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Abstract 

Structure-function relationships of wheat flavone O-methyltransferase: 

Homology modeling, site-directed mutagenesis and regulation 

Francesca Kanapathy-Sinnaiaha 

 Wheat (Triticum aestivum) O-methyltransferase (TaOMT2) catalyzes the 

sequential methylation of the flavone, tricetin (5,7,3',4',5'-pentahydroxyflavone) to its 3'-

methyl-(selgin), 3',5'-dimethyl-(tricin) and 3',4',5'-trimethyl ether derivatives, although 

tricin is the major product of this reaction. The novelty of TaOMT2 to perform three 

sequential methylations of tricetin as a substrate, the chemopreventive properties of its 

major product, tricin, and the compelling interest in the protein‘s structure-function 

relationships, prompted us to further investigate this novel protein at the biochemical, 

molecular and structural levels. A 3-D model of this protein was constructed using the 

crystal structure of the highly homologous Medicago sativa caffeic acid/5-hydroxyferulic 

acid O-methyltransferase (MsCOMT) as a template with the aim of proposing a 

mechanism for multiple methyl transfer reactions in wheat. Homology modeling 

experiments in which each of the substrates tricetin, selgin and tricin, was docked into the 

model revealed a number of amino acid residues putatively involved in substrate binding 

and catalysis. Results suggest that substrate binding is mediated by an extensive network 

of H-bonds and van der Waals interactions. Mutational analysis of structurally-guided 

active site residues identified those involved in binding and catalysis. A possible reaction 

mechanism is discussed.  

 The biological significance of this methylation reaction was also investigated by 

analyzing its expression, enzyme activity patterns at different wheat developmental 
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stages, in response to cold acclimation and to different abiotic stresses such as salt and 

drought. Results show that TaOMT2 predominantly accumulates in wheat 

influorescences compared to leaves, coinciding with the increased methyltransferase 

activity in the influorescence tissues. The effect of abiotic stresses on wheat reveals that 

TaOMT2 accumulates in cold-acclimated winter wheat leaves. In contrast, TaOMT2 

activity with tricetin as a substrate shows a tendency to decrease during cold acclimation. 

Other abiotic stresses, such as salt and drought have no effects on TaOMT2 accumulation 

in wheat leaves, but a slight decrease in activity. The importance of tricetin methylation 

during developmental stages and during abiotic stresses is discussed. 
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D INTRODUCTION 

  During evolution, plants acquired the ability to synthesize a large variety of small 

molecular-mass organic compounds collectively known as secondary metabolites. These 

can be classified into several groups, of which flavonoids constitute one of the major 

classes. Flavonoids consist of two aromatic ring systems, A and B, which are connected 

by a heterocyclic ring C (Figure 1). They exhibit a variety of functions; being involved in 

plant-microorganism interactions; act as shields against UV radiation, as flower pigments 

that attract pollinators, to mention only a few (Bohm, 1998 and refs therein).  

 Based on the oxidation level of the C-ring, flavonoid compounds are classified 

into several groups, most important of which are the chalcones, flavanones, flavones, 

flavonols, isoflavones and anthocyanidins (Figure 1). In addition to their wide 

occurrence, flavonoids are also recognized for their health promoting properties. Several 

studies revealed their functional roles as antioxidants, radical scavengers, antiviral and 

anti-inflammatory agents as well their potential anticarcinogenic activities (Middleton et 

al., 1994 and refs therein). 

 Enzymatic and chemical substitution reactions contribute to the structural and 

functional diversity of flavonoid compounds. These include glycosylation, acylation, 

hydroxylation, methylation and prenylation that take place mostly on the phenolic rings 

(Ibrahim and Anzellotti, 2003 and refs therein). Enzymatic O-methylation, which is 

catalyzed by a large family of O-methyltransferases (OMTs) plays an important role in 

reducing the toxicity and chemical reactivity of their phenolic hydroxyl groups and 

increasing their lipophilicity; and hence modulates their compartmentation and 

antimicrobial activity (Middleton et al., 1994 and refs therein). 
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Figure 1 The major classes of flavonoids  

Figure 1   the major classes of flavonoids                                                                                                   
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O-Methylation of flavonoids is catalyzed by a family of S-Adenosyl-L-methionine 

(SAM)-dependant methyltransferases (OMTs), which catalyzes the transfer of the methyl 

group of SAM to an appropriate acceptor molecule with the concomitant formation of the 

corresponding methyl ether derivative and S-Adenosyl-L-homocysteine (SAH), as 

products. The latter reaction product often acts as a competitive inhibitor of the enzyme 

reaction.  

Phenolic metabolites participate in the plant‘s protection against various abiotic 

stresses, e.g. cold which is a predominant factor that affects various crop plants in 

Canada. Winter survival and crop productivity are influenced by many different winter 

stresses, such as freezing temperature, length of the freezing period, ice encasement and 

flooding (Fowler et al., 1999). Wheat (Triticum aestivum L.), a prevalent crop in Canada, 

has developed characteristics to circumvent these stresses through a mechanism known as 

‗cold acclimation‘ (CA) which includes the expression of certain cold-induced genes that 

function to stabilize membranes against freeze-induced injury (Thomashow et al., 1999).     

In a recent study to identify the genes involved in cold acclimation and associated 

stresses, a large-scale EST sequencing approach was conducted by the Functional 

Genomics Abiotic Stress (FGAS) project, through the joint efforts of Professors F. 

Sarhan (Université du Québec à Montréal) and P. Gulick (Concordia University). Using 

the published Arabidopsis thaliana  O-methyltransferase 1 (AtOMT1) sequence (Muzac 

et al., 2000),  Zhou et al., have searched for an OMT-like clone in the FGAS cDNA 

database. Of the several OMT-like clones obtained, one full-length clone exhibited the
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highest score and contained all of the plant OMT signatures (Ibrahim et al., 1998). The 

clone was isolated and expressed in E.coli, and its gene product (TaOMT2) was used for 

further analysis (Accession number ABB03907). It was shown that the recombinant 

protein had a pronounced preference towards tricetin (5,7,3',4',5'-pentahydroxyflavone) 

as substrate, being converted to its monomethyl- (selgin, 5,7,4',5'-tetrahydroxy-3'-

methoxyflavone), dimethyl-  (tricin, 5,7,4'-trihydroxy-3',5'-dimethoxyflavone) and 

trimethyl- (TMeT, 5,7-dihydroxy-3',4',5'-trimethoxyflavone) ether derivatives, with tricin 

being the major enzyme reaction product (Zhou et al., 2006) (Figure 2). This enzyme was 

then selected for further study.  

 In contrast with mammalian methyltransferases, plant OMTs exhibit attenuated 

substrate specificities. The sequential methylation of flavonols reported in 

Chrysosplenium americanum (Saxifragaceae) (Ibrahim et al., 1987) and of the volatile 

phenolic derivatives in rose petals (Lavid et al., 2002; Wu et al., 2003) were catalyzed, in 

a stepwise manner, by a number of substrate-specific and position-oriented OMTs. 

Examples of multiple methylations catalyzed by single enzymes were reported for the 

mammalian phosphatidylethanolamine (Walkey et al., 1996), plant phosphoethanolamine 

(Charron et al., 2002) and viral histone N-methyltransferase (Qian et al., 2006).  The 

novelty of TaOMT2 lies in the fact that it is capable of catalyzing a sequence of three 

methylations of tricetin resulting in three different products.  

 In contrast with the widespread occurrence of flavonoids in plants, the 

pentahydroxy flavone tricetin and its dimethyl ether derivative, tricin are reported to 

occur sporadically; and mostly in unrelated families (Wollenweber and Dörr, 2002). 
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Tricetin was reported to occur together with other flavonoid aglycones in the Myrtaceae 

pollen (Campos, et al. 2002) and is considered as a marker of eucalyptus honey (Martos 

et al., 2000). Tricin has been reported to possess several potential health beneficial 

effects. The presence of tricin in cereal grains, especially the husks and bran, was shown 

to inhibit the growth of human malignant breast tumour cells and colon cancer cells 

(Hudson et al., 2000; Cai et al., 2004). The fact that TaOMT2 performs multiple 

methylations of the same substrate, with tricin being the major reaction product, 

prompted us to investigate its molecular structure in relation to the site(s) of substrate 

binding and the methyl transfer reactions. 

E.1. AIM OF THE WORK  

 This work derives from the recent isolation and characterization of a novel 

flavone O-methyltransferase cDNA clone (TaOMT2) from a wheat cDNA library (Zhou 

et al., 2006). The novelty of TaOMT2 to perform three sequential methylations of tricetin 

as a substrate, the chemopreventive properties of its major product, tricin, and the 

compelling interest in the protein‘s structure-function relationships, prompted us to 

further investigate this novel protein at the biochemical, molecular and structural levels. 

The aims of the present work are summarized as follows:  

E.1.1 To investigate the molecular structure of TaOMT2 

      Since several attempts to crystallize TaOMT2 resulted in crystals with 

unsatisfactory diffraction, we resorted, therefore, to study its 3-D structure by the 

‗homology modeling‘ approach,  using the crystal structure of Medicago sativa caffeic 
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acid/5-hydroxyferulic acid OMT (MsCOMT; Zubieta et al., 2002) as a template. Both 

proteins share 63% sequence identity. A 3-D structure of TaOMT2 was obtained through 

structural homology modeling by courtesy of Prof. Y. Lim (Konkuk U, Rep. of Korea). 

Modeling experiments in which each of the substrates, tricetin, selgin and tricin, was 

docked into the model revealed a number of amino acid residues putatively involved in 

substrate binding and catalysis. These were selected for site-directed mutagenesis and the 

derived proteins were assayed for enzyme activity in order to evaluate their structural and 

functional significance. These analyses will help to elucidate a putative reaction 

mechanism of TaOMT2 for the sequential methylation of tricetin. 

E.1.2. To study the activity and expression of TaOMT2 in wheat leaves and 

influorescences. 

Since it was recently shown that tricin accumulates predominantly in wheat 

influorescences (Amira Moheb, personal communication), and that TaOMT2 synthesizes 

tricin as the major product of tricetin methylation, it was preponderant, therefore, to 

investigate its presence in influorescence tissues. 

