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ABSTRACT 

Environment-Based Design of Software:  

an Agile Software Design Method 

Alexandr Moroz 

The Environment-Based Design of Software (EBD-S) is a design method, representing 

the application of the Environment-Based Design (EBD) to agile software development.  

It compliments contemporary agile software development methods – Scrum and Feature-

Driven Development (FDD) – by providing a light-weight and flexible framework for the 

architecture and design documentation, formalized design concept generation and 

effective system evolution control.  Under the EBD-S umbrella, software requirements 

are categorized as functional, leading to the design of the system, and quality 

requirements, reflected in software architecture. EBD-S uses the component-bus-system-

property approach for conflict identification and capturing the proto-architecture of the 

system in a graph structure. The design concept generation stage relies on a two-phase 

matrix-based problem decomposition approach, adjusted for non-binary dependency 

analysis, and using the heuristic partitioning analysis to find better design solutions. The 

change control mechanism of EBD-S permits effective monitoring and control of the 

software architecture evolution through the agile development cycle. The integration of 

EBD-S to the real-world Scrum development processes is demonstrated on the example 

of Telecom Expense Management software development. EBD-S application resulted in 

25% project time saving due to more accurate estimations, higher code quality and lower 

error rate. 
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1. Introduction 

1.1 Background and motivation of the research 

Software systems of today are characterized by increasing complexity, distribution, 

heterogeneity and size. The software development tasks exhibit a high degree of 

variability and uncertainty. 

A rationalized approach has dominated software development since its inception. Such an 

approach assumes that problems are fully specifiable, and that an optimal and predictable 

solution exists for every problem. It demands detailed capture and modeling of 

requirements, architecture and design early on, before significant effort is expended for 

system construction (Butler, Jones, Romanovsky, & Troubitsyna, 2006). Creating the 

interaction between software requirements, architecture and design is one of the most 

challenging problems in software engineering research. It requires not only elaboration of 

business requirements into flexible software architecture and design, but constant 

reconciliation of changes, introduced both in the requirements and the software system. 

Currently execution of this task is based mainly on the intuition and experience of 

engineers (Egyed & Grunbacher, 2002). 

Appearance of the family of agile software methodologies in mid-90s (eXtreme 

Programming, Scrum, FDD, and others) addressed the high complexity of the software 

by introduction lightweight methods of fast software development, which ―deal with 

unpredictability by relying on people and their creativity rather than on processes‖ 

(Nerur, Mahapatra, & Mangalaraj, 2005). 
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The nature of agile approaches differs from the traditional software development, and 

many attempts to bridge them were taken. Most of these attempts are based on the 

modification and formalization of the agile methods. Dyba and Dingsøyr showed in the 

study on the agile methods, that the formalized agile methods work in specific, narrow 

domains, and don‘t demonstrate real-world applicability in the wide variety of software 

development projects (Dyba & Dingsøyr, 2008). However, both traditional and agile 

software development methods are aimed to the same goal – facilitate and guide the 

software engineering process, and in many cases face the same problems. 

The goal of software engineering process is to build a solution to an existing problem. To 

select or construct a solution to the problem, an engineer shall understand available 

options and existing limits. Thus, selection of basic technologies or creation of new ones 

is one of the most important problems which shall be solved in software development 

process. Next important step in software development is elaboration of system‘s 

principles, or selection of an approach to problem solving. This approach determines the 

structure of the software system, decomposition on the components and services, and the 

way how basic technologies are used. 

Due to extremely high complexity of current software systems, solution of the problem 

leads to the modification of the initial concept (Zeng & Cheng, 1991). Change is an 

inevitable effect of the system development. Systems shall change in order to evolve; at 

the same time, the change can violate the architecture and design. System changes add an 

extra dimension to the complexity, which is especially true for the agile approaches, and 

change control in software engineering is frequently disconnected from the initial 

software concept. 



3 

 

Regardless of methodology used in development process, software engineers face four 

main challenges with concept development: 

- Elaboration of adequate and feasible requirements 

- Selection of system architecture  

- Development of flexible software design  

- Maintaining the requirements, architecture, design and code in concordance 

during the development lifecycle 

With the experience in software requirements analysis and design elaboration domain, we 

have found out that we can take the advantage of the design theories, dealing with 

generation of design concepts. We can consider the requirements engineering as a design 

problem and use a design theory to generate several design concepts and select the best 

one. Taking this point of view, we can easily relate the software requirements with 

architecture and design in an unambiguous way to provide a method to control changes 

on any level of the system, from code to the requirements. 

In this thesis we propose an approach to enhance agile software development 

methodologies, namely Scrum and FDD, with formal analytical toolset, aimed to address 

the main challenges of software engineering. The proposed approach, called 

Environment-Based Design of Software (EBD-S), is derived from Environment-Based 

Design (Zeng, 2004) and Non-binary Design Matrix for design concept elaboration and 

selection (Li, 2010), and uses Component-Bus-System-Property (CBSP) method 

(Medvidovic, Egyed, & Grunbacher, 2003) extinction to relate conceptual entities on the 

different levels to abstraction of the software system. 
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The Environment-Based Design provides a design model that is derived from the 

axiomatic theory of design modeling (Zeng, 2002). This model provides a unique view 

on the conceptual design problem: 

- It defines the design problem in terms of the product environment rather than 

product functional structure; 

- It generates design problems and solutions simultaneously, with the solutions 

affecting the perception of the problem. 

The Design Structure Matrix (DSM) methodology emerged in early 1980s and 

demonstrated how graph theory can be used to analyze complex engineering projects 

(Steward, 1981). Steward showed how the sequence of design tasks could be represented 

as a network of interactions and how it can be mathematically analyzed as a system of 

equations. This representation of the design tasks allowed Steward to identify 

redundancies, inefficiencies, and other common problems analytically. DSM has been 

extended to the analysis of technical artifacts using the component-based DSM (Pimmler 

& Eppinger, 1994). We use the latest to compliment Environment-Based Design 

approach for generation and analysis of design solutions. 

CBSP approach provides an intermediate model between requirements and architecture 

that helps to evolve the two models iteratively (Nuseibeh & Easterbrook, 2000). The 

intermediate CBSP model captures architectural decisions as an incomplete ―proto-

architecture‖ that prescribes further architectural development (Brandozzi & Perry, 

2001). The CBSP approach also guides the selection of a suitable architectural style to be 

used as a basis for converting the proto-architectures into an actual implementation of 
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software system architecture. We use CBSP extinction to capture a software architecture 

view of the software design concept, generated by EBD and refined with help of DSM.  

United under the umbrella of EBD-S, these approaches address the main problems of 

software concept development: they help to refine requirements, select the most 

appropriate architectural solution, build flexible design and maintain the control of the 

changes during the software development process. 

1.2 Objectives 

This thesis aims to provide an effective approach to the solution of software design 

problems, from requirements elaboration through architecture concept generation to 

detailed design development. 

In the present thesis we plan to achieve the following objectives: 

1) Introduce the Environment-Based Design method to software design problems. 

Ill-defined problem + constraints Better-defined problem

Identify product 
system

Detect new problems

Elicit/adjust 
environment 
assumptions

Requirements in 
natural language

Specifications

Formalized structures:
- Product
-Environment
-Product-Environment 
relationships

Environment 
templates

Formulation

Client

Designer

Designer

Client

 

Figure 1 Problem formulation process in environment-based design 
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Software design problems, as well as product requirements, evolve along the design 

process (Chen & Zeng, 2006). Iterative formalization of the design problem, performed 

in the Environment-Based Design framework, allows adding more constraints to the 

domain to get a better definition of the problem for the next iteration. Requirements for 

software systems are well-known to be incomplete and ambiguous. EBD process helps to 

clarify the problem, define its scope and find applicable solutions. 

2) Reinforce EBD method with Design Matrix application to generate and select the 

best design concepts. 

Design Matrix (DM) is an effective tool to perform the analysis and management of 

complex systems. It helps to model, visualize and analyze the dependencies between the 

elements within the system (Li, 2010). Applied to the Environment-Based Design 

approach for software problems, it provides a way to derive suggestions for the best 

synthesis of the system. 

3) Propose a method of relating software requirements, architecture and design 

within the concept for better change analysis and control. 

Changes are inevitable during the software development process. They occur at any level 

of abstraction of the system – in the code, design, architecture and the requirements. In 

order to understand the impact of these changes we apply a graph-based method to link 

the relations between software requirements, architecture and design. It is based on CBSP 

(Component-Bus-System-Property) methodology (Medvidovic et al., 2003), adjusted for 

software problems. The graph compliments the DM, and allows agile management of the 

software changes during the whole software development lifecycle. 
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4) Construct a framework for solving the software design problems – Environment-

Based Design of Software. 

Software development process requires application of different best-practices for better 

control and effectiveness. We introduce a methodology for solving the design problems 

in agile software development, which relies on Environment-Based Design, reinforced 

with Design Structure Matrix problem analysis and CBSP change control. It is called 

Environment-Based Design of Software, and it provides guidance for the agile software 

developers from the beginning of software process to the end of its lifecycle. 

5) Demonstrate the applicability of the Environment-Based Design of Software on a 

real-world business case. 

Environment-Based Design of Software was elaborated not solely on the basis of 

scientific research – it was applied to the management of real software development 

processes, and was refined according to the observed results. Our aim is to demonstrate 

how EBD-S application helped to perform full development of an enterprise software 

solution, from concept generation to the integration and delivery, in a telecommunication 

expense management domain. The developed product relies on a large legacy system, but 

represents a completely new line of products, build with newest Rich Internet Application 

technologies. In Chapter 5 we give a description of the detailed process and solutions 

found, as well as of the control of deviations from the original design. 
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1.3 Challenges 

Here we describe the main challenges that we faced during the development of the 

Environment-Based Design of Software approach: 

1) Discover and define the main problems of software development process 

One of the main challenges of the software development teams is to provide a clear and 

unambiguous method to understand the client‘s problem, find a solution and 

communicate it back to the client to verify it (Wiegers, 2003). The nature of agile 

software development implies that many solutions can be verified only after they are built 

(or prototyped). Concept refinement in software development is always a time-

consuming process, and it is better to make and correct all the errors in assumptions on 

this stage. Usually the domain of possible solutions is quite wide, so it is hard to find the 

best fit with the scope of the problem (Chung, Nixon, Yu, & Mylopoulos, 2000). 

Control of the software system evolution is another challenge that software developers 

face. Many unplanned changes happen to the system, and software developers strive to 

find a method to analyze the impact of the changes in the real time. There are automatic 

tools that can demonstrate the impact on two lowest levels of abstraction, code and UML 

design (Medvidovic et al., 2003). But the relation of these changes with architecture of 

the system and requirements is usually left to be determined by people. In small projects 

it is not an issue; but as soon as team size exceeds 2 developers, the issues of evolution 

control arise (Paetsch, Eberlein, & Maurer, 2003).  

These problems of software process motivated us to build a scientific method for their 

resolution – EBD-S. This method is described in the Chapter 4 of the thesis.  
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2) Analyze the existing methods to solve these problems 

To elaborate a new method to cope with the given problems it is important to understand 

the existing methods and analyze their pros and cons. We performed a comprehensive 

literature review of the software methodologies and best-practises in Chapter 2. It 

allowed us to focus on the problems which are not covered by existing approaches. 

3) Enrich the Environment-Based Design Theory with Design Matrix approach 

The idea of Environment-Based Design was developed by Dr. Yong Zeng in 2004 based 

on Axiomatic Theory of Design Modeling (Zeng, 2002). It includes three main stages: 

environment analysis, conflict identification and concept generation (Zeng, 2004). Design 

Matrix approach allows analyzing the system and verifying the applicability of the 

solution concepts to the real problem. Together these approaches form a unique tool for 

problem solving. We provided a literature review of design theories and their comparison 

to understand the advantages of the selected approach. 

4) Build up a problem solving framework that can address different software concept 

generation problems 

Environment-Based Design and Design Matrix approach form a powerful tool to generate 

software concepts and select the most adequate solution, as well as to manage the effects 

of change. However, they lack an ability to track the history of decisions and changes, 

which is an extremely important part of evolution control. To provide such ability, we 

reinforce the EBD-DM approach with a simple visual tool that captures and relate the 

requirements-architecture-design artefacts. This tool is called CBSP (Component-Bus-
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System-Property) approach, and it complements the two presented methods in software 

process. In fact, this approach was added on the basis of feedback from real-world 

implementation of the EBD-DM. Together these three approaches form a solid basis for 

resolution of main software development challenges. 

1.4 Contribution 

The objective of this thesis is to elaborate an agile software design methodology that 

combines the Environment-Based Design method with Design Matrix decomposition 

approach for software architecture selection and CBSP approach to control the software 

evolution. The advantages of the proposed design method are the formalization of 

software concept generation, justification of the software architecture selection and 

traceability of the design decisions for the evolution control. The contribution of this 

thesis can be summarized as following: 

- Many existing software methodologies focus on fast-adapting design and 

development approaches, but they sacrifice profound analysis for the speed of 

implementation. We propose to integrate lightweight and effective analytical 

methods to the software process, which allow planning and controlling the 

software architecture evolution in a long run. With EBD-S methodology we 

focused on finding the right balance between formalized analysis and rapid 

development that ensures high quality software and reduces the risk of 

architectural lock-in. 

- The application of EBD-S approach in the real world software development 

project allowed us to tune some parts of it, and underlined the gaps between 
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theory and practice that we were able to close within next development iterations. 

The case study, described in Chapter 5, reflects this process. 

- The Environment-Based Design and Design Matrix problem-solving had been 

proven and widely used in many engineering fields. This thesis extended the 

application of these methods to the software design and development process. 

1.5 Organization of the thesis 

The thesis is organized as follows:  

Chapter 1: Introduction of the thesis. This chapter presents the motivation, scope, 

objectives, challenges of the research, contribution of the thesis and its organization. 

Chapter 2: Literature review. This chapter defines the key aspects of the software 

architecture selection, described in existing researches 

Chapter 3: Theoretical foundations review. It includes the review of the Environment-

Based Design (EBD) methodology, of the Design Matrix problem decomposition and 

analysis approach, and CBSP methodology review. 

Chapter 4: Environment-Based Design of Software (EBD-S) approach. This reusable 

model unites EDB and Design Matrix principles with CBSP approach for robust software 

architecture development and provides an instrument for software evolution control. 

Chapter 5: Case Study. This chapter overviews the EBD-S approach by demonstrating its 

application in a real-world example. 

Chapter 6: Conclusion. This chapter summarizes the thesis material, and provides 

thoughts on the future work. 
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2. Literature review 

2.1 Overview 

This chapter contains the review of the literature related to our research. This review 

encompasses two main aspects, which are the key elements of the research: system 

design theories in general and software process and design methodologies, focusing on 

the most popular agile software development methods. 

2.2 System design theories 

2.2.1 The nature of design theories 

Design is ―the use of scientific principles, technical information and imagination in the 

definition of a structure, machine or system to perform pre-specified functions with the 

maximum economy and efficiency‖ (Fielden, 1975). Design is central topic within 

engineering. 

A design theory is a prescriptive theory based on theoretical underpinnings which says 

how a design process can be carried out in a way which is both effective and feasible. 

(Walls, Widmeyer, & Sawy, 1992). 

The primary difference between scientific theories and design theories is in how they deal 

with goals. Goals are meaningless in natural science theories, social science theories may 

deal with goals as objects of study. The purpose of a design theory is to support the 

achievement of goals. Goal orientation is the key element required in a design theory 

which is missing in a science theory (Walls et al., 1992). The following statements 

characterize design theories: 



13 

 

(1) Design theories must deal with goals as contingencies. While goals are extrinsic 

to explanatory and predictive theories, they are intrinsic to a design theory. 

