
 i

A Formal Framework for Trace Abstraction and Correlation

Ali Mehrabian

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science at

Concordia University

Montreal, Quebec, Canada

December 2010

© Ali Mehrabian, 2010

 ii

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Ali Mehrabian

Entitled: “A Formal Framework for Trace Abstraction and Correlation

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science

Complies with the regulations of this University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

 __ Chair
 Dr. D. Qiu

 __ Examiner, External
 Dr. J. Bentahar, CIISE To the Program

 __ Examiner
 Dr. A. Agarwal

 __ Supervisor
 Dr. A. Hamou-Lhadj

Approved by: ___
 Dr. W. E. Lynch, Chair
 Department of Electrical and Computer Engineering

____________2010_____ ___________________________________

 Dr. Robin A. L. Drew

 Dean, Faculty of Engineering and

 Computer Science

 iii

Abstract

A Formal Framework for Trace Abstraction and Correlation

Ali Mehrabian

Understanding what a software system does and why it does it this way can enable

several software engineering tasks including maintenance, performance, and most

recently security.

The understanding of software behavior requires some sort of tracing methods. Traces are

generated by observing the system during execution. They are then analyzed by users.

This analysis, however, is often a tedious task due to the large size of typical traces.

Several trace abstraction techniques have been proposed to reduce the impact of this

problem. These techniques do not use a formal representation of a trace which hinders the

ability to assess their effectiveness. In this thesis we present a formal framework that

models trace of routine calls and trace abstraction techniques based on pattern matching.

We also present a new method for correlating traces generated from different system

using our framework.

The framework is implemented and applied to several traces generated from various

object-oriented systems. The results of these case studies are presented in this thesis.

 iv

Acknowledgment

During my Masters of Computer Engineering, I had the privilege to work with some

expert and experienced professionals, which was truly an enriching experience.

My heartiest thanks to Dr. Abdelwahab Hamou-Lhadj, my supervisor, for showing

confidence in me, providing me with initial spark for the topic, listening to my ideas no

matter how vague they were and for constantly providing me support from his vast source

of knowledge.

In addition, I would like to thank my lab mates and especially Mr. Amir Pirzadeh for

their help. They took time out of their research to discuss with me about my topic and

sometimes providing me useful tips and tricks to get the work done.

Lastly, I would like to thank my family in Iran. They always backed me up and had been

supportive throughout the course of my studies.

 v

Table of Contents

List of Tables vii

List of Figures viii

Chapter 1. Introduction 1

1.1. Problem and Motivation 1

1.2. Research Contributions 2

1.3. Thesis Outline 3

Chapter 2. Background 4

2.1. Software Evolution and Maintenance 4

2.2. Program Comprehension 5

2.3. Static and Dynamic Analysis 7

2.4. Trace Abstraction 7

2.5. The Edit Distance 10

Chapter 3. Framework for Trace Analysis 11

3.1. Definition of Trace 12

3.2. Formalization of Pattern Based Trace Abstraction Techniques 15

3.3. Formalization of Trace Correlation 29

3.4. Summary 40

Chapter 4. Evaluation 42

4.1. Target Systems 42

4.2. Generating Traces 43

 vi

4.3. Application of the Trace Correlation Technique 45

4.4. Discussion 52

Chapter 5. Conclusion 54

5.1. Research Contributions 54

5.2. Opportunities for Further Research 55

5.3. Closing Remarks 56

Bibliography 57

 vii

List of Tables
\

Table 3.1. Summary of functions and predicates for trace abstraction and correlation
framework………………………………………………………………………………41

Table 4.1. Statistics on ArgoUML traces……………………………………………….46

Table 4.2. Statistics on JHotDraw traces………………………………………………..47

Table 4.3. Comparison result for Argouml……………………………………………...48

Table 4.4. Comparison result for JHotDraw…………………………………………….50

Table 4.5. Remained distinct methods in circle_noInit_noRec in ver. 5.2…………….50

Table 4.6. Remained distinct methods in circle_noInit_noRec in ver. 5.3……………..50

 viii

List of Figures

Figure 3.1 : Example of a trace of routine calls…………………………………….……13

Figure 3.2 :Example of a trace of routine calls and its DAG graph……………………...18

Figure 3.3: Identical subtrees are mapped to each other………………………………...20

Figure 3.4 : Similar subtrees are mapped to each other under ignore order
criteria…………………………………………………………………………………....22

Figure 3.5 : similar subtrees are mapped to each other under ser criteria…………….…23

Figure 3.6 : An execution trace compared to a certain depth…………………………....24

Figure 3.7 : Two sequences of calls containing utility methods…………………………26

Figure 3.8 : Two sequences of calls with distance of three……………………………..27

Figure 3.9 : Applying the flattening matching criterion………………………………...28

Figure 3.10 : The subtrees of the two traces are mapped using the 'identity' matching
criterion……………………………………………………………………………..…...34

Figure 3.11 : Mapping subtrees using the ‘ignore order’ criterion……………………...35

Figure 3.12 : Mapping subtrees using the ‘set' criterion…………………………...........36

Figure 3.13 : The containment relationship between the matching criteria……..............37

Figure 3.14 : The Venn diagram representing the distance between T1 and T2
……………………………………………………..……………………………..….…..38
Figure 3.15 : dist and dif are proportionally related...……………………………….…..39

 1

Chapter 1. Introduction

1.1. Problem and Motivation

Maintaining a large software system is not an easy task. Software engineers have often to

understand what the system does before they can make any changes to the system. This is

particularly important for those systems with poor documentation and for which the

original designers have moved to other projects or companies.

In this thesis, we focus on techniques that permit the understanding of the behavioural

aspects of software systems. These techniques often rely on tracing and run-time

monitoring to generate information from a running system for further analysis. Traces,

however, are overwhelmingly large, which hinder their proper analysis. Several trace

abstraction have been proposed. Although these techniques vary in their design, they all

focus on abstracting out the main content from the trace despite the trace being massive.

It is hard, however, to evaluate these techniques due to fact that they are often described

in a non-formal way leaving room for ambiguity and misinterpretation. They also require

extensive experimentations in order to validate their effectiveness. This appears to be due

to the lack of a formal framework that can formally define the concept of traces and trace

analysis methods.

The objective of this thesis is to present a formal framework for trace abstraction and

correlation techniques. We believe that, if adopted, our framework can serve as the basis

of many other techniques that can be defined and evaluated using the framework.

 2

The framework focuses on trace abstraction techniques based on pattern detection

[Hamou-Lhadj 03a, De Pauw 98], which are perhaps the most used trace simplification

methods. We also present in this thesis a formalized trace correlation method that allow

comparing traces generated from different systems. This is particularly important for

comparing traces generated from two subsequent versions of the same system to

understand the effort required to maintain it.

The framework is defined in a way that is easily extendible. One can add new definitions,

methods, or any other analysis techniques.

The traces used in this thesis are traces of routine calls. We use the terms routine,

method, procedure, and function interchangeably.

1.2. Research Contributions

The main contributions of this thesis are as follows:

• A complete formal framework that models traces of routine calls and related

concepts. The framework also covers trace abstraction techniques based on

pattern matching.

• A new approach for trace correlation where traces are compared based on their

behavioural patterns. The approach is formalized.

• The application of the framework to several traces generated from different

systems. The results show the effectiveness of our approach.

• The framework has been implemented in Java in the Eclipse environment.

 3

1.3. Thesis Outline

The rest of the thesis is structured as follows:

• Chapter 2: This chapter starts with brief overview of related topics such as

Program Comprehension, Software Evolution and Maintenance. The literature

review includes trace abstraction techniques.

• Chapter 3: A formal framework is presented. The chapter starts with a formal

representation of routine call traces. It continues with formalizing trace

abstraction techniques based on pattern matching. After that, a new method for

trace correlation is presented and formalized.

• Chapter 4: The evaluation of our approach is presented in this chapter. The

chapter introduces the target systems with their different versions used in this

thesis. The characteristics of traces generated from these systems are discussed.

The results of applying the trace correlation process are presented and discussed.

• Chapter 6: We conclude the thesis in Chapter 6 with a summary of the main

contributions, future works, and a concluding remark.

 4

Chapter 2. Background

Software Engineering topics which are related to this thesis approach are namely,

Software Evolution and Maintenance and Software Comprehension. These topics are

described briefly according to the literatures and we will discuss the contribution of this

thesis in these terms. A survey of routine call traces and pattern detection techniques is

presented on which the unified framework of routine call traces is established. Edit

distance of strings and tree-to-tree distance measures are also presented in this chapter.

2.1. Software Evolution and Maintenance

The major reason for software maintenance is the software aging. According to Parnas,

software aging is inevitable [Parnas 94], but effective software maintenance can help

slow down the process of aging. An important part of a software life cycle is maintenance

[Lientz 80], is defined in IEEE standard 1219 as “The modification of a software product

after delivery to correct faults, to improve performance or other attributes, or to adapt the

product to a modified environment” [IEEE 93].