E.1.3 To study the regulation of wheat methyltransferases, and specifically TaOMT2 in 

relation to cold acclimation and other abiotic stresses.  

 Given the importance of methyltransferases in the biosynthesis of lignin and other 

phenolic compounds (Charron et al., 2002), it was considered important to study the 

regulation of OMTs, and specifically TaOMT2, in relation to cold acclimation and other 

abiotic stresses, such as salinity and drought. The aim of this study was to determine the 
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activity of total OMTs acting on the endogenous phenolic compounds, including tricetin, 

during abiotic stresses. In order to achieve this goal, we resorted to immunoblotting of 

TaOMT2 and enzyme activity assays. Considering the scarcity of published work on 

TaOMT2, and the evidence of the potential beneficial properties of tricin on mammalian 

cells, it renders it an interesting enzyme to study with the ultimate goal of its use in 

metabolic engineering.  
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Figure 2  O-Methylation of tricetin by TaOMT2 
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9 

E.2. LITERATURE REVIEW 

 

  Flavonoid compounds constitute one of the major groups of plant secondary 

metabolites. Even though termed ―secondary metabolites‖, flavonoids play important 

roles in plant growth and development, its interaction with the environment, in defense 

mechanisms against pathogen and insect attacks, and a variety of wounding and abiotic 

stresses. Recent advances have contributed an added impulse with the discovery of their 

potential benefits to humans as bases for pharmaceuticals and nutraceuticals (reviewed in 

Tapas et al., 2008). 

  This review will encompass a summary of the major steps of phenylpropanoid 

and flavonoid biosynthetic pathways. Various substitution reactions of flavonoid 

compounds contribute to their structural and functional diversity. In this review, a special 

emphasis will be given to O-methylation reaction mechanisms. These discussions include 

phenylpropanoid- and flavone O-methyltransferases, and their implications in genetic 

manipulations. The review will highlight the importance of methylated phenolic 

compounds, their implications in health-promoting properties and their potential uses in 

human welfare and disease therapies. Finally, the review will end with a summary of the 

effects of cold acclimation and abiotic stresses such as salt and drought stresses on plants. 
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E.2.1. Biosynthesis of flavonoids 

 

 Flavonoids consist of two aromatic rings, A and B that are connected by the 

heterocyclic ring-C. Both aromatic rings derive from two different pathways: ring A, 

from the head-to-tail condensation of three acetate units (derived from the 

malonate/acetate pathway), whereas ring B and the attached 3-C side chain are derived 

from L-phenylalanine via the shikimate pathway. The pathway of flavonoid biosynthesis 

was described in detail by Forkmann and Heller (1999). Briefly, it starts with the 

conversion of the aromatic amino acid L-phenylalanine to trans-cinnamic acid by 

phenylalanine ammonia lyase (PAL, EC 4.3.1.5), which is then hydroxylated at the 4-

position by cinnamate 4-hydroxylase (C4H, EC 1.14.13.11). 4-Hydroxycoumaric acid is 

then converted to 4-coumaroyl CoA by 4-coumarate CoA ligase (4CL, EC 6.2.1.12). 

Chalcone-synthase (CHS, EC 2.3.1.74) catalyzes the stepwise condensation of 4-

coumaroyl CoA with three molecules of malonyl CoA to yield a chalcone, the central 

intermediate in the pathway and the precursor of all flavonoids.  Chalcone isomerase 

(CHI, EC 1.14.11.9) catalyses the closure of the heterocyclic ring C, with the formation 

of the flavanone, naringenin. The latter serves as the branch-point intermediate for all 

other classes of flavonoids, including flavones, flavonols and isoflavones. Flavanones can 

be hydroxylated at position 3 by flavanone 3-hydroxylase (F3H, EC 1.14.11.9) leading to 

the formation of dihydroflavonols, flavonols and anthocyanidins. Flavones are 

synthesized by flavone synthase (FNS) by the removal of H-atoms from positions 2 and 3 

of flavanones. Desaturation of 3-hydroxy flavanones by flavonol synthase (FLS, EC 

1.14.11.23) yields flavonols. Reduction of dihydroflavonols by dihydroflavonol reductase 

(DFR, EC 1.1.1.219) results in the formation of leucoanthocyanidins, the precursors of all 
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anthocyanidins responsible for the diverse vibrant colors of flowers. Flavanones can also 

be subjected to 2-hydroxylation, followed by dehydration and aryl migration of the B-

ring to C-3 (Figure 1), catalyzed by isoflavonoid synthase (IFS, E.C. 1.14.13.86), thus 

resulting in the formation of isoflavones. These reactions are depicted in figure 3. 
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Figure 3   Flavonoid biosynthetic  pathway                  

  

 



 

 

13 

Figure 3 Flavonoid biosynthesis pathw 

E.2.2. Substitution reactions of flavonoids 

 

 Enzymatic substitutions are common reactions that occur on phenolic compounds; 

they have been reviewed by Ibrahim and Anzellotti (2003). Modifications of flavonoids 

may include hydroxylation, glycosylation, (iso)prenylation, acylation, and/or 

methylation. These reactions are catalyzed by substrate-specific and position-oriented 

enzymes, and contribute to the enormous variety of flavonoid compounds and, hence, to 

their wide spectrum of functional roles in plants. The occurrence of the phenolic 

compounds and their versatility of functions involved in the response to various stresses, 

are somehow dependent on the various modification reactions of flavonoids catalyzed by 

these enzymes. Even though, these enzymes are not mutually exclusive in function, they 

may act in a sequential manner, with one modification determining future substitution 

events. 
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E.2.3. O-Methylation 

  

 Among the various substitution reactions that occur on flavonoids, O-

methylations has attracted special attention due to its ubiquity in flavonoid biosynthesis 

and the various roles methylated products play in plant growth and development. O-

Methylation of flavonoids is essential for reducing toxicity of their reactive hydroxyl 

groups. In addition, it increases lipophilicity, thus helping the methylated products to pass 

through cell membranes, thus enabling internal compartmentation. Although the chemical 

mechanisms of methyl group transfer reactions are identical, and their enzymes share 

high amino acid sequence similarity, OMTs are both substrate- and position- specific 

enzymes. In fact, although phenylpropanoids and flavonoids share some structural 

similarity, where the phenolic B-ring and its 3-carbon side chain of flavonoids are 

derived from phenylpropanoids, O-methylation of both groups of compounds is catalyzed 

by distinct O-methylatransferases. Moreover, position-specific methylation has been well 

demonstrated in the biosynthesis of polymethylated flavonols in Chrysosplenium 

americanum (Ibrahim et al., 1987). A recent account of the various OMT cDNA clones 

involved in methylation of phenolic compounds has been reported (Akashi et al., 2003, 

Lam et al., 2007, Lavid et al., 2002, Scalliet et al., 2002). 
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E.2.4. Classification of O-Methyltransferases (OMTs)  

 

 The extensive plant OMT sequence database has made a profound impact and a 

valuable contribution to the biology research community. Several cDNA clones have 

been isolated from both angiosperms and gymnosperms: parsley (Schmitt et al., 1991), 

tobacco (Jaeck et al., 1996), alfalfa (Gowri et al., 1991), to mention only a few. 

Subsequently, organization of these sequence information became a necessity. The 

combination of molecular biology and conventional biochemical approaches provided a 

powerful approach to classify the proteins encoded by these sequences. Several research 

groups embarked in classifying OMTs. Among several proposals, three were recognized 

as being the most accepted and well represented in classifying OMT cDNAs.  

    The first proposal, by Ibrahim et al. (1998), was based on thirty-six cDNA clones 

belonging to several angiosperm families, both monocotyledons and dicotyledons and 

two conifer species, as well as representatives of bacterial, fungal, bovine, rat and human 

sequences. These OMTs included clones involved in lignin precursors methylation, 

flavonoid methylation and other types of methylation. Ibrahim et al. (1998) suggested 

that all plant OMTs have diverged from a common ancestral gene that led to the 

evolution of the various functional OMTs. They also reported that five regions (I-V) near 

the carboxy terminal end of the OMT protein sequence, comprising 36 amino acid 

residues and rich in glycine, were highly conserved (92-100%) among the majority of 

plants. Region I is thought to be involved in SAM binding and region IV, in metal 

binding.  
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Figure 4 Five conserved OMT motifs (adapted from Ibrahim et al., 

1998) 

Figure 4.     Five conserved OMT motifs (adaptation from Ibrahim et al., 1998) 
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     The second proposal by Joshi and Chiang (1998) was based on sequence 

alignment and phylogenetic analysis of fifty-six plant OMT clones representing various 

species. The OMTs were classified into two groups, the PIOMT I and PIOMT II, 

according to their distinct substrate preferences and amino acid sequence homology. The 

first group contains OMTs that methylate caffeoyl and 5-hydroxyferuloyl CoAs 

(CCoAOMTs). These enzymes require Mg
2+

 for activity; they exhibit a smaller molecular 

mass similar to the mammalian catechol OMTs (ca. 27 kDa). The PIOMT II group 

constituted OMTs that have wide range of substrate preferences, including 

phenylpropanoids, flavonoids and alkaloids. In contrast to the first group, they do not 

require any cofactors for enzymatic activity, but exhibit a higher molecular mass of ca. 40 

kDa. Sequence alignments of the 56 genes revealed three signature motifs (A, B and C), a 

putative SAM binding motif and five additional motifs (D, E, F, G and H) that may serve 

as CCoAOMT signatures (Figure 5). 

