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ABSTRACT 

Ultra-Broadband Fiber-Based Optical Supercontinuum Source 

Luo Ma 

The supercontinuum (SC) generation has been studied intensively because of its 

numerous applications, such as in optical coherence tomography, dense wavelength 

division multiplexing, ultrafast spectroscopy, and frequency metrology. The SC 

generation is usually obtained using a highly nonlinear fiber pumped by high power 

lasers. Two typical pump sources are usually used in SC generation: continuous wave 

(CW) lasers and ultra-short pulse lasers. The multimode CW lasers are considered as the 

low-cost pump source, while ultra-short pulse lasers with high peak power can induce 

nonlinear effects easily in SC generation. 

The two pump sources are both considered in this thesis. The first designed SC 

source contains two low-cost 975 nm multimode CW laser diodes, Erbium/Ytterbium co-

doped fiber (EYDF) and highly nonlinear fiber (HNLF), while the other contains a 

figure-8 mode locking fiber laser, an Er-doped fiber amplifier and photonic crystal fiber 

(PCF). For the CW laser pumped SC source, the optical spectrum spanning from 900 nm 

to more than 2000 nm is generated successfully. The total optical output power of SC 

source is about 200 mW. Additionally, the internal physic mechanisms and reliability of 

this ultra-broadband SC source are investigated. The ultra broadband and low-cost are 

achieved simultaneously in this designed source.   

For the SC generation using a short pulse laser, PCF attracts the most attention 

due to its high nonlinearity and flexible dispersion profiles. Here, a picosecond (ps) pulse 

laser and PCF with flat dispersion are used. We demonstrate a simple and compact all-
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fiber supercontinuum source with smooth and fine-structure-free spectrum from 1200 nm 

to 1920 nm. Furthermore, the pump peak is not observed obviously in the SC spectrum 

and SC spectrum flatness is better than 11 dB. Related physical mechanisms are 

discussed. The stability and relative intensity noise (RIN) are also analyzed. The designed 

SC source has a high smoothness. In particular, the RIN of the broadband SC is 

comparable to that of the pump laser source. 

The two proposed fiber-based optical SC laser sources are simple, compact and 

practical.  
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CHAPTER 1 INTRODUCTION 

1.1 Background and Applications of Broadband Optical 

Sources 

The broadband optical source is attractive because of its widespread applications in 

optical coherence tomography (OCT), fiber-optic sensing and spectroscopy, coarse 

wavelength division multiplexing (CWDM) network testing, and frequency metrology [1-

4]. Generally, supercontinuum (SC), amplified spontaneous emission (ASE) light, 

superliminescent diodes (SLEDs) and normal lamp including sunlight and incandescent 

lamps are considered as broadband optical sources. Figure 1.1 shows the optical spectrum 

for the corresponding broadband optical source [2]. The typical ASE source resulted from 

doped fiber, such as Erbium doped fiber (EDF) amplifiers, only covers the C-band and L-

band. For the SLED, the optical bandwidth of tens of nanometers and complex 

configuration limit its applications. Although the sunlight and incandescent have wide 

bandwidths: 2200 nm and 350 nm, respectively, their optical power levels are too low to 

be used in practical applications. 

Compared with other broadband sources, SC laser is an ideal optical source with 

ultra-broadband optical spectrum and sufficient power level. The bandwidth of SC is 

hundreds of nanometers and SC source has been used in optical communications, such as 

dense/coarse wavelength division multiplexing (D/CWDM), optical code division 

multiple access (CDMA) and so on. Also, the SC laser source with high spatial coherence 

and low temporal coherence properties can be used in imaging systems such as optical 

metrology and OCT [5]. The axial resolution of the imaging system can be improved to 
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several micrometers by using SC source, which is more precise than using SLED sources. 

In addition, the SC source has flexible optical spectral coverage from visible to mid-

infrared, which is practical for special commercial applications.  

 

Figure 1.1: Optical spectrum characteristics of four different broadband optical sources [2].   

1.2 Review of SC Generation Technologies and Motivation 

The spectral broadening is generated from optical nonlinear effects occurring in light 

propagation [6]. Supercontinuum generation is a typical nonlinear process in which pump 

laser light propagates in nonlinear fiber and then new frequency components are 

generated [7]. Typically, the pump sources include pulse lasers from nanosecond to 

femtosecond and high power continuous wave (CW) lasers. The peak power of a pulse 

laser is usually very high, which is essential to yield spectral broadening. Also, watt-level 

CW pump lasers can be used in supercontinuum generation. SC generation has been 
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investigated intensively since it was first observed in glass [8]. After that, different kinds 

of waveguides including solids, organic, inorganic liquids, gases and bulk glass were 

studied to obtain SC spectrum. Compared with other nonlinear media, highly nonlinear 

fiber (HNLF) and photonic crystal fiber (PCF) with high nonlinearity and appropriate 

dispersion properties are two practical choices. Their detailed characteristics will be 

discussed in Chapter 2. Here, we focus on the SC generation using two typical pump 

sources: ultra-short pulse laser and CW laser.  

1.2.1 SC generation using a pulse pump laser 

When the short pulse trains with high peak power are injected into PCF or HNLF, various 

nonlinear effects such as self phase modulation (SPM), four wave mixing (FWM) 

dispersive wave generation, soliton fission and stimulate Raman scattering (SRS) can be 

induced to broaden optical spectrum [7]. The internal physic mechanisms are complex 

because various parameters including the zero dispersion wavelength (ZDW) of PCF, the 

pump wavelength, pump power level, and particularly the peak power of pulse laser can 

influence the spectrum broadening processes. Therefore, numerous theoretical and 

experimental studies have been carried out to analyze the interesting phenomenon. In this 

section, we will first review the femtosecond (fs) pulse laser pumped SC, and then the 

longer duration pulse, i.e. picosecond and nanosecond laser pumped SC source. 
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 A: Review of previous SC obtained using femtosecond pulse pump laser 

In 2000, a broadband SC from 400 to 1500 nm was first obtained by using Ti:sapphire 

self mode-locking laser with pulse duration 100 fs pumped PCF at anomalous dispersion 

wavelength region [9]. The SPM and SRS nonlinear effects were used to explain the flat 

spectrum broadening. After that, other experimental results have been reported. In 

particular, the role of soliton fission in SC generation was first demonstrated by Husakou 

and Herrmann in 2002 [10]. They compared the experimental observations with the 

theoretical simulations based on nonlinear Schrodinger equation (NLSE) model. Since 

the theoretical model does not include the role of stimulated Raman scattering, the 

mismatch occurs in the long wavelength components of SC spectrum. Later, soliton 

fission and Raman effects were included in generalized nonlinear Schrodinger equation 

(GNLSE), and matched results between experimental and theoretical analyses were 

obtained [11, 12]. After that, more detailed results were given by Genty group [13]. The 

SC generations with pump wavelengths at normal and anomalous dispersion regions were 

intensively studied [14-16]. It was demonstrated that the pump wavelength close to ZDW 

is useful to generate broadband SC. In addition, cross phase modulation (XPM) effect 

plays an important role in the short wavelength components of SC generation, which has 

been demonstrated experimentally and theoretically [17, 18]. A detailed review of fs 

pulse laser pumped SC was given in [7]. The theoretical and experimental results were 

analyzed. It was found that fs laser pumped SC mainly results from SPM effects when 

pump wavelength is in normal group velocity dispersion (GVD) region; while SC is 

primarily generated due to soliton fission dynamics when pump wavelength is in 

anomalous GVD region. 
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B: SC generation using a picosecond or nanosecond pulse laser pump 

In the previous section, the fs pulse laser pumped SC generations were reviewed. In this 

section, the picosecond (ps) or nanosecond (ns) pulse laser pumped SCs will be discussed 

in details. Compared with fs pulse, picosecond and nanosecond pulse trains are easily 

obtained. Additionally, the SC generation mechanisms are different with fs pulse laser 

pumped broadband sources. The SC spectrum spanning from 400 to 1000 nm was 

generated by using 60 ps pulse laser and 10m-long PCF with ZDW at 675 nm by Coen et 

al [19]. Also, SC spectrum from 450 to 750 nm was obtained by using 0.8 ns pulse from 

Q-switched micro chip laser at 532 nm [20]. The pump wavelengths were in the normal 

GVD region in the above experiments. Such SC generation primarily results from Raman 

scattering and four wave mixing (FWM), which have been demonstrated in experiment 

and numerical studies [21]. For pump wavelength in anomalous GVD region, similar SC 

results were reported by using nanosecond pump source in 2002 [22]. The generated SC 

was mostly in infrared region due to cascaded Raman effects. Additionally, broadband 

