
MODELING THE EVOLVING STRUCTURE OF SOCIAL TEXT

FOR INFORMATION EXTRACTION AND TOPIC DETECTION

Julien Dubuc

A thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Computer Science

Concordia University

Montréal, Québec, Canada

April 2011

c© Julien Dubuc, 2011

Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Julien Dubuc

Entitled: Modeling the Evolving Structure of Social Text for Information Extraction

and Topic Detection

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining commitee:

Chair
Dr. Brigitte Jaumard

Examiner
Dr. René Witte

Examiner
Dr. Yuhong Yan

Supervisor
Dr. Sabine Bergler

Approved
Chair of Department or Graduate Program Director

20
Dr. Robin A. L. Drew, Dean

Faculty of Engineering and Computer Science

Abstract

Modeling the Evolving Structure of Social Text for Information Extraction and

Topic Detection

Julien Dubuc

The advent of “social media” has enabled millions of people to participate in discussions within

communities on a global scale. These conversations take place in a myriad of venues, on or off

the web, each with its particular approach to implement what we now call “social media” – blogs,

bulletin boards, mailing lists. However, while the software powering these communities varies a great

deal, and continues to evolve, all of them share a common set of features. When a user initiates a

discussion, the message is not addressed to a specific person, but broadcast to any interested reader;

such a message can generate replies from other users, and these replies can then generate their own,

forming a network of connections between messages. There is a need for a system that can make

connections between related pieces of social text, to group information into coherent units. Making

use of the structure of the social text helps to determine which elements of the text to consider

for a given topic. To do this, a system needs to consider the different contexts in which it can be

understood. A post, text transmitted by a single author at the same point in time, may have a

different topic than the whole thread, which is comprised of all the posts in the discussion following

an initial post. Different passages in a post could also have separate topics. Therefore, it is useful to

annotate the text with information about its social structure explicitly for use in automatic search

and text mining.

iii

Acknowledgments

The author would like to thank his supervisor, Dr. Sabine Bergler. Without her constant encourage-

ment, her unflappable commitment to excellence in research, and her steadfast, enduring patience,

this thesis would not have been completed successfully.

Thanks, boss!

iv

Contents

List of Algorithms viii

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Social Media as a Source of Information . 1

1.2 Example of Difficulties in Finding Information . 2

1.3 The Need for fine-grained information . 4

2 Previous Work 7

2.1 Topic Detection and Topic Modeling . 7

2.2 Social Media Mining . 8

3 A Model of Varying Granularity for Text Indexing and Clustering 12

3.1 Modeling Social Text . 13

3.2 Indexing Social Text along its Hierarchical Structure 14

3.2.1 TF-IDF . 15

3.2.2 Hierarchical Indexing . 16

3.2.3 Hierarchical Indexing Procedure . 16

3.2.4 Other Approaches to Indexing . 18

v

3.3 Querying . 20

3.4 Clustering Social Text with the Hierarchical Index 20

3.4.1 Measuring Similarity . 22

3.4.2 Hierarchical Clustering in Social Text . 22

3.4.3 Consequences of Hierarchical Clustering . 24

4 Implementation 28

4.1 Platform . 28

4.2 Parsing Data Sources . 30

4.3 Indexing Implementation . 31

4.4 Clustering Implementation . 33

5 Analysis 34

5.1 Evaluation Data . 35

5.2 Evaluation Issues . 37

5.3 Evaluation Methodology . 40

5.4 Case Studies . 42

5.4.1 MetaOptimize Thread 1742 . 43

5.4.2 Moms4Mom Thread 5313 . 45

5.5 Examining Hierarchical Clustering Results . 48

5.5.1 Precision . 50

5.5.2 Recall . 52

5.5.3 F1-Score and Rand Index . 53

5.6 Comparing Clustering methods . 53

5.6.1 Cluster Cohesion . 60

5.7 Concluding Remarks on the Evaluation Procedure 61

vi

6 Conclusion 63

6.1 Future Work . 65

A Detailed Results 69

Bibliography 69

vii

List of Algorithms

1 HierarchicalTermCount . 18

2 HierarchicalTFIDF . 18

3 HierarchicalCluster . 24

4 StackSiteRescore . 39

5 StackSiteEvaluation . 41

viii

List of Figures

1 Structure of thread 1742 from metaoptimize.com . 3

2 Contents of thread 1742 from metaoptimize.com . 3

3 Clustering social text with threshold 0.5 . 23

4 Adding a new post results in an incremental index update 26

5 MetaOptimize thread 1742 . 43

6 Scored contents of thread 1742 in the MetaOptimize dataset 43

7 Moms4Mom thread 5313 . 45

8 Thread 5313 from the Moms4Mom dataset . 46

9 Classification of results of hierarchical clustering at different thresholds 48

10 Evaluation of hierarchical clustering for the MetaOptimize dataset 49

11 Evaluation of hierarchical clustering for the Moms4Mom dataset 50

12 Numbers of clusters produced by different clustering methods 55

13 Precision score . 56

14 Recall score . 56

15 F1-Score . 57

16 Rand Index . 57

17 Cluster Cohesion results . 60

18 Evaluation of edge clustering for the MetaOptimize dataset: Large Format 70

19 Evaluation of edge clustering for the Moms4Mom dataset: Large Format 71

ix

List of Tables

1 Basic statistics on the evaluation datasets . 37

2 Index term weights for thread 1742, and posts therein, in the MetaOptimize dataset 44

x

Chapter 1

Introduction

1.1 Social Media as a Source of Information

The advent of “social media” has enabled millions of people to participate in discussions within

communities on a global scale. These conversations take place in a myriad of venues, on or off

the web, each with its particular approach to implement what we now call “social media” - blogs,

bulletin boards, mailing lists. However, while the software powering these communities varies a great

deal, and continues to evolve, all of them share a common set of features. When a user initiates a

discussion, the message is not addressed to a specific person, but broadcast to any interested reader;

such a message can generate replies from other users, and these replies can then generate their own,

forming a network of connections between messages.

However, when a new user first finds a discussion, it is likely to come from search engines, which

only see the information in the text as it is represented for the web. While a web document contains

structure in the form of HTML tags, this structure is meant for human readers to interpret, not for

machine processing of the information. The rapid evolution of the internet, the web in particular,

means there is no consistent, standard way to express a “message” or “discussion thread”. This

structure implied by the formatting is not readily available for automatic processing. Thus, a search

1

engine generally cannot discern the discussion’s structure in the web formatting. It can only relate

a user’s query to the social text content at the level which is represented on a given web page. It is

not uncommon for a search engine’s usefulness with social text to be hampered by this problem.

For example, the popular bulletin-board software phpBB1 has a search function which only returns

threads related to a user’s query. A search query featuring multiple keywords can return threads

where no single post bears every keyword. If the thread has generated hundreds of replies - which is

common for popular discussions - the user will need to scan through dozens of pages of posts to find

occurrences of the search terms. If a user has a specific information need - for example, the correct

way to enable video output to a projector for an important presentation - tracking the different

threads with promising results could lead to learning more unrelated information instead, such as

how many users prefer a specific brand of computers, or one user’s story of how technical problems

caused a difficult time with family.

It is important to clearly define what is meant by “social text”. The expression “social media”

has now entered common parlance, referring to the multitude of services enabling on-line communi-

ties. This encompasses everything from traditional bulletin-boards and mailing lists, weblogs with

comment pages, and dedicated picture and video-sharing sites where users discuss each other’s work.

This thesis is only concerned with the text parts of the content, the social text. As such, it is also

more focused on the kind of communities where interaction is centered around text, as opposed to

dedicated photo or video-sharing services.

1.2 Example of Difficulties in Finding Information

As an example, consider the discussion thread shown in Figure 2. This thread was taken from

a discussion website about Machine Learning called MetaOptimize2, which is described in further

detail in Section 5.1. In order to understand how the discussion took place, the structure of the

discussion is shown in Figure 1. Someone reading post 1744 by itself would find no information of

1http://www.phpbb.com/
2http://metaoptimize.com/qa/

2

(a) reply structure (b) containment structure

Figure 1: Structure of thread 1742 from metaoptimize.com

Post 1742
Hello all,
I’m looking for a decent implementation of deep belief networks in Java. I’ve found jaRBM, but I
think that it is just a RBM implementation and it seems not being updated anymore (Although I
haven’t fully checked it). I know there are stuffs written in python, but I need a Java implementation.

Post 1743
I know that the Mahout project is planning to add an implementation of stacked RBMs. Apparently
the work has started in this gihub branch but I haven’t tried it yet.

Post 1744
hmm great news ogriel. I’m going to review the code and try it if it is usable or not.

Post 1825
If you have RBMs or stacked RBMs, it is trivial to get DBNs from that, as far as sampling from the
DBN is concerned. If you want to fine-tune the model for something like supervised prediction or
classification, you also need neural net code, but that already exist in Java.

Post 1826
If you have a c/c++ implementation, you can make a wrapper to it and call it from java.

Post 1875
No, unfortunately not, if I had a C/C++ implementation, I’m aware that it is possible to call these
libs or APIs with JNI.

Figure 2: Contents of thread 1742 from metaoptimize.com

value. When considering it in the context of Post 1743, however it is more meaningful. Post 1743

itself has some information, but to understand it better, it needs to be taken in the context of Post

1742. This makes sense, since post 1744 was written as a reply to post 1743, which itself was a reply

to post 1742. Similarly, post 1875, taken by itself, has some meaning, but would have no reason to

appear in this discussion if it were not replying to post 1826, which itself needs to be understood in

the context of post 1742. This is to show that in a discussion, a piece of the conversation can only

be fully understood when taken in the context of the rest of the text in the discussion.

This thread also shows an example of how quickly an on-line discussion diverges into different

3

topics. The initial question in post 1742 was asking about whether a specific piece of software existed

that implemented “Deep Belief Networks” in the Java language which was still actively maintained.

