
1

Environment-Based Design of Software:

an Agile Software Design Method

Alexandr Moroz

A Thesis in the

Concordia Institute for Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science (Quality Systems Engineering) at

Concordia Institute for Information Systems Engineering

Montreal, Quebec, Canada

March 2011

© Alexandr Moroz, 2011

2

This is to certify that the thesis prepared

By: Alexandr Moroz

Entitled: Environment-Based Design of Software:

 an Agile Software Design Method

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Quality Systems Engineering)

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examination committee

 Dr. Z. Tian Chairman

 Dr. S. Li Supervisor

 Dr. Y. Zeng Supervisor

 Dr. J. Bentahar Examiner

 Dr. O. Ormandjieva External Examiner (CSE)

Approved by __

 Chair of the Department or Graduate Program Director

01 April 2011 __

 Dean of Faculty

iii

ABSTRACT

Environment-Based Design of Software:

an Agile Software Design Method

Alexandr Moroz

The Environment-Based Design of Software (EBD-S) is a design method, representing

the application of the Environment-Based Design (EBD) to agile software development.

It compliments contemporary agile software development methods – Scrum and Feature-

Driven Development (FDD) – by providing a light-weight and flexible framework for the

architecture and design documentation, formalized design concept generation and

effective system evolution control. Under the EBD-S umbrella, software requirements

are categorized as functional, leading to the design of the system, and quality

requirements, reflected in software architecture. EBD-S uses the component-bus-system-

property approach for conflict identification and capturing the proto-architecture of the

system in a graph structure. The design concept generation stage relies on a two-phase

matrix-based problem decomposition approach, adjusted for non-binary dependency

analysis, and using the heuristic partitioning analysis to find better design solutions. The

change control mechanism of EBD-S permits effective monitoring and control of the

software architecture evolution through the agile development cycle. The integration of

EBD-S to the real-world Scrum development processes is demonstrated on the example

of Telecom Expense Management software development. EBD-S application resulted in

25% project time saving due to more accurate estimations, higher code quality and lower

error rate.

iv

ACKNOWLEDGEMENTS

I would like to thank my supervisors Dr. Yong Zeng and Dr. Simon Li for their constant

support, direction, and overwhelming patience, which enabled me to complete my thesis.

I acknowledge the work of Dr. Zeng, whose researches inspired me and outlined the

direction of my explorations, and the constant guidance of Dr. Li, who helped me to

structure the ideas.

On a special note I express my gratitude to my colleagues who made possible the

application of the developed method to real-world project.

Last but not least, I thank my loving wife for her support and understanding throughout

my studies.

v

Contents

List of Figures ... x

List of Tables .. xii

1. Introduction ... 1

1.1 Background and motivation of the research ... 1

1.2 Objectives ... 5

1.3 Challenges .. 8

1.4 Contribution ... 10

1.5 Organization of the thesis ... 11

2. Literature review ... 12

2.1 Overview .. 12

2.2 System design theories ... 12

2.2.1 The nature of design theories .. 12

2.2.2 A formal definition of a design theory .. 14

2.2.3 Classification of design theories and methodologies 15

2.2.4 Generic design process ... 16

2.2.5 Evaluation of major design theories and methodologies 17

2.2.6 Axiomatic design theory ... 18

2.3 Software design methodologies ... 20

2.3.1 Software process ... 20

vi

2.3.2 Software architecture and design .. 22

2.3.3 Software design: commonality and variability ... 24

2.3.4 Nature of change in software development .. 26

2.3.5 Background of agile methodologies ... 27

2.3.6 Generic agile software process ... 28

2.3.7 Agile software development challenges ... 30

3. Theoretical foundations review... 32

3.1 Environment-Based Design.. 32

3.1.1 Introduction to Axiomatic Theory of Design Modeling 32

3.1.2 Environment-Based Design process ... 34

3.1.3 EBD process: design problem formulation ... 37

3.1.4 EBD process: environment analysis ... 38

3.1.5 EBD process: conflict identification ... 40

3.1.6 EBD process: concept generation ... 41

3.1.7 EBD process: dynamics of the process ... 42

3.2 Design Matrix problem decomposition .. 44

3.2.1 Matrix-based decomposition of design problems 44

3.2.2 Two-phase method overview .. 45

3.2.3 Non-binary dependency analysis overview .. 47

3.2.4 Overview of Phase 1 ... 48

vii

3.2.5 Overview of Phase 2 ... 49

3.3 CBSP approach for requirements-architecture reconciliation 52

3.3.1 Introduction to CBSP approach .. 52

3.3.2 CBSP taxonomy .. 54

3.3.3 CBSP process .. 56

4. Environment-Based Design of Software .. 59

4.1 Overview .. 59

4.2 EBD-S framework .. 59

4.3 EBD-S problem formulation .. 61

4.4 EBD-S environment analysis ... 62

4.5 EBD-S architecture conflict analysis ... 65

4.5.1 Environment and conflict analysis process ... 65

4.5.2 Architectural classification of requirements ... 66

4.5.3 Decomposition analysis and conflict resolution ... 66

4.5.4 Architectural refinement of requirements ... 67

4.5.5 Software architectural styles and proto-architecture 68

4.6 EBD-S design concept generation.. 70

4.7 EBD-S change control mechanism .. 73

5. EBD-S application for telecom expense management software development: Case

Study ... 75

viii

5.1 Introduction .. 75

5.2 Structure of the case study ... 77

5.3 TeleManager Executive: design task formulation .. 78

5.4 TeleManager Executive: environment Analysis .. 80

5.4.1 Software environment ... 80

5.4.2 Hardware environment.. 82

5.4.3 Human interaction environment ... 84

5.4.4 Development environment .. 85

5.5 TeleManager Executive: architectural conflict analysis 86

5.5.1 Requirements classification and architecture synthesis 86

5.5.2 Conflict identification and resolution ... 88

5.5.3 Architectural refinement of requirements ... 88

5.6 TeleManager Executive: software concept generation 91

5.6.1 Design elements generation .. 91

5.6.2 Concept development – decomposition .. 93

5.7 TeleManager Executive: change and evolution control 94

5.8 EBD-S performance ... 96

5.8.1 Performance metrics ... 96

5.8.2 Collection of results .. 98

5.8.3 Results and analysis .. 99

ix

5.8.4 Conclusion on EBD-S performance in TME project 106

6. Conclusions and future work .. 107

6.1 Conclusions .. 107

6.2 Future work .. 109

Bibliography ... 110

x

List of Figures

Figure 1 Problem formulation process in environment-based design ______________________________ 5

Figure 2 Components of a design theory according to Walls (2001) ______________________________ 14

Figure 3 General Design Theory process (Yoshikawa, 1981) _____________________________________ 17

Figure 4 Four domains in axiomatic design __ 19

Figure 5 Generic agile software development process (Robertson & Robertson, 2007) _______________ 29

Figure 6 Software development life-cycle support __ 30

Figure 7 Environment-Based Design process ___ 35

Figure 8 Product system (Zeng, 2004) __ 36

Figure 9 Structure of product environment __ 40

Figure 10 Concept generation process __ 41

Figure 11 Evolution of product in the design process (Zeng 2004) ________________________________ 42

Figure 12 Zig-zag design process (Zeng 2004) __ 43

Figure 13 Two-phase method workflow (Li, 2010) __ 45

Figure 14 A sample diagonal matrix and partition lines (Li, 2010) ________________________________ 50

Figure 15 CBSP meta-model __ 55

Figure 16 CBSP process __ 56

Figure 17 Example of relations between requirements and CBSP ________________________________ 58

Figure 18 EBD - Scrum mapping ___ 60

Figure 19 Environment-Based Design of Software framework ___________________________________ 61

Figure 20 Levels of requirements, according to Chen and Zeng __________________________________ 63

Figure 21 Architecture conflict analysis process __ 65

Figure 22 EBD-S requirements-architecture-design reconciliation ________________________________ 69

Figure 23 Comparison of two decomposition solutions (Li 2010) _________________________________ 71

Figure 24 EBD-S impact analysis __ 74

Figure 25 TeleManager functional domains ___ 75

xi

Figure 26 TME software environment __ 80

Figure 27 TME hardware environment ___ 82

Figure 28 TME human interaction environment __ 84

Figure 29 Requirements classification and architecture synthesis ________________________________ 87

Figure 30 TME architectural mapping __ 89

Figure 31 EBD-S elements and dependencies mapping ___ 91

Figure 32 EBD-S software concept mapping matrix ___ 92

Figure 33 Software concept matrix decomposition __ 93

Figure 34 EBD-S change impact analysis __ 95

Figure 35 TME timeline __ 99

Figure 36 Code submission rates ___ 103

Figure 37 Code submission rate historical data __ 104

Figure 38 EBD-S application to FDD and Scrum software development methodologies ______________ 107

xii

List of Tables

Table 1 DTM categorization by Tomiyama et al. __ 15

Table 2 DTM widely taught and widely used (Tomiyama et al., 2009) _____________________________ 17

Table 3 Structure of design problem ___ 38

Table 4 EVTX for architectural classification of requirements ___________________________________ 66

Table 5 ETVX for decomposition analysis and conflict resolution _________________________________ 67

Table 6 Concordance / relevance matrix __ 67

Table 7 ETVX for architectural refinement of requirements _____________________________________ 68

Table 8 TME software constraints ___ 81

Table 9 TME hardware constraints __ 83

Table 10 TME human interaction constraints __ 85

Table 11 TME development constraints ___ 86

Table 12 TME architecture synthesis ___ 87

Table 13 Updated TME software environment constraints _____________________________________ 89

Table 14 Requirements for the TME reporting engine ___ 90

Table 15 TME v2.0 (Scrum) quality metrics ___ 101

Table 16 TME v2.2 (Scrum + EBD-S) quality metrics __ 101

Table 17 EBD-S performance comparison __ 102

Table 18 Code quality metrics for TME v2.0 (Scrum) __ 105

Table 19 Code quality metrics for TME v2.2 (Scrum+EBD-S) ____________________________________ 105

1

1. Introduction

1.1 Background and motivation of the research

Software systems of today are characterized by increasing complexity, distribution,

heterogeneity and size. The software development tasks exhibit a high degree of

variability and uncertainty.

A rationalized approach has dominated software development since its inception. Such an

approach assumes that problems are fully specifiable, and that an optimal and predictable

solution exists for every problem. It demands detailed capture and modeling of

requirements, architecture and design early on, before significant effort is expended for

system construction (Butler, Jones, Romanovsky, & Troubitsyna, 2006). Creating the

interaction between software requirements, architecture and design is one of the most

challenging problems in software engineering research. It requires not only elaboration of

business requirements into flexible software architecture and design, but constant

reconciliation of changes, introduced both in the requirements and the software system.

Currently execution of this task is based mainly on the intuition and experience of

engineers (Egyed & Grunbacher, 2002).

Appearance of the family of agile software methodologies in mid-90s (eXtreme

Programming, Scrum, FDD, and others) addressed the high complexity of the software

by introduction lightweight methods of fast software development, which ―deal with

unpredictability by relying on people and their creativity rather than on processes‖

(Nerur, Mahapatra, & Mangalaraj, 2005).

2

The nature of agile approaches differs from the traditional software development, and

many attempts to bridge them were taken. Most of these attempts are based on the

modification and formalization of the agile methods. Dyba and Dingsøyr showed in the

study on the agile methods, that the formalized agile methods work in specific, narrow

domains, and don‘t demonstrate real-world applicability in the wide variety of software

development projects (Dyba & Dingsøyr, 2008). However, both traditional and agile

software development methods are aimed to the same goal – facilitate and guide the

software engineering process, and in many cases face the same problems.

The goal of software engineering process is to build a solution to an existing problem. To

select or construct a solution to the problem, an engineer shall understand available

options and existing limits. Thus, selection of basic technologies or creation of new ones

is one of the most important problems which shall be solved in software development

process. Next important step in software development is elaboration of system‘s

principles, or selection of an approach to problem solving. This approach determines the

structure of the software system, decomposition on the components and services, and the

way how basic technologies are used.

Due to extremely high complexity of current software systems, solution of the problem

leads to the modification of the initial concept (Zeng & Cheng, 1991). Change is an

inevitable effect of the system development. Systems shall change in order to evolve; at

the same time, the change can violate the architecture and design. System changes add an

extra dimension to the complexity, which is especially true for the agile approaches, and

change control in software engineering is frequently disconnected from the initial

software concept.

3

Regardless of methodology used in development process, software engineers face four

main challenges with concept development:

- Elaboration of adequate and feasible requirements

- Selection of system architecture

- Development of flexible software design

- Maintaining the requirements, architecture, design and code in concordance

during the development lifecycle

With the experience in software requirements analysis and design elaboration domain, we

have found out that we can take the advantage of the design theories, dealing with

generation of design concepts. We can consider the requirements engineering as a design

problem and use a design theory to generate several design concepts and select the best

one. Taking this point of view, we can easily relate the software requirements with

architecture and design in an unambiguous way to provide a method to control changes

on any level of the system, from code to the requirements.

In this thesis we propose an approach to enhance agile software development

methodologies, namely Scrum and FDD, with formal analytical toolset, aimed to address

the main challenges of software engineering. The proposed approach, called

Environment-Based Design of Software (EBD-S), is derived from Environment-Based

Design (Zeng, 2004) and Non-binary Design Matrix for design concept elaboration and

selection (Li, 2010), and uses Component-Bus-System-Property (CBSP) method

(Medvidovic, Egyed, & Grunbacher, 2003) extinction to relate conceptual entities on the

different levels to abstraction of the software system.

4

The Environment-Based Design provides a design model that is derived from the

axiomatic theory of design modeling (Zeng, 2002). This model provides a unique view

on the conceptual design problem:

- It defines the design problem in terms of the product environment rather than

product functional structure;

- It generates design problems and solutions simultaneously, with the solutions

affecting the perception of the problem.

The Design Structure Matrix (DSM) methodology emerged in early 1980s and

demonstrated how graph theory can be used to analyze complex engineering projects

(Steward, 1981). Steward showed how the sequence of design tasks could be represented

as a network of interactions and how it can be mathematically analyzed as a system of

equations. This representation of the design tasks allowed Steward to identify

redundancies, inefficiencies, and other common problems analytically. DSM has been

extended to the analysis of technical artifacts using the component-based DSM (Pimmler

& Eppinger, 1994). We use the latest to compliment Environment-Based Design

approach for generation and analysis of design solutions.

CBSP approach provides an intermediate model between requirements and architecture

that helps to evolve the two models iteratively (Nuseibeh & Easterbrook, 2000). The

intermediate CBSP model captures architectural decisions as an incomplete ―proto-

architecture‖ that prescribes further architectural development (Brandozzi & Perry,

2001). The CBSP approach also guides the selection of a suitable architectural style to be

used as a basis for converting the proto-architectures into an actual implementation of

5

software system architecture. We use CBSP extinction to capture a software architecture

view of the software design concept, generated by EBD and refined with help of DSM.

United under the umbrella of EBD-S, these approaches address the main problems of

software concept development: they help to refine requirements, select the most

appropriate architectural solution, build flexible design and maintain the control of the

changes during the software development process.

1.2 Objectives

This thesis aims to provide an effective approach to the solution of software design

problems, from requirements elaboration through architecture concept generation to

detailed design development.

In the present thesis we plan to achieve the following objectives:

1) Introduce the Environment-Based Design method to software design problems.

Ill-defined problem + constraints Better-defined problem

Identify product
system

Detect new problems

Elicit/adjust
environment
assumptions

Requirements in
natural language

Specifications

Formalized structures:
- Product
-Environment
-Product-Environment
relationships

Environment
templates

Formulation

Client

Designer

Designer

Client

Figure 1 Problem formulation process in environment-based design

6

Software design problems, as well as product requirements, evolve along the design

process (Chen & Zeng, 2006). Iterative formalization of the design problem, performed

in the Environment-Based Design framework, allows adding more constraints to the

domain to get a better definition of the problem for the next iteration. Requirements for

software systems are well-known to be incomplete and ambiguous. EBD process helps to

clarify the problem, define its scope and find applicable solutions.

2) Reinforce EBD method with Design Matrix application to generate and select the

best design concepts.

Design Matrix (DM) is an effective tool to perform the analysis and management of

complex systems. It helps to model, visualize and analyze the dependencies between the

elements within the system (Li, 2010). Applied to the Environment-Based Design

approach for software problems, it provides a way to derive suggestions for the best

synthesis of the system.

3) Propose a method of relating software requirements, architecture and design

within the concept for better change analysis and control.

Changes are inevitable during the software development process. They occur at any level

of abstraction of the system – in the code, design, architecture and the requirements. In

order to understand the impact of these changes we apply a graph-based method to link

the relations between software requirements, architecture and design. It is based on CBSP

(Component-Bus-System-Property) methodology (Medvidovic et al., 2003), adjusted for

software problems. The graph compliments the DM, and allows agile management of the

software changes during the whole software development lifecycle.

7

4) Construct a framework for solving the software design problems – Environment-

Based Design of Software.

Software development process requires application of different best-practices for better

control and effectiveness. We introduce a methodology for solving the design problems

in agile software development, which relies on Environment-Based Design, reinforced

with Design Structure Matrix problem analysis and CBSP change control. It is called

Environment-Based Design of Software, and it provides guidance for the agile software

developers from the beginning of software process to the end of its lifecycle.

5) Demonstrate the applicability of the Environment-Based Design of Software on a

real-world business case.

Environment-Based Design of Software was elaborated not solely on the basis of

scientific research – it was applied to the management of real software development

processes, and was refined according to the observed results. Our aim is to demonstrate

how EBD-S application helped to perform full development of an enterprise software

solution, from concept generation to the integration and delivery, in a telecommunication

expense management domain. The developed product relies on a large legacy system, but

represents a completely new line of products, build with newest Rich Internet Application

technologies. In Chapter 5 we give a description of the detailed process and solutions

found, as well as of the control of deviations from the original design.