The software evolution term does not have a standard definition but most of the time it is

used as a substitute term for software maintenance. According to Bennett and Rajlich

[Bennett 00], the software maintenance phase starts after the software development

phase, i.e., after the software system is released. They further introduced the concept of a

staged software lifecycle model in which development and maintenance were considered

different phases in the software life cycle [Bennett 00].

 5

Maintenance activities are classified into four categories [Lientz 80].

• Adaptive Maintenance: This type of maintenance includes user enhancements and

modification to the existing software system to meet new user requirements.

• Perfective Maintenance: This involves making changes to the structure of the

system in order to make it easier to extend, modify, and maintain.

• Corrective Maintenance: This type of maintenance deals with fixing software

bugs in existing system functionality.

• Preventive Maintenance: This type of maintenance focuses on restructuring the

existing system to prevent the system from bugs that may occur in the future.

Since finding the behavioral difference of a software version with previous versions and

locating the part of the source code responsible for new behaviors is helpful for better

understanding of new software, Trace correlation approach is useful in all types of

maintenance.

2.2. Program Comprehension

According to Rugaber program comprehension refers to the process of acquiring

knowledge about a program in order to increase the knowledge to be able to do such

activities as bug correction, enhancement, reuse, and documentation [Rugaber 95].

Fjeldstad and Hamlen have stated that program comprehension accounts for 50% of the

time spent on software maintenance activities [Fjeldstad 83]. Acquiring new knowledge

of a system requires existing knowledge of a system [Mayrhauser 95] and trace

 6

correlation approach can help to find out the parts of the system responsible for new

behaviors by knowing the knowledge of the previous version behaviors. Newly acquired

knowledge will become a part of system knowledge that is essential to support the

understanding the system code. Based on their study, the authors conclude that software

engineers possess two types of knowledge:

• General Knowledge: This type of knowledge is gained from past experience in the

software engineering domain and is independent of the software under

consideration.

• Software-Specific Knowledge: This knowledge represents their level of

understanding of the software application under consideration.

In order to understand the system completely, software engineers use both general

knowledge and software-specific knowledge of the system under consideration

[Mayrhauser 95].

Documentation of systems are basically representing high-level view of the systems

while implementation contains more low-level programming details, and this is why

program comprehension is not an easy job [Rugaber 95]. If maintainers know behaviours

of previous versions of a system, the correlation approach may help them to target part of

the implementation responsible for new behaviours. Our approach can help maintainers

to find the proportion of new behaviours in new systems.

 7

2.3. Static and Dynamic Analysis

There exist two main techniques for analysis software systems: static and dynamic

analysis techniques.

Static analysis is usually based on the source code. The objective is to extract high-level

views from low-level implementation. The resulting views often contain the static

components of the system and the way they interact with each other.

Dynamic analysis, the focus of this thesis, is concerned with running the system and

analyzing the way it behaves. It is a suitable analysis technique if one wants to

understand how a particular aspect of the system is implemented instead of the whole

system as it is the case for static analysis. Dynamic analysis also allows relating program

input to output which can help maintainers understand the way the system behaves.

Run-time information is typically represented in the form of execution traces. Traces,

however, have been difficult to work with since they are often long. There are various

ways for generating traces including source code instrumentation (add probes – printout

statements – to the system). The source code is then recompiled and executed. If the

source code is not available, once can also instrument the operating system or the virtual

machine.

2.4. Trace Abstraction

To reduce the size of traces, several trace abstraction techniques have been proposed. The

objective is to help maintainers understand the main content conveyed in a trace instead

of spending time and effort browsing a large trace, which is a difficult task even with tool

support. Trace abstraction techniques can be divided into four categories:

 8

- Pattern detection

- Sampling

- Grouping

- Visualization

2.4.1. Pattern detection

A trace pattern is defined as a sequence of calls that is repeated non-contiguously in the

trace [De Pauw 98, Hamou-Lhadj 03a]. The idea is that once detected, software engineers

will only need to look at them once, which should reduce the effort required to go

through the trace. Trace patterns are also believed to encapsulate important behaviour

invoked in a trace, for example, a computation that is repeated several times in the trace.

Therefore, understanding trace patterns can help understand the main thing that happens

in the trace.

Patterns, however, are only effective if generalized. Using identical matching among

sequences of calls will lead to several patterns that might differ only slightly. Several

matching criteria such as ‘ignoring order of calls’ and ‘ignoring number of repetitions’

have been proposed in the literature [De Pauw 98, Hamou-Lhadj 03a]. In this thesis, we

focus on modeling trace patterns and the various matching criteria associate with them.

2.4.2. Sampling

Sampling is a trace abstraction technique in which the trace elements are sampled

according to sampling distance [Chan 03, Whaley 00, Dugerdil 07]. A sampling distance

 9

could be automatically determined by knowing other parameters such as the original size

of the trace and the final expected size of the sampled trace. If the sampling distance is n

it means that every n events in the trace should be considered. Using sampling, we can

obtain a trace which is n times smaller than the original trace.

Sampling, however, has been shown to be limited in many ways. The problem is that it is

very hard to define sampling parameters that can result in a sampled trace that is

reflective of the original trace. In addition, sampling parameters of even the same system

might not work for all the scenarios.

2.4.3. Grouping

In [Kuhn 06] a monotone subsequence summarization technique has been introduced

where a trace is composed of monotone subsequences separated by pointwise

discontinuities. A pointwise discontinuity occurs when the nesting level suddenly drops

as execution continues with the latest sibling of the previous events. Pointwise

discontinuities could be used as delimiters between groups of routines. A gap size

constant could be set to find the discontinuity pointwises.

2.4.4. Visualization

Several tools have been proposed to help software engineers work efficiently with large

traces (e.g. [Hamou-Lhadj 04], [De pauw 93]). These tools rely on visualization schemes

 10

that range from simple features such as zooming, highlighting, searching to advanced

layout including 3D layout and animations techniques.

These techniques, however, are tightly coupled to the visualization method that is used

which hinders their reuse. In addition, they require a lot of intervention from the users,

which if often a difficult task.

2.5. The Edit Distance

One of the key concepts used in this thesis is a way to compare traces. For this, we rely

on using the edit distance between trees. Trees are one of the most useful data structures

in many aspects of the science such as compiler design, information retrieval, graph

transformation pattern recognition, image processing, chemistry and etc.

The tree pattern matching problem to compare trees is related to the problem of string

pattern matching. Several distance measures for comparing traces have been proposed in

[Tai 79, Jiang 95, Selkow 77, Tanaka 88, Valiente 01(a), Yang 91, Valiente 01(b)], which

essentially differ on the underlying notion of subtrees. Distance measure between trees is

the generalization of the edit distance between strings [Gusfield 97, Stephen 94].

The edit distance between two trees refers to the cost of transforming one tree to the other

tree. That is, the distance between two trees is given by the shortest or the least

expensive, in terms of operations, sequence of elementary edit operations (insertion,

substitution, and deletion of labeled nodes) that allow transforming one tree into the

other. Despite their original definition in terms of elementary edit operations, distance

measures between trees can also be stated in terms of mappings that is substituting

similar or isomorphic subtrees to each other.

 11

Chapter 3. Framework for Trace Analysis

In general providing a framework of the problem domain may simplify our work,

especially when we are dealing with big definitions, concepts, algorithms and

calculations. In this chapter we present a unified framework in which most of the routine

call traces’ concepts and most of the pattern detection definitions and algorithms are

defined in a formal way. However every new research might define its own framework, a

unified and general framework provides the opportunity of comparing different

techniques. The framework could be extended to contain other abstraction techniques and

not only pattern detection.

The framework should be simple and complete. The purpose of framework is to simplify

the calculations and definitions, all concepts should be understandable and easy to use, so

the simplicity may motivate everyone to use the framework. When we say the framework

should be complete it basically refers to the accuracy of the framework in which all

definitions are accurate and related to each other logically and there is no contradiction.

If framework contains all concepts or at least all primary concepts it could provide the

basements for the users to define new concepts. Finally a simple and complete framework

could be a good help to invent a new technique and compare it with previous techniques.

 12

3.1. Definition of Trace

A trace of routine calls is a tree structure where the root represents the first call, followed

by subsequent calls made to different routines. We represent each node of a call tree as a

triple (label, nesting level, position) where:

• The label refers to the full name of the routine being invoked. The full name

usually includes the name of the routine itself preceded with any other information

that can uniquely identify the routine. For example, in an object-oriented system

the full name could include the class where the routine is defined as well as the

package that defines the class.

• The nesting level represents the nesting relationship among calls. By convention,

we assign to the root call a nesting level 0, the routines called by the root have a

nesting level 1, etc.

• The position, in our formalization model, represents the unique location of the

node in the trace where the routine is invoked. We will use this position to define

more operations on traces such as formalizing paths from one node to another.

Figure 3.1 shows an example of a routine call trace. In this example, the root node is

represented as (r1, 0, 0), and (r2, 1, 1) is the first callee of the root so the position is

incremented by one because it is the first call after the root, the nesting level is one level

upper than its parent which is the root. We can see that (r4, 2, 3) and (r4, 2, 7) both have

the same label but they do not have the same position. The nesting level of the direct

children is always one level higher than the nesting level of their parent as shown in

Figure 3.1.

