Figure 5-7: Steps of data processing 

5.4 UWB TESTS 

In the present research, Ubisense system is used to evaluate the performance of the UWB 

technology. The system consists of four sensors and 100 tags with an academic price of 

CA$20,000. A sensor cell is created using these four sensors and several tags. The power 

of the sensors is supplied by a Power over Ethernet (PoE) switch. Timing cables are used 

to connect the sensors to synchronize the signals from a tag to different sensors. The 

sensors are calibrated using a tag as a reference point with known position. Specifications 

of sensors can be found in Appendix C. Tags are attached to the objects to be tracked. 

There are two types of tags available, which are slim tags and compact tags. Slim tags are 

designed to be worn by a person. Compact tags are specially designed for use in harsh 

industrial environments and include several advanced features: a Light Emitting Diode 

(LED) for easy identification, a motion detector to instantly activate a stationary tag, and 

a push button to trigger events. Compact tags are selected in the present research because 

of their omni-directional antennas and rugged design, which make them more suitable for 

the tests with cranes. Figure 5-8 shows the two types of tags. The specifications for 

compact tags can be found in Appendix D.  
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(a) Compact tag                              (b) Slim tag 

Figure 5-8: UWB Tags (Ubisense, 2010) 

The sensor cell network should be installed and calibrated properly following the 

procedures defined in Appendix E. A work sheet for organizing the data of the system 

calibration is shown in Appendix F, where the data of the system setting are recorded. 

Location data can be recorded using either a Cell Monitor File (.xcm) or an application 

called Ubisense Logger, which records the local coordinates (3D) of the target tags. The 

samples of the Cell Monitor file and the Logger file are shown in Appendices G and H, 

respectively. The initial cell update rate (R) was 40 Hz when the UWB system was 

purchased in 2008. Later on, it was upgraded to 160 Hz to meet the requirements of this 

research, for which a high update rate is needed.  

5.4.1 LABORATORY TESTS 

The laboratory tests were designed for the preliminary testing of the sensors’ networking 

and collecting of near real-time data. Figure 5-9 shows the floor plan of the lab and the 

connections between four sensors. The solid lines show the data cables connecting the 

sensors with the PoE switch, whereas the dotted lines show the timing cables. Sensor-1 

acts as the master sensor. 
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A test was applied to a scaled model of a tower crane to simulate a lifting task with tags 

attached to it. Figure 5-10 shows the tower crane model with one tag attached to the hook 

and two tags attached to the counterweight. A box was placed near the crane to represent 

an obstacle. A remote controller was used to swing the boom of the crane and to lift the 

hook (two DoFs), to avoid collision with the obstacle. 

 

 

Figure 5-9: Lab settings 

Sensor-4  Sensor -3  

 

Sensor-2 Sensor-1 (Master) 

Switch 

X 

Y 

(3.68, 7.11, 2.76) (0.16, 7.11, 2.73) 

Timing Cable Data Cable Sensor with orientation (yaw) 

 

(3.95, 0.2, 2.76) (0.16, 0.23, 2.75) 

4.16 m 

7.32 m 

(Coordinates are in meters) 
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Figure 5-10: Tower crane model with tags 

Raw data were collected using the Logger including the tag ID, date, time, and the x, y, z 

coordinates. Data were collected for about 30 seconds with a tag update rate of 9 Hz and 

a cell update rate of 40 Hz. Figure 5-11 shows a screen shot of the visualization 

environment of Softimage, where the path of the hook is shown. The path is smoothed by 

applying a curve fitting function. 

 

Figure 5-11: Path trace of the tower crane hook 

Tags 
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5.4.2 INDOOR TEST 

On April 30, 2009, an indoor test was carried out on the 7
th

 floor of the new building of 

the John Molson School of Business of Concordia University, where the installation of 

heating, ventilating, and air conditioning (HVAC) ducts was being carried out. The 

objective of this test was to ensure that the UWB system can be used in an actual 

construction environment to track workers and equipment. The dimensions and the layout 

of the ducts are shown in Figure 5-12. The sensor cell was designed as shown in Figure 

5-13. Four sensors were fixed at four corners using tripods, and they are connected with 

data cables and timing cables. 

 

Figure 5-12: Dimensions of the monitored area 
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Figure 5-13: Indoor setting of sensor cell 

Two workers (Worker-1 and Worker-2) and a scissor lift were monitored with six, four, 

and eight tags, respectively. Figure 5-14 shows the locations of the tags (within the 

circles). For a certain period of time, the two workers were using two scissor lifts, and 

they were working on different tasks at two work zones very near each other (Figure 

5-15). They had to move carefully to avoid collision. 

Location data were collected during two periods of 38 min (from 11:50 to 12:28) and 57 

min (from 12:40 to 13:37). In addition, a video was taken to record the workers’ 

movements, which helps in analyzing the data collected from the UWB system. For 

example, Worker-1 moved along a narrow work zone while doing the measurements and 

the marking on the floor, as shown in Figure 5-16 with pictures extracted from the video. 

At time T1 Worker-1 was reviewing plans, at T2 he was on the scissor lift and was 

working near the ceiling, at T3 he was measuring the distance to the wall, and at T4 he 

started moving to another room. 

Sensors with orientation (yaw) Data cable Timing cable 
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(0.76, 2.51, 1.57) 

Switch 

Sensor-3 

(9.78, 2.34, 1.6) 
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(Master) 

(0.91, 7.64, 1.59) 
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(Coordinates are in meters) 
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Figure 5-14: Tags attached to workers and scissor lift 

 

 

Figure 5-15: Two scissor lifts working in the same area 

 

(a) Worker-1 (b) Worker-2 and scissor lift 
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Figure 5-16: Trace of worker-1 

 

Since safety is the main concern of the present research, the collected data were analyzed 

to check whether the operation regulations were followed properly. For example, to 

prevent a tip-over, it is not allowed to travel to a task location with the scissor lift in an 

elevated position (SSPC, 2009). With the location data of the tags attached to the scissor 

lift, it was possible to identify the height of the scissor lift and its velocity at any time. 

Figure 5-17 shows the traces of two tags attached to two corners of the scissor lift during 

15 min. From this figure, it can be seen that there were two main work zones in which the 

scissor lift was working, and, at a certain time, it moved from one work zone to the other. 

The traces between the two work zones show the movement of the equipment. The 

distance between the two traces is approximately equal to the width of the scissor lift. 

T1 T2 T3 T4 
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The average speed was 0.27 m/s and the average height of these tags was about 1.46 m 

during the movement, which means the scissor lift was not in an elevated position while 

moving.  

 

Figure 5-17: Traces showing two tags attached to the scissor lift 

5.4.3 OUTDOOR TESTS 

The objectives of the outdoor tests were: (1) to investigate the different aspects of the 

proposed methods for setting the UWB system as discussed in Section 5.2, mainly the 

setting of multiple tags on a crane and the selection of the number of tags and their 

update rates to satisfy the requirements of accuracy, visibility, scalability and real-time 

tracking; and (2) to calculate the crane boom poses in near real time according to the data 

processing approach discussed in Section 5.3. Before testing in an outdoor environment, 

different scenarios for studying the visibility conditions were designed for locating the 

sensors and tags on site using Autodesk Softimage. Four sensors were installed around 

the crane to maximize the probability that more tags on the boom can get line of sight to 

at least two sensors. The following three cases were considered: (1) Four sensors facing 

Work zone 1 

Work zone 2 
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the front of the crane; (2) Four sensors forming a rectangular shape around the crane; and 

(3) One sensor facing the back of the crane, and three sensors facing its front, as shown in 

Figure 5-18. The field of view of each sensor was visualized; therefore, different 

configuration scenarios were simulated and tested to produce more reliable results. 

 

Figure 5-18: Setting of sensor locations 

(a) Four sensors facing the front of the crane 

(b) Four sensors forming a rectangular shape 

(c) One sensor facing the back of the crane and 

three sensors facing its front 
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First Outdoor Test 

The first outdoor test was done on the yard of a crane company on December 12, 2008, 

with the temperature at - 4ºC. Figure 5-19 shows the location of the sensors following the 

design in Figure 5-18(c). Tags were attached to the boom at eight locations and to the 

hook at two locations. Figure 5-20 shows some of these tags. 

 

Figure 5-19: Locations of sensors 

 

Figure 5-20: Tags attached to the boom and the hook                  

The result of the test was not satisfactory due to calibration problems. Furthermore, 

because of the cold weather, it was difficult to fix tags to the boom using the adhesive 

pads provided by Ubisense. Although this first outdoor test was not successful, many 

lessons were learned, such as the need for quick and secure magnetic mounts for the tags. 

Tags 

Sensors 
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Second Outdoor Test 

The second test was done on the yard of the same crane company on December 4, 2009, 

using a TMS300 crane (GUAY, 2010). The UWB system was upgraded from the low 

update rate (40 Hz) to a high update rate (160 Hz) to better fit near real-time safety 

requirements. The test was designed in detail, including the sensors’ locations, tags’ 

locations, cables’ connections, system calibration, data filtering, and task description. 