8

1.3 Challenges

Here we describe the main challenges that we faced during the development of the

Environment-Based Design of Software approach:

1) Discover and define the main problems of software development process

One of the main challenges of the software development teams is to provide a clear and

unambiguous method to understand the client‘s problem, find a solution and

communicate it back to the client to verify it (Wiegers, 2003). The nature of agile

software development implies that many solutions can be verified only after they are built

(or prototyped). Concept refinement in software development is always a time-

consuming process, and it is better to make and correct all the errors in assumptions on

this stage. Usually the domain of possible solutions is quite wide, so it is hard to find the

best fit with the scope of the problem (Chung, Nixon, Yu, & Mylopoulos, 2000).

Control of the software system evolution is another challenge that software developers

face. Many unplanned changes happen to the system, and software developers strive to

find a method to analyze the impact of the changes in the real time. There are automatic

tools that can demonstrate the impact on two lowest levels of abstraction, code and UML

design (Medvidovic et al., 2003). But the relation of these changes with architecture of

the system and requirements is usually left to be determined by people. In small projects

it is not an issue; but as soon as team size exceeds 2 developers, the issues of evolution

control arise (Paetsch, Eberlein, & Maurer, 2003).

These problems of software process motivated us to build a scientific method for their

resolution – EBD-S. This method is described in the Chapter 4 of the thesis.

9

2) Analyze the existing methods to solve these problems

To elaborate a new method to cope with the given problems it is important to understand

the existing methods and analyze their pros and cons. We performed a comprehensive

literature review of the software methodologies and best-practises in Chapter 2. It

allowed us to focus on the problems which are not covered by existing approaches.

3) Enrich the Environment-Based Design Theory with Design Matrix approach

The idea of Environment-Based Design was developed by Dr. Yong Zeng in 2004 based

on Axiomatic Theory of Design Modeling (Zeng, 2002). It includes three main stages:

environment analysis, conflict identification and concept generation (Zeng, 2004). Design

Matrix approach allows analyzing the system and verifying the applicability of the

solution concepts to the real problem. Together these approaches form a unique tool for

problem solving. We provided a literature review of design theories and their comparison

to understand the advantages of the selected approach.

4) Build up a problem solving framework that can address different software concept

generation problems

Environment-Based Design and Design Matrix approach form a powerful tool to generate

software concepts and select the most adequate solution, as well as to manage the effects

of change. However, they lack an ability to track the history of decisions and changes,

which is an extremely important part of evolution control. To provide such ability, we

reinforce the EBD-DM approach with a simple visual tool that captures and relate the

requirements-architecture-design artefacts. This tool is called CBSP (Component-Bus-

10

System-Property) approach, and it complements the two presented methods in software

process. In fact, this approach was added on the basis of feedback from real-world

implementation of the EBD-DM. Together these three approaches form a solid basis for

resolution of main software development challenges.

1.4 Contribution

The objective of this thesis is to elaborate an agile software design methodology that

combines the Environment-Based Design method with Design Matrix decomposition

approach for software architecture selection and CBSP approach to control the software

evolution. The advantages of the proposed design method are the formalization of

software concept generation, justification of the software architecture selection and

traceability of the design decisions for the evolution control. The contribution of this

thesis can be summarized as following:

- Many existing software methodologies focus on fast-adapting design and

development approaches, but they sacrifice profound analysis for the speed of

implementation. We propose to integrate lightweight and effective analytical

methods to the software process, which allow planning and controlling the

software architecture evolution in a long run. With EBD-S methodology we

focused on finding the right balance between formalized analysis and rapid

development that ensures high quality software and reduces the risk of

architectural lock-in.

- The application of EBD-S approach in the real world software development

project allowed us to tune some parts of it, and underlined the gaps between

11

theory and practice that we were able to close within next development iterations.

The case study, described in Chapter 5, reflects this process.

- The Environment-Based Design and Design Matrix problem-solving had been

proven and widely used in many engineering fields. This thesis extended the

application of these methods to the software design and development process.

1.5 Organization of the thesis

The thesis is organized as follows:

Chapter 1: Introduction of the thesis. This chapter presents the motivation, scope,

objectives, challenges of the research, contribution of the thesis and its organization.

Chapter 2: Literature review. This chapter defines the key aspects of the software

architecture selection, described in existing researches

Chapter 3: Theoretical foundations review. It includes the review of the Environment-

Based Design (EBD) methodology, of the Design Matrix problem decomposition and

analysis approach, and CBSP methodology review.

Chapter 4: Environment-Based Design of Software (EBD-S) approach. This reusable

model unites EDB and Design Matrix principles with CBSP approach for robust software

architecture development and provides an instrument for software evolution control.

Chapter 5: Case Study. This chapter overviews the EBD-S approach by demonstrating its

application in a real-world example.

Chapter 6: Conclusion. This chapter summarizes the thesis material, and provides

thoughts on the future work.

12

2. Literature review

2.1 Overview

This chapter contains the review of the literature related to our research. This review

encompasses two main aspects, which are the key elements of the research: system

design theories in general and software process and design methodologies, focusing on

the most popular agile software development methods.

2.2 System design theories

2.2.1 The nature of design theories

Design is ―the use of scientific principles, technical information and imagination in the

definition of a structure, machine or system to perform pre-specified functions with the

maximum economy and efficiency‖ (Fielden, 1975). Design is central topic within

engineering.

A design theory is a prescriptive theory based on theoretical underpinnings which says

how a design process can be carried out in a way which is both effective and feasible.

(Walls, Widmeyer, & Sawy, 1992).

The primary difference between scientific theories and design theories is in how they deal

with goals. Goals are meaningless in natural science theories, social science theories may

deal with goals as objects of study. The purpose of a design theory is to support the

achievement of goals. Goal orientation is the key element required in a design theory

which is missing in a science theory (Walls et al., 1992). The following statements

characterize design theories:

13

(1) Design theories must deal with goals as contingencies. While goals are extrinsic

to explanatory and predictive theories, they are intrinsic to a design theory.

(2) A design theory can never involve pure explanation or prediction. If it explains, it

explains what properties an artifact should have. If it predicts, it predicts that an

artifact will achieve its goals to the extent that is possesses prescribed by the

theory.

(3) Design theories are prescriptive. They integrate the explanatory, predictive and

normative aspects in ―can‖ and ―will‖ design paths that realize more effective

design and use.

(4) Design theories are composite theories which encompass kernel theories from

natural science, social science and mathematics.

(5) While explanatory theories tell ―what is‖, predictive theories tell ―what will be‖,

and normative theories tell ―what should be‖, design theories tell ―how to /

because‖.

(6) Design theories show how explanatory, predictive, or normative theories can be

put to practical use.

(7) Design theories are theories of procedural rationality (Simon, 1996).

If it is to be a good theory (Nagel, 1961), a design theory must be subject to empirical

refutation. An assertion that possession of a particular set of attributes will enable an

artifact to meet its goals can be verified by building and testing the artifact. Prototype

construction is a major aspect of design theory research.

14

2.2.2 A formal definition of a design theory

A design theory must have two aspects – one dealing with the product and another

dealing with the process of design. These aspects cannot be independent, since the design

process must yield the product to be designed (Suh, 1990).

The first component of a design theory dealing with the product of design is a set of

meta-requirements which describe the class of goals to which the theory applies. The

second component is a meta-design describing a class of artifacts hypothesized to meet

the meta-requirements. The third component is a set of kernel theories from natural or

social sciences, or from other design theories which govern design requirements. The

final component is a set of testable design process hypotheses which can be used to verify

whether the meta-design satisfies the meta-requirements.

Kernel Theories

Kernel Theories

Meta-
requirements

Meta-design
Testable design

product
hypotheses

Design method
Testable design

process
hypotheses

Figure 2 Components of a design theory according to Walls (2001)

The second aspect of a design theory deals with the design process. The first component

of this aspect is a design method, which describes procedure for artifact construction. The

second is a set of kernel theories governing the design process itself. These kernel

theories may be different from those associated with the design product. The final

component is a set of testable design process hypotheses which can be used to verify

whether the design method results in an artifact which is consistent with meta-design

(Walls et al., 2001).

15

2.2.3 Classification of design theories and methodologies

The field of Design Theory and Methodology (DTM) is a rich collection of findings and

understandings resulting from studies on how we design (rather than what we design).

While perhaps the ultimate goal of the DTM research would be to obtain a general and

abstract (thus universal) theory about design, there can be theories only general but still

concrete or theories abstract but individual as an intermediate state of progress.

Therefore, DTM can roughly be categorized into four categories along two axes; one is

―concrete vs. abstract‖ and the other is ―individual vs. general‖ (Tomiyama, Gu, Jin,

Lutters, Kind, & Kimura, 2009).

Table 1 DTM categorization by Tomiyama et al.

 General Individual

Abstract Design theories (GDT, UDT) Math-based methods (Axiomatic

Design, Optimization, Taguchi

Method)

Concrete Design methodologies (Adaptable Design,

Integrated Product Development, TRIZ, etc.)

Methodologies to achieve concrete goals

(Axiomatic Design, Design for X, DSM, FMEA,

QFD, Total Design of Pugh)

Process methodologies (DSM, Concurrent

Engineering)

Design methods

 Concrete and Individual: By grouping records of individual design cases belonging to

a specific product class and by extracting commonalities among them, we obtain

‗‗design methods‘‘ for this particular product class.

 Concrete and General: DTM in this category aims at concrete descriptions but

applicable to a wide variety of products. This type of DTM can be obtained by

generalizing design methods. This generalization is possible by focusing on particular

characteristics common to different types of products. By focusing on functions, we

16

obtain so-called prescriptive design methodologies such as Pahl and Beitz (1988).

Similarly, by focusing on various concrete design goals within design, we obtain DfX

(Design for X). If we focus only on design process management, we obtain process

technologies to control and manage product development processes, such as

concurrent engineering.

 Abstract and Individual: By abstracting design methods, we obtain this type of DTM

applicable (only) to a specific class of product design. Abstraction often takes a form

of mathematics, meaning design solutions can be obtained algorithmically with

computation. DTM in this category includes, for example, a variety of computational

methods for optimization and engineering computation. Note that these computational

methods do not include modeling systems (such as geometric modeling), because

they are ‗‗modeling frameworks‘‘ rather than ‗‗design methods‘‘. However, some

DTM methods describe design at such an abstract level that they are applicable to a

certain class of design targeting specific goals (for instance, Taguchi method for

quality design (Steward, 1981)).

 Abstract and General: Design Theories about design processes, activities, and

knowledge. For example, General Design Theory (GDT) by Yoshikawa explains

design as knowledge operations (set operations).

2.2.4 Generic design process

Design methodology begins with a design process model that can be used to develop

product specifications. In all cases it is apparent that the development process is

commonly regarded as a logical sequence of phases in which tasks are completed.

Although differences exist in for instance the scope of the models and the use of

17

iterations, all models show a similar way of describing a progression through a sequence

of events (Yoshikawa, 1981).

A0

Clarify and define the task

A1

Determine functions and
their structures

A2

Search for solution
principles

A3

Decompose into modules

A4

Develop layouts for
modules

A5

Complete overall layout

A6

Prepare production and
operation instructions

Specifications

Function structure

Principle solution

Module structure

Preliminary layout

Definitive layout

Product documents

Task

Requirements

Engineers

De

Definitive layout

Figure 3 General Design Theory process (Yoshikawa, 1981)

2.2.5 Evaluation of major design theories and methodologies

Tomiyama et al. performed a deep analysis of the contemporary Design Theories and

Methodologies in the following domains: research, education and industry (Tomiyama et

al., 2009). Their findings are summarized in Table 2.

Table 2 DTM widely taught and widely used (Tomiyama et al., 2009)

 General Individual

Abstract Design theories – Widely taught Math-based methods – widely

taught and used

Concrete Design methodologies – widely taught

Methodologies to achieve concrete goals –

widely taught and used

Process methodologies – widely taught and used

Design methods – widely taught

and used

18

Design theories (GDT, UDT) and design methodologies (Adaptable Design, Integrated

Product Development, TRIZ) are widely taught, but rarely used in industry. They mostly

focus on the embodiment design rather than on how to achieve concrete performance

goals (cost, quality, time). For routine design, which represents the vast majority of the

design cases in industries, these aspects are more important than innovation in functional

design. However, increasingly industry started to realize the importance of innovative

design and for this reason TRIZ as a method to enhance innovation capabilities is popular

among industry (Tomiyama et al., 2009). In surveying various DTM, Tomiyama et al.

found out that many of them do not reflect modern product development activities,

especially lacking support of the following:

 Complex multi-disciplinary product development

 Further advances in digital and virtual engineering for better collaboration

 Globalization in product development

Among the most widely design methods, used in industry, only one found really wide

adoption in industry – Axiomatic Design Theory. Generally it is applicable for all kinds

of design activities, including complex system design; it has large number and wide range

of examples to follow; and it can be an effective tool in analysis in addition to design

activities.

2.2.6 Axiomatic design theory

Axiomatic design theory and method have been widely reported in CIRP (The

International Academy for Production Engineering) community. Axiomatic design states

the best design solution fulfills two axioms:

19

1. Maximum independence of the functional elements.

2. Minimum information content.

Compliance with the first axiom assures that designs will be adjustable, controllable and

will avoid unintended consequences. Compliance with the second axiom assures that the

design will be robust with a maximum probability of success. There are also theorems

and corollaries associated with the axioms (Tomiyama et al., 2009).

Figure 4 Four domains in axiomatic design

Application of Axiomatic Design consists of three elements each with two parts. The

parts of the first element are the axioms. In order to apply the axioms systematically

through the design, a structure for the design elements is required. The structure is the

second element and its two parts are a horizontal decomposition into domains of

customer, functional, physical and process domains as shown in Figure 4, and a vertical

decomposition in a hierarchy from general to specific aspects of the design. The third

element is the process. It is composed of zigzagging decomposition to create the design

hierarchies in the domains from the top down by first developing the functional

requirements (FRs) from the customer attributes (CAs) in the customer domain then

selecting the Design Parameters (DPs) in the physical domain to satisfy the FRs and the

corresponding Process Variables (PVs) in the process domain to create the DPs (Suh,

[CA]

•Customer
domain

[FR]

•Functional
domain

[DP]

•Physical
domain

[PV]

•Process
domain

20

1990). In order to check for compliance with Axiom 1, the independence axiom, Suh

defines a design matrix ([A]) which is used to display which DPs influence which FRs:

 [] [][] (1)

The desirable design is uncoupled where matrix is diagonal. If the matrix is triangular it

is a decoupled design, and there is a fixed order of adjustment of the DPs to satisfy the

FRs. Otherwise, the design is a coupled design which should be avoided.

Axiomatic design theory has been used in a wide range of industrial applications ranging

from software design to products and manufacturing systems design (Tomiyama et al.,

2009).

2.3 Software design methodologies

2.3.1 Software process

Software process is the term given to the organization and management of software

development activities. Generic software development process shares the same principles

with engineering process in all industries: from concept through design to the final

product. It is iterative, as in the majority of the industries. Project management directs all

the stages of the process.

Each stage produces certain outcome. To describe the generic software process, we need

to differentiate its sub-processes by their outcomes, and group them in the structure. The

software sub-process classification, presented below, is based on the Microsoft software

development guideline (Wiegers, 2003):

21

- Requirements elicitation – it is the process of building the concept of the software.

The main outcomes are Vision and Scope document and Use-Cases.

- Software specifications development – the specification of the design and

architecture of the future product. Main deliverables are:

o Software architecture – is the complex of basic technologies of the software

solution, and a set of design patterns, united in the framework or core.

o Software design – is the segmentation of the functionality by the components,

modules or classes and their relationships to each other and the environment.

o Detailed software design – represents the algorithms and data structures,

which will be used by the developers during coding.

o All the requirements (business and software) are usually united in one

document, called Software Requirements Specifications. This document

represents the deliverable of the analysis and design stages, and serves as a

base for following stages.

- Software implementation – the process of coding performed according to the

software requirements. Includes many iterative stages, internal quality verification

and code refactoring. The main deliverable is the software product itself.

- Verification and validation – the process of internal quality verification; usually goes

in parallel with software implementation process. The main goal is to eliminate the

defects (non-conformities to the specifications) of the software. The deliverables are

the verified software and the list of ―known errors‖ – non-critical issues, which are

not planned to be fixed in current version.

22

- Integration and delivery – creation of the final software package, automated

installers or integration to the work environment. The deliverable is the final software

product.

- Maintenance – supporting and troubleshooting the operations of the software. This

activity is important when the developers need to get user‘s feedback and improve the

product.

There are several approaches to software development. They give different

recommendations for the length of iterations, order of the stages, and involvement of the

team members. But all of them are in agreement that these processes are essential in

software development.

2.3.2 Software architecture and design

Software architecture has emerged as a crucial part of the design process. It encompasses

the structures of large software systems. The architectural view of a system is ―abstract,

distilling away details of implementation, algorithm, and data representation and

concentrating on the behavior and interaction of "black box" elements‖ (Shaw & Garlan,

1996). Software architecture is developed as the first step toward designing a system that

has a collection of desired properties. Shaw and Garlan defined what constitutes software

architecture in more details:

The software architecture of a program or computing system is the structure or

structures of the system, which comprise software elements, the externally visible

properties of those elements, and the relationships among them (Shaw & Garlan,

1996).

23

First, architecture defines the key software elements and embodies the information about

how the elements relate to each other. This means that it specifically omits certain

information about elements that does not pertain to their interaction. Thus, an architecture

is foremost an abstraction of a system that suppresses details of elements that do not

affect how they use, are used by, relate to, or interact with other elements.

Second, the definition makes clear that systems can and do comprise more than one

structure and that no one structure can irrefutably claim to be the architecture. For

example, all nontrivial projects are partitioned into implementation units. This is one kind

of structure often used to describe a system. Other structures are much more focused on

the way the elements interact with each other at runtime to carry out the system's

function.

Third, the definition implies that every computing system with software has a software

architecture because every system can be shown to comprise elements and the relations

among them.

Fourth, the behavior of each element is part of the architecture insofar as that behavior

can be observed or discerned from the point of view of another element. Such behavior is

what allows elements to interact with each other, which is clearly part of the architecture.