The sub-discussion found in posts 1826 and 1875 has diverged into the relationship between software

written in the C++ language and software written in Java. These were ostensibly contributed to the

discussion in good faith, intended to help the author of the original question. That diversion into a

different subject did not, in the end, provide useful information, as the original author points out in

post 1875. A user interested in the original question will most likely not find useful information in

these two posts.

1.3 The Need for fine-grained information

This problem of diverging topics ties into the area of Topic Detection and Tracking (TDT). Here, a

“topic” means the common subject, or related content, in a group of related pieces of text. While

the problem was originally conceived because of the need to automatically extract information from

newswires, it becomes even more challenging with the democratization of mass media brought about

because of social media. In online discussion, it is not safe to assume that the topic of a discussion is

fixed when it starts; the discussion often branches out into related subjects, unrelated asides, personal

opinions or even personal attacks. Thus, the initial subject of a discussion is not a guarantee that

subsequent posts will follow the same subjects. In fact, as the discussion evolves, individual posts

often contain passages dealing with the many subjects that emerge in the conversation. A reader

interested in only one of these topics will need to sift through the unrelated parts of the discussion

to find those that are of interest.

There is a need for a system that can make connections between related pieces of social text,

to group information into coherent units. Making use of the structure of the social text helps to

determine which elements of the text to consider for a given topic; for example, knowing a given

author is often very vocal about certain topics, or discounting part of a thread spurred by personal

attacks. To do this, a system needs to consider the text at different levels of granularity, to show

4

the different contexts in which it can be understood. A post, text transmitted by a single author

at the same point in time, may have a different topic than the whole thread, which is comprised

of all the posts in the discussion following an initial post. Different passages in a post could also

have separate topics. Therefore, it is useful to annotate the text with information about its social

structure explicitly for use in automatic search and text mining.

This thesis proposes an approach to information retrieval in social text which makes extensive use

of its hierarchical structure. In particular, Section 3.2 shows how an existing vector-space indexing

strategy can be applied recursively to the hierarchical structure, yielding an index that represents

the information in the text at multiple levels of granularity. This approach allows an information-

retrieval system to use the context provided by the social structure to retrieve a piece of text at the

appropriate level of scope, be it a whole thread, a single post or a particular passage. While this

approach to indexing produces a more complex index, it is conversely less complex to update this

index with new content, making this approach better-suited to the constantly-evolving contents of

social media. The intent of this approach is to provide the user of a search engine not only with the

text containing information of interest, but also with the appropriate scope in which to consider it.

For example, a user may be interested in information found in a single passage of a long and otherwise

unrelated post. A system retrieving post would be likely to overlook this information, as it is not

the main object of this post. By considering the text at different levels, the hierarchical indexing

approach allows a system to retrieve both small, focused passages, and long, varied discussions, for

a single query. This can be implemented as part of the software which powers social media on the

web, highlighting to the user where a discussion’s topic changes, to help the reader focus on the

topics of interest.

Section 3.4 introduces a clustering algorithm which also uses the hierarchical structure. The

goal of this clustering is to group pieces of text together when they discuss the same topics. By

attempting to relate pieces of text which are related by a shared context, it uses the social structure

to make informed decisions about which pieces of text are likely to be related. This significantly

5

reduces the amount of work needed to cluster social text when compared to approaches that are not

informed by structure. These “topic clusters” are intended to assist in implementing recommender

systems, which can direct readers to pieces of text that are related to what they are currently

reading. They can also be used to highlight, within a discussion thread, places where the topic of

discussion changes, helping readers to avoid getting distracted by unrelated, tangential discussion.

Clustering this way is done in linear time, which is a great improvement over the baseline, bottom-up

agglomerative approach to clustering, both in terms of the time to cluster and the memory needed.

These algorithms have been implemented in a proof-of-concept system, which has been dubbed

TopicAl. This system is able to parse social text from a variety of sources into a single, unified model

of threaded discussion. This data can then be indexed hierarchically, and clustered to group pieces of

text together when they share the same topic. The element in the topic cluster represents the text at

the appropriate level of score where the topic is encountered. In order to get a better understanding

of how well this approach performs on an entire discussion site, it needs to be evaluated in a more

objective manner. This requires comparing clusters generated by the system to a classification which

is known to be accurate. Section 5.1 shows how social websites which feature community-ranking of

posts and threads can be used to implement such an evaluation. Section 5.4 shows some case studies

that highlight how well the system is able to separate the different topics in a discussion. The results

of the quantitative measurements of the accuracy of the system are shown in Section 5.5.

6

Chapter 2

Previous Work

2.1 Topic Detection and Topic Modeling

The TDT initiative from DARPA [All02] aimed to detect the topics being discussed in news stories.

While newswire articles have a somewhat predictable structure, they do not possess the rich nested

structure of replies and quoting found in social text. In fact, one of the TDT challenge tasks was

to detect the boundaries between stories presented in a continuous stream of text, based solely on

content. This focus on content is in contrast to the focus on structure described here.

[ZZW07] undertake the TDT task of New Event Detection, that is finding the earliest mention of

a new topic in a sequence of documents as they arrive. A modified, incremental version of TF-IDF

indexing (see Section 3.2.1) is used, which can be updated dynamically to reflect currently mentioned

topics by including the time of mention as a factor of the indexing. The index is stored not as a

matrix, but as a hierarchy of clusters, where related documents are grouped by content as well as

the time they appeared. These clusters contain documents as well as sub-clusters, which contain

increasingly smaller, more homogeneous groups of documents related to finer-grained topics. While

this hierarchy is not based on structure, its architecture based on incremental indexing is well-suited

to sources of text that are constantly updated.

7

[CM09] attempt to determine the topics mentioned in a document by relating the document’s

content to Wikipedia. They do this by finding the Wikipedia pages related to terms mentioned in

the text, and highlight which of these Wikipedia pages are most important. This results in many

pages, of which only a fraction actually represent high-level concepts that could be called “topics”.

The pages are treated as nodes in a graph, where links between pages become edges between nodes.

The most relevant concepts are determined by a graph centrality measure, which is an adaptation

of the PageRank algorithm of [BP98] that is biased towards pages linking to concepts represented

in the document. This is only suitable to identifying topics related to high-level concepts which

possess a Wikipedia entry. The breadth of subject matter in online discussion cannot be expected

to be completely covered in an online encyclopedia, even one as extensive as Wikipedia.

[SMG+07] focus on the TDT task of Topic Segmentation, meaning to determine the boundaries in

text where the topic changes. Most prior work in this area considered the text as a single continuous

stream, analogous to a news ticker, as in [Hea93]. In contrast, this paper looks at small segments of

many documents at once, using a measure of Mutual Information to not only compare consecutive

segments, but to align similar segments of different documents. This means the language model of

a topic is shared between documents, making it more robust.

[GZZ+10] present an approach to topic modeling which is based on the idea that documents are

not independent from each other, but are interlinked. This is done using a what they refer to as a

Bernoulli Process Topic (BPT), which is an adaptation of Latent Dirichlet Analysis where two topic

models are combined: one based on the document contents, and another based on the contents of

the linked documents. By integrating the context provided by the structure linking documents, this

approaches yields an improvement over baseline probabilistic approaches.

2.2 Social Media Mining

The Blog Track of the Text Retrieval Conference (TREC)[MOS09] has evolved to try to identify

topics in social media. The topics here are predetermined categories, discussing noteworthy events.

8

There is little interest in evolving topics. The blog posts making up the collection are taken at one

point in time, and do not show the further evolution of their comment threads.

The community-detection system described in [BdR07] aims to find a set of weblogs related to a

central, source weblog. The approach is based both on the topology of the link graph between these

blogs, and the text content of the blogs. The system focuses on the relationships between authors,

without trying to link individual pieces of text.

The event-detection task outlined in [ZM07] means to detect significant events by finding clusters

of related texts in an e-mail archive. In addition to the message contents, the system makes use of

the proximity between messages in two dimensions: the time between messages, and the distance

between messages in the graph linking messages to their replies. The results show that using this

supplemental information helps group related messages together.

In [NDW07], the authors try to determine not only the topic of a web page, but how authoritative

the page is on a topic. This is done by finding the number of links into the page from outside sources.

Since a web page may deal with more than a single topic, the approach is to find where in the page

the links point to.

The Semantically-Interlinked Online Communities Project1 (SIOC) has produced a semantic

web ontology for representing both the content and structure of social text [BBFD08]. It defines

entities such as Forum, Post, and UserAccount, providing a consistent vocabulary for the metadata

associated with social text. It also supports specifying the topic(s) of a given Post as a combination

of Category and Tag instances. Here, the content container with the finest level of granularity is

the Post. This means that topics are specified for an entire post; there is currently no way to

specify which parts of the text deal with specific topics. In this model, the Thread concept is merely

a container for Post instances, it cannot bear topic information itself. This makes it difficult to

distinguish the topics associated with the entire discussion thread, as opposed to those mentioned in

the original post that do not represent how the rest of the discussion subsequently evolved. Recently,

the paragraph level has emerged as useful for indexing and information retrieval, as demonstrated

1http://sioc-project.org/

9

by the good performance of paragraph level IR, for instance in the “other” questions in the TREC

Question Answering track [DLK06].

[HCL07] eschews traditional IR methods, opting instead to use an approach based on signal-

processing. Each topic is treated as a frequency band, and the combination of these topic signals

makes up a model for the text contents. This approach allows transforms to be applied to the

“signal”, to model it either from the time-domain or the topic-frequency-domain.

[CBBK09] discuss a way to distinguish multiple topics in a single document. Observing that

related topics are brought up in a similar order, with small variations, this expected ordering can

be modeled. After training on example documents, a model can use the expected order to make an

informed choice in determining the topic of a new passage. This expectation helps to focus on more

likely topic choices, reducing ambiguity.