(2) A design theory can never involve pure explanation or prediction. If it explains, it 

explains what properties an artifact should have. If it predicts, it predicts that an 

artifact will achieve its goals to the extent that is possesses prescribed by the 

theory. 

(3) Design theories are prescriptive. They integrate the explanatory, predictive and 

normative aspects in ―can‖ and ―will‖ design paths that realize more effective 

design and use. 

(4) Design theories are composite theories which encompass kernel theories from 

natural science, social science and mathematics. 

(5) While explanatory theories tell ―what is‖, predictive theories tell ―what will be‖, 

and normative theories tell ―what should be‖, design theories tell ―how to / 

because‖. 

(6) Design theories show how explanatory, predictive, or normative theories can be 

put to practical use. 

(7) Design theories are theories of procedural rationality (Simon, 1996). 

If it is to be a good theory (Nagel, 1961), a design theory must be subject to empirical 

refutation. An assertion that possession of a particular set of attributes will enable an 

artifact to meet its goals can be verified by building and testing the artifact. Prototype 

construction is a major aspect of design theory research. 
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2.2.2  A formal definition of a design theory 

A design theory must have two aspects – one dealing with the product and another 

dealing with the process of design. These aspects cannot be independent, since the design 

process must yield the product to be designed (Suh, 1990). 

The first component of a design theory dealing with the product of design is a set of 

meta-requirements which describe the class of goals to which the theory applies.  The 

second component is a meta-design describing a class of artifacts hypothesized to meet 

the meta-requirements. The third component is a set of kernel theories from natural or 

social sciences, or from other design theories which govern design requirements. The 

final component is a set of testable design process hypotheses which can be used to verify 

whether the meta-design satisfies the meta-requirements. 

Kernel Theories

Kernel Theories

Meta-
requirements

Meta-design
Testable design 

product 
hypotheses

Design method
Testable design 

process 
hypotheses

 

Figure 2 Components of a design theory according to Walls (2001) 

The second aspect of a design theory deals with the design process. The first component 

of this aspect is a design method, which describes procedure for artifact construction. The 

second is a set of kernel theories governing the design process itself. These kernel 

theories may be different from those associated with the design product. The final 

component is a set of testable design process hypotheses which can be used to verify 

whether the design method results in an artifact which is consistent with meta-design 

(Walls et al., 2001). 
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2.2.3 Classification of design theories and methodologies 

The field of Design Theory and Methodology (DTM) is a rich collection of findings and 

understandings resulting from studies on how we design (rather than what we design). 

While perhaps the ultimate goal of the DTM research would be to obtain a general and 

abstract (thus universal) theory about design, there can be theories only general but still 

concrete or theories abstract but individual as an intermediate state of progress.  

Therefore, DTM can roughly be categorized into four categories along two axes; one is 

―concrete vs. abstract‖ and the other is ―individual vs. general‖ (Tomiyama, Gu, Jin, 

Lutters, Kind, & Kimura, 2009). 

Table 1 DTM categorization by Tomiyama et al. 

 General Individual 

Abstract Design theories (GDT, UDT) Math-based methods (Axiomatic 

Design, Optimization, Taguchi 

Method) 

 

Concrete Design methodologies (Adaptable Design, 

Integrated Product Development, TRIZ, etc.) 

Methodologies to achieve concrete goals 

(Axiomatic Design, Design for X, DSM, FMEA, 

QFD, Total Design of Pugh) 

Process methodologies (DSM, Concurrent 

Engineering) 

Design methods 

 Concrete and Individual: By grouping records of individual design cases belonging to 

a specific product class and by extracting commonalities among them, we obtain 

‗‗design methods‘‘ for this particular product class.  

 Concrete and General: DTM in this category aims at concrete descriptions but 

applicable to a wide variety of products. This type of DTM can be obtained by 

generalizing design methods. This generalization is possible by focusing on particular 

characteristics common to different types of products. By focusing on functions, we 
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obtain so-called prescriptive design methodologies such as Pahl and Beitz (1988). 

Similarly, by focusing on various concrete design goals within design, we obtain DfX 

(Design for X). If we focus only on design process management, we obtain process 

technologies to control and manage product development processes, such as 

concurrent engineering. 

 Abstract and Individual: By abstracting design methods, we obtain this type of DTM 

applicable (only) to a specific class of product design. Abstraction often takes a form 

of mathematics, meaning design solutions can be obtained algorithmically with 

computation. DTM in this category includes, for example, a variety of computational 

methods for optimization and engineering computation. Note that these computational 

methods do not include modeling systems (such as geometric modeling), because 

they are ‗‗modeling frameworks‘‘ rather than ‗‗design methods‘‘. However, some 

DTM methods describe design at such an abstract level that they are applicable to a 

certain class of design targeting specific goals (for instance, Taguchi method for 

quality design (Steward, 1981)). 

 Abstract and General: Design Theories about design processes, activities, and 

knowledge. For example, General Design Theory (GDT) by Yoshikawa explains 

design as knowledge operations (set operations). 

2.2.4 Generic design process 

Design methodology begins with a design process model that can be used to develop 

product specifications. In all cases it is apparent that the development process is 

commonly regarded as a logical sequence of phases in which tasks are completed. 

Although differences exist in for instance the scope of the models and the use of 
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iterations, all models show a similar way of describing a progression through a sequence 

of events (Yoshikawa, 1981). 

A0

Clarify and define the task

A1
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their structures

A2

Search for solution 
principles

A3

Decompose into modules
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Figure 3 General Design Theory process (Yoshikawa, 1981) 

2.2.5 Evaluation of major design theories and methodologies 

Tomiyama et al. performed a deep analysis of the contemporary Design Theories and 

Methodologies in the following domains: research, education and industry (Tomiyama et 

al., 2009). Their findings are summarized in Table 2. 

Table 2 DTM widely taught and widely used (Tomiyama et al., 2009) 

 General Individual 

Abstract Design theories – Widely taught Math-based methods – widely 

taught and used 

 

Concrete Design methodologies – widely taught 

Methodologies to achieve concrete goals – 

widely taught and used 

Process methodologies – widely taught and used 

Design methods – widely taught 

and used 
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Design theories (GDT, UDT) and design methodologies (Adaptable Design, Integrated 

Product Development, TRIZ) are widely taught, but rarely used in industry. They mostly 

focus on the embodiment design rather than on how to achieve concrete performance 

goals (cost, quality, time). For routine design, which represents the vast majority of the 

design cases in industries, these aspects are more important than innovation in functional 

design. However, increasingly industry started to realize the importance of innovative 

design and for this reason TRIZ as a method to enhance innovation capabilities is popular 

among industry (Tomiyama et al., 2009). In surveying various DTM, Tomiyama et al. 

found out that many of them do not reflect modern product development activities, 

especially lacking support of the following: 

 Complex multi-disciplinary product development 

 Further advances in digital and virtual engineering for better collaboration 

 Globalization in product development 

Among the most widely design methods, used in industry, only one found really wide 

adoption in industry – Axiomatic Design Theory. Generally it is applicable for all kinds 

of design activities, including complex system design; it has large number and wide range 

of examples to follow; and it can be an effective tool in analysis in addition to design 

activities. 

2.2.6 Axiomatic design theory 

Axiomatic design theory and method have been widely reported in CIRP (The 

International Academy for Production Engineering) community. Axiomatic design states 

the best design solution fulfills two axioms: 
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1. Maximum independence of the functional elements. 

2. Minimum information content. 

Compliance with the first axiom assures that designs will be adjustable, controllable and 

will avoid unintended consequences. Compliance with the second axiom assures that the 

design will be robust with a maximum probability of success. There are also theorems 

and corollaries associated with the axioms (Tomiyama et al., 2009). 

 

Figure 4 Four domains in axiomatic design 

Application of Axiomatic Design consists of three elements each with two parts. The 

parts of the first element are the axioms. In order to apply the axioms systematically 

through the design, a structure for the design elements is required. The structure is the 

second element and its two parts are a horizontal decomposition into domains of 

customer, functional, physical and process domains as shown in Figure 4, and a vertical 

decomposition in a hierarchy from general to specific aspects of the design. The third 

element is the process. It is composed of zigzagging decomposition to create the design 

hierarchies in the domains from the top down by first developing the functional 

requirements (FRs) from the customer attributes (CAs) in the customer domain then 

selecting the Design Parameters (DPs) in the physical domain to satisfy the FRs and the 

corresponding Process Variables (PVs) in the process domain to create the DPs (Suh, 
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1990). In order to check for compliance with Axiom 1, the independence axiom, Suh 

defines a design matrix ([A]) which is used to display which DPs influence which FRs: 

 [  ]  [ ][  ] (1) 

The desirable design is uncoupled where matrix is diagonal. If the matrix is triangular it 

is a decoupled design, and there is a fixed order of adjustment of the DPs to satisfy the 

FRs. Otherwise, the design is a coupled design which should be avoided. 

Axiomatic design theory has been used in a wide range of industrial applications ranging 

from software design to products and manufacturing systems design (Tomiyama et al., 

2009). 

2.3 Software design methodologies 

2.3.1 Software process 

Software process is the term given to the organization and management of software 

development activities. Generic software development process shares the same principles 

with engineering process in all industries: from concept through design to the final 

product.  It is iterative, as in the majority of the industries. Project management directs all 

the stages of the process. 

Each stage produces certain outcome. To describe the generic software process, we need 

to differentiate its sub-processes by their outcomes, and group them in the structure. The 

software sub-process classification, presented below, is based on the Microsoft software 

development guideline (Wiegers, 2003): 
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- Requirements elicitation – it is the process of building the concept of the software. 

The main outcomes are Vision and Scope document and Use-Cases. 

- Software specifications development – the specification of the design and 

architecture of the future product. Main deliverables are:  

o Software architecture – is the complex of basic technologies of the software 

solution, and a set of design patterns, united in the framework or core. 

o Software design – is the segmentation of the functionality by the components, 

modules or classes and their relationships to each other and the environment. 

o Detailed software design – represents the algorithms and data structures, 

which will be used by the developers during coding. 

o All the requirements (business and software) are usually united in one 

document, called Software Requirements Specifications. This document 

represents the deliverable of the analysis and design stages, and serves as a 

base for following stages. 

- Software implementation – the process of coding performed according to the 

software requirements. Includes many iterative stages, internal quality verification 

and code refactoring. The main deliverable is the software product itself. 

- Verification and validation – the process of internal quality verification; usually goes 

in parallel with software implementation process. The main goal is to eliminate the 

defects (non-conformities to the specifications) of the software. The deliverables are 

the verified software and the list of ―known errors‖ – non-critical issues, which are 

not planned to be fixed in current version. 
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- Integration and delivery – creation of the final software package, automated 

installers or integration to the work environment. The deliverable is the final software 

product. 

- Maintenance – supporting and troubleshooting the operations of the software. This 

activity is important when the developers need to get user‘s feedback and improve the 

product. 

There are several approaches to software development. They give different 

recommendations for the length of iterations, order of the stages, and involvement of the 

team members. But all of them are in agreement that these processes are essential in 

software development. 

2.3.2 Software architecture and design 

Software architecture has emerged as a crucial part of the design process. It encompasses 

the structures of large software systems. The architectural view of a system is ―abstract, 

distilling away details of implementation, algorithm, and data representation and 

concentrating on the behavior and interaction of "black box" elements‖ (Shaw & Garlan, 

1996). Software architecture is developed as the first step toward designing a system that 

has a collection of desired properties. Shaw and Garlan defined what constitutes software 

architecture in more details: 

The software architecture of a program or computing system is the structure or 

structures of the system, which comprise software elements, the externally visible 

properties of those elements, and the relationships among them (Shaw & Garlan, 

1996). 
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First, architecture defines the key software elements and embodies the information about 

how the elements relate to each other. This means that it specifically omits certain 

information about elements that does not pertain to their interaction. Thus, an architecture 

is foremost an abstraction of a system that suppresses details of elements that do not 

affect how they use, are used by, relate to, or interact with other elements. 

Second, the definition makes clear that systems can and do comprise more than one 

structure and that no one structure can irrefutably claim to be the architecture. For 

example, all nontrivial projects are partitioned into implementation units. This is one kind 

of structure often used to describe a system. Other structures are much more focused on 

the way the elements interact with each other at runtime to carry out the system's 

function. 

Third, the definition implies that every computing system with software has a software 

architecture because every system can be shown to comprise elements and the relations 

among them. 

Fourth, the behavior of each element is part of the architecture insofar as that behavior 

can be observed or discerned from the point of view of another element. Such behavior is 

what allows elements to interact with each other, which is clearly part of the architecture. 

A set of business and technical decisions define the software architecture. These business 

and technical decisions are strongly related on the environment in which the architecture 

is required to perform. In any development effort, the requirements make explicit some of 

the desired properties of the final system. Not all requirements are concerned directly 

with those properties; a development process or the use of a particular tool may be 
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mandated by them (Chen, Yao, Lin, Zeng, & Eberlein, 2007). Weigers identified the key 

influences to software architecture (Wiegers, 2003): 

- Business requirements, expressed by stakeholders, is the main source of influence 

to architecture 

- Developing organization frequently reshapes the architecture according to current 

investments in certain assets, long-term strategies, and organization structure 

- Technical environment usually sets the limitations of the software system and 

defines the available selection of the basic technologies 

- Background and experience of architects inevitably affects the architecture 

2.3.3 Software design: commonality and variability 

The question of what is the nature of software design is important for understanding its 

principles. Coplien – from his ―Multi-Paradigm Design for C++‖ – provides an answer: 

When we think abstractly, we emphasize what is common while suppressing 

detail. A good software abstraction requires that we understand the problem well 

enough in all of its breadth to know what is common across related items of 

interest and to know what details vary from item to item. The items of interest are 

collectively called a family, and families—rather than individual applications—

are the scope of architecture and design. We can use the commonality/variability 

model regardless of whether family members are modules, classes, functions, 

processes or types; it works for any paradigm. Commonality and variability are 

at the heart of most design techniques. (Coplien, 1999). 
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Finding the commonalities and variabilities within a system, and expressing them, forms 

the heart of design. Commonalities are often the parts that are difficult to explicitly 

identify, not because we don‘t recognize them, but because they‘re so easily and 

intuitively recognizable it is tough to spot them. 

Variability can come in two basic forms, one of which is easy to recognize and the other 

much more difficult. Positive variability is when the variability occurs in the form of 

adding to the basic commonality. For example, an abstraction desired is that of a 

message, such as a SOAP message or e-mail. If we decide that a Message type has a 

header and body, and leave different kinds of messages to use that as the commonality, 

then a positive variability on this is a message that carries a particular value in its header, 

perhaps the date/time it was sent. This is usually easily captured in language constructs—

in the object-oriented paradigm, for example, it is relatively trivial to create a Message 

subclass that adds the support for date/time sent. 

Negative variability, however, is much trickier. As might be inferred, a negative 

variability removes or contradicts some facet of the commonality – a Message that has a 

header but doesn‘t have a body (such as an acknowledgement message used by the 

messaging infrastructure) is a form of negative variability. And capturing this in a 

language construct is problematic – most of object-oriented languages don‘t have a 

facility to remove a member declared in a base class. 

Thus, the goal of the software design is to maintain the right level of abstraction by 

encompassing commonalities, supporting positive and avoiding negative variability 

(Neward, 2010). 
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2.3.4 Nature of change in software development 

Software development process is an iterative activity. Stages of development are often 

interwoven and affect each other. Change is the key notion in the understanding of these 

interactions.  

Change in the software development is the modification of some important aspects of the 

development, which cause the modification of expected result. Changes are inevitable in 

all the development processes. James F. Peters and Sheela Ramanna proposed following 

classification of the changes in the software development process: external and internal 

from the system perspective; planned and unplanned from the process perspective (Peters 

& Ramanna, 2003). 