A set of business and technical decisions define the software architecture. These business

and technical decisions are strongly related on the environment in which the architecture

is required to perform. In any development effort, the requirements make explicit some of

the desired properties of the final system. Not all requirements are concerned directly

with those properties; a development process or the use of a particular tool may be

24

mandated by them (Chen, Yao, Lin, Zeng, & Eberlein, 2007). Weigers identified the key

influences to software architecture (Wiegers, 2003):

- Business requirements, expressed by stakeholders, is the main source of influence

to architecture

- Developing organization frequently reshapes the architecture according to current

investments in certain assets, long-term strategies, and organization structure

- Technical environment usually sets the limitations of the software system and

defines the available selection of the basic technologies

- Background and experience of architects inevitably affects the architecture

2.3.3 Software design: commonality and variability

The question of what is the nature of software design is important for understanding its

principles. Coplien – from his ―Multi-Paradigm Design for C++‖ – provides an answer:

When we think abstractly, we emphasize what is common while suppressing

detail. A good software abstraction requires that we understand the problem well

enough in all of its breadth to know what is common across related items of

interest and to know what details vary from item to item. The items of interest are

collectively called a family, and families—rather than individual applications—

are the scope of architecture and design. We can use the commonality/variability

model regardless of whether family members are modules, classes, functions,

processes or types; it works for any paradigm. Commonality and variability are

at the heart of most design techniques. (Coplien, 1999).

25

Finding the commonalities and variabilities within a system, and expressing them, forms

the heart of design. Commonalities are often the parts that are difficult to explicitly

identify, not because we don‘t recognize them, but because they‘re so easily and

intuitively recognizable it is tough to spot them.

Variability can come in two basic forms, one of which is easy to recognize and the other

much more difficult. Positive variability is when the variability occurs in the form of

adding to the basic commonality. For example, an abstraction desired is that of a

message, such as a SOAP message or e-mail. If we decide that a Message type has a

header and body, and leave different kinds of messages to use that as the commonality,

then a positive variability on this is a message that carries a particular value in its header,

perhaps the date/time it was sent. This is usually easily captured in language constructs—

in the object-oriented paradigm, for example, it is relatively trivial to create a Message

subclass that adds the support for date/time sent.

Negative variability, however, is much trickier. As might be inferred, a negative

variability removes or contradicts some facet of the commonality – a Message that has a

header but doesn‘t have a body (such as an acknowledgement message used by the

messaging infrastructure) is a form of negative variability. And capturing this in a

language construct is problematic – most of object-oriented languages don‘t have a

facility to remove a member declared in a base class.

Thus, the goal of the software design is to maintain the right level of abstraction by

encompassing commonalities, supporting positive and avoiding negative variability

(Neward, 2010).

26

2.3.4 Nature of change in software development

Software development process is an iterative activity. Stages of development are often

interwoven and affect each other. Change is the key notion in the understanding of these

interactions.

Change in the software development is the modification of some important aspects of the

development, which cause the modification of expected result. Changes are inevitable in

all the development processes. James F. Peters and Sheela Ramanna proposed following

classification of the changes in the software development process: external and internal

from the system perspective; planned and unplanned from the process perspective (Peters

& Ramanna, 2003).

External changes are caused by the client‘s requests; internal ones are the result of the

internal decisions and optimizations. The necessity of the change must be determined and

analyzed before it goes to the implementation. Existing approach of determination is

called risk-value-cost analysis and consists in determination of risks and costs of the tasks

and activities with comparison of benefits and drawbacks.

Planned changes are usually reflected in all levels of the requirements, from business to

detailed design, and approved by the software architect / designer. Unplanned changes

are introduced by mistake or personal decision of the developer, and often cause the

architecture or design decay.

Consistency in the software change control process permits to plan software evolution

during the whole software life-cycle (Medvidovic et al., 2003).

27

2.3.5 Background of agile methodologies

In the last 30 years a large number of different approaches to software development have

been introduced, of which only few have survived to be used today. The nature of

software development results in the fact that traditional information systems development

methodologies ―are treated primarily as a necessary fiction to present an image of control

or to provide a symbolic status‖ (Nandhakumar & Avison, 1999). More than that, several

researchers and software practitioners in early 2000s agreed that traditional methods

―provide normative guidance to utopian development situation‖ (Truex, 2000). As a

result, industrial software developers have become skeptical about new solutions that are

difficult to grasp and thus remain not used (Wiegers, 2003). This was the background for

agile methodologies appearance.

Agile – software development methods attempt to offer once again an answer to the

business community asking for lighter weight along with faster and nimbler software

development processes. Agile proponents claim that the focal aspects of light and agile

methods are simplicity and speed, as opposed to deep formalization and complexity of

traditional design methodologies. The principles of agile development are expressed in

Agile Software Development Manifesto published by a group of software practitioners

and consultants in (Beck, 2001). The focal values honored by this manifesto are:

- Individuals and interactions over process and tools

- Working software over comprehensive documentation

- Customer collaboration over contract negotiation

- Responding to change over following a plan

28

Highsmith and Cockburn (2001) report that the changing environment in software

business seriously affects the software development process. To satisfy the customers at

the time of delivery has taken precedence over satisfying them at the moment of project

initiation. That calls for procedures dealing with how to better handle inevitable changes

throughout the software development cycle (Cockburn & Highsmith, 2001). It is claimed

that agile methods are designed to:

- Produce the first delivery in weeks, to get rapid feedback

- Invent simple solutions, so there is less to change and making changes easier

- Improve design quality continually, making next iteration less costly

- Test constantly, for earlier and less expensive defect detection

All this forms the major difference between agile and traditional design. Agile methods

assume largely emergent, rapidly changing requirements and agile design is worked out

for current requirements. While traditional design methodologies, applied to software,

work with knowable early and largely stable requirements, with architecture designed for

current and foreseeable requirements.

2.3.6 Generic agile software process

Miller gives the following characteristics to agile software processes from the fast

delivery point of view, which allow shortening the life-cycle of projects (Miller, 2001):

- Modularity on development process level

- Iterative with short cycles enabling fast verifications and corrections

- Time-bound with iteration cycles from one to four weeks

- Parsimony in development process removes all unnecessary activities

29

- Adaptive with possible emergent new risks

- Incremental process approach that allows functioning application building in

small steps

- Convergent and incremental approach minimizes the risks

- People-oriented, agile process favor people over process and technology

- Collaborative and communicative working style

Since the agile software development principles differ from the traditional design

approaches, its process is also very different. Figure 5 represents the high-level view on

the agile software development process (Robertson & Robertson, 2007). All product

requirements and user stories are collected under the name of Product Backlog. In each

iteration, which usually lasts from 1 week to 1 month, a sprint backlog – sub-set of

requirements – is selected for implementation. Then a very light-weight process of

design-implementation-testing-documentation is performed. The result is a working

application, with a small number of new (or updated) features.

Figure 5 Generic agile software development process (Robertson & Robertson, 2007)

30

2.3.7 Agile software development challenges

The benefits associated with agile software development methods are obtainable only if

these methods are correctly used in production process. While agile approaches concur

with the traditional software development practice, they are not all suitable for all phases

in the software development life-cycle – the results of the study (Abrahamsson, Salo,

Ronkainen, & Warsta, 2002) are summarized in Figure 6.

Software development lifecycle

Concept
generation

Requirements
specification

Design Code
Architecture

creation
Test System in use

Agile
metodology

P
h

as
e

Extreme
Programming

FDD

RUP

SCRUM

Project Management

Process

Covered

Not covered

Figure 6 Software development life-cycle support

According to the study, only Rational Unified Process covers all the aspects of software

development, both from project management and process viewpoints. Other popular agile

approaches do not support concept generation stage, and do not cover change control

during the system in use evolution. Process of software architecture creation is not

determined in XP, FDD and Scrum, while the last lacks process description of design and

coding stages as well (Abrahamsson et al., 2002).

Another type of challenges, generic to all approaches, is related to requirements

engineering. Eliciting precise and comprehensive product requirements from customers is

of critical importance for the success of product development (Wang & Zeng, 2008).

31

However, many agile methods advocate the development of code without waiting for

formal requirements analysis and design phases. Based on constant feedback from the

various stakeholders, requirements emerge throughout the development process. Most

agile organizations shun formal documentation of specifications. Instead, they use simple

techniques such as user stories to define high-level requirements and rely on the heavy

communication with the customer. For projects that ―can‘t achieve high-quality

interaction, this approach poses risks such as requirements inadequately developed or,

worse, wrong‖ (Lan & Ramesh, 2008).

The traditional requirements engineering process phases – elicitation, analysis, and

validation are present in all agile processes. The techniques used vary in the different

agile approaches and the phases are not as clearly separated as in the traditional RE

process. They are also repeated iteratively which makes it harder to distinguish between

the phases. More than that, continuous reprioritization of the requirements leads to

instability. The techniques used in the agile development processes are sometimes

described vaguely and the actual implementation is left to the developers. This is a result

of the emphasis on highly skilled people: ―good‖ developers will do the ―right thing‖

(Paetsch et al., 2003). As all agile approaches include at least a minimum of

documentation, it is the responsibility of the development team to ensure enough

documentation is available for future maintenance. It either slows down the development,

or leads to the lack of documentation (Lan & Ramesh, 2008).

32

3. Theoretical foundations review

3.1 Environment-Based Design

3.1.1 Introduction to Axiomatic Theory of Design Modeling

There are two basic approaches in representing the design problem: bottom-up and top-

down. The first one is based on generalization of the design problem structure by analysis

of engineering design activities and case studies. The top-down approach works the other

way around – it tries to derive the design problem structure from high-level principles.

The axiomatic approach is one of the most important tools in top-down design problem

representation. It addresses the general design models and problems, and lets the concrete

design problem models to be deducted. It is based on the set of axioms, which are

statements that are self-evident truths, and uses mathematical structure to consistently

derive the invariant structure for design problem representation.

Axiomatic Theory of Design Modeling (Zeng, 2002) provides a logical tool for

representing and reasoning about object structures. It uses three basic axioms: universe,

object and relation. Axiomatic Theory of Design Modeling differs from set theory, where

concrete and abstract objects are distinguished by set and element. In this theory the only

abstract concept is the universe. Here are the definitions of these basic axioms:

[Definition 1] The universe (U) is the whole body of things and phenomena observed or

postulated.

33

[Definition 2] An object (denoted by capital letters) is anything that can be observed or

postulated in the universe.

[Definition 3] A relation (~) is an aspect or quality that connects two or more objects as

being or belonging or working together or as being of the same kind. A

relation can be a property that holds between an ordered pair of objects.

 (2)

where A and B are objects, A ~ B is read as ―A related to B‖, and R is the relation from A

to B. It is important to note that relation is also an object. Based on definitions 1-3, the

following axioms are introduced:

[Axiom 1] Everything in the universe is an object.

[Axiom 2] Every object in universe interacts with other objects.

The characteristics of relations play a critical role in the axiomatic theory of design

modeling. We need to define a group of basic relations to capture the nature of object

representation. They will be used to establish new types of relations in the theory. We

need two basic relations – the corollaries of the theory:

[Corollary 1] Every object in the universe includes other objects.

 (3)

B is called a sub-object of A. The symbol is inclusion relation. The inclusion relation is

transitive and idempotent but not commutative. Other operations such as ⊆, =, ∪, and ∩

are also defined based on this corollary (Zeng, 2002).

34

[Corollary 2] Every object in the universe interacts with other objects.

 (4)

C is called the interaction of A on B. The symbol ⊗ represents interaction relation.

Interaction relation is idempotent but not transitive or associative.

Based on the above two corollaries, the structure operation is established. It provides the

aggregation mechanism for representing the object evolution in the design process.

[Definition 4] Structure operation, denoted by ⊕, is defined by the union of an object

and the relation of the object to itself.

 () (5)

where ⊕O is the structure of object O. The structure operation provides the aggregation

mechanism for representation of object evolution in the design process (Zeng, 2002).

3.1.2 Environment-Based Design process

The notion of Environment-Based Design was introduced by Dr. Yong Zeng in 2004.

This design methodology is based on his Axiomatic Theory of Design Modeling. While

traditional axiomatic design theories are based on the generic design process, the

environment-based design process encompasses three domains: environment analysis,

identification of conflicts and concept generation. These domains are processed

iteratively and progressively to elaborate design requirements and design solutions. The

generic EBD process is shown on the Figure 7 using IDEF0 notation.

35

A1

Environment
Analysis

A2

Conflict
Identification

A3

Concept Generation

Environment
System

Environment
Conflicts

Design
concept

Design
problem

Intermediate design
specifications

Customer

Designer

Product
System

Design
Product

A0

Design problem
formulation

Figure 7 Environment-Based Design process

In order to understand the EBD process, we need to provide definitions for the main

components of the EBD.

[Definition 5] A product system is the structure of an object (Ω) including both a product

(S) and its environment (E).

The product can be a machine, a software package, a process, an idea, etc. Everything

except the product itself can be seen as its environment. Let

 [] (6)

where is the object that is included in any object.

Based on the definition of structure operation, the product system () can then be

expanded as follows:

 () () () () () (7)

where and are structures of the environment and product, respectively; and

 are the interactions between environment and product. A product system is

illustrated in Figure 8.

36

Figure 8 Product system (Zeng, 2004)

The definition of the product system gives a description how a product exists in the

universe. The product system is composed of the product (object / collection of objects),

environment (all other objects in the universe) and interactions between product and

environment, between elements of the environment and between the elements of the

product. It is important to separate the interactions between product and the environment,

because they define the place and the behavior of the product in the system. Thus we

introduce a new definition:

[Definition 6] Product boundary, denoted by B, is the collection of interactions between

a product and its environment.

 () () (8)

We can define two types of product boundaries: structural and physical. The structural

boundary (B
s
) is the shared physical structure between a product and its environment.

The physical interactions include actions (B
a
) of the environment on the product and

responses (B
r
) of the product to the environment. Therefore, product boundary can be

represented as

 (9)

Based on the definition of the product system, we can formally define a design problem.

37

3.1.3 EBD process: design problem formulation

[Definition 7] A design problem can be literally defined as a request to design something

that meets a set of descriptions of the request. Based on the axiomatic

theory of design modeling, both "something" and "descriptions of the

request" can be seen as objects and can be further seen as product systems

in the context of formulating design problem. Thus a design problem,

denoted by , can be formally represented as

 () (10)

where () can be seen as the descriptions of a request for

the design, () is something to be designed, and λ is the

"inclusion" relation () implying that will be a part of so that the designed

product will meet the descriptions of the design.

At the beginning of design process, is unknown and is the only thing defined.

The true value of is undetermined, which means the request is yet to be met.

According to (6) and (7), we have

 () ()

 () ()
(11)

Since , we have

 () () () (12)

where denotes logical ―and‖.

Substitute (9) into (12), we have

 () () (

) (

) (

) (13)

38

Equation (13) can be organized into three parts:

1) (), which defines the requirements on the product environment

2) () (

), which denotes direct constraints on the product

3) (

) (

), which defines direct constraints on actions/responses

Therefore, the following theorem is derived:

[Theorem 1] Structure of Design Problem. A design problem is implied in a product

system and composed of three parts: the environment in which the

designed product is expected to work, the requirements on product

structure, and the requirements on performance of the design product.

Table 3 Structure of design problem

Design Problem: P
d

Product Environment ()
Performance Requirements () (

)

Structural Requirements (

) (

)

In other words, the design problem is a problem about how to change the existing state of

universe to a desired state.

3.1.4 EBD process: environment analysis

The foundation of the design problem is the environment of the designed product. We

can state the following theorem:

[Theorem 2] Source of Product Requirements. All product requirements in a design

problem are imposed by the product environment in which the product is

expected to work.

39

A design problem can be formulated based on the product environment
 .

Obviously, different ways to organize the components in product environment will lead

to different formulations of product requirements. To formulate the design problem

clearly, it is important to analyze all the aspects of the environment.

The detailed derivation and discussion can be found in Zeng (2004).

The key objective of Environment Analysis is to find all the key environment

components for a design problem and the relationship between the environment

components. The result of this analysis constitutes an environment system. To facilitate

the analysis, an environment decomposition method was developed (Zeng & Gu, 2001).

There are different ways to decompose the product environment to sub-environments.

According to its properties, the environment can be viewed as composed of natural

environment , build environment and human environment . According to the

importance for the product, environment can be classified as close and remote (Zeng,

2004).

It is impossible to list all the environments of a product before decomposition and

analysis. Thus, the first step in decomposition should be the done according to the

relative importance. It allows focusing on the close environments only and eliminating

the relatively unimportant, remote environments. On the next step we should decompose

the close environment to nature, build and human environments. Later on it is possible to

perform further decomposition to technology, manufacture, assembly, market

environments, etc.

40

The structure of the product environment is shown on the Figure 9.

Close environment

Remote environment

Decomposition process

Nature

Build

Human

Figure 9 Structure of product environment

3.1.5 EBD process: conflict identification

One of the most important stages of the EBD process in the identification of key conflicts

between environment components. We need to define a conflict. The Webster dictionary

gives the following definition:

Conflict – competitive or opposing actions of incompatibles: antagonistic state or

action (as of different ideas, interests, or persons).

A conflict is composed of three basic elements: two competing objects and one resource

object that the former two objects contend for (Yan & Zeng, 2009). By evaluating a

conflict according to the five categories – relationship, data, interest, structural and value

– one can begin to determine the causes of a conflict and design resolution strategies that

will have a higher probability of success (Klein, 1991).

41

From a design point of view, a design concept is a composition of conflict resolutions.

Environment decomposition allows finding out the conflicts between the product

requirements and provides a basis for the conflict resolution (Yan & Zeng, 2009).

3.1.6 EBD process: concept generation

A concept is an approximate description of the technology, working principles and form

of the product, which is sufficiently developed so that one can evaluate the principles that

govern its behavior. The primary goal of the design concepts is to meet the requirements.

Concepts must be iteratively refined in order to evaluate the technologies and implement

them (Ulman, 1995).

The concept-generation process is the process of transformation from to . It is

demonstrated on the Figure 10.

Environment

Function 1

O
ve

ra
ll

fu
n

ct
io

n

Function 2

Function N

Concept 1

Concept 2

Concept N

O
ve

ra
ll

fu
n

ct
io

n

Figure 10 Concept generation process

42

3.1.7 EBD process: dynamics of the process

Design problem and product description evolve along the design process in EBD.