[WO09] examine the problem of interleaved conversations, where more than a single discussion

is taking place over a shared channel. They cite the example of IRC chatrooms, though this can

take place in most forms of social media. Three kinds of context are used to discern the interleaved

discussion: the authorship of posts, their distribution in time, and explicit mentions of names of

participants. These contexts are mapped to dimensions in a vector-space, and the cosine-similarity

between these vectors is used to cluster messages into more coherent conversations.

[YCS09] aim to model political blogs to be able to predict the response they generate in comment

threads. This is done by making a language model of the language in the post, as well as the language

of the comments, as related but separate models. Two variations on Latent Dirichlet Analysis are

used: LinkLDA predicts which users are likely to respond, while CommentLDA uses these predictions

to predict the content of replies. The topic model defines a topic as a combination of the distribution

of words in the blog post, the distribution of users participating in comments, and the distribution

of words in commments. This separation aims to model how political blogs often elicit comments

from users with different opinions than the original author.

[GLMF09] attempt to make a predictive model of the behavior of bloggers. This model is informed

10

by two different factors: the distribution of blog postings through time, and the relationships linking

blogs together in the blogosphere, providing paths for the propagation of information. The temporal

and topological factors are represented in a number of patterns, such as the size of the conversation

stemming from a posting, or the frequency in which a post gets cited by other bloggers, which have

been observed to follow power-law distributions. A random walk through models of these factors is

used to make predictions on when a blogger will write, what the blogger will write about, and which

posts in other blogs are likely to be cited.

[WBC+10] focus on the problem of modeling online discussions which involve many topics at

once. This is done by observing and modeling user behaviour. Two factors are considered: the topic

of discussions where the user participates, and the topics where a user’s friends participate. In this

case, friends are determined by measuring the flow of information between pairs of users, by tracking

the content and frequency of replies. This model is shown to accurately predict user participation

in discussions based on their topic.

[WCB10] attempt to model the interactions inside social networks as they evolve through time.

Unlike most social network models, which assume the configuration of the network is fixed, this

approach, based on Hidden-Markov Random Fields, models social networks where the weights of

edges evolve through time.

From these prior papers, it becomes apparent that there is growing interest in modeling the

structure of social text, but no definitive model to do so has emerged. There is also interest in

how meaning is shared between related pieces of text, though many approaches to deal with this

presuppose some prior knowledge of the kind of topics being discussed.

11

Chapter 3

A Model of Varying Granularity

for Text Indexing and Clustering

This chapter presents the main contributions of this thesis:

1. A model of the structure of social text as a hierarchy of containers. This simple model is

general enough that it can be extracted from any kind of threaded discussion.

2. A method for building an index of the contents of social text which uses its hierarchical

structure. This method uses a well-known indexing formula, but redefines the notions of

“collection” and “document”, by applying the formula recursively to the container hierarchy

to index the text at different levels of scope.

3. A method for clustering the content of social text which uses the hierarchical index to make

informed decisions about which pieces of text are likely to be related.

These contributions are built on the initial work detailed in [DB10].

12

3.1 Modeling Social Text

As noted earlier, a distinguishing feature of social text is its structure. While the terminology can

vary between the different services and the different software used to implement these services, the

basic mechanisms are similar enough that they give rise to a structure expressed with a consistent

set of metaphors. An author initiates a discussion thread by posting a message with a new subject

line, which is by default a solicitation for replies. Others can then send a response to this message,

and eventually to other replies. This nested reply structure forms a tree rooted at the initial post,

and the thread is the set of posts taken together. Having this structure can help determine which

pieces of the thread fit the thread’s subject line, and which parts discuss a different topic.

In the model proposed here, the structure of social text takes the form of a tree, where nodes

at different levels represent different levels of scope when considering the text. The nodes at higher

levels act as containers for the content of their descendants. A Source node acts as the root of the

tree for all text originating from a given blog, forum or mailing list. One level below, its descendants

are the Thread nodes. The level below threads contains the Post nodes. Finally, the level under

posts contains Passage nodes, which are the leaf nodes of the tree. The source acts as a container

for its descendant thread nodes, which themselves are containers for the post nodes which are their

descendants. We contend that this “containment” relationship is useful in determining the scope

of topics. Assigning a topic to a post node means only the content in the post node is part of this

topic, while assigning a topic to a thread node means the content of the thread as a whole is part of

that topic. A thread can in fact contain posts within different topic groups; the thread’s own topic

group is a reflection of its overall topic content.1

This hierarchy is useful for topic detection, in modeling the way that topics change and evolve in

a discussion. A thread often grows to encompass many topics, so it makes sense to try to model both

the thread and its posts as having a topic. However, in a complex discussion, even a post may be

long enough to deal with more than a single topic. It would be useful to look at a more fine-grained

1This hierarchy is only one of many possible combinations of structural elements. Other possibilities not exemplified
in this model include the nested reply and quote hierarchies, the author of a message or passage, and the position
along the timeline.

13

level than the post, to determine where in the post text the topic is mentioned. We assign topics to

paragraphs, posts, and threads, to be able to capture when more than one topic is mentioned in a

post, and also assign an overall topic to posts and threads.

In this model, a passage is a region of text with a single topic. Since the model is based on the

idea of using document structure to delimit text, it makes sense to look for an element of structure

inside the post that separates its text into regions that bear possibly different topics. Fortunately,

this is precisely how writers use paragraph boundaries [Joh02]. A paragraph in the text of the post

becomes a passage node contained by the post node.

All of this information can be obtained from a web-based representation of the social text. While

it is easier to deal with more direct access to data, such as monthly archives of a mailing list, or direct

access to a blog’s database, the structure can be recuperated by anyone from the publicly-available

web version. A parser needs to be written which understands a particular format’s conventions, such

as quoted lines being preceded by > characters in mailing-list archives, while web boards represent

quoting as embedding a nested frame in the message frame.

3.2 Indexing Social Text along its Hierarchical Structure

Retrieving information from text can be a costly operation. While text data is dense, and file-based

representations are small compared to other types of information, collections of text documents can

easily hold millions or even billions of documents. It would be very inefficient, if not completely

unrealistic, to store each document in a file and evaluate its text directly each time a user inputs a

query to a search engine. This is why search engines, and other information-retrieval systems, build

an index of the collection, which only stores the information used to retrieve documents from the

collection.

One naive way to index documents would be to simply count the number of times each term is

repeated in a document. The number of occurrences of a term in a document could be taken as a

measure of the importance that term has to the content of the document. This has the undesirable

14

side-effect that it biases the retrieval towards longer documents, which are more likely to have a

larger number of occurrences of any term. One simple way to deal with this is to scale the number

of repetitions of a term to the total number of terms in a document, and use this term frequency as

a measure of the importance of a term for a document.

However, this is not the only challenge in making a useful index. Another challenge is that some

terms are more important than others. For example, consider a search query for “Schrödinger’s

cat”. When considering the bulk of text written in English, one can safely assume that the term

“cat” is relatively frequent – at least compared to the term “Schrödinger”. This can be taken to

mean that the presence of term “Schrödinger” is more distinctive than a mention of the word “cat”.

Thus, from an Information Retrieval perspective, the presence of a rare term is more indicative of

the text’s content than the presence of a common term. Most common indexing strategies benefit

from taking this factor into consideration.

3.2.1 TF-IDF

There is a well-known approach to implementing an index that addresses all of the concerns pre-

viously described, which is called “TF-IDF” [SJ72]. The “TF” part of the name stands for “term

frequency”, while “IDF” refers to “inverse document frequency”. The document frequency of a term

refers to the proportion of documents in a collection which bear that specific term. By using the

inverse of the document frequency, the IDF score is high for rare terms, and low for common terms.

The TF-IDF score for a term in a document combines these two factors by taking their product.

For every term ti in every document dj ∈ D,

tci,j = |{ti ∈ dj}| (1)

tfi,j =
tci,j

∑

k tck,j

(2)

idfi = log
|D|

|{d ∈ D : ti ∈ d}|
(3)

tf-idfi,j = tfi,j × idfi (4)

Here, tci,j is the number of times term i appears in document j, while tfi,j is the term frequency,

15

the proportion of the terms in document j that are instances of term i. The document frequency dfi

is the proportion of documents in the collection that contain at least one instance of term i, while

its inverse is called idfi. The score tf-idfi,j is the combination of these two factors, which represents

the “weight” of term i, how much of the information found in document j is specified by this term.

When a term is very common in a very large collection, the inverse document frequency becomes

very low, so much so that the number becomes difficult for computers to represent accurately. When

multiplying the IDF score with the TF score, which is also very small, the result is so small that

floating-point representations for such small decimal numbers can introduce significant rounding

errors. To alleviate this, the IDF factor is actually the logarithm of the inverse of the document

frequency. Using the logarithm maintains the relative ordering of IDF scores for every term, so it

does not affect the quality of the scoring.

3.2.2 Hierarchical Indexing

A typical indexing algorithm only treats data as a collection of documents, where every document is

treated equally. This means the algorithm makes no use of the structure that ties different pieces of

text together, only the text’s contents. While this is suitable for a variety of applications, it becomes

problematic when trying to index a collection where it is not clear what constitutes a “document”.

The question arises when dealing with social media: is each post a document? Or each thread? Or

even each webpage where some of the social text is archived? Any of these answers could be the

appropriate choice, depending on the evolution of the discussion and the information needed by the

reader. Section 3.2.3 will detail a way that the TF-IDF indexing algorithm can be adapted for the

hierarchical representation of social text presented in Section 3.1.

3.2.3 Hierarchical Indexing Procedure

The first step in making the index is to obtain the term counts for each node in the graph; the text

itself is indexed at the passage level. This is done by traversing the graph bottom-up, starting from

16

the top-level Source node. When the traversal reaches a leaf node, i.e. a Passage node, it determines

the terms in the passage text. This requires some pre-processing of the text:

1. Tokenization: The text is split into a sequence of tokens, which represent the words of the

text, without whitespace or punctuation.