 The third proposal reported by Zubieta et al. (2003) was based on the amino acid 

sequence and structural studies of several OMTs that were categorized into three 

subfamilies. The first subfamily consisted of phenylpropanoid and flavonoid OMTs, 

where methyl transfer is catalyzed by a histidine-based active site for methionine 

deprotonation (Zubieta et al., 2003). The second subfamily consisted of OMTs 

methylating caffeoyl and 5-hydroxyferuoyl CoAs with an Mg
2+

 requirement. The third 

group comprised enzymes that convert carboxylic acids to their methyl ether derivatives 

(Zubieta et al., 2003).  
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Figure 5 Three putative AdoMet-binding motifs (adapted from Joshi 

and Chiang, 1998) 

Figure 5     Three putative AdoMet-binding motifs (adaptation from Joshi and Chiang, 1998) 
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E.2.5. Phenylpropanoid OMTs  

 

 Lignin is a complex of phenylpropanoid polymer, deposited as a secondary wall 

on plant cells that provide an impervious, rigid structure to the tracheary elements for 

support against the negative pressure generated from transpiration, and acts as a defense 

barrier against wounding and pathogen attack (Boudet et al., 1995). The most common 

monolignols (building blocks) of lignins are guaiacyl and syringyl polymers that 

originate from ferulic acid and sinapic acid, respectively. Methylation of caffeic acid and 

5-hydroxyferulic acid at positions 3 and 5, respectively, produce ferulic acid and sinapic 

acid respectively (reviewed in Dixon et al., 2001). 

The fact that phenylpropanoids are precursors of the monolignols and that the 

guaiacyl-syringyl ratio is related to lignin degradability as a pulping material, and grass 

digestibility by ruminants (Whetten and Sederoff, 1991), prompted a number of studies 

that focused on phenylpropanoid OMTs. Genetic manipulation of these enzymes could 

lead to a better yield and quality of the lignin polymer.    

 A number of COMT cDNA clones were isolated from different plant species; 

both from angiosperms and gymnosperm (reviewed by Lam et al 2007). Comparison of 

these proteins revealed that they were similar in size (ca. 40-45 kDa), Mg
2+

 -independent 

and highly similar in amino acid sequence (80-95%).  

 Due to the similarity in structure of caffeic acid and 5-hydroxyferulic-acid, it was 

believed that their methylation was catalyzed by the same OMT. However, De Carolis 

and Ibrahim (1989) purified two isoforms of COMT (COMT I and COMT II) from 
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cabbage leaves and demonstrated that each isoform had highest affinity for its own 

substrate, thus resulting in different ferulic/sinapic acid ratios. Unfortunately, no cloning 

of the corresponding genes was performed at the time. 

E.2.6. Caffeoyl CoA OMTs 

 

 Feruloyl CoA and Sinapoyl CoA are the precursors of the respective lignin 

monomers, guaiacyl (G) and syringyl (S) residues. These two precursors derive from the 

methylations, catalyzed by caffeoyl CoA OMT (CCoAOMT) and 5-hydroxyferuloyl CoA 

OMT (5HFCoAOMT) at positions 3 and 5 respectively.   

The first CCoAOMT cDNA was isolated from parsley cell cultures treated with a 

crude fungal elicitor (Schmitt et al., 1991).  This class of enzymes has a molecular weight 

of 33 kDa and Mg
2+

 requirement for activity (Schmitt et al., 1991). Even though 

CCoAOMT is specific to caffeoyl CoA; it was demonstrated by Ye et al. (1994) that it 

can also accept 5-hydroxyferulic acid to the same extent. Moreover, the fact that 

CCoAOMT mRNA and enzyme activity were specifically associated with the process of 

lignification during tracheary element formation from Zinnia cultured cells, suggested 

that CCoAOMT group of enzymes may act as an alternative pathway for lignin 

biosynthesis (Ye et al., 1994; Zhong et al., 1998). This was explained by the fact that the 

central branch point for lignin synthesis starts from p-coumaroyl CoA, instead of p-

coumaric acid, via its CoA ligase. It was also demonstrated that AEOMT (acid/ester O-

methyltransferase) cDNA from developing secondary xylem of loblolly pine encodes a 

multifunctional OMT with both caffeic acid OMT (COMT) and CCoAOMT activities, 

catalyzing efficient methylation of caffeic acid, caffeoyl CoA, 5-hydroxyferulic acid and 
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5-hydroxyferuloyl CoA (Li et al., 1999). Chiron et al (2000) demonstrated the 

promiscuity of an OMT isolated from Scots pine capable of methylating a wide range of 

substrates: caffeic acid, caffeoyl CoA, 5-hydroxyferulic acid, astrigenin, resveratrol, 

catechol, quercetin and luteolin. 

 CCoAOMT was also shown to be involved in the plant defense mechanisms. In 

fact, Matern et al. (1998) showed that the activity of CCoAOMT in cell suspension 

culture of Vitis vinifera L. increased upon treatment with fungal elicitors. Other studies 

have demonstrated the increased activity of CCoAOMT in response to elicitors in cell 

suspension cultures (Kneusel et al., 1989; Kühnl et al., 1989; Schmitt et al., 1991; Ni et 

al., 1996; Busam et al., 1997), thus demonstrating the importance of this class of enzymes 

in lignin synthesis in response to elicitors. 

 

E.2.7. Flavonoid OMTs 

 

 Flavonoid methylation occurs on all available hydroxyl groups on ring A, B and C 

(reviewed in Ibrahim and Anzellotti, 2003). The first report of flavonoid OMT activity 

was in tobacco cell suspension (Tsang and Ibrahim, 1979). The preferred substrates at 

different extents were two hydroxycinnamic acids (caffeic/5-hydroxyferulic acid), two 

coumarins (daphentin and esculetin) and two flavonoids (quercetin and luteolin). The two 

forms of OMTs isolated, partially purified and biochemically characterized from the 

tobacco cell cultures were OMT1, catalyzing the meta methylation of caffeic acid and 

OMT II, catalyzing the para methylation of quercetin. OMT I exhibits a molecular 

http://www.ncbi.nlm.nih.gov/pubmed/2919878
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC59049/#B34
http://www.ncbi.nlm.nih.gov/pubmed/1894629
http://www.ncbi.nlm.nih.gov/pubmed/12226420
http://www.ncbi.nlm.nih.gov/pubmed/12226420
http://www.ncbi.nlm.nih.gov/pubmed/9390437
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weight of 74kDa (presumably a dimer), a pH optimum of 7.3 and a pI value of 6.1. OMT 

II instead exhibits a molecular mass of 70 kDa, a pH optimum of 8.3 and a pI value of 

6.3; thus indicating two distinct enzymes.  

 In rice, a functionally characterized OMT was reported by Rakwal et al., (2000). 

The flavonoid 7-OMT was involved in biosynthesis of the phytoalexin, sakuranetin. 

Following that, Kim et al. (2006) reported the characterization of another flavonoid OMT 

in rice: ROMT-9, which transfers the methyl group to the 3'-OH group of quercetin. 

ROMT-9 is the first flavonoid 3'-OMT cloned in rice.  

 Another flavonol OMT was characterized from Catharanthus roseus. A CrOMT2 

was identified as a flavonoid OMT that was expressed in dark-grown cell cultures and co-

purified with 16-hydrotabersonine (HT) OMT, involved in indole alkaloid biosynthesis. 

Surprisingly, substrate preference studies indicated that while the protein was inactive 

with 16-HT, it catalyzed two sequential methylations at the 3'- and 5' positions of the B-

ring in myricetin (a flavonol) and dihydromyricetin (a dihydroflavonol) (Schröder et al., 

2003). A cDNA clone encoding the gene for a 3'/5'-O-methyltransferase of partially 

methylated flavonols was isolated in Crysosplenium americanum (Gauthier et al., 1996) 

 Moreover, there had been two reports of chalcone 2'-OMT cDNA clones isolated 

from alfalfa (Maxwell et al., 1993) and licorice (Haga et al., 1997). This OMT performs 

the methylation of the 2'-OH of isoliquiritigenin (2', 4', 4-trihydroxychalcone) to form 4', 

4-dihydroxy-2'-methoxychalcone, a potent nod-gene inducing flavonoid derivative 

released from alfalfa roots (reviewed in Lam et al., 2007).  
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E.2.8. Functions of O-methylated flavonoids in plants 

 The biodiversity of phenolic compounds and their specific OMTs resulted in a 

wide array of methylated products encompassing a diversity of functions related to plant 

growth, reproduction and its interaction with the environment; examples of which 

abound. Polymethylated flavones and flavonols act as phytoalexins against certain 

microorganisms, during pathogen attack (Iwashina, 2003 and refs therein). Six 

compounds were isolated from the aerial parts of Helicrysum nitens (Compositae) as fully 

methylated flavones and flavonols, 5,7-dimethoxyflavone, baicalein trimethyl ether, 

galangin trimethyl ether, 5,6,7,8-tetramethoxyflavone, 3,5,6,7-tetramethoxyflavone, 

3,5,6,7,8-pentamethoxyflavone which inhibited the growth of Cladosporium 

cucumerinum (Tomas-Barberan et al., 1988a, 1988b). In addition, the fully methylated 

flavones, nobiletin and tangeretin, isolated from leaves of Citrus spp., displayed 

antifungal activity against Deuterofoma tracheiphila which is responsible for the highly 

destructive citrus disease known as Malsecco (Piattelli and Impellizzeri, 1981; Pinkas et 

al., 1968). Plants synthesize and accumulate phytoalexins not only during exposure to 

microorganisms but also to physical and chemical stress (Deverall, 1982).  Sakuranetin 

(5, 4'-dihydroxy-7-methoxyflavanone) accumulates in uv-irradiated (Kodama et al., 

1992), and in CuCl2- and jasmonic acid-treated rice leaves (Rakwal et al., 1996). 

Furthermore, naringenin (5, 7, 4‘-trihydroxyflavanone)-specific 7-OMT which yields 

sakuranetin, was found to accumulate in uv-irradiated rice leaves (Rakwal et al., 2000). 

Other examples underlining the function of methylated compounds during chemical and 

physical stresses were reported in tobacco, where seven methylated flavonols were 
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identified in the glandular trichomes after elicitation with methyl jasomonate, herbivore 

attack and uv-C exposure, being secreted on the leaf surface (Roda et al., 2003). 

E.2.9. Potential uses of methylated flavonoids for human welfare 

 Dietary flavonoids have many potential biological properties that can be used as 

chemopreventive and anti-inflammatory agents to mention a few (Middleton et al., 2000). 