Furthermore, several indoor tests were done to test the stability of the UWB system, the 

influence of the magnetic mounts of the tags, etc.  

Setting of sensors 

In this outdoor test, where the focus is on the crane, only four sensors at the ground 

elevation are deployed by adjusting the pitch angle to capture the boom movement, while 

satisfying the inequalities described in Subsection 5.2.2. Before going to the site, the 

UWB system setting was investigated to fulfill the requirements described in Section 3.4. 

The antenna pattern of the sensor is α = ±90° in the azimuth and β = ±50° in the 

elevation. The yaw angles of the sensors were adjusted to face the center of the area. The 

pitch angle and height of the sensors were approximately set to θ = 20° and Hs = 1.5 m, 

respectively. The maximum boom length of the crane is 110 ft (33.5 m), and the 

minimum and maximum angles to the ground of the boom are 10° and 80°, respectively. 

Based on the working range of the crane, when the boom is fully extended and reaches 

the highest point, the corresponding Hmax = 120 ft (36.58 m), and Lb = 20 ft (6.10 m). 

According to inequality (5-1), and taking Lb = 110 ft (33.5 m)  L should be greater than 

36.1 m. According to inequality (5-2), to cover the maximum height of the boom tip, L 
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should be greater than 18.86 m. Using the virtual crane model in Softimage, it was 

possible to verify that the tag at the tip of the boom was within the FoV of the sensors.  

At the site of the test, the actual pitch angles of the sensors were in the range of 20° to 

26°, and the heights of the sensors were in the range of 1.45 m to 1.67 m. Due to the 

limitations of the yard dimensions, which are approximately 18 m by 22.5 m, the crane is 

positioned in a way to make L approximately 21 m. However, this does not satisfy 

inequality (5-1). Therefore, the operator of the crane was informed to limit the extension 

of the boom when lifting the object. Figure 5-21 shows the setting of the sensor cell for 

this test with the timing and data cables and the locations and yaw orientations of the four 

sensors. Figure 5-22 shows part of the site with the crane and one sensor (Sensor-2). A 

car was positioned as an obstacle on the moving path of the crane. 

 

Figure 5-21: Outdoor setting of sensor cell 

Timing Cable 

(10.16, 12.1, 1.57) 

Sensor-4  Sensor -1 (Master) 

 

Sensor-2 Sensor-3 

Switch 

 

Reference point 

1 

Reference 

 point 2 

X 

Y 

Data Cable Sensor with orientation (yaw) 

(-8.52, -10.54, 1.61) (9.07, -10.31, 1.45) 

(-9.36, 12.47, 1.67) 

(Coordinates are in meters) 
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Figure 5-22: Crane with obstacle and one sensor 

Setting of tags 

Twenty-two tags were attached to the crane’s body, with three sets of tags (12 tags) 

attached to the boom, as shown in Figure 5-1. Other tags were attached to the outriggers, 

operator cab, hook, and lifted object. Moreover, four tags were attached to the hardhats of 

two workers (two tags on each hardhat) to track their movements on site. Figure 5-23 

shows the tags attached to different objects. Figure 5-24 shows the pictures of tags     
 , 

    
 , and     

  near the end of the first part of the boom. 

To test the scalability of the UWB system, which has a high cell update rate of 160 Hz, 

we kept 52 additional tags in the same area so that the total number of tags in the cell was 

74. According to the inequality (3-3) introduced in Section 3.4, the time slot interval 

should be set to 128, where the update rate is 1.2 Hz for each tag according to inequality 

(3-4). According to Table 3-2, the nominal update rate assigned by the system to each tag 

should be in the range of 1.2 to 2.4 Hz. By observing the collected data, it was found that 

the actual update rate was about 2 Hz. Therefore, in this test, the syncronization of 

multiple tags was based on t = 500 ms. An information data filter provided by Ubisese 

Sensor-2 
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was used to improve accuracy with a motion model of position and Gaussian noise on 

position (Ubisense Manual, 2009). 

 

Figure 5-23: Tags attached to different objects 

 

 

 
Figure 5-24: Tag position of cross section S

2
 on the boom 

Tag2
2 

 

Tagi
2 

 

S3 

S1 

S2 

Tag2
1 

 

Tag2
4 

 

Tagi
4 

 

Tagi
1 

Tagi
3 

 

(d)  Hardhat                     

(a)  Boom tip                     (c)  Lifted object                     (b)  Hook                     

(e)  Tag with magnetic attachment                     
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Task description 

The total duration for the outdoor test was about two hours, including the system 

configuration, measurement, calibration, moving the crane into the monitored area, and 

collecting data during the crane operation. The task given to the crane operator was to lift 

an object from one place to another by swinging and raising up the boom while avoiding 

the car on the path (Figure 5-22).  

 

Figure 5-25: Part of the raw data collected 

During the lifting, the length of the boom and the length of the cable were fixed. A part of 

the raw data collected in the test is shown as traces in Figure 5-25(b). The tags shown in 

three cross sections are     
 ,     

 ,     
 ,     

  and     
 .  The data analysis of this 

test is discussed in the next section. 

 

 

Traces of tags on hook 

Right outrigger 

First boom section 

   Boom tip 

Traces of tags of S2 

Traces of tags of S3 

Left outrigger 

Traces of tags of S1 

(a) Initial crane pose (b) Crane poses based on raw data (c) Final crane pose 
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5.5 DATA ANALYSIS OF THE SECOND OUTDOOR TEST 

The tags attached to the top of the boom had very good visibility and better accuracy (less 

noisy data) compared with those attached to the bottom and the sides of the boom, which 

had a large number of missing points and noisy data. The raw UWB data were processed 

following the steps explained in Figure 5-7 in order to get the poses of the boom. 

However, because of the low update rate (2 Hz) and the large amount of missing data, 

some steps were not always applicable (e.g., averaging or extrapolation at a certain time 

period). Nevertheless, the redundancy provided by having multiple tags on the boom 

made it possible to calculate the poses of the boom based on the traces as shown in 

Figure 5-31.  

5.5.1 VISIBILITY ANALYSIS 

As mentioned before, twenty-two tags were attached to the crane and four tags were 

attached to the hardhats of workers. Within the recording time of 36 seconds, which was 

the duration of the lifting task, the tags obtained different numbers of updates, as shown 

in Table 5-1. The measured update rate r' is calculated by dividing the number of updates 

of each tag by 36 seconds. Due to missing data, some tags have lower update rates than 

other tags. From this table, it can be seen that tags on the upper and bottom sides of the 

boom had better visibility than the ones attached to the side surfaces. As shown in Figure 

5-24, tags attached to the side with a truss structure (i.e.,     
 ,     

 , and     
 ) 

received fewer updates compared to other tags in the same cross section. This could be 

explained by radio signal reflections on the truss. Tags attached to the cab also showed 

bad visibility because the rotation of the cab could not guarantee direct line-of-sight from 

two sensors. All the four tags attached to the hook had excellent visibility. Tags attached 
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to the lift object had bad visibility that may be explained by the lack of direct line of 

sight. One tag attached to the left outrigger had good visibility. 

Table 5-1: Tag updates 

Tag Location  Tag name Number of updates 

in 36 seconds 

Measured update 

rate r' (Hz) 

Boom S
1
 

 
    

  61 1.7 

    
  37  1.0 

    
  73  2.0 

    
  24 0.7 

S
2
     

  74 2.1 

    
  50 1.4 

    
  70 1.9 

    
  24 0.7 

S
3
     

  74 2.1 

    
  18 0.5 

    
  42 1.2 

    
  20 0.6 

Cab C1 12 0.3 

C2 39 1.1 

Hook H1 74 2.1 

H2 74 2.1 

H3 73 2.0 

H4 73 2.0 

Lift L1 27 0.8 

L2 20 0.6 

Outrigger right Or 34 0.9 

left Ol 74 2.1 

Hardhat-1 H
1

r 50 1.4 

H
1

l 24 0.7 

Hardhat-2 H
2

r 72 2.0 

H
2

l 61 1.7 

  

5.5.2 ACCURACY ANALYSIS 

The location data of two static tags on the two outriggers were analysed to reveal the 

accuracy of the system based on the measured coordinates of these tags. Table 5-2 shows 

the mean difference and the standard deviations in three directions of these data. The 
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accuracy of the data collected for these two tags is around 25 cm. The tag on the left 

outrigger has more readings than the tag on the right outrigger (74 vs. 34 readings, as 

shown in Table 5-1), thereby contributing to the more accurate results of the left tag. 

Table 5-2: Mean difference and standard deviation in three directions for static tags 

Tag 

name 

Mean 

difference 

in X (m) 

Mean 

difference 

in Y (m) 

Mean 

difference 

in Z (m) 

Standard 

deviation 

in X (m) 

Standard 

deviation 

in Y (m) 

Standard 

deviation 

in Z (m) 

O
l
 -0.129 -0.089 -0.200 0.2084 0.1976 0.2787 

O
r
 -0.212 -0.085 0.248 0.1917 0.1807 0.2060 

 

5.5.3 REMOVING ERRORS AND FILLING IN THE MISSING DATA 

Example of filtering readings of tags based on heuristics 

Based on the steps defined in Figure 5-7, errors have been identified and eliminated in 

near real-time. After identifying tag IDs on different crane components, the heuristic of 

the maximum expected velocity vmax can be set for specific tags. Based on our 

observation, the average velocity of tags in cross section S
2 

of the boom is about 0.5 m/s. 