External changes are caused by the client‘s requests; internal ones are the result of the 

internal decisions and optimizations. The necessity of the change must be determined and 

analyzed before it goes to the implementation. Existing approach of determination is 

called risk-value-cost analysis and consists in determination of risks and costs of the tasks 

and activities with comparison of benefits and drawbacks.  

Planned changes are usually reflected in all levels of the requirements, from business to 

detailed design, and approved by the software architect / designer. Unplanned changes 

are introduced by mistake or personal decision of the developer, and often cause the 

architecture or design decay. 

Consistency in the software change control process permits to plan software evolution 

during the whole software life-cycle (Medvidovic et al., 2003). 
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2.3.5 Background of agile methodologies 

In the last 30 years a large number of different approaches to software development have 

been introduced, of which only few have survived to be used today. The nature of 

software development results in the fact that traditional information systems development 

methodologies ―are treated primarily as a necessary fiction to present an image of control 

or to provide a symbolic status‖ (Nandhakumar & Avison, 1999). More than that, several 

researchers and software practitioners in early 2000s agreed that traditional methods 

―provide normative guidance to utopian development situation‖ (Truex, 2000). As a 

result, industrial software developers have become skeptical about new solutions that are 

difficult to grasp and thus remain not used (Wiegers, 2003). This was the background for 

agile methodologies appearance. 

Agile – software development methods attempt to offer once again an answer to the 

business community asking for lighter weight along with faster and nimbler software 

development processes. Agile proponents claim that the focal aspects of light and agile 

methods are simplicity and speed, as opposed to deep formalization and complexity of 

traditional design methodologies. The principles of agile development are expressed in 

Agile Software Development Manifesto published by a group of software practitioners 

and consultants in (Beck, 2001). The focal values honored by this manifesto are: 

- Individuals and interactions over process and tools 

- Working software over comprehensive documentation 

- Customer collaboration over contract negotiation 

- Responding to change over following a plan 
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Highsmith and Cockburn (2001) report that the changing environment in software 

business seriously affects the software development process. To satisfy the customers at 

the time of delivery has taken precedence over satisfying them at the moment of project 

initiation. That calls for procedures dealing with how to better handle inevitable changes 

throughout the software development cycle (Cockburn & Highsmith, 2001). It is claimed 

that agile methods are designed to: 

- Produce the first delivery in weeks, to get rapid feedback 

- Invent simple solutions, so there is less to change and making changes easier 

- Improve design quality continually, making next iteration less costly 

- Test constantly, for earlier and less expensive defect detection 

All this forms the major difference between agile and traditional design. Agile methods 

assume largely emergent, rapidly changing requirements and agile design is worked out 

for current requirements. While traditional design methodologies, applied to software, 

work with knowable early and largely stable requirements, with architecture designed for 

current and foreseeable requirements. 

2.3.6 Generic agile software process 

Miller gives the following characteristics to agile software processes from the fast 

delivery point of view, which allow shortening the life-cycle of projects (Miller, 2001): 

- Modularity on development process level 

- Iterative with short cycles enabling fast verifications and corrections 

- Time-bound with iteration cycles from one to four weeks 

- Parsimony in development process removes all unnecessary activities 
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- Adaptive with possible emergent new risks 

- Incremental process approach that allows functioning application building in 

small steps 

- Convergent and incremental approach minimizes the risks 

- People-oriented, agile process favor people over process and technology 

- Collaborative and communicative working style 

Since the agile software development principles differ from the traditional design 

approaches, its process is also very different. Figure 5 represents the high-level view on 

the agile software development process (Robertson & Robertson, 2007). All product 

requirements and user stories are collected under the name of Product Backlog. In each 

iteration, which usually lasts from 1 week to 1 month, a sprint backlog – sub-set of 

requirements – is selected for implementation. Then a very light-weight process of 

design-implementation-testing-documentation is performed. The result is a working 

application, with a small number of new (or updated) features. 

 

Figure 5 Generic agile software development process (Robertson & Robertson, 2007) 
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2.3.7 Agile software development challenges 

The benefits associated with agile software development methods are obtainable only if 

these methods are correctly used in production process. While agile approaches concur 

with the traditional software development practice, they are not all suitable for all phases 

in the software development life-cycle – the results of the study (Abrahamsson, Salo, 

Ronkainen, & Warsta, 2002) are summarized in Figure 6. 
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Figure 6 Software development life-cycle support 

According to the study, only Rational Unified Process covers all the aspects of software 

development, both from project management and process viewpoints. Other popular agile 

approaches do not support concept generation stage, and do not cover change control 

during the system in use evolution. Process of software architecture creation is not 

determined in XP, FDD and Scrum, while the last lacks process description of design and 

coding stages as well (Abrahamsson et al., 2002). 

Another type of challenges, generic to all approaches, is related to requirements 

engineering. Eliciting precise and comprehensive product requirements from customers is 

of critical importance for the success of product development (Wang & Zeng, 2008). 
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However, many agile methods advocate the development of code without waiting for 

formal requirements analysis and design phases. Based on constant feedback from the 

various stakeholders, requirements emerge throughout the development process. Most 

agile organizations shun formal documentation of specifications. Instead, they use simple 

techniques such as user stories to define high-level requirements and rely on the heavy 

communication with the customer. For projects that ―can‘t achieve high-quality 

interaction, this approach poses risks such as requirements inadequately developed or, 

worse, wrong‖ (Lan & Ramesh, 2008). 

The traditional requirements engineering process phases – elicitation, analysis, and 

validation are present in all agile processes. The techniques used vary in the different 

agile approaches and the phases are not as clearly separated as in the traditional RE 

process. They are also repeated iteratively which makes it harder to distinguish between 

the phases. More than that, continuous reprioritization of the requirements leads to 

instability. The techniques used in the agile development processes are sometimes 

described vaguely and the actual implementation is left to the developers. This is a result 

of the emphasis on highly skilled people: ―good‖ developers will do the ―right thing‖ 

(Paetsch et al., 2003). As all agile approaches include at least a minimum of 

documentation, it is the responsibility of the development team to ensure enough 

documentation is available for future maintenance. It either slows down the development, 

or leads to the lack of documentation (Lan & Ramesh, 2008). 
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3. Theoretical foundations review 

3.1 Environment-Based Design 

3.1.1 Introduction to Axiomatic Theory of Design Modeling  

There are two basic approaches in representing the design problem: bottom-up and top-

down. The first one is based on generalization of the design problem structure by analysis 

of engineering design activities and case studies. The top-down approach works the other 

way around – it tries to derive the design problem structure from high-level principles. 

The axiomatic approach is one of the most important tools in top-down design problem 

representation. It addresses the general design models and problems, and lets the concrete 

design problem models to be deducted. It is based on the set of axioms, which are 

statements that are self-evident truths, and uses mathematical structure to consistently 

derive the invariant structure for design problem representation. 

Axiomatic Theory of Design Modeling (Zeng, 2002) provides a logical tool for 

representing and reasoning about object structures. It uses three basic axioms: universe, 

object and relation. Axiomatic Theory of Design Modeling differs from set theory, where 

concrete and abstract objects are distinguished by set and element. In this theory the only 

abstract concept is the universe. Here are the definitions of these basic axioms: 

[Definition 1] The universe (U) is the whole body of things and phenomena observed or 

postulated. 
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[Definition 2] An object (denoted by capital letters) is anything that can be observed or 

postulated in the universe. 

[Definition 3] A relation (~) is an aspect or quality that connects two or more objects as 

being or belonging or working together or as being of the same kind. A 

relation can be a property that holds between an ordered pair of objects. 

                 (2) 

where A and B are objects, A ~ B is read as ―A related to B‖, and R is the relation from A 

to B. It is important to note that relation is also an object. Based on definitions 1-3, the 

following axioms are introduced: 

[Axiom 1] Everything in the universe is an object. 

[Axiom 2] Every object in universe interacts with other objects. 

The characteristics of relations play a critical role in the axiomatic theory of design 

modeling. We need to define a group of basic relations to capture the nature of object 

representation. They will be used to establish new types of relations in the theory. We 

need two basic relations – the corollaries of the theory: 

[Corollary 1] Every object in the universe includes other objects. 

           (3) 

B is called a sub-object of A. The symbol   is inclusion relation. The inclusion relation is 

transitive and idempotent but not commutative. Other operations such as ⊆, =, ∪, and ∩ 

are also defined based on this corollary (Zeng, 2002). 
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[Corollary 2] Every object in the universe interacts with other objects. 

               (4) 

C is called the interaction of A on B. The symbol ⊗ represents interaction relation. 

Interaction relation is idempotent but not transitive or associative. 

Based on the above two corollaries, the structure operation is established. It provides the 

aggregation mechanism for representing the object evolution in the design process. 

[Definition 4] Structure operation, denoted by ⊕, is defined by the union of an object 

and the relation of the object to itself. 

       (   )  (5) 

where ⊕O is the structure of object O. The structure operation provides the aggregation 

mechanism for representation of object evolution in the design process (Zeng, 2002). 

3.1.2 Environment-Based Design process 

The notion of Environment-Based Design was introduced by Dr. Yong Zeng in 2004. 

This design methodology is based on his Axiomatic Theory of Design Modeling. While 

traditional axiomatic design theories are based on the generic design process, the 

environment-based design process encompasses three domains: environment analysis, 

identification of conflicts and concept generation. These domains are processed 

iteratively and progressively to elaborate design requirements and design solutions. The 

generic EBD process is shown on the Figure 7 using IDEF0 notation. 
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Figure 7 Environment-Based Design process 

In order to understand the EBD process, we need to provide definitions for the main 

components of the EBD. 

[Definition 5]  A product system is the structure of an object (Ω) including both a product 

(S) and its environment (E). 

The product can be a machine, a software package, a process, an idea, etc. Everything 

except the product itself can be seen as its environment. Let 

           [     ]  (6) 

where   is the object that is included in any object. 

Based on the definition of structure operation, the product system (  ) can then be 

expanded as follows: 

     (   )  (  ) (  ) (   ) (   )  (7) 

where    and    are structures of the environment and product, respectively;     and 

    are the interactions between environment and product. A product system is 

illustrated in Figure 8. 
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Figure 8 Product system (Zeng, 2004) 

The definition of the product system gives a description how a product exists in the 

universe. The product system is composed of the product (object / collection of objects), 

environment (all other objects in the universe) and interactions between product and 

environment, between elements of the environment and between the elements of the 

product. It is important to separate the interactions between product and the environment, 

because they define the place and the behavior of the product in the system. Thus we 

introduce a new definition: 

[Definition 6] Product boundary, denoted by B, is the collection of interactions between 

a product and its environment. 

   (   ) (   )  (8) 

We can define two types of product boundaries: structural and physical. The structural 

boundary (B
s
) is the shared physical structure between a product and its environment. 

The physical interactions include actions (B
a
) of the environment on the product and 

responses (B
r
) of the product to the environment. Therefore, product boundary can be 

represented as 

                      (9) 

Based on the definition of the product system, we can formally define a design problem. 
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3.1.3 EBD process: design problem formulation 

[Definition 7]  A design problem can be literally defined as a request to design something 

that meets a set of descriptions of the request. Based on the axiomatic 

theory of design modeling, both "something" and "descriptions of the 

request" can be seen as objects and can be further seen as product systems 

in the context of formulating design problem. Thus a design problem, 

denoted by   , can be formally represented as 

     (       )  (10) 

where     (                ) can be seen as the descriptions of a request for 

the design,     (                ) is something to be designed, and λ is the 

"inclusion" relation ( ) implying that     will be a part of     so that the designed 

product will meet the descriptions of the design.  

At the beginning of design process,     is unknown and     is the only thing defined. 

The true value of    is undetermined, which means the request is yet to be met. 

According to (6) and (7), we have 

     (   ) (   )    

     (   ) (   )     
(11) 

Since                 , we have 

     (       )   (       )   (     ) (12) 

where   denotes logical ―and‖. 

Substitute (9) into (12), we have 

     (       )   (       )   (  
    

 )   (  
    

 )   (  
    

 ) (13) 
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Equation (13) can be organized into three parts: 

1)  (       ), which defines the requirements on the product environment 

2)  (       )   (  
    

 ), which denotes direct constraints on the product 

3)  (  
    

 )   (  
    

 ), which defines direct constraints on actions/responses 

Therefore, the following theorem is derived: 

[Theorem 1] Structure of Design Problem. A design problem is implied in a product 

system and composed of three parts: the environment in which the 

designed product is expected to work, the requirements on product 

structure, and the requirements on performance of the design product. 

Table 3 Structure of design problem 

Design Problem: P
d 

Product Environment  (       ) 
Performance Requirements  (       )   (  

    
 ) 

Structural Requirements  (  
    

 )   (  
    

 ) 

In other words, the design problem is a problem about how to change the existing state of 

universe to a desired state. 

3.1.4 EBD process: environment analysis 

The foundation of the design problem is the environment of the designed product. We 

can state the following theorem: 

[Theorem 2] Source of Product Requirements. All product requirements in a design 

problem are imposed by the product environment in which the product is 

expected to work. 



39 

 

A design problem can be formulated based on the product environment     
   . 

Obviously, different ways to organize the components in product environment will lead 

to different formulations of product requirements. To formulate the design problem 

clearly, it is important to analyze all the aspects of the environment. 

The detailed derivation and discussion can be found in Zeng (2004). 

The key objective of Environment Analysis is to find all the key environment 

components for a design problem and the relationship between the environment 

components. The result of this analysis constitutes an environment system. To facilitate 

the analysis, an environment decomposition method was developed (Zeng & Gu, 2001). 

There are different ways to decompose the product environment to sub-environments. 

According to its properties, the environment can be viewed as composed of natural 

environment   , build environment    and human environment   . According to the 

importance for the product, environment can be classified as close and remote (Zeng, 

2004). 

It is impossible to list all the environments of a product before decomposition and 

analysis. Thus, the first step in decomposition should be the done according to the 

relative importance. It allows focusing on the close environments only and eliminating 

the relatively unimportant, remote environments. On the next step we should decompose 

the close environment to nature, build and human environments. Later on it is possible to 

perform further decomposition to technology, manufacture, assembly, market 

environments, etc. 
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The structure of the product environment is shown on the Figure 9. 

Close environment

Remote environment

Decomposition process

Nature

Build

Human

 

Figure 9 Structure of product environment 

3.1.5 EBD process: conflict identification 

One of the most important stages of the EBD process in the identification of key conflicts 

between environment components. We need to define a conflict. The Webster dictionary 

gives the following definition: 

Conflict – competitive or opposing actions of incompatibles: antagonistic state or 

action (as of different ideas, interests, or persons). 

A conflict is composed of three basic elements: two competing objects and one resource 

object that the former two objects contend for (Yan & Zeng, 2009). By evaluating a 

conflict according to the five categories – relationship, data, interest, structural and value 

– one can begin to determine the causes of a conflict and design resolution strategies that 

will have a higher probability of success (Klein, 1991). 
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From a design point of view, a design concept is a composition of conflict resolutions. 

Environment decomposition allows finding out the conflicts between the product 

requirements and provides a basis for the conflict resolution (Yan & Zeng, 2009). 

3.1.6 EBD process: concept generation 

A concept is an approximate description of the technology, working principles and form 

of the product, which is sufficiently developed so that one can evaluate the principles that 

govern its behavior. The primary goal of the design concepts is to meet the requirements. 

Concepts must be iteratively refined in order to evaluate the technologies and implement 

them (Ulman, 1995). 

The concept-generation process is the process of transformation from     to     . It is 

demonstrated on the Figure 10. 

Environment

Function 1

O
ve

ra
ll 

fu
n

ct
io

n

Function 2

Function N

Concept 1

Concept 2

Concept N

O
ve

ra
ll 

fu
n

ct
io

n

 

Figure 10 Concept generation process 
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3.1.7 EBD process: dynamics of the process 

Design problem and product description evolve along the design process in EBD. 