SC sources with high power output were reported by using ps pulse laser pump at around 

1060 nm [23]. The spectral power densities can be up to mW/nm, which is much higher 

than the fs pulse laser pumped SC source. These SC results were explained by 

modulation instability, soliton, associated dispersive waves and Raman scattering 

nonlinear effects, separately. In addition, a flat SC from 1.35 to 1.7 µm was reported by 

using a nanosecond pulse laser pump and PCF with two ZDWs [24]. The modulation 

instability and stimulated Raman scattering are responsible for such SC because of the 

two ZDWs. 
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Now, the physic mechanism in pulse laser pumped SC with PCF can be clearly 

explained by the fact that the short wavelength region of the SC primary results from 

dispersive wave generation, and the long wavelength region mainly results from soliton 

fission and Raman self-frequency shift. Many studies also focus on high-quality SC 

generation besides understanding of physics mechanism. The bandwidth, spectrum 

flatness, phase stability, and relative intensity noise (RIN) of SC are key parameters in its 

practical application. A flat-top SC has been demonstrated theoretically by using sub-10fs 

pulse and all normal dispersion PCF [25]. The detailed study on RIN of SC was given by 

Corwin group in 2003 [26]. They demonstrated that the chirp of pump pulse is a vital 

parameter on the RIN of SC. The RIN of SC can be reduced to minimum when the pump 

pulses are transform limited. In addition, the pump wavelengths of the SC generations 

mentioned above were mainly in short wavelength region, which were located in 

500~1000 nm wavelength window. Recently, SC generation with pump wavelength in 

optical communication widow around 1550 nm also has been studied. Also, flat SC based 

on 170 fs mode-locked fiber laser was reported [27]. Although the bandwidth is less than 

200 nm, the flat spectrum and high average power output are practical in SC applications. 

Additionally, special PCFs, such as soft glass PCF and SF6 glass PCF have been used in 

SC generation in theoretical and experimental studies [28-30]. Particularly, an ultra-

broadband SC from 1000 to 2500 nm was obtained by using 100 fs pulse laser and large 

mode area erbium-ytterbium-doped PCF [31]. These PCF-generated SC source 

experiences coupling issue of the special PCF to other optical components. In addition, 

an ultra-boradband source with flat spectrum from 500 to 2400 nm was developed by 

NKT Photonics Company, which processes a large portion of the broadband source 
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market [2]. However, the pump wavelength is at 1060 nm, which results in relative 

expensive system cost. Therefore, it is necessary to generate high quality SC source by 

using 1550 nm pulse pump laser.  

1.2.2 SC generation using continuous-wave pump lasers  

Besides pulse laser pumped SC, continuous wave (CW) laser as pump source also can be 

used to generate SC. The SC with high average output power and 200nm-bandwidth is 

obtained by using 8.7 W CW pump source and 100m-long PCF [32]. The obtained SC 

spectrum was explained by cascaded Raman scattering. After that, the roles of 

modulation instability and four-wave mixing were also demonstrated in SC generation 

based on cascaded Raman fiber laser and HNLF [33]. Also, some CW laser pumped SCs 

mainly from FWM processes were reported [34]. Since the peak power of CW laser 

source is low, the high average power CW laser is required to induce nonlinear 

broadening. Because of high-power operation requirement, use of Raman fiber laser is 

not considered a low-cost solution. Fortunately, multimode CW laser diodes provide a 

new possibility to generate low-cost SC source. The low- cost SC from 1300 to 1750 nm 

was first obtained by using two 975 nm multimode pump lasers and HNLF in a ring 

structure in 2006 [35]. The SC evolution with respect to pump power was given. In 

addition, they analyzed the long term stability and RIN features of SC. However, the SC 

output power is only tens mili-watts. In 2007, our group obtained a SC from 1550 to 1900 

nm by using a similar configuration [36]. Also, a Watts-level broadband SC source was 

obtained by optimizing splitting ratio of the ring configuration [37]. In addition, the ultra-

broadband SC from 1200 to 2000 nm was also observed in a single-line structure [37]. 
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The normal fiber usually has high loss after 2000 nm, which can limit SC further 

extension. Hence, the multimode CW laser pumped SC source in short wavelength region 

needs more investigations.  

1.3 Thesis Scope and Contributions 

The focus of this thesis is to design low-cost and practical ultra-broadband laser sources. 

Two kinds of pump lasers: multimode CW laser and short pulse laser are considered. In 

the CW laser pumped SC, two 975 nm multimode CW lasers, 8m-long Erbium/Ytterbium 

co-doped fiber (EYDF) and 1.21km-long HNLF are used. The designed system can 

generate ultra-broadband continuum spanning from 900 to 2000 nm. The evolution 

process, output optical power, and long term stability are investigated. Corresponding 

nonlinear effects in the broadening process are also analyzed. In the second scheme, 

picosecond pulse trains are first generated from home-made Erbium-doped Raman fiber 

laser, and amplified further by Erbium doped Fiber Amplifier (EDFA), then injected into 

PCF. A flat and broadband SC source from 1200 to 1900 nm is obtained successfully. 

This broadband source is compact and simple. This work on SC generations presents 

practical guide in future research and can develop more application in optical 

communication. 

The main contributions of this work are given as follows: 

1. Design and fabricate a low cost and ultra-broadband CW-pumped SC fiber laser 

experimentally. It is the first report on SC source extending from 900 to 2000 nm 

using 975-nm multimode pump laser diodes. The long-term stability of this source 

is discussed. 
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2. Propose and design a flat and broadband pulse laser pumped SC source, which 

covers from 1200 to 1900 nm. The SC source with 11dB-flatness presents stable 

and fine structure free. Particularly, the pump peak disappears in the final SC 

output. In addition, the long-term stability and RIN feature are also analyzed. The 

RIN of broadband SC source is comparable to the pulse pump laser.  

1.4 Thesis Outline 

The organization of this thesis is presented in this section. 

Chapter 2 presents the experimental model of SC source using CW pump lasers 

and a short pulse pump laser, respectively. The functions of doped fiber and nonlinear 

fiber are introduced. The nonlinear effects and generation mechanisms are given in 

details. 

Chapter 3 shows the CW laser pumped SC generation in a single-line structure. 

The backward amplified spontaneous emission (ASE) as seed light is used to induce SC 

broadening. The ultra-broadband optical source from 900 to 2000 nm is generated. The 

evolution processes and the long-term stability are discussed in details. 

Chapter 4 illustrates SC sources by using a picosecond pulse laser and PCF with 

flat dispersion. The nonlinear broadening processes are analyzed in details. The SC 

output in time domain is also given. In addition, the long term stability and RIN 

characteristics are investigated.  

Chapter 5 gives the conclusions of this thesis and future work.  
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CHAPTER 2 CONFIGURATIONS OF SC GENERATION AND 

THEORETICAL ANALYSIS 

In this chapter, two different models of SC source are first presented. Then the principle 

of SC generation and nonlinear effects are introduced. In addition, the related roles of Er-

Yb doped fiber, HNLF, and PCF are analyzed in details. 

2.1 Introduction of Experimental Setup 

The CW laser pumped SC source in a single-line structure is depicted in Figure 2.1. The 

broadband source mainly includes CW pump laser, doped fiber, and highly nonlinear 

fiber. Compared with the ring structure, the single-line SC configuration with the 

minimum bandwidth limitation has the potential to obtain maximum broadband 

spectrum. In addition, such SC generation source is simple, easy to assemble, and 

compact. The general principle of the SC generation is introduced as follows. Firstly, 

the high power 975 nm light generated from multimode CW pump laser is launched into 

the doped fiber and then is converted to ASE light around 1550 nm as seed beam. After 

that the seed beam propagates in nonlinear fiber. Then various nonlinear effects are 

induced and the spectrum is broadened significantly. Finally, the SC output can be 

obtained. The related functions of the doped fiber and nonlinear fiber will be discussed 

in the following sections. The other broadband SC source is pumped by short pulse laser, 

as shown in Figure 2.2. The short pulse trains with high peak power around 1550nm are 

injected into PCF directly. As numerous nonlinear effects occur, broadband SC 

spectrum can be achieved eventually. In addition, the characteristics of PCF will be 

discussed in details.  
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Figure 2.1: Experimental setup of CW laser pumped SC laser. 

Photonic 
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Figure 2.2: Experimental setup of a short pulse laser pumped SC source. 