By adding the UWB system error, which is about ±30 cm in all readings, vmax used to 

filter the UWB readings in near real time for tags in S
2
 is set to 1.5 m/s. Taking     

  as 

an example, there is a sudden movement in the Z direction at t24, as shown in Table 5-3 

and Figure 5-26, and the velocity of     
  is calculated as 4.53 m/s, which by far exceeds 

vmax. Therefore, the reading at t24 is rejected and replaced by a location calculated based 

on extrapolation according to the Δ value in each dimension (X, Y, and Z). The purpose 

of calculating the difference in each dimension individually is that the accuracies in these 

three dimensions are different, and based on our observation, the accuracy in the Z 



   

 

144 

 

dimension is lower than those in the X and Y dimensions. The average Δ value (µΔ) and 

the standard deviation (σΔ) are calculated according to previous data history during the 

last 5 seconds. Only points with a Δ in any of the X, Y, Z dimensions that is out of the 

range of [µΔ - 2ζΔ, µΔ + 2ζΔ] are corrected in those specific dimensions using 

extrapolation from two previous points. This range contains 95.44% of the data assuming 

that the differences follow a normal distribution (Allen, 2006). As shown in Table 5-3, 

the Δ values in the Y and Z dimensions are out of range at t24, where Δy= 0.21 m, Δz= 

2.13 m, and out of the ranges of [-0.073 m, 0.059 m] and [-0.184 m, 0.220 m], 

respectively, where µΔy= -0.007 m, µΔz= 0.018 m, ζΔy= 0.033 m, ζΔz= 0.101 m (these 

values are at t23). Extrapolation is done based on the location data at t22 and t23 for those 

two dimensions (Y and Z). It should be noticed that the information filter used for all the 

tags in the Ubisense system always predicts location data based on previous readings; 

therefore, the data collected for the next time periods (from t25 to t31) are all affected by 

the prediction based on errors, and they have to be recalculated by extrapolation similar 

to the point at t24 to avoid exceeding vmax. This extrapolation results in creating new data 

as shown in the highlighted part in Table 5-3. The results are shown in Figure 5-26, 

where the raw data and the processed data are plotted. The big jump in the Z dimension is 

eliminated.   
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Figure 5-26: Comparison of traces of     
  in X-Z plane before and after correction 

Read location data for tj 
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Figure 5-27: Flowchart of near real-time data processing for single tags 
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It should be clarified that by chance the movement of     
  during the period between t24 

and t32 is almost parallel to the X axis and to the X-Y plane, as can be seen in Figure 

5-31; therefore, after correction, the Δy and Δz values are close to 0.  A flowchart is shown 

in Figure 5-27 to summarize the near real-time data processing for single tags. 

 

Example of calculating missing data based on geometric constraints 

The same procedure is applied to     
  as shown in Figure 5-28. However, in some 

cases, missing data occur more than two consecutive times because of radio interference, 

for example, between t41 and t57, as shown in Figure 5-28. In these cases, repeating 

extrapolation according to the history of the tag itself may increase the error, which could 

be detected by checking geometric constraints. As described in Step 5 in Section 5.3, 

multiple tags are used to filter errors and fill in the missing data based on geometric 

constraints of the object. The distance between     
  and     

  in each time period t is 

calculated to check if it is within the range of [     - 2ε,      + 2 ε], where      is 1.6 m 

and ε is 30 cm, resulting in a range of [1.0 m, 2.2 m]. This step has been applied starting 

from t42, where extrapolation is applied four times in a row to fill in the missing data of 

    
 . However, at t46, the distance between     

  and     
  is 2.44 m, which is out of 

range. Therefore, the location of     
  calculated according to extrapolation is not 

acceptable. In this case, according to Step 6, the data of     
  and     

  are used to 

calculate the missing data of     
  between t46 and t57 based on the known distances 

from     
  to     

  and from     
  to     

  (3.9 m and 8.4 m, respectively), as shown in 

Figure 5-31. Figure 5-28 shows the extrapolation based on the history of     
  from t42 to 
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t44 and the interpolation based on geometry according to the other two tags (    
  and 

    
 ) from t46 to t56. From t57 the system is able to capture the data for     

  again. 

 

 

Figure 5-28: Trace of     
  based on extrapolation of its history and interpolation of 

other two tags 

Other observations based on data processing 

The data of all tags are assumed to be almost synchronized (step 4 in Figure 5-7). 

However, it should be noticed that in extrapolation based on geometry using two tags on 

the boom, the small time gaps between different tags can cause problems when the 

update rate of tags is not high enough. For example, in this test, for tags attached to the 

upper side of the boom, which are     
 ,     

  and     
 , in each time period t, based on 

the automatic scheduling of the Ubisense system, the data of     
 ,     

 , and     
  

were captured in that order with fixed time difference of 119 ms and 74 ms, respectively.  

t41 

t45 

t46 

t57 t74 

t2 
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Figure 5-29: Conceptual figure of extrapolation errors 

 

 
Figure 5-30: Data processed in real time showing the traces of three tags at different 

time 

As shown in Figure 5-29(a), a point with a large error was captured for     
  at time 

t+119 ms; therefore, extrapolation based on     
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position of     
 . The black circles are the location data captured by the system, whereas 

the solid white circles are the real locations of the tags at specific times, and the dotted 

circles are the ones calculated according to extrapolation. This figure also shows the 

traces of     
 ,     

  and     
  and the boom poses based on extrapolation as explained 

above. Notice that we are ignoring the accuracy errors for     
  and     

  in Figure 

5-29(a) and only for     
  in Figure 5-29(b). However, because of the small time gap and 

the relatively big distance between these three tags (around 12.3 m between     
  and 

    
 , as shown in Figure 5-31) during the lifting task, a big offset of the location of 

    
  is expected when applying extrapolation. Moreover, due to the static information 

filter of the Ubisense system used in this test (with Gaussian noise on position), small 

movements of a tag are ignored when predicting the next location of the tag. This 

filtering results in a cluster of almost overlapping points. Using these data for 

extrapolation may cause a backward movement of     
 , as shown in Figure 5-29(b).  

As an illustration of this problem, the trace for     
  is shown in Figure 5-30, which 

gives the data processed in real time. Figure 5-30(b) focuses on the zigzag shape of the 

trace and the crossing of the boom poses at times t5 and t10, and at times t20 and t25. Based 

on this observation, the continuous extrapolation for     
  based on the other two tags 

may increase errors.    

5.5.4 CALCULATING THE POSES OF THE BOOM 

As described in Step 7 in Section 5.3, averaging the data of multiple tags in the same 

cross section should be applied to get the center points of these sections, thereby defining 

the axis of the boom. A bounding shape (e.g., a cylinder) to cover these three points at 
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each time period can be created with a suitable buffer according to the cross section 

dimensions of the boom.  

This method assumes that the quality of the data of each tag is equal; however, based on 

the actual collected data, the method of calculating the poses of the boom should be 

adapted so as to preserve the data of high quality. Based on our observation, tags on the 

top side of the boom have better quality; therefore, the traces of these tags (    
 ) are 

used to create the poses of the boom. As shown in Figure 5-31, the three traces show the 

poses of the boom at different times.  

 

Figure 5-31: Boom poses at different time periods 

5.5.5 CALCULATING THE POSES OF THE BOOM USING POST 

PROCESSING 

Although near real-time data processing is applied to remove errors and fill in missing 

data, in order to investigate the quality of the UWB data, post processing has been 
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applied to take advantage of the whole data set where interpolation can be used to 

produce data with better quality. Figure 5-32 shows an example of correcting the errors 

of     
 , which has more errors because it is attached at the base of the boom where there 

are more radio reflection problems. In the X-Y plane, the trace of     
   should follow a 

curve according to the movement of the boom; however, the raw data have relatively 

large errors. An improvement can be seen after removing errors by applying interpolation 

based on history and extrapolation based on     
  and     

 . In addition, the trace of  

    
  is post processed to remove the jaggedness due to the missing data. Although this 

post processing of     
  is unnecessary because the pose of the boom can be directly 

drawn according to     
  and     

 , the purpose of applying post processing is to 

compare the poses based on near real-time processing and post processing. Figure 5-33 

shows the traces and the boom poses after post processing.  

 

 

Figure 5-32: Comparison of traces of     
   in X-Y plane before and after correction 

using post processing 

Eliminated errors 
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Figure 5-33: Boom poses at different time periods after post processing 

5.6 SUMMARY AND CONCLUSIONS 

The present chapter has discussed the use of UWB RTLS in construction sites to 

calculate crane boom poses in near real time. System settings for satisfying the 

requirements defined in Section 3.3 have been discussed in detail. Indoor and outdoor 

tests were undertaken to gain experience and to evaluate system performance. Data 

collected from an outdoor crane test were analyzed in detail to investigate how to 

improve the UWB system’s usability when applied in construction, especially to improve 

crane safety. 