Theorems 1 and 2 present a static structure of design problem. In this section we 

demonstrate the mechanism driving the evolution of the design. A generalized evolution 

process is shown on the Figure 11. 

 

Figure 11 Evolution of product in the design process (Zeng 2004) 

At each stage of the product evolution,   
 
 and     

 
 are defined as follows: 

   
 
 (     ) (     )  

    
 
 (       ) (       )  

(14) 

At each stage of the evolution process, the design problem is defined by its current 

product system    , which is called the state of the design. If   
  is the design problem 

at the i
th

 stage of the design process, it can be represented as 

   
    

 (   ), (15) 

where   
  is evaluation operator responsible for identifying the conflicts between the 

current and desired states of design. 

It can be seen from (14) that though the product environment does not change in most of 

the cases throughout the design process, the product-environment boundary Bi may be 

updated every time when the design solutions Si are refined to Si+1. As a result, the design 
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problem   
  will be updated as the design process progresses. This results in the zig-zag 

design process, as shown in Figure 12. 

 

Figure 12 Zig-zag design process (Zeng 2004) 

This can be stated as the following theorem: 

[Theorem 3] Dynamic Structure of Design Problem. In the design process, design 

solutions to a design problem may change the original design problem, if 

the design solutions are different from their precedents, either by 

refinement or by alteration.  

As can be seen in Figure 12, for each design problem   
 , there may exist design 

solutions Si so that a new state of design       can be derived as follows: 

         
 (  

 ), (16) 

where   
  is a synthesis operator responsible for generation of design concepts from a 

design problem. By substituting (15) into (16) we have: 

         
   

 (   ),, (17) 

Equation (17) is called design governing equation. It underlines the design process and 

governs design activities. It defines dynamics of design. The basic concept behind this 

equation is the recursive logic of design (Zeng & Cheng, 1991) which states that design is 
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a recursive process in which the design solution and design problem interdependently 

evolve (Dorst & Cross, 2001), (Zeng & Cheng, 1991). 

3.2 Design Matrix problem decomposition 

3.2.1 Matrix-based decomposition of design problems 

Matrix representation in product design and development can be classified into two 

formats: square matrix and rectangular matrix (RM). First one is often referred to as 

Design Structure Matrix (DSM), which rows and columns represent the same set of 

elements. Rectangular matrices capture the relations between different entities.  In 

problem decomposition, the matrix‘s rows are labeled with design functions, and 

columns are labeled with design parameters. Thus the matrix entries show which 

parameters are required to achieve a specific function. This format is used in axiomatic 

design. In this context, problem decomposition is applied to divide the original complex 

problem represented in a matrix format into design sub-problems for a tractable design 

process. 

Decomposition is a common and effective way to address the complexity of a design 

problem. In this context, matrix-based design decomposition is referred to the 

partitioning of a design problem that is represented in a matrix format. Particularly, the 

columns of this kind of matrix represent the parameters that describe the physical 

constituents and/or behavioral properties of a design, while the rows represent the 

constraint functions that define the correlations among these parameters. Then, each 

matrix entry indicates a dependency relationship of the corresponding row and column 

(Li, 2010). 
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One of the most widely used matrix decomposition methods is a two-phase method. The 

main feature of this method is the decoupling of the function of decomposition into two 

phases of analysis: dependency analysis and partitioning analysis. This methodical 

structure explicitly analyzes the coupling relationships between design elements to 

synthesize decomposition solutions. The original version of the two-phase method 

assumes the binary input matrix, which only captures the presence/absence type of 

dependency in a design problem. In design problem decomposition a non-binary matrix 

representation of relations is required.   

3.2.2 Two-phase method overview 

The two-phase decomposition method was proposed by Chen et al. (2004). This method 

is built upon the unique structure of a two-phase decomposition scheme that decouples 

the decomposition process into two functionally disjointed phases, each achieved by an 

autonomous algorithm. Figure 13 shows the high-level workflow of this method. 

 

Figure 13 Two-phase method workflow (Li, 2010) 

The input of the method is a rectangular matrix, which represents a system comprising 

two sets of elements, i.e., n column elements (design parameters) and m row elements 

(design functions). Then, each matrix entry exhibits a dependency relationship between 
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the corresponding row and column elements. The purpose of the two-phase method is to 

obtain a block-angular matrix, where the blocks represent subsystems and the interaction 

part represents the connection between subsystems, as shown in Figure 13 (c). 

The two-phase method consists of two methodical components, which are labeled with 

Phase 1 and Phase 2. Phase 1 – dependency analysis – consists of two classes of 

algorithms: 

1. Cluster formation. The coupling analysis is performed on rows and columns of 

the matrix. Obtained coupling information is used for hierarchical clustering 

analysis (HCA) to reallocate similar rows and columns close to each other and 

form clusters in a matrix. The formed clusters are often scattered, because the 

couplings between them are not explicitly considered. 

2. Cluster alignment. Analysis of the couplings between clusters to bring similar 

clusters close to each other. The formed clusters will be aligned along the main 

diagonal direction, resulting in a banded diagonal matrix (Figure 13 (b)). 

Phase 2 consists of the application of partitioning analysis to transform the banded 

diagonal matrix to a block-angular matrix (Figure 13 (c)). The following decomposition 

criteria are considered: number of blocks, size of blocks, and size of interactions. 

Partitioning analysis is designed to generate a set of decomposition solutions to satisfy 

the specified decomposition criteria (Li, 2010). 
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3.2.3 Non-binary dependency analysis overview 

The two-phase method is limited in its usage due to the fact that its original version 

supports only binary input matrices, indicating presence/absence of the dependency. In 

many engineering problems the strength of dependency plays a very important role. Thus, 

a non-binary dependency analysis is a vital extension for the application scope of the 

two-phase method. 

The dependency analysis of the two-phase method has its root with the hierarchical 

cluster analysis (HCA). The HCA researchers have developed numerous resemblance 

coefficients to address different types of classification, and the common coefficients are 

the distance coefficients, the association coefficients, and the correlation coefficients.   In 

the context of matrix-based decomposition, it is assumed that the notion of coupling is 

relevant to similarity (resemblance coefficients). 

Li in his work had selected the min/max formulation of Jaccard‘s resemblance coefficient 

to measure the coupling between rows and between columns. The formulation of 

couplings are given in equations (18) and (19). 

 
        

∑     (       )
 
   

∑    (       )
 
   

      [   ] (18) 

         
∑     (       )
 
   

∑    (       )
 
   

      [   ] (19) 

where mij is a matrix entry of RM, and         (       ) is the resulting coupling value 

between the i
th

 row (column) and the j
th

 column (row). 
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3.2.4 Overview of Phase 1 

Similar to the binary dependency analysis, the non-binary one consists of the algorithms 

of cluster formation (CF) and cluster alignment (CA). To analyze non-binary 

information, only the cluster formation algorithm is modified from the binary version. 

The cluster alignment algorithm processes the same type of coupling information from 

the cluster formation algorithm and remains the same. 

The following steps describe the non-binary cluster formation algorithm for columns. The 

same steps can be applied for the rows by transposing the matrix (Li, 2010). 

1. Measure the coupling between columns using the min/max coefficient. 

2. Construct the resemblance coefficient matrix (RCM) that indicated the coupling 

measure between every two columns. 

3. Pick the column pairs that yield the highest coupling value to form a branch of the 

column tree. The column indices are shown as the leaves of the column tree. 

4. Modify the resemblance coefficient matrix to represent the newly formed branch. 

5. Repeat steps 3 and 4 until the resemblance coefficient matrix cannot be further 

reduced, and a complete column tree is formed. The index sequence of the formed 

column tree becomes the sequence to re-arrange the columns of the input matrix.  

After applying the cluster formation algorithm for the input matrix, the cluster alignment 

(CA) algorithm is applied to align the formed clusters. For this step a Binary Tree 

Association (BTA) algorithm is used (Chen, Ding, & Li, 2005). This algorithm deals with 

the dependencies between the column tree and row tree. 
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The purpose of this algorithm is to arrange the branches of the row or column tree in an 

attempt to position the 1s elements along the main matrix diagonal. The step-by-step 

procedure of BTA is given below. 

1. Divide the matrix into four parts based on the leaves of the branches BR1, BR2, BC1 

and BC2. Two lines, horizontal and vertical, are drawn to divide the matrix. 

2. Calculate the number of 1s elements in each part using the formulation as 

     ∑                 (20) 

 where Nkl is the number of 1s elements in Part kl. 

3. Switch the branches BR1 and BR2 if N12 + N21 > N11 + N22; otherwise, leave the 

tree intact. 

4. Repeat steps 1-3 for the left and right branches of BR until the tree leaf is reached. 

Figure 13 (b) illustrates the resulting matrix, obtained from applying BTA 

algorithm to the initial matrix (a). 

3.2.5 Overview of Phase 2 

The second phase of analysis implies the application of partitioning analysis to transform 

the banded diagonal matrix to a block-angular matrix as decomposition solutions of a 

matrix-based system. A concept of partition point is introduced to facilitate this function. 

A partition point is an imaginary point that is placed on a banded diagonal matrix for 

two-block partitioning. The coordinates of partition point in the matrix are expressed as 

(rowi, coli) and represent the position of horizontal and vertical partitioning lines. A 

partition point essentially divides a matrix into four parts. Based on the structure of the 

banded diagonal matrix, the diagonal parts will form the blocks (or subsystems), while 
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the nonzero elements in the off-diagonal parts will contribute to the interaction part. The 

placement of partition points becomes the essential step to determine the final 

decomposition solutions. 

 

Figure 14 A sample diagonal matrix and partition lines (Li, 2010) 

The number of possible decomposition combinations grows exponentially with the size 

of matrix. However, the engineers are looking usually for a single feasible solution which 

is reasonably good, instead of looking for all the feasible solutions. When decomposition 

criteria cannot be clearly specified, the engineers may want to identify several possible 

decomposition solutions for evaluation. The heuristic approach is developed for this case. 

To estimate the quality of a decomposition solution, the matrix-based complexity metric 

is used. This metric approximates the complexity entailed in a block-angular matrix by 

inspecting the size of each block and the size of an interaction part. 

The inputs of the heuristic partitioning analysis are the diagonal matrix and the 

resemblance coefficient matrices (RCM) from the dependency analysis. The step-by-step 

HPA algorithm is presented here: 
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1. Step 1: Re-arrange the Rows and Columns of RCMs. According to the row and 

column sequence of the diagonal matrix, the orders of the RCMs for rows and 

columns are re-arranged. Thus, the nonzero coupling values are clustered along 

the main diagonals, which indicates that the highly coupled rows and columns are 

placed close to each other. 

2. Step 2: Construct the Coupling-Partitioning Plots for Rows and Columns. To 

construct a coupling-partitioning plot, we first place each partition line on the re-

arranged RCM, which helps to identify the broken coupling values between two 

separate groups. These broken coupling values are added together and then 

divided by the total of the coupling values in the same RCM for normalization. 

The resulting normalized value is the broken coupling value that corresponds to 

the partition line, and it will be used for the plot. 

3. Step 3: Select the Partition Lines and Form Partition Points. From the row and 

column coupling-partition plots, the partition lines that belong to the local 

minimum will be selected. If decomposition solutions with ng blocks are desired, 

ng-1 partition lines are required from the row and column coupling-partition plots, 

respectively, to form ng-1 partition points. In addition, the selection of partition 

lines depends on some decomposition criteria. For instance, the size of blocks is 

measured via the number of rows and/or columns. Then, if the distance of the 

partition lines does not agree with the desirable block size, these partition lines 

will not be selected. 

The heuristic partitioning analysis reveals how the coupling information can be utilized to 

expedite the process to obtain a decomposition solution. Through the coupling-partition 
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plots this coupling-driven approach provides a convenient way to explore different 

matrix-based structures (Li, 2010). 

3.3 CBSP approach for requirements-architecture reconciliation 

3.3.1 Introduction to CBSP approach 

Understanding and supporting the interaction between software requirements and 

architectures remains one of the challenging problems in software engineering research 

(Nuseibeh, 2001). Evolving and elaborating system requirements into a viable software 

architecture satisfying those requirements is a difficult task, mainly based on intuition 

and experience. Similarly, little guidance is available for modeling and understanding the 

impact of architectural choices on the requirements (Egyed & Grunbacher, 2002). 

Software engineers face some critical challenges when trying to reconcile requirements 

and architectures: 

 Requirements are usually captured informally in a natural language. On the other 

hand, entities in a software architecture specification are usually specified in a 

more formal manner causing a semantic gap (Medvidovic & Taylor, 2002). 

 System properties described in non-functional requirements are commonly hard to 

specify in an architectural model (Egyed & Grunbacher, 2002) 

 The iterative evolution of requirements and concurrent development of 

architectures demands that in the beginning architecture is based on incomplete 

requirements. More than that, certain requirements can only be understood after 

modeling or even partially implementing the system architecture (Nuseibeh, 

2001).  



53 

 

 Mapping requirements and architecture, as well as maintaining the consistency 

and traceability between the two are complicated. A single requirement may 

address multiple architectural concerns and a single architectural element 

typically has numerous non-trivial relations to various requirements. 

 Contemporary large-scale systems satisfy hundreds, even possibly thousands of 

requirements. It is difficult to identify and refine the architecturally relevant 

information contained in the requirements due to this scale.  

 Requirements and the software architecture emerge in a process involving 

heterogeneous stakeholders with conflicting goals, expectations, and terminology. 

Supporting the different interests demands finding the right balance across these 

often divergent interests. 

CBSP (Component-Bus-System-Property) approach provides an intermediate model 

between requirements and architecture that helps to evolve the two models iteratively 

(Nuseibeh, 2001). For example, a set of incomplete and quite general requirements 

captured as statements in a natural language might be available. The intermediate model 

then captures architectural decisions as an incomplete ―proto-architecture‖ that prescribes 

further architectural development (Brandozzi & Perry, 2001). The CBSP approach also 

guides the selection of a suitable architectural style to be used as a basis for converting 

the proto-architectures into an actual implementation of software system architecture. 

CBSP approach provides: 

 a lightweight way of refining requirements using a small, extensible set of key 

architectural concepts 
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 mechanisms for ―pruning‖ the number of relevant requirements, rendering the 

technique scalable by focusing on the architecturally most relevant set of artifacts 

 involvement of key system stakeholders, allowing nontechnical personnel to see 

the impact of requirements on architectural decisions 

 adjustable voting mechanisms to resolve conflicts and different perceptions 

among architects 

Together, these benefits afford a high degree of control over refining large-scale system 

requirements into architectures. 

3.3.2 CBSP taxonomy 

The fundamental idea behind CBSP is that any software requirement may explicitly or 

implicitly contain information relevant to the software system architecture. It is 

frequently very hard to surface this information, as different stakeholders will perceive 

the same requirement in very different ways (Medvidovic et al., 2003). At the same time 

this architectural information is often essential in order to properly understand and satisfy 

requirements. CBSP supports the task of identifying architectural information contained 

in the requirements and explicating it in an intermediate model. 

Each requirement is assessed for its relevance to the system architecture‘s components 

(C), connections (buses), topology of the system or a particular subsystem, and their 

properties. Thus, each derived CBSP artifact explicates an architectural concern and 

represents an early architectural decision for the system. 
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There are six possible CBSP dimensions discussed below. They involve the basic 

architectural constructs (Medvidovic & Taylor, 2002) and, at the same time, reflect the 

simplicity of the CBSP approach. 

1. C are model elements that describe or involve an individual Component in 

architecture. A requirement may be refined into CBSP model elements describing 

both processing components (Cp) and data components (Cd). 

2. B are model elements that describe or imply a Bus (connector). 

3. S are model elements that describe System-wide features or features pertinent to a 

large subset of the system‘s component and connections. 