One of the limiting factors is their poor bioavailability, due to glucuronidation and/or 

sulfation of mono- or polyhydroxylated flavonoids in the intestinal/hepatic barrier (Otake 

et al., 2002). Recent studies have shown the methylated flavones, 5, 7-dimethoxyflavone 

and 3', 4'-dimethoxyflavone, were metabolically stable in the human liver and, therefore, 

more bioavailable compared to the non-methylated flavones, galangin (3, 5, 7- 

trihydroxyflavone; Wen and Walle, 2006).  In addition, methylated flavonoids have been 

reported to be involved in the inhibition of chemically induced cancer initiation and 

promotion. In fact, 3', 4'-dimethoxyflavone and 5,7-dimethoxyflavone possess a greater 

potential to inhibit enzymes involved in the bioactivation of the chemical cancer inducer, 

benzo-α-pyrene (BaP) than the non-nmethylated stilbene, resveratrol (Tsuji et al., 2006). 

The antiproliferative effects of polymethylated flavonoids were also demonstrated: 5, 

7,4‘-trimethoxyflavone was eight times more potent than the non-methylated derivative, 

apigenin (Walle, 2007). Tricin, a 5,7,4'-trihydroxy-3',5'-dimethoxyflavone, was shown to 

interfere with intestinal carcinogenesis in Apc
min

 mice by inhibiting cyclooxygenase 

enzymes (Cai et al., 2005). 

 In addition, several examples of methylated flavonoids were reported to act as 

antimicrobial and antifungal agents. Four 3-methylated flavonols, ayanin, casticin, 
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chrysosplenol-D and 5,7,4'-trihydroxy-3,8-dimethoxyflavone were reported to possess 

antifungal activities in Psiadia trinervia (Wang et al 1989). 

E.2.10. Cold acclimation in wheat  

 Cold stress is one of the limiting environmental factors in crop productivity 

(Fowler et al., 1999). Plants have the ability to sense changes in the environment that 

signal the up-coming of winter and as a result, they exhibit an increase in freezing 

tolerance (Thomashow, 1999). Exposure to sublethal, non-freezing temperatures allows 

plants to acquire freezing and chilling tolerance, a process called cold acclimation 

(Thomashow, 1999; Chinnuswamy, 2006). This process induces a myriad of 

morphological, physiological and biochemical changes that will prevent damage induced 

by cell dehydration resulting from ice formation (Steponkus, 1984, Uemura et al., 1997), 

formation of reactive oxygen species and protein denaturation (McKersie et al., 1997). 

Several studies have shown that a large number of genes are being altered during 

the process of cold acclimation (Thomashow, 1999). The genes could be classified into 

three groups. The first group includes genes encoding structural proteins involved in 

protecting the cells during low temperature stress. Plants perceive cold stress by changes 

in membrane fluidity and protein conformation. Cold stress-induced rigidification of the 

plasma membrane may lead to actin cytoskeleton rearrangement (Chinnuswamy, 2006). 

The second group represents genes that regulate gene expression and signal transduction 

pathways, such as transcription factors, protein kinases and enzymes involved in 

phosphoinositide metabolism. ICE (inducer of CBF expression), a transcription factor 

present in the cell under normal conditions, is activated by cold stress and subsequently 
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activates CBF (C-repeat binding factors) genes coding for other transcription factors. 

Downstream to this cascade, COR (cold responsive) genes (Wang et al., 1994) are 

transduced. The third group represents genes encoding enzymes involved in the 

biosynthesis of osmoprotectants, membrane lipids and those involved in antioxidative 

response. LEA (late embryogenesis abundant) proteins, hydrophilic simple proteins are 

capable of forming amphipathic alpha helices (Thomashow et al., 1999). Like COR-15, it 

was hypothesized that LEA and dehydrin polypeptide protect the cell membrane by 

decreasing the propensity of the cell to form hexagonal II phase transition, known to 

damage membranes during dehydration, by altering intrinsic curvitures of the inner 

membrane through their α-helices (Stepnokus et al., 1998). The Arabidopsis FAD 8 gene 

which encodes a fatty acid desaturase (Gibson et al., 1994) contributes to freezing 

tolerance by altering lipid composition. To overcome the effects of reactive oxygen 

species, antioxidative mechanisms are enhanced (McKersie et al., 1997). Denaturation of 

proteins, induced by low temperatures, is corrected by the up-regulation of genes 

expressing molecular chaperones (Guy et al., 1999). 

In the advent to study the role of methyltransferases during cold acclimation, 

Charron et al.  (2002) analysed a gene product obtained from a cDNA library prepared 

from cold acclimated winter wheat. Their study revealed that this gene encodes an N-

methyltransferase that is capable of catalyzing the three-step methylation of 

phosphoethanolamine to form phosphocholine, an important metabolite involved in low 

temperature stress (Harwood, 1999). Another study conducted by N‘Dong et al. (2002) 

showed a cold regulated O-methyltransferase isolated from rye capable of methylating 

7,8-dihydroxycoumarin (daphnetin) to 7-hydroxy-8-methoxycoumarin. 
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E.2.11. Salt and drought stresses  

 Salinity and drought are among the major limiting factors restricting growth and 

development in plants. In particular, salinity can severely limit crop productivity (Boyer, 

1982). Salt stress involves osmotic stress, by limiting absorption of water from the soil 

(ionic stress) producing detrimental effects on seed germination and plant growth (Mer et 

al., 2000). Protective mechanisms have evolved to circumvent the effects of these 

stresses. One of these is the synthesis and accumulation of low molecular weight 

metabolites, known as compatible solutes. Their main role is to increase the ability of 

cells to retain water without affecting normal metabolism (Hamilton & Heckathorn, 

2001). Amino acids, sugars, quaternary ammonium compounds may accumulate as 

compatible solutes. Betaines, quaternary ammonium compounds (Rhodes & Hanson, 

1993) and prolines (Serrano, 1995) are the most common nitrogen-containing compatible 

compounds. Sakomoto and Murata (2000) have shown that betaine stabilizes the 

quaternary structure of proteins and membranes during salinity and drought stresses. 

Soluble sugars also contribute to the regulation of ROS signaling as well as osmotic 

adjustments during abiotic stresses (Ristic et al., 1993). 

 Genes involved in signaling cascades and in transcriptional control, such as 

mitogen-activated protein- (MAP) (Shou et al., 2004) and salt overly sensitive (SOS) 

(Qiu et al., 2002) kinases, phospholipases (Thiery et al., 2004) have been extensively 

studied. Salt or drought stresses can cause denaturation of proteins. Heat shock proteins, 

molecular chaperones were shown to be involved during abiotic stresses (Wang et al., 

2003). 
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E.3. MATERIALS AND METHODS 

 

E.3.1. Plant material and growth conditions  

Wheat (Triticum aestivum L. cv. Claire (winter) and cv. Bounty (spring)) grains  

were germinated in a soil-vermiculite mixture (1:1, w/w) for 7 days. One batch was 

transferred to environmental chambers  at 4
o
C (cold acclimated), and another batch at 

20
o
C (control plants) for various periods of time. Leaves of different developmental 

stages and floral spikes were used for enzyme activity assays and western blot analyses. 

Wheat leaves exposed to salt and drought stresses were obtained by the courtesy of Dr. 

Zahra A. 

 

E.3.2. Chemicals 

     Most flavonoid compounds were from our library collection, except tricetin was 

purchased from Indofine Chemical Company (Hillsborough, NJ). S-adenosyl-L-[
3
H]-

methionine (SAM; 60Ci/mmol) was purchased from American Radiolabeled Chemicals 

(St. Louis, MO), and unlabeled SAM and phenylmethylsulphonyl fluoride (PMSF) were 

from Sigma (Oakville, ON). Protein quantification reagents, 40 % acrylamide/bis 

solution (37:5:1), sodium dodecyl sulfate (SDS), glycine and non-fat dry milk were 

purchased from Bio-Rad (Mississauga, ON). All other chemicals were of analytical 

reagent grade, unless otherwise specified. 
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E.3.3. Buffers 

  The following buffers were used: A, (extraction buffer) 50 mM Tris-HCl, pH 7.6 

containing 14 mM ß-mercaptoethanol, 7 mM PMSF; B, (wash buffer) 50 mM NaH2PO4, 

pH 7.8 containing 300 mM NaCl, 20 mM Imidazole; C, (elution buffer) 50 mM 

NaH2PO4, pH 7.9 containing 300 mM NaCl, 250 mM imidazole; D, (protein assay 

buffer), 50 mM Tris-HCl (pH: 7.6), 300 mM NaCl;  E, (assay buffer) as in D buffer but 

containing 10% glycerol (v/v); F, (blocking buffer), PBS containing 0.05% Tween 20 and 

5% skim milk. 

 

E.3.4. Plasmid construction  

DNA manipulations were performed using standard protocols (Sambrook et al., 

2000). After sequence confirmation, the open reading frame (ORF) of TaOMT2 

(Accession number ABB03907) cDNA was amplified and subcloned into the expression 

vector pET200/D-TOPO for in vitro protein expression. The primers used for PCR were:  

TaOMT2F: 5′-CACCATGGGGTCGATCGCCGCCGGC;  

TaOMT2B: 5′-CTACTTAGTGAACTCGATGGC.  

To reinforce the reliability of TaOMT2 cDNA ORF sequence, AccuPrimePfx DNA 

Polymerase (Invitrogen, Carlsbad, CA) was used in the PCR following the 

manufacturer‘s manual. PCR was performed on PTC DNA 200 Thermal Cycler (GMI, 

Ramsey, MI): 94 °C (2 min), followed by 35 cycles at 94 °C (30 s), 52 °C (30 s), 68 °C 

(1 min), and a further extension at 68 °C (8 min). The PCR product was resolved by 

electrophoresis on a 1% agarose gel. After electrophoresis, the expected DNA band was 

recovered with DNA Gel Extraction Kit (Qiagen, Mississauga, ON), and cloned into 
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pET200/D-TOPO expression vector (Invitrogen). The sequence and orientation of 

TaOMT2 ORF in the expression vector were confirmed by sequencing before chemically 

transformed into E. coli BL21 (DE3) cells (EMD, Darmstadt, Germany) for protein 

production.  This construct was prepared by Dr. Jian-Min Zhou, and constituted the 

starting point for site-directed mutagenesis. 