Our observations from the UWB tests are the following: (1) The number of tags in the 

monitored area should be kept smaller than the maximum number given in inequality (3-

4); otherwise, not only more sensors, but also more cells should be used to achieve a 

better update rate by dividing the monitored area into smaller areas sensed by different 
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groups of sensors. (2) Regarding the visibility, tags should be attached to the upper and 

bottom sides of the boom to obtain a better visibility and better data quality. Attaching 

one tag to the hook is enough. More tags should be attached to the lift object to avoid 

obstruction of radio signals, and it is better to attach the tags to the top surface of the lift 

object. Tags should be attached to the top of the operator’s cab to achieve better 

visibility. (3) Better visibility and an adequate number of tags result in better accuracy. 

Furthermore, appropriate filtering improves accuracy as can be seen from the results of 

the indoor test and the second outdoor test. 

The results of the tests showed a good potential for the use of UWB RTLS on 

construction sites to reduce safety risks. However, some limitations exist. For example, 

near real-time data processing has a limitation when applying linear interpolation and 

extrapolation based on two points only, which may not fit the accuracy requirement. 

Future improvement can be achieved by using curve fitting or other methods while taking 

more points into account. The filter embedded in the system is not easy to control, and a 

Kalman filter combined with geometric constraints (Arras et al., 2003) is a better 

solution.  

To conclude, our contributions related to using UWB RTLS in construction are the 

following: (1) The setting method of the UWB system to satisfy the requirements of 

accuracy, visibility, scalability and real-time by deciding the locations and orientations of 

sensors, and the number and locations of tags; (2) Defining a method of location data 

processing to improve data quality by filtering errors based on heuristic rules, by filling 

in missing data based on historic data, and by applying geometric constraints; and (3) 

Extensive testing of the UWB system in the context of crane safety where it was 
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demonstrated that the poses of the crane can be calculated in near real time based on the 

proposed data processing method.  
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CHAPTER 6 PROTOTYPE SYSTEM DEVELOPMENT AND 

INTEGRATED TESTING 

 

 

 

6.1 INTRODUCTION 

Although the implementation of a fully integrated system is beyond the scope of the 

present research, a prototype system is developed to test the proposed approach. The 

prototype system integrates the motion planning and re-planning algorithms with the 

UWB system and some basic functions of the agent system. Autodesk Softimage is used 

to take advantage of its 3D visualization and animation capabilities. Motion Strategy 

Library (2003), which includes variations of RRT algorithms, is used as a base library for 

developing an integrated motion planning solution in Softimage. Scaled crane models 

with attached tags are controlled wirelessly by executing the generated motion plans. 

Three integrated tests are undertaken to investigate the applicability and the accuracy of 

the prototype system.   

6.2 SELECTION OF DEVELOPMENT TOOLS 

Several development tools are reviewed and compared based on their capability, 

compatibility and extensibility.  Table 6-1 shows a summary of the functionalities 

provided by some software tools that can be used in the present research.  

MATLAB (Mathworks, 2010) is a powerful interactive environment that enables users to 

perform computationally intensive tasks. MATLAB allows easy matrix manipulation, 

plotting of functions and data, implementation of algorithms, and interfacing with 

programs in other languages. Several toolboxes are available, such as the RRT toolbox 
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for motion planning algorithms (Paul and Clifton, 2008), the VR toolbox for virtual 

reality, and the V-Collide toolbox for collision detection. However, the source codes of 

these tools have been written by different people for different purposes. Integrating these 

separate pieces into a well-organized system is time consuming. Therefore, MATLAB 

has been used in the present research as the tool for the preliminary data analysis 

discussed in Chapter 5. 

Table 6-1: Summary of the functionalities of software tools  

               Software 

Functionality 
MATLAB Autodesk Softimage Ubisense Software 

Visualization VR toolbox Available Available 

Motion planning RRT toolbox MSL API  Not available 

Collision detection V-Collide source 

code 

Available Available 

Agent development Robotics Toolbox Behavior tool Not available 

Tracking Not available Not available Available 

 

Autodesk Softimage (2010) integrates modeling, animation, simulation, compositing, and 

rendering into a single, seamless environment. The modeling tools are designed for 

creating and editing seamless animated models that can be customized by programming. 

Therefore, Softimage has been selected as the main development tool in this research to 

take advantage of its modeling and visualization functions. Other software tools are 

linked with Softimage using its plug-in mechanism. Figure 6-1 shows a 3D simulation 

environment for multiple cranes developed in Softimage for this research.  

Since the RRT algorithm family has been selected in the proposed approach, we have 

explored some tools for its implementation within Softimage. Motion Strategy Library 

(MSL) (2003) Application Programming Interface (API) was selected to be integrated 

into Softimage because it has several variations of RRT including the basic RRT and 
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RRT-Connect-Connect and a built-in collision detection algorithm (Proximity Query 

Package (PQP)). 

 

Figure 6-1: 3D simulation environment in Softimage 

 

Ubisense software (2010) has specific functionalities for UWB tracking, visualization, 

and collision detection. The Ubisense API provides functions for capturing and 

processing the UWB data, which can be integrated with other software tools.  

6.3 PROTOTYPE SYSTEM DESIGN 

Three modules have been designed in the prototype system. They are the following: 

 Visualization module: includes the visualization of the scene and the display of 

the motions of cranes. 

 Problem solving module: includes the path planning and re-planning algorithms 

and the coordination strategies by assigning priorities. 

 UWB data capturing module: includes the processing of the near real-time data 

captured from the sensors and the updated environment model. 
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Figure 6-2 shows the partially integrated prototype system design where it is assumed 

that two cranes with attached multiple tags are in operation near each other in a 

construction site. The location data of these two cranes are collected by the UWB sensors 

and sent to the Ubisense server, which is connected with Softimage using a plug-in, as is 

discussed in Subsection 6.4.1. A virtual environment scene is created in Softimage to 

simulate the actual site with all the obstacles and the two cranes. Motion plans are 

generated for these two cranes by the Crane Agents and translated into actions that can be 

sent to the crane operator using an intuitive Graphic User Interface (GUI). However, the 

design of the GUI is beyond the scope of this research. The same actions can be sent 

directly to the cranes using an autonomous control that is similar to the auto pilot mode of 

an airplane where the operator can intervene and take charge of operating the crane if 

necessary. Once the two cranes start executing their tasks, their actual locations are 

captured by using the UWB system and are sent to Softimage in near real time to update 

the virtual crane location in the scene. Each movement in the actual environment is 

reflected in the virtual environment, and collision detection is applied for the next 

movement for each crane. In the current prototype system, it is assumed that the only 

change in the actual environment is the movement of the booms of the cranes. However, 

other changes can be captured in the future using laser scanners or other technologies. 

Once a potential collision is detected by the two Crane Agents, the Coordinator Agent 

gives the priority to one of them based on the priority patterns discussed in Section 3.5 to 

continue its planned path, whereas the other crane has to re-plan its path to avoid 

collision. The communication channels are open between the Crane Agents and the 

Coordinator Agent only, enabling the reporting of potential collisions by the Crane 
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Agents and deciding the priorities by the Coordinator Agent. This prototype system can 

be further extended in the future in a distributed manner using a specialized agent 

environment to enhance the multi-agent communication and negotiation functions. 
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Figure 6-2: Integrated prototype system design 

6.4 PROTOTYPE SYSTEM DEVELOPMENT 

6.4.1 SOFTWARE COMPONENTS 

Visualization module  

All software components are integrated into Softimage using its Software Development 

Kit (SDK) and its C++ API to ensure a seamless integration that takes full advantage of 

its 3D capabilities. The 3D environment is created in scenes, including static and 

dynamic objects. The simulation of the crane movements is done by defining key frames 
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with configuration parameters resulting from the crane motion plan. The position of each 

component of the crane in the work space for each key frame is calculated. Scene 

environment updating is done by reading information from the UWB system and by 

linking with specific frames in the scene. Two levels of detail are used for the crane for 

which an accurate and detailed model is used for visualization, and the bounding boxes 

are used for collision detection to reduce computational time.  As mentioned before, the 

boom poses can be calculated in near real time and a buffer is added to the boom for 

safety purpose taking into consideration the accuracy of the tracking system. The 

buffered bounding boxes are used for collision detection in the scene.  

Problem solving module 

MSL (Motion Strategy Library, 2003) is used for solving planning queries in the system. 

This library provides a wide range of randomized motion planning algorithms including 

RRTs. This library was modified and extended according to the proposed motion 

planning algorithms to fit with the system. Modifications were added to update the code 

to be compatible with the Softimage API. New classes were added for interacting with 

the data in Softimage. This interaction is required in order to read the motion planning 

problem directly from the Softimage scene, which includes the kinematic properties and 

geometrical representation of the cranes in addition to the static and dynamic obstacles. 