 13

Figure 3-1 : Example of a trace of routine calls

Definition 3.1: We define a set T as the set of all nodes of the trace (i.e., the set of routine

calls). If u is an element of the set T, then we use the notation u.l to mean the label of the

node u, u.n the nesting level, and u.p the position of the call in the trace. More formally:

 T = {(l, n, p) | n ≥ 0 ∧ p ≥ 0 ∧ (l is string)} (3.1)

 14

Furthermore, if a subtree rooted at a node u satisfies the conditions of a trace (i.e. root has

a nesting level 0, thewe say that this subtree is a proper trace that means the subtree rooted

at u is an ordered tree and we show it with:

isTrace(u) ֞ subtree rooted at node u is a trace. (3.2)

Definition 3.2: We use the notation T[i] to mean the node at position i of the tree T. More

formally:

 T[i] = u ֞ u ∈ T ∧ u.p = i (3.3)

Definition 3.3: Each node except the root has a unique parent with a nesting level

decremented. The position of the parent is less than the position of the callees because the

parent must be called first - and this case it occurs in the trace - before the routines that it

calls. This is represented in Equation 3.4.

 parent(u) = v : u ≠ root ֞ i : i.n = u.n – 1 ר i.p < u.p ֜ v.p ≥ i.p (3.4)

It means that if v is the direct parent of u then the position of v is the maximum position

among all nodes whose nesting level is one level less than the nesting level of u. In Figure

3.1 we can see that for the node (r5, 2, 8) the parent node is (r2, 1, 6) since this is the node

that has the maximum position of the nodes whose nesting level is less than the nesting

level of (r5, 2, 8).

Definition 3.4: The set of callees of a node consists of all the nodes for which c is parent

as shown in Equation 3.5.

callee(u) = {c | parent(c) = u} (3.5)

 15

It should be noted that the function callee will return the direct children of a given node

and not all its descendants.

Definition 3.5: We define the path from the root to a particular node using the below

function, which is a recursive function that starts from node and collects the parents

nodes until the root is reached.

 (3.6)

The path returns a set that contains all the nodes who are the ancestor of the target node.

For example, in Figure 3.1, the path for the node (r4, 2, 7) is the set {(r2, 1, 6), (r1, 0, 0)}.

Definition 3.6: A subtree can be defined using the notion of path as follows:

subTree(u) = {c | u א path(c)} (3.7)
3.2. Formalization of Pattern Based Trace Abstraction

Techniques

As discussed in the background section, traces tend to be overwhelmingly large. Several

trace abstraction techniques have been proposed. Although these techniques vary in their

design their objective is to reduce the information contained in a trace while keeping the

main content.

 16

Among these techniques, the most popular ones are the ones based on detecting recurrent

patterns. The idea is that a pattern in a trace could indicate that something important in the

trace is happening. Software engineers can focus on these patterns when trying to

understand the content of a large trace. Patterns have been showed to be useful in several

software maintenance tasks such as understanding where a fault occurred, adding a new

feature, etc.

In this section, we formalize the various concepts related to trace abstraction based on

pattern detection. We particularly focus on the techniques that permit matching sequences

of calls based on various matching criteria. These criteria are important since detecting

identical patterns might not be useful because of the large number of patterns that may

exist in a trace [De Pauw 98, Hamou-Lhadj 02].

3.2.1. Definition of a Trace Pattern

Definition 3.7: We define a trace pattern as any sequence of calls that are repeated non-

contiguously more than once in a trace. It should be noted here that the focus on non-

contiguous repetitions since contiguous repetitions are due to loops and recursion and are

often removed from the trace and replaced with one sequence and the number of

contiguous repetitions of this sequence.

The best way to represent patterns in a routine call trace is by turning the trace into an

ordered directed graph (DAG) as shown in Figure 3.3. This is because any rooted tree can

be turned into its most compact form which is represented as an ordered DAG by

 17

representing repetitions only once [Hamou-Lhadj 03a]. In this figure, we can see that the

subtree rooted at node C is represented only once in the DAG that corresponds to the tree.

Hamou-Lhadj et al. presented an efficient algorithm for turning a tree into an ordered

DAG [Hamou-Lhadj 03a]. They also introduced the concept of comprehension units

which represents the nodes of the DAG generated from transforming a call tree.

According to them, the understanding of trace content is often reduced of understanding

its comprehension units since software engineers only need to understand sequence once

and reuse this understanding whenever the sequence appears again in the trace. In this

thesis, we also use the term comprehension unit in our formalization framework.

Definition 3.8: We define the symbol compi to refer a comprehension unit of a trace.

Every comp represents an equivalence class such that two nodes u and v of a tree are part

of this equivalent class if and only if the subtrees rooted at these nodes are similar.

Similarity is measured in various ways as we will describe in Section 3.2.2. In the absence

of similarity measures, the two subtrees must be identical - They have the same structure

and the nodes at corresponding places have identical labels. The set of all distinct subtrees

of a given tree consists of a subtree from each equivalence class.

u, v ∈ compx ֜ subtree(u) and subtree(v) are similar (3.8)

 18

Figure 3-2 :Example of a trace of routine calls and its DAG graph

Figure 3.2 shows the comprehension units of the tree T, which are represented by the

following sets:

A ∈ PClass0

B ∈ PClass1

C ∈ PClass2

E ∈ PClass3

G ∈ PClass4

 19

 M∈ PClass5

PClass1, PClass2, PClass3 and PClass4 are representing 4 class of patterns.

3.2.2. Matching Criteria Predicates

Identical matching when comparing subtrees will lead to many patterns that might only

differ slightly. Several criteria have been proposed in which similar (not necessarily

identical) subtrees could be deemed as instances of the same pattern [Hamou-Lhadj03(b)

]. In this section we have developed predicates that describe the most cited matching

criteria. The predicates take two nodes of a trace and return whether the subtrees rooted at

these nodes are similar based on the specified criteria or not.

Definition 3.9 - Identity: Two subtrees are identical if their roots have the same label and

both subtrees have the same structure and the same children. Figure 3.3 shows an example

of identical subtrees. In this figure, the subtrees rooted at B are identical. Based on this

matching criterion, the corresponding DAG (as shown in Figure 3.2) treats this two

subtrees as sequences of the same pattern.

 20

Figure 3-3: Identical subtrees are mapped to each other

The below fIdentical function has been developed to formalize the identity matching

criterion.

fIdentical(c1,c2) ֞ [(c1.l=c2.l) ٿ callees(c1)=callees(c2)=)] ڀ
 ٿ callees(c2) : (c.p – c1.p = c’.p – c2.p) א ’C : callees(c1) א c]
fIdentical(c,c’)]

Moreover

 fIdentical(c1, c2) ֞ fIdentical(c2, c1) (3.9)

The fIdentical() function is defined recursively. The function stops when it meets two

nodes c1 and c2 which have the same label and are both leaves. Otherwise if for every

callee of c1 there is a callee in c1 at the same position (c.p – c1.p = c’.p – c2.p) and that the

two callees are identical so two calls c1 and c2 are identically similar.

Definition 3.10 - Class Identity: In object-oriented programming, usually the label of

each node consists of the name of the package, the class that defines the method, the

object on which the method is invoked, and the method name. We can vary the

 21

information found in the label to group sequences of calls. For example, if we ignopred

the object and the method name and decide to consider only the class and package name

then we will end up with more sequences of calls that can be deemed as instances of the

same pattern. This is sometimes useful when we do not need to look at every single

object and method being invoked and we only need to understand the main interactiosn

that occur between classes. Similarly, one can focus on the interactions between

packages. In Equation 3.10, we show how similarity based on class name can be

formalized. Similar equations can be developed depending on which element of the call

label is considered. We use the notation of c.l.className to compare the labels based on

class names only.

fClassIdentical(c1,c2) ֞ [(c1.l.className=c2.l.className) ٿ

callees(c1) = callees(c2)=ڀ [(

 ٿ callees(c2) : (c.p – c1.p = c’.p – c2.p) א ’C : callees(c1) א c]

fClassIdentical(c,c’)]

Moreover

 fClassIdentical(c1, c2) ֞ fClassIdentical(c2, c1) (3.10)

Definition 3.11 – Ignore Order of Calls: In many software maintenance tasks, there is

no need to understand every single call invoked in a trace or even the order of calls. The

‘ignore order’ matching criteria leads to greater generalization of patterns by ignoring the

order of calls when matching two subsequences of calls. Figure 3.4 shows an example of

 22

six similar subtrees based on the ignore order criterion. The two subtrees rooted at node C

can be considered similar by ignoring the order of invocation of their children.