 

E.3.5. Site-directed mutagenesis 

 Variants of wild type TaOMT2 were engineered using the QuickChange site 

directed mutagenesis kit (Stratagene, CA) and the wild type cDNA in vector pET200/D-

TOPO as template together with various mutagenic primers which (Table 1) introduced 

the desired amino acid change. PCR was performed on PTC DNA 200 Thermal Cycler 

(GMI, Ramsey, MI): 94 °C (2 min), followed by 35 cycles at 94 °C (30 s), 52 °C (30 s), 

68 °C (1 min), and a further extension at 68 °C (8 min). The PCR product was resolved 

by electrophoresis on a 1% agarose gel to confirm the presence of the band in question. 

The PCR product was then digested with Dpn-1 restriction enzyme to cut the parental 

strands of the vector, therefore leaving only the mutated strands. The vector was then 

introduced in TOP10 E.coli cells to obtain more of the vectors containing the mutated 

insert. The sequence and orientation of the mutagenized plasmid DNA were confirmed 

by sequencing to ensure that no unexpected mutations were present before chemically 

transformed into E. coli BL21 (DE3) cells (EMD, Darmstadt, Germany) for protein 

production.  
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Table 1. Construction of TaOMT2 variants  

Table 1  Construction of TaOMT2 var 

 

iants           

                           

        Legends: F, forward; R, reverse; mutated codons are underlined with lowercase letters indicating 

a base change from the wild-type sequence.                                             

Mutants Primer sequence 

D263IF 

D263IR 

 

AAGTGGATCCTCCACattGGAGCGACGAGCAC 

TGCTCGTCGCTCCAaatGTGGAGGATCCACTTC 

 

D263EF 

D263ER 

 

ATCCTCCACcGAATGGAGCGACGAG 

TCGTCGCTCCAtTCGTGGAGGATC 

 

W259AF 

W259AR 

 

CATCCTCATGAAGgcGATCCTCCACGAC 

TCGTGGAGGATCgcCTTCATGAGGATGG 

 

W259YF 

W259YR 

 

CCATCCTCATGAAGTatATCCTCCACGACTGG 

CAGTCGTGGAGGATatACTTCATGAGGATGGC 

 

E322IF 

E322IR 

 

ACAACCCGGGTGGCAGGattTAGGTACGAGAGGGAGTTC 

AACTCCCTCTCGTACCTaatCCTGCCACCCGGGTTGTG 

 

H262FF 

H262FR 

 

ATGAAGTGGATCCTCCtgGACTGGAGCGACGAGC 

CTCGTCGCTCCAGTCcaGGAGGATCCACTTCATG 

 

G305SF 

G305SR 

 

GAGGCGACGCCTAAGGCGCAGagcGTGTTCCATGTCGACATGATC 

GATCATGTCGACATGGAACACgctCTGCGCCTTAGGCGTCGCCTC 

 

N124QF 

N124QR 

 

TCGCGCTCATGcagCAGGACAAGGTC 

ACCTTGTCCTGctgCATGAGCGCGAG 
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E.3.6. Heterologous expression of TaOMT2 and variants in E.Coli. 

 In order to characterize the expressed protein, a single colony was incubated in 5 

mL of Luria–Bertani (LB) medium containing 100 μg mL
-1

 kanamycin and grown 

overnight at 37 °C. The innoculum was then added to 100 mL of LB medium containing 

kanamycin (100 μg mL
−1)

 and grown at 37 °C until the OD600 reached 0.8, followed by 

the addition of isopropyl-β-D-thiogalactopyranoside (IPTG) to a final concentration of 

0.5 mM. The culture was incubated at 37 °C for an additional 4 h, then harvested by 

centrifugation (3000×g, 10 min), and stored at −80 °C for further protein purification. 

 

E.3.7. Extraction and purification of His-tagged TaOMT2 and variants      

For protein extraction, the cell pellet from 100 mL culture was resuspended in a 

mixture of 4 mL Bugbuster Protein Extraction Reagent, 100 U Benzonase Nuclease and 

10 KU rLysozyme (EMD, Darmstadt, Germany), and agitated at 500 rpm on an orbital 

shaker for 20 min at ambient temperature. The suspension was centrifuged at 15,000×g 

for 20 min, and the supernatant was used for immobilized metal affinity chromatography 

(Ni-NTA, Qiagen) following the manufacturer‘s instructions. The affinity-purified 

protein fraction was passed through a prepacked PD10 column (Amersham, Bai-d'Urfé, 

QC) for desalting, and the highly purified fraction was stored at 4 °C until used. 

 

E.3.8. SDS-polyacrylamide gel electrophoresis and protein determination.  

 The quality of extracted proteins were determined by SDS-PAGE analysis 

according to the method of Laemmli (1970). After electrophoresis, proteins were stained 

with Coomassie Brilliant Blue (R-250). Quantification of proteins was done by 
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measuring the absorbance at 280; the extinction coefficient for TaOMT2 was obtained 

from Dr. J.A. Kornblatt.   

 

E.3.9. Kinetic analysis of TaOMT2 

 Enzyme assays were performed using 2 µg of the affinity-purified protein with a 

saturating (ca. 1 mM) concentration of SAM containing 25nCi of radioactivity, and 

varied concentrations (5 µM to 500 µM) of the phenolic substrates. Assays were 

performed in triplicates and were repeated twice. Enzymatic rates measured for tricetin 

and 5-hydroxyferulic acid (5HF) methyltransferase activity were converted from DPM to 

pkat/min then fitted to the Michaelis Menten equation with Grafit v4.0 (Erythacus). With 

this software, Lineweaver plots were constructed from non-linear regression fitting of the 

rate data, and kinetic constants such as apparent Vmax and Km for tricetin and 5HF were 

obtained from the fitted parameters. Product inhibition studies were carried out with 

variying concentration of TMeT (0, 10, 50, 100, 500 µM) in the presence of tricetin (at a 

final concentration of 10, 50, 100, 500 µM). Micahelis-Menten plots and the kinetic 

parameters were derived using GraphPad Prism 5 software. 

 

E.3.10. Enzyme activity assays with TaOMT2 variants and identification of reaction 

products 

Enzyme assays were performed to assess their relative activity compared to the 

wild type by using 4-6 µg of affinity purified proteins with 1 mM of SAM containing 

25nCi of radioactivity and 50 µM of tricetin. Assays were performed in triplicates and 

were repeated twice. Mutants with 40% or more of wild-type enzyme activity were 
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selected for kinetic analysis using the same protocol as for the wild type (see E3.9.). 

Semipreparative incubations were also carried out using unlabeled SAM and the 

methylated products were prepared for HPLC analyses (E.3.9). HPLC analysis was 

carried out with a Millennium HPLC System (Waters, Milford, MA). Separation of the 

enzyme reaction products was performed on a Waters YMC-Pack Pro C18 column 

(150×4.6 mm I.D., S-5 µM, 12 nm), using a linear gradient consisting of 40–90% MeOH 

in 1% acetic acid for 30 min. This condition was maintained for 10 min. before returning 

to the initial conditions. The flow rate was 1.0 mL min−1. Reference standards were used 

to compare the corresponding retention times (Zhou et al., 2006). 

 

E.3.11. Extraction of wheat leaf proteins and quantification 

  All steps were carried out at 4
o
C, unless otherwise stated. Wheat leaves were 

ground to a fine powder with dry ice, before being homogenized with 0.1 M of extraction 

buffer A. After centrifugation (14,000xg) for 30 min, the supernatant was used 

immediately for enzyme assays. The quantity of extracted proteins was determined by 

SDS-PAGE analysis. After electrophoresis, proteins were stained with Coomassie 

Brilliant Blue (R-250). Protein concentration was determined using Quantity-one 

software from Bio-Rad with bovine serum albumine as standard protein.  

 

E.3.12. O-Methyltransferase enzyme assays 

    OMT activity was assayed using tricetin as substrate, SAM containing 0.025 

μCi of [3H] label as the methyl donor and up to 100 μg of protein in a total volume of 100 

µl. The reaction was started by addition of the enzyme, incubated at 30°C for 30 min and 
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stopped by the addition of 10μl 6M HCl. The methylated products were extracted with 

ethyl acetate, and then counted for radioactivity using a toluene-based scintillation fluid. 

Control incubations were performed in the absence of added substrate, or with boiled 

enzyme for background correction, and all assays were conducted in duplicates.  

 

E.3.13.  Protein immunoblots 

Western blot analysis was performed to evaluate TaOMT2 levels at different 

stages of development, abiotic stresses (salinity and drought) and periods of cold 

acclimation. Protein samples were resolved by 12% SDS-PAGE, then electro-transferred 

onto polyvinylidene fluoride (PVDF) membranes. The latter were incubated in the 

blocking buffer F at 4
 o

C overnight, and then incubated with rabbit anti-wheat TaOMT2 

serum at 1:250 dilution in blocking buffer F for one hr. The membranes were washed 

with PBST (PBS with 0.05% Tween 20) and incubated with peroxidase-conjugated goat 

anti-rabbit polyclonal antibodies (Bio-Rad) at 1:10,000 dilutions in PBST for one hr. The 

signals obtained were detected with a chemiluminescent reaction reagent (ECL, 

Amersham) according to the manufacturer‘s protocol. 
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E.4. RESULTS 

E.4.1 Structure of TaOMT2 

   The gene product of TaOMT2 encodes a 356 amino-acid polypeptide with a 

calculated molecular mass of 38.5 kDa and an isoelectric point of 5.71 (Zhou et al., 

2006). The molecular mass obtained is representative of Class II OMTs (Joshi et al., 

1998). Its ability to sequentially methylate three different substrates:  tricetin, selgin and 

tricin (Figure 2), raised the question as to whether the enzyme contains one substrate 

binding pocket and one catalytic site, or multiple binding and sub-catalytic sites for these 

substrates. In order to answer this question, a 3-D structure of the protein was produced 

by homology modeling; since attempts to crystallize TaOMT2 were unsuccessful. In this 

study (conducted by Dr. Y. Lim, Division of Bioscience and Biotechnology, Konkuk 

University, Korea), the crystal structure of MsCOMT (PDB, 1KYZ; Zubieta et al., 2002) 

was used as a template, since TaOMT2 and MsCOMT catalyze methylations of 

structurally similar substrates and they share 63% sequence identity. The backbones of 

both proteins were superimposed with a root mean square deviation (RMSD) value of 0.9 

Å, suggesting a high similarity of their secondary structures (Figure 6) and the relative 

location of their putative active sites. In addition, all the amino acid residues neighboring 

SAM and substrate binding sites are conserved, except for one residue where Val309 in 

TaOMT2 is replaced with Ile316 in MsCOMT, a conservative replacement as well 

(Figure 6).  Unlike other OMTs, TaOMT2 mediates the transfer of SAM methyl groups 

to tricetin B-ring hydroxyl groups in a sequential manner, resulting in three different 

methyl ether derivatives (Figure 2) and S-adenosyl-L-homocysteine (SAH) as products 
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(Zhou et al., 2006). Based on docking of the individual substrates (tricetin, selgin and 

tricin) into the model, several H-bonds were observed between the ligands‘ hydroxyl 

groups and the functional groups of the neighboring residues. As shown in Table 2, these 

H-bonds lie within 1.60 Å to 2.71 Å from the ligands and the functional groups of 

neighbouring residues and within 4.92 Å to 5.72 Å from the SAH-S catalytic site. 