2.2 Erbium doped Fiber and Erbium (Er)/Ytterbium (Yb) Co-

doped Fiber (EYDF) 

In this section, the detailed characteristics of the doped fiber will be introduced. The 

doped fiber is an essential component in the CW laser pumped SC source and it can 

convert 975 nm pump light into 1550 nm seed light. Here, Erbium/Ytterbium Co-doped 

fiber is used to obtain high power ASE in our SC generation source, which will be given 

in details. 

2.2.1 Characteristics of Erbium doped fiber 

Erbium is a type of rare earth material, and it is often used as gain medium in lasers or 

optical amplifiers. Among the internal transitions of Er
3+

, the main transition used is 

between manifold 4I13/2 and ground state manifold 4I15/2, as shown in Figure 2.3 [38]. 

Er
3+

 can absorb 980 nm pump light and transfer it to long wavelength light in Erbium 

doped fiber. This transition can emit the light with wavelength nearby 1550 nm, and it 

corresponds to the typical optical communication window. Particularly, this wavelength 
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is close to the ZDW of nonlinear fiber. However, the absorption efficiency for 975 nm 

pump light is relatively low in Er doped fiber because of the small cross section and 

limited doping concentration. The absorption efficiency can be improved by co-doping 

with other rare earth metals, such as the most common used element: Ytterbium and this 

will be discussed in next section. 

 

Figure 2.3: Energy level diagram of Erbium element [38]. 

2.2.2 Characteristics Er-Yb co-doping fiber (EYDF)  

Firstly, the definition of Er-Yb co-doping fiber is given. Both Erbium and Ytterbium 

elements are doped in the core of optical fiber simultaneously, and such fiber is usually 

named as Er-Yb co-doped Fiber or Er-Yb doped Fiber. Here, we define it as EYDF in 

short. Since the two rare earth elements have adjacent resonant energy levels, particles 

exchange can occur in EYDF. The energy level 
4
I11/2 of Er

3+
 and 

2
F5/2 of Yb

3+
 are resonant 

energy levels, as shown in Figure 2.4 [39]. Yb ion can absorb CW light more efficiency 
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than Er
3+

 in 975 nm wavelength region. Therefore, Yb
3+

 ions is used to absorb pump light 

and Er
3+

 ions emit 1550 nm light by stimulated or spontaneous emission process in co-

doping fiber.   

From the energy level diagram in Figure 2.4, three primary cross-energy 

conversion progresses in EYDF can be observed. The related cross relaxation coefficients 

are defined as 1K , 1K  and 2K , respectively.  

 

Figure 2.4: Energy transition diagram of Erbium and Ytterbium [39]. 

The coefficient 1K  describes the interaction process as follows. Firstly, particles 

at the ground state: 2/7

2F  of 3Yb  absorb the pump light and then are raised to the excited 

state: 2/5

2F . Then, the particles will transfer to the closed resonant energy level of
3Er . 

Finally, photons can be emitted by spontaneous emission or stimulated emission from

2/11

4I energy level to ground state 2/15

4I of
3Er . 
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The opposite energy transition progress is identified by the coefficient 1K . The 

3Er particles are pumped from 
2/15

4I to the excited energy state
2/11

4I . After the 

conversion between resonant energy levels, particles fall to ground state of 3Yb :
2/7

2F  by 

emitting photons. Note that the absorption of Er ions on 975 nm light is suppressed 

significantly due to the existing Yb ions in EYDF.  

The third energy transition process is named as the coefficient 2K . It includes two 

different transition processes. First, the particles of Ytterbium ions at
 2/5

2F  level fall to

2/7

2F without resonant energy conversion. The second progress happens in Erbium ions: 

particles in energy state
2/11

4I  nonradioactive decay to
2/13

4I and then are pumped to higher 

energy level
2/9

4F . Such energy state transitions will reduce the conversion and 

amplification efficiencies of the 1550 nm seed beam. In addition, other interactions 

between the particles and the pump light also exist simultaneously. Compared with the 

main three processes, these interactions can be ignored.  

2.2.3 Functions of Er-Yb co-doping in EYDF 

Three main advantages of Er-Yb co-doping fiber are reviewed in this section. 

1) Broad absorption band 

Compared to Erbium doped fiber, Ytterbium ions in Er-Yb co- doping fiber can broaden 

the absorption band from 800 to 1100 nm. Therefore, available pump sources within this 

wavelength window can be used such as 975 nm multimode CW laser and 1064 nm 

Nd:YAG laser. 
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2) Higher Er doping concentration 

Generally, the Erbium doped fiber has a threshold value for the doping concentration. 

The limited doping concentration can limit the effective absorption of the pump light and 

the gain of 1550 nm seed light. This can be explained by the fact that high doping 

concentration of Er ions will form clusters and it turns out into concentration quenching. 

When two adjacent Er ions are very close, the particles at 
2/13

4I  will interact with each 

other. The process is named as cooperative up-conversion. It describes the fact that one 

particle falls to the ground state while the other one is firstly excited to 
2/9

4I  level, and 

then non-radioactively decays to 
2/13

4I  state. The cooperative up-conversation will 

decrease the conversion efficiency significantly in EDF. However, this problem can be 

solved by co-doping Yb ions in Er doped fiber. The Yb ions can separate Er ions from 

each other, which can increase the doping concentration of Er ions. Therefore, the 

conversion efficiency can be improved in Er-Yb co-doping fiber. 

The gain and absorption characteristics of Er ions in EYDF curves are depicted as 

a function of wavelengths in Figure 2.5. Even the particles cannot be transferred 

completely from 3Yb  to 
3Er in EYDF, the absorption peak of Er ions at 1530 nm can 

reach up to 30 dB/m, which is much higher than normal EDF in C-band or L-band optical 

amplifiers. 
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Figure 2.5: Gain and absorption characteristics of Er ions in the EYDF [40]. 

3) Higher pump power absorption in EYDF 

Generally, the pump light propagates in the core area of rare-earth doped fiber. Because 

of the small core size (only 8µm), the pump power is limited to hundreds milliwatts. 

However, cladding-pumping is highly efficient and can reach watts-level pump. Here, 

multimode pump lasers and double cladding fiber (EYDF) are used in our proposed 

scheme. In this design, pump light could propagate in first-cladding and fiber core 

simultaneously. The light in the cladding will couple into the fiber core gradually and 

then it propagates along the fiber core. Figure 2.6 presents the propagation diagram of 

Er/Yb co-doped fiber [41]. It can be observed that the absorption efficiency is improved 

significantly due to larger propagation area and the star shape of the EYDF. However, 

since the unique shape of the fiber increases the difficulty of splicing process, special 

splicing program is required. 



 17 

 

Figure 2.6: Comparison of cladding-pump fiber and conventional core-pump fiber [41]. 

2.3 Nonlinear Optical Fiber: Highly Nonlinear Fiber (HNLF) 

and Photonic Crystal Fiber (PCF) 

Nonlinear optical fiber is the most important component in the SC generation system. 

The new frequency components are generated in nonlinear fiber based on various 

nonlinear effects. And then, spectral broadening is obtained. In this section, the HNLF 

and PCF are mainly reviewed in details. 

2.3.1 Properties of Highly Nonlinear Fiber (HNLF) 

Compared with the traditional single mode fiber (SMF), the size of fiber core is smaller 

and the refractive index difference:   between the core and cladding is larger in HNLF. 

These characteristics can be realized by heavy doping with germanium element. The 

HNLF has high nonlinearity due to these special designs, as shown in Table 2.1.  
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Table 2.1: Comparison of HNLF and SMF Nonlinear Parameters [42]. 

Parameters HNLF SMF 

Kerr coefficient( 2n ) )/10(64 220 Wm  )/10(3 220 Wm  

Effective area(
effA ) 9-20 )( 2m  80 )( 2m  

Nonlinear coefficient(  ) 10-30 1.5 

Attenuation at 1550nm( ) 0.5-1 )/( kmdB  0.2 )/( kmdB  

Zero dispersion wavelength( ) >1350(nm) 1310(nm) 

The high nonlinear coefficient:   and small effective area: 
effA are key 

parameters in the phase shift of self-phase modulation (SPM), threshold of stimulated 

Raman scattering (SRS) and side bands positions of modulation instability (MI). The two 

factors are improved significantly in HNLF, which can be seen in Table 2.1. The small 

effA  of the HNLF is useful to confine the light while attenuation maintains at a certain 

level. Also the Kerr coefficient: 2n of the HNLF is higher than in SMF since the fiber 

core is heavily doped by Ge ions. The high nonlinear coefficient ( ) can be obtained 

from Kerr coefficient and small effective in the HNLF area. The formula is given as: 

)/(2 2  effAn                                                 (2.3.1.1) 

Correspondingly, the nonlinear characteristics of HNLF are greatly enhanced. In 

next section, we will review three leading types of HNLF. 