Additional extensions to the library were made to develop the new motion planning and 

re-planning algorithms discussed in Chapter 4. Along with MSL, the Proximity Query 

Package (PQP) (PQP, 1999) was used for performing collision detection queries on 

obstacles found in the environment. Each simulation step is defined as one frame in 

Softimage, and at every simulation step, the geometry of the scene is accessed to detect 



   

 

162 

 

collisions. It is assumed that each second of the simulation is composed of 32 frames. 

This assumption provides enough accuracy for the PQP library to detect dynamic 

obstacles in construction sites. 

UWB data capturing module 

Ubisense software is used as the platform of the near real-time location system. A plug-in 

of Ubisense is developed to transfer data into Softimage. This allows Softimage to read 

near real-time location data from the UWB system and to show the traces of the tags that 

are attached to the physical cranes for updating the location of the virtual crane in the 

virtual scene. Due to different coordinate systems defined in Ubisense and Softimage, the 

following coordinate mapping is performed by the plug-in: 

 Softimage X = Ubisense -X 

 Softimage Y = Ubisense Z 

 Softimage Z = Ubisense Y 

Data transferred to Softimage can be recorded by using two methods. The first method is 

to record the coordinates of selected tags during the recording time period and to show 

the traces of the tags, which are linked with specific frames in the scene. This information 

can be saved in the scene and replayed later. The second method is to record the same 

data and store them in a database so that the data can be easily retrieved and analyzed. 

MySQL (2010) is used for storing the data from Ubisense in near real time. MySQL is a 

relational database management system. The data from Ubisense can be saved in this 

database and imported back from the database to be viewed in Softimage at a later time. 

The database contains the time when the data are collected, tag ID, X, Y, Z coordinates, 

and the frame in which the data are displayed in Softimage when imported from the 

database. 



   

 

163 

 

Once installed, the plug-in creates a UbisenseConnector menu in Softimage. From this 

menu, all the features of this plug-in can be controlled and customized according to the 

needs of the user. Figure 6-3 shows the interface of the plug-in in Softimage.  

 

Figure 6-3: Interface of Ubisense plug-in 

The functions of this plug-in are as follows: (1) connecting to Ubisense, (2) selecting tags 

to be rendered in the scene by choosing the tag IDs from a tag list, (3) creating/selecting a 

database table if the data need to be saved in the database, (4) linking the selected tags 

with the virtual tags in Softimage, (5) recording data and displaying the traces, and (6) 

importing data from the MySQL database when needed. 

6.4.2 HARDWARE COMPONENTS 

The decision to carry out the integrated tests in the laboratory was taken because carrying 

out the same tests in a full-scale real construction site (or even simulated site) has the 

following limitations: 

(1) The cost of renting cranes with operators is high. The setting of each test requires 

several hours mainly for the installation and calibration of the UWB system. 

Furthermore, because of the complex nature of the system, several unpredictable 
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problems may occur during the setting of the test. This complexity makes the outdoor 

test more difficult especially in the case of bad weather. It should be noted that it is 

possible to protect the UWB sensors and tags from harsh weather and site conditions 

using special casing. 

(2) The lab testing environment can be fully controlled and can be repeated as many 

times as necessary. 

As a consequence of the reasons given above, two radio-controlled (RC), scaled (1:18) 

hydraulic crane models were used in the integrated tests (Hobby Engine, 2010). Each 

crane has six motors that allow the movement of the body of the crane (drive 

forward/backward, turn right/left), of the boom (swing right/left, turn up/down, 

extend/retract), and of the hook (move up/down). Table 6-2 shows the DoFs, ranges, and 

speeds of the boom movements. A crane can be manually controlled using a remote 

control with different buttons and joysticks that allow the movement of one DoF at a 

time.  

The radio frequency between the remote controllers and the receivers of the cranes is 27 

M.Hz. All the scaled cranes within the range of the remote controller (at about 10 m) 

receive and execute the same commands because the remote controller does not specify a 

specific target crane for a specific command. To control multiple cranes in the same area 

by computer, one remote controller was interfaced with a microcontroller (Phidgets, 

2010) connected to the computer with a USB cable. An encoding scheme was 

implemented allowing for sending commands from the computer equivalent to pushing 

buttons on the remote control. Furthermore, the receiver circuits of the scaled cranes were 

modified to react only to commands sent to that specific crane. As a result, it became 
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possible to send a series of commands from the computer that controlled each crane 

separately using software developed in C++ based on the API library of the 

microcontroller. 

Table 6-2: DoFs, ranges and speeds of boom movements 

DoF Range Unit Speed 

Swing counter/clockwise [-170, +170]  degree 13.3°/second 

Raise up/down [0, 40]  degree 8°/second 

Extend/retract [33, 68.5]  cm 3.94 cm/second 

 

6.5 INTEGRATED TESTING  

This partial integrated testing was based on the laboratory prototype system. In Section 

4.7, the path planning/re-planning algorithms were tested in the virtual environment. In 

Section 5.4, the feasibility of using the UWB system for tracking cranes was examined in 

several tests. These tests were essential to verify and to validate the methods used in the 

system proposed in Figure 3-1. However, in order to validate the proposed methods at the 

integrated system level, three laboratory tests were carried out using the RC scaled 

cranes. The same virtual models of cranes used in the case studies discussed in Section 

4.7 were used in the tests after adjusting their scale and locations in the virtual model so 

that the bases of the booms and their axes match the scaled RC cranes. Compared with 

the near real-time data processing explained in Chapter 5 where the poses of the boom 

are calculated according to the multiple tags at different sections, the lab tests were 

simplified to focus only on the tags attached to the boom tip. The location of the base of 

the boom is fixed in the virtual scene; consequently, the movement of the boom of the 

virtual crane was defined by the tags attached to the boom tip. Three tags were attached 

to the boom tip to improve accuracy and visibility, and the average location of these tags 
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was used to guide the movement of the boom in the virtual scene. Virtual tags were 

created in Softimage to show the locations of the tags attached to the crane. Furthermore, 

geometric constraints were used to control the movement of the virtual crane based on the 

location of the tags attached to the tip of the crane’s boom. 

Test 1 – Integration of tracking and real-time visualization 

The purpose of this test was to verify the performance of the UWB system when 

integrated with Softimage, so that the monitored movement of the actual crane could be 

visualized in the virtual environment. The actual crane was moved by raising and 

extending the boom, then swinging the boom clockwise by 170° followed by swinging it 

counter clockwise by 340°; consequently, the boom moved on the surface of a cone and 

its tip moved in a horizontal circle. Three tags (Tag-1, Tag-2, and Tag-3) were used to 

improve visibility and accuracy, as shown in Figure 6-6(a). About two hundred readings 

were collected for each tag for the swing motion. The traces of the tags are shown in 

Figures 6-4(b), (c), and (d), respectively. The circle is the real path of the boom tip. As 

can be seen in the figures, it was found that most of the points of the trace of Tag-1 were 

outside the circle whereas most of the points of the traces of Tag-2 and Tag-3 were inside 

the circle, matching the real locations’ relationships between these tags and the boom tip. 

Location data averaged from these three tags were used to update the position of the 

virtual boom because the base of the crane was fixed during the test. Figure 6-4(a) shows 

the average trace in red together with the three tags’ traces. Figure 6-5 shows the average 

trace in top and 3D views. 
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Figure 6-4: Traces of three tags attached to the boom tip 

The accuracy of the data is evaluated by measuring the difference between the radius of 

the real circle path r and the measured radius r' based on the collected data in 2D (X and 

Y). Adjustments are made according to the tags’ locations relative to the boom tip. The 

accuracy in the Z dimension is evaluated separately. Table 6-3 shows the accuracy 

analysis results. It can be seen from this table that the averaged location data based on 

three tags can be used for updating the boom location with a good accuracy. 

(a) Average trace (in red) and three tags’ traces 

(b) Tag-1 (c) Tag-2 (d) Tag-3 
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Figure 6-5: Boom tip trace based on averaging the locations of three tags  

 

Table 6-3: Accuracy analysis 

Tag 

Mean radius 

difference 

(cm) 

Standard deviation 

of radius difference 

(cm) 

Mean difference in 

Z direction 

 (cm) 

Standard deviation of 

difference in Z 

direction (cm) 

Tag-1 3.63 10.04 4.00 9.22 

Tag-2 -6.36 10.83 5.18 10.87 

Tag-3 -6.72 11.50 6.27 10.87 

Ave. -5.69 10.08 3.31 6.07 

 

Test 2 – Integrated test of tracking and motion re-planning 

The purpose of this test is to evaluate the integration of the UWB tracking and the motion 

re-planning. Figure 6-6(a) shows a picture of the two scaled crane models, with UWB 

tags attached to the tip of the boom of Crane-2 and with a simple frame structure 

representing static obstacles. Figure 6-6(b) shows the virtual models representing the 

cranes and the frame structure. It is assumed that Crane-2 has a higher priority than 

(a) Top view (b) 3D view 
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Crane-1 based on the safety, task, cost, or time factors related to the tasks that are 

executed, as explained in Section 3.5. The location data of the UWB tags attached to 

Crane-2 were used to update its pose in the virtual model, which was used in the motion 

re-planning of Crane-1 following the methods discussed in Chapter 4.  