Asp263 plays an important role in binding of the 3'-OH group of tricetin 4', 5'-OH of 

selgin and 4'-OH group of tricin (Figure 7). The γ-carboxyl groups of Glu290 and Glu322 

form H-bonds with the 4' and 5'-OH groups of tricetin (Figure 8). 

 In almost all methyltransferases, the transmethylation reaction is catalyzed by a 

general acid/base mechanism using a histidine residue, as reported for MsCOMT 

(Zubieta et al., 2004) and isoflavone OMT (Zubieta et al., 2002), among others.  The fact 

that histidine in MsCOMT acts as the deprotonating residue of the substrate hydroxyl 

groups (Zubieta et al., 2002), suggests that His262 is also involved in the deprotonation 

reaction of TaOMT2 in collaboration with its neighbouring residue, Asp263.  In fact, 

when tricetin is docked into the active site pocket of the proposed model, it is held by a 

network of H-bonds extending from Asp263 to its 3'-OH group; Glu290 and Asn317 to 

its 4'-OH and His262, Glu322 to its 5'-OH groups, as well as to ring-A 5-O by Asn124 

(Figure 8 and Table 2). Methyl transfer in TaOMT2 is proposed to be catalyzed by a 

nucleophilic attack of the resulting phenolate anion on the reactive methyl group of SAM. 

The proton elimination process is likely to take place through a His262-Asp263 proton-

relay system, which is favored by the proximity of both residues within the active site. 
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Figure 6 Superimposition and amino acid sequence alignments of Triticum 

aestivum flavone O-methyltransferase (TaOMT2) and Medicago sativa caffeic 

acid/5-hydroxyferulic acid O-methyltransferase (MsCOMT).* 

Figure 6 Superimposition of TaOMT2 and MsCOMT 

 

 

 

 

 

 

 

 

 

* Figures provided by Prof. Y. Lim (Bio/molecular informatics Centre, Konkuk University, S. 

Korea) and Dr. Jian Min Zhou (Concordia Universtiy) 

 

α-Helices (magenta) and ß-sheets (blue) depict the residues that form the secondary 

structures of both proteins. Green stars indicate the putative residues involved in substrate 

binding, and the magenta star indicates that involved in catalysis. The putative residues 

involved in substrate preference of both OMTs are boxed.   

(a)
Secondary structures of TaOMT2 and 1KYZ

TaOMT2
1KYZ

RMSD = 0.9 Å
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Table 2. Modeling data for amino acids involved in ligand binding* 

Table 2    Modeling data for amino acids involved in ligand binding 

  

 

 

 

*Table  provided by Dr. Y. Lim (Bio/molecular informatics Centre, Konkuk 

University, S. Korea) 
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Figure 7 Homology modeling of TaOMT2 with the following substrates docked 

in: A, tricetin; B, selgin;C, tricin  

Figure 7 Homology modeling of TaOMT2 with the following substrates docked in: A, tricetin, B, selgin, C, tricin 

Figures provided by Prof. Y. Lim (Bio/molecular informatics Centre, Konkuk University, S. Korea) 

                                       (A) 

     

   (B) 

  

   (C) 
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Figure 8 Homology modeling of TaOMT2: catalytic site 

Figure 8 Homology modeling of TaOMT2: catalytic site 

Figure provided by Prof. Y. Lim (Bio/molecular informatics Centre, Konkuk University, S. Korea) 
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E.4.2 Purification of wild type TaOMT2 and its mutants 

 In order to confirm the importance of the putative residues involved in substrate 

binding and catalysis (Table 2, Figure 8), they were subjected to site-directed 

mutagenesis. In order to study the catalytic behavior of recombinant TaOMT2 and its 

mutants in vitro, the cDNA clone harboring a His-tag at its N-terminal was expressed in 

E.coli BL21 (DE3) cells and the recombinant proteins were purified to near homogeneity 

by Ni-NTA affinity chromatography, as verified by SDS-PAGE. The apparent molecular 

mass corresponds to the combined Mr of TaOMT2 subunit (38.5 kDa) and His-tag (3.0 

kDa). Figure 9 demonstrates the protein purity observed after the last purification step. 

These results indicate typical purities for wild type and mutant preparations as well. No 

bands were seen on the SDS-PAGE for H262F.  

E.4.3 Substrate interaction kinetics of TaOMT2 against tricetin, selgin, 

tricin and trimethyltricetin (TMeT)  

 Activity assays were performed with tricetin, selgin, tricin and TMeT to assess the 

percentage of relative activity. Due to unavailability of selgin in sufficient amount, 5HF 

was used as a substitute, since it shares B-ring substitution and the 3-C side chain of 

selgin. Figure 10 shows the relative activity of TaOMT2 with these substrates. TaOMT2 

exhibited high relative activity with tricetin and 5HF, with 100% and 93% respectively; 

but the protein had no significant activity with either tricin or TMeT (Table 4). The 

apparent Km values for tricetin and 5HF were 54.79 µM (11.6 µM) and 181.56 µM 

(38.0µM) respectively and their respective Vmax values were 137 pKat/mg (5.85 

pKat/mg) and 135 pkat/mg (9.96 pKat/mg). All kinetic parameter values and graphs 
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obtained from the Michaelis Menten and Lineweaver-Burk plots (Figure 11) are 

summarized in Table 4. 

E.4.4 Product inhibition studies 

 Michaelis-Menten plots of product inhibition results (plotted and calculated by the 

Prism software for enzyme kinetics studies) exhibited competitive inhibition pattern 

between tricetin and TMeT (Figure 12). An alternate preferred model suggested by the 

software is a mixed inhibition. The Ki is 53.21 µM 13.3 µM for competitive inhibition. 
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Figure 9 SDS-PAGE profiles of the recombinant protein and some 

mutants represented by equal amounts of the solubilized pellets* 

Figure 9 SDS-PAGE profiles of the recombinant protein and the mutants  

 

 

 

                                              

 

 

1-Wild type, 2-E322I, 3- D263E, 4- H262F, 5- W259Y, 6- W259A, 7- G305S 

* These are the only bands seen on the SDS-PAGE gel. 

 

 

 

 

 

 

  

tant proteins after purification 
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Figure 10 Relative activity of TaOMT2 with tricetin, 5HF, tricin and 

TMeT 

Figure 10 Relative activity of TaoMT2 with tricetin, 5HF, tricin and TMT 

 

 

 

100% relative enzyme activity of wild type protein is equivalent to 140 pkat.mg
-1

. 
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Figure 11 Michaelis-Menten and Lineweaver-Burk plots of substrate 

interaction kinetics with wild type TaOMT2: (A) Tricetin, (B) 5HF 

Figure 11   Michaelis-Menten and Lineweaver-Burk plots of substrate interaction kinetics: (A) Tricetin, (B) 5HF 

 

(A)  

(B)  

 

 

[Tricetin](µM) 

[5HF] (µM) 
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Table 3. Kinetic parameters of TaOMT2 for tricetin and 5HF as 

substrates 

Table 3 Kinetic parameters of TaOMT2 for tricetin and 5HF as substrates 

 

 

 

  

 

 Km 

(µM) 

Vmax 

(pkat/mg) 

Vmax/Km 

Tricetin 54.79±11.6 137.082±5.85 2.50 

5HF 181.56±38.0 135.91±9.96 0.748 

Tricin ----------- ----------- --------- 

3MeT ---------- ----------- --------- 
 

------: kinetic parameters were not done for tricin and 3MeT  

 

Km values (μM),  

Vmax (pkat.mg
-1

; pkat, the catalytic activity that raises the reaction rate by one pmol.s
-1

) 
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Figure 12 Product inhibition studies:    Tricetin versus 

Trimethyltricetin 

 

 

 

 

Figure 12 

       

 

 

 

 

 

TMeT (µM) 
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E.4.5 Relative activity of TaOMT2 mutants compared to the wild type with 

tricetin  

           After expression and purification, mutant proteins were assayed for OMT activity 

with tricetin as the substrate in order to evaluate the changes in activity between the 

variants and the wild-type (Figure 13). This assessment should determine the significance 

of the mutated residue in binding, catalysis or both. None of the mutants analyzed 

exhibited any increase of methylating activity compared to the wild type enzyme. 

Replacement of Asp263 with either glutamic acid or isoleucine resulted in a dramatic loss 

of activity, indicating its critical role in substrate binding. A conservative mutation of 

Asn124 to Gln showed significant loss of activity, indicating the redundancy of this 

residue in substrate binding since that mutation disrupts H-bonding with the 5-OH group 

of tricetin.  The substitution of Try259 to Ala preserved ~80% of enzyme activity, 

indicating that Ala can still maintain the H-bonding network between Glu290 and 

His262. A loss of charge in E322 when substituted to Ile affected the H-bonding with 

neighbouring residues but did not abolish activity.  

E.4.6 Kinetic studies of TaOMT2 mutants 

             Kinetic analysis was performed in order to assess the importance and catalytic 

behavior of the mutated residues in relation to the binding of tricetin. Mutants exhibiting 

>40% relative activities of the wild type were selected for kinetic studies. Table 5 shows 

the apparent Km and Vmax values of the mutant proteins, obtained from the Michaelis 

Menten and Lineweaver Burk plots (Figure 14). All mutants exhibited a slightly lower 
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affinity towards tricetin and a lower Vmax than those of the wild type, which will be 

explained in details in the Discussion section. 