4. CP are model elements that describe or imply Component Properties. 

5. BP are model elements that describe or imply Bus Properties. 

6. SP are model elements that describe or imply System Properties. 

A meta-model showing the different model elements relevant to CBSP is given in Figure 

15. Requirements are related to architectural elements such as components or connectors 

via an intermediate CBSP model that acts as a bridge. Different subtypes of CBSP 

elements are used to represent different architectural dimensions listed in the CBSP 

taxonomy. 

Requirement CBCP element Architecture element

Data component Process component Connection component

-Relates to

1..* 1..*

-Depends on 1 1..*

System element

 

Figure 15 CBSP meta-model 
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3.3.3 CBSP process 

This section discusses major steps of CBSP process, which can be generalized as shown 

in the Figure 16. 

A1
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requirements for 
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Selected 
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Conflicts

Conflicts

CBCP mapping

Architectural elements and styles

 

Figure 16 CBSP process 

Step 1:  Selection of requirements for next iteration.  

To reduce the complexity of addressing large numbers of requirements, a team of 

architects applies the CBSP taxonomy to the most essential set of requirements in each 

iteration. The architects eliminate requirements considered unimportant or infeasible 

through stakeholder-based prioritization, thus arriving at a set of core requirements to be 

considered for the next level of refinement. 

Step 2:  Architectural classification of requirements.  

Architect classifies the selected requirements using the CBSP taxonomy. Each 

requirements is assessed by the experts based on the requirement‘s relevance to the CBSP 

dimensions, using an ordinal scale (not=0; partially=1; largely=2; fully=3). For instance, 
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a requirement that is rated as partially relevant along the connector (B) dimension implies 

that it has some (partial) impact on one or more architectural connectors. 

Step 3:  Decomposition analysis and conflict resolution.  

If multiple architects independently perform an architectural classification of 

requirements using CBSP, their findings may diverge since they may perceive the same 

statement differently. Revealing the reasons for diverging opinions is an important means 

of identifying misunderstandings, ambiguous requirements, tacit knowledge, and 

conflicting perceptions. The voting process is as a mechanism to reveal dissent among the 

architects and to reduce risks in requirements refinement. 

Step 4:  Architectural refinement of requirements. 

In this activity the team of architects rephrases and splits requirements that exhibit 

overlapping CBSP properties and concerns. Each requirement passing the consensus 

threshold (concordance and at least largely relevant) may need to be refined or rephrased 

since it may be relevant to several architectural concerns. For instance, if a requirement is 

largely component relevant, fully bus relevant, and largely bus property relevant, then 

splitting it up into several architectural decisions using CBSP will increase clarity and 

precision. 

Step 5:  Selection of architectural elements. 

At this point, requirements should have been refined and rephrased into CBSP model 

elements in such a manner that no stakeholder conflicts exist and all model elements are 

at least largely relevant to one of the six CBSP dimensions. Based on simple CBSP 

model elements, an architectural draft can be derived. 
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Architectural styles provide rules that exploit recurring structural and interaction patterns 

(referred to as ―architectural patterns‖) across a class of applications and/or domains 

(Medvidovic, Rosenblum, & Taylor, 1999). A style guides the architectural design of a 

system, with the promise of desirable system qualities. At the same time, the rules 

guiding the selection and application of a style (or of specific architectural patterns 

suitable in that style) are typically semiformal at best, requiring significant human 

involvement. 

The diagram on the Figure 17 shows the result of CBSP approach application for the 

software architecture problem formalization. 

CBSP 

Architectural elementsArchitecture-relevant requirements Functional requirements

R-05: Focus on rich end-user 
experience

R-06: Expand the possible 
audience to 100,000 users

R-07: Reuse the existing back-
end of TeleManager

Ae-01: Client application 
technology is Microsoft 

Silverlight 4.0

Ae-02: Server application is 
based on RIA WCF services

Ae-03: The EDM is used as 
object-relation mapping

Ae-05: Telerik, a third-party GUI 
components library, is used

Ae-04: Isolated storage is used
 to preload data on the client

R-02.1: Flexible reports

R-02.2: Dynamic reports by 
service/equipment record

R-02.3: Exportable, copi-able, 
email-able and printable data

R-02.4: Dynamic filetering

R-02.5: Hierarchical 
representation of reports

 

Figure 17 Example of relations between requirements and CBSP 
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4. Environment-Based Design of Software 

4.1 Overview 

This chapter describes the Environment-Based Design (EBD) approach for Agile 

Software Development. This approach represents the main contribution of this thesis. 

4.2 EBD-S framework 

The Environment-Based Design of Software (EBD-S) is an application of Environment-

Based Design by Zeng (2004) to agile software architecture and design elaboration 

problem. It uses the generic process of EBD as a framework, and applies specific 

methods for conflict identification and concept generation.  

The main goal of EBD-S is the application of formalized design approach to agile 

software development. In fact, Agile Manifesto states that working product is preferred to 

deeply developed design documentation (Beck, 2001). However, such an approach works 

better for small teams and projects (less than 1000 person/hours). When work 

synchronization between two or more agile teams is required, there is a need in well-

elaborated design documentation (Paetsch et al., 2003). 

Current approaches, addressing this problem – Feature-Driven Design (FDD) and Scrum, 

provide a generic recommendation to create a UML design documents in advance, and 

refine them iteratively. More than that, main idea of FDD is the development of the 

conceptual model before the code is written – and it requires an elaborated software 

design. These agile methodologies show the clear trend in software development – agile 

and traditional design methods merge together for better effectiveness. The EBD-S 
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approach is intended to work with two most recent and gaining popularity agile 

approaches – Scrum and Feature-Driver Design (FDD). Here we provide the theory of 

EBD-S application for Scrum. EBD-S-FDD approach differs in some aspects and is 

discussed on the basis of real examples in Chapter 5. 

EBD for Agile Software Development compliments the Scrum process, and provides 

effective tools for requirements analysis, architecture creation and design concept 

generation. The EBD-S implementation does not require modification in Scrum process, 

it works with intermediate data only; it simplifies the adoption of the EBD-S 

methodology. This process is illustrated in Figure 18. 

Environment-Based Design application for Agile Software Development
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Figure 18 EBD - Scrum mapping 

EBD-S implies use of specific analytical method on the each stage. In order to perform an 

effective conflict analysis, in our work we use CBSP methodology for requirements and 

architecture synchronization, adjusted for our needs. 

To address the growing complexity of software systems, for concept generation we use a 

matrix-based problem decomposition approach, based on non-binary two-phase method, 

developed by Simon Li. The EBD-S framework is shown in Figure 19. 
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Figure 19 Environment-Based Design of Software framework 

In the following sections we discuss the EBD-S stages in connection with agile software 

development methods. 

4.3 EBD-S problem formulation 

The problem formulation of EBD-S relies on the Theorem 1 of the Environment-Based 

Design – Structure of Design Problem: 

A design problem is implied in a product system and composed of three parts: the 

environment in which the designed product is expected to work, the requirements on 

product structure, and the requirements on performance of the design product. 

Thus, the problem formulation stage of EBD-S addresses the understanding of the 

product software scope –  (       ), elaboration of quality software requirements – 

 (       )   (  
    

 ), and functional software requirements –  (  
    

 )   (  
    

 ). 

The software design problem is formulated in terms of the scope and performance 

(quality) / structural (functional) requirements (Zeng & Gu, 1999). 
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Functional requirements in system and requirements engineering define functions of 

software system or components, and describe them as sets of inputs, behaviours and 

outputs (Chen & Zeng, 2009).  Functional requirements define what a system is supposed 

to accomplish. In agile software development process these requirements are usually 

captured in use cases. The implementation of functional requirements is described in 

software system design. 

Quality (or non-functional) requirements specify the criteria that can be used to judge the 

operation of a system rather than specific behaviours. Quality requirements define how 

the software system is supposed to accomplish its mission. In agile software development 

process quality requirements are reflected in software system architecture. 

As we can see, the EBD-S design problem can be formulated in terms of functional 

requirements, translated to system design, and quality requirements, reflected in system 

architecture. Both design and architecture shall be related to user requirements, expressed 

in natural language. To achieve that, EBD-S uses a graph-based model, based on CBSP 

approach. 

4.4 EBD-S environment analysis 

The environment analysis stage of EBD-S refines the software design problem by in-

depth analysis of software product environment and identification of functional and 

quality requirements. 

The software product environment can be represented as the union of the following four 

domains: 
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1. Software domain – technologies, development languages and platforms, existing 

software applications and communication protocols; 

2. Hardware domain – the physical computers, networks and devices, which shall 

interact with the software; 

3. Human interactions domain – people, directly or indirectly affected by the 

software product, and organizations. 

4. Development domain – the people and organization, developing and maintaining 

the application, as well as the technologies used to facilitate the development.  

Constraints, related to these domains, are marked as Cs, Ch, Ci, and Cd correspondingly. 

Requirements, communicated by customer, are marked as R. 

Z. Y. Chen and Y. Zeng in 2006 classified product requirements based on product 

environment and identified 8 levels of requirements. Figure 20 illustrates this model. 

 

Figure 20 Levels of requirements, according to Chen and Zeng 
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Four requirements in the lower half of the pyramid represent the non-functional (quality) 

requirements; four upper requirements are functional (Chen & Zeng, 2006). 

The environment analysis process model (Zeng & Gu, 2001) can be described as follows: 

1) Extract one environment element from the environment set 

2) Determine whether there is a piece of design knowledge mapping the extracted 

element to another action or response. If so, the product structure s attached to this 

knowledge, will be a component of architecture / design concepts  

3) Add component s to the product structure S, and perform conflict analysis. 

4) Form a new environment set and repeat the analysis, if necessary. 

The environment analysis process allows determining the full body of product system, 

and to gather and classify the product requirements. It can be directly applied to the 

software design problem. 

All elements from the close environment of the product system are analyzed with this 

algorithm, and the requirements are derived and classified. If the requirements expressed 

by a customer are insufficient, this analysis allows to identify the gap and to 

communicate it back to the client. Scrum development model approves the development 

process in the conditions of insufficient requirements. Scrum developers hope that a 

working prototype of the software will help to a much better feedback from the customer. 

At this stage EBD-S compliments the Scrum model with the analysis tool, allowing to 

capture the missing requirements and (possibly) to re-focus the development process. 
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4.5 EBD-S architecture conflict analysis 

4.5.1 Environment and conflict analysis process 

The next stage of EBD-S – architecture conflict analysis – finds and deals with the 

contradictions in functional and quality requirements that are selected for current Scrum 

sprint.  

As we determined in Section 4.3, quality requirements of the software system are 

reflected in the software architecture, which governs the design. This stage relies on the 

architecture analysis methods. We adapted the CBSP model for requirements and 

architecture reconciliation of Environment-Based Design of Software. The generic 

process of environment and analysis for software is shown in Figure 21. 
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Figure 21 Architecture conflict analysis process 

Each architecture conflict analysis step is discussed in more detail below. We use ETVX 

(Entry, Task, Verification, and eXit) (Radice, Roth, O‘Hara, & Ciarfella, 1985) to 

document the steps. ETVX cells consist of four components: 

1. Entry lists all items required for the execution of the task  

2. Task describes what should be done, by whom, how, and when (this includes 

appropriate standards, procedures and responsibilities) 

3. Verification/Validation describes all checks and controls that help to indicate if 

the task is being executed properly 

4. eXit lists criteria which need to be satisfied before the task can be considered 

complete and the output(s) of the task itself 
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4.5.2 Architectural classification of requirements 

The requirements, elicited at environment analysis stage, are classified using the CBSP 

taxonomy. Each requirements is assessed by the experts based on the requirement‘s 

relevance to the CBSP dimensions, using an ordinal scale (not=0; partially=1; largely=2; 

fully=3).  

Table 4 EVTX for architectural classification of requirements 

Architectural classification of requirements 

E 

Set of requirements for next-level RDCP refinement 

RDCP taxonomy 

Voting tool 

T Architect classifies selected requirements using the CBSP taxonomy 

V 
Check selection of architect 

Check completeness of classification 

X 
Voting ballots 

Architectural relevance profiles for all requirements 

A profile showing the aggregated architectural relevance is created for each requirement.  

4.5.3 Decomposition analysis and conflict resolution 

If multiple architects independently perform an architectural classification of 

requirements using CBSP, their findings may diverge since they may perceive the same 

statement differently. Revealing the reasons for diverging opinions is an important means 

of identifying misunderstandings, ambiguous requirements, tacit knowledge, and 

conflicting perceptions (Wang & Zeng, 2008). The voting process is as a mechanism to 

reveal dissent among the designers and to reduce risks in requirements refinement. 

The measured consensus among the designers serves as a proxy for their mutual 

understanding of a requirement‘s meaning and their agreement on the architectural 

relevance of a requirement. 
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Table 5 ETVX for decomposition analysis and conflict resolution 

Decomposition analysis and conflict resolution 

E 
Voting ballots 

Architectural relevance profiles for all requirements 

T 

Designers discuss reasons for diverging opinions for low-consensus items 

Designers update requirements to address issues and ambiguities 

Designers exclude architecturally irrelevant requirements 

V 
Check dependencies among requirements to make sure critical 

requirements are not dropped 

X 
Issues and ambiguities 

Architecturally relevant requirements 
 

The rules in Table 6 indicate how to proceed in different situations: in case of consensus 

among architects, the requirements are either accepted or rejected based on the voted 

degree of architectural relevance.  

Table 6 Concordance / relevance matrix 

 Relevance 

Concordance >= Largely < Largely 

Agreement Accept Reject 

Disagreement Discuss and redefine 

We accept requirement as architecturally relevant if the mean of all stakeholders is at 

least ―largely‖, otherwise the requirement is rejected. If the stakeholders cannot agree on 

the relevance of a requirement to the architecture, they further discuss it to reveal the 

reasons for the different opinions. This discussion process may also involve customers 

and other stakeholders to clarify a requirement and eases the subsequent step of refining 

it into one or more architectural dimensions. 

4.5.4 Architectural refinement of requirements 

In this activity the team of architects rephrases and splits requirements that exhibit 

overlapping CBSP properties and concerns (see Table 7). Each requirement passing the 

consensus threshold (concordance and at least largely relevant) may need to be refined or 

rephrased since it may be relevant to several architectural concerns. For instance, if a 
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requirement is largely component relevant, fully bus relevant, and largely bus property 

relevant, then splitting it up into several architectural decisions using CBSP will increase 

clarity and precision. During this process, a given CBSP artifact may appear multiple 

times as a by-product of different requirements. 

Table 7 ETVX for architectural refinement of requirements 

Architectural refinement of requirements 

E 
Issues and ambiguities 

Architecturally relevant requirements 

T 

Architects rephrases and splits requirements that exhibit overlapping CBSP 

properties 

Architects eliminate redundancies 
V Check to make sure that redundancies are minimized 

X 
CBSP elements with dependencies 

Architectural styles 

Along with CBSP elements and their interdependencies, the output of this step is a set of 

architectural styles. Architectural styles provide rules that exploit recurring structural and 

interaction patterns (referred to as ―architectural patterns‖) across a class of applications 

and/or domains (Medvidovic et al., 1999). A style guides the architectural design of a 

system, with the promise of desirable system qualities. 

4.5.5 Software architectural styles and proto-architecture 

In EBD-S software architecture can be viewed as a set of limitations for the design, as 

―rules to follow‖ or ―legacy code to use‖. Architecture implements the class of 

requirements. It is a ―strategic design‖, which has a goal to fulfill quality requirements 

and gain advantage in a long-term prospect, but not in the context of the current project 

with the existing functional requirements (Perry & Wolf, 1992). 
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Software architecture in EBD-S is the result and the main component of the strategic 

planning process. This process is always continuous: the architecture must be corrected 

with the course of time, reflecting new concepts, risks, threats and possibilities. The 

iterative nature of EBD-S allows refining the architecture of the software system 

continuously. 