Figure 3-4 : Similar subtrees are mapped to each other under ignore order criteria

The below function formalizes the ‘ignore order’ matching criterion. The function is

recursive one and the stopping condition is when two subtrees have the same name and

appear at the leaf level ([(c1.l=c2.l) ٿ (callees(c1)=callees(c2)=)]). The second term

of the disjunction provides the fact that the number of similar children of the first call and

the second call should be the same. We can see that in this criterion the number of the

similar children of two sequences of calls should be the same but their order is not

important, so we use the cardinality symbol “ | | ” to model this.

fIgnoreOrder(c1,c2) ֞ [(c1.l=c2.l) ٿ (callees(c1)=callees(c2)=)] ڀ |{c’|c’ א

callees(c1) ٿ c” א callees(c2) : fIgnoreOrder(c’,c”)}| = |{c’|c’ א Callees(C2) ٿ

 |{callees(c1) : fIgnoreOrder(c’,c”) א ”c

 23

Moreover

fIgnoreOrder(c1,c2) ֞ fIgnoreOrder(c2,c1) (3.11)

Definition 3.12 - The Set Criterion: In this criterion, we are treating all children of a

subtree as a set (the order and the number of repetitions are ignored). If two sets are

exactly the same, two corresponding subtrees are considered similar. The set criterion

should lead to a greater compaction of the trace since many sequences of calls can now

be considered as instances of the same pattern. The resulting ordered DAG after applying

the set criterion is often very compact as shown by Hamou-Lhadj et al. in [Hamou-Lhadj

03a].

Figure 3.5 shows an example of applying the set criterion. The two subtrees rooted at C

are considered similar by treating their calls as sets (i.e. ignoring the order of calls and the

number of repetitions).

Figure 3-5 : similar subtrees are mapped to each other under set criteria

 24

The fSet function of Equation 3.12 formalizes the set criterion. It is again a recursive

function. The sopping condition for the function fSet() is when two nodes are leaves and

similar. Otherwise we need to make sure that for every callee of the first call there is at

least one similar callee among the children of the second call (c א callees(c1) : c’ א

callees(c2) : fSet(c,c’)).

fSet(c1,c2) ֞ [(c1.l=c2.l) ٿ callees(c1)=callees(c2)=)]] ڀc א callees(c1) :

 [callees(c2) : fSet(c,c’) א ’c

Moreover

fSet(c1,c2) ֞ fSet(c2,c1) (3.12)

Definition 3.13 - Depth Limiting: Two subtrees can be considered similar if they are

compared up to a certain depth and the rest of the calls that are beyond this depth are

ignored. Consider the following example:

Figure 3-6 : An execution trace compared to a certain depth

 25

In Figure 3.6, if we limit the depth of the tree to 2 (the root has depth 0), then the node

labeled E is ignored (since it appears at depth 3). In this case, the whole trace can be

reduced to A calling B which calls C and D. Since the sequence B calling C and D is

repeated contiguously then a significant reduction is obtained as shown in the

corresponding DAG. Usually the depth limiting criterion is combined with other criterion

for example the identity matching criterion as in this example.

The following function shows how depth_limiting combined with the identity matching

criterion is formalized. The only condition that we need to add to the identity criterion

function is “c1.n ≤ d ר c2.n ≤ d ” that checks the nesting level. Other definitions can

derive from this definition by varying the matching criterion that is used when the depth

limiting is used.

 fIdentical_depthLimit(c1,c2, d) ֞ [((c1.l=c2.l) ٿ callees(c1) = callees(c2)=) ר

c1.n ≤ d ר c2.n ≤ d) ڀ ((c1.l=c2.l) ר c1.n = d ר c2.n = d)]] ڀc א callees(c1) :

 [fIdentical_depthLimit(c,c’, d) ٿ callees(c2) : (c.p – c1.p = c’.p – c2.p) א ’C

Moreover

 fIdentical_depthLimit(c1, c2, d) ֞ fIdentical_depthLimit(c2, c1, d) (3.13)

Definition 3.14 - Ignoring Utilities: Hamou-Lhadj et al. have introduced a new

matching criterion known as the removal of utilities [Hamou-Lhadj 06]. According to

them utilities are any component that implements low-level functions that is not needed

to understand the overall behavior invoked in a trace. They argued that these utilities

should be removed when looking for trace patterns. The removal utilities permit better

generalization of trace patterns without necessarily losing important information.

 26

In Figure 3.7, the two sequences rooted at B can be considered similar if u1 and u2

(utilities) are ignored during the matching process. It should be noted, however, that it is

not always simple to identify what constitutes a utility. For this purpose, several

techniques have been proposed including a utilityhood metric that was proposed by

Hamou-Lhadj et al. [Hamou-Lhadj 06] which measures the extent to which a system

component could be considered as a utility. The detection of utilities is beyond the scope

of this thesis.

Figure 3-7 : Two sequences of calls containing utility methods

To apply utility removal criterion we need to remove all utilities first from the set T and

then we can use one of the other criterion to abstract the trace.

Definition 3.15 - Edit Distance: The edit distance is a measure of similarity between two

subtrees [Tai 79]. More particularly, it refers to the number of edit operations (insertion,

 27

substitution, deletion) that are required to transform one subtree to another subtree. If the

subtrees are isomorphic then the number of operations is zero. The usage of the edit

distance for pattern matching ha first been proposed by Hamou-Lhadj et al. in [Hamou-

Lhadj 03a]. The authors argued that there are many situations where two subtrees might

slightly vary and that this variation cannot be captured with existing matching criteria

such the ignore number of repetitions, ignore order, etc., which tend to be more

structural. In such case, one can measure the difference between two subtrees and decide

based on a threshold whether the subtrees can be considered as instances of the same

pattern or not.

The application of the edit distance requires a threshold to be given as input. For example

in Figure 3.8, if the minimum edit distance is four then two subtree rooted at node A can

be considered similar because when the transformation of the first subtree into the second

subtrees rooted at A required to delete the nodes E and F and insert the node G that is

three edit operations, so the distance between the two subtrees is three which is less than

four.

Figure 3-8 : Two sequences of calls with distance of three

The formal definition of the edit distance is deferred to the Section 3.3, where a trace

correlation mechanism is presented in which the edit distance is the main mechanism.

 28

Definition 3.16 – Flattening: Flattening consists of ignoring the hierarchal structure of

the calls and look at the nodes as they are flattened linearly and compare them. This

matching criterion was proposed by De Pauw et al. [De Pauw 98]. The authors argued

that it can lead to better generalization, especially in situation where the main objective is

to simply understand the key components being invoked and not how they are structure.

In Figure 3.9, two subtrees rooted at node C can be considered similar if their hieratical

structure is ignored, we can see that in the first subtree, the node B occurs twice but once

flattened, the repetition is also ignored.

Figure 3-9 : Applying the flattening matching criterion

In order to provide a formal definition for the flattening criterion we define a new subtree

function which is subTree_label() that behaves exactly like the subtree function defined

 29

in Equation 3.6 except that it returns a set of calls in terms of their label and not as triples

(label, nesting level, position).

The formal definition for the predicate fFlattening() is provided below.

 fFtattening(c1, c2) ֞ c1.l = c2.l ר subTree_label(c1) = subTree_label(c2) (3.14)

The expression “subTree_label(c1) = subTree_label(c2)” is used to mean that two sets

returned by subTree_label must be the same.

3.3. Formalization of Trace Correlation

3.3.1. Introduction

Finding the correlation between two traces of routine calls may help in a variety of

software maintenance tasks including:

- Understanding how specific features of subsequent versions of the same system

differ. This is particularly important to estimate the amount of effort required to

understand the changes made to an existing system, which in turn can help

maintain and test the new system.

- Checking the consistency of the running system with design specification. This can

help determine if the system does what is supposed to do. We recognize, however,

that this require more than trace correlation since high-level design specifications

do not contain detailed information that would exist in a trace. In such a case, trace

 30

abstraction (based on the techniques presented in the previous section) should be

employed before the correlation process takes place.

- Trace correlation has also been used in the area of security, especially in the

context of redundancy and diversity architectures. Two instances of the same

system run on different nodes. One node is kept offline and is considered secure

whereas the other node is in operation and therefore vulnerable to attacks. The

execution traces generated from both instances are correlated to detect any

deviations from normalcy, which could indicate the presence of an attack.

In this thesis, we propose using the edit distance to measure the correlation between two

traces. However, comparing traces based on their mere events might turn to be inefficient

due to the considerably large number of events generated. Instead, we propose, in this

thesis, to compare traces based on their behavioral patterns. As discussed in the previous

section, trace patterns are believed to represent the main behavior invoked in a trace. Two

traces should therefore be similar if they exhibit the same behavior despite the number of

events they contain. In addition, to allow enough generalization, we do not limit

ourselves to identical patterns. Instead, we propose using different matching criteria to

provide enough flexibility to users to vary the correlation criteria. For example, users

might want to ignore the number of repetitions when comparing two patterns of different

traces.

3.3.2. The Edit Distance

As mentioned in the previous section, the edit distance between two trees refers to the cost

of transforming one tree into the other one [Tai 79]. In other words, the distance between

 31

two trees is given by the shortest or the least-costly sequence of elementary edit operations

(insertion, substitution, and deletion of nodes) that allow transforming one tree into the

other. Despite their original definition in terms of elementary edit operations, distance

measures between trees can also be stated in terms of mappings that is substituting similar

or isomorphic subtrees to each other.