E.4.7 HPLC of mutants’ reaction products with tricetin as substrate. 

           In order to investigate the effect of mutations on reaction products, mutants with a 

relative OMT activity of 40% or more were selected for HPLC analysis. HPLC of the 

non-labeled reaction products of a number of semi-preparative enzyme assays gave rise 

to two activity peaks, with tricin being the predominant product, as compared with a trace 

amount of the trimethyl ether derivative, TMeT (Figure 15 A). All variants of TaOMT2 

showed a similar HPLC profile (Figure15-B), indicating that there was no change in 

product formation.  
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Figure 13 Relative OMT activity of mutant proteins compared with 

the wild type TaOMT2 

Figure 13 Relative OMT activity of mutant proteins compared to the wild type TaOMT2 

 

 

 

 

 

 

 

 

 

100% relative enzyme activity of wild type protein is equivalent to 140 pkat.mg
-1

. 
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Figure 14 Michaelis-Menten and Lineweaver plots of tricetin 

interaction: (A) E322I, (B) G305S, (C) W259Y, (D) W259A 
Figure 14 Michaelis-Menten and Lineweaver plots of tricetin  

A              B 

 

 

 

 

 

C               D 

 

 

 

 

 

 

 

 



 

 

53 

 

Table 4. Kinetic parameters of mutant proteins with tricetin 

Table 4 Kinetic parameters of mutant proteins with tricetin 

 

 Km (µM) Vmax 

(pkat/mg) 

Vmax/km  

WT 77.9±25.1 179.5 ±21.9 

2.304236 

E322I 78.3±25.7 163.5±19.0 

2.088123 

W259A 111.2±28.3 143.9±15.7 

1.294065 

G305S 153.9±12.1 137.1±5.1 

0.890838 

W259Y 101.6±13.4 31.1±1.7 

0.306102 
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Figure 15 HPLC profiles of the enzyme reaction products of the wild 

type (A) and W259A (B)  proteins assayed with tricetin as the substrate: 

1, tricin; 2, trimethyltricetin 

Figure 15  HPLC profiles of the enzyme reaction products of the wild type (A) and W259A (B) proteins assayed 

with tricetin as the substrate 

 

(A)  

(B)  

 

1-Tricin, 2-Trimethyltricetin
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E.4.8 Differential TaOMT2 expression and activity in wheat leaves and 

influorescences 

 

        It was recently shown that tricin accumulates predominantly in influorescence 

tissues (A. Moheb, unpulished data). Since TaOMT2 synthesizes tricin as the major 

product of tricetin methylation, therefore, its enzyme activity and protein expression were 

evaluated in leaf and influorescence tissues in order to correlate the presence of tricin 

with the expression level of TaOMT2. Figure 16 shows a higher specific activity of 

TaOMT2 against tricetin in the influorescences, as compared to the leaves. In agreement 

with this finding, Figure 17 shows a concomitant accumulation of TaOMT2 protein in the 

influorescences. 

 

E.4.9 Activity of total methyltransferases accepting tricetin as substrate and 

western blot of TaOMT2 in cold acclimated wheat leaves. 

 

 

 

 In order to assess the function of TaOMT2 in cold acclimated wheat leaves, 

western blots and activity assays of TaOMT2 are used. Western blot analysis was 

performed on both winter  and spring varieties, Claire and Bounty respectively. Non-

acclimated plants grown for 0 and 8 days were chosen as controls for the 6, 12, 21 and 49 

days cold-acclimated plants. Figure 18 shows that TaOMT2 exhibits a higher level of 

expression in cold-acclimated plants compared to the controls. In addition, TaOMT2 
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protein levels tend to increase in plants exposed to cold with the highest accumulation 

after 49 days of cold acclimation. The double bands seen at 0 day control might be the 

result of a truncation of TaOMT2. Although, it is difficult to assess the specific activity 

of TaOMT2 in wheat soluble extracts since it may contain many other methyltransferases 

accepting tricetin as substrate, activity of total methyltransferase using tricetin was 

investigated. Methyltransferase activity with tricetin as substrate and radiolabeled S-

Adenosyl-L-Methionine as cosubstrate was determined in the soluble fractions of wheat 

leaves subjected to cold acclimation. It was predicted that the level of enzyme activity 

would be directly related to the amount of TaOMT2. In contrast, figure 20 shows that the 

activity of putative OMTs interacting with tricetin has a propensity to decrease in cold 

acclimated leaves.
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Figure 16 Activity of total methyltransferases accepting tricetin as 

substrate in wheat leaves and influorescences 

Figure 16   Activity of total methyltransferases accepting tricetin as substrate in wheat leaves and in husks 
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Figure 17 Western blot of TaOMT2 in leaves and husks 

Figure 17 Western blot of TaOMT2 in leaves and in husks 

 

 

 

 

 

 

 

A, Immunoblot of TaOMT2. B, PVDF membrane stained with Ponceau Red showing  

Rubisco. 

 

 

 

 

               Leaves       Influorescences 
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Figure 18 Western blot of TaOMT2 in cold acclimated wheat leaves 

(Claire, winter wheat) 

Figure 18 Western blot of TaOMT2 in cold acclimated wheat leaves (Claire) 

 

 

     

  

 

 

NA, non-acclimated; CA, cold-acclimated 

A, SDS-PAGE gel after transfer stained with Coomassie blue showing Rubisco. 

B, Immunoblot of TaOMT2 in winter wheat cv., Claire. 
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Figure 19 Western blot of TaOMT2 in cold acclimated wheat leaves 

(Bounty, spring wheat) 

Figure 19   Western blot of TaOMT2 in cold acclimated wheat leaves (Bounty) 

 

 

 

 

 

 

 

 

NA, non-acclimated; CA, cold-acclimated 

A, SDS-PAGE gel after transfer, stained with Coomassie blue showing Rubisco. 

B, Immunoblot of TaOMT2 in spring wheat cv. Bounty. 
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Figure 20 Activity of methyltransferases accepting tricetin as 

substrate in cold acclimated wheat:  Claire (winter variety);  Bounty 

(spring variety) 

Figure 20 Activity of total methyltransferases accepting tricetin as substrate in cold acclimated wheat: A, Claire; 

B. Bounty 

 

 

Total methyltransferase activity using tricetin as substrate with radiolabeled S-adenosyl-L-

methionine as cosubstrate per mg of proteins in soluble fractions of wheat leaves during cold 

acclimation. Values represent the mean ± SE obtained from 2 independent experiments. 0 d NA, 

non acclimated plants grown for 7 days, 6 d CA, 6 day cold acclimated plants.  
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E.4.10 Activity of total methyltransferases accepting tricetin as substrate and 

western blot of TaOMT2 in wheat leaves exposed to salinity and drought 

stresses. 

 

 

The enzyme activity of total methyltransferases accepting tricetin as substrate and 

radiolabeled SAM as co-substrate was assessed in wheat (Norstar cv)  grown under 

conditions of high salinity and drought. Figure 21 shows a 10% and a 20% decrease in 

activity in leaf extracts for the salt stressed and for the drought stressed wheat 

respectively, compared to the control. The immunoblot of TaOMT2 in figure 21-B shows 

a similar expression pattern of TaOMT2 to the non-stressed wheat leaves. 
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Figure 21 Biochemical characterization of methyltransferases interacting with 

tricetin: (A) Activity of methyltransferases, (B) Western blot of TaOMT2 

Figure 21 Biochemical characterization of  methyltransferases interacting with tricetin: (A), specific activity of 

met(hyltransferases, (B) western blot of TaoMT2 

(A) 

 

(B) 

                                                               

 

Legends: C-control, S-salt stress, D, drought stress A. SDS-PAGE gel after transfer stained with Coomassie 

Blue showing Rubisco. B-Immunoblot of TaOMT2. 
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E.5   Discussion 

 One of the main objectives of the present work was to determine the structural 

and catalytic roles of the residues neighboring the active site and their relative importance 

in binding of tricetin and catalysis of sequential methylation. Purification of wild type 

TaOMT2 and its mutants gave reasonably high yields of enzyme proteins, except for 

His262. The behavior of mutants during purification was similar to that of the wild type, 

and the proteins obtained were almost pure in all cases. Mutant proteins remained tightly 

bound to the resin until eluted with imidazole containing buffer.  

 Kinetic parameters were obtained for the wild type TaOMT2 with tricetin and 

5HF. 5HF had a dual function in this test: it was used as a substrate due to unavailability 

of sufficient amounts of selgin, since it possesses the same substitution pattern of the B-

ring and the 3-C side chain of selgin and as a phenylpropanoid itself.  TaOMT2, in 

presence with 5HF, exhibited a 93% enzyme activity relative to tricetin in agreement with 

the data (80-90%) reported by Zhou et al. (2006). 

     The relative methylating activities of TaOMT2 using tricin and trimethyl tricetin 

as substrates exhibited very low relative enzyme activities, ranging from 0.4 to 13% 

compared to tricetin. The major product of the reaction catalyzed by TaOMT2 was tricin. 

Methylation of 5HF to tricin is favored since the 3'- and 5'-hydroxyl groups are 

stereochemically equivalent. The stepwise methylation of tricetin starts at the 3‘-OH 

because of its highest negative electron density, followed by 5‘-OH methylation (Pople 

and Beveridge, 1970). In contrast, further methylation of tricin is the least favoured 

reaction, possibly due to steric hindrance resulting from introduction of a bulky methyl 
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group (Zhou et al., 2006). In addition, the enzyme reaction appears to be competitively 

inhibited by its product TMeT, which may explain the predominance of tricin as the 

major product of tricetin methylation (Figure 12).      