Based on the dependencies among the elements in CBSP, the rules of the architectural 

style allow us to compose them into architecture. In other words, we select the style 

based on (1) the characteristics of the application domain and (2) the desired properties of 

the system, identified in the requirements negotiation and elaborated in the CBSP model. 

By considering the rules and heuristics of the selected style(s) the designers start 

converting the CBSP model elements into components, connectors, configurations, and 

data, with the desired properties. In other words, architectural style determines the set of 

possible software design solutions. To perform this job, a proto-architecture structure is 

used. Figure 22 illustrates this structure. 

EBD-S Elements and Dependencies

Properties (architecture)Components (design)

R01: Requirement #01

R02: Requirement #02

R03: Requirement #03

R01_CP: Processing component 
for Requirement #01

R03_CP: Processing component 
for Requirement #03

R01_CD: Data component for 
Requirement #01

R02_P: Property of Requirement 
#02

R03_P: Property of Requirement 
#03

Requirements

 

Figure 22 EBD-S requirements-architecture-design reconciliation 
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Design is derived from the existing functional requirements with the architectural 

limitations in mind. In some cases design elaboration can cause the architectural changes. 

The process of software design concept generation is discussed in the Section 4.6. 

4.6 EBD-S design concept generation 

The inputs of the design concept generation phase of EBD-S are architectural styles and 

elements, as well as previously developed design concepts (if any). The conflict 

identification step of the EBD-S prepares an architectural model of the system, which 

addresses the quality requirements. 

To encompass the functional requirements in the same structure, we need to analyze them 

and find the candidate solutions – software design elements that address the requirements 

in question. Next we need to estimate the feasibility of our candidate solutions – it can be 

done by decomposition of the software design problem to sub-domains. 

On this step we create a rectangular matrix, which rows represent the functional 

requirements and architectural elements, and columns represent design elements that 

address these requirements. The relation between requirements and architectural/design 

elements is given in non-binary format, on the scale of 0-3: 0 – no relation, 1 – weak 

relation, 2 – strong relation, 3 – fully coupled elements. 

To generate design concepts, we apply a problem decomposition method, based on 

extended two-phase method (Li, 2010). 
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On the first phase we perform cluster formation and cluster alignment algorithms to 

transform the initial matrix to a banded diagonal matrix, representing the sub-systems of 

the software system. 

On the second phase we apply heuristic partitioning analysis to convert the banded 

diagonal matrix, obtained on the first phase, into possible block-angular matrixes, which 

would represent decomposition solutions of the design problem. An example of such 

decomposition solutions is shown in Figure 23. 

 

Figure 23 Comparison of two decomposition solutions (Li 2010) 

The resulting matrix decomposition solutions will represent the alternatives of the system 

design. To estimate the quality of a decomposition solution, the matrix-based complexity 

metric is used. This metric approximates the complexity entailed in a block-angular 

matrix by inspecting the size of each block and the size of an interaction part (Li, 2010). 

The smaller blocks with fewer interactions among them will have smaller complexity 

value, and are more feasible and easy-to-maintain after implementation. As per example 

in Figure 23, both of the solutions have the same number of blocks, but Solution A has 2 

interaction columns against 3 in Solution B. Thus, Solution A is considered to be a better 

solution. 
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To finalize concept generation step of EBD-S, the selected solution is expressed in terms 

of architectural and design element, captured in CBSD architecture – it can be done 

automatically by translation of the resulting design matrix to the CBSP model graph. The 

results of the design concept generation step are: 

- New or updated software design concept  

- CPSB model, capturing the interaction between the elements 

- New or updated design specifications, based on the design concept 

In terms of EBD-S-Scrum application, these results are the basis of the implementation of 

the next sprint. After the sprint implementation, the resulting software along with the 

design can be: 

- Transferred to the Environment-Based analysis for further refinement, which 

marks the inception of the new sprint in Scrum development; or 

- Communicated back to the client to retrieve feedback and/or approval on the 

software development progress. 

Thus, in this section we demonstrated how the EBD-S approach compliments the agile 

software development by providing a flexible framework for requirements analysis, 

architecture elaboration and design concept generation. The next section will cover the 

aspects of change control in EBD-S. 
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4.7 EBD-S change control mechanism 

The nature of agile software development implies multiple changes in requirements and 

product, introduced on the iterative basis (Peters & Ramanna, 2003). Product backlog 

requirements are used to define ―should-be‖ vision in the first iteration. After several 

iterations, the ―to-be‖ design concept arrives, which take into consideration all the 

constraints and conditions of the software architecture. 

According to James F. Peters, four main problems, associated with the unplanned 

changes in software development, are: 

 Requirements non-conformance (requirements erosion) 

 Architecture erosion 

 Design erosion 

 Code erosion 

EBD-S, being a design method, addresses first three problems with the coupled 

requirements-architecture-design structure. All modifications, introduced to the system, 

are reflected in the CBSP proto-architecture and are transferred to the design concept 

generation stage. That allows to monitor and to control effectively the unplanned changes 

in the system. An example of this is shown in Figure 24. 
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EBD-S Elements and Dependencies

Properties (architecture)Components (design)

R01: Requirement #01

R02: Requirement #02

R03: Requirement #03

R01_CP: Processing component 
for Requirement #01

R03_CP: Processing component 
for Requirement #03

R01_CD: Data component for 
Requirement #01

2 R02_P: Property of Requirement 
#02

3

R03_P: Property of Requirement 
#03

 

Figure 24 EBD-S impact analysis 

Here a change in system property R02_P can cause potential changes in component 

R01_CP and requirement R02. The rest of elements can be impacted indirectly as well. 

The strength of the relation (label of the arrow) demonstrates the intensity of the impact 

of the change. 
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5. EBD-S application for telecom expense management software 

development: Case Study 

5.1 Introduction 

The case study for the application of EBD-S method to Scrum software development 

process is based on the real-world example from telecom expense management (TEM) 

domain. 

The TEM application used in the case study is developed by a Canadian company and is 

called TeleManager. This is an enterprise-level application, aimed to collect and analyze 

data about telecom expenses, maintain and track the inventory of telecom services and 

assets, and support telecom ordering processes within an organization. It manages the 

entire lifecycle of network services. The main functional areas of the TeleManager are 

shown in Figure 25. 

 

Figure 25 TeleManager functional domains 
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TeleManager is developed with help of agile methodology – Scrum, with elements of 

Feature-Driven Design. The methodology implies decomposition of the initial design 

scope to small sub-domains, which are developed in short iterations – sprints (around one 

month each). The result of each iteration is a set of new or updated features, which are 

added to the application framework. 

Current customer base of TeleManager exceeds 25 clients. Company delivered 

customized versions of TeleManager to many of them, focusing on the specific customer 

requirements for each implementation. 

The Scrum development approach clearly shows its strength in this situation – the 

product is customizable and projects are delivered in time. However, there are some 

drawbacks of the existing approach: 

- While customer requirements are consistent within one client implementation, 

there is significant difference between the requirements of different clients. This 

difference is not documented, as Scrum approach focuses on the delivery of the 

working code, and the requirements analysis is done during the coding. 

- Customer requirements are frequently modified during the iterations, and 

sometimes they are communicated to the developers after the iteration is over – 

the lack of pre-defined requirements specifications hinders the development. 

- Architecture of the software application lacks unification; different parts were 

developed with no correspondence, which results in the difficulties in the 

evolution process: it is getting hard to encompass new technologies. 
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- Software design relies on the existing codebase and knowledge of the developers, 

with no proper documentation. It leads to the problems with analysis of the new 

functionality, which is performed empirically, and with the knowledge transfer.  

The EBD-S methodology is developed as a complimentary design process to the 

Scrum/FDD development. It is aimed to address the stated issues of the Scrum/FDD 

approaches by introducing a formalized framework for requirements collection and 

analysis, architecture elaboration and design concept generation and selection. 

The flexibility of EBD-S allows implementing it within a working process without 

interruption and step-by-step. EBD-S creates a certain overhead in the agile development 

process, but it is easy to calculate the time, dedicated to the EBD-S process, and estimate 

the effectiveness of the method by looking at overall development performance change. 

For this estimation several development iterations are required. 

5.2 Structure of the case study 

The presented case study is organized as following: 

- The design task is formulated in terms of Product Requirements Backlog in 

Section 5.3 

- The product environment description and decomposition extend the requirements 

analysis and provide the architectural classification of requirements in Section 5.4 

- Architectural conflict analysis is demonstrated in Section 5.5 – it shows the 

process of software architecture establishment with help of CBSP model 

- Section 5.6 illustrates the matrix-based non-binary analysis of the design problem 

within the framework of architectural constraints. 
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- Iterative application of the EBD-S is illustrated in Section 5.7 

- Effectiveness of the EBD-S is calculated and discussed in Section 5.8 

The structure of the case study represents the EBD-S process flow as it was implemented 

in the real-world software development process. 

5.3 TeleManager Executive: design task formulation 

TeleManager is built on the highly-customizable software platform, which allows 

reshaping the application for a specific client needs. However, the following factors 

started to play significant role with the growth of the software complexity: 

1. As TeleManager represents the Software-as-a-Service (SaaS) model, the addition 

of new features imposes higher workload on the company servers; 

2. End-user interactions within the existing model had very high latency, resulting in 

a poor user experience; 

3. Clients dedicate significant human resources to work with TeleManager, since 

training is required for professional use of the application; a simplification of user 

interface will bring value to the clients; 

4. Graphical user interface, available to the TeleManager technologies, is 

significantly behind the interface of desktop applications; and 

5. Some client request in-house installations instead of Software-as-a-Service model, 

which is not supported by current technology. 

The decision was taken to build a new application, which will use the TeleManager back-

end and will provide access to the analytical, reporting and personal information. The 
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following design task was specified: build a customizable Rich Internet Application, 

named TeleManager Executive (TME), which will: 

R-01. Provide interactive graphical representation of telecom costs; 

R-02. Build reporting engine for telecom costs and services; 

R-03. Provide real-time access to the personal and departmental telecom invoices; 

R-04. Provide access to personal information and telecom service control center; 

R-05. Focus on rich end-user experience, with interactive graphical part; 

R-06. Expand the possible audience of the single instance to 100,000 users; 

R-07. Reuse the existing back-end of the TeleManager; 

According to the requirements, four main functional areas (FAs) of the TME are 

identified: 

FA-1. Dashboard, for providing interactive summarized information about telecom costs 

 and important system messages 

FA-2. Reports, providing access to configurable financial and telecom service reporting 

 engine  

FA-3. Invoice, displaying personal or departmental telecom invoices 

FA-4. Self-service, providing end-user access to telecom service information and 

 configuration. 

Each functional area is analyzed and decomposed further for identification of the design-

relevant requirements. The following sections describe how the set of high-level 

requirements (R01-R07) was analyzed with help of Environment-Based Design of 

Software methodology. 
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5.4 TeleManager Executive: environment Analysis 

5.4.1 Software environment 

The evolutionary development of TeleManager software was relying on the stack of 

Microsoft web-technologies, focused around ASP.NET and Microsoft SQL Server. The 

legacy code is the key component of the software environment of the TeleManager. 

The software part of the TME product environment was identified as shown in Figure 26. 

TeleManager server application
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Figure 26 TME software environment 

The software infrastructure shall be reused in the new TME system, thus the following 

elements of the software environment are identified: 

1. Application server: Internet Information Services (IIS) 6.0 or later; 

2. Database server: Microsoft SQL Server 2008 Enterprise Edition; 

3. Email notification system: Microsoft Exchange Server 2007; 

4. Back-up data server: Microsoft Enterprise Backup 2005; 

5. Client-side enterprise systems: 

a. Oracle PeopleSoft HumanResource; 

b. SAP HR; 
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c. J.D. Edwards EnterpriseOne HR; 

d. SecondNature HelpDesk; 

6. Provider invoice generation systems: 

a. Bell billing portal; 

b. Telus invoicing; 

c. Rogers invoicing; 

d. Verizon billing; 

7. Client application operating environment – Windows-based in-browser 

The environment analysis allowed to identify the following software environment items 

to be in close product environment: 

1. Application server: Internet Information Services (IIS) 6.0 or later; 

2. Database server: Microsoft SQL Server 2008 Enterprise Edition; 

3. Email notification system: Microsoft Exchange Server 2007; 

The rest of environment items are not directly related to the TME application, and are 

considered to be in the remote environment. The following software constraints (Cs) 

were drafted after the analysis of the close software environment:  

Table 8 TME software constraints 

Code Description 

Cs-01 Application shall run under Microsoft IIS 6.0 or later
 

Cs-02 Application shall use the MS SQL 2008 database 

Cs-03 Email notifications shall be sent through MS Exchange 2007 

Cs-04 Client application shall run in web-browser under MS Windows 2000 or later
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5.4.2 Hardware environment 

The hardware environment of TeleManager is shown on the Figure 27. 
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Figure 27 TME hardware environment 

The hardware environment of the TeleManager application, formulated during the 

preliminary analysis, is the following: 

1. Internal Application and Database servers – physical computers running the 

software and storing the database; 

2. Customer PBX (one or many) – a telephone exchange, that controls the telephone 

system in the client‘s office (offices). TeleManager downloads call details from 

the PBX; 

3. Telephones, connected to the PBX. TeleManager controls phone configurations; 
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4. Customer Infrastructure Server(s), communicating with the TeleManager; 

5. User‘s and manager‘s computers; 

6. Networks, relating the internal company servers with client environment. 

The analysis of hardware environment shows that majority of the hardware items are 

located in the Remote Environment. In fact, TeleManager communicates with PBXs, 

telephones and Infrastructure Servers via software protocols; thus, there is no direct 

impact on the TeleManager from these elements. The only items rest in hardware 

environment of TeleManager application are: 

1. Internal Application and Database servers – they affect the processing speed of 

server application and data volume available to be stored; 

2. Networking equipment, defining the speed of communication between server and 

client applications, as well as between server and client‘s infrastructure; 

3. Client computers, defining the processing speed and interface of client 

application. 

The analysis of these environmental items, directly related to the product, resulted in the 

following list of hardware constraints (Ch), shown in Table 9. 

Table 9 TME hardware constraints 

Code Description 

Ch-01 Server application shall run on predefined hardware configuration
* 

Ch-02 Database storage is limited to 120GB of raw data 

Ch-03 Network latency between server and client is 500-750 ms 

Ch-04 Client computers have given minimal hardware configuration
** 

*  In the project – Dell PowerEdge R410 

**  In the project – Dell Vostro 1015 
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5.4.3 Human interaction environment 

The human domain of the TeleManager environment is represented by the following user 

roles and is shown in Figure 28: 

1. Internal administrator – uploads the telecom invoices to the TeleManager 

database; 

2. Customer support – resolves the customer issues by providing advice / 

configuration suggestions; 

3. Financial department – receives the telecom invoices, uploaded to the system; 

4. Manager – monitors the activity and the expenses of the employees, approves 

their requests; 

5. Employee – receives personal telecom invoices, generated by TeleManager, and 

modifies personal telecom service through self-service portal; 

6. TeleManager client administrator – controls the activity of employees. 
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Figure 28 TME human interaction environment 
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Environmental analysis allows discovering that the following user roles are directly 

interacting with TME application: 

1. Customer support – to review user activity and understand their requests; 

2. Manager – to get access to the reporting information and review employee 

requests; 

3. Employee – to view personal invoices and request modification of personal 

telecom services. 

The rest of user roles in the given project belong to the remote product environment. 

Analysis of user roles allowed to define the list of human interaction constraints (Ci), 

presented in Table 10. 