The scaled model Crane-2 was controlled by using the remote controller to swing the 

boom in a way that blocks the movement of Crane-1. In the virtual scene, the movements 

of the boom of Crane-2 followed the physical scaled crane and a potential collision was 

detected by the agent of Crane-1. Then, motion re-planning was triggered and Crane-1 

followed the new path to avoid potential collision with Crane-2. The test successfully 

demonstrated the applicability of the proposed methods for tracking and motion re-

planning at the level of the integrated system.  

 
(a) Scaled cranes      (b) Virtual cranes  

 

Figure 6-6: The scaled cranes and their virtual models 

Test 3 – Integrated test of motion planning and agents 

The purpose of this test was to demonstrate the role of the Coordinator Agent in 

managing the priorities of two cranes operating in the same area as discussed in 

Subsection 3.5.3. In this test, multiple lifting tasks were executed by each crane. These 

Tag-1 
Tag-2 

Tag-3 

Crane-1 

Crane-2 



   

 

170 

 

multiple tasks collectively represented a macro task in the project schedule. In the present 

test, it was assumed that the two cranes were erecting different elements of a steel 

structure as shown in Figure 6-7. The tasks executed by Crane-2 consisted of lifting the 

columns and beams of one part of the structure (the green part). The tasks executed by 

Crane-1 consisted of lifting the columns and beams of another part of the structure (the 

magenta part). The pyramid shape represents the picking area of the steel elements. 

Inverse kinematics is used to define the initial configurations and the goal configurations 

of the cranes based on the tasks. The motion planning algorithm proposed in Section 4.6 

was used to find collision-free and time-efficient paths. 

In this test, two scenarios were simulated. In the first scenario, it was assumed that the 

macro task of Crane-2 was on the critical path of the project; consequently, the 

Coordinator Agent gave the priority to Crane-2 to guarantee the project was not delayed. 

If a potential collision was detected, the high-priority crane (Crane-2) was considered as 

an obstacle for the low-priority crane (Crane-1) when Crane-1 re-planned its path. In the 

second scenario, it was assumed that both cranes had equal priority; consequently, the 

Coordinator Agent decided to alternate the priorities between the two cranes each time a 

collision was detected. Both scenarios were successfully tested, demonstrating the 

feasibility of changing priorities by the Coordinator Agent.  
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Figure 6-7: Two cranes operating in the same area 

6.6 SUMMARY AND CONCLUSIONS 

The present chapter describes the development of a prototype system and the integrated 

testing of the proposed approach. The selection of the development tools was based on an 

investigation of the availability, the integration possibility, and the functionalities of 

several software systems. Softimage was selected as the main development tool for the 

present research to take advantage of its modeling and visualization functions. Other 

software tools were linked with Softimage using its plug-in mechanism, including Motion 

Strategy Library (MSL) API and Ubisense API. Three modules were designed for the 

prototype system including visualization, problem solving, and UWB data capturing. The 

software components and the hardware components of the prototype system have been 

discussed in detail. Several partially integrated tests have been carried out by using the 

RC scaled cranes to demonstrate and to validate the proposed methods at the integrated 

system level.  

Crane-1 

Crane-2 
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CHAPTER 7 CONCLUSIONS, LIMITATIONS AND 

FUTURE WORK 

 

 

 

7.1 SUMMARY 

Limited research has focused on providing real-time motion re-planning for cranes while 

taking into account dynamic environment changes. The present research has proposed an 

innovative approach to integrate UWB tracking technology and advanced motion 

planning and re-planning algorithms for crane operations. The resulting integrated agent-

based system can improve the safety of crane operations by providing better 

understanding and near real-time monitoring on construction sites.  

7.2 CONCLUSIONS  

The conclusions of this research are as the following: 

(1) The framework of an agent-based system has been proposed for supporting crane 

operations to ensure safety. It provides a platform to integrate different modules for 

tracking, problem solving, communication, and visualization. This framework has 

several agents that supporting the crane operation, including Crane Agents, 

Coordinator Agent, and Site State Agent. The main characteristics of the agent-based 

system have been described as follows: (1) A hybrid approach has been used in the 

system to gain the flexibility of distributing motion planning to each Crane Agent 

based on the priorities decided by the Coordinator Agent; (2) Priority patterns have 

been defined to decide which agent should re-plan the equipment’s path to avoid 
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potential collisions; and (3) In order to guide the crane operators, motion plans can be 

translated into actions based on the crane’s configurations. Communication between 

agents enhances environment awareness and improves efficiency by distributed 

decision-making.  

(2) A modified motion planning algorithm RRT-Con-Con-Mod has been proposed for 

crane operation. The main charastistics of this algorithm are the following: (1) It is a 

dual-tree RRT algorithm, which generates two trees from the initial configuration and 

the goal configuration; (2) A cost function is used to evaluate the quality of the path 

by taking into account the smoothness of the path and the time taken to execute the 

path; and (3) Engineering constraints are considered to generate safe paths for the 

cranes and to avoid tip over due to overloading. By using an anytime algorithm, 

improvement of the path smoothness and reduction in execution time has been 

obtained. An average improvement of 11.51% better smoothness has been obtained 

compared with the paths found by using RRT-Con-Con. The calculation time of 

RRT-Con-Con-Mod is much less than that of the RRT algorithm. The best path found 

using the anytime algorithm shows an improvement in smoothness and execution 

time of 21.59% and 16.86%, respectively. The cost of the path is consequently 

reduced by 18.32%. 

(3) A new dynamic motion re-planning algorithm DRRT-Con-Con-Mod has been 

proposed to efficiently repair the path when the environment is updated. Compared 

with the DRRT algorithm proposed by Furguson (2006), the proposed dynamic 

algorithm maintains a focus on the path instead of the entire tree by regenerating a 

partial path to replace the part that is not collision-free due to new obstacles. The 
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advantage of the proposed algorithm is that the time for trimming the entire tree is 

eliminated and an immediate collision-free movement is ensured for the crane, 

thereby reducing safety risks. Regenerating the trees and finding a feasible partial 

plan are carried out quickly thanks to the greediness of the dual-tree structure and 

Connect-Mod function. A reduction in re-planning time by a factor of four has been 

achieved by using the proposed dynamic algorithm. Furthermore, the DRRT-Con-

Con-Mod algorithm is always able to find a new path during re-planning.  

(4) The requirements of using real-time data collection in construction to improve crane 

safety using UWB technology have been analyzed. The requirements include 

accuracy, visibility, scalability and real-time requirements, tag form and function 

requirements, power, and networking requirements. The setting method of the system 

has been discussed in detail to satisfy these requirements by deciding the locations 

and orientations of sensors, and the number and locations of tags. Heuristic rules have 

been proposed to balance these requirements by clarifying the relationship between 

the number of tags, the update rate, and the velocity of objects.  

(5) A method of location data processing has been proposed to improve data quality by 

filtering errors using heuristic rules, by filling in missing data based on historic data, 

and by applying geometric constraints. Extensive testing of the UWB system in the 

context of crane safety has been carried out where it has been demonstrated that the 

poses of the crane could be calculated in near real time based on the proposed data 

processing method. 

(6) A prototype system has been developed to integrate the motion planning and re-

planning algorithms with the UWB system and to test the proposed approach. 
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Autodesk Softimage has been used to take advantage of its 3D visualization and 

animation capabilities. Motion Strategy Library API and Ubisense API have been 

linked with Softimage using its plug-in mechanism. Three modules have been 

designed for the prototype system including visualization, problem solving, and UWB 

data capturing. The software components and the hardware components of the 

prototype system have been discussed in detail. Several partially integrated tests have 

been carried out by using the RC scaled cranes to demonstrate and validate the 

proposed methods at the integrated system level. The simulation of motion planning 

has enhanced the understanding of the tasks and identified the potential bottle-necks 

or conflicts in advance, while the near real-time data visualization has greatly 

improved the monitoring quality and ensured safety. Assisted by the intelligent 

agents, solving conflicts has been faster by comparison with the conventional 

methods.  

The results of crane motion planning and re-planning, and the near real-time data 

processing of the location data discussed in the present research have been presented to 

engineers and experts from crane companies and a construction safety organiztion 

(CSST). These engineers and experts have provided us with a positive evaluation for 

applications of the present research in pratice.  

7.3 LIMITATIONS AND FUTURE WORK 

Although the objectives of the present research have been successfully achieved, the 

following improvements and extensions have been considered for future research:  

(1) The proposed framework has not been fully implemented. The roles and the 

relationships of agents are defined in the present research; however, the framework 
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needs to be refined by investigating the details of agent communication and 

negotiation, and by constructing the agent system using suitable development tools. 