2. Stemming: The remaining word tokens are reduced to base-forms, or stems, using the

PorterStemmer [Por80] algorithm. This means a verb’s different tenses become instances of a

single term. Likewise, the singular and plural forms of nouns are reduced to a single term.

3. Stop-word removal: Closed-class words, such as conjunctions, prepositions and articles, are

removed from the token sequence, along with very common nouns and verbs which do not

carry information specific to the text2.

These stems become the terms for this passage node, and are stored in a vector together with

the count of unique instances of each term in the text.

Once passage nodes have term count vectors, term counts of container nodes at a higher level are

defined as the sum of their immediate children’s term count vectors. Since the non-leaf nodes are

containers for nodes further down in the hierarchy, their term count vectors are defined recursively

as the sum of their immediate children’s term count vectors. The procedure for computing these

recursive term counts is detailed in Algorithm 1.

After the first step of indexing, each node has a vector storing the count of terms in the text it

contains. This is all the data from the text that is needed to create every index in the hierarchy.

Each node’s term count vector is then scaled to the number of terms, to generate a term frequency

vector. Each non-leaf node uses its children term counts to generate a document frequency vector,

which stores, for each term, the proportion of children which bear that term. Finally, a node’s

term frequency vector and its parent’s document frequency vector are combined to form the node’s

TF-IDF term vector, using the standard formula [MS03]. This index vector does not consider the

2The stop-word list that was used here was taken from http://www.lextek.com/manuals/onix/stopwords1.html

17

Algorithm 1 HierarchicalTermCount

Require: hierarchical representation of social text
node.termcounts ← ∅

nodeterms ← 0
for all child ∈ node.children do

childterms ← 0
for all term ∈ child.termcounts do

if node.termcounts[term] = 0 then

node.termcounts[term] ← child.termcounts[term]
else

node.termcounts[term] ← node.termcounts[term] + child.termcounts[term]
end if

childterms ← childterms + child.termcounts[term]
end for

for all term ∈ child.termcounts do

child.termfreqs[term] ← child.termcounts[term] ÷ childterms
end for

nodeterms ← nodeterms + childterms
end for

node’s text compared to all other nodes, but only to its siblings, which share the same parent and

thus the same context.

Algorithm 2 HierarchicalTFIDF

Require: HierarchicalTermCount has already been executed
node.doccount ← ∅

numchildren ← |node.children|
for all child ∈ node.children do

for all terms ∈ child.termcounts do

if term ∈ node.doccount then

node.doccount[term] ← node.doccount[term] +1
else

node.doccount[term] ← 1
end if

end for

end for

for all term ∈ node.doccount do

idf[term] ← log(numchildren÷ node.doccount[term])
tf-idf[term] ← tf[term] × idf[term]

end for

3.2.4 Other Approaches to Indexing

TF-IDF is mature, robust, well-understood, and simple to implement. However, there are many

other ways to build an index, which have some features that TF-IDF does not. One such method is

18

Latent Semantic Analysis, or LSA3 [DDF+90], which can be viewed as an extension to TF-IDF. The

goal of LSA is to give weight to terms in a document’s term vector, even when the term is not present

in that document, as a term with similar “meaning” does occur. This is because LSA exploits the

co-occurrence of related keywords over the entire collection. For instance, a query on an LSA index

for the word “car” may return documents which never present this term, but mention the word

“automobile”, as these two terms appear in similar contexts, surrounded by a similar distribution

of terms. This statistically-derived relationship is what is meant by “Latent Semantics”.

While LSA has obvious advantages, there are some reasons why LSA is not well-suited to the

hierarchical indexing presented here. In order to exploit the latent relationships between terms, the

algorithm needs a large collection of documents, with many instances of co-occuring terms in similar

term distributions. This redundancy is what makes the latent relationships robust. However, in the

indexing method presented here, the collections associated to each node in the hierarchy are relatively

small. Flat collections often have millions of documents, while threads typically get dozens of posts.

Even on the most frenetic bulletin boards and mailing lists, discussions rarely reach thousands of

posts. With an amount of redundancy that is smaller by orders of magnitude the relationships

exploited by LSA are proportionately less robust.

Another concern is the size of the index itself, and the associated performance costs. Most

documents have very few terms when compared to the entire set of terms used in all text. The small

number of terms that occur in most documents are stop-words; articles, prepositions, conjunctions,

and other “closed-class” words4 that are excluded from the indexing process, as their occurrences

carry no information specific to the content of the text. If considering every index vector in every

index of every node of the hierarchy as a single term space, each vector is extremely sparse. On

typical flat indexes, these vectors are not stored as simple arrays of decimal numbers, but in a sparse

fashion. Doing otherwise would consume wast amounts of memory to store millions of occurrences

of the number “0.0”5. Since LSA gives weight to keywords that do not occur in text, the indexes

3this is sometimes referred to as Latent Semantic Indexing, or LSI
4as opposed to “open-class” words, such as nouns, verbs, adjectives and adverbs
5details on this sparse implementation are found in Section 4.3.

19

become much less sparse. The increased cost in memory made the difference between an index that

can fit in the memory of an average laptop computer, and one which cannot fit in the vast memory

of a specialized computation server.

3.3 Querying

The indexing procedure described in Section 3.2 can be used to implement an information retrieval

system. A user can input a query, which is transformed into a weighed term vector the same way

that a passage text is used to create a passage term vector. The passage term vector can then be

compared to the term vectors of all the nodes in the index, using a well-known term-space distance

measure, such as the cosine-similarity[MS03] measure. The system can then show a list of nodes,

ordered by highest similarity first. Unlike a traditional information retrieval system, which uses a

“flat” index, the system can present as result not only a piece of text, but the most appropriate

scope in which to consider it. This follows the assertion made in Chapter 1 that the information

contained in a piece of text is dependent on the context in which it is considered. By indexing a

piece of text at varying levels of scope, the system is able to relate a query to the most appropriate

level of context for it. In fact, once the hierarchical index is built, querying and retrieval function

in the same way as in a typical search engine.

3.4 Clustering Social Text with the Hierarchical Index

Besides simple retrieval, another application that is enabled by the hierarchical index is clustering.

Instead of matching pieces of text to a user query, the goal of clustering is to group pieces of text

together when their contents are related. This can be accomplished by comparing the term vectors

of every pair of pieces of text, using the same kind of vector-space distance measures that are used

for querying. A simple way to achieve this is to create a cluster for every piece of text which bears

a term vector, compute some measure of the distance between these clusters, and merge the two

20

clusters that are most similar. When two clusters are merged, the term vector for the resulting

cluster is a combination of the term vectors for the two merged clusters. This means the distance

between the newly-merged cluster and all the other remaining clusters needs to be computed before

further merging can be done, as which pair of clusters is most related changes every time a new

cluster is created with a new term vector.

Repeating this procedure gradually reduces the number of clusters; if left unchecked, the process

would eventually produce a single cluster containing everything. This is why the process is typically

stopped once the distance between the two most-related clusters is below a fixed threshold value.

When using a distance measure such as cosine-similarity (see Section 3.4.1), the distance values are

decimal numbers from 0.0, meaning “completely unrelated” to 1.0, meaning “completely related”.

The threshold would then be a decimal value situated somewhere between those two extremes.

This procedure is called “bottom-up agglomerative clustering”[MS03]; “bottom-up” because a large

number of small clusters progressively become a small number of large clusters, and “agglomerative”

because every element in the cluster has equal status, as opposed to “hierarchical” clustering, where

the order in which clusters are merged produces different structures, with different meanings.

It should be noted that while the method described previously is conceptually simple, it is also

quite expensive. Also, it makes no use of the hierarchical structure of social text data. By treating

every node equally, the algorithm assumes that any post has an equal chance of being related to any

other post, or in fact any other thread. It seems obvious that there is actually a higher chance that a

post is related to the thread where it appears, or to posts which also appear in the same thread. More

generally speaking, there is a higher chance that two nodes related by structure are also related by

content. The structural information would then be useful for clustering, but the clustering procedure

would need to be adapted to use this information This section presents a clustering procedure that

makes extensive use of this structural information.

21

3.4.1 Measuring Similarity

Items to be clustered can be considered as points on a hyper-plane. Computing the similarity

between two vectors can be done by simply using the Euclidean distance. This is difficult to apply

to vectors in term space. Depending on the indexing algorithm used, the magnitude of a vector

may not be as relevant as the “direction” in space. Another way to measure the similarity between

vectors in n-dimensional space is to use the angle between two vectors. The angle does not depend on

magnitude, only on the relative value of each weight dimension in relation to the other dimensions.

The cosine of the angle between any two vectors will yield 1 when the angle is 0. This means that

if two vectors have the same direction, the cosine will be 1, regardless of the magnitude of the

vectors. Since in term space, all non-zero dimensions will have a positive weight, two vectors with

no term in common will be orthogonal, and the cosine of the angle between them will be 0. Any

partially-related vectors will have a cosine of their angle between 0.0 and 1.0, which is convenient.

This measure, called the “cosine similarity” measure, is often used to compare term vectors [MS03];

it is detailed in Equation 7.

For term vectors ~a,~b:

|~a| =

√

√

√

√

n
∑

i=1

a2
i (5)

~a ·~b =

n
∑

i=1

aibi (6)

CosineSimilarity(~a,~b) =
~a ·~b

|~a||~b|
(7)

3.4.2 Hierarchical Clustering in Social Text

The hierarchical structure can also be used in clustering pieces of text, to determine which elements

of the discussion share the same topics. One difficulty of clustering is that since any element cluster

can be merged with any other, there is a very large number of pairs of elements that can potentially

be merged. With a wide variety of topics, there will be a large number of smaller clusters, so most

comparisons will not be successful. However, the social structure can help make informed decisions

22

Figure 3: Clustering social text with threshold 0.5

about which elements to try to merge. For instance, since the topic of a thread can change as posts

get added, it makes sense to compare a post with its thread. Similarly, since a post can contain

multiple subjects, it is helpful to compare a post with its passages. These comparisons are more

meaningful than simply comparing any two elements at random, as these nodes are related by the

text’s social structure.