 Three different Types of Highly Nonlinear Fibers 

Generally, three main types of HNLFs designed for related applications are 

commonly mentioned as shown in Figure. 2.7. 
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Figure 2.7: Dispersion characteristics of three types of HNLFs [43]. 

The three different HNLFs are identified by varies dispersion properties. In type-1, 

the dispersion performance is comparable with the dispersion-shifted SMF. The zero 

dispersion wavelength: 0  is at around 1550 nm, and the dispersion slope is positive. 

Since the FWM and cross-phase modulation (XPM) are easy to generate in this kind 

HNLF, it is often applied in wavelength conversion or parametric amplification. The 

details were given in literature [43], as seen in Figure 2.8. When one pump and one signal 

are input into the HNLF, an idler light at different frequency is presented. The frequency 

spacing: f  between the pump and the newly generated light is the same as that between 

the pump and the signal, which can be explained by FWM. The frequency spacing is 

inversely with the intensity of the idler light. In addition, the wavelength of pump light 

should be in the anomalous dispersion region of the HNLF, and is close to the zero 

dispersion wavelength.  
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Figure 2.8: Illustration of wavelength conversion by FWM [43]. 

The dispersion of type-2 HNLF is very flat in the optical communication window 

1500-1600 nm. The fiber dispersion maintains a small value in a large wavelength region 

(1.3-1.6 µm). In addition, the dispersion slope: s  alters from positive to negative within 

this flat region. This kind nonlinear fiber is also named as highly-nonlinear dispersion-

flattened fiber (HNL-DFF). It has been demonstrated that many nonlinear effects can be 

induced to generate supercontinuum in this kind of HNLF, as illustrated in Figure 2.9.  

210 

Nonlinear Effects SC output

Pump Light

 

Figure 2.9: Generation of SC by nonlinear effects in Type-2 HNLF [42]. 

Type-3 HNLF has distinctive dispersion property. As shown in Figure 2.7, it has 

the big negative dispersion, while dispersion slopes remain small values around 1550 nm. 

FWM and MI can hardly occur in such HNLF due to phase-mismatching condition. 
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However, this kind HNLF maintains low attenuation and highly normalized Raman gain 

coefficient
effR Ag / characteristics, which is useful in Raman amplification. Generally, the 

parameter
effR Ag /  is dependent on the fiber core composition and doping elements, 

which will be reviewed in details later. The normalized Raman gain coefficient of the 

HNLF is much higher than other types of fibers, as shown in Figure 2.10. 

 

Figure 2.10: Comparison of the coefficient effR Ag / : of SMF, DCF, DSF and HNLF for Raman 

effect [43]. SMF, DCF, and DSF represent single-mode fiber, dispersion compensation fiber and 

dispersion-shifted fiber, respectively. 

  HNLF used in our SC source  

In our experiments, the parameters of the HNLF from Sumitomo Inc. are given in 

Table 2.2. The ZDW:
 0 can be estimated by using the formula: )( 0  SD . For our 

HNLF, 0  is at 1576.67 nm. 
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Table 2.2: Parameters of the HNLF used in the experiment [37]. 

HNLF parameters Values 

Length(m) 1210 

Cut-off wavelength c (nm) 1550 

Nonlinear coefficient
1)( kmW  12(for random polarization state) 

 

At 

1550nm 

Dispersion parameter D 

)/( kmnmps   

-0.8 

Dispersion slope S

)/( 2 kmnmps   

+0.03 

Attenuation   (dB/km) 0.54 

)( 2mAeff   10 

effR Ag /  
1)(  kmW  6.18 

Fiber pigtail (both ends) SMF 

Connector (both ends) SC/PC 

Adaptor (both ends) SC 

2.3.2 Characteristics of Photonic Crystal Fiber (PCF)  

PCF comprises a small silica core with high index, which is surrounded by many air-

filled cladding holes along the whole length of fiber. The refractive index of the hybrid 

air-silica material is lower than the core, as seen in Figure 2.11. PCF is also named as 

other terminologies: microstructure fiber or holey fiber in different literatures [9, 12, 15]. 
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Compared with other fibers, PCF with special design can guide the light with single-

mode propagation. Also, the nonlinearity, mode confinement and group velocity 

dispersion (GVD) all can be engineered by related fiber microstructure. Such type of 

fiber has significant advantages in SC generation. Additionally, the zero dispersion 

wavelength can shift from the visible to near-infrared wavelength region, while the ZDW 

of HNLF is usually over 1350 nm. The pump laser used must be adjusted according to 

the ZDW of the nonlinear fiber, which has been demonstrated in literature [44], as shown 

in Figure 2.12. The corresponding zero dispersion wavelengths of the PCF and HNLF are 

located at around ~800 nm and ~1550 nm, respectively. Therefore, two pump lasers with 

different operation wavelengths were used. It is mentioned that pump wavelengths in the 

anomalous dispersion region of PCF could generate broader supercontinuum [37].  

 

Figure 2.11: Micro-structure of PCF with central solid-core and surrounding air holes [2]. 

PCF has attracted numerous attentions due to its superior performances in SC 

generation. Related experiments have been demonstrated that both of the pulse laser and 

the high power continuous wave (CW) sources can be used to pump PCF and generate 

SC [7]. PCF-generated supercontinum has been applied widely in optical coherence 

tomography, spectroscopy, and optical frequency metrology.  
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Figure 2.12: Dispersion properties curve of PCF and HNLF [44]. 

In our experimental setup, the PCF with flat dispersion is NL-1550-POS-1 fiber 

and from NKT Photonics. The flat dispersion between two ZDWs is essential to generate 

flat broadband spectrum. The dispersion characteristics are given in Figure 2.13. Many 

studies have demonstrated that FWM and MI are useful to flatten the spectrum [25, 27-

29]. The detailed information of the PCFis given in the Appendix A.  

 

Figure 2.13: Dispersion profile of photonic crystal fiber with two ZDW [45]. 
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2.3.3 Comparison of Highly Nonlinear Fiber and Photonic Crystal Fiber 

The comparison of the HNLF and PCF are shown in Table 2.3. It can be seen that the 

nonlinear coefficient of PCF is up to 
1)(100  kmW due to its special microstructure, 

which is much higher than HNLF. While the insertion loss and splicing loss of the HNLF 

are much lower than PCF. Although, the cost of the PCF is much higher than the HNLF, 

the length of the PCF used in SC generation is only several meters, which is much shorter 

than kilometers-long of HNLF required in CW pumped SC.  

Table 2.3: Comparison of HNLF and PCF. 

 HNLF PCF 

Advantage  High nonlinearity: 

1)(3010  kmW  

 Splicing with low loss to SMF 

(0.2dB at 1550nm) 

 Low attenuation 

 High nonlinearity: 

1)(10010  kmW  

 Flexible in controlling the 

dispersion profile 

 Short length required 

Disadvantage  Chromatic dispersion tailored 

within limited wavelength range 

 High loss 

 Difficulty to manufacture 

 

 

 

 



 26 

2.4 Dispersion and Nonlinear Effects  

The group velocity dispersion, SPM, XPM, SRS, SBS, MI and FWM are discussed in 

this section. 

2.4.1Group-velocity dispersion (GVD) 

The group velocity dispersion is an optical phenomenon which describes the relationship 

of the light’s group velocity and the optical frequency within propagation. It can be 

expressed precisely in the following equation: 

2
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In optical fibers, the GVD in terms of wavelength is usually considered. The 

calculation is given bellow:  

2

2

22

22















kc
GVD

c
D

                                            

(2.4.1.2) 

It can be observed that GVD and D have opposite signs because of the inverse 

relationship of wavelength and frequency. Avoiding confusion, the terms normal 

dispersion and anomalous dispersion are preferred to identify them. Furthermore, the 

dispersion mainly includes material dispersion and waveguide dispersion, as given by 

WM DDD 
                                                        (2.4.1.3) 

Material dispersion depicts the dependency of refraction index of the fiber core on 

light wavelength, while waveguide dispersion describes the propagation distribution of 
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different wavelengths: short wavelength light is mainly restricted in the core region; 

certain part of the light is in the cladding for the long wavelength, which can induce 

different propagation velocities. Since the two types of dispersions have opposite signs in 

certain wavelength region, the zero dispersion wavelength: ZD  can be obtained in 

optical fiber. For ZD  , 0D , the optical fiber shows normal dispersion; when ZD 

and 0D ,  the optical fiber turns to the anomalous dispersion mode. Particularly, the 

anomalous dispersion region is critical for nonlinear optics [42, 43]. The dispersion 

curves of a stranded single-mode optical fiber as a function of wavelength are shown in 

Figure 2.14. For this fiber, ZD is at 1.31μm. Since high-order dispersion is determined by 

the dispersion slope: ddDs / , the dispersion is not exactly zero. In addition, 

waveguide dispersion can be engineered by altering the fiber index profile, which can be 

used to compensate material dispersion, to control and shift the total fiber dispersion. In 

optical communication, ZD is often shifted to 1.55 μm because the silica fiber loss has a 

minimum window near 1.55 μm. Such fibers are often named as dispersion-shifted fibers 

(DSF).  
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Figure 2.14: Various dispersion characteristics for a conventional single mode fiber [46]. 