        Based on molecular modeling experiments and manual docking of each of the 

substrates, tricetin, selgin and tricin into the model, Asp263 was shown to play an 

important role in the binding of the three substrates, since its γ-carboxyl group forms H-

bonds with the 3'-hydroxyl group of tricetin, 4'-and 5'-hydroxyls of selgin and the 4'-

hydroxyl group of tricetin. Mutation of Asp263 to glutamic acid, did not serve the 

purpose of substrate binding, since this replacement completely abolished TaOMT2 

activity.  This may be due to the conflict between the catalytic His262-imidazole group 

and the extra methylene group of Glu, which would increase the distance between its 

carboxylic group and the imidazole ring of histidine.  Replacing Asp263 to Ile also 

abolished activity, since the latter cannot form H-bonds with the hydroxyl groups of 

tricetin. The mutant H262F exhibited no enzyme activity due to the complete loss of 

protein expression as shown by SDS-PAGE. In addition, any substitution that alters the 

imidazole ring severely influenced the expression of TaOMT2 and consequently the 

catalytic activity of TaOMT2.  

        The molecular model shows that N124 interacts with the 4-OH and 5-OH groups 

of all substrates for orientation purpose, and its replacement with Gln resulted in loss of 

TaOMT2 activity. Such substitution may have resulted in disruption of the H-bonding 

with tricetin and consequently reduced substrate binding; although this mutation did not 

affect its heterologous expression in E.coli. 
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       Mutants with a relative activity of >40% were selected for kinetic analysis. All 

mutants exhibited a reduced catalytic efficiency (Vmax/Km) compared to the wild type. 

Substitution of E322 with a non-polar residue such as isoleucine slightly affects H-

binding with the neighboring residues; although affinity for tricetin and the maximal 

velocity were slightly lower than the wild type, thus suggesting that E322 is not a 

redundant residue for binding (refer to table 6).   

 In summary, it appears therefore that the network of amino acid residues selected 

for the mutagenesis study interacts with tricetin as follows: the 3'-OH and 5'-OH groups 

of tricetin are deprotonated by His262, thus facilitating transfer of the reactive methyl 

group of SAM to the phenolate anion. This general base is held in a catalytically 

productive position by H-bonding with Glu322. Asp263, the adjacent residue to His262, 

contributes to the orientation of the latter residue. Moreover, because of its low pKa value 

and its negative charge, Asp263 serves as a suitable active site residue. Other residues 

contributing to the negatively charged binding surface are Glu322, G305 and Glu290. 

The ß-CNH
3+

 of Asn124 and the backbone of Gly305 seem to align the flavonoid A- and 

C-rings in a favorable position for substrate binding through a H-bonding network. 

Analysis of the mutant enzyme reaction products by HPLC revealed that none of the 

variants showed any shift in product formation. The major enzyme reaction product in all 

of the mutants was predominantly tricin, with a trace amount of TMeT, but no selgin 

(Figure 15). The fact that selgin does not accumulate indicates that selgin, the first 

methylated intermediate of tricetin methylation, does not leave the active site.  
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 Changes in the H-bonding network, charge transfer and /or size of the target 

residue  have  significant  effects  on  substrate  binding  and  the  catalytic  activity of the 

mutant  proteins   but   has   no  considerable  differences  in  the  product  ratios  between 

TaOMT2 and its variants with tricin being the predominant reaction product. 
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Table 5. Significance of the putative residues of TaOMT2involved in binding and/or catalysis and changes in the properties of 

their mutant proteins  

Table 5   Significance of the putative residues of TaOMT2involved in binding and/or catalysis and changes in the properties of their mutant proteins 

 

 

 

Wild type 

residues 

Significance Mutant 

proteins 

Enzyme kinetics Properties of mutant proteins 

(%)    Km      Vmax   Vmax/Km 
 

Control 100        77.9       179.5        2.30 

D
263 

Important amino acid residue for 

substrate binding; forms H-bonds 

with all OH groups of tricetin 

D
263

I 

 

 

D
263

E 
 

0.08 

 

 

4 

Ile263 cannot form a H-bond with 

3'-OH group 

 

Severe loss of activity is due to the 

conflict between the catalytic 

His262-imidazole group and Glu-

CH2 

W
259 

 
H-bonds with selgin 4'-OH and 

forms H-bond network with 

neighboring residues 

W
259

A 

W
259

Y 

 

 

55         111.2       143.9        1.29 

49         101.6       31.1          0.30 

Ala can maintain the H-bonding 

network between Try259, 

Glu290and His262, whereas Tyr 

cannot 

E
322

 H-bonds with tricetin 5'-OH    E
322

I 54          78.3         163.5       2.0 Loss of charge or change in the side 

chain affects the H-bonding with the 

neighboring residues, especially 

H262 

G
305

 H-bonds with tricetin 7-OH 

 
G

305
S 

 
 

64          153.9       137.1       0.89 Change in polarity is less effective 

than chain length on catalytic 

activity 

H
262 

Putative catalytic base involved in 

deprotonation of tricetin OH 

groups 

H
262

F 1 Mutant protein lacks imidazole ring 

that is critical for proton transfer  
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N
124 

H-bonds with O-4/O-5 of all 

substrates in order to reorient them 

to the most favorable position 

N
124

Q 4 Mutation disrupts the H-bonding 

with 5-OH group of tricetin 

resulting in decreased substrate 

binding 
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In addition, we report here the biochemical characterization of TaOMT2 and its 

regulation during developmental stages and in response to abiotic stresses. The results 

obtained indicate that TaOMT2 was highly expressed in influorescence tissues and that 

its protein accumulation coincided with intracellular content changes of tricin (Amira 

Moheb, personal communication).  

        The relative concentration of tricin on upper canopy leaves of wheat plants were 

lower in early stages (leaf  #5) of development as compared to later stages (flag leaves) of 

development (Estiarte et al.,1997). It has been demonstrated that tricin, accumulates in 

large amounts in the green influorescence (A. Moheb, personal communication). 

Concomitantly, the accumulation of TaOMT2 and its activity assays in presence of 

tricetin increased by almost three-fold in the influorescence tissues compared to the 

leaves. To our knowledge, this is the first report of the accumulation of TaOMT2 and 

tricin in wheat influorescences. These results suggest the importance of tricin and the 

enzyme involved in its biosynthesis, TaOMT2, during developmental stages of wheat. 

         Wheat influorescences are exposed to different external stresses such as uv 

radiation, herbivory, fungal, parasitic attack. In order to produce seed and continue with 

the succession of germination, wheat has developped different strategies to protect itself. 

The role of flavonoids in plant protection against light damage, and defense against 

herbivory was suggested (Harborne, 1991). Inhibition by tricin of the feeding activity of 

the aphid Myzus persicae (Dreyer and Jones, 1981), the brown plant hopper Nilaparvata 
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lugens (Bing et al., 2007) support this statement and suggest a possible protective 

function for tricetin methylation by TaOMT2 against possible fungal or parasitic attacks.  

           Protein kinases play essential roles in the control of cellular functions, including 

cell proliferation and differentiation, signal transduction, gene expression and 

metabolism. The O-methylation of tricetin by TaOMT2 is quite significant, considering 

the fact that this flavonoid has inhibitory effects on protein kinase C and 

phophoribulokinase (Khalil Kane, unpublished data). Therefore, the methylation of 

tricetin by TaOMT2 may be considered as a means of modulating the effect of tricetin on 

protein kinases, allowing them to function during the developmental stages of wheat.  

The accumulation of TaOMT2 in winter wheat leaves during low temperature 

acclimation indicates that this enzyme might be involved in modulating tricin level 

during cold acclimation. Activity assays were performed using the most preferred 

substrate of TaOMT2, tricetin (Zhou et al., 2006). Results show that the activity of 

tricetin-specific methyltransferases was decreasing. 

        A literature search of tricin indicated its isolation from a rust-resistant wheat variety 

(Anderson et al., 1931), its accumulation during wheat pathogen attack (Harborne and 

Williams 1986); but no report had so far indicated its association with cold acclimation. 

During normal growth, tricin accumulates during growth and development and reaches its 

highest accumulation during the flowering stages. On the other hand, cold, as a stress 

factor has arrested this process, which may suggest the importance of tricin during the 

stages of flowering and seed formation. 
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             The second most preferred substrate of TaOMT2 is 5HFA (Zhou et al., 2006), a 

lignin precursor (Lewis and Yamamoto, 1990). Lignin contributes to the strength of plant 

cell walls, facilitates water transport and impedes the degradation of wall polysaccharides 

and was shown to accumulate during cold acclimation (Hatfield and Vermerris, 2001; 

Campbell and Sederoff, 1996). N‘Dong et al. (2002) showed that in addition to daphnetin 

methylation, OMT involved in 5HFA methylation exhibited the highest enzyme activity 

when rye plants were cold acclimated.  Therefore, an accumulation of TaOMT2 might be 

involved in lignin biosynthesis indicating the participation of TaOMT2 during cold 

acclimation.  

      The expression level of TaOMT2 was investigated in spring and winter cultivars, 

Bounty and Claire respectively. Results showed an accumulation of TaOMT2 in cold 

acclimated winter wheat leaves, Claire compared to spring wheat variety, Bounty. This 

suggests that TaOMT2 is associated with the ability of winter cultivar to circumvent the 

effects of cold stress. In fact, it was reported that both ribosomal and soluble RNA 

increases were much more pronounced in winter wheat than in spring wheat during cold 

acclimation (Sarhan and Daoust, 1975). Moreover, spring cereals exhibit limited ability 

to acquire an increased resistance to low temperature-induced photoinhibition compared 

to the winter variety (Oquist et al., 1993). Given these reports, it is plausible to suggest a 

role for this enzyme in the protective mechanism required during cold acclimation of 

winter wheat compared to the spring variety. 

 The fact that immunoblot analyses and enzyme activity measurements revealed a 

constant expression and a decrease in activity in wheat leaves exposed to salinity and 
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drought stresses suggests that TaOMT2 does not participate in protecting the plant 

against salinity and/or drought stresses.  

 Tricin has been credited to many health-promoting properties (Zhou et al., 2010 

and references therein). It was shown to interfere with intestinal carcinogenesis in Apc
min

 

mice by inhibiting cyclooxygenase enzymes, to inhibit growth of malignant breast 

tumour cells and colon cancer cells to mention a few (Cai et al., 2005, Hudson et al., 

2000). The structural knowledge of TaOMT2 and its regulation during developmental 

stages and during abiotic stresses provide the basis for the metabolic engineering of tricin 

production as a nutraceutical in wheat. 
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