We have explored some tools, such as Jadex (2008), which is a Java-based, FIPA 

(Foundation for Intelligent Physical Agents) (2010) compliant agent environment. It 

allows the development of goal-oriented agents. The main concepts of Jadex are 

beliefs, goals and plans, which are defined by the programmer and prescribe the 

behaviour of the agents. Other tools for agent system design can be investigated for 

easy integration with Softimage, such as tools written in C++. Furthermore, a user-

friendly GUI needs to be developed to support the crane operator without disturbing 

his/her concentration on the tasks. Rules from safety codes need to be included in the 

knowledge base of the agents to make the system more applicable.  

(2) The paths generated by using the proposed motion planning algorithms are not 

optimal. Further path improvement in the motion planning algorithms can be 

considered. One option is that instead of choosing only the nearest node on the tree to 

be connected to the sampled node, the k nearest nodes on the tree can be selected and 

compared based on heuristics, as proposed by Urmson and Simmons (2003). Another 

improvement could be achieved by using the joint configuration-time state space to 

model the trajectories of dynamic objects explicitly and to take them into account 

during planning. Collision avoidance can be carried out by considering the future 

poses of the dynamic objects in addition to pose detection. Time-optimal or near 

time-optimal approaches can also be used for computing paths through state-time 

space. 
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(3) Linear interpolation and extrapolation are used for data processing in the present 

research. Further improvement of data processing could be carried out using curve 

fitting or other methods based on historical data. In addition, Kalman filtering 

combined with geometric constraints (Arras et al., 2003) could be investigated in the 

future to improve the accuracy of UWB data. 

(4) Building Information Modeling (BIM) could be used to automatically update the 

construction environment through time and to generate incremental path planning 

queries for all of the project phases. This updating can be done by allocating each 

crane to the group of construction elements that it will handle sequentially. 

Furthermore, by arranging the erection sequence of the elements, risks of collision 

can be reduced. More research is required in this area to arrange the BIM data and to 

import it into the proposed system. Additionally, multi-task planning using BIM 

could be considered to enhance the performance of sequential motion planning 

queries by caching previous generated RRTs and updating them based on site 

updates.  

7.4 IMPACT ON RESEARCH AND PRACTICE  

The proposed approach is expected to have an impact on the construction industry by 

improving safety and eliminating delays caused by unforeseen spatial problems on the 

construction site, thereby improving productivity. The intelligence of the multi-agent 

system can be extended from the re-planning of equipment motions to a more advanced 

concept, which we call Smart Construction Site (SCS) (Zhang, et al., 2009). Figure 7-1 

shows the proposed roadmap towards the SCS based on agent technology, field data 

capturing technologies, wireless communication, and path re-planning. This roadmap can 
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be considered as an extension of the following concepts and emerging topics used in the 

Information and Communication Technologies (ICT) Roadmap for Construction (2003), 

which was proposed by the ROADCON project, focusing on the following new and 

emerging ICTs: (1) Adaptive and self-configuring systems (early warning/situation 

tracking), (2) Collaborative virtual teams (smart self-controlling teams, collaborative 

modeling and visualization), (3) Digital site (site team management tools), and (4) Smart 

building (long term & real time data).  The following paragraph explains the proposed 

roadmap starting from available technologies that are already in use and from types of 

take-up technology (the bottom part of the roadmap). 

Early 
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Figure 7-1: Roadmap of Smart Construction Site 

As discussed in Chapter 2, in the current state of construction projects, GPS is used to 

monitor the location of equipment. OBI systems are available for heavy construction 

equipment. Crane path planning software is used in some projects; however, during the 

execution stage, the tasks of cranes are usually carried out by using a trial-and-error 
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process, based on feedback provided by the operator’s own vision and assessment, by 

using hand signals of a director at the work zone, or by using radio communication. RFID 

has been proposed to track materials and tools. People communicate with each other 

using mobile phones or radio terminals. Furthermore, several types of technology are 

ready for take up, such as vehicle proximity alert and collision avoidance systems, types 

of agent technology, wireless networks, and path planning algorithms. A virtual 

environment can be created for simulation and training purposes. Based on these types of 

available technology, R&D is being undertaken: (1) To capture field data in near real-

time and support early warning/situation tracking; (2) To develop collaborative multi-

agent systems to provide intelligent assistants; (3) To create a seamless network 

interconnectivity for collaborative multi-equipment taking advantage of wireless 

communication; and (4) To develop automatic path re-planning algorithms as an efficient 

tool for site team management. By integrating all the emerging topics in the roadmap, a 

vision of SCS can be established where every worker, operator, and staff would have 

intelligent support from agents encapsulating knowledge and decision-making strategies. 

Environment information would be obtained and updated by using 3D scanners, range 

cameras or sensors attached to moving objects on site. Path planning and re-planning of 

equipment would be carried out automatically to help the operators fulfill their tasks 

safely and efficiently.  

The benefits of a SCS are the following: (1) Safety assurance: Each moving object on site 

can be monitored and tracked with a precise location, and a warning system can be 

developed to warn the workers and operators when a potential accident is detected; (2) 

Productivity control: the tracking records can be used to analyse the workers’ and 
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equipment performance and estimate their productivity; (3) Quality control: more 

awareness of the site situation by tracking different equipment can help the staff make 

better decisions; and (4) The work process can be easily understood by visualizing the 

paths of equipment. 

An ideal construction site can be described as follows: the construction site is fully 

modelled and updated in near real-time; construction equipment is fully monitored and 

controlled with different types of sensors; near real-time location systems are used to 

track workers, vehicles, materials, etc.; estimation of productivity for equipment and 

crews is automatically carried out according to sensed data; distributed information is 

fully integrated and analysed; and intelligent support is provided by near real-time 

problem solving, such as path re-planning and conflict resolution. 
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APPENDIX A – STANDARD HAND SIGNALS FOR CRANE 

OPERATION 
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APPENDIX B – EXAMPLE OF CRANE LOAD CHART  
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APPENDIX C – UBISENSE SERIES 7000 SENSOR 

SPECIFICATIONS (UBISENSE, 2010) 

Size and Weight  

Dimensions  20cm x 13cm x 6cm (8” x 5” x 2.5”) 

Weight  650g (23 oz) 

Operating Conditions 

Temperature 0°C to 60°C (32°F to 140°F) 

Humidity 0 to 95%, non-condensing 

Enclosure IP30 

Location Performance 

Operating Range Up to 160m (520ft) in open field conditions 

Achievable Accuracy Better than 30cm (12”) in 3D 

Radio Frequencies 

Ultra-wideband 6GHz – 8GHz 

Telemetry channel 2.4GHz 

Certifications 

FCC Part 15 (FCC ID SEASENSOR20) 

EU CE 

Power Supply 

Power-over-Ethernet IEEE 802.3af compatible 12V DC @ 10W (optional) 

Mounting Options 

Adjusting mounting bracket (supplied) 

Ubisense Part Codes 

UBISENSOR7000, UBISENSPS (optional 12V power supply) 
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APPENDIX D – UBISENSE SERIES 7000 COMPACT TAG 

SPECIFICATIONS 

Size and Weight  

Dimensions  38mm x 39mm x 16.5mm (1.50” x 1.53” x 

0.65”) 

Weight  25g (0.88 oz) 

Operating Conditions 

Standard -20°C to 60°C (-4°F to 140°F) 

Extended -30°C to 70°C (-22°F to 158°F) 

Humidity 0 to 95% non-condensing 

Enclosure 

Standard IP63 

Extended IP65 

Location Performance 

Update Rate 0.00225Hz to 33.75Hz (can be varied 

dynamically under software control) 

Peripherals 

LED (application controllable) 

Push button (application controllable) 

Motion detector 

Radio Frequencies 

Ultra-wideband 6GHz – 8GHz 

Telemetry channel 2.4GHz 

Certifications 

FCC Part 15 (FCC ID SEATAG22, SEATAG22HH) 

EU CE 

Power Supply 

3V coin cell (CR2477) 

Mounting Options 

Industrial adhesive pas (supplied) 

Industrial velcro 

Magnetic mountings 

Screw mountings 

Ubisense Part Codes 

Standard UBITAG70022 

Extended UBITAG7022 X-65 
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APPENDIX E – UWB SYSTEM INSTALLATION 

PROCEDURES 

NEEDED EQUIPMENTS 

Sensors, Mounting equipments, Cables (4 regular network cables and 3 thick timing 

cable), Computer, Software: (Ubisense package, DHCP server, solver), 

Switch and power: (PoE switch plus its power cables, power generator for outdoor usage) 

Level 

 

LAYOUT DESIGN STEPS 

1. Conceptual connectivity design (daisy chain, star, extended start)   

2. Decide where to put the sensors in the yard 

3. Decide where to put one tag for calibrating the sensors 

4. Decide two points that are easy to measure on the yard  

5. Decide how to run the cables and protect them  

6. Decide where to put the switch  

7. Draw the connectivity map  

8. Decide the reference point (0, 0, 0) 

9. Fill out table (Calibration tag ID info, Sensors: x, y, z and mac address) 

 

SITE PREPARATION 

1. Fix the sensors on the mounting device on the designated place 

2. Put the switch on its designated place and attach to the power 

3. Run the network cables from switch to sensors and fix the cables  

4. Run the timing cables based on the connectivity map (most often between the 

sensors) 