2.4.2 Self-phase modulation (SPM) and cross-phase modulation (XPM) 

In optical fiber, high intensity light can induce phase delay due to Kerr effect, which can 

result in nonlinear change of the refractive index Inn 2 ，where 2n is fiber refractive 

index and I is the intensity of incident light. The modification of the fiber refractive 

index can induce nonlinear dispersion and consequently nonlinear phase shift of optical 

signal, which is known as self-phase modulation (SPM). The role of the SPM in spectrum 

broadening can be seen by the following derivations. Refractive indices are described as: 

,2,1),/(2

'  jApnnnnn effjjj                                 (2.4.2.1) 

where j stands for cladding or core. The parameters: 2n , P and effA  represent the 

nonlinear-index coefficient, optical power and effective area of optical fiber, respectvely. 

Because of the change in refractive index, the propagation constant:  is also modified as: 
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PAPnk eff   /20

' ,                                       (2.4.2.2) 

where )/(2 2  effAn is the nonlinear coefficient, and this can induce nonlinear phase 

shift NL . 

effinNL LP  ,                                                       (2.4.2.3) 

where 
effL is the effective interaction length given as  

 /)]exp(1[ LLeff                                              (2.4.2.4)  

where  is the fiber loss factor. 

Generally, the output power of laser diode: inP  is not a constant value and varies 

with time, which can generate frequency shift: 

dtdt NL /)(   .                                             (2.4.2.5) 

Frequency shift  changes with time and this self-induced frequency chirp will 

broaden the optical spectrum significantly under certain conditions. An example of 

spectral broadening caused by SPM effect is given in Figure 2.15. 

 In addition, because of the nonlinear effect of SPM, an unchirped optical pulse 

can end-up to a so-called chirped pulse. The variation of instantaneous frequency of a 

pulse along the time course is presented in Figure 2.16. The chirp resulted from SPM can 

be balanced by the anomalous chromatic dispersion of optical fiber, which is useful to 

form optical solitons. When the optical signals propagate as fundamental solitons, the 

spectral width will not be broadened in time domain. 
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Figure 2.15: Spectral broadening of a CW beam induced by SPM as a function of propagation 

distance Z [6]. 

 

Figure 2.16: Instantaneous frequency of an experienced self-phase modulation and initially 

unchirped pulse [47]. 
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Cross- phase modulation (XPM) is another nonlinear effect that describes the 

phase change of a light beam by another light with different frequency. The nonlinear 

phase shift can be reflected in refractive index:  

)1(

2

)2( 2 Inn                                                            (2.4.2.6) 

where 
2n is the refractive index. Here, the function describes that the intensity of beam 1: 

)1(I results in a change of the refractive index of beam 2. Note that the equation has an 

additional factor of 2, which is different with the corresponding expression in SPM 

section. The factor 2 is just applied when the beams have same polarization, while the 

factor is 2/3 for the beams with cross polarizations.  

2.4.3 Stimulated Raman scattering (SRS) and stimulated Brillouin 

scattering (SBS) 

When optical wave interacts with the material, an inelastic scattering of light can be 

produced. This phenomenon is named as Raman Effect. Generally, when incident 

photons interact with the material, it can be scattered in three different ways: Rayleigh 

scattering, Stokes scattering and anti-Stokes scattering. Rayleigh scattering is an elastic 

scattering and the photons frequency remains the same as the incident light. Stokes 

scattering and anti-Stokes scattering are inelastic Raman scattering and can cause 

frequency shift, and because of that, they have attracted many attentions. In most 

mediums, Raman scattering is weak and hardly observed. However, Raman scattering 

effect can be generated significantly in optical fibers because high optical intensity 

densities and long interaction length will enhance the nonlinearity. When the threshold 

condition is satisfied, both stimulated Raman scattering (SRS) and stimulated Brillouin 
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scattering (SBS) can be generated. Stimulated scattering condition can convert the pump 

light to the scattered Stokes wave more effectively. In SRS, the Stokes wave with typical 

frequency shift in the range of 10
12

-10
13 

Hz propagates in the fiber along with the pump 

light. Figure 2.17 shows a typical Raman gain spectrum. The frequency of Stokes wave 

can be up to ~40THz and the gain peak is around ~13 THz. Also, optical wave with 

higher frequency than pump light can be produced by Raman anti-Stokes effect. Raman 

anti-Stokes effect describes the scattering process of photons gaining energy from the 

medium. The particles in atomic system of medium decay from excited state to ground 

state and provide energy to the optical beam. Generally, anti-Stokes frequency shift is 

shorter than Stokes waves and hardly observed in Raman applications. Generally, both 

Stokes waves and anti-Stokes waves can contribute to spectrum broadening in SC 

generation. 

 

Figure 2.17: Typical Raman gain spectrum at pump wavelength 1µm [6]. 
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Now, we consider the threshold power: thP for SRS. It describes the critical level 

of input pump power to generate Stokes wave. The mathematical definition is given as 

follow: 

16/ effeffthR ALPg ,                                            (2.4.3.1) 

where Rg  is the coefficient at the gain peak and 
effL is defined in Eq. (2.4.7). A typical 

thP value within single mode fiber pumped at ~1550 nm wavelength, is about 600 mW, 

which is much higher than the power level in optical communication channel. Here, we 

use HNLF with high nonlinearity to decrease the threshold power and enhance Raman 

scattering. 

In addition, when the intensity of Stokes waves satisfy the threshold condition, 

higher-order Raman Stokes waves also can be generated. In this situation, more pump 

lights can convert to long wavelengths Stoke waves and contribute to spectrum 

broadening. Multi-orders Stokes waves are presented in Figure 2.18, which is produced 

by a 1 kW pulse laser pump. It can be observed clearly that the intensity of higher-order 

Stokes lines decreases and the gain peaks are broadened gradually.  

Since it can broaden the spectrum significantly, the SRS nonlinear effect plays a 

key role in SC generation. 
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Figure 2.18: Cascaded Raman Stokes lines induced in the fiber [6]. 

Stimulated brillouin scattering (SBS) is also an inelastic scattering process. Like 

SRS, SBS also can induce frequency shift. However, the frequency shift between the new 

generated light and the pump in SBS is just about 10GHz, which is much narrower than 

in SRS. Furthermore, it propagates in the opposite direction compared to the pump. SBS 

effect occurs when pump intensity is sufficient. The corresponding threshold power thP  

can be calculated by 

 21/ effeffthB ALPg ,                                               (2.4.3.2) 

where Bg is the SBS gain co-efficient, and it is much larger than Rg . The SBS threshold is 

approximately 1 mW in single mode fiber. In general, the SBS effect is not considered in 
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supercontinuum generation due to limited bandwidth, only around ~10 GHz. Also, 

Brillouin gain is greatly reduced because of high threshold power. Furthermore, since the 

bandwidth of amplified spontaneous emission (ASE) is wider than 10 GHz, SBS effect is 

hard to be observed i our experiment. 

2.4.4 Four-wave mixing (FWM) and modulation instability (MI) 

Four-wave mixing (FWM) is also a nonlinear process when optical light propagates in 

optical fiber. It can be used to describe that the fourth optical wave is generated within an 

input involving three optical waves with different frequencies. The frequencies and wave-

vectors of the input waves can be defined as 1 1( , )k , 2 2( , )k and 3 3( , )k . Then the 

frequency and wave-vector of the new generated wave is 4 4( , )k , which can be written 

as : 

3214   ,                                                   (2.4.4.1) 

4 1 2 3k k k k                                                         (2.4.4.2) 

The two equations illustrate the conservation of energy and momentum, which 

must be satisfied simultaneously. The wave-vector is correlated to frequency due to 

dispersion. Therefore, the FWM phenomenon requires certain condition: phase-matching. 