The first step in clustering is to create one cluster for each node in the hierarchy, with the same

TF-IDF vector as its node. Subsequently, the tree is traversed depth-first, and each node’s cluster

is compared to its parent’s using the cosine distance between their TF-IDF vectors. If the similarity

is above a fixed threshold, the clusters are merged, as is shown in Figure 3. The resulting cluster’s

term vector is the sum of the merged clusters’ term vectors.

When clustering along structural links between text nodes, it is not possible to group together

two related pieces of text that do not have structural links, such as two posts on the same subject

that appear in unrelated threads. In order to make these clusters more useful and coherent, a

second pass of clustering is necessary. This second pass performs a more traditional bottom-up

agglomerative clustering on the clusters obtained from hierarchical clustering. While this method

23

is still O(n2) for n clusters, it takes place after the first pass, so a great number of clusters have

already been merged, reducing the complexity significantly. Since the clusters being compared are

then not related by the text’s structure, it is not safe to assume that they are related by content, as

in the first pass. To account for this, a higher threshold value can be used, to make the criteria for

merging more strict than in the first pass.

Algorithm 3 HierarchicalCluster

Require: 0.0 ≤ threshold ≤ 1.0
Require: hierarchical index built

node.cluster ← {node}
for all child ∈ node.children do

child.cluster ← HierarchicaCluster(child, threshold) {first, cluster children recursively}
similarity ← CosineSimilarity(node.cluster, child.cluster)
if similarity ≥ threshold then

node.cluster.termvector ← node.cluster.termvector + child.cluster.termvector
node.cluster ← node.cluster

⋃

child.cluster
child.cluster ← ∅

end if

end for

return node.cluster

3.4.3 Consequences of Hierarchical Clustering

While it uses a standard, well-understood formula, the hierarchical indexing and clustering has

interesting consequences.

In a more traditional, flat index, the similar term frequencies would both be combined with the

same document frequency vector to generate similar TF-IDF vectors. Consider, for example, a post

which has very similar term frequencies to the thread which contains it. This means that when

clustering, the post and its thread would be combined into the same cluster. This is not necessarily

the case with this hierarchical indexing.

The high-frequency terms for the thread likely occur in most posts in the thread. This means

the document frequency for these terms will also be high for the thread as a whole. Since the thread

acts as a collection for the posts, this high document-frequency will weigh down the TF-IDF scores

for these terms in the posts bearing them. This lower score is a useful feature, as it indicates the

24

presence of the term in the post is not a differentiating factor for the post contents when considered

in the context of the whole thread. The high score for a term in the thread compared to the low

score for the same term in the post mean the term is topical for the entire thread, not just the single

post. In effect, the thread’s topic will subsume the post’s content. The second phase of clustering

will then make use of this information to link the thread, not the post, with related text content

from other threads, posts, and passages.

Consider the case where a thread only contains a single post, having not yet generated replies.

The post and thread both have the same term counts and term frequencies. However, these nodes

are indexed as part of two collections. The post is indexed together with other posts in the thread,

but there are no other posts; the document frequency will be 1 for every term in the post. The thread

is indexed compared to every other thread from the same source. This is probably a high number

of threads, implying that the document frequency of the thread’s terms will be comparatively low.

The low document frequencies will boost the TF-IDF scores for the thread’s terms. If the change in

document frequencies is not uniform for every term – a likely assumption with many threads bearing

different content – the angle between the post’s vector and the thread’s will be changed. Depending

on the threshold value used in clustering, the post can end up in a different topic cluster than the

thread.

Conversely, posts with very different term frequencies from their containing threads will also

form a separate cluster from their thread. If a few posts in a thread discuss a different subject, they

will cluster together in a topic separately from the thread’s overall topic. The goal is to link a topic

to the level of scope where it is found in the text, be it a single passage, a whole post, or the entire

thread.

The hierarchical index is considerably more complex than a flat index, as it contains a large

number of indexes – one for each internal node in the hierarchy. These multiple indexes can refer to

the same text content, but at different levels of scope. While this means the initial construction of

the index is costly, incrementally updating the index with new content is not. Updating the index

25

with new content is done by adding nodes for new passages, posts, and possibly threads. The index

is built for the text in the new passages, and rebuilt for every ancestor up to the root, the Source

node. This means that most existing nodes are not affected by an update. Similarly, the new clusters

generated for the added content can be compared to the existing, merged clusters for the existing

content, without affecting the clustering results.

Figure 4: Adding a new post results in an incremental index update

This incrementality was one of the important goals of this approach. Both the hierarchical index-

ing and clustering procedures presented here were designed to deal with the way social text content

is updated continuously. Any tool designed to retrieve information from social text necessitates

incremental indexing. In a simple implementation of TF-IDF indexing, as soon as a new document

is added to the collection, the document-frequency vector changes for the entire collection. This

means that, depending on the terms found in the newly-added document, any already-indexed doc-

ument could receive modifications to its term weights. In contrast, when a new post is added to the

hierarchical index, most existing term vectors are not affected. Figure 4 shows an example of what

happens when the index is updated: a new post, in red, is added to an ongoing discussion thread.

The post index needs to be built, while the thread where the post appears, shown in orange, has

its index updated, like the source node, which indexes the thread. The green nodes are nodes that

contain an index of their descendants, which is not affected by this update, while the white passage

nodes do not bear an index, as they have no descendents to index. This structure guarantees that

when a new post is added, only 3 nodes need to be indexed anew: the post, its thread, and the

source node.

Another area where the hierarchical approach is interesting is in the clustering phase. When

26

considering a traditional, flat collection, every item is compared to every other item. Each com-

parison is relatively expensive, as it entails calculating the cross-product of two possibly large term

vectors. Even (merely) quadratic complexity can make clustering a large collection impractical.

Most elements are not related, so much of this hard work does not bring about successful merging.

The hierarchical method helps alleviate this in some ways. By comparing a parent node to its

children, and children of a same parent node, the recursive clustering compares nodes that share a

context. Since they occur in a related context, it is reasonable to assume a higher likelihood that

clusters will be merged. The second pass, which ultimately compares every cluster left, is still a

quadratic operation, but it deals with a smaller number of clusters, since many clusters sharing

context have already been merged. The clusters compared at this later stage do not necessarily

have the shared context shared by clusters compared in the first pass. Hierarchical indexing and

clustering is thus an effective way to address vast, constantly growing collections of social text that

need to be dynamically indexed.

27

Chapter 4

Implementation

The model described in Chapter 3 was implemented as a system called TopicAl, shortened from

“Topic Analyzer”. This chapter provides a description of this implementation. It would be beyond

the scope of this document to describe the software architecture of the implementation in exhaustive

detail. However, there are a number of issues that came to light while developing this system that

warrant further examination.

4.1 Platform

The TopicAl system was developed in the Python1 programming language. Python is a modern,

dynamic, interpreted, strongly-typed, multi-paradigm language, in that it supports object-oriented

development, as well as functional programming and imperative style. Besides the author’s famil-

iarity with this language, there are a number of reasons that made Python particularly suitable for

this task.

The first is the clarity and conciseness of Python code, which makes development significantly

faster than for many other languages. Another was the extensive built-in library, which provides

any Python installation with a number of features that are necessary in a system like TopicAl:

1http;//www.python.org/

28

• the mailbox package supports parsing archived UNIX mailboxes, which is the format used by

many mailing-list software packages.

• the urllib package supports retrieving arbitrary files through HTTP.

• the re package provides comprehensive support for regular expressions.

In addition to those built-in packages, there is a large ecosystem of third-party packages which

provide a number of features crucial to the TopicAl system:

• the BeautifulSoup2 package provides a parser for HTML documents. This parser is robust

enough to deal with incomplete or missing tags, which are a common occurrence in web pages,

and render stricter XML parsers unsuitable. It is used to extract the text contents and social

structure from websites.

• the NetworkX3 package, developed at Los Alamos National Laboratory, provides support for

very large graphs, and efficient algorithms for processing them. The hierarchical structure

linking different nodes is implemented using NetworkX.

• the NLTK4 package, which stands for “Natural Language Tool Kit”, provides a complete suite of

tools for doing Natural Language Processing. The algorithms for tokenizing text, and reducing

words to base-form terms using the PorterStemmer algorithm, were taken from this package.

• the NumPy5 package, also known as “Numerical Python”, provided the numerical matrix im-

plementation used in the bottom-up agglomerative second pass of clustering. It is also used as

a baseline for comparison. This is described in Section 4.4.

2http://www.crummy.com/software/BeautifulSoup/
3http://networkx.lanl.gov
4http://www.nltk.org
5http://numpy.scipy.org

29

4.2 Parsing Data Sources

Chapter 3 claimed that the hierarchical model can represent social text data from any kind of

community. However, depending on the software used to implement the community, the social text

is represented in a variety of ways. This means that parsers need to be written for each format

in order for data represented in a given format to be processed by the TopicAl system. Given the

variety of formats, parsers for only a few formats have already been implemented:

• the UNIX mailbox format

• the blogger weblog platform

• the StackExchange question-answering platform

• the OSQA question-answering platform

The mailbox format is used by many mailing-list services as the format for storing archives on

the web. Supporting it made it possible to treat mailing lists like social websites. The “blogger”

platform is a popular software package for weblogs, developed by Google. The StackExchange

and OSQA platforms are used to build discussion websites where users can vote on the quality of

questions and answers. Since they are curated by the community the text is often of higher quality

than unmoderated forums. The scores given by the community establish a metric against which the

output of TopicAl can be compared, as detailed in Section 5.1. These parsers show that the model

presented in Chapter 3 can indeed cope with the variety of ways social text can be represented.