Theorems 1 and 2 present a static structure of design problem. In this section we

demonstrate the mechanism driving the evolution of the design. A generalized evolution

process is shown on the Figure 11.

Figure 11 Evolution of product in the design process (Zeng 2004)

At each stage of the product evolution,

 and

 are defined as follows:

 () ()

 () ()

(14)

At each stage of the evolution process, the design problem is defined by its current

product system , which is called the state of the design. If
 is the design problem

at the i
th

 stage of the design process, it can be represented as

 (), (15)

where
 is evaluation operator responsible for identifying the conflicts between the

current and desired states of design.

It can be seen from (14) that though the product environment does not change in most of

the cases throughout the design process, the product-environment boundary Bi may be

updated every time when the design solutions Si are refined to Si+1. As a result, the design

43

problem
 will be updated as the design process progresses. This results in the zig-zag

design process, as shown in Figure 12.

Figure 12 Zig-zag design process (Zeng 2004)

This can be stated as the following theorem:

[Theorem 3] Dynamic Structure of Design Problem. In the design process, design

solutions to a design problem may change the original design problem, if

the design solutions are different from their precedents, either by

refinement or by alteration.

As can be seen in Figure 12, for each design problem
 , there may exist design

solutions Si so that a new state of design can be derived as follows:

 (

), (16)

where
 is a synthesis operator responsible for generation of design concepts from a

design problem. By substituting (15) into (16) we have:

 (),, (17)

Equation (17) is called design governing equation. It underlines the design process and

governs design activities. It defines dynamics of design. The basic concept behind this

equation is the recursive logic of design (Zeng & Cheng, 1991) which states that design is

44

a recursive process in which the design solution and design problem interdependently

evolve (Dorst & Cross, 2001), (Zeng & Cheng, 1991).

3.2 Design Matrix problem decomposition

3.2.1 Matrix-based decomposition of design problems

Matrix representation in product design and development can be classified into two

formats: square matrix and rectangular matrix (RM). First one is often referred to as

Design Structure Matrix (DSM), which rows and columns represent the same set of

elements. Rectangular matrices capture the relations between different entities. In

problem decomposition, the matrix‘s rows are labeled with design functions, and

columns are labeled with design parameters. Thus the matrix entries show which

parameters are required to achieve a specific function. This format is used in axiomatic

design. In this context, problem decomposition is applied to divide the original complex

problem represented in a matrix format into design sub-problems for a tractable design

process.

Decomposition is a common and effective way to address the complexity of a design

problem. In this context, matrix-based design decomposition is referred to the

partitioning of a design problem that is represented in a matrix format. Particularly, the

columns of this kind of matrix represent the parameters that describe the physical

constituents and/or behavioral properties of a design, while the rows represent the

constraint functions that define the correlations among these parameters. Then, each

matrix entry indicates a dependency relationship of the corresponding row and column

(Li, 2010).

45

One of the most widely used matrix decomposition methods is a two-phase method. The

main feature of this method is the decoupling of the function of decomposition into two

phases of analysis: dependency analysis and partitioning analysis. This methodical

structure explicitly analyzes the coupling relationships between design elements to

synthesize decomposition solutions. The original version of the two-phase method

assumes the binary input matrix, which only captures the presence/absence type of

dependency in a design problem. In design problem decomposition a non-binary matrix

representation of relations is required.

3.2.2 Two-phase method overview

The two-phase decomposition method was proposed by Chen et al. (2004). This method

is built upon the unique structure of a two-phase decomposition scheme that decouples

the decomposition process into two functionally disjointed phases, each achieved by an

autonomous algorithm. Figure 13 shows the high-level workflow of this method.

Figure 13 Two-phase method workflow (Li, 2010)

The input of the method is a rectangular matrix, which represents a system comprising

two sets of elements, i.e., n column elements (design parameters) and m row elements

(design functions). Then, each matrix entry exhibits a dependency relationship between

46

the corresponding row and column elements. The purpose of the two-phase method is to

obtain a block-angular matrix, where the blocks represent subsystems and the interaction

part represents the connection between subsystems, as shown in Figure 13 (c).

The two-phase method consists of two methodical components, which are labeled with

Phase 1 and Phase 2. Phase 1 – dependency analysis – consists of two classes of

algorithms:

1. Cluster formation. The coupling analysis is performed on rows and columns of

the matrix. Obtained coupling information is used for hierarchical clustering

analysis (HCA) to reallocate similar rows and columns close to each other and

form clusters in a matrix. The formed clusters are often scattered, because the

couplings between them are not explicitly considered.

2. Cluster alignment. Analysis of the couplings between clusters to bring similar

clusters close to each other. The formed clusters will be aligned along the main

diagonal direction, resulting in a banded diagonal matrix (Figure 13 (b)).

Phase 2 consists of the application of partitioning analysis to transform the banded

diagonal matrix to a block-angular matrix (Figure 13 (c)). The following decomposition

criteria are considered: number of blocks, size of blocks, and size of interactions.

Partitioning analysis is designed to generate a set of decomposition solutions to satisfy

the specified decomposition criteria (Li, 2010).

47

3.2.3 Non-binary dependency analysis overview

The two-phase method is limited in its usage due to the fact that its original version

supports only binary input matrices, indicating presence/absence of the dependency. In

many engineering problems the strength of dependency plays a very important role. Thus,

a non-binary dependency analysis is a vital extension for the application scope of the

two-phase method.

The dependency analysis of the two-phase method has its root with the hierarchical

cluster analysis (HCA). The HCA researchers have developed numerous resemblance

coefficients to address different types of classification, and the common coefficients are

the distance coefficients, the association coefficients, and the correlation coefficients. In

the context of matrix-based decomposition, it is assumed that the notion of coupling is

relevant to similarity (resemblance coefficients).

Li in his work had selected the min/max formulation of Jaccard‘s resemblance coefficient

to measure the coupling between rows and between columns. The formulation of

couplings are given in equations (18) and (19).

∑ ()

∑ ()

 [] (18)

∑ ()

∑ ()

 [] (19)

where mij is a matrix entry of RM, and () is the resulting coupling value

between the i
th

 row (column) and the j
th

 column (row).

48

3.2.4 Overview of Phase 1

Similar to the binary dependency analysis, the non-binary one consists of the algorithms

of cluster formation (CF) and cluster alignment (CA). To analyze non-binary

information, only the cluster formation algorithm is modified from the binary version.

The cluster alignment algorithm processes the same type of coupling information from

the cluster formation algorithm and remains the same.

The following steps describe the non-binary cluster formation algorithm for columns. The

same steps can be applied for the rows by transposing the matrix (Li, 2010).

1. Measure the coupling between columns using the min/max coefficient.

2. Construct the resemblance coefficient matrix (RCM) that indicated the coupling

measure between every two columns.

3. Pick the column pairs that yield the highest coupling value to form a branch of the

column tree. The column indices are shown as the leaves of the column tree.

4. Modify the resemblance coefficient matrix to represent the newly formed branch.

5. Repeat steps 3 and 4 until the resemblance coefficient matrix cannot be further

reduced, and a complete column tree is formed. The index sequence of the formed

column tree becomes the sequence to re-arrange the columns of the input matrix.

After applying the cluster formation algorithm for the input matrix, the cluster alignment

(CA) algorithm is applied to align the formed clusters. For this step a Binary Tree

Association (BTA) algorithm is used (Chen, Ding, & Li, 2005). This algorithm deals with

the dependencies between the column tree and row tree.

49

The purpose of this algorithm is to arrange the branches of the row or column tree in an

attempt to position the 1s elements along the main matrix diagonal. The step-by-step

procedure of BTA is given below.

1. Divide the matrix into four parts based on the leaves of the branches BR1, BR2, BC1

and BC2. Two lines, horizontal and vertical, are drawn to divide the matrix.

2. Calculate the number of 1s elements in each part using the formulation as

 ∑ (20)

 where Nkl is the number of 1s elements in Part kl.

3. Switch the branches BR1 and BR2 if N12 + N21 > N11 + N22; otherwise, leave the

tree intact.

4. Repeat steps 1-3 for the left and right branches of BR until the tree leaf is reached.

Figure 13 (b) illustrates the resulting matrix, obtained from applying BTA

algorithm to the initial matrix (a).

3.2.5 Overview of Phase 2

The second phase of analysis implies the application of partitioning analysis to transform

the banded diagonal matrix to a block-angular matrix as decomposition solutions of a

matrix-based system. A concept of partition point is introduced to facilitate this function.

A partition point is an imaginary point that is placed on a banded diagonal matrix for

two-block partitioning. The coordinates of partition point in the matrix are expressed as

(rowi, coli) and represent the position of horizontal and vertical partitioning lines. A

partition point essentially divides a matrix into four parts. Based on the structure of the

banded diagonal matrix, the diagonal parts will form the blocks (or subsystems), while

50

the nonzero elements in the off-diagonal parts will contribute to the interaction part. The

placement of partition points becomes the essential step to determine the final

decomposition solutions.

Figure 14 A sample diagonal matrix and partition lines (Li, 2010)

The number of possible decomposition combinations grows exponentially with the size

of matrix. However, the engineers are looking usually for a single feasible solution which

is reasonably good, instead of looking for all the feasible solutions. When decomposition

criteria cannot be clearly specified, the engineers may want to identify several possible

decomposition solutions for evaluation. The heuristic approach is developed for this case.

To estimate the quality of a decomposition solution, the matrix-based complexity metric

is used. This metric approximates the complexity entailed in a block-angular matrix by

inspecting the size of each block and the size of an interaction part.

The inputs of the heuristic partitioning analysis are the diagonal matrix and the

resemblance coefficient matrices (RCM) from the dependency analysis. The step-by-step

HPA algorithm is presented here:

51

1. Step 1: Re-arrange the Rows and Columns of RCMs. According to the row and

column sequence of the diagonal matrix, the orders of the RCMs for rows and

columns are re-arranged. Thus, the nonzero coupling values are clustered along

the main diagonals, which indicates that the highly coupled rows and columns are

placed close to each other.

2. Step 2: Construct the Coupling-Partitioning Plots for Rows and Columns. To

construct a coupling-partitioning plot, we first place each partition line on the re-

arranged RCM, which helps to identify the broken coupling values between two

separate groups. These broken coupling values are added together and then

divided by the total of the coupling values in the same RCM for normalization.

The resulting normalized value is the broken coupling value that corresponds to

the partition line, and it will be used for the plot.

3. Step 3: Select the Partition Lines and Form Partition Points. From the row and

column coupling-partition plots, the partition lines that belong to the local

minimum will be selected. If decomposition solutions with ng blocks are desired,

ng-1 partition lines are required from the row and column coupling-partition plots,

respectively, to form ng-1 partition points. In addition, the selection of partition

lines depends on some decomposition criteria. For instance, the size of blocks is

measured via the number of rows and/or columns. Then, if the distance of the

partition lines does not agree with the desirable block size, these partition lines

will not be selected.

The heuristic partitioning analysis reveals how the coupling information can be utilized to

expedite the process to obtain a decomposition solution. Through the coupling-partition

52

plots this coupling-driven approach provides a convenient way to explore different

matrix-based structures (Li, 2010).

3.3 CBSP approach for requirements-architecture reconciliation

3.3.1 Introduction to CBSP approach

Understanding and supporting the interaction between software requirements and

architectures remains one of the challenging problems in software engineering research

(Nuseibeh, 2001). Evolving and elaborating system requirements into a viable software

architecture satisfying those requirements is a difficult task, mainly based on intuition

and experience. Similarly, little guidance is available for modeling and understanding the

impact of architectural choices on the requirements (Egyed & Grunbacher, 2002).

Software engineers face some critical challenges when trying to reconcile requirements

and architectures:

 Requirements are usually captured informally in a natural language. On the other

hand, entities in a software architecture specification are usually specified in a

more formal manner causing a semantic gap (Medvidovic & Taylor, 2002).

 System properties described in non-functional requirements are commonly hard to

specify in an architectural model (Egyed & Grunbacher, 2002)

 The iterative evolution of requirements and concurrent development of

architectures demands that in the beginning architecture is based on incomplete

requirements. More than that, certain requirements can only be understood after

modeling or even partially implementing the system architecture (Nuseibeh,

2001).

53

 Mapping requirements and architecture, as well as maintaining the consistency

and traceability between the two are complicated. A single requirement may

address multiple architectural concerns and a single architectural element

typically has numerous non-trivial relations to various requirements.

 Contemporary large-scale systems satisfy hundreds, even possibly thousands of

requirements. It is difficult to identify and refine the architecturally relevant

information contained in the requirements due to this scale.

 Requirements and the software architecture emerge in a process involving

heterogeneous stakeholders with conflicting goals, expectations, and terminology.

Supporting the different interests demands finding the right balance across these

often divergent interests.

CBSP (Component-Bus-System-Property) approach provides an intermediate model

between requirements and architecture that helps to evolve the two models iteratively

(Nuseibeh, 2001). For example, a set of incomplete and quite general requirements

captured as statements in a natural language might be available. The intermediate model

then captures architectural decisions as an incomplete ―proto-architecture‖ that prescribes

further architectural development (Brandozzi & Perry, 2001). The CBSP approach also

guides the selection of a suitable architectural style to be used as a basis for converting

the proto-architectures into an actual implementation of software system architecture.

CBSP approach provides:

 a lightweight way of refining requirements using a small, extensible set of key

architectural concepts

54

 mechanisms for ―pruning‖ the number of relevant requirements, rendering the

technique scalable by focusing on the architecturally most relevant set of artifacts

 involvement of key system stakeholders, allowing nontechnical personnel to see

the impact of requirements on architectural decisions

 adjustable voting mechanisms to resolve conflicts and different perceptions

among architects

Together, these benefits afford a high degree of control over refining large-scale system

requirements into architectures.

3.3.2 CBSP taxonomy

The fundamental idea behind CBSP is that any software requirement may explicitly or

implicitly contain information relevant to the software system architecture. It is

frequently very hard to surface this information, as different stakeholders will perceive

the same requirement in very different ways (Medvidovic et al., 2003). At the same time

this architectural information is often essential in order to properly understand and satisfy

requirements. CBSP supports the task of identifying architectural information contained

in the requirements and explicating it in an intermediate model.

Each requirement is assessed for its relevance to the system architecture‘s components

(C), connections (buses), topology of the system or a particular subsystem, and their

properties. Thus, each derived CBSP artifact explicates an architectural concern and

represents an early architectural decision for the system.

55

There are six possible CBSP dimensions discussed below. They involve the basic

architectural constructs (Medvidovic & Taylor, 2002) and, at the same time, reflect the

simplicity of the CBSP approach.

1. C are model elements that describe or involve an individual Component in

architecture. A requirement may be refined into CBSP model elements describing

both processing components (Cp) and data components (Cd).

2. B are model elements that describe or imply a Bus (connector).

3. S are model elements that describe System-wide features or features pertinent to a

large subset of the system‘s component and connections.

4. CP are model elements that describe or imply Component Properties.

5. BP are model elements that describe or imply Bus Properties.

6. SP are model elements that describe or imply System Properties.

A meta-model showing the different model elements relevant to CBSP is given in Figure

15. Requirements are related to architectural elements such as components or connectors

via an intermediate CBSP model that acts as a bridge. Different subtypes of CBSP

elements are used to represent different architectural dimensions listed in the CBSP

taxonomy.

Requirement CBCP element Architecture element

Data component Process component Connection component

-Relates to

1..* 1..*

-Depends on 1 1..*

System element

Figure 15 CBSP meta-model

56

3.3.3 CBSP process

This section discusses major steps of CBSP process, which can be generalized as shown

in the Figure 16.

A1

Selection of
requirements for

next iteration

A2

Architectural
classification of

requirments

A3

Decomposition
analysis and

conflict resolution

A4

Architectural
refinement of
requirements

A5

Selection of
architectural

elements

Selected
requirements

Requirements

Architecture
relevance profiles

Conflicts

Conflicts

CBCP mapping

Architectural elements and styles

Figure 16 CBSP process

Step 1: Selection of requirements for next iteration.

To reduce the complexity of addressing large numbers of requirements, a team of

architects applies the CBSP taxonomy to the most essential set of requirements in each

iteration. The architects eliminate requirements considered unimportant or infeasible

through stakeholder-based prioritization, thus arriving at a set of core requirements to be

considered for the next level of refinement.

Step 2: Architectural classification of requirements.

Architect classifies the selected requirements using the CBSP taxonomy. Each

requirements is assessed by the experts based on the requirement‘s relevance to the CBSP

dimensions, using an ordinal scale (not=0; partially=1; largely=2; fully=3). For instance,

57

a requirement that is rated as partially relevant along the connector (B) dimension implies

that it has some (partial) impact on one or more architectural connectors.

Step 3: Decomposition analysis and conflict resolution.

If multiple architects independently perform an architectural classification of

requirements using CBSP, their findings may diverge since they may perceive the same

statement differently. Revealing the reasons for diverging opinions is an important means

of identifying misunderstandings, ambiguous requirements, tacit knowledge, and

conflicting perceptions. The voting process is as a mechanism to reveal dissent among the

architects and to reduce risks in requirements refinement.

Step 4: Architectural refinement of requirements.

In this activity the team of architects rephrases and splits requirements that exhibit

overlapping CBSP properties and concerns. Each requirement passing the consensus

threshold (concordance and at least largely relevant) may need to be refined or rephrased

since it may be relevant to several architectural concerns. For instance, if a requirement is

largely component relevant, fully bus relevant, and largely bus property relevant, then

splitting it up into several architectural decisions using CBSP will increase clarity and

precision.

Step 5: Selection of architectural elements.

At this point, requirements should have been refined and rephrased into CBSP model

elements in such a manner that no stakeholder conflicts exist and all model elements are

at least largely relevant to one of the six CBSP dimensions. Based on simple CBSP

model elements, an architectural draft can be derived.

58

Architectural styles provide rules that exploit recurring structural and interaction patterns

(referred to as ―architectural patterns‖) across a class of applications and/or domains

(Medvidovic, Rosenblum, & Taylor, 1999). A style guides the architectural design of a

system, with the promise of desirable system qualities. At the same time, the rules

guiding the selection and application of a style (or of specific architectural patterns

suitable in that style) are typically semiformal at best, requiring significant human

involvement.