One of the most efficient way to find the distance between two trees T1 and T2 is first to

find the largest similar (or isomorphic) structures of two trees, where similar structures

identify the unchanged part of the T1 during transformation of T1 to T2.

Definition 3.15 - Mapping Set: The mapping set represents a one-to-one correspondence

between the nodes of T1 to T2 when the ancestors’ order is preserved. We mean by the

ancestor order needs to be preserved that if two nodes are mapped to each other we cannot

map the parent of the first node to a child of the second node. In other words, the parents

need to be mapped to each other and the children need to be mapped to each other.

The formula 3.15 models formally the concept of mapping set. The pair (i, j) in M

establishes a substitution of T1[i] by T2[j].

M = { (i , j) | T1[i] א T1 ר T2[j] א T2 } (3.15)

We also define two other sets I and J. The set I refers to the all nodes of T1 for which we

could not find a correspondence in T2 and the nodes in the set J are the T2’s nodes that are

not included in the mapping set (i.e., they do not have corresponding nodes in T1).

I = { T1[i] | j : (i , j) א M } (3.16)

J = { T2[j] | i : (i , j) א M } (3.17)

 32

In order to transform T1 to T2 we need to substitute the nodes of T1 which are in the

mapping set by the nodes of T2 which are in the mapping set and also remove the nodes in

I from T1 and insert the nodes of J in to T1. The distance between T1 and T2 is represented

by the following function:

dist(T1 , T2) = |M|p + |I|q + |J|r (3.18)

where p is the cost of substitution, q is the cost of deletion, and r is the cost of insertion.

We can easily see that the edit distance is strongly related to the size of the mapping set.

Given that there are many ways to transform T1 into T2 (resulting in several different

mapping sets), we are concerned with finding a mapping that can reduce the cost of the

edit distance. In general, a large mapping set between T1 and T2 represents that less

modification effort (i.e., deletion and insertion) needs to be made to transform T1 to T2.

This cannot be done unless we find the largest similar forests between the two trees T1 and

T2. There are also a number of conditions that need to be satisfied when finding the

distance between the ordered trees T1 and T2 [Tai 79]:

If (i1 , j1), (i2 , j2) and (i , j) א M then (3.19)

a) 1 ≤ i ≤ |T1| 1 ר≤ j ≤ |T2|

b) i1 = i2 ֞ j1 = j2

c) i1 < i2 ֞ j1 < j2

d) T1[i1] is an ancestor (descendant) of T1[i2] ֞ T2[j1] is an ancestor

(descendant) of T2[j2]

3.3.3 Pattern-Based Trace Correlation

 33

As we mentioned earlier, we use the concept of patterns to compare two traces instead of

relying of low-level events invoked in a trace. A one-to-one correspondence between the

roots of the similar patterns (subtrees) in the two trees could generate a mapping set in

which the pairs refer to the similar patterns (more precisely, they refer to the roots of the

patterns). Matching criteria are used to match patterns to each other so as to avoid mere

identical matching which can cause some slightly different patterns to be unmapped.

Moreover, since we need to find the largest common forest, we can map every subtree

which occurs at least once in each tree. We can also map the leaves to the ones in the other

tree. Using this kind of mapping we can find a distance between the two trees.

However, this requires refining the mapping set definition presented in formula 3.17 to

consider the matching criteria used to map subtrees from each trace to each other. In the

following paragraph, we show how the identity, ignore order, and treating the calls as a set

are defined in the framework. It should be noted that:

a) The ignore repetitions matching criterion is not defined. Instead, we propose

removing contiguous repetitions before processing the traces. This preprocessing

stage eliminates the necessity to use the ‘ignore number of repetitions’ criterion.

b) Not all the matching criteria are taken into account in this thesis. However, we

anticipate the other matching criteria can readily be defined based on the

framework presented here.

The Identity Matching Criterion:

 34

Using this matching criterion, two subtrees from the traces are matched if they are

isomorphic (same structure and children). In other words:

If (i , j), (i1 , j1), (i2 , j2), (u , v) א M (mapping set) then the following conditions

must hold:

a) i and j have the same number of children

b) i.l = j.l

c) i1 = j1 ֞ i2 = j2

d) (u , v)א M ֜ i א children(u) ֜ j א children(v) : (i.p – u.p = j.p – v.p)

 M א (i , j) ר

Figure 3.10 shows an example of a pattern-based mapping scheme using the identity

matching criterion.

Figure 3-10 : The subtrees of the two traces are mapped using the ‘identity’
matching criterion

 35

The Ignore Order Matching Criterion:

Using this matching criterion, two subtrees from the two traces are matched if they contain

the same children no matter in which order they appear. In other words:

 If (i , j), (i1 , j1), (i2 , j2), (u , v) א M (mapping set) then the following conditions must

hold:

a) i and j have the same number of children

b) i.l = j.l

c) i1 = j1 ֞ i2 = j2

d) (u , v)א M ֜ i א children(u) ֜ j א children(v) : (i , j) א M

An example of how subtrees from two trace are mapped using the ‘ignore order’ criterion

is shown in Figure 3.11. In this figure, the subtrees rooted at C and B are mapped to eeach

other despite the differences in the order of calls.

Figure 3-11 : Mapping subtrees using the ‘ignore order’ criterion

 36

The Set Matching Criterion:

The set matching criterion enables the mapping between two subtrees by treating their

children as a set. In other words, the order of calls and repetitions of the same calls are

ignored. More formally, if (i , j), (i1 , j1), (i2 , j2), (u , v) א M (mapping set) then the

following conditions must hold:

a) i.l = j.l

b) (u , v)א M ֜ i א children(u) ֜ j א children(v) : (i , j) א M

c) (u , v)א M ֜ j א children(v) ֜ i א children(u) : (i , j) א M

Figure 3.12 shows an example on how the set matching criterion is used. In this figure, the

subtrees rooted at C, for example, are considered similar by treating their children as a set.

Figure 3-12 : Mapping subtrees using the ‘set' criterion

The set criterion subsumes the other criteria since it also ignore the order of calls. The

order of call subsumes the identity matching criterion. Figure 3.13 shows this relationship.

 37

The set criterion is the least restrictive and it is expected to result in high similarity,

whereas the identity criterion is the most restrictive.

Figure 3-13 : The containment relationship between the matching criteria

3.3.4 The Similarity Metric

Once the mapping set is defined as shown in the previous section. We need to define the

sets I and J. This is relatively easy since the set I represents all the subtrees in T1 that are

not in T2 and the set J represents the subtrees in T2 that are not in T1. A simple browsing

of the trace can determine this. In addition to this, we also need to determine the weight of

substitution, insertion, and deletion operations in order to compute the dist(T1, T2), which

is defined in Formula 3.18 as:

dist(T1 , T2) = |M|p + |I|q + |J|r (3.20)

 38

Since we do not perform any substitution in our approach then p = 0. This is because we

use the mapping set to keep what is similar between the two traces. For everything else,

we either insert or delete to make T1 look like T2. We assume, in this thesis, that the

insertion and deletion weights (i.e. the values of q and r) is the same and equals 1.

Since | I | = | T1 | - | M | ר | J | = | T2 | - | M | then

dist (T1 , T2) = | M |p + (| T1 | - | M |)q + (| T2 | - | M |)r

Assuming that q = r =1, and we know that p = 0 the distance between T1 and T2 is

therefore:

dist (T1 , T2) = | T1 | + | T2 | - 2| M | (3.21)

Figure 3-14 : The Venn diagram representing the distance between T1 and T2

In order to find the maximum and minimum value of dist (T1 , T2) we need to find the

maximum and minimum value of | M |. The worst case happens when T1 and T2 are

completely different so | M | = 0 (i.e. the mapping set is empty) and therefore min(| M |) =

0;

 39

When T1 is included in T2 or T2 is included in T1 the maximum value of | M | is reached

and if (T1 = T2) then dist(T1 , T2)=0. In other words, no edit operations are needed to go

from T1 to T2, and in this case max(| M |) = min(| T1 | ,| T2 |)

Using Formula 3.21, the following relationships hold:

| M | = 0 ֜ dist(T1 , T2) = | T1 | + | T2 |

T1 = T2 ֜ |M| = | T1 | = | T2 | ֜ dist(T1 , T2) = 0

In order to establish a linear relationship between dist (T1 , T2) and dif (T1 , T2) we have

provided the graph in figure 3.15 describing the following calculations.

dist (T1 , T2) ן dif (T1 , T2)

tag α = ௗ
ௗ௦௧

 = ଵ
|்|

 ֜ dif = ௗ௦௧
|T|

dist = dif × | T | (12)

sim(T1 , T2) = 1 – dif(T1 , T2)

Figure 3-15: dif and dis are proportionally related

 40

3.4. Summary

In this chapter we presented a complete formal framework to represent concepts that

pertain to trace abstraction and correlation. Particularly, we focused on modeling trace

structure, its subtrees, and its patterns. A special attention was paid to patterns since they

are often used as an effective strategy for trace abstract. We also presented a complete

formalization of trace correlation concepts based on the edit distance and pattern

matching. The summary of the functions presented in this chapter can be found in Table

3.1.