Most blogs, and many other social platforms, can syndicate their content into feeds using the

RSS or ATOM standards, which are XML formats. Supporting these could enable access to a huge

variety of text online. The problem with this idea is that feeds syndicate only the original blog

post, and not the comments posted in reply to this post. Some blogs and discussion sites also have

“comments” feeds, but there is one such feed for each post. This is useful for users wanting to follow

a particular discussion, but does not preserve the reply structure or the links between a post in the

30

post feed and its particular comments feed. This makes syndicated feeds unsuitable for providing

discussion context.

An attempt was made to support the WordPress blogging platform, which was ultimately aban-

doned. WordPress appears to be the most-popular blogging platform currently in existence; sup-

porting it would give access to a huge portion of the social text currently being written. However,

the flexibility that has contributed to its success as a platform also makes it difficult to process

automatically. The HTML code for a page generated by WordPress depends on the theme file used.

Depending on the theme, different names are used for tags, and the same information is found at

different levels of nesting. The large variety of WordPress themes means that there would need to

be a correspondingly large number of parsers.

4.3 Indexing Implementation

One important challenge in developing the TopicAl system was the representation of the hierarchical

index. This is actually composed of a large set of indexes, one for each internal node in the hierarchy.

Aside from the root index, which indexes all threads and contains all terms in the collection, these

indexes are relatively small. They refer to small numbers of “documents” – the number of posts in

a thread, or even the number of passages in a post.

The simplest way to implement this index would be to use arrays, where each array represents

the contents of a node as indexed by its parent node. Each position in the array refers to a term

in the hierarchy’s term space, and the value at this position is the term’s weight for this array. If

implemented this way, most arrays would be extremely sparse; a given passage can only contain

a tiny fraction of the entire hierarchy’s term space. Using most of the memory to store repeated

instances of the number “0.0” makes such large demands on the memory as to make this approach

unworkable.

There are a variety of sparse-vector implementations available for Python, as part of the NumPy

package. Unfortunately, using these implementations was not workable. Depending on the approach,

31

they still consumed too much memory, or were thousands of times slower.

The solution was to use associative maps, which Python refers to as “dictionaries”, to store each

term and its weight as key-value pairs. Dictionaries are implemented as hash-tables, which are very

efficient in the time it takes to store and retrieve values. They also resize themselves automatically,

so that they only take as much memory as is required to store the data. The basic Python dict

class was extended into a class called VectorSpace, which provides a number of additional features:

• arithmetic operators, that implement typical vector operations; vector addition and multipli-

cation, scalar multiplication and division, vector cross product and dot product.

• instead of raising an exception, accessing the value for a non-existent key gives the default

value of 0.0, so that operations can be done on vectors with different term sets completely

transparently.

This makes objects of class VectorSpace behave like typical mathematical vectors, where dimensions

are named by strings instead of being numbered by integers.

There is a feature of the Python platform that makes this solution more suitable than it would

be on other platforms. In many languages, such as Java and C++, using strings as keys would mean

that in every vector, each key would be a different string object, even when the contents of the key

are the same. In Python, string objects are immutable, and immutable objects are stored only once.

Each key is actually a pointer, a reference to an object that exists only once for any given value.

When assigning a string to a variable, if this string already exists somewhere else in the program,

the variable will point to this instance instead. Only when using a string for the first time will a new

object be created. This means that, for example, a program can have a number of variables with

the string value “discombobulation”, but all of these variables actually point to a single instance

of this string, which is unique for the entire program. Given the size of strings, and the space

overhead inherent to an object instance, by directly using strings as keys, python is much more

memory-efficient than many other languages.

32

4.4 Clustering Implementation

In order to have a good understanding of how well the hierarchical clustering performs, it should

be compared to a more mundane, baseline clustering method. The method chosen was bottom-

up agglomerative clustering, which computes the similarity between every pair of clusters, merges

the two most similar clusters, and repeats this process until the highest similarity between clusters

reaches a value below the merge threshold. This requires computing O(n2) cosine similarities for

n nodes in the hierarchy, as well as storing these similarities in a matrix of size n × n. This was

realized using the matrix implementation from the NumPy package.

It should be noted that this complexity is much higher than that of the hierarchical clustering.

The hierarchical algorithm only computes one cosine distance measure for each edge in the graph of

the hierarchy - one linking each non-root node to its parent. This means that for a hierarchy of n

nodes, the algorithm computes n− 1 cosine distances, which is O(n). In practical terms, this means

to process the test datasets described in Section 5.1, the hierarchical algorithm needs less than 1 GiB

of RAM and takes less than 2 minutes. In contrast, to store the large matrix of similarity measures,

the bottom-up algorithm required over 8 GiB of RAM. As the most capable computer that was

available had 8 GiB of RAM, the algorithm’s performance was further degraded by its use of virtual

memory. Also, the bottom-up algorithm’s performance is dependent on the threshold value used;

the lower the merge threshold, the higher the number of clusters that are merged. Since merging a

cluster means recomputing the similarities between the merged cluster and every other remaining

cluster, the time to run the system can vary drastically. For threshold values over 0.6, the system

took less than 10 hours to run, while for a value of 0.1, the run-time was over 27 hours.

33

Chapter 5

Analysis

Most typical computer algorithms solve a problem for which there exists an exact solution. For

basic computing tasks, this is taken for granted. For example, a sorting algorithm is expected to put

every element in a sequence in order. Different algorithms have different characteristics, in terms

of run-time complexity, memory-space complexity, and the stability of previous orderings, but any

sorting algorithm is expected to produce an ordering that puts every element of the sequence in

order. Failure to do so means that the algorithm is incorrect, and cannot be used.

Some problems are harder to solve. In some cases, it may be simple to produce an algorithm

that would find an exact solution, but the number of possibilities to consider is so large that it is

impossible for an actual computer to solve. In certain cases, it is even impossible to verify that a

solution is indeed the optimal one, since that would involve verifying exhaustively that no better

solution exists. Algorithms that address these issues use some kind of approximation, which results

in a “good” solution that may not be optimal. NP-Complete problems, such as the Travelling

Salesman Problem, are examples of such particularly-hard problems.

When dealing with Natural Language Processing tasks, the problem is further compounded, as

there is no optimal solution to be found. This difficulty stems from the very nature of natural

language. Humans use language creatively, with different assumptions, which makes it easy for two

34

people to have different understanding of the same text. Computing languages have been developed

specifically to allow people to specify a complex problem in a way that is unambiguous, to guarantee

that both the computing machine and its human operator comprehend the problem the same way.

There are no such guarantees in human languages; people often misunderstand each other. This

makes it difficult to objectively assess the performance of a system that retrieves information from

natural language data.

In order to foster the development of Information Retrieval as a field, organizations have been set

up that manage standardized retrieval tasks. One such organization is TREC, the “TExt Retrieval

Conference”, which currently manages challenge tasks in 8 different research tracks, for text in

various domains. Each track consists of a collection of documents along with a number of queries

for information held in this collection. Researchers are given the collection and queries and are

challenged to create systems to produce results for those queries within a fixed time-frame. After

the results are handed in, they are compared to the “correct” results, as determined by groups of

people who read the texts in question. Comparing the results of a system with this “gold standard”

yields quantitative measures, which can be used to compare different approaches on an evaluation

scheme in an objective fashion. These measures, such as Precision and Recall, are described in more

detail in Section 5.3.

5.1 Evaluation Data

While there are some social media datasets available, they are not very well suited to evaluating this

kind of clustering. The ICWSM blog datasets for 2006 and 2009 [MOS09] do not contain evaluation

classes. The TREC Blog06 collection was used for a variety of tasks related to topic classification

in the TREC Blog Track; this could be applied to the topic clustering described here. However,

the TREC topic classes only cover those subjects deemed relevant by the track organizers. This

collection also does not encode the social structure of its contents. Postings are represented in two

ways: the contents of the Blog’s RSS feed, which does not include comments, and the actual HTML

35

page, which can encode the social structure of comments in a huge variety of formats. Given the

size and variety of this collection, it is not practical to use it to evaluate this system.

However, there are some social media websites which feature relevance judgements. Such sites

provide a community not only with a platform for discussion, but also for rating the quality of the

texts posted. Users are attributed a number of points, which they can use to “vote up” questions

and answers to these questions to attest for the quality and relevance of a given posting. Users

can also “vote down” postings which they consider irrelevant or of poor quality. When reading a

question, the user will see answers presented not in order of posting time, as is typically done on

social sites, but in order of score, with the response deemed most pertinent presented first. Writing

content that garners positive votes earns points for the user, ensuring that those whose merit has

been recognized by the community have more voting power.

While a number of sites, such as ExpertsExchange1, have used community ratings to help readers

find relevant texts, this type of platform was further refined into the model described previously

by the website StackOverflow2, a site for programming questions. Its underlying platform, called

StackExchange3, has been adapted to provide hosting for sites on a wide variety of subjects, from

systems administration to cooking. An alternative, open-source website platform called OSQA4 has

emerged, enabling anyone to make a social website featuring community-based relevance feedback

on any topic. Aside from the underlying software, both platforms provide users the same set of tools

to ask and answer questions and rate the quality of postings. The term “stack sites” will be used

here to refer to such discussion websites, regardless of the underlying software.

Two different stack sites have been used to test the TopicAl system described in Chapter 4. The

first site, MetaOptimize5, concerns Machine Learning in the context of Natural Language Processing.

The site is relatively small, so it can be processed in its entirety, yet large enough to provide a variety

of different topics. The participants also share a basic level of technical expertise, which means there

1http://www.experts-exchange.com
2http://stackoverflow.com
3http://stackexchange.com
4http://www.osqa.net
5http://metaoptimize.com/qa/

36

MetaOptimize Moms4Mom
Threads 711 1165
Posts 4492 10956
Terms 9881 14289

Table 1: Basic statistics on the evaluation datasets

is less noise6 than on a more general site. This makes it easier to find meaningful clusters.