The diagram on the Figure 17 shows the result of CBSP approach application for the

software architecture problem formalization.

CBSP

Architectural elementsArchitecture-relevant requirements Functional requirements

R-05: Focus on rich end-user
experience

R-06: Expand the possible
audience to 100,000 users

R-07: Reuse the existing back-
end of TeleManager

Ae-01: Client application
technology is Microsoft

Silverlight 4.0

Ae-02: Server application is
based on RIA WCF services

Ae-03: The EDM is used as
object-relation mapping

Ae-05: Telerik, a third-party GUI
components library, is used

Ae-04: Isolated storage is used
 to preload data on the client

R-02.1: Flexible reports

R-02.2: Dynamic reports by
service/equipment record

R-02.3: Exportable, copi-able,
email-able and printable data

R-02.4: Dynamic filetering

R-02.5: Hierarchical
representation of reports

Figure 17 Example of relations between requirements and CBSP

59

4. Environment-Based Design of Software

4.1 Overview

This chapter describes the Environment-Based Design (EBD) approach for Agile

Software Development. This approach represents the main contribution of this thesis.

4.2 EBD-S framework

The Environment-Based Design of Software (EBD-S) is an application of Environment-

Based Design by Zeng (2004) to agile software architecture and design elaboration

problem. It uses the generic process of EBD as a framework, and applies specific

methods for conflict identification and concept generation.

The main goal of EBD-S is the application of formalized design approach to agile

software development. In fact, Agile Manifesto states that working product is preferred to

deeply developed design documentation (Beck, 2001). However, such an approach works

better for small teams and projects (less than 1000 person/hours). When work

synchronization between two or more agile teams is required, there is a need in well-

elaborated design documentation (Paetsch et al., 2003).

Current approaches, addressing this problem – Feature-Driven Design (FDD) and Scrum,

provide a generic recommendation to create a UML design documents in advance, and

refine them iteratively. More than that, main idea of FDD is the development of the

conceptual model before the code is written – and it requires an elaborated software

design. These agile methodologies show the clear trend in software development – agile

and traditional design methods merge together for better effectiveness. The EBD-S

60

approach is intended to work with two most recent and gaining popularity agile

approaches – Scrum and Feature-Driver Design (FDD). Here we provide the theory of

EBD-S application for Scrum. EBD-S-FDD approach differs in some aspects and is

discussed on the basis of real examples in Chapter 5.

EBD for Agile Software Development compliments the Scrum process, and provides

effective tools for requirements analysis, architecture creation and design concept

generation. The EBD-S implementation does not require modification in Scrum process,

it works with intermediate data only; it simplifies the adoption of the EBD-S

methodology. This process is illustrated in Figure 18.

Environment-Based Design application for Agile Software Development

SC
R

U
M

 s
te

p
s

EB
D

 s
te

p
s

Sprint developmentCommunication with customer

Design Problem
Formulation

Product
Requirements

Backlog Creation

Environment-
Based Analysis

Sprint
Requirements

Backlog Analysis

Conflict
Identification

Sprint
Development

Architecture
Modification

Concept
Generation

Figure 18 EBD - Scrum mapping

EBD-S implies use of specific analytical method on the each stage. In order to perform an

effective conflict analysis, in our work we use CBSP methodology for requirements and

architecture synchronization, adjusted for our needs.

To address the growing complexity of software systems, for concept generation we use a

matrix-based problem decomposition approach, based on non-binary two-phase method,

developed by Simon Li. The EBD-S framework is shown in Figure 19.

61

A1

Environment
Analysis

A2

Architecture Conflict
Analysis (CBSP

approach)

A3

Matrix-based Design
Concept Generation

Environment
System

Architecture
 elements and

styles

Design
concept

Design
problem

Intermediate design
specifications

Customer

Designer

Product
System

Software
Design

A0

Design problem
formulation

Figure 19 Environment-Based Design of Software framework

In the following sections we discuss the EBD-S stages in connection with agile software

development methods.

4.3 EBD-S problem formulation

The problem formulation of EBD-S relies on the Theorem 1 of the Environment-Based

Design – Structure of Design Problem:

A design problem is implied in a product system and composed of three parts: the

environment in which the designed product is expected to work, the requirements on

product structure, and the requirements on performance of the design product.

Thus, the problem formulation stage of EBD-S addresses the understanding of the

product software scope – (), elaboration of quality software requirements –

 () (

), and functional software requirements – (

) (

).

The software design problem is formulated in terms of the scope and performance

(quality) / structural (functional) requirements (Zeng & Gu, 1999).

62

Functional requirements in system and requirements engineering define functions of

software system or components, and describe them as sets of inputs, behaviours and

outputs (Chen & Zeng, 2009). Functional requirements define what a system is supposed

to accomplish. In agile software development process these requirements are usually

captured in use cases. The implementation of functional requirements is described in

software system design.

Quality (or non-functional) requirements specify the criteria that can be used to judge the

operation of a system rather than specific behaviours. Quality requirements define how

the software system is supposed to accomplish its mission. In agile software development

process quality requirements are reflected in software system architecture.

As we can see, the EBD-S design problem can be formulated in terms of functional

requirements, translated to system design, and quality requirements, reflected in system

architecture. Both design and architecture shall be related to user requirements, expressed

in natural language. To achieve that, EBD-S uses a graph-based model, based on CBSP

approach.

4.4 EBD-S environment analysis

The environment analysis stage of EBD-S refines the software design problem by in-

depth analysis of software product environment and identification of functional and

quality requirements.

The software product environment can be represented as the union of the following four

domains:

63

1. Software domain – technologies, development languages and platforms, existing

software applications and communication protocols;

2. Hardware domain – the physical computers, networks and devices, which shall

interact with the software;

3. Human interactions domain – people, directly or indirectly affected by the

software product, and organizations.

4. Development domain – the people and organization, developing and maintaining

the application, as well as the technologies used to facilitate the development.

Constraints, related to these domains, are marked as Cs, Ch, Ci, and Cd correspondingly.

Requirements, communicated by customer, are marked as R.

Z. Y. Chen and Y. Zeng in 2006 classified product requirements based on product

environment and identified 8 levels of requirements. Figure 20 illustrates this model.

Figure 20 Levels of requirements, according to Chen and Zeng

Interface

Exception
control

Extended
functions

Basic functions

Cost, time, human resource

Technical information

Social laws, technical regulations, or other
mandatory criteria

Natural laws and rules

64

Four requirements in the lower half of the pyramid represent the non-functional (quality)

requirements; four upper requirements are functional (Chen & Zeng, 2006).

The environment analysis process model (Zeng & Gu, 2001) can be described as follows:

1) Extract one environment element from the environment set

2) Determine whether there is a piece of design knowledge mapping the extracted

element to another action or response. If so, the product structure s attached to this

knowledge, will be a component of architecture / design concepts

3) Add component s to the product structure S, and perform conflict analysis.

4) Form a new environment set and repeat the analysis, if necessary.

The environment analysis process allows determining the full body of product system,

and to gather and classify the product requirements. It can be directly applied to the

software design problem.

All elements from the close environment of the product system are analyzed with this

algorithm, and the requirements are derived and classified. If the requirements expressed

by a customer are insufficient, this analysis allows to identify the gap and to

communicate it back to the client. Scrum development model approves the development

process in the conditions of insufficient requirements. Scrum developers hope that a

working prototype of the software will help to a much better feedback from the customer.

At this stage EBD-S compliments the Scrum model with the analysis tool, allowing to

capture the missing requirements and (possibly) to re-focus the development process.

65

4.5 EBD-S architecture conflict analysis

4.5.1 Environment and conflict analysis process

The next stage of EBD-S – architecture conflict analysis – finds and deals with the

contradictions in functional and quality requirements that are selected for current Scrum

sprint.

As we determined in Section 4.3, quality requirements of the software system are

reflected in the software architecture, which governs the design. This stage relies on the

architecture analysis methods. We adapted the CBSP model for requirements and

architecture reconciliation of Environment-Based Design of Software. The generic

process of environment and analysis for software is shown in Figure 21.

A1

Architectural
classification of

requirments

A2

Decomposition
analysis and

conflict resolution

A3

Architectural
refinement of
requirements

Architecture
relevance
profiles

CBSP mapping
Sprint backlog

Architectural
elements

Architectural
styles

Figure 21 Architecture conflict analysis process

Each architecture conflict analysis step is discussed in more detail below. We use ETVX

(Entry, Task, Verification, and eXit) (Radice, Roth, O‘Hara, & Ciarfella, 1985) to

document the steps. ETVX cells consist of four components:

1. Entry lists all items required for the execution of the task

2. Task describes what should be done, by whom, how, and when (this includes

appropriate standards, procedures and responsibilities)

3. Verification/Validation describes all checks and controls that help to indicate if

the task is being executed properly

4. eXit lists criteria which need to be satisfied before the task can be considered

complete and the output(s) of the task itself

66

4.5.2 Architectural classification of requirements

The requirements, elicited at environment analysis stage, are classified using the CBSP

taxonomy. Each requirements is assessed by the experts based on the requirement‘s

relevance to the CBSP dimensions, using an ordinal scale (not=0; partially=1; largely=2;

fully=3).

Table 4 EVTX for architectural classification of requirements

Architectural classification of requirements

E

Set of requirements for next-level RDCP refinement

RDCP taxonomy

Voting tool

T Architect classifies selected requirements using the CBSP taxonomy

V
Check selection of architect

Check completeness of classification

X
Voting ballots

Architectural relevance profiles for all requirements

A profile showing the aggregated architectural relevance is created for each requirement.

4.5.3 Decomposition analysis and conflict resolution

If multiple architects independently perform an architectural classification of

requirements using CBSP, their findings may diverge since they may perceive the same

statement differently. Revealing the reasons for diverging opinions is an important means

of identifying misunderstandings, ambiguous requirements, tacit knowledge, and

conflicting perceptions (Wang & Zeng, 2008). The voting process is as a mechanism to

reveal dissent among the designers and to reduce risks in requirements refinement.

The measured consensus among the designers serves as a proxy for their mutual

understanding of a requirement‘s meaning and their agreement on the architectural

relevance of a requirement.

67

Table 5 ETVX for decomposition analysis and conflict resolution

Decomposition analysis and conflict resolution

E
Voting ballots

Architectural relevance profiles for all requirements

T

Designers discuss reasons for diverging opinions for low-consensus items

Designers update requirements to address issues and ambiguities

Designers exclude architecturally irrelevant requirements

V
Check dependencies among requirements to make sure critical

requirements are not dropped

X
Issues and ambiguities

Architecturally relevant requirements

The rules in Table 6 indicate how to proceed in different situations: in case of consensus

among architects, the requirements are either accepted or rejected based on the voted

degree of architectural relevance.

Table 6 Concordance / relevance matrix

 Relevance

Concordance >= Largely < Largely

Agreement Accept Reject

Disagreement Discuss and redefine

We accept requirement as architecturally relevant if the mean of all stakeholders is at

least ―largely‖, otherwise the requirement is rejected. If the stakeholders cannot agree on

the relevance of a requirement to the architecture, they further discuss it to reveal the

reasons for the different opinions. This discussion process may also involve customers

and other stakeholders to clarify a requirement and eases the subsequent step of refining

it into one or more architectural dimensions.

4.5.4 Architectural refinement of requirements

In this activity the team of architects rephrases and splits requirements that exhibit

overlapping CBSP properties and concerns (see Table 7). Each requirement passing the

consensus threshold (concordance and at least largely relevant) may need to be refined or

rephrased since it may be relevant to several architectural concerns. For instance, if a

68

requirement is largely component relevant, fully bus relevant, and largely bus property

relevant, then splitting it up into several architectural decisions using CBSP will increase

clarity and precision. During this process, a given CBSP artifact may appear multiple

times as a by-product of different requirements.

Table 7 ETVX for architectural refinement of requirements

Architectural refinement of requirements

E
Issues and ambiguities

Architecturally relevant requirements

T

Architects rephrases and splits requirements that exhibit overlapping CBSP

properties

Architects eliminate redundancies
V Check to make sure that redundancies are minimized

X
CBSP elements with dependencies

Architectural styles

Along with CBSP elements and their interdependencies, the output of this step is a set of

architectural styles. Architectural styles provide rules that exploit recurring structural and

interaction patterns (referred to as ―architectural patterns‖) across a class of applications

and/or domains (Medvidovic et al., 1999). A style guides the architectural design of a

system, with the promise of desirable system qualities.

4.5.5 Software architectural styles and proto-architecture

In EBD-S software architecture can be viewed as a set of limitations for the design, as

―rules to follow‖ or ―legacy code to use‖. Architecture implements the class of

requirements. It is a ―strategic design‖, which has a goal to fulfill quality requirements

and gain advantage in a long-term prospect, but not in the context of the current project

with the existing functional requirements (Perry & Wolf, 1992).

69

Software architecture in EBD-S is the result and the main component of the strategic

planning process. This process is always continuous: the architecture must be corrected

with the course of time, reflecting new concepts, risks, threats and possibilities. The

iterative nature of EBD-S allows refining the architecture of the software system

continuously.

Based on the dependencies among the elements in CBSP, the rules of the architectural

style allow us to compose them into architecture. In other words, we select the style

based on (1) the characteristics of the application domain and (2) the desired properties of

the system, identified in the requirements negotiation and elaborated in the CBSP model.

By considering the rules and heuristics of the selected style(s) the designers start

converting the CBSP model elements into components, connectors, configurations, and

data, with the desired properties. In other words, architectural style determines the set of

possible software design solutions. To perform this job, a proto-architecture structure is

used. Figure 22 illustrates this structure.

EBD-S Elements and Dependencies

Properties (architecture)Components (design)

R01: Requirement #01

R02: Requirement #02

R03: Requirement #03

R01_CP: Processing component
for Requirement #01

R03_CP: Processing component
for Requirement #03

R01_CD: Data component for
Requirement #01

R02_P: Property of Requirement
#02

R03_P: Property of Requirement
#03

Requirements

Figure 22 EBD-S requirements-architecture-design reconciliation

70

Design is derived from the existing functional requirements with the architectural

limitations in mind. In some cases design elaboration can cause the architectural changes.

The process of software design concept generation is discussed in the Section 4.6.

4.6 EBD-S design concept generation

The inputs of the design concept generation phase of EBD-S are architectural styles and

elements, as well as previously developed design concepts (if any). The conflict

identification step of the EBD-S prepares an architectural model of the system, which

addresses the quality requirements.

To encompass the functional requirements in the same structure, we need to analyze them

and find the candidate solutions – software design elements that address the requirements

in question. Next we need to estimate the feasibility of our candidate solutions – it can be

done by decomposition of the software design problem to sub-domains.

On this step we create a rectangular matrix, which rows represent the functional

requirements and architectural elements, and columns represent design elements that

address these requirements. The relation between requirements and architectural/design

elements is given in non-binary format, on the scale of 0-3: 0 – no relation, 1 – weak

relation, 2 – strong relation, 3 – fully coupled elements.

To generate design concepts, we apply a problem decomposition method, based on

extended two-phase method (Li, 2010).

71

On the first phase we perform cluster formation and cluster alignment algorithms to

transform the initial matrix to a banded diagonal matrix, representing the sub-systems of

the software system.

On the second phase we apply heuristic partitioning analysis to convert the banded

diagonal matrix, obtained on the first phase, into possible block-angular matrixes, which

would represent decomposition solutions of the design problem. An example of such

decomposition solutions is shown in Figure 23.

Figure 23 Comparison of two decomposition solutions (Li 2010)

The resulting matrix decomposition solutions will represent the alternatives of the system

design. To estimate the quality of a decomposition solution, the matrix-based complexity

metric is used. This metric approximates the complexity entailed in a block-angular

matrix by inspecting the size of each block and the size of an interaction part (Li, 2010).

The smaller blocks with fewer interactions among them will have smaller complexity

value, and are more feasible and easy-to-maintain after implementation. As per example

in Figure 23, both of the solutions have the same number of blocks, but Solution A has 2

interaction columns against 3 in Solution B. Thus, Solution A is considered to be a better

solution.

72

To finalize concept generation step of EBD-S, the selected solution is expressed in terms

of architectural and design element, captured in CBSD architecture – it can be done

automatically by translation of the resulting design matrix to the CBSP model graph. The

results of the design concept generation step are:

- New or updated software design concept

- CPSB model, capturing the interaction between the elements

- New or updated design specifications, based on the design concept

In terms of EBD-S-Scrum application, these results are the basis of the implementation of

the next sprint. After the sprint implementation, the resulting software along with the

design can be:

- Transferred to the Environment-Based analysis for further refinement, which

marks the inception of the new sprint in Scrum development; or

- Communicated back to the client to retrieve feedback and/or approval on the

software development progress.

Thus, in this section we demonstrated how the EBD-S approach compliments the agile

software development by providing a flexible framework for requirements analysis,

architecture elaboration and design concept generation. The next section will cover the

aspects of change control in EBD-S.

73

4.7 EBD-S change control mechanism

The nature of agile software development implies multiple changes in requirements and

product, introduced on the iterative basis (Peters & Ramanna, 2003). Product backlog

requirements are used to define ―should-be‖ vision in the first iteration. After several

iterations, the ―to-be‖ design concept arrives, which take into consideration all the

constraints and conditions of the software architecture.

According to James F. Peters, four main problems, associated with the unplanned

changes in software development, are:

 Requirements non-conformance (requirements erosion)

 Architecture erosion

 Design erosion

 Code erosion

EBD-S, being a design method, addresses first three problems with the coupled

requirements-architecture-design structure. All modifications, introduced to the system,

are reflected in the CBSP proto-architecture and are transferred to the design concept

generation stage. That allows to monitor and to control effectively the unplanned changes

in the system. An example of this is shown in Figure 24.

74

EBD-S Elements and Dependencies

Properties (architecture)Components (design)

R01: Requirement #01

R02: Requirement #02

R03: Requirement #03

R01_CP: Processing component
for Requirement #01

R03_CP: Processing component
for Requirement #03

R01_CD: Data component for
Requirement #01

2 R02_P: Property of Requirement
#02

3

R03_P: Property of Requirement
#03

Figure 24 EBD-S impact analysis

Here a change in system property R02_P can cause potential changes in component

R01_CP and requirement R02. The rest of elements can be impacted indirectly as well.