 

MEASUREMENTS 

1. Measure the monitored area: W, L, H 

2. Measure x, y, z of the sensors (one by one or using the solver) 

a. Decide on two points and measure the x, y of them, (preferably set the 

(0,0) on the corner of two walls in the area) 

b. Measure the distance from the points to the sensors 

c. Enter them in the solver 

d. Get the x, y, z of the sensors 

 

BASIC CONFIGURATION  

1. Restart the PC ( switch is powered, sensors are not connected, PC is connected to 

switch) 

2. Attach the computer to the switch 

3. Start DHCP server 

4. Open platform control 
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5. Make sure the services are running (no prefix, not in standalone mode) 

6. Open location engine 

7. Open log tab 

8. Connect the sensor cables 

9. Looking at logs to see if there are warnings 

 

SOFTWARE CONFIGURATION  

1. Open “Site Manager” and go to tab “Area”  

2. Open “Notepad” and type the coordinates of the area and save as “.dat” file 

3. In “Area” tab, load walls by load the .dat file 

4. Go to the “Cell” tab and load the area  

5. Extend the cell  

6. Open location engine and load area and cell 

7. Drag the sensors to the area 

8. Select the master and check: “master”, “timing source” and “disable sleep” 

9. Check the RF power of the cell (must be 255) 

10. Check the LEDs (should be solid green) 

11. Enter x, y, z of the sensors 

12. Put the tag on the calibration point 

13. Do dual calibration for all sensors 

 

ASSIGN TAGS TO OBJECTS  

1. Open “Site Manager” and go to tab “Objects” 

2. Click “Objects” on the menu, and select “New” 

3. Create new object and type 

4. Open “Location Engine Config” and go to tab “Owners” 

5. Click “Ownership” on the menu, and select “New” and assign tags to objects 

 

SET UPDATE TIME SLOTS  

1. Open “Location Engine Config” 

2. Go to tab “tags” 

3. Double click on lines, and select the Slower QoS, the Faster QoS, and the 

Threshold. 

 

USING LOGGER TO RECORD DATA  

1. Run UbisenseLogger 

2. Click “Record/Playback file…” 

3. Create a new file with “.txt” under a specified folder  

4. Select objects need to be monitored 

5. Go to tab “Record” and click on the red button 

6. Captured events will be shown in the frame 
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APPENDIX F – UWB CALIBRATION WORK SHEET 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Date:  Dec. 04, 2009 Time:  9:30 am to 13:30 pm 

Sensor name Sensor-1 Sensor-2 Sensor-3 Sensor-4 

MAC address 00:11:CE:00:1C:3F 00:11:CE:00:1C:41 00:11:CE:01:1C:45 00:11:CE:01:1C:61 

Sensor 

position 

X -8.52 -9.36 10.16 9.07 

Y -10.54 12.47 12.1 -10.31 

Z 1.61 1.67 1.57 1.45 

Ref. tag name 020-000-059-089       

Ref. tag 

position 

X 0       

Y 0       

Z 2.46       

Angel 

calibrated 

Yaw 45.8939 -52.1697 -135.879 134.174 

Pitch 22.5174 20.5125 26.6233 22.5969 

Roll 0 0 0 0 

Recording file 

name (*.txt & 

*.xcm) 

test.txt; gridtest.txt; taskwithfilter.txt; secondtest.txt;  

test.xcm; secondtest.xcm; end.xcm 
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APPENDIX G – SAMPLE OF .XCM FILE 

 .xcm file recording the monitored event 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<events> 

  <value> 

    <instance_>0</instance_> 

    <tag_> 

      <id_>335559499</id_> 

    </tag_> 

    <timeslot_>13565</timeslot_> 

    <location_> 

      <flags_>0</flags_> 

      <x_>-8.00000000e+000</x_> 

      <y_>-8.00000000e+000</y_> 

      <z_>1.00000000e+000</z_> 

      <gdop_>-8.00000000e+000</gdop_> 

      <error_>-8.00000000e+000</error_> 

    </location_> 

    <sensors_> 

      <value> 

        <sensor_> 

          <mac_>0:11:ce:0:1c:41</mac_> 

        </sensor_> 

        <position_> 

          <x_>3.99000001e+000</x_> 

          <y_>2.09999993e-001</y_> 

          <z_>2.76999998e+000</z_> 

          <yaw_>2.24040937e+000</yaw_> 

          <pitch_>-5.15919328e-001</pitch_> 

        </position_> 

        <offsets_> 

          <zero_offset_>1.46800000e+003</zero_offset_> 

          <cable_offset_>0.00000000e+000</cable_offset_> 

        </offsets_> 

        <flags_>65</flags_> 

        <radar_> 

          <azimuth_>-5.51666796e-001</azimuth_> 

          <elevation_>1.88908026e-001</elevation_> 

          <ppo_>1.49800000e+003</ppo_> 

          <event1_>6.28000000e+002</event1_> 

          <event2_>1.37800000e+003</event2_> 

          <code_>0.00000000e+000</code_> 

          <raw_>1.07599492e+004</raw_> 

          <demod_>3.13776375e+005</demod_> 

        </radar_> 

        <used_for_location_>F</used_for_location_> 

        <distance_>3.86468315e+001</distance_> 

      </value> 

      <value> 

        <sensor_> 

          <mac_>0:11:ce:0:1c:61</mac_> 
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APPENDIX H – SAMPLE OF LOGGER FILE 

Text file resulting from the Logger application 

 

 

 

 

 

  

-,C-20,10/03/2009 18:53:41:449,1.82,3.93,1.13 

-,C-20,10/03/2009 18:53:41:557,1.82,3.93,1.13 

-,C-20,10/03/2009 18:53:41:666,1.82,3.93,1.14 

-,C-20,10/03/2009 18:53:41:774,1.82,3.93,1.14 

-,C-20,10/03/2009 18:53:41:882,1.81,3.93,1.15 

-,C-20,10/03/2009 18:53:41:990,1.81,3.93,1.15 

-,C-20,10/03/2009 18:53:42:098,1.81,3.92,1.15 

-,C-20,10/03/2009 18:53:42:206,1.81,3.92,1.15 

-,C-20,10/03/2009 18:53:42:314,1.81,3.92,1.15 

-,C-20,10/03/2009 18:53:42:422,1.81,3.92,1.15 

-,C-20,10/03/2009 18:53:42:530,1.81,3.92,1.15 

-,C-20,10/03/2009 18:53:42:638,1.81,3.92,1.15 

-,C-20,10/03/2009 18:53:42:746,1.81,3.92,1.15 

-,C-20,10/03/2009 18:53:42:854,1.81,3.92,1.14 

-,C-20,10/03/2009 18:53:42:963,1.81,3.92,1.14 

-,C-20,10/03/2009 18:53:43:071,1.81,3.92,1.14 

-,C-20,10/03/2009 18:53:43:179,1.81,3.92,1.14 

-,C-20,10/03/2009 18:53:43:287,1.82,3.92,1.14 

-,C-20,10/03/2009 18:53:43:395,1.81,3.92,1.13 

-,C-20,10/03/2009 18:53:43:503,1.81,3.92,1.13 

-,C-20,10/03/2009 18:53:43:611,1.81,3.92,1.13 

-,C-20,10/03/2009 18:53:43:719,1.81,3.92,1.13 

-,C-20,10/03/2009 18:53:43:827,1.81,3.92,1.13 

-,C-20,10/03/2009 18:53:43:935,1.81,3.91,1.12 

-,C-20,10/03/2009 18:53:44:043,1.80,3.91,1.12 

-,C-20,10/03/2009 18:53:44:152,1.80,3.91,1.12 

-,C-20,10/03/2009 18:53:44:260,1.80,3.91,1.13 

-,C-20,10/03/2009 18:53:44:368,1.80,3.91,1.14 

-,C-20,10/03/2009 18:53:44:476,1.80,3.91,1.14 

-,C-20,10/03/2009 18:53:44:584,1.81,3.91,1.15 

-,C-20,10/03/2009 18:53:44:692,1.81,3.91,1.15 

-,C-20,10/03/2009 18:53:44:800,1.81,3.91,1.16 

-,C-20,10/03/2009 18:53:44:908,1.81,3.91,1.17 

-,C-20,10/03/2009 18:53:45:016,1.81,3.91,1.18 

-,C-20,10/03/2009 18:53:45:124,1.81,3.91,1.18 

-,C-20,10/03/2009 18:53:45:232,1.81,3.92,1.19 

-,C-20,10/03/2009 18:53:45:340,1.81,3.92,1.20 

-,C-20,10/03/2009 18:53:45:449,1.81,3.92,1.20 

-,C-20,10/03/2009 18:53:45:557,1.81,3.92,1.20 

-,C-20,10/03/2009 18:53:45:665,1.80,3.91,1.20 

-,C-20,10/03/2009 18:53:45:773,1.80,3.91,1.20 

-,C-20,10/03/2009 18:53:45:881,1.79,3.91,1.20 

-,C-20,10/03/2009 18:53:45:989,1.79,3.91,1.19 
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