The second site, Moms4Mom7, focuses on parents giving advice to other parents on how to raise

their children. It was selected because, unlike MetaOptimize, it does not cover a technical subject,

and does not contain much specialized language. However, given its serious subject matter and

active voting community, the level of noise in the discussion is still quite low. Its size is roughly

thrice that of MetaOptimize, which is still small enough to process the site in its entirety. Some

figures on the size of these datasets are shown in Table 1.

Using the post ratings found in stack sites provides a standard against which to measure the

clusters output by TopicAl. Using stack sites also has the added benefit that there are few formatting

artifacts, such as the signature blocks and quoted text typical of e-mail discussions. Coupled with

the consistent format found in HTML pages generated by these sites, this means that the system’s

output is not dependent on the quality of parser heuristics, and gives a fair picture of how the model

itself fares. Having these two datasets will help highlight where the differences in content influence

the system’s output, and how consistent the system is in the face of varied input.

5.2 Evaluation Issues

While social websites featuring community ratings are not built with the rigorous guidelines that

would be used in a collection intended for automatic evaluation, they do provide relevance judgements

from knowledgeable users, against which a system can be compared. The approach that was used

here was to use these user-attributed scores to initiate a new clustering process. The clusters

6Here noise means rude, antisocial users, personal communications in a shared channel, users going deliberately
off-topic, advertisers hijacking the discussion, and other ways nefarious users actively undermine the conversation.
Depending on participation, the user moderation of stack sites is somewhat effective at combating this behavior.

7http://moms4mom.com

37

generated this way can be compared with the TopicAl clusters output.

Since this website was not intended for automated evaluation, there are a number of issues to be

dealt with before it can be used to evaluate the TopicAl system. The most obvious difference to deal

with is the different kind of score used. TopicAl will merge clusters based on the cosine similarity

between their TF-IDF vectors, and this similarity is bound to the range [0.0, 1.0]. In contrast, the

scores given by users of stack sites are integers which are (theoretically) unbounded, and sometimes

negative.

In order to use the integer scores for clustering, one could simply use a different threshold value

when merging clusters. This is problematic because of the unbounded nature of the integer scores.

When scores are limited to a finite range, this range expresses the complete spectrum between

“relevant” and “irrelevant”. When scores vary, it is not only because of the relevance of a particular

post, but the interest that it generates. A perfect answer to a more particular subject may be scored

lower than an unpopular answer for a popular question. Therefore, it is difficult to relate scores

posts from different discussion threads.

One way to deal with this issue is to make the observation that for every question, the highest

scoring answer is the most related available answer. Based on this observation, the highest-scoring

answer can be mapped to a cosine similarity of 1.0. The lower scores can then be scaled to the

highest-scoring answer’s score, putting them in the [0.0, 1.0] range. One issue to take into account

is the possibility of negative scores. As was noted earlier, users make use of their points to vote

postings up or down; a particularly ill-received posting may ultimately reach a negative score. This

raises the issue of which integer score is mapped to 0.0. If the very lowest negative score is mapped

to 0.0, postings with an integer score of 0 will have their score mapped to a positive score. In fact,

any other ill-received post with a higher, though still negative, integer score, will be mapped to a

positive score. This is not desirable. Because of this, the evaluation procedure was implemented

to map the integer score of 0, as well as anything with a lower integer score, to the decimal score

0.0. The integer score of 0 is considered to mean “completely irrelevant”, and this scheme does not

38

Algorithm 4 StackSiteRescore

Require: thread node
maxscore ← 0
scaledscores ← ∅

for all post ∈ thread.children do

if dataset.scores[post] > maxscore then

maxscore ← dataset.scores[post]
end if

end for

if maxscore ≤ 0 then

maxscore ← 1 {prevent division by zero}
end if

for all post ∈ thread.children do

if dataset.scores[post] ≤ 0 then

scaledscores[post] ← 0.0
else

scaledscores[post]← dataset.scores[post] ÷ maxscore {floating point division, decimal result}
end if

end for

return scaledscores

consider that anything can be more irrelevant than “completely”. The procedure for mapping these

scores is shown in Algorithm 4.

Another issue is that the scoring relationship model used for TopicAl does not exactly match the

model used by stack sites. On stack sites, questions receive scores, as do answers. Comments, which

are what stack sites call answers to answers, also receive a score. This means that everything that the

hierarchical model calls a “post” is scored by users for interest and relevance. Individual passages,

however, do not receive independent scores from users. This means that while the clustering of

threads and posts can be compared to human judgements, passage clustering cannot.

Another fact to keep in mind is that the scores change over time. The scores, much like the text,

are generated by the users, and will evolve as the discussion takes place. Running and evaluating

the system at two different points in time will undoubtedly produce different results. Therefore, any

evaluation using such a dataset is directly tied to the date and time at which it was produced. The

results presented here are based on the state of both sites on February 16, 2011.

39

5.3 Evaluation Methodology

Once the scores taken from a stack site have been re-scaled, using the procedure outlined in Algo-

rithm 4, they can be used to assess the quality of the clusters output by the TopicAl system. In

order to do this, a new clustering process is initiated. The clustering method is the same as the one

used by TopicAl to build its clusters; the important difference is that instead of using the cosine

similarity between the term vectors of nodes, this clustering is done with the re-scaled scores taken

from the stack site. These clusters are assumed to be accurate for the purposes of evaluation; they

constitute the “gold standard”. The threshold value used to generate these evaluation clusters is

the same as used to run the clustering on the hierarchical index.

This clustering is treated as a binary classification problem: whether or not a post node belongs in

the same topic cluster as its parent thread node. By treating the clusters generated from the users’

scores as accurate, the clustering decisions obtained from the hierarchical index can be classified

as true positives, true negatives, false positives and false negatives. Here, “true positive” means

both the TopicAl system and the evaluation procedure agree that two nodes belong in the same

cluster, while “true negative” means they agree the nodes should be in separate clusters. A “false

positive” is a case where the system has clustered two nodes together, while the evaluation procedure

has determined they belong in separate clusters. Conversely, a “false negative” means the TopicAl

clustering put two nodes in separate clusters when the evaluation procedure states they belong in the

same cluster. The procedure for classifying the clustering results this way is shown in Algorithm 5.

These classes can then be used to calculate measures of precision, recall, and accuracy, using

the cluster evaluation methods described in [MS03]. While these are well-known measures used to

evaluate a system that retrieves documents from a collection, they take a slightly different form

in the context of evaluating clustering. Here, Precision means the proportion of instances where

the system put a post in the same cluster as the thread while the evaluation clusters also put post

and thread in the same cluster. Recall means the proportion of instances where the evaluation

dataset has the post and its thread in the same cluster while the TopicAl system also clustered them

40

Algorithm 5 StackSiteEvaluation

Require: 0.0 ≤ threshold ≤ 1.0
TP ← 0 {true positives}
TN ← 0 {true negatives}
FP ← 0 {false positives}
FN ← 0 {false negatives}
for all threadnode ∈ threads do

evalscores ← evalscores(threadnode)
for all postnode ∈ threadnode.children do

if evalscores[postnode] ≥ threshold {The nodes should be clustered together} then

if threadnode.cluster = postnode.cluster {The nodes are clustered together} then

TP ← TP +1
else

FN ← FN +1
end if

else

if threadnode.cluster = postnode.cluster then

FP ← FP +1
else

TN ← TN +1
end if

end if

end for

end for

together. To put it another way, the precision score is the proportion of cluster results that are

accurate, while the recall score is the proportion of accurate clusterings which were found.

These two measures are complementary; raising precision typically means lowering the recall.

For example, a system that retrieves every document in a collection, or outputs a single cluster

which contains every input element, would show 100% recall, but a precision close to 0%. Neither

of these measures paints a complete picture by itself. This is the motivation behind the F1-Score,

which is simply the mean of the precision and recall. The Rand Index is a different measure, which

is more specific to the evaluation of clustering methods. It is defined as the proportion of clustering

decisions where the generated clusters and evaluation dataset’s clusters are in agreement - whether

that decision resulted in the post being clustered with its thread or separately.

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

41

F1-Score =
Precision + Recall

2
(10)

Rand Index =
TP + TN

TP + TN + FP + FN
(11)

Both the F1-Score and the Rand Index are intended to give an overall assessment of the quality

of clustering in a single measurement. The way they approach this goal is different. Unlike the

F1-Score, which is simply the average of the Precision and Recall scores, the Rand Index aims to

report on the accuracy of all merging decisions, including those which did not result in a merge. Of

all the evaluation measures presented here, the Rand Index is the only measure that incorporated

true negatives into its calculation, as shown in Equation 11. This means that in cases where the

data is heterogeneous, and should yield more numerous, smaller clusters, the Rand Index shows a

more accurate picture.

All of this means that, while the system’s clusters can be compared to clusters derived from user

feedback, and give familiar-sounding measures like “precision” and “recall”, these measures should

not be taken blindly, and should especially not be taken to have the same meaning they do in the

field of Information Retrieval. In fact, closer inspection reveals a number of interesting consequences

of hierarchical clustering, and yields some insight as to the accuracy of the evaluation strategy used

here.

5.4 Case Studies

This section presents the result of the hierarchical clustering procedure on two sample threads.

Closer observation of these threads highlights cases where the clustering performs well and where

it does not. One is from the MetaOptimize dataset, the other from the Moms4Mom dataset; both

are shown after hierarchical clustering with a threshold of 0.3. They were selected for different

reasons. The first shows a case where the clustering performed exactly in line with the evaluation

procedure, and closer observation confirms the accuracy of the results. The second shows a case

where the clustering lamentably fails to produce results in line with the expectations of the evaluation

42

procedure; however, the causes for these discrepancies are varied, and not all of them indicate poor

performance on the part of the clustering procedure.