The strength of the relation (label of the arrow) demonstrates the intensity of the impact

of the change.

75

5. EBD-S application for telecom expense management software

development: Case Study

5.1 Introduction

The case study for the application of EBD-S method to Scrum software development

process is based on the real-world example from telecom expense management (TEM)

domain.

The TEM application used in the case study is developed by a Canadian company and is

called TeleManager. This is an enterprise-level application, aimed to collect and analyze

data about telecom expenses, maintain and track the inventory of telecom services and

assets, and support telecom ordering processes within an organization. It manages the

entire lifecycle of network services. The main functional areas of the TeleManager are

shown in Figure 25.

Figure 25 TeleManager functional domains

76

TeleManager is developed with help of agile methodology – Scrum, with elements of

Feature-Driven Design. The methodology implies decomposition of the initial design

scope to small sub-domains, which are developed in short iterations – sprints (around one

month each). The result of each iteration is a set of new or updated features, which are

added to the application framework.

Current customer base of TeleManager exceeds 25 clients. Company delivered

customized versions of TeleManager to many of them, focusing on the specific customer

requirements for each implementation.

The Scrum development approach clearly shows its strength in this situation – the

product is customizable and projects are delivered in time. However, there are some

drawbacks of the existing approach:

- While customer requirements are consistent within one client implementation,

there is significant difference between the requirements of different clients. This

difference is not documented, as Scrum approach focuses on the delivery of the

working code, and the requirements analysis is done during the coding.

- Customer requirements are frequently modified during the iterations, and

sometimes they are communicated to the developers after the iteration is over –

the lack of pre-defined requirements specifications hinders the development.

- Architecture of the software application lacks unification; different parts were

developed with no correspondence, which results in the difficulties in the

evolution process: it is getting hard to encompass new technologies.

77

- Software design relies on the existing codebase and knowledge of the developers,

with no proper documentation. It leads to the problems with analysis of the new

functionality, which is performed empirically, and with the knowledge transfer.

The EBD-S methodology is developed as a complimentary design process to the

Scrum/FDD development. It is aimed to address the stated issues of the Scrum/FDD

approaches by introducing a formalized framework for requirements collection and

analysis, architecture elaboration and design concept generation and selection.

The flexibility of EBD-S allows implementing it within a working process without

interruption and step-by-step. EBD-S creates a certain overhead in the agile development

process, but it is easy to calculate the time, dedicated to the EBD-S process, and estimate

the effectiveness of the method by looking at overall development performance change.

For this estimation several development iterations are required.

5.2 Structure of the case study

The presented case study is organized as following:

- The design task is formulated in terms of Product Requirements Backlog in

Section 5.3

- The product environment description and decomposition extend the requirements

analysis and provide the architectural classification of requirements in Section 5.4

- Architectural conflict analysis is demonstrated in Section 5.5 – it shows the

process of software architecture establishment with help of CBSP model

- Section 5.6 illustrates the matrix-based non-binary analysis of the design problem

within the framework of architectural constraints.

78

- Iterative application of the EBD-S is illustrated in Section 5.7

- Effectiveness of the EBD-S is calculated and discussed in Section 5.8

The structure of the case study represents the EBD-S process flow as it was implemented

in the real-world software development process.

5.3 TeleManager Executive: design task formulation

TeleManager is built on the highly-customizable software platform, which allows

reshaping the application for a specific client needs. However, the following factors

started to play significant role with the growth of the software complexity:

1. As TeleManager represents the Software-as-a-Service (SaaS) model, the addition

of new features imposes higher workload on the company servers;

2. End-user interactions within the existing model had very high latency, resulting in

a poor user experience;

3. Clients dedicate significant human resources to work with TeleManager, since

training is required for professional use of the application; a simplification of user

interface will bring value to the clients;

4. Graphical user interface, available to the TeleManager technologies, is

significantly behind the interface of desktop applications; and

5. Some client request in-house installations instead of Software-as-a-Service model,

which is not supported by current technology.

The decision was taken to build a new application, which will use the TeleManager back-

end and will provide access to the analytical, reporting and personal information. The

79

following design task was specified: build a customizable Rich Internet Application,

named TeleManager Executive (TME), which will:

R-01. Provide interactive graphical representation of telecom costs;

R-02. Build reporting engine for telecom costs and services;

R-03. Provide real-time access to the personal and departmental telecom invoices;

R-04. Provide access to personal information and telecom service control center;

R-05. Focus on rich end-user experience, with interactive graphical part;

R-06. Expand the possible audience of the single instance to 100,000 users;

R-07. Reuse the existing back-end of the TeleManager;

According to the requirements, four main functional areas (FAs) of the TME are

identified:

FA-1. Dashboard, for providing interactive summarized information about telecom costs

 and important system messages

FA-2. Reports, providing access to configurable financial and telecom service reporting

 engine

FA-3. Invoice, displaying personal or departmental telecom invoices

FA-4. Self-service, providing end-user access to telecom service information and

 configuration.

Each functional area is analyzed and decomposed further for identification of the design-

relevant requirements. The following sections describe how the set of high-level

requirements (R01-R07) was analyzed with help of Environment-Based Design of

Software methodology.

80

5.4 TeleManager Executive: environment Analysis

5.4.1 Software environment

The evolutionary development of TeleManager software was relying on the stack of

Microsoft web-technologies, focused around ASP.NET and Microsoft SQL Server. The

legacy code is the key component of the software environment of the TeleManager.

The software part of the TME product environment was identified as shown in Figure 26.

TeleManager server application

TeleManager
Server

Application

TeleManager
Database

E-mail server

MS Exchange
Server 2007

Email notification
system

Web-Server

Internet
Information
Services 6.0

Database Server

Microsoft SQL
Server 2008

Client-side ERP system

ERP system

ERP data feeds

Backup system

Data BackupBackup data

Invoice system

Invoice
generation

Data
transformation j

TeleManager client application

Figure 26 TME software environment

The software infrastructure shall be reused in the new TME system, thus the following

elements of the software environment are identified:

1. Application server: Internet Information Services (IIS) 6.0 or later;

2. Database server: Microsoft SQL Server 2008 Enterprise Edition;

3. Email notification system: Microsoft Exchange Server 2007;

4. Back-up data server: Microsoft Enterprise Backup 2005;

5. Client-side enterprise systems:

a. Oracle PeopleSoft HumanResource;

b. SAP HR;

81

c. J.D. Edwards EnterpriseOne HR;

d. SecondNature HelpDesk;

6. Provider invoice generation systems:

a. Bell billing portal;

b. Telus invoicing;

c. Rogers invoicing;

d. Verizon billing;

7. Client application operating environment – Windows-based in-browser

The environment analysis allowed to identify the following software environment items

to be in close product environment:

1. Application server: Internet Information Services (IIS) 6.0 or later;

2. Database server: Microsoft SQL Server 2008 Enterprise Edition;

3. Email notification system: Microsoft Exchange Server 2007;

The rest of environment items are not directly related to the TME application, and are

considered to be in the remote environment. The following software constraints (Cs)

were drafted after the analysis of the close software environment:

Table 8 TME software constraints

Code Description

Cs-01 Application shall run under Microsoft IIS 6.0 or later

Cs-02 Application shall use the MS SQL 2008 database

Cs-03 Email notifications shall be sent through MS Exchange 2007

Cs-04 Client application shall run in web-browser under MS Windows 2000 or later

82

5.4.2 Hardware environment

The hardware environment of TeleManager is shown on the Figure 27.

PBX (Internal
wireline phones)

User PC User PC User PC

Manager PC

Get call details;
Control phones

TM Application
Server

TME Database
Server

Provide
access

Provide
access to
reports

Client
environment

Company
environment

TeleManager
hardware

environment

Infrastructure
Server

Communicate
Networking
equipment

Figure 27 TME hardware environment

The hardware environment of the TeleManager application, formulated during the

preliminary analysis, is the following:

1. Internal Application and Database servers – physical computers running the

software and storing the database;

2. Customer PBX (one or many) – a telephone exchange, that controls the telephone

system in the client‘s office (offices). TeleManager downloads call details from

the PBX;

3. Telephones, connected to the PBX. TeleManager controls phone configurations;

83

4. Customer Infrastructure Server(s), communicating with the TeleManager;

5. User‘s and manager‘s computers;

6. Networks, relating the internal company servers with client environment.

The analysis of hardware environment shows that majority of the hardware items are

located in the Remote Environment. In fact, TeleManager communicates with PBXs,

telephones and Infrastructure Servers via software protocols; thus, there is no direct

impact on the TeleManager from these elements. The only items rest in hardware

environment of TeleManager application are:

1. Internal Application and Database servers – they affect the processing speed of

server application and data volume available to be stored;

2. Networking equipment, defining the speed of communication between server and

client applications, as well as between server and client‘s infrastructure;

3. Client computers, defining the processing speed and interface of client

application.

The analysis of these environmental items, directly related to the product, resulted in the

following list of hardware constraints (Ch), shown in Table 9.

Table 9 TME hardware constraints

Code Description

Ch-01 Server application shall run on predefined hardware configuration
*

Ch-02 Database storage is limited to 120GB of raw data

Ch-03 Network latency between server and client is 500-750 ms

Ch-04 Client computers have given minimal hardware configuration
**

* In the project – Dell PowerEdge R410

** In the project – Dell Vostro 1015

84

5.4.3 Human interaction environment

The human domain of the TeleManager environment is represented by the following user

roles and is shown in Figure 28:

1. Internal administrator – uploads the telecom invoices to the TeleManager

database;

2. Customer support – resolves the customer issues by providing advice /

configuration suggestions;

3. Financial department – receives the telecom invoices, uploaded to the system;

4. Manager – monitors the activity and the expenses of the employees, approves

their requests;

5. Employee – receives personal telecom invoices, generated by TeleManager, and

modifies personal telecom service through self-service portal;

6. TeleManager client administrator – controls the activity of employees.

TeleManager

Internal
administrator

Load invoices to
TeleManager

TeleManager
Client Admin

Employee

Controls
activity of
employees

Receive
personal
invoices

Employee

Modify
telecom
services

Financial
department

Receive
telecom
invoices

Manager

Monitor
employee
expenses

Customer
support

Client
environment

Internal
environment

Resolve
client
issues

Figure 28 TME human interaction environment

85

Environmental analysis allows discovering that the following user roles are directly

interacting with TME application:

1. Customer support – to review user activity and understand their requests;

2. Manager – to get access to the reporting information and review employee

requests;

3. Employee – to view personal invoices and request modification of personal

telecom services.

The rest of user roles in the given project belong to the remote product environment.

Analysis of user roles allowed to define the list of human interaction constraints (Ci),

presented in Table 10.

Table 10 TME human interaction constraints

Code Description

Ci-01 Support up to 100,000 concurrent users

Ci-02 Display the data based on the user role

Ci-03 Follow the user actions in the system in real-time

Ci-04 Keep page update latency under 1 second

Ci-05 Support long transactions on the client side

5.4.4 Development environment

The development domain of the TME environment is represented by the following

components:

- Development framework – Microsoft Visual Studio 2010 Premium

- Database – Microsoft SQL Server 2008

- Code sharing tool – Microsoft TeamFoundation Server 2010

- Collaboration tool – Microsoft Sharepoint 2010

86

The roles in Scrum process, used in TME development, are:

- Product Owner – decides what will be built and in which order

- Scrum Master – a facilitative team leader who ensures that the team adheres to its

chosen process and removes blocking issues

- The Team – cross-functional team of 5 developers who perform the coding

Analysis of development environment technologies and process roles resulted in the list

of environmental constraints, presented in Table 11.

Table 11 TME development constraints

Code Description

Cd-01 System shall be highly maintainable (updates without service interruption)

Cd-02 System model shall be customizable (loose coupling of modules)

Cd-03 Unit testing shall be applied to minimum of 75% of code logic

5.5 TeleManager Executive: architectural conflict analysis

5.5.1 Requirements classification and architecture synthesis

At the next step the analysis of requirements and environmental constraint is performed.

First, the architecturally relevant requirements are selected; then, the environmental

constraints are added to the pool. At the next step the requirements and constraints are

analyzed for the correspondence to the software architectural elements. The process of

the requirements classification and architectural synthesis is shown schematically in

Figure 29.

87

Architectural
classification

User
requirements Architecture-

relevant req.

Functional
requirements

Architecture
synthesis

Environmental
constraints Architectural

styles

Architectural
elements

Figure 29 Requirements classification and architecture synthesis

The application of the requirements classification and architecture synthesis on the TME

example is shown in the Table 12. The combination of architecture-relevant requirements

and environmental constraints allow defining the architectural elements and patterns.

Table 12 TME architecture synthesis

Requirements Environmental

constraints

Architecture elements (Ae) Architectural

patterns (Ap)

R-05

Cs-04

Ch-04

Ci-03

Ci-04

Ae-01:

Client application technology

is Microsoft Silverlight 4.0

Ap-01:

Analytical reporting

R-06

Ci-01

Ci-04

Ch-03

Cs-04

Ae-02:

Server application is based on

RIA WCF services

Ap-02:

EAI/ESB

R-07
Ci-05

Cs-02

Ae-03:

The Entity-Data-Model (EDM)

is used as Object / Relation

Mapping mechanism Ap-03:

TDS/OLTP

Ch-03

Cs-01

Ci-05

Ae-04:
Caching mechanism is used to

preload data to the client

application

R-05
Cd-01

Ch-04

Ae-05:

Telerik, a third-party graphical

user interface components

library is used

The resulting list of architectural elements and styles is transferred to the next step of

EBD-S – conflict identification, which is described in the following section.

88

5.5.2 Conflict identification and resolution

The analysis of the architectural elements and patterns allows to find and to resolve the

possible conflicts within the system. Table 12 provides a solid basis for the software

architectural analysis.

Full analysis of the interactions between requirements, environmental constraints and

architectural elements and styles was performed. The determined architectural elements

operate with each other with no conflicts; however, there is a difficulty in synthesis of the

determined architectural patterns. Ap-01 (Analytical reporting) is not supported by the

transactional data-store pattern, defined as Ap-3 (TDS/OLTP). Instead, Ap-3 provides

access to a similar solution, called transactional reporting. Thus, it makes sense to replace

Ap-1 with ―transactional reporting‖ architectural pattern.

5.5.3 Architectural refinement of requirements

The architectural refinement of the requirements is the analytical review of the existing

requirements and environmental constraints, which pursues the goal of model

simplification and decomposition.

In the given example, total latency can be represented as sum of network delay and

software delay. Thus, the architectural constraints Ch-03 (Network latency between

server and client is 500-750 ms) and Ci-04 (Keep page update latency under 1 second)

complement each other; as the result, a new software constraint is determined: Cs-05,

shown in the Table 13. Cs-05 can replace both Ch-03 and Ci-04, which simplifies the

architectural model of the system.

89

Table 13 Updated TME software environment constraints

Code Description

Cs-01 Application shall run under Microsoft IIS 6.0 or later

Cs-02 Application shall use the MS SQL 2008 database

Cs-03 Email notifications shall be sent through MS Exchange 2007

Cs-04 Client application shall run in web-browser under MS Windows 2000 or later

Cs-05 Software transaction delay shall not exceed 250 ms

Next, the interconnections between the elements of the system are captured in the graph

CBSP model, shown in Figure 30.

EBD-S Elements and Dependencies mapping

Environment constraints Architectural elementsArchitecture-relevant requirements

R-05: Focus on rich end-user
experience

R-06: Expand the possible
audience to 100,000 users

R-07: Reuse the existing back-
end of TeleManager

Cs-01: Application server IIS 6.0

Cs-02: MS SQL 2008 database

Cs-03: MS Exchange 2007

Cs-04: In-browser clients

Ci-01: Up to 100,000 users.

Cs-05: Software latency 0.25 sec.

Cs-04: In-browser clients

Ci-06: Long transactions support

Cs-02: MS SQL 2008 database
support

Ch-04:Client computer
configuration

Cs-01: Application server IIS 6.0

Ae-01: Client application
technology is Microsoft

Silverlight 4.0

Ae-02: Server application is
based on RIA WCF services

Ae-03: The EDM is used as
object-relation mapping

Ae-05: Telerik, a third-party GUI
components library, is used

Ae-04: Isolated storage is used
 to preload data on the client

Ci-04: System shall be highly
maintainable

Cs-05: Software latency 0.25 sec.

Figure 30 TME architectural mapping

At the same time, functional requirements are verified against the architectural model and

decomposed according to the determined limitations. For example, the requirements

associated with the R-02 (Build reporting engine) are shown in the Table 14.

90

Table 14 Requirements for the TME reporting engine

Item # Requirement Description

R-02.1 Flexible reports Generation of reports by various filters should

be easy to generate and should be reflective of

the information they represent; Rather than a

creating a module that tries to fit the

information to it.

R-02.2 Report layout changes are

dynamic by service /

equipment record

Again, data or reports are generated with

columns and titles that are dynamic.

Example:

The client is not required to choose a series of

filters based on a service.

R-02.3 Reports / data is exportable,

copiable, e-mailable and

printable

Ensure that all data, including graphics are

exportable, e-mailable and / or copiable to a

clients‘ personal document.

R-02.4 Dynamic filtering Data or reports, based on a pre-selected series

of customer needs, should be filterable and

hierarchical.

Example:

Information displayed should be by overall

category, service, etc

Or

Information displayed should be able to

expand to the next level

R-02.5 Information / data is

expandable / hierarchical

(one elements drops down to

the next and the next).

The data or information should be expandable.

Client can drill down to the next level or return

backwards, as well he should be able to

navigate between various information and

types with simple icons and filtering.

R-02.6 Cost overview report Shall reflect the consolidated information

about cost distribution

R-02.7 Wireless cost report Shall reflect the consolidated information

about wireless-associated cost distribution

R-02.8 Cost comparison report Shall reflect the cost overview and comparison

by organization structure

R-02.9 Service types report Shall reflect the information about service

types in inventory and associated costs

The resulting CBSP model with the decomposed functional requirements is used in the

next stage of EBD-S – design concept generation. This topic is covered in the next

section of the case study.