Here is a scheme that two photons with energies 1 and 2  generate another two 

photons with energies of 3 and 4  at frequencies 3  and 4 , respectively. Both 

energy and momentum conservation are satisfied as the following equation states: 

3214  
                                                  

(2.4.4.3) 

4321   
                                             

(2.4.4.4) 
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This case can be simplified to match the phase-matching condition:  

,21    

 13  ,  

and  14  , 

where  is the frequency interval. In this case, the phase-matching condition contains 

three different parts: material dispersion Mk , waveguide dispersion Wk and nonlinear 

effects NLk . They are defined, respectively, by  

NLWM kkkk                                            (2.4.4.5) 

2

2114433 /]2[   cnnnkM
,                             (2.4.4.6) 

cnnnnkW /])([ 1214433   ,                         (2.4.4.7) 

021 2)( PPPkNL   ,                                      (2.4.4.8) 

 where 0P  and  are the pump power, nonlinear coefficient, respectively. The parameter:

2  is GVD coefficient and it is related to dispersion parameter D, which is defined by  

22

2




c
D  ,                                               (2.4.4.9) 

Generally, in single-mode fiber, contribution of material dispersion is much more 

than waveguide dispersion, except the region around zero-dispersion wavelength. To 

satisfy the phase-matching condition, the material dispersion contribution should be 

negative to compensate the contribution from nonlinear effects. Therefore, the pump light 

located in the anomalous dispersion region (D>0, 02  ) of optical fiber is useful to 

generate FWM effect. The frequency spacing in phase-matching is at
2

02



P
 .  
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Finally, modulation instability (MI) is discussed. MI describes a nonlinear 

phenomenon that spectral sidebands or pulse trains are generated from an optical wave 

due to fiber nonlinearity. In other words, the pump light can generate two symmetric 

spectrums through MI effect. The frequency spacing:  between the central frequency 

and sideband frequency is defined by: 
2

02



P
 , which is same as FWM. Figure 2.19 

presents the spectrum with two sidebands at frequencies: 1 . This phase-matching 

condition is ensured by the nonlinear effects of SPM and MI effect contributes the 

sideband amplification. The frequency spacing is determined by the pump intensity. It 

can be up to 10 THz when hundreds Watts of pump power is used. Compared to MI 

effect, the spectrum broadening produced by FWM can be hundreds nanometers, which is 

illustrated in Figure 2.20. In addition, Raman Stokes line at ~13.2 THz from the pump 

wavelength can also be monitored in the optical spectrum. Similar to other nonlinear 

effects, FWM and MI also can contribute to broaden spectrum, especially in flat 

supercontinuum generation. 
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Figure 2.19: Spectrum with two side bands generated by MI effect [6]. 

 

 

Figure 2.20: Stokes and anti-Stokes peaks generated by FWM effect [6]. 
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CHAPTER 3 CW LASER PUMPED SC SOURCE 

In this chapter, SC generation using CW pump laser will be demonstrated. Here, the 

evolution of SC as a function of pump power is shown and the internal physical 

mechanism is investigated. Finally, the output power and stability of the SC source will 

be further discussed. 

3.1 Configuration of CW Lasers Pumped SC. 

 

8m 

EYDF

Combiner

Multimode 

Pump Laser

Isolator

1.21km

HNLF

OSA

Multimode 

Pump Laser

Polished 

cleaved

 

Figure 3.1: Setup of CW laser pumped SC generation. 

The experimental setup above shows the whole configuration of the CW lasers pumped 

SC source. Note that the right end of the EYDF is polished and cleaved to construct a 

cavity, which can enhance the pump absorption efficiency. This design is different with 

the previous work [37]. The nonlinear effects occurred in the HNLF contribute to the 

broadband SC generation. The EYDF and HNLF have been analyzed in the previous 

chapter. Here, other optical devices are introduced. 

1) Pump lasers: 

Two 975 nm multimode CW lasers are used as low-cost pump lasers. The 

maximum output power is 6 W for each laser, which is sufficient to generate SC. In 
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particular, multimode CW pump laser is much cheaper than other pump sources, which is 

useful to reduce the cost of the SC source. Since overheat can result in laser wavelength 

shift easily and damage the laser eventually, heat sink, thermally conductive pyrolytic 

graphite sheet (PGS) and fan are used for thermal dissipation and improving the 

operation stability of pump laser. Detailed parameters of the multimode CW pump laser 

are given in Appendix B. The pump laser has a multimode fiber pigtail with 0.15 

numerical apertures (NA), which is easy to couple with other optical components. In this 

work, two multimode CW pump lasers are coupled into an optical combiner. 

2) Optical combiner and isolator 

The optical combiner combines the CW multimode pump lasers and the double-

cladding EYDF together. As seen in Figure 3.2, a (2+1)*1 multimode combiner is used to 

guide 975 nm pump light into the EYDF and transmits the 1550 nm light to HNLF. The 

operation wavelength range of signal and pump input ports are 1530-1560 nm and 900-

1000 nm, respectively. Note that the pigtail of the signal port together with the output 

port is double cladding fiber (DCF). DCF is a special type of single-mode fiber (SMF) 

with lower refractive index coating outside than the fiber cladding. This design can 

enable the pump light to propagate in both fiber core and cladding regions, which makes 

the light loss as small as possible. The EYDF also has similar structural design. High 

power pump light could be coupled into the fiber core gradually, which can be absorbed 

and transferred efficiently. The detailed information about the optical combiner is given 

in Appendix C. 
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In addition, an optical isolator is used to maintain light transmission in the single 

direction and blocks the feedback in the opposite direction. The isolator used in our 

experimental setup can handle about 35 dBm of the feedback light.   

 

Figure 3.2: Diagram of the 1)12(  multimode combiner with three input ports and one output 

port. 

3) Optical spectrum analyzer (OSA) and optical power meter 

Two OSAs with different measurement scales are used to trace the SC output: 

ANDO AQ 6317B and Yokogawa AQ 6375, which can record the wavelength range 600-

1750 nm and 1200-2400 nm, respectively. Both two OSAs can handle the input optical 

power: 20 dBm. Therefore, a high power attenuator is required to avoid OSA damage. 

The optical power is recorded by fiber optic power meter: ILX Lightwave FPM-8210H. 

The corresponding detecting range of wavelength and power level is from 850-1650 nm 

and from +30 dBm to -50 dBm, separately. Because of its wavelength limitation, the 

measured power level is lower than the actual power level of the SC source. 
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3.2 Optical Spectrum Evolution of SC 

Firstly, we shall briefly introduce the ASE from the EYDF, which is converted from the 

pump light. Figure 3.3 shows the ASE spectrum from EYDF. When 1 W CW light pumps 

the EYDF, two clearly peaks are observed at: 1536 nm and 1543 nm. In addition, a small 

peak at 1564 nm also exists. All the three peaks are from the ASE and can operate in the 

HNLF to generate new frequencies. The SC spectrum at different pump power levels is 

shown in Figure 3.4. The values of pump power are set at 2, 4, 5, 6 and 7 W, separately. 

When the pump power is 2 W, a large optical peak is observed at 1543 nm. This peak 

results from the ASE in the EYDF and is broadened by SPM effect, which agrees with 

previous results [36, 37]. As the pump power is increased to 3 W, another apparent peak 

at 1660 nm is visible and is about 13.7 THz away from the ASE peak at 1543 nm. 

Typically, this peak is originated from the first-order Stokes line produced by SRS 

nonlinear effect in the HNLF and its broadness can also be attributed to SPM and MI [37]. 

Also, the peaks at 1754, 1829, 1893 and 1985 nm are the secondary and high-order 

Stokes line of SRS effect. Furthermore, three additional peaks are observed on the left 

sides of the 1543 nm peak at 1385, 1080 and 900 nm, which may be induced by the ASE 

of the EYDF and further amplified by the SPM effect in the long HNLF. If more pump 

power is provided, the long wavelength regions firstly tend to broaden and flatten 

because of SRS, MI and FWM nonlinear effects. When the pump power is 6W, both 

short and long wavelength components are broadened by the nonlinear effects of SRS, 

MI, FWM, SPM and XPM. Finally, the flat and ultra-broadband SC from 900 nm to more 

than 2000 nm is obtained and the bandwidth is more than 1100 nm. Note that once the 

ultra-broadband SC is formed, the spectrum is hardly to improve by adding pump power 
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further. It can be seen that the 7 W pumped SC spectrum is comparable to 6 W pumped 

SC. The whole optical spectrum is relatively flat and smooth except two main peaks at 

1543 nm and 1655 nm, which is obviously resulted from ASE and first-order SRS, 

respectively. This SC is much wider than other results using multimode pump lasers [35-

37]. This actually originates from two reasons. One is the high conversion efficiency of 

the doped fiber, while the other is that the single-line structure has little bandwidth 

limitation of the optical devices. 
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Figure 3.3: ASE spectrum from Er-Yb codoped fiber. 