5.4.1 MetaOptimize Thread 1742

(a) reply structure (b) light nodes are in the thread’s cluster, shaded ones are not

Figure 5: MetaOptimize thread 1742

post 1742 QA score: 1 class: true positive
Hello all,
I’m looking for a decent implementation of deep belief networks in Java. I’ve found

jaRBM, but I think that it is just a RBM implementation and it seems not being updated

anymore (Although I haven’t fully checked it). I know there are stuffs written in python, but
I need a Java implementation.

post 1743 QA score: 2 class: true positive
I know that the Mahout project is planning to add an implementation of stacked RBMs .
Apparently the work has started in this gihub branch but I haven’t tried it yet.

post 1744 QA score: 0 class: true negative
hmm great news ogriel. I’m going to review the code and try it if it is usable or not.

post 1825 QA score: 3 class: true positive
If you have RBMs or stacked RBMs, it is trivial to get DBNs from that, as far as sampling

from the DBN is concerned. If you want to fine-tune the model for something like supervised

prediction or classification, you also need neural net code, but that already exist in Java.

Post 1826 QA score: 0 class: true negative
If you have a c/c++ implementation, you can make a wrapper to it and call it from java.

Post 1875 QA score: 0 class: true negative
No, unfortunately not, if I had a C/C++ implementation, I’m aware that it is possible to
call these libs or APIs with JNI.

Figure 6: Scored contents of thread 1742 in the MetaOptimize dataset

Figure 5a shows a discussion thread taken from the MetaOptimize dataset. It contains 6 posts;

the first is composed of 2 passages, while the others have a single passage. Posts 1742, 1743 and

1825 have obtained some points from the community, as shown in Figure 6, where the text of each

post is reproduced in full, with the index terms highlighted in bold. Table 2 shows the terms with

43

term/node thread 1742 1743 1744 1825 1826 1875
rbm 0.18 0.03 0.05 0.07
java 0.11 0.06 0.03
dbn 0.11 0.17
stack 0.10 0.07 0.05
implement 0.09 0.05 0.03 0.10 0.05
jarbm 0.07 0.08 0.17
...

Table 2: Index term weights for thread 1742, and posts therein, in the MetaOptimize dataset

the highest weights in the thread, along with the weights for each of these terms in each post in the

thread.

The term with the highest weight for the thread as a whole is “rbm”, which is the acronym for

“Restricted Boltzmann Machine”. This term is relatively frequent in this thread, appearing four

separate times, which ensures it gets a high term frequency for the thread. It is also a relatively rare

term among other threads, giving it a low document frequency for the thread. The low document

frequency, along with the high term frequency, account for its high TF-IDF score.

However, as its 4 appearances occur in 3 separate posts, its document frequency for posts in the

context of this thread is also relatively high. This explains why the individual posts bearing this

term have a lower weight for it than the whole thread. In particular, post 1825 bears 2 of the 4

instances of the term “rbm”, which accounts for a larger proportion of term instances in the post

than in the thread - 2 out of 21 term instances, as opposed to 4 out of 78 - yet its weight for the

post is less than half of what it is for the thread. This means that the term “rbm” has more to do

with the topic of the thread as a whole than the topic of that particular post.

Compare this to the term “dbn” - an acronym meaning “Deep Belief Networks” - which is tied

for second place in weight for the thread, as seen in Table 2. Similarly to “rbm”, the term “dbn”

is relatively frequent in the thread and relatively infrequent outside the thread. However, unlike

“rbm”, all 2 instances of the term “dbn” appear in post 1825. This means that the document

frequency for the post remains low, while the term frequency is even higher than for the thread.

That is the reason why the weight of “dbn” for post 1825 is even higher than the entire thread. In

terms of topicality, “dbn” has more to do with the topic of that particular post than the thread as

44

a whole.

Figure 5b shows which nodes in the thread’s hierarchy belong to the same cluster as the thread.

When clustering with a threshold value of 0.3, the system’s clustering of posts matches that of the

evaluation clusters. It is also worth noting that, while the second passage of post 1742 lies in the

same cluster as the post and the thread, the first passage does not. Looking at the text for this

passage, it is clear why that is: the passage has only one index term, which is not repeated anywhere

else in the post, or in the thread for that matter. This means the TopicAl system has determined,

correctly, that while the content of post 1742 has the same topic as the thread overall, only its second

passage bears this topical content.

5.4.2 Moms4Mom Thread 5313

While the hierarchical clustering performed well for MetaOptimize thread 1742, it did not perform

as well in some cases. In the Moms4Mom dataset, thread 5313 performed particularly poorly, for a

variety of reasons. This thread starts with a parent asking what to expect when a child consults with

a doctor about a lazy eye. The contents of the thread are shown in Figure 8; Figure 7a indicates

the thread’s structure by showing which posts are replies to previous posts, while Figure 7b shows

which posts were clustered together with their containing thread.

(a) reply structure (b) light nodes are in the thread’s cluster, shaded ones are not

Figure 7: Moms4Mom thread 5313

For this thread, the clusters output by TopicAl do not match the clustering expected from the

user scores. None of the posts clustered together with their thread should have been, while only one

of the posts was correctly excluded from the thread’s cluster.

45

post 5313 QA score: 3 class: false negative
My 4 year old daughter has been recently diagnosed with a lazy eye. Next week we have an
appointment to see a pediatric opthamologist. Has anyone else gone through this before?
What can I expect regarding the appointment and treatment?

post 5315 QA score: 2 class: false negative
Wikipedia has some information on common treatments. Looks like your daughter will
have to have a patched-up eye for some time. Best wishes!

post 11161 QA score: 0 class: false positive
We’ve already talked to her about an eye patch a little and told her that she might have to
look like a pirate for a while. She thought that sounded fun - we’ll see how long that attitude

lasts.

post 11168 QA score: 0 class: false positive
That’s actually a nice idea... I presume the eye patch will be a white adhesive patch - get
a ”classical” black patch-on-a-string, maybe paint a white skull-and-bones logo on it...

post 11179 QA score: 0 class: true negative
@mkcoehoorn From my experience working with children who have had patched eyes the
thing that often frustrates them is that they will patch the good eye in order to exercise the
lazy eye. That is frustrating because the child has to work harder to see. In my experience

they often get tired of not seeing clearly and want to remove the patch.

post 5400 QA score: 1 class: false negative
My daughters eyes cross, so we are trying glasses first to see if they help the eyes to straighten

out. I hope so because we don’t want to have to put her through a surgery. She is a year and
a half, and she just screamed so much while the doctor looked at her eyes. My husband and
I had to hold her down, so she could look at her eyes. I was really disappointed with this

pediatric doctor...you would think if she works with young children she would be a bit more
friendly or know how to work with her better. Though, we knew she would most likely cry, but I
would have thought she would be a bit more understanding with our daughter.

Figure 8: Thread 5313 from the Moms4Mom dataset

Part of this is because of how users behave when scoring posts. As was noted earlier in Section 5.1,

stack sites feature three “types” of posts: questions, answers and comments. The question initiates a

thread, answers are replies to the question, and comments are replies to answers. Here, post 5313 is

the question, posts 5315 and 5400 are answers, and posts 11161, 11168 and 11179 are comments, as

can be seen in Figure 7a. The point of these sites it to provide answers to questions; since comments

are not directly replying to the question, they often do not receive scores. They are intended for

meta-discussion, so they are not an expected source of text directly pertinent to the question - users

are expected to write such text in the form of an answer. As such, they might share a high similarity

with the thread’s overall contents, and could indeed be related to its topic, but the way users interact

with them does not provide an easy way to verify this by comparing against their score.

The way clustering on cosine-similarity works actually has an opposite effect. Since comments

46

are typically shorter than full answers, they have a smaller term-space, with fewer dimensions that

carry weight. This means they bear fewer factors that could differentiate them from the thread as

a whole, making them more likely to be merged into the thread cluster. This could be problematic,

but in this case, the two comments that TopicAl clustered with the thread, comments 11161 and

11168, do seem to provide useful insight on how to encourage a child through a difficult situation.

Both mention trying to turn a possibly traumatic experience into an opportunity for play, with the

goal of making the experience more positive. It could be argued that while these comments are

tangential, they are more useful to the parent who asked the question than the actual answers.

Post 5313 is the question that originated the thread. It uses some specific terms that are found

nowhere else in the thread, and are rare in the dataset as a whole: “ophtamologist”, “diagnosed”,

“appointment”. Since “ophthalmologist” was misspelled as “ophtamologist”, this helps separate

this thread from other threads that could mention the same medical specialization. These serve to

differentiate the original post from the rest of the thread.

Post 5315 is the highest-scoring answer in this thread, which means users judged that it carries

the information most pertinent to the question. However, this information comes in the form of a

link to a Wikipedia article. TopicAl does not consider links to other webpages, as they are removed

from the text before processing, along with other HTML formatting. As such it is indeed a pertinent

post, but the information it contributes is not found in the text of the post itself.

Post 5400 comes from a parent who dealt with a similar situation. This answer to the question

is actually a personal story of the disappointment that parent felt when the pediatric doctor could

not contain the child’s crying. This is related to the question, but arguably provides little actionable

knowledge that the author of the question could use. Being the longest post in the thread, it displays

a larger variety of vocabulary than other posts. When indexing, this larger vocabulary becomes a

wider term-space where most terms have little in common with the rest of the thread: “screamed”,

“surgery”, “husband”, “disappointed”. It could then be argued that TopicAl was correct in excluding

this answer from the cluster of posts related to the thread.

47

The only post that is “accurately” clustered is comment 11179, which is excluded from the

thread’s cluster. This agreement between the TopicAl clustering and the expected relatedness in-

ferred from the score should provide some comfort, but reading its text tells a different story. The

comment is apparently written by someone who has dealt many times with the situation described

in the original question. It seems to provide the most straight-forward answer to one part of the

question, namely what to expect from the treatment. In doing so, it is arguable more on-topic than

any other answer or comment.

In short, thread 5313 not only shows some difficulties in hierarchically merging