91

5.6 TeleManager Executive: software concept generation

5.6.1 Design elements generation

CBSP model, built on the previous step, contains the refined architectural elements and

functional requirements. This is a description of the problem to be solved. To generate a

set of solutions to the design problem, software design elements shall be generated.

Software design elements that address the requirements and architectural elements are

proposed by the software development team members, based on their experience. The

selected design elements are related to architectural elements / requirements.

The software concept generation phase of TME is based on the analysis of the EBD-S

graph model, and involves the extraction of relationships between architecture /

functional requirements and design elements. Figure 31 displays such a graph model,

representing the TME v2.1 development.

EBD-S Elements and Dependencies mapping

Environment constraints Architectural elementsArchitecture-relevant requirements Design elements Functional requirements

R-05: Focus on rich end-user
experience

R-06: Expand the possible
audience to 100,000 users

R-07: Reuse the existing back-
end of TeleManager

Ci-01: Application server IIS 6.0

Cs-02: MS SQL 2008 database

Cs-03: MS Exchange 2007

Cs-04: In-browser clients

Ci-01: Up to 100,000 users.

Cs-05: Software latency 250 ms.

Cs-04: In-browser clients

Ci-06: Long transactions support

Cs-02: MS SQL 2008 database
support

Ch-04:Client computer
configuration

Ci-01: Application server IIS 6.0

Ae-01: Client application
technology is Microsoft

Silverlight 4.0

Ae-02: Server application is
based on RIA WCF services

Ae-03: The EDM is used as
object-relation mapping

Ae-05: Telerik, a third-party GUI
components library, is used

Ae-04: Isolated storage is used
 to preload data on the client

Cd-01: System shall be highly
maintainable

Cs-05: Software latency 250 ms.

R-02.1: Flexible reports

R-02.2: Dynamic reports by
service/equipment record

R-02.3: Exportable, copi-able,
email-able and printable data

R-02.4: Dynamic filetering

R-02.5: Hierarchical
representation of reports

Teleric DataGrid component

Interactive data-mapping class

Lazy-loading paging mechanism

Organization view control, based
on TreeView

In-report search mechanism

Check-list controls for dynamic
filtering

In-memory and isolated storage
synchronization

Date-pick controls for dynamic
filtering

Figure 31 EBD-S elements and dependencies mapping

92

Analysis is performed with help of Design Matrix toolset. The correct representation of

this model is done in the framework of non-binary Domain Mapping Matrix (DMM) – a

rectangular matrix, that maps design elements to specific domains (architecture /

functional requirements), and preserves the strength of the relation (0 / empty cell – no

relation, 1 – weak relation, 2 – significant relation, 3 – very strong relation).

Architectural elements in EBD-S are considered to be technical domain requirements,

and are associated with the DMM rows, as well as functional requirements. Design

elements are mapped to the columns. The resulted matrix is shown in Figure 32.

Ae-02

Se
ar

ch

D
at

a-
G

ri
d

D
at

a-
m

ap

O
rg

. V
ie

w

C
h

ec
k-

lis
t

D
at

e-
p

ic
k

La
zy

 lo
ad

in
g

C
ac

h
e

Ae-01

Ae-03

Ae-04

Ae-05

R-02.1

R-02.2

R-02.3

R-02.4

R-02.5

R-02.6

R-02.7

R-02.8

R-02.9

2

2

1

1

1 3

3

3

3

3

3

2

3 3

3

3

2

3

3

3

3 3

3 3

3

3

3

3

3

2

2

1

2

3

3

Figure 32 EBD-S software concept mapping matrix

Next the team needs to estimate the feasibility of the candidate solutions – it can be done

by decomposition of the software design problem to sub-domains. The following section

describes this process in details.

93

5.6.2 Concept development – decomposition

This software concept mapping matrix is decomposed with help of two-phase method for

non-binary matrix decomposition, and the final solution is selected on the basis of

resulting problem complexity.

On the first phase cluster formation and cluster alignment algorithms are applied to

transform the initial matrix to a banded diagonal matrix, representing the sub-systems of

the software system.

On the second phase we apply heuristic partitioning analysis to convert the banded

diagonal matrix, obtained on the first phase, into possible block-angular matrixes, which

would represent decomposition solutions of the design problem. These two phases are

presented in Figure 33.

Ae-02

Se
ar

ch

D
at

a-
G

ri
d

D
at

a-
m

ap

O
rg

. V
ie

w

C
h

ec
k-

lis
t

D
at

e-
p

ic
k

La
zy

 lo
ad

in
g

C
ac

h
e

Ae-01

Ae-03

Ae-04

Ae-05

R-02.1

R-02.2

R-02.3

R-02.4

R-02.5

R-02.6

R-02.7

R-02.8

R-02.9

Ae-01

C
h

ec
k-

lis
t

D
at

e-
p

ic
k

D
at

a-
G

ri
d

O
rg

. V
ie

w

Se
ar

ch

La
zy

 lo
ad

in
g

C
ac

h
e

D
at

a-
m

ap

R-02.4

R-02.5

R-02.8

R-02.3

Ae-05

R-02.1

R-02.7

R-02.6

R-02.9

Ae-03

Ae-02

Ae-04

R-02.2

Ae-01
D

at
a-

G
ri

d

C
h

ec
k-

lis
t

O
rg

. V
ie

w

D
at

e-
p

ic
k

Se
ar

ch

La
zy

 lo
ad

in
g

C
ac

h
e

D
at

a-
m

ap

R-02.4

R-02.5

R-02.8

R-02.3

Ae-05

R-02.1

R-02.7

R-02.6

R-02.9

Ae-03

Ae-02

Ae-04

R-02.2

2

2

1

1

1 3

3

3

3

3

3

2

3 3

3

3

2

3

3

3

3 3

3 3

3

3

3

3

3

2

2

1

2

3

2

2

1

1

1

1

3

3

3

3

3

3

2

3

3

3

3

3

2

33

33

3

3

3

33

3

2

2

2

3

3

3

2

2

1

1

1

1

3

3

3

3

3

3

2

3

3

3

3

3

2

33

3 3

3

3

3

33

3

2

2

2

3

3

a) Original matrix b) Banded diagonal matrix c) Block-angular matrix

Figure 33 Software concept matrix decomposition

The part c) of the Figure 33 shows one of the resulting software concept solutions – one

design element is common for the most of requirements, and there are two blocks of

elements. If several acceptable solutions are generated by the two-phase algorithm, they

94

are analyzed and the most detailed decomposition is usually selected. The problem

decomposition allows assigning independent parts of the problem to different

development teams, working in parallel.

It resolves one of the most severe problems of agile development methods – low

effectiveness in the teams, exceeding 5-7 members. The design problem can be split to

several independent modules of approximately similar complexity, and the sub-teams can

be formed to work on the modules.

In the TME v2.1 development two sub-teams were formed. They were working on two

generated sub-problems after the architectural framework with Data-Grid connectivity

(common to each sub-problem) had been developed.

5.7 TeleManager Executive: change and evolution control

The change control mechanism of EBD-S is based on the change impact analysis,

performed with help of EBD-S graph model.

In the EBD-S abstract model there are three possible sources of unplanned changes:

- Source code

- Software model (architecture and design)

- Requirements

The strength of the impact is different on these levels, and usually is expressed in 10x

costs growth per level. That is, software model changes cost ten times more than source

code changes, and requirements changes cost ten times more than software model

changes.

95

The EBD-S approach employs graphical impact analysis of the changes on any of these

levels. Figure 34 shows an example of such analysis.

EBD-S Elements and Dependencies mapping

Environment constraints Architectural elementsArchitecture-relevant requirements Design elements Functional requirements

R-05: Focus on rich end-user
experience

R-06: Expand the possible
audience to 100,000 users

R-07: Reuse the existing back-
end of TeleManager

Ci-01: Application server IIS 6.0

Cs-02: MS SQL 2008 database

Cs-03: MS Exchange 2007

Cs-04: In-browser clients

Ci-01: Up to 100,000 users.

Cs-05: Software latency 250 ms.

Cs-04: In-browser clients

Ci-06: Long transactions support

Cs-02: MS SQL 2008 database
support

Ch-04:Client computer
configuration

Ci-01: Application server IIS 6.0

Ae-01: Client application
technology is Microsoft

Silverlight 4.0

Ae-02: Server application is
based on RIA WCF services

Ae-03: The EDM is used as
object-relation mapping

Ae-05: Telerik, a third-party GUI
components library, is used

Ae-04: Isolated storage is used
 to preload data on the client

Cd-01: System shall be highly
maintainable

Cs-05: Software latency 250 ms.

R-02.1: Flexible reports

R-02.2: Dynamic reports by
service/equipment record

R-02.3: Exportable, copi-able,
email-able and printable data

R-02.4: Dynamic filetering

R-02.5: Hierarchical
representation of reports

Teleric DataGrid component

Interactive data-mapping class

Lazy-loading paging mechanism

Organization view control, based
on TreeView

In-report search mechanism

Check-list controls for dynamic
filtering

In-memory and isolated storage
synchronization

Date-pick controls for dynamic
filtering

Figure 34 EBD-S change impact analysis

During the development stage, the Lazy-loading mechanism was implemented with

errors, that weren‘t discovered by automated unit-tests. EBD-S graph model allowed to

define the possible areas, related to the lazy-loading mechanism on all the levels of

abstraction.

The impact chain is defined through all the abstraction levels (in red). It allows to find

affected elements on the design level, related to the unstable code (in green), and retest

the interfaces between the software modules (classes), associated with affected modules.

The same tool is used for change planning: each planned modification on any of the

abstraction levels is analyzed on the basis of possible impact, caused by the modification.

96

5.8 EBD-S performance

5.8.1 Performance metrics

In order to estimate how the implementation of EBD-S affects the software development

process, we recorded some process quality characteristics for two projects: before and

after EBD-S implementation. To keep track of the project performance and retrieve the

basis for the analysis, we use two types of quality metrics:

1. Process quality metrics, which reflect the efficiency of the development process;

2. Software quality metrics, which reflect the software code quality.

Process quality metrics are essentially related to the time, spent for specific activities:

- Estimated time for task / feature development;

- Real time spent on task / feature development;

- Lines of code per hour (LOC/h);

- Time spent on EBD-S process;

- Time for quality assurance – verification and validation;

- Time for quality assurance – correction.

The combination of these metrics, collected in consequent project iterations, allow

understanding the impact of EBD-S implementation on the project performance.

Software quality metrics are based on two interrelated parameters: number of errors,

discovered in the application, and overall codebase quality. Number of errors in the code

(as well as number of error per 1,000 lines of code, Errors/KLOC) is a straight-forward

metric; codebase quality metrics, however, require additional description.

97

TME codebase quality is controlled with help of Code Metrics, retrieved with help of

Visual Studio Suite. Code Metrics is a tool that helps developers find and act upon

complex and unmaintainable areas within the application source code. Visual Studio

2010 calculates five metrics of the source code, reviewed below.

1. Class Coupling. At each level, this indicates the total number of dependencies that

the item has on other types. The higher this number, the more likely changes in other

types will ripple through this item. A lower value at the type level can indicate

candidates for possible reuse.

2. Depth of Inheritance. At the type level, depth of inheritance indicates the number of

types that are above the type in the inheritance tree. Deep inheritance trees can

indicate an over-engineering of a problem and can increase the complexity of testing

and maintaining an application.

3. Cyclomatic Complexity. At each level, this measures the total number of individual

paths through the code. This is basically calculated by counting the number of

decision points and adding 1. This number is also a good indication on the number of

unit tests it will take to achieve full line coverage. Lower is typically better.

4. Lines of Code. At each level, this is a measure of the total number of executable lines

of code. This excludes white space, comments, braces and the declarations of

members, types and namespaces themselves. Lower is typically better.

5. Maintainability Index. At the member and type level, this is an index from 0 to 100

indicating the overall maintainability of the member or type. This index is based on

several other metrics, including Cyclomatic Complexity and Lines of Code. A low

number (less than 80) indicates code that is complex and hard to maintain.

98

The key quality metrics that we use for the EBD-S performance estimation are:

 Software process stage time over total project time ratio: this metric show how

the effort is spread in the course of the software development process, and helps

to understand the overhead brought by EBD-S implementation, as well as the

improvements in other stages.

 Software process stage length, person/hours: this metric show the recorded length

of the project stages and allows for detailed comparison of the process

performance.

 Estimated development time to Real time spent ratio: this metric reflects the

effectiveness of software design activities, especially on the concept development

stage of EBD-S.

 Number of errors per 1000 lines of code (Error/KLOC): this metric can reveal the

impact of well-thought and structured software design on the overall product

quality.

 Average time to fix one code error: reflects the effectiveness of EBD-S change

control mechanism.

 Number of requirements errors, reported by clients: shows the impact of EBD-S

Environment Design stage of EBD-S.

5.8.2 Collection of results

One of the advantages of the centralized code control server, used in the TME

development (Visual Studio Team Foundation 2010), is the automated collection of

metrics.

99

Process quality metrics are collected according to the time, required for the code

submission to the centralized code repository. Software quality metrics are recorded by

the system in two ways:

1. Number of errors discovered is based on the number of work-orders, issued to the

developers during the quality assurance stage;

2. Code metrics are calculated and recorded automatically on each software build.

The results, presented in this thesis, are collected for two iterations: one before the

introduction of EBD-S, another after. That allows direct comparison of the results.

5.8.3 Results and analysis

TME is developed in Scrum environment, with interlaced release schedule: each even

release is a beta-version, and each following release is shipped to the customers. Figure

35 reflects the timeline of four consequent Scrum iterations, united in two releases.

10 days
Development

5 days
Verification and validation

5 days
Error correction

QA sprint startDevelopment sprint start

Beta release Client installation
Collection of client feedback

8 days
Development

3 days
Verification and

validation

2 days
Error correction

QA sprint startDevelopment sprint start

Beta release Client installation
Collection of client feedback

2 days
EBD-S

5 days
Saved time

EBD-S completed

Agile / Scrum

Agile / Scrum
+ EBD-S

Figure 35 TME timeline

The upper timeline shows the standard Scrum process, without EBD-S application, when

the lower reflects the project after implementation of EBD-S.

100

Both projects, Agile/Scrum and Agile/Scrum with EBD-S are based on the similar

development workload, as estimated by developers. TME is developed by a team of 8

developers, which work 40 hours per week (640 person/hours per week allocated for one

sprint). When requirements are selected from backlog, developers provide development

time estimation in person/hours. Team lead ensures that team meets the development

goals in the scrum interval.

To make a fair comparison, software development team selected two sets of software

requirements to address in two consequent releases. The requirements were assessed by

all team members according to implementation complexity, feasibility, availability of

technology and overall implementation time, and were acknowledged as similar. The

projects were named TME 2.1 for Scrum process and TME 2.3 for Scrum + EBD-S

process. The version names 2.0 and 2.2 were reserved for beta versions of the software,

used for initial client feedback collection.

The following process and product metrics were collected during implementation

iterations, from project start to the release of beta-version (TME 2.0 and TME 2.2):

- Estimated time for project implementation

- Real time, spent for the implementation of features in the project

- Number of errors, discovered in the software at verification

- Density of errors (number of errors per 1000 lines of code)

Table 15 summarizes the cumulative TME 2.0 quality metrics, split per software project,

according to the software structure.

101

Table 15 TME v2.0 (Scrum) quality metrics

Project Estimated

time, hours

Real time,

hours

Errors Errors/

KLOC

TME.ReportsProject 60 74.25 17 24.15

TME.Silverlight 240 288.5 71 22.18

TME.WcfService 80 82.5 12 12.66

TME.Web 150 166.5 39 18.67

PROJECT TOTAL 530 611.75 139 20.02

The difference in estimated time and real time for implementation shows that team lead

shall plan a ―safety cap‖ at 20% of the estimated project time to make sure that the

project will be implemented in time.

Table 16 reflects the same set of quality metrics, collected from the EBD-S / Scrum

development iteration.

Table 16 TME v2.2 (Scrum + EBD-S) quality metrics

Project Estimated

time, hours

Real time,

hours

Errors Errors/

KLOC

Etelesolv.Telemanager.Entity 8 8.25 2 15.75

Etelesolv.Telemanager.Membership 48 47.5 6 7.65

Etelesolv.Telemanager.Model 8 6.25 1 15.15

Etelesolv.Telemanager.TME 200 208.75 28 12.16

Etelesolv.Telemanager.TME.RIA 48 56.25 11 14.16

Etelesolv.Telemanager.TME.RIA.Web 40 38.5 5 11.06

Etelesolv.Telemanager.TME.Web 4 1.75 0 0

Etelesolv.Telemanager.Utility 40 36.5 4 8.2

Etelesolv.Telemanager.Utility 24 20.75 7 25.45

PROJECT TOTAL 420 424.5 64 12.04

The two main changes are evident from Table 16:

 The accuracy of time estimation is very high (implementation took 101% of the

planned time versus 115% in the Scrum project)

 Number of development errors is significantly lower, as well as the error density.

Table 17 summarizes the key performance and quality metrics that were collected during

two projects, labeled ―Scrum‖ for ordinary agile Scrum process and ―Scrum + EBD-S‖

for the agile Scrum process with EBD-S applied.

102

Table 17 EBD-S performance comparison

Metrics Scrum Scrum + EBD-S

Software process stage time, percent

- Requirements analysis

- Architecture and design

- Coding

- Code verification and validation

- Error correcting

- Total

2%*

3%*

45%

25%

25%

100%

7%

7%

52%

20%

14%

100%

Software process stage time, person/hours

- Requirements analysis

- Architecture and design

- Coding

- Code verification and validation

- Error correcting

- Total

25

39

576

360

360

1280

72

72

496

192

128

960

Real development time to estimated ratio 1.15 1.01

Number of errors per 1000 lines of code 20.02 12.04

Code maintainability index 84 85

Average time to fix one code error 2.3 hours 2 hours

Requirements errors, reported by clients 9 2

* Requirements analysis, architecture and design elaboration in Scrum project are

included in Development stage and the durations are approximate.