Table 10 TME human interaction constraints 

Code Description 

Ci-01 Support up to 100,000 concurrent users  

Ci-02 Display the data based on the user role 

Ci-03 Follow the user actions in the system in real-time 

Ci-04 Keep page update latency under 1 second 

Ci-05 Support long transactions on the client side 

5.4.4 Development environment 

The development domain of the TME environment is represented by the following 

components: 

- Development framework – Microsoft Visual Studio 2010 Premium 

- Database – Microsoft SQL Server 2008 

- Code sharing tool – Microsoft TeamFoundation Server 2010 

- Collaboration tool – Microsoft Sharepoint 2010 
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The roles in Scrum process, used in TME development, are: 

- Product Owner – decides what will be built and in which order 

- Scrum Master – a facilitative team leader who ensures that the team adheres to its 

chosen process and removes blocking issues 

- The Team – cross-functional team of 5 developers who perform the coding 

Analysis of development environment technologies and process roles resulted in the list 

of environmental constraints, presented in Table 11. 

Table 11 TME development constraints 

Code Description 

Cd-01 System shall be highly maintainable (updates without service interruption)  

Cd-02 System model shall be customizable (loose coupling of modules) 

Cd-03 Unit testing shall be applied to minimum of 75% of code logic 

5.5 TeleManager Executive: architectural conflict analysis 

5.5.1 Requirements classification and architecture synthesis 

At the next step the analysis of requirements and environmental constraint is performed. 

First, the architecturally relevant requirements are selected; then, the environmental 

constraints are added to the pool. At the next step the requirements and constraints are 

analyzed for the correspondence to the software architectural elements. The process of 

the requirements classification and architectural synthesis is shown schematically in 

Figure 29. 
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Figure 29 Requirements classification and architecture synthesis 

The application of the requirements classification and architecture synthesis on the TME 

example is shown in the Table 12. The combination of architecture-relevant requirements 

and environmental constraints allow defining the architectural elements and patterns. 

Table 12 TME architecture synthesis 

Requirements Environmental 

constraints 

Architecture elements (Ae) Architectural 

patterns (Ap) 

R-05 

Cs-04 

Ch-04 

Ci-03 

Ci-04 

Ae-01: 

Client application technology 

is Microsoft Silverlight 4.0 

Ap-01: 

Analytical reporting 

R-06 

Ci-01 

Ci-04 

Ch-03 

Cs-04 

Ae-02: 

Server application is based on 

RIA WCF services 

Ap-02: 

EAI/ESB 

R-07 
Ci-05 

Cs-02 

Ae-03: 

The Entity-Data-Model (EDM) 

is used as  Object / Relation 

Mapping mechanism Ap-03: 

TDS/OLTP 

 

Ch-03 

Cs-01 

Ci-05 

Ae-04: 
Caching mechanism is used to 

preload data to the client 

application 

R-05 
Cd-01 

Ch-04 

Ae-05: 

Telerik, a third-party graphical 

user interface components 

library is used 

 

 

The resulting list of architectural elements and styles is transferred to the next step of 

EBD-S – conflict identification, which is described in the following section. 
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5.5.2 Conflict identification and resolution 

The analysis of the architectural elements and patterns allows to find and to resolve the 

possible conflicts within the system. Table 12 provides a solid basis for the software 

architectural analysis. 

Full analysis of the interactions between requirements, environmental constraints and 

architectural elements and styles was performed. The determined architectural elements 

operate with each other with no conflicts; however, there is a difficulty in synthesis of the 

determined architectural patterns. Ap-01 (Analytical reporting) is not supported by the 

transactional data-store pattern, defined as Ap-3 (TDS/OLTP). Instead, Ap-3 provides 

access to a similar solution, called transactional reporting. Thus, it makes sense to replace 

Ap-1 with ―transactional reporting‖ architectural pattern. 

5.5.3 Architectural refinement of requirements 

The architectural refinement of the requirements is the analytical review of the existing 

requirements and environmental constraints, which pursues the goal of model 

simplification and decomposition.  

In the given example, total latency can be represented as sum of network delay and 

software delay. Thus, the architectural constraints Ch-03 (Network latency between 

server and client is 500-750 ms) and Ci-04 (Keep page update latency under 1 second) 

complement each other; as the result, a new software constraint is determined: Cs-05, 

shown in the Table 13. Cs-05 can replace both Ch-03 and Ci-04, which simplifies the 

architectural model of the system. 
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Table 13 Updated TME software environment constraints 

Code Description 

Cs-01 Application shall run under Microsoft IIS 6.0 or later
 

Cs-02 Application shall use the MS SQL 2008 database 

Cs-03 Email notifications shall be sent through MS Exchange 2007 

Cs-04 Client application shall run in web-browser under MS Windows 2000 or later
 

Cs-05 Software transaction delay shall not exceed 250 ms 

Next, the interconnections between the elements of the system are captured in the graph 

CBSP model, shown in Figure 30. 

EBD-S Elements and Dependencies mapping

Environment constraints Architectural elementsArchitecture-relevant requirements

R-05: Focus on rich end-user 
experience

R-06: Expand the possible 
audience to 100,000 users

R-07: Reuse the existing back-
end of TeleManager

Cs-01: Application server  IIS 6.0

Cs-02: MS SQL 2008 database

Cs-03: MS Exchange 2007

Cs-04: In-browser clients

Ci-01: Up to 100,000 users.

Cs-05: Software latency 0.25 sec.

Cs-04: In-browser clients

Ci-06: Long transactions support

Cs-02: MS SQL 2008 database
support

Ch-04:Client computer 
configuration

Cs-01: Application server  IIS 6.0

Ae-01: Client application 
technology is Microsoft 

Silverlight 4.0

Ae-02: Server application is 
based on RIA WCF services

Ae-03: The EDM is used as 
object-relation mapping

Ae-05: Telerik, a third-party GUI 
components library, is used

Ae-04: Isolated storage is used
 to preload data on the client

Ci-04: System shall be highly 
maintainable

Cs-05: Software latency 0.25 sec.

 

Figure 30 TME architectural mapping 

At the same time, functional requirements are verified against the architectural model and 

decomposed according to the determined limitations. For example, the requirements 

associated with the R-02 (Build reporting engine) are shown in the Table 14. 
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Table 14 Requirements for the TME reporting engine 

Item # Requirement Description 

R-02.1 Flexible reports Generation of reports by various filters should 

be easy to generate and should be reflective of 

the information they represent; Rather than a 

creating a module that tries to fit the 

information to it. 

R-02.2 Report layout changes are 

dynamic by service / 

equipment record 

Again, data or reports are generated with 

columns and titles that are dynamic.  

Example: 

The client is not required to choose a series of 

filters based on a service.  

R-02.3 Reports / data is exportable, 

copiable, e-mailable and 

printable 

Ensure that all data, including graphics are 

exportable, e-mailable and / or copiable to a 

clients‘ personal document. 

R-02.4 Dynamic filtering Data or reports, based on a pre-selected series 

of customer needs, should be filterable and 

hierarchical. 

Example: 

Information displayed should be by overall 

category, service, etc 

Or 

Information displayed should be able to 

expand to the next level    

R-02.5 Information / data is 

expandable / hierarchical 

(one elements drops down to 

the next and the next). 

The data or information should be expandable. 

Client can drill down to the next level or return 

backwards, as well he should be able to 

navigate between various information and 

types with simple icons and filtering. 

R-02.6 Cost overview report Shall reflect the consolidated information 

about cost distribution 

R-02.7 Wireless cost report Shall reflect the consolidated information 

about wireless-associated cost distribution 

R-02.8 Cost comparison report Shall reflect the cost overview and comparison 

by organization structure 

R-02.9 Service types report Shall reflect the information about service 

types in inventory and associated costs 

The resulting CBSP model with the decomposed functional requirements is used in the 

next stage of EBD-S – design concept generation. This topic is covered in the next 

section of the case study. 
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5.6 TeleManager Executive: software concept generation 

5.6.1 Design elements generation 

CBSP model, built on the previous step, contains the refined architectural elements and 

functional requirements. This is a description of the problem to be solved. To generate a 

set of solutions to the design problem, software design elements shall be generated. 

Software design elements that address the requirements and architectural elements are 

proposed by the software development team members, based on their experience. The 

selected design elements are related to architectural elements / requirements.  

The software concept generation phase of TME is based on the analysis of the EBD-S 

graph model, and involves the extraction of relationships between architecture / 

functional requirements and design elements. Figure 31 displays such a graph model, 

representing the TME v2.1 development. 

EBD-S Elements and Dependencies mapping

Environment constraints Architectural elementsArchitecture-relevant requirements Design elements Functional requirements

R-05: Focus on rich end-user 
experience

R-06: Expand the possible 
audience to 100,000 users

R-07: Reuse the existing back-
end of TeleManager

Ci-01: Application server  IIS 6.0

Cs-02: MS SQL 2008 database

Cs-03: MS Exchange 2007

Cs-04: In-browser clients

Ci-01: Up to 100,000 users.

Cs-05: Software latency 250 ms.

Cs-04: In-browser clients

Ci-06: Long transactions support

Cs-02: MS SQL 2008 database
support

Ch-04:Client computer 
configuration

Ci-01: Application server  IIS 6.0

Ae-01: Client application 
technology is Microsoft 

Silverlight 4.0

Ae-02: Server application is 
based on RIA WCF services

Ae-03: The EDM is used as 
object-relation mapping

Ae-05: Telerik, a third-party GUI 
components library, is used

Ae-04: Isolated storage is used
 to preload data on the client

Cd-01: System shall be highly 
maintainable

Cs-05: Software latency 250 ms.

R-02.1: Flexible reports

R-02.2: Dynamic reports by 
service/equipment record

R-02.3: Exportable, copi-able, 
email-able and printable data

R-02.4: Dynamic filetering

R-02.5: Hierarchical 
representation of reports

Teleric DataGrid component

Interactive data-mapping class

Lazy-loading paging mechanism

Organization view control, based 
on TreeView

In-report search mechanism

Check-list controls for dynamic 
filtering

In-memory and isolated storage 
synchronization

Date-pick controls for dynamic 
filtering

 

Figure 31 EBD-S elements and dependencies mapping 
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Analysis is performed with help of Design Matrix toolset. The correct representation of 

this model is done in the framework of non-binary Domain Mapping Matrix (DMM) – a 

rectangular matrix, that maps design elements to specific domains (architecture / 

functional requirements), and preserves the strength of the relation (0 / empty cell – no 

relation, 1 – weak relation, 2 – significant relation, 3 – very strong relation). 

Architectural elements in EBD-S are considered to be technical domain requirements, 

and are associated with the DMM rows, as well as functional requirements. Design 

elements are mapped to the columns. The resulted matrix is shown in Figure 32. 
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Figure 32 EBD-S software concept mapping matrix 

Next the team needs to estimate the feasibility of the candidate solutions – it can be done 

by decomposition of the software design problem to sub-domains. The following section 

describes this process in details. 
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5.6.2 Concept development – decomposition 

This software concept mapping matrix is decomposed with help of two-phase method for 

non-binary matrix decomposition, and the final solution is selected on the basis of 

resulting problem complexity. 

On the first phase cluster formation and cluster alignment algorithms are applied to 

transform the initial matrix to a banded diagonal matrix, representing the sub-systems of 

the software system. 

On the second phase we apply heuristic partitioning analysis to convert the banded 

diagonal matrix, obtained on the first phase, into possible block-angular matrixes, which 

would represent decomposition solutions of the design problem. These two phases are 

presented in Figure 33. 
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Figure 33 Software concept matrix decomposition 

The part c) of the Figure 33 shows one of the resulting software concept solutions – one 

design element is common for the most of requirements, and there are two blocks of 

elements. If several acceptable solutions are generated by the two-phase algorithm, they 
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are analyzed and the most detailed decomposition is usually selected. The problem 

decomposition allows assigning independent parts of the problem to different 

development teams, working in parallel. 

It resolves one of the most severe problems of agile development methods – low 

effectiveness in the teams, exceeding 5-7 members. The design problem can be split to 

several independent modules of approximately similar complexity, and the sub-teams can 

be formed to work on the modules. 

In the TME v2.1 development two sub-teams were formed. They were working on two 

generated sub-problems after the architectural framework with Data-Grid connectivity 

(common to each sub-problem) had been developed. 

5.7 TeleManager Executive: change and evolution control 

The change control mechanism of EBD-S is based on the change impact analysis, 

performed with help of EBD-S graph model. 

In the EBD-S abstract model there are three possible sources of unplanned changes: 

- Source code 

- Software model (architecture and design) 

- Requirements 

The strength of the impact is different on these levels, and usually is expressed in 10x 

costs growth per level. That is, software model changes cost ten times more than source 

code changes, and requirements changes cost ten times more than software model 

changes. 
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The EBD-S approach employs graphical impact analysis of the changes on any of these 

levels. Figure 34 shows an example of such analysis. 

EBD-S Elements and Dependencies mapping

Environment constraints Architectural elementsArchitecture-relevant requirements Design elements Functional requirements

R-05: Focus on rich end-user 
experience

R-06: Expand the possible 
audience to 100,000 users

R-07: Reuse the existing back-
end of TeleManager

Ci-01: Application server  IIS 6.0

Cs-02: MS SQL 2008 database

Cs-03: MS Exchange 2007

Cs-04: In-browser clients

Ci-01: Up to 100,000 users.

Cs-05: Software latency 250 ms.

Cs-04: In-browser clients

Ci-06: Long transactions support

Cs-02: MS SQL 2008 database
support

Ch-04:Client computer 
configuration

Ci-01: Application server  IIS 6.0

Ae-01: Client application 
technology is Microsoft 

Silverlight 4.0

Ae-02: Server application is 
based on RIA WCF services

Ae-03: The EDM is used as 
object-relation mapping

Ae-05: Telerik, a third-party GUI 
components library, is used

Ae-04: Isolated storage is used
 to preload data on the client

Cd-01: System shall be highly 
maintainable

Cs-05: Software latency 250 ms.

R-02.1: Flexible reports

R-02.2: Dynamic reports by 
service/equipment record

R-02.3: Exportable, copi-able, 
email-able and printable data

R-02.4: Dynamic filetering

R-02.5: Hierarchical 
representation of reports

Teleric DataGrid component

Interactive data-mapping class

Lazy-loading paging mechanism

Organization view control, based 
on TreeView

In-report search mechanism

Check-list controls for dynamic 
filtering

In-memory and isolated storage 
synchronization

Date-pick controls for dynamic 
filtering

 

Figure 34 EBD-S change impact analysis 

During the development stage, the Lazy-loading mechanism was implemented with 

errors, that weren‘t discovered by automated unit-tests. EBD-S graph model allowed to 

define the possible areas, related to the lazy-loading mechanism on all the levels of 

abstraction. 

The impact chain is defined through all the abstraction levels (in red). It allows to find 

affected elements on the design level, related to the unstable code (in green), and retest 

the interfaces between the software modules (classes), associated with affected modules. 

The same tool is used for change planning: each planned modification on any of the 

abstraction levels is analyzed on the basis of possible impact, caused by the modification. 
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5.8 EBD-S performance 

5.8.1 Performance metrics 

In order to estimate how the implementation of EBD-S affects the software development 

process, we recorded some process quality characteristics for two projects: before and 

after EBD-S implementation. To keep track of the project performance and retrieve the 

basis for the analysis, we use two types of quality metrics: 

1. Process quality metrics, which reflect the efficiency of the development process; 

2. Software quality metrics, which reflect the software code quality. 

Process quality metrics are essentially related to the time, spent for specific activities: 

- Estimated time for task / feature development; 

- Real time spent on task / feature development; 

- Lines of code per hour (LOC/h); 

- Time spent on EBD-S process; 

- Time for quality assurance – verification and validation; 

- Time for quality assurance – correction. 

The combination of these metrics, collected in consequent project iterations, allow 

understanding the impact of EBD-S implementation on the project performance. 