 44 

-80

-60

-40

-20

0

20

1000 1200 1400 1600 1800 2000

2W pump

4W pump

5W pump

6W pump

7W pump

O
pt

ic
al

 P
ow

er
 (

dB
m

)

Wavelength(nm)
 

Figure 3.4: Measured broadband supercontinuum evolution with resolution 1 nm. 

3.3 Analysis of Output Power  

In this section, we will first analyze the power conversion from 975 nm pump light to 

1550 nm ASE in EYDF. Here, PCE: power conversion efficiency is used to describe the 

evolution. The SC generation requires sufficient ASE power to induce numerous 

nonlinear effects in HNLF. High PCE is essential for a practical SC source.  

Many factors including the doping element, doping concentration, the length of 

doped fiber, the connection loss as well as the pump power level can affect the PCE. In 

this work, 8 m long Er/Yb co-doped fiber from Fibercore Inc is used. Here, we concern 

the corresponding PCE at different pump power levels. For Erbium doped fiber (EDF), 

both directions can emit light: forward pump could maintain relative low noise figure, 

while high saturated output power can be obtained from backward pump [48]. 

Considering that the EYDF is comparable with EDF, the backward pump method is 
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preferred in our SC generation. The PCE evaluation needs to consider both outputs from 

two directions. In the experiment, the power meters are placed in two ends to measure the 

output power level, as shown in Figure 3.5. Related data is given in Table 3.1. 
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Figure 3.5: Measured PCE with two power meters. 

Table 3.1: PCE parameters with respect to pump power. Both forward and backward conversion 

power are considered. 

Forward 

(mW) 

Backward 

(mW) 

Pump 

power(W) 

 

PCE 

Forward 

(mW) 

Backward 

(mW) 

Pump 

power(W) 

 

PCE 

7.2 19.5 0.2 13.35% 181 310 1.2 40.92% 

30 71 0.4 25.25% 219 377 1.4 42.57% 

59 121 0.6 30% 270 441 1.6 44.44% 

101 186 0.8 35.88% 314 503 1.8 45.39% 

143 248 1 39.1% 338 591 2 46.45% 
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Figure 3.6: Evolution of PCE versus pump power. 

It can be seen that the PCE is enhanced continually as the pump power increases. 

The PCE value is 46.45% at 2 W CW laser pumped. Because of the power meter 

limitation, the PCE is not characterized further.  

After that, the output power of SC is discussed. Similarly, the output power of 

broadband source is measured at the end of HNLF. Figure 3.7 illustrates the total output 

power of this broadband source. It clearly shows that the SC intensity increases as a 

function of CW lasers pump power. We can observe that the output power of SC source 

has little change when the pump power increases from 4W to 5W. It can be explained by 

the extension of optical spectrum to the long wavelength region, which exceeds the scale 

of measurement device. This is consistent with the spectrum results. In addition, once the 

SC is obtained, the output power tends to increase slowly. Finally, ultra-broadband SC 

with around 200 mW output power is obtained. Considering the device limitation, the 
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total output power level should be higher than the measured results, especially when 

ultra-broadband SC is generated.  
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Figure 3.7: SC source output power as a function of pump power 

3.4 Stability of Output Optical Spectrum 

In this section, the long-term stability of the output the SC source is analyzed. While the 

pump power was set to be 6 W, the SC spectrums were recorded at five different 

moments: 0, 1, 3, 5 and 10 h, respectively. Figure 3.8 shows the measured results of 

obtained SCs. The resolutions of OSA are set at 1 nm for each measurement. The 

diagram shows clearly that no significant fluctuations are monitored in optical spectrum, 

as well as the power level. The spectrum is repeated deeply. Few fluctuations are caused 

by the instability of pump power, which may result from the temperature impact. If this 

issue is not considered, it can be said that the SC laser source is stable and practical. 
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Figure 3.8: Measured SC output with the increase of operational time. The resolution of OSA is 1 

nm. 
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CHAPTER 4 SUPERCONTINUUM GENERATION USING A 

SHORT PULSE FIBER LASER AND PHOTONIC CRYSTAL 

FIBER  

Besides CW laser pumped SC, ultra-broadband SC source using short pulse trains and a 

new class of optical waveguide-PCF has attracted significant attention. The nonlinearity 

and group velocity dispersion of PCF can be engineered, which is supportive in SC 

generation. In this chapter, we will investigate the SC performance using a picosecond 

pulse laser and PCF with flat dispersion. The SC generation is investigated in terms of 

optical spectrum, output optical power, long term stability and RIN characteristics, 

respectively. 

4.1 Optical Components Used in a Short-Pulse Laser Pumped 

SC  

The experimental setup used in this work is shown in Figure 4.1, which includes a home-

made passively figure-8 mode locked erbium-doped fiber laser (EDFL), an erbium-doped 

fiber amplifier (EDFA), and 13-m long PCF. A 2.4 picosecond sech
2
-shaped ultra-short 

pulse is generated from the EDFL at center wavelength of 1554 nm. The temporal profile 

of the short pulse is characterized by using autocorrelator device, as shown in Figure 4.2. 

The repetition frequency and average output power are 3 MHz and 0.72 mW, separately. 

First, the pulse is amplified by the EDFA. The average power of amplified pulses can be 

up to about 101.5 mW and the corresponding peak power is estimated to be 14.1 kW. 

Note that the amplified pulses are not compressed further by using single mode fiber 
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(SMF), so the peak power may be lower due to the pulse broadening after transmission in 

the EDFA. Then, the amplified pulses are injected into a 13 m long PCF with flat 

dispersion, which is used as highly nonlinear medium to generate SC. The PCF has flat 

dispersion between two ZDWs, which are at around 1475 nm and 1650 nm, respectively.  

The SC spectrum is recorded by two OSAs with different measurement regions: 

ANDO AQ 6317B (600-1700 nm) and Yokogawa AQ 6375 (1200-2400 nm). The 

resolutions of the two OSAs are set to 1nm. In addition, the RIN of SC source is 

characterized by using MXA Analyzer (N9020A 20Hz-26.5GHz) and digit-multimeter 

detector (N4371A) from Agilent Technology. 
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Figure 4.1: Experimental setup of a short-pulse laser pumped broadband source. 
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Figure 4.2: Intensity profile of short pulse generated from Erbium doped fiber laser. 
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4.2 Optical Spectrum Evolution of Supercontinuum 

Generation Using a Picosecond Pulses Laser and PCF  

The detailed evolution of the SC spectrum by using a picosecond pulse pump laser is 

shown in Figure 4.3. The SC generations are investigated as a function of pump power. 

When the average pump power is 2 mW, a relatively narrow optical spectrum with a peak 

around 1554 nm is observed. This can be attributed to the amplified spontaneous 

emission (ASE) noise from the EDFA in the setup. As the injection power increases, the 

optical spectrum is broadened gradually on both sides of 1554 nm, which is clearly 

caused by self-phase modulation (SPM) effect. By further increase of the injection power, 

stimulated Raman scattering (SRS) induces spectrum broadening in long wavelengths 

firstly. With higher pump power, the optical spectrum in the shorter wavelength range is 

also broadened notably, which is mainly caused by four wave mixing (FWM). When the 

injection power is 52.3 mW, a relative flat and broadband SC is generated. The total SC 

bandwidth and output power are 720 nm and 13.2 dBm. The optical spectrum is smooth 

and presents few fine structures. Eventually, the flat and ultra-broadband source from 

1200 nm to 1920 nm is obtained when the pump power is 101.5mW. The SC source 

output power is 15.5 dBm, while the whole spectrum flatness is about 11dB. Particularly, 

the original injection pump peak almost disappears in the obtained SC, which is much 

different from the previous reports of SC generations [7]. In Figure 4.3 inset, SC obtained 

by NKT is also shown using the similar technologies [2]. Compared to NKT, our 

obtained SC source is much flatter and wider. It may be explained by the fact that the 

length of the PCF, the peak power and pump wavelength of the short pulse are optimized.  
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In previous reports, the SC obtained by using a femotsecond pump laser is mostly 

explained by SPM, while spectral broadening by picosecond or nanosecond pump is 

dominated by SRS and FWM [7]. It is shown that our SC generation is mainly thanks to 

SPM, SRS and FWM corresponding to different regions of spectral broadening. 