 41

Table 3.1. Summary of functions and predicates for trace abstraction and
correlation framework

Term Description Type
|T| This function returns the size of the trace T Function
T[i] The ithnode in the Tree T. i is the location of

the node
Function

isTrace(u) Shows if subtree rooted from node u is a
proper trace

Predicate

T.root This function returns the root of the trace T Function
u.l This function returns the label of the node u Function
u.t This function returns the time stamp of the

node u
Function

u.n This function returns the nesting level of the
node u

Function

Parent(u) This function returns the parent of the node
u

Function

Callees(u) or children(u) This function returns a set of all direct
children of node u

Function

subTree(u) This function returns a set containing a tree
rooted from node u

Function

subTree_label This function is behaving exactly like
subTree(), but it returns just label of the
nodes

Path(u) This function returns a set of all node u’s
ancestors

Function

fIdentical(u, v) If two nodes u and v are identical Predicate
fIgnoreOrder(u, v) If two nodes u and v are isomorphic under

ignore order.
Predicate

fSet(u, v) If two nodes u and v are isomorphic under
set criteria

Predicate

fIdentical_depthLimit(u, v, m) If two nodes u and v are isomorphic under
some criteria and with the limit of the depth
up to m

Predicate

fFlattening(u, v) Ignore the hierarchical structure of subtree
and compare them

predicate

sim(u, v) Returns the similarity of two nodes u and v Function
dif(u, v) Return the difference of two nodes u and v Function
dist(u, v) Returns the distance of two nodes u and v Function

 42

Chapter 4. Evaluation

In this chapter, the applicability of our approach is evaluated by comparing different

versions of the same system and therefore using the formal framework concepts

presented in the previous chapter. We have implemented the framework in Java in the

Eclipse environment.

4.1. Target Systems

The traces used in this case study are generated from two Java-based systems (ArgoUML1

and JHotDraw2). We used three traces generated from three versions of ArgoUML and

compared them. Similarly, we compared two traces generated from two versions of

JHotDraw. The versions used in this thesis are: ArgoUML 0.26, 0.28, and 0.31.5 and

JHotDraw 5.2 and 5.3.

JHotDraw is a Java GUI framework for technical and structured graphics. It has been

developed as a "design exercise" but is quite a powerful tool. Its design relies heavily on

some well-known design patterns.

ArgoUML is the leading open source UML modeling tool and includes support for all

standard UML diagrams. Both systems have good online documentation. This is particular

important to validate our results in the absence of the original designers.

1 http://argouml.tigris.org/

2 http://www.jhotdraw.org/

 43

4.2. Generating Traces

We are using TPTP3 which is an Eclipse plug-in to profile Java applications to instrument

both JHotDraw and ArgoUML. Probes have been inserted in each entry and exit of a

method. The nesting level is increased as a new function is called and it will be decreased

at the return point.

4.2.1. ArgoUML

For each version of ArgoUML, we exercised several features which are: Drawing a UML

interface and a class, drawing a generalization dependency between them, and drawing a

package that contains two classes which are depended on each other, then switching to the

use case diagram mode and drawing an actor connected to two use cases. A trace is

generated for every feature (i.e., drawing a class, interface, package, actor and use case).

During the initialization of the program which is just starting and exiting the program

there is a trace which is called initialization that has been generated. The traces generated

for the above features contain the initialization part. We removed the initialization part

from the trace generated from drawing a class. The resulting trace, which is called

class_noInit, is used in this thesis to discuss the results obtained. The traces of two

versions 0.26 and 0.31.5 are compared to each other and also the traces of the two versions

0.28 and 0.31.5 are compared to each other to show the similarity of different versions of

ArgoUML software.

3 http://www.eclipse.org/articles/Article-TPTP-Profiling-Tool/tptpProfilingArticle.html

 44

The traces are preprocessed before they are compared by removing contiguous repetitions

and low-level utilities such as mouse movement events including mouseEntered,

mouseExited, mouseReleased, mousePressed and so on.

Table 4.1 shows the statistics about the ArgoUML traces. The table includes the original

size of the trace, the size after removing contiguous repetitions and utilities, and the

number of patterns detected using the ‘identity’, ‘ignore order’, and ‘set’ criteria.

4.2.2. JHotDraw

To generate traces from JHotDraw, we used the following features: Drawing a circle and

rectangle and closing the program. The initialization trace which consists of starting the

program and closing it is also generated (in version 5.3 we are opening a new session

also). The circle trace contains just the events generated by drawing a circle. Similarly, the

rectangle trace contains the events generated when drawing a rectangle. Table 4.2 contains

the information about the generated traces.

It should be noticed that in both systems the number of detected patterns using the three

matching criteria is very close, which indicates that there is not a significant variation in

the patterns of these systems. This shows that additional matching criteria need to be

investigated to further generalize patterns. In the following tables sometimes we are using

‘-‘ that means a number for this section is not applicable, for example for class_noInit the

term “Traces size after removing Utilities” does not mean because this trace is generating

after removing utilities and also contiguous repetitions of the traces Class and

Initialization, so The size of the trace for the terms “Original trace Size”, “trace size after

 45

removing Utilities” and “Trace size after removing Contiguous repetitions” are actually

the same.

4.3. Application of the Trace Correlation Technique

We applied It is proved that the similarity metric which is defined in this thesis shows the

distance of two routine calls traces when we are mapping the similar patterns to each

other. This metric could be valid if it shows the real similarity of two traces, so we need to

validate the metric using real data, however validation is not an easy job since similarity

could be interpreted optionally, but we are trying to provide the maintainers with the

feeling of how different two traces and consequently how different two systems are while

we know at least the similarity metrics shows the distance of two routine call trees.

Because this metric is capable of comparing two tree structured traces (routine call trace),

we are comparing the systems in terms of the methods’ name and calling processes (which

method calls which).

 46

Table 4.1. Statistics on ArgoUML traces

 Feature

 Trace information
Original Initialization Class Package Interface Actor Use Case Class

_noInit

Original Trace Size for 0.26 250152 28052 41584 37134 36777 39859 49132 -

Trace size after removing Utilities for 0.26 249969 28048 41567 37123 36766 39845 49107 -

Trace size after removing Contiguous repetitions and utilities
for 0.26 82999 13746 17999 16701 17093 18293 18792 2514

Number of distinct Identical patterns for 0.26 1309 421 595 552 592 620 603 139

Number of all Identical patterns for 0.26 27973 4964 6326 5878 6007 6402 6615 863

Number of distinct Ignored order Patterns for 0.26 1306 421 595 552 592 620 603 139

Number of all Ignored order Patterns for 0.26 27982 4964 6326 5878 6007 6404 6615 863
Number of distinct Set Patterns for 0.26 1301 421 596 552 593 621 603 139

Number of all Set Patterns for 0.26 27991 4966 6331 5880 6013 6411 6619 866

Original Trace Size for 0.28 219790 39524 50074 44606 42545 45882 54302 -

Trace size after removing Utilities for 0.28 219175 39516 50054 44594 42527 45865 54278 -

Trace size after removing Cont. repetitions and utilities for 0.28 82001 16812 21839 19953 20209 21156 21580 2435

Number of distinct Identical patterns for 0.28 1388 460 656 608 642 682 691 152

Number of all Identical patterns for 0.28 31705 6540 8367 7582 7727 8066 8193 868

Number of distinct Ignored order Patterns for 0.28 1392 460 656 608 642 682 691 152
Number of all Ignored order Patterns for 0.28 31726 6540 8367 7582 7727 8066 8193 868

Number of distinct Set Patterns for 0.28 1376 458 654 605 640 680 688 152

Number of all Set Patterns for 0.28 31732 6542 8369 7582 7729 8069 8194 869
Original Trace Size for 0.31.5 390937 49195 61301 61743 50105 57759 60232 -

Trace size after removing Utilities for 0.31.5 389989 49191 61255 61719 50071 57729 60184 -

Trace size after removing Contiguous repetitions and utilities
for 0.31.5 125061 18042 23979 21322 22532 23182 24148 3280

Number of distinct Identical patterns for 0.31.5 1533 479 669 605 655 733 766 160

Number of all Identical patterns for 0.31.5 51017 6931 9306 7995 8691 8943 9344 1312

Number of distinct Ignored order Patterns 0.31.5 1531 479 669 605 656 733 766 160
Number of all Ignored order Patterns 0.31.5 51025 6931 9306 7995 8693 8943 9344 1312

Number of distinct Set Patterns For 0.31.5 1519 476 667 602 654 730 763 160

Number of all Set Patterns For 0.31.5 51041 6931 9308 7995 8695 8944 9345 1312

 47

Table 4.2. Statistics on JHotDraw traces

4.3.1. ArgoUML

Table 4.2 shows the result of applying the trace correlation approach to traces

ofArgoUML. We can see that traces of the versions 0.28 and 0.31.5 are more similar than

the traces generated from versions 0.26 and 0.31.5. This is justified by the fact that closer

versions are, not necessarily, but most of the time more similar.