Software quality metrics are based on two interrelated parameters: number of errors, 

discovered in the application, and overall codebase quality. Number of errors in the code 

(as well as number of error per 1,000 lines of code, Errors/KLOC) is a straight-forward 

metric; codebase quality metrics, however, require additional description. 
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TME codebase quality is controlled with help of Code Metrics, retrieved with help of 

Visual Studio Suite. Code Metrics is a tool that helps developers find and act upon 

complex and unmaintainable areas within the application source code. Visual Studio 

2010 calculates five metrics of the source code, reviewed below. 

1. Class Coupling. At each level, this indicates the total number of dependencies that 

the item has on other types. The higher this number, the more likely changes in other 

types will ripple through this item. A lower value at the type level can indicate 

candidates for possible reuse.  

2. Depth of Inheritance. At the type level, depth of inheritance indicates the number of 

types that are above the type in the inheritance tree. Deep inheritance trees can 

indicate an over-engineering of a problem and can increase the complexity of testing 

and maintaining an application. 

3. Cyclomatic Complexity. At each level, this measures the total number of individual 

paths through the code. This is basically calculated by counting the number of 

decision points and adding 1. This number is also a good indication on the number of 

unit tests it will take to achieve full line coverage. Lower is typically better. 

4. Lines of Code. At each level, this is a measure of the total number of executable lines 

of code. This excludes white space, comments, braces and the declarations of 

members, types and namespaces themselves. Lower is typically better. 

5. Maintainability Index. At the member and type level, this is an index from 0 to 100 

indicating the overall maintainability of the member or type. This index is based on 

several other metrics, including Cyclomatic Complexity and Lines of Code. A low 

number (less than 80) indicates code that is complex and hard to maintain. 
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The key quality metrics that we use for the EBD-S performance estimation are: 

 Software process stage time over total project time ratio: this metric show how 

the effort is spread in the course of the software development process, and helps 

to understand the overhead brought by EBD-S implementation, as well as the 

improvements in other stages. 

 Software process stage length, person/hours: this metric show the recorded length 

of the project stages and allows for detailed comparison of the process 

performance. 

 Estimated development time to Real time spent ratio: this metric reflects the 

effectiveness of software design activities, especially on the concept development 

stage of EBD-S. 

 Number of errors per 1000 lines of code (Error/KLOC): this metric can reveal the 

impact of well-thought and structured software design on the overall product 

quality. 

 Average time to fix one code error: reflects the effectiveness of EBD-S change 

control mechanism. 

 Number of requirements errors, reported by clients: shows the impact of EBD-S 

Environment Design stage of EBD-S.  

5.8.2 Collection of results 

One of the advantages of the centralized code control server, used in the TME 

development (Visual Studio Team Foundation 2010), is the automated collection of 

metrics. 
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Process quality metrics are collected according to the time, required for the code 

submission to the centralized code repository. Software quality metrics are recorded by 

the system in two ways: 

1. Number of errors discovered is based on the number of work-orders, issued to the 

developers during the quality assurance stage; 

2. Code metrics are calculated and recorded automatically on each software build. 

The results, presented in this thesis, are collected for two iterations: one before the 

introduction of EBD-S, another after. That allows direct comparison of the results. 

5.8.3 Results and analysis 

TME is developed in Scrum environment, with interlaced release schedule: each even 

release is a beta-version, and each following release is shipped to the customers. Figure 

35 reflects the timeline of four consequent Scrum iterations, united in two releases. 

10 days
Development

5 days
Verification and validation

5 days
Error correction

QA sprint startDevelopment sprint start

Beta release Client installation
Collection of client feedback

8 days
Development

3 days
Verification and 

validation

2 days
Error correction

QA sprint startDevelopment sprint start

Beta release Client installation
Collection of client feedback

2 days
EBD-S

5 days
Saved time

EBD-S completed

Agile / Scrum

Agile / Scrum
+ EBD-S

 

Figure 35 TME timeline 

The upper timeline shows the standard Scrum process, without EBD-S application, when 

the lower reflects the project after implementation of EBD-S. 
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Both projects, Agile/Scrum and Agile/Scrum with EBD-S are based on the similar 

development workload, as estimated by developers. TME is developed by a team of 8 

developers, which work 40 hours per week (640 person/hours per week allocated for one 

sprint). When requirements are selected from backlog, developers provide development 

time estimation in person/hours. Team lead ensures that team meets the development 

goals in the scrum interval. 

To make a fair comparison, software development team selected two sets of software 

requirements to address in two consequent releases. The requirements were assessed by 

all team members according to implementation complexity, feasibility, availability of 

technology and overall implementation time, and were acknowledged as similar. The 

projects were named TME 2.1 for Scrum process and TME 2.3 for Scrum + EBD-S 

process. The version names 2.0 and 2.2 were reserved for beta versions of the software, 

used for initial client feedback collection. 

The following process and product metrics were collected during implementation 

iterations, from project start to the release of beta-version (TME 2.0 and TME 2.2): 

- Estimated time for project implementation 

- Real time, spent for the implementation of features in the project 

- Number of errors, discovered in the software at verification 

- Density of errors (number of errors per 1000 lines of code) 

Table 15 summarizes the cumulative TME 2.0 quality metrics, split per software project, 

according to the software structure. 
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Table 15 TME v2.0 (Scrum) quality metrics 

Project Estimated 

time, hours 

Real time, 

hours 

Errors Errors/ 

KLOC 

TME.ReportsProject 60 74.25 17 24.15 

TME.Silverlight 240 288.5 71 22.18 

TME.WcfService 80 82.5 12 12.66 

TME.Web 150 166.5 39 18.67 

PROJECT TOTAL 530 611.75 139 20.02 

The difference in estimated time and real time for implementation shows that team lead 

shall plan a ―safety cap‖ at 20% of the estimated project time to make sure that the 

project will be implemented in time. 

Table 16 reflects the same set of quality metrics, collected from the EBD-S / Scrum 

development iteration. 

Table 16 TME v2.2 (Scrum + EBD-S) quality metrics 

Project Estimated 

time, hours 

Real time, 

hours 

Errors Errors/ 

KLOC 

Etelesolv.Telemanager.Entity 8 8.25 2 15.75 

Etelesolv.Telemanager.Membership 48 47.5 6 7.65 

Etelesolv.Telemanager.Model 8 6.25 1 15.15 

Etelesolv.Telemanager.TME 200 208.75 28 12.16 

Etelesolv.Telemanager.TME.RIA 48 56.25 11 14.16 

Etelesolv.Telemanager.TME.RIA.Web 40 38.5 5 11.06 

Etelesolv.Telemanager.TME.Web 4 1.75 0 0 

Etelesolv.Telemanager.Utility 40 36.5 4 8.2 

Etelesolv.Telemanager.Utility 24 20.75 7 25.45 

PROJECT TOTAL 420 424.5 64 12.04 

The two main changes are evident from Table 16: 

 The accuracy of time estimation is very high (implementation took 101% of the 

planned time versus 115% in the Scrum project)  

 Number of development errors is significantly lower, as well as the error density. 

Table 17 summarizes the key performance and quality metrics that were collected during 

two projects, labeled ―Scrum‖ for ordinary agile Scrum process and ―Scrum + EBD-S‖ 

for the agile Scrum process with EBD-S applied. 
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Table 17 EBD-S performance comparison 

Metrics Scrum Scrum + EBD-S 

Software process stage time, percent 

- Requirements analysis 

- Architecture and design 

- Coding 

- Code verification and validation 

- Error correcting 

- Total 

 

2%* 

3%* 

45% 

25% 

25% 

100% 

 

7% 

7% 

52% 

20% 

14% 

100% 

Software process stage time, person/hours 

- Requirements analysis 

- Architecture and design 

- Coding 

- Code verification and validation 

- Error correcting 

- Total 

 

25 

39 

576 

360 

360 

1280 

 

72 

72 

496 

192 

128 

960 

Real development time to estimated ratio 1.15 1.01 

Number of errors per 1000 lines of code 20.02 12.04 

Code maintainability index 84 85 

Average time to fix one code error 2.3 hours 2 hours 

Requirements errors, reported by clients 9 2 

* Requirements analysis, architecture and design elaboration in Scrum project are 

included in Development stage and the durations are approximate. 

The results, reflected in Table 17, clearly demonstrate that implementation of EBD-S 

adds only a small time overhead (80 extra man-hours for the requirements and 

architecture analysis). But the advantages of this approach are significant: coding time of 

the comparable feature set is 14% lower than in regular Scrum process, verification and 

validation stage is 47% shorter, while error correction time savings are on the level of 

65%. The overall project time saving, achieved with Scrum + EBD-S approach in TME 

project is 25% (960 hours versus 1280). Clients estimated the product, developed under 

EBD-S, as more relevant to their needs (2 reported missing requirements versus 9). 
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The implementation of EBD-S improves the coding aspects of the development. For 

instance, we collected the information about code submission during the coding stage of 

the project. This information is displayed on Figure 36. 

  

Figure 36 Code submission rates 

Code submission trends, shown on Figure 36, demonstrate that in case of Scrum 

development, the majority of code is developed in the end of the sprint, while under 

Scrum/EBD-S development the code is created at the same rate during first 7 days of the 

sprint, and then developers refine the code and finalize the tasks without haste. 

The code submission historical data, presented in Figure 37, clearly shows that the 

observed situation applies to Scrum projects, delivered by the same team in the past 

(Scrum Project #1 – #6). The rate of code submission varies a lot with the general trend 

of rising in the end of sprint.  

The results of the next iteration of TME (v2.4), displayed in the last plot of the Figure 37, 

demonstrate that the effect of EBD-S application to Scrum project remains noticeable, 

resulting in low code submission variability and slight pace reduction in the end of sprint. 
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Figure 37 Code submission rate historical data 

The performance of development in case of Scrum project averages at 11.35 LOC per 

hour, while the Scrum and EBD-S project demonstrated slightly higher, and, what is 

more important, more uniform performance at 12.52 LOC per hour. 

In order to understand the reasons behind the improvement of coding performance and 

submission uniformity, code metrics of both TME 2.0 (Scrum) and TME 2.2 

(Scrum/EBD-S) were analyzed. 
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Table 18 Code quality metrics for TME v2.0 (Scrum) 

Project Maintainabil

ity Index 

Cyclomatic 

Complexity 

Depth of 

Inheritance 

Class 

Coupling 

Lines of 

Code 

TME.ReportsProject 24 4 4 53 704 

TME.Silverlight 74 1577 7 352 3201 

TME.WcfService 85 556 2 70 948 

TME.Web 87 1136 4 151 2089 

PROJECT TOTAL 84 13039 2.17 4.21 6942 

Low maintainability index and relatively high cyclomatic complexity, observed in Table 

18, are the results of ad-hoc development and fast architectural decisions. 

Table 19 Code quality metrics for TME v2.2 (Scrum+EBD-S) 

Project Maintainab

ility Index 

Cyclomatic 

Complexity 

Depth of 

Inheritance 

Class 

Coupling 

Lines of 

Code 

Etelesolv.Telemanager.Entity 92 88 2 4 127 

Etelesolv.Telemanager.Membership 75 239 3 41 784 

Etelesolv.Telemanager.Model 94 55 2 4 66 

Etelesolv.Telemanager.TME 82 1118 7 255 2302 

Etelesolv.Telemanager.TME.RIA 84 375 2 41 777 

Etelesolv.Telemanager.TME.RIA.Web 81 287 3 36 452 

Etelesolv.Telemanager.TME.Web 91 32 3 20 45 

Etelesolv.Telemanager.Utility 86 234 1 19 488 

Etelesolv.Telemanager.Utility 73 67 1 9 275 

PROJECT TOTAL 85 10022 2.57 2.99 5316 

Under the EBD-S development umbrella, the code quality metrics demonstrate 

uniformity (see Table 19) – the maintainability index varies from 73 to 94 among the 

projects, averaging at 85. It represents a considerably lower variability compared to 24-87 

results in TME v2.0. Higher depth of inheritance shows that object model is build better, 

with more classes reused. The 30% lower average class coupling demonstrates that in the 

TME v2.2 project the classes are better organized, and are easier to reuse. 

It shows that EBD-S leads to a better-thought class design, simplifies the task of coding, 

and eliminates the weak spots in the project code.  
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5.8.4 Conclusion on EBD-S performance in TME project 

Advantages of EBD-S approach, demonstrated in TME project, can be summarized as 

follows: 

 More accurate development time estimation (less than 5% error margin instead of 

20% in case of agile methods) due to: 

- Better understanding of the requirements, high-level and detailed system 

views, provided by Environment-Based analysis 

- Specification of architectural, functional and non-functional requirements 

leads to accurate problem decomposition 

 40% less errors in the code (12.04 errors per 1000 lines of code instead of 20.02) 

due to: 

- Clear and unambiguous requirements, leading to better understanding and 

planning of the functionality 

- Better structuration of the project due to requirements architecture-design 

coupling with Design Matrix 

 10% higher productivity (12.52 lines of code per hour instead of 11.35) due to: 

- Simpler code due to detailed functional design 

- Better project resource allocation 

 Total project length (development + verification) is reduced by 25% due to: 

- CBSP-based impact analysis, which makes easier the discovery of possibly 

affected functions 

- Well-structured code, that requires less refactoring effort 
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6. Conclusions and future work 

6.1 Conclusions 

During the last decade, agile approaches dominate on the software development arena. 

They bring many advantages over the traditional approaches – faster development cycles, 

better interaction with clients, more frequent testing. At the same time, contemporary 

agile approaches have some flaws: they don‘t cover, or cover partially, process and 

project management aspects of software concept generation, architecture creation and 

after-implementation support. In this thesis the Environment-Based Design theory, 

reinforced with Design Matrix problem-solving and CBSP theory, is used to address the 

stated flaws of two agile approaches: Scrum and Feature-Driven Design. The proposed 

method is called Environment-Based Design of Software, and it provides methodological 

recommendations and structural foundation for the following aspects of software 

development (see Figure 38): 

- Concept generation 

- Architecture creation 

- Design elaboration 

- Post-implementation change control 
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Figure 38 EBD-S application to FDD and Scrum software development methodologies 
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Through the application of Environment-Based Design of Software approach to the real-

world software development process, described in Chapter 5, we come to the following 

conclusions: 

- EBD-S is an effective and versatile design method, aimed to support the 

contemporary agile methodologies; 

- EBD-S can be introduced to the software development process in steps, starting 

from Environment Analysis, through Design Matrix concept generation to CBSP 

change control; 

- Each component of EBD-S brings specific advantages to the software 

development process, which allows controlling and monitoring the process of 

EBD-S introduction; 

- The EBD-S application brings better product vision, more accurate development 

task estimation and significantly lower level of coding and requirements errors. 

As well it results in a higher coding performance. Thanks to all these 

improvements, overall project iteration length can be shortened by 25%. 
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6.2 Future work 

The research presented in this thesis raised some problems still to be addressed. The 

implementation of the EBD-S to the real-world agile software development process 

provided a great opportunity to analyze the methodology from different points of view. 

We found that project managers lacked the planning techniques, relevant to EBD-S. We 

verified the applicability of the EBD-S to the software process, based on Scrum and 

Feature-Driven Development methodologies. However, one of the most promising 

software methodologies – Test-Driven Development – was omitted, since it was 

unknown to the developers in the case study environment.  

The ongoing research indicates that methodological foundation of EBD-S can be 

reinforced with a set of advanced matrix-based techniques that would bring an extra 

dimension to the dependency analysis. 

To summarize, in our future work we will investigate the following aspects: 

 Possible extension of the EBD-S to the project management aspects of software 

development. 

 Verify the real-world applicability of EBD-S to the Test-Driven Development, 

which implies the creation of automated tests before the code is written. 

 Enhancement of the EBD-S concept generation technique with advanced matrix-

based analysis, which takes into consideration different types of dependencies 

with various levels of strength. 

 Enhancement of system-in-use software methods from current impact analysis to 

automated change plan generation, based on customer feedback. 
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