The results, reflected in Table 17, clearly demonstrate that implementation of EBD-S

adds only a small time overhead (80 extra man-hours for the requirements and

architecture analysis). But the advantages of this approach are significant: coding time of

the comparable feature set is 14% lower than in regular Scrum process, verification and

validation stage is 47% shorter, while error correction time savings are on the level of

65%. The overall project time saving, achieved with Scrum + EBD-S approach in TME

project is 25% (960 hours versus 1280). Clients estimated the product, developed under

EBD-S, as more relevant to their needs (2 reported missing requirements versus 9).

103

The implementation of EBD-S improves the coding aspects of the development. For

instance, we collected the information about code submission during the coding stage of

the project. This information is displayed on Figure 36.

Figure 36 Code submission rates

Code submission trends, shown on Figure 36, demonstrate that in case of Scrum

development, the majority of code is developed in the end of the sprint, while under

Scrum/EBD-S development the code is created at the same rate during first 7 days of the

sprint, and then developers refine the code and finalize the tasks without haste.

The code submission historical data, presented in Figure 37, clearly shows that the

observed situation applies to Scrum projects, delivered by the same team in the past

(Scrum Project #1 – #6). The rate of code submission varies a lot with the general trend

of rising in the end of sprint.

The results of the next iteration of TME (v2.4), displayed in the last plot of the Figure 37,

demonstrate that the effect of EBD-S application to Scrum project remains noticeable,

resulting in low code submission variability and slight pace reduction in the end of sprint.

1 2 3 4 5 6 7 8 9 10

LOC 859 342 447 650 387 286 799 743 1091 1338

0

200

400

600

800

1000

1200

1400

Scrum code submission rate

1 2 3 4 5 6 7 8 9 10

LOC 496 578 544 671 654 705 689 465 312 202

0

200

400

600

800

1000

1200

1400

Scrum+EBD-S code submission rate

104

Figure 37 Code submission rate historical data

The performance of development in case of Scrum project averages at 11.35 LOC per

hour, while the Scrum and EBD-S project demonstrated slightly higher, and, what is

more important, more uniform performance at 12.52 LOC per hour.

In order to understand the reasons behind the improvement of coding performance and

submission uniformity, code metrics of both TME 2.0 (Scrum) and TME 2.2

(Scrum/EBD-S) were analyzed.

0

500

1000

1500

1 3 5 7 9

Scrum Project #1

0

500

1000

1500

1 3 5 7 9

Scrum Project #2

0

500

1000

1500

1 3 5 7 9

Scrum Project #3

0

500

1000

1500

1 3 5 7 9

Scrum Project #4

0

500

1000

1500

1 3 5 7 9

Scrum Project #5

0

500

1000

1500

1 3 5 7 9

Scrum Project #6

0

500

1000

1500

1 3 5 7 9

TME 2.0 Scrum

0

200

400

600

800

1 2 3 4 5 6 7 8 9 10

TME 2.2 EBD-S

0

200

400

600

800

1 2 3 4 5 6 7 8 9 10

TME 2.4 EBD-S

105

Table 18 Code quality metrics for TME v2.0 (Scrum)

Project Maintainabil

ity Index

Cyclomatic

Complexity

Depth of

Inheritance

Class

Coupling

Lines of

Code

TME.ReportsProject 24 4 4 53 704

TME.Silverlight 74 1577 7 352 3201

TME.WcfService 85 556 2 70 948

TME.Web 87 1136 4 151 2089

PROJECT TOTAL 84 13039 2.17 4.21 6942

Low maintainability index and relatively high cyclomatic complexity, observed in Table

18, are the results of ad-hoc development and fast architectural decisions.

Table 19 Code quality metrics for TME v2.2 (Scrum+EBD-S)

Project Maintainab

ility Index

Cyclomatic

Complexity

Depth of

Inheritance

Class

Coupling

Lines of

Code

Etelesolv.Telemanager.Entity 92 88 2 4 127

Etelesolv.Telemanager.Membership 75 239 3 41 784

Etelesolv.Telemanager.Model 94 55 2 4 66

Etelesolv.Telemanager.TME 82 1118 7 255 2302

Etelesolv.Telemanager.TME.RIA 84 375 2 41 777

Etelesolv.Telemanager.TME.RIA.Web 81 287 3 36 452

Etelesolv.Telemanager.TME.Web 91 32 3 20 45

Etelesolv.Telemanager.Utility 86 234 1 19 488

Etelesolv.Telemanager.Utility 73 67 1 9 275

PROJECT TOTAL 85 10022 2.57 2.99 5316

Under the EBD-S development umbrella, the code quality metrics demonstrate

uniformity (see Table 19) – the maintainability index varies from 73 to 94 among the

projects, averaging at 85. It represents a considerably lower variability compared to 24-87

results in TME v2.0. Higher depth of inheritance shows that object model is build better,

with more classes reused. The 30% lower average class coupling demonstrates that in the

TME v2.2 project the classes are better organized, and are easier to reuse.

It shows that EBD-S leads to a better-thought class design, simplifies the task of coding,

and eliminates the weak spots in the project code.

106

5.8.4 Conclusion on EBD-S performance in TME project

Advantages of EBD-S approach, demonstrated in TME project, can be summarized as

follows:

 More accurate development time estimation (less than 5% error margin instead of

20% in case of agile methods) due to:

- Better understanding of the requirements, high-level and detailed system

views, provided by Environment-Based analysis

- Specification of architectural, functional and non-functional requirements

leads to accurate problem decomposition

 40% less errors in the code (12.04 errors per 1000 lines of code instead of 20.02)

due to:

- Clear and unambiguous requirements, leading to better understanding and

planning of the functionality

- Better structuration of the project due to requirements architecture-design

coupling with Design Matrix

 10% higher productivity (12.52 lines of code per hour instead of 11.35) due to:

- Simpler code due to detailed functional design

- Better project resource allocation

 Total project length (development + verification) is reduced by 25% due to:

- CBSP-based impact analysis, which makes easier the discovery of possibly

affected functions

- Well-structured code, that requires less refactoring effort

107

6. Conclusions and future work

6.1 Conclusions

During the last decade, agile approaches dominate on the software development arena.

They bring many advantages over the traditional approaches – faster development cycles,

better interaction with clients, more frequent testing. At the same time, contemporary

agile approaches have some flaws: they don‘t cover, or cover partially, process and

project management aspects of software concept generation, architecture creation and

after-implementation support. In this thesis the Environment-Based Design theory,

reinforced with Design Matrix problem-solving and CBSP theory, is used to address the

stated flaws of two agile approaches: Scrum and Feature-Driven Design. The proposed

method is called Environment-Based Design of Software, and it provides methodological

recommendations and structural foundation for the following aspects of software

development (see Figure 38):

- Concept generation

- Architecture creation

- Design elaboration

- Post-implementation change control

Software development lifecycle

Concept
generation

Requirements
specification

Design Code
Architecture

creation
Test System in use

Agile
metodology

P
h

as
e

FDD

SCRUM

Project Management

Process

Covered

Not covered

EBSD coverage

Figure 38 EBD-S application to FDD and Scrum software development methodologies

108

Through the application of Environment-Based Design of Software approach to the real-

world software development process, described in Chapter 5, we come to the following

conclusions:

- EBD-S is an effective and versatile design method, aimed to support the

contemporary agile methodologies;

- EBD-S can be introduced to the software development process in steps, starting

from Environment Analysis, through Design Matrix concept generation to CBSP

change control;

- Each component of EBD-S brings specific advantages to the software

development process, which allows controlling and monitoring the process of

EBD-S introduction;

- The EBD-S application brings better product vision, more accurate development

task estimation and significantly lower level of coding and requirements errors.

As well it results in a higher coding performance. Thanks to all these

improvements, overall project iteration length can be shortened by 25%.

109

6.2 Future work

The research presented in this thesis raised some problems still to be addressed. The

implementation of the EBD-S to the real-world agile software development process

provided a great opportunity to analyze the methodology from different points of view.

We found that project managers lacked the planning techniques, relevant to EBD-S. We

verified the applicability of the EBD-S to the software process, based on Scrum and

Feature-Driven Development methodologies. However, one of the most promising

software methodologies – Test-Driven Development – was omitted, since it was

unknown to the developers in the case study environment.

The ongoing research indicates that methodological foundation of EBD-S can be

reinforced with a set of advanced matrix-based techniques that would bring an extra

dimension to the dependency analysis.

To summarize, in our future work we will investigate the following aspects:

 Possible extension of the EBD-S to the project management aspects of software

development.

 Verify the real-world applicability of EBD-S to the Test-Driven Development,

which implies the creation of automated tests before the code is written.

 Enhancement of the EBD-S concept generation technique with advanced matrix-

based analysis, which takes into consideration different types of dependencies

with various levels of strength.

 Enhancement of system-in-use software methods from current impact analysis to

automated change plan generation, based on customer feedback.

110

Bibliography

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). Agile software

development methods: Review and analysis. VTT Publications(478).

Beck, K. (2001). Manifesto for Agile Software Development. Retrieved 03 15, 2011, from

Agile Manifesto: http://agilemanifesto.org/

Brandozzi, M., & Perry, D. (2001). Transforming Goal-Oriented Requirement

Specifications into Architecture Prescriptions. Proceedings STRAW'01 (pp. 54-

61). ICSE 2001.

Butler, M., Jones, C., Romanovsky, A., & Troubitsyna, E. (2006). Rigorous Development

of Complex Fault-Tolerant Systems. Springer, Lecture Notes in Computer

Science, Vol. 4157.

Chen, L., & Zeng, Y. (2009). Automatic generation of UML diagrams from product

requirement requirements described by natural language. The 2009 ASME

International Design Engineering Technical Conferences (IDETC) and

Computers and Information in Engineering Conference. San Diego.

Chen, L., Ding, Z., & Li, S. (2005). A Formal Two-Phase Method for Decomposition of

Complex Design Problems. ASME Journal of Mechanical Design, Vol. 127, 184-

195.

Chen, Z., & Zeng, Y. (2006). Classification of Product Requirements Based on Product

Environment. Concurrent Engineering Research and Applications: an

International Journal, Vol. 14(No. 3), 219-230.

Chen, Z., Yao, S., Lin, J., Zeng, Y., & Eberlein, A. (2007). Formalisation of product

requirements: from natural language descriptions to formal specifications.

International Journal of Manufacturing Research, Vol. 2(No. 3), 362-387.

Chung, L., Nixon, B., Yu, E., & Mylopoulos, J. (2000). Non-Functional Requirements in

Software Engineering. Proceedings of the Second IEEE International Symposium

on Requirements Engineering (pp. 132-139). IEEE.

Cockburn, A., & Highsmith, J. (2001). Agile Software Development: The Business of

Innovation. IEEE Computer, Sept.(9), 120-127.

Coplien, J. O. (1999). Multi-paradigm design for C++. Boston, MA: Addison-Wesley

Longman Publishing Co.

Dorst, K., & Cross, N. (2001). Creativity in the design process: co-evolution of problem

solution. Design Studies, Vol. 22(Nr. 5), 425-437.

111

Dyba, T., & Dingsøyr, T. (2008). Empirical studies of agile software development: A

systematic review. Information and Software Technology, Vol. 50(9), 833-859.

Egyed, A., & Grunbacher, P. (2002). Automating Requirements Traceability: Beyond the

Record & Replay Paradigm. Proceedings. ASE 2002. 17th IEEE International

Conference on: Automated Software Engineering (pp. 163-171). Edinburgh:

IEEE.

Fielden, G. (1975). Engineering design. London: British Standards Institution.

Klein, M. (1991). Supporting conflict resolution in cooperative design systems. IEEE

Transactions on Systems, Man and Cybernetics, Vol. 21(Issue 6), 1379-1390.

Lan, C., & Ramesh, B. (2008). Agile Requirements Engineering Practices: An Empirical

Study. IEEE Software, Vol. 25(Issue 1), 60-67.

Li, S. (2010). Extensions of the Two-Phase Method for Decomposition of Matrix-based

Design Systems. ASME Journal of Mechanical Design, Vol. 132, 061003.

Medvidovic, N., & Taylor, R. (2002). A Classification and Comparison Framework for

Software Architecture Description Languages. IEEE Transactions on Software

Engineering, Vol. 26(Issue 1), 70–93.

Medvidovic, N., Egyed, A., & Grunbacher, P. (2003). Stemming Architectural Erosion

by Coupling Architectural Discovery and Recovery. Second International

SofTware Requirements to Architectures Workshop (pp. 61-69). Portland, OR:

ICSE.

Medvidovic, N., Rosenblum, D., & Taylor, R. (1999). A Language and Environment for

Architecture-Based Software Development and Evolution. Proceedings of the

1999 International Conference on Software Engineering, (pp. 44-53). Los

Angeles, CA.

Miller, G. (2001). The Characteristics of Agile Software Processes. The 39th

International Conference of Object-Oriented Languages and Systems, (pp. 03-

85). Santa Barbara, CA.

Nagel, E. (1961). The Structure of Science: Problems in the Logic of Scientific

Explanation. Hackett Publishing Company, Inc.

Nandhakumar, J., & Avison, D. (1999). The Fiction of Methodological Development: A

Field Study of Information Systems Development. Information Technology &

People, Vol. 12(Issue 2), 176-191.

Nerur, S., Mahapatra, R., & Mangalaraj, G. (2005). Challenges of Migrating to Agile

Methodologies. Communications of the ACM - Adaptive complex enterprises, Vol.

48(Issue 5), 73-87.

112

Neward, T. (2010). Multiparadigmatic .NET, Part 2. Retrieved 11 05, 2010, from

msdn.microsoft.com: http://msdn.microsoft.com/en-us/magazine/gg232770.aspx

Nuseibeh, B. (2001). Weaving Together Requirements and Architectures. IEEE

Computer, Vol. 34(Issue 3), 115-117.

Nuseibeh, B., & Easterbrook, S. (2000). Requirements Engineering: A Roadmap.

Proceedings on the Conference on The Future of Software Engineering (pp. 34-

46). New York: ACM.

Paetsch, F., Eberlein, A., & Maurer, F. (2003). Requirements Engineering and Agile

Software Development. Enabling Technologies: Infrastructure for Collaborative

Enterprises, 2003. WET ICE 2003., (pp. 308-313).

Pahl, G., & Beitz, W. (1988). Engineering Design: A systematic approach. Springer.

Perry, D., & Wolf, A. (1992). Foundations for the Study of Software Architectures. ACM

SIGSOFT Software Engineering Notes, Vol. 17(Issue 4), 40-52.

Peters, J., & Ramanna, S. (2003). Towards a Software Change Classification System: A

Rough Set Approach. Software Quality Journal, Vol. 11(Issue 2), 121-147.

Pimmler, T., & Eppinger, S. (1994). Integration Analysis of Product Decompositions.

ASME Design Theory and Methodology Conference. Minneapolis, MN.

Radice, R., Roth, N., O‘Hara, A. J., & Ciarfella, W. (1985). A Programming Process

Architecture. IBM Systems Journal , Vol. 24(Issue 2), 79–90.

Robertson, S., & Robertson, J. (2007). Mastering the Requirements Process (2nd ed.).

Addison-Wesley Professional.

Shaw, M., & Garlan, D. (1996). Software Architecture: Perspectives of an Emerging

Discipline. Prentice Hall.

Simon, H. (1996). The Sciences of the Artificial (3rd ed.). The MIT Press.

Steward, D. (1981). The Design Structure System: A Method for Managing the Design of

Complex Systems. IEEE Transactions on Engineering Management, Vol. 28, 71-

74.

Suh, N. (1990). The Principles of Design. Oxford University Press.

Tomiyama, T., Gu, P., Jin, Y., Lutters, D., Kind, C., & Kimura, E. (2009). Design

methodologies: Industrial and educational applications. CIRP Annals -

Manufacturing Technology, Vol. 58(Issue 2), 543-565.

113

Truex, D. (2000). Amethodical systems development: The deferred meaning of systems

development methods. Accounting, Management and Information Technologies,

Vol. 10(Issue 1), 53-79.

Ulman, D. G. (1995). Taxonomy for Classifying Engineering Decision Problems and

Support Systems. Artificial Intelligence for Engineering Design, Analysis and

Manufacturing, Vol. 9, pp. 427-438.

Walls, Widmeyer, & Sawy. (1992). Building an Information System Design Theory for

Vigilant EIS. Information Systems Research, Vol. 3(No. 1), 36-59.

Wang, M., & Zeng, Y. (2008). Asking the right questions to elicit product requirements.

22(4), 283-293.

Wiegers, K. (2003). Software Requirements, 2nd Edition. Microsoft Press.

Yan, B., & Zeng, Y. (2009). The structure of design conflicts. The 12th World

Conference on Integrated Design & Process Technology. Alabama.

Yoshikawa, H. (1981). General Design Theory and a CAD System. Proceeding os the

IFIP Working Group 5.2 Working Conference (pp. 35-58). Amsterdam: IFIP.

Zeng, Y. (2002). Axiomatic Theory of Design Modeling. Transactions of the SDPS:

Journal of Integrated Design and Process Science, Vol. 6(No. 3), 1-28.

Zeng, Y. (2004). Environment-Based formulation of design problem. Transactions of the

SDPS: Journal of Integrated Design and Process Science, Vol. 8(No. 4), 45-63.

Zeng, Y., & Cheng, G. (1991). On the logic of design. Design Studies, Vol. 12(No. 3),

137-141.

Zeng, Y., & Gu, P. (1999). A science-based approach to product design theory Part I:

Formulation and formalization of design process. Robotics and Computer-

Integrated Manufacturing, Vol. 15(No. 4), 331-339.

Zeng, Y., & Gu, P. (1999). A science-based approach to product design theory Part II:

Formulation of design requirements and products. Robotics and Computer-

Integrated Manufacturing, Vol. 15(No. 4), 341-352.

Zeng, Y., & Gu, P. (2001). An Environment Decomposition-Based Approach to Design

Concept Generation. Interlnal Conference on Engineering Design, (pp. 525-532).

Zeng, Y., & Jianliang, J. (1996). Computational model for design. Proc. SPIE, 2644, 638.