Feature
Trace information

OriginalInitializationCircleRectangleCircle_noInit Circle_noInit
_noRec

Original Trace Size for 5.2 39696 1879 10740 9443 - -

Trace size after removing Contiguous
repetitions for 5.2

1874 635 899 881 148 53

Number of distinct Identical patterns for 5.2 150 54 82 81 22 10

Number of all Identical patterns for 5.2 837 195 299 288 52 21

Number of distinct Ignored order Patterns for
5.2

150 54 82 81 22 10

Number of all Ignored order Patterns for 5.2 837 195 299 288 52 21

Number of distinct Set Patterns
for 5.2

148 54 82 81 22 10

Number of all Set Patterns
for 5.2

843 195 299 288 52 21

Original Trace Size for 5.3 124505 19800 36701 38817 - -

Trace size after removing Contiguous
repetitions for 5.3

21548 14303 15994 15963 984 260

Number of distinct Identical patterns for 5.3 352 101 213 206 107 29

Number of all Identical patterns for 5.3 8897 5764 6416 6391 464 179

Number of distinct Ignored order Patterns for
5.3

352 101 213 206 107 29

Number of all Ignored order Patterns for 5.3 8897 5764 6416 6391 464 179

Number of distinct Set Patterns
for 5.3

339 101 213 206 107 29

Number of all Set Patterns
for 5.3

8907 5764 6420 6391 464 179

 48

The initialization phase of different versions is done in a very similar way. For example

initialization in versions 0.28 and 0.31.5 are about 90% similar and initialization in

versions 0.26 and 0.31.5 are 74% similar. Moreover the Class_noInit in both versions 0.26

and 0.31.5 are 37% similar. This means that the 68% similarity between the traces of the

Class scenario of versions 0.26 and 0.31.5 is attributed to the initialization phase. We have

not attempted to duplicate this study to all scenarios but we suspect that the high

correlation between the various versions is due to the initialization phase which often does

not change from version to another.

Table 4.3. Comparison result for Argouml

Feature

Version

Origina
l

Initializatio
n

Class Packag
e

Interface Actor Use Case Class_n
oInit

0.26 VS 0.31.5 under
Identical Criteria

0.5165 0.7436 0.679
3

0.7316 0.7041 0.7234 0.7243 0.3731

0.28 VS 0.31.5 under
Identity Criteria

0.6604 0.9066 0.851
0

0.8904 0.8663 0.8796 0.8607 0.4157

0.26 VS 0.31.5 under
IgnoreOrder Criteria

0.5165 0.7436 0.679
3

0.7316 0.7042 0.7235 0.7243 0.3731

0.28 VS 0.31.5 under
IgnoreOrder Criteria

0.6626 0.9066 0.851
6

0.8904 0.8673 0.8796 0.8614 0.4157

0.26 VS 0.31.5 under Set
Criteria

0.5166 0.7436 0.679
3

0.7316 0.7042 0.7236 0.7244 0.3731

0.28 VS 0.31.5 under Set
Criteria

0.6647 0.9070 0.852
6

0.8914 0.8679 0.8803 0.8614 0.4227

4.3.2. JHotDraw

 49

Table 5.6 shows the result of comparing JHotDraw traces. We can see that the difference

between the two versions of JHotDraw is important, even when we compare the size of

the corresponding traces to each other. For example the size of the original trace after

removing contiguous repetitions for version 5.2 is 1,874 while the size of the same trace of

the same scenario after removing contiguous repetitions for version 5.3 is 21,548. This

shows that significant changes were made to the new version of JHotDraw.

Table 4.3 shows that the two JHotDraw original traces are significantly different (only

10% similarity). We can also see that the matching criteria did not have any effect on the

correlation process. This is a clear indication that additional criteria should be used.

Similar to ArgoUML, most of the initialization phase is the same in both versions.

However, the implementation of the core functionality (for example the circle with no

initialization) is different from one version to another (only 24% similarity). to be are

However this is not a good justification why these two versions are very different

(similarity of about 10%).

To validate the accuracy of similarity metric we present the analysis of the ‘drawing a

circle’ scenario. First the initialization trace is removed from drawing a circle.

Circle_noInit of version 5.2 and rectangle_noInit of version 5.2 are 64% similar and also

circle_noInit of version 5.3 and rectangle_noInit of version 5.3 are 71% similar. In order

to focus more on core functionality of drawing a circle, we can remove the rectangle from

the circle since drawing a circle and rectangle in both versions have many common

patterns. Table 4.6 shows the final size of the drawing a circle from which initialization

and rectangle are removed. Most of the classes invoked in circle_noInit_noRec are from

 50

EllipseFigure class and we know that this class is responsible for drawing a circle (we

checked it in documentation).

Table 4.4. Comparison result for JHotDraw

Feature

 Version

Original Initialization Circle Rectangle Circle_noInit Circle_noInit

_noRec

5.2 VS 5.3 under Identical Criterion 0.1087 0.449 0.0666 0.0653 0.1713 0.2364

5.2 VS 5.3 under IgnoreOrder Criterion 0.1087 0.449 0.0666 0.0653 0.1713 0.2364

5. VS 5.3 under Set Criterion 0.1087 0.449 0.0666 0.0653 0. 21713 0.2364

Table 4.5. Remained distinct methods in circle_noInit_noRec in ver. 5.2

1. CH.ifa.draw.standard.StandardDrawingView.paint
2. CH.ifa.draw.standard.StandardDrawingView.mousePressed
3. CH.ifa.draw.standard.StandardDrawingView.mouseReleased
4. CH.ifa.draw.standard.StandardDrawingView.mouseDragged

Table 4.6. Remained distinct methods in circle_noInit_noRec in ver. 5.3

1. CH.ifa.draw.standard.AbstractFigure.containsPoint
2. CH.ifa.draw.standard.QuadTree.add
3. CH.ifa.draw.standard.StandardDrawingView$1.mouseReleased
4. CH.ifa.draw.standard.SelectionTool.mouseMove
5. CH.ifa.draw.standard.StandardDrawingView$1.mousePressed
6. CH.ifa.draw.util.UndoableTool.mouseDrag
7. CH.ifa.draw.standard.CompositeFigure._addToQuadTree
8. CH.ifa.draw.util.UndoableTool.mouseDown

Table 4.5 and 4.6 show the list of distinct method in circle_noIit_noRec in versions 5.2

and 5.3 respectively from which common distinct methods are removed. An analysis of

these two versions with a particular emphasis on drawing the circle shows several major

differences in the implementation of this scenario from one version to another, which

justifies the low similarity metric obtained by our approach. In what follows, we show the

key differences:

 51

- The method “StandardDrawingView.paint” in ver. 5.2 is changed to the

“StandardDrawingView.paintComponent”, and both of these methods are

responsible for painting the drawing view and both are calling the “painter.draw”

method.

- In addition, the methods “StandardDrawingView.mousePressed”,

“StandardDrawingView.mouseReleased” and

“StandardDrawingView.mouseDragged” have been defined directly inside the class

“standard.StandardDrawingView” in ver. 5.2 but these methods are defined

indirectly inside the “standard.StandardDrawingView” in ver. 5.3. The methods

“mousePressed” and “mouseReleased” will be defined when

“MouseListener”object “ m1” is created and the method “mouseDragged” will be

defined when “MouseMotionListener” object “mm1” is created in 5.3. Although the

“StandardDrawingView.mouseMoved” is not included in our distinct method of

circle_noInit_noRec (it is removed when the rectangle trace is removed from the

circle trace), “StandardDrawingView.mouseMoved” is defined indirectly when

“mm1” object is created in 5.3 while it is defined directly inside the class

“StandardDrawingView.mouseDragged” in 5.2.

- Although “standard.AbstractFigure.containsPoint” is implementd in ver. 5.2 but in

the scenario ‘drawing a circle’ it is not called. In ver. 5.3

“standard.SelectionTool.mouseMove” is an ancestor of

“standard.AbstractFigure.containsPoint” which is not implemented in version 5.2.

 52

- In version 5.2, the classes “standard.QuadTree”, “util.UndoableTool” and

“contrib.DragNDropTool” are not implementd and these are new classes in the

version 5.3. Also the methods “CompositeFigure._addToQuadTree”,

“CompositeFigure._removeFromQuadTree” and

“StandardDrawingView.mouseMoved” are not implemented in 5.2.

- The method “CompositeFigure.findFigure” and “DecoratorFigure.containsPoint” are

implemented but they are not invoked in the scenario drawing a circle in 5.2. In 5.3

“DragNDropTool.setCursor” which is an ancestor of “CompositeFigure.findFigure”

and “DecoratorFigure.containsPoint” is not implemented in 5.2 since the class

“contrib.DragNDropTool” is not implementd. The method

“CompositeFigure.figureChanged” is declared in 5.2 but there is no implementation

for this method.