Additionally, since this type of PCF has two ZDWs and flattened dispersion between 

them, more modulation instability (MI) together with FWM can be obtained to flatten the 

SC. Therefore, the flat and broadband SC as shown in Figure 4.3 is attributed to more 

FWM and MI compared to CW laser pumped SC.  
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Figure 4.3: Measured optical spectrum with resolution of 1 nm at different injection power to 

PCF. The NKT results are shown in the inset [2]. 

4.3 Output Power Evaluation of Supercontinuum Generation  

In this section, we focus on the output power of the broadband SC source. In Table 4.1, 

corresponding optical power is listed. 
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Table 4.1: Output power evolution of SC source. 

EDFA 

POWER 

LEVEL 

0.03 0.05 0.06 0.08 0.5 0.6 0.7 0.8 0.9 

Pulse(mW) 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 

Amplified 

pulse(mW) 

2 3 4 6.2 52.3 70 81.6 92 101.5 

Pulse Peak 

power (kW) 

0.278 0.417 0.556 0.861 7.264 9.722 11.33 12.78 14.1 

SC output(mW) 0.3 0.5 1 1.5 20.9 23.5 27.9 31 35.5 

 

From the list above, we can see that the output power of SC source increases 

continuously with the pulse power amplified. When the flat and ultra-broadband SC is 

achieved, the output power is more than 30 mW. In this system, the maximum optical 

power and the optical power spectral density of SC are 35.5 mW and -13 dBm/nm, 

separately, when the pump peak power is 14.1 kW. It seems that the output power and the 

spectrum flatness will be improved further with boosting the peak power of the short 

pulse. 

4.4 Stability of Supercontinuum Generation  

In this section, the long term stability of SC is investigated. The spectrum was recorded 

every 1 hour for 5 hours while the pump power and peak power of short pulse were 

maintained at 101.5 mW and 14.1 kW, respectively. The spectrum results are shown in 

Figure 4.4. The flatness and bandwidth of spectrum are repeated successfully. No 
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significant fluctuations are observed in the spectrum, which reveals that the SC source 

output is stable. It demonstrates that our SC source is stable and practical.  
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Figure 4.4: Optical spectrum of the SC recorded for 5h with spacing 1h at the pump power of 

101.5mW. The resolution is maintained at 1 nm. 

Additionally, we use a 700M photo-detector and a digital oscilloscope to 

characterize the SC source in temporal domain, as given in Figure 4.5. It shows that the 

SC laser source exists in the form of short pulse trains with repetition rate 3.15 MHz. 

This is comparable with the pump pulse from the figure-8 laser, which is potential to use 

for short pulse generation and others applications. 
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Figure 4.5: Optical power versus time for the short-pulse laser pumped SC output. 

4.5 Relative Intensity Noise (RIN) Characteristics of the 

Broadband Source.  

Here, we also measured the RIN characteristics of the supercontinuum source. The 

detailed RIN information from 10 to 100 MHz is shown in Figure 4.6. First, the RIN 

value of figure-8 fiber laser is measured as a reference. The RIN value is -93.8 dBc/Hz. 

Then the RINs of broadband source are determined. At the beginning, the RIN value is 

very high. The high RIN level results from the nonlinearity and dispersion behaviors at 

the beginning of spectrum broadening. As the spectrum is broadened and flattened, the 

RIN decreases progressively. Finally, the RIN of the flat and broadband SC is 

comparable to the pump pulse laser source and even can be lower than pump laser. At 

101.5 mW pulse pumped SC source, the corresponding RIN is -96dBc/Hz, which is 

2dBc/Hz lower than the Er-doped fiber laser. The RIN of the broadband source is well 

suppressed instead of amplification in SC generation.  
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Figure 4.6: Comparison of RIN characteristics of the SC source and the pump laser. 

4.6 Comparison of the Supercontinuum Generations Using 

CW-HNLF and Pulse-PCF 

Firstly, ultra-broadband SC laser source using CW laser pumped and HNLF are obtained 

successfully. The bandwidth is more than 1100 nm, spanning from 900 nm to more than 

2000 nm, which is much wider than other reports using similar technologies. Particularly, 

the ultra-broadband SC source using multimode pump lasers maintains low cost. The 

optical spectrum is almost flat and smooth except for two apparent peaks. And, the output 

optical power is up to hundreds milliWatt. The single-line structure is useful to broaden 

the optical spectrum with minimum bandwidth limitation. Secondly, a broadband and flat 

SC light source has been obtained by using ps pulse trains and PCF with flat dispersion. 

The optical spectrum of SC source is from 1200 to 1920 nm. The spectrum flatness of the 

broadband source is better than 11dB. No obvious pump peak is observed. The high 
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flatness and wide bandwidth are obtained simultaneously, which is much better than 

other SC generations using similar technologies. In particular, the pump wavelength is in 

the optical communication window, which is critical in practical commercial application. 

In short, our flat broadband SC source is compact, stable, and free from spectral fine 

structure.  

Compared with SC based CW and HNLF, the PCF-generated SC is very flat and 

without the residual pump peak, which is practical in commercial applications. The CW 

laser pumped SC laser source has higher output power and maintains low system cost, 

which is also important for commercial products. 
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CHAPTER 5 CONCLUSIONS 

5.1 Summary 

In this section, conclusions and future work are summarized. Two different SC sources: 

CW laser pumped HNLF and ultra-short pulse laser pumped PCF, have been investigated 

in this thesis, because of their numerous applications such as in frequency metrology, 

OCT, as well as DWDM, etc.  

Firstly, we have demonstrated an ultra-broadband SC source using CW laser 

pumped HNLF, which is mainly composed of two low-cost multimode 975 nm CW 

pump lasers, 8 m long EYDF and 1.21 km HNLF. The 975 nm pump light is absorbed 

firstly by EYDF and converted to 1543 nm ASE seed light, which is nearby the ZDW of 

HNLF. Then the light experiences intense spectral broadening by using nonlinear effects, 

such as SPM, XPM, SRS, MI and FWM. The role of nonlinear effects in SC generation 

has been discussed, which provides detailed evidences to understand the internal physic 

mechanism. The SC spectrum from 900 to more than 2000 nm has been obtained 

successfully. It is seen that apart from the pump peak and first-order SRS peak, the 

remaining spectrum is relative flat. The total output optical power is more than 200 mW. 

The stability of the optical spectrum and power level is well maintained after several 

hours of operation. Additionally, this SC laser source is considered low cost broadband 

source, which is useful for commercial applications. 

Secondly, a broadband fiber-based SC laser source covering from 1200 to1920 

nm has been generated by using picosecond pulse laser pumped PCF with flat dispersion. 

This broadband source consists of a home-made figure-8 fiber laser, an EDFA and 13m 
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long PCF with flat dispersion between two ZDWs. For this SC generation, the pump peak 

is absorbed completely and almost disappears in the final optical spectrum. The optical 

spectrum without any obvious peaks shows smooth and fine structure free characteristics. 

The spectral bandwidth is more than 700 nm while the spectrum flatness is better than 

11dB, which is originated from SRS, FWM and MI. The total optical output power and 

power spectral density are 35.5 mW and -13 dBm/nm, respectively. Similarly, the long 

term stability of this SC source is well maintained.  

Above all, the HNLF and PCF are considered as high nonlinear media in two 

kinds of configurations, separately. The detailed investigation in this thesis is useful to 

understand the highly complex process in SC generation. In addition, both of the two SC 

laser sources have the potential to be commercial products. 

5.2 Future Work 

Future research will focus on the high quality SC with high power spectral density and 

spectrum flatness, which can be widely commercialized.  

First, in the single-line CW laser pumped structure much ASE power in the 

forward direction is not used in SC generation. It has been demonstrated that all the ASE 

from both of forward and backward can be used in SC generation. Considering the 

bandwidth of optical device, free space coupler is a good choice in proper design. Then 

high quality SC with ultra-broadband width and high output power can be obtained in 

future work. 

Second, the length of the Er/Yb co-doped fiber and HNLF can be optimized 

further, which is useful to improve the efficiency of SC generation.  
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Third, the peak power of pulse trains and the length of PCF are key parameters to 

generate SC source. High peak power pulse can induce sufficient nonlinear effects to 

yield broadband SC. We believe that high quality SC source can be generated by using 

short pulse laser with higher peak power. Besides, the optimized dispersion properties 

and length of PCF also can broaden and flatten the SC spectrum further. 

Fourth, the applications of SC are considered. High quality SCs can be used in 

ultra-short pulse generation and OCT. 
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