4.4. Discussion

In this chapter, we showed the applicability of our formal framework by comparing traces

generated from different versions of two systems. We showed that using our approach, we

can perform powerful analysis of system behavior such as comparing differences in

subsequent versions of the same software system. This type of analysis opens the door to

new techniques and tools that enable effective analysis of large traces.

We also validated the trace correlation process itself which is based on behavioral

patterns. However, it appears that the matching criteria we have formalized so far are not

 53

sufficient since they do not provide significant difference. Therefore, there is a need to

investigate further techniques for matching subtrees to further generalize patterns.

 54

Chapter 5. Conclusion

5.1. Research Contributions

Our main contribution in this thesis is a formal framework for trace abstraction and

correlation. Trace abstraction is needed to simplify the analysis of large traces and hence

enable the understanding of the behavioural aspect of software.

We showed how traces of routine calls and related concepts could be formalized to

enable effective development of analysis techniques. We also presented a complete set of

formal methods that formalize traces abstraction techniques based on pattern matching.

Another important contribution of this thesis is the formal representation of matching

criteria. We believe that this can facilitate analyzing comparing techniques based on these

matching criteria.

We also presented an approach for trace correlation. Our approach describes how traces

generated from different systems can be compared by investigating the common patterns

they contain. For this, we used the edit distance and proposed a way to match subtrees

based on matching criteria. The formal framework is implemented in Java in the Eclipse

environment.

Finally, the last contribution of this thesis consists of an application of the formal

framework with an emphasis on the trace correlation process. We applied our approach to

several traces generated from two different object-oriented systems. We showed how our

approach permits the analysis of traces and detecting similarities and differences.

 55

5.2. Opportunities for Further Research

The next immediate future work is to continue the formalization process. For example,

we can formalize other matching criteria that were not covered in the thesis.

There are also several other research directions. We need to build on the top of the

framework analysis techniques where proofs of their effectiveness can be established

using the concepts (with improvements) presented in our framework. The framework

needs also to be extended to other trace abstraction techniques such as sampling,

grouping and etc.

The definition and implementation in our framework are not the most optimized ones and

one of the future works could be to study the optimal implementation of the concepts.

We discussed the need for a trace correlation in this thesis and its help for program

comprehension. The correlation metric in this thesis is calculated based on the distance of

two traces with respect to similar patterns in two traces, and it does not mean that we

need to use the distance of two traces to obtain the similarity metric, we can use other

ways to get the correlation metric but we need to find a reasonable way to validate it.

Finally, the concepts presented in this thesis should be integrated with trace analysis tools

and serve as the main mechanism on which other techniques can be build.

 56

5.3. Closing Remarks

Trace analysis is a difficult topic due to the overwhelming information generated from

even a small system but if it is done properly, it can yield powerful tools that permit the

analysis of system behavior. In this thesis, we presented a formal framework for trace

abstraction and correlation, two key activities that can facilitate greatly the analysis of

traces. We hope that our framework can advance this area where the challenges are

enormous but, if overcome, the benefits are rewarding.

 57

Bibliography

Parnas 94 D. L. Parnas, “Software Aging”, In Proc. of the 16th International

Conference on Software Engineering, pp. 279-287, 1994.

IEEE93 IEEE std. 1219: Standard for Software Maintenance. Los Alamitos

CA., USA. IEEE Computer society Press, 1993.

Lientz 80 B. P. Lientz and E. B. Swanson. Software Maintenance

Management. Addison Wesley, 1980.

Bennett 00 K. H. Bennett , V. T. Rajlich, “Software maintenance and

evolution: a roadmap”, In Proc. of the Conference on the Future of

Software Engineering, pp.73-87, 2000.

Rugaber 95 S. Rugaber, “Program comprehension”, In Encyclopaedia of

Computer Science and Technology, 35(20), pp 341-368, 1995.

Fjeldstad 83 K. Fjeldstad and W. T. Hamlen., ‘‘Application Program

Maintenance Study: Report to Our Respondents’’, In Proc. of

GUIDE 48, The GUIDE Corporation, Philadelphia, pp. 13-30,

1983.

Mayrhauser 95 A. V. Mayrhauser and A. M. Vans, "Program Comprehension

During Software Maintenance and Evolution", IEEE Computer,

28(8), pp. 44-55, 1995.

 58

Hamou-Lhadj 06 A. Hamou-Lhadj, and T. Lethbridge, "Summarizing the Content of

Large Traces to Facilitate the Understanding of the Behaviour of a

Software System", In Proc. of the 12th International Conference on

Program Comprehension, pp. 181-190, 2006.

Hamou-Lhadj 03(a) Abdelwahab Hamou-Lhadj, Timothy C. Lethbridge, “ Techniques

for Reducing the Complexity of Object Oriented Execution

Traces”, In Proc. of the 2nd Annual Designfest on Visualizing

Software for Understanding and Analysis, pp. 45-30, 2003.

Zayour 00 Zayour and T.C. Lethbridge, “A Cognitive and User Centric Based

Approach For Reverse Engineering Tool Design”, CASCON, 2000.

Hamou-Lhadj03(b) Hamou-Lhadj, A. and Lethbridge, T.C., “An efficient algorithm for

detecting patterns in traces of procedure calls”, In proc. WODA

2003 ICSE Workshop on Dynamic Analysis pp. 33-36, 2003.

De Pauw 98 W. De Pauw, D. Lorenz, J. Vlissides and M. Wegman, “Execution

Patterns in Object-Oriented Visualization”, In Proceedings

Conference on Object-Oriented Technologies and Systems

(COOTS '98), USENIX, 1998, pp. 219-234.

Tai 79 K. C. Tai, “The tree-to-tree correction problem”,ACM, 26(3):pp.

422-433, 1979.

 59

Kuhn 06 Kuhn, A. and Greevy, O., “Exploiting the analogy between traces

and signal processing”, 22nd IEEE International Conference on

Software Maintenance (ICSM'06), 2006.

A.Hamou-Lhadj 04 A. Hamou-Lhadj, and T. C. Lethbridge, “A Survey of Trace

Exploration Tools and Techniques”, CASCON 2004, IBM Press,

ACM Digital Library , Toronto, Canada, pp. 42-54, 2004.

De Pauw 93 De Pauw W., Helm R., Kimelman D., and Vlissides J.,

“Visualizing the Behaviour of Object-Oriented Systems”, In

Proceedings of the 8th Conference on Object-Oriented

Programming, Systems, Languages,and Applications, ACM Press,

pages 326-337, 1993

Jiang 95 T. Jiang, L. Wang, and K. Zhang. “Alignment of trees—an

alternative to tree edit”. Theor. Comput. Sci., 143(1), pp. 137–148,

1995.

Selkow 77 S. M. Selkow. “The tree-to-tree editing problem”. Inform.Process.

Lett., 6(6), pp. 184–186, 1977.

Tanaka 88 E. Tanaka and K. Tanaka. “The tree-to-tree editing problem”. Int.

J. Pattern Recogn. and Artif. Intell., 2(2),pp. 221–240, 1988.

Valiente 01(a) G. Valiente. “Simple and efficient tree comparison”. Technical

Report LSI-01-1-R, Technical University of Catalonia, Department

of Software, 2001.

 60

Yang 91 W. Yang. Identifying syntactic differences between two programs.

Software—Practice and Experience, 21(7), pp.739–755, 1991.

Valiente 01(b) Valiente, G.,“ An efficient bottom-up distance between trees”, In

proc. 8th International Symposium on String Processing and

Information Retrieval, pp. 212-219, 2001.

Gusfield 97 D. Gusfield. “Algorithms on Strings, Trees and Sequences:

Computer Science and Computational Biology”. Cambridge

University Press, 1997.

Stephen 94 G. A. Stephen. String Searching Algorithms. World Scientific

Press, 1994.

Chan 03 Chan A, Holmes R, Murphy GC, Ying ATT. “Scaling an object-

oriented system execution visualizer through sampling”. In Proc.

11th Int. Workshop on Program Comprehension (IWPC), IEEE,

2003; 237–244.

Whaley 00 Whaley, J., “A portable sampling-based profiler for Java virtual

machines”, In Proc. of the ACM 2000 conference on Java Grande,

pp. 78-87, 2000.

Dugerdil 07 Dugerdil, P., “Using trace sampling techniques to identify dynamic

clusters of classes”, In proc. 2007 conference of the center for

advanced studies on Collaborative research, pp. 306—314, 2007.

 61

Valiente 00 G. Valiente. “Simple and efficient subtree isomorphism”.Technical

Report LSI-00-72-R, Technical University of

Catalonia,Department of Software, 2000.

Hamou-Lhadj 02 Hamou-Lhadj, A. and Lethbridge, T.C., “Compression Techniques

to simplify the Analysis of Large Execution Traces”, In proc.

IWPC’02, 10th International Workshop on Program

Comprehension pp. 159-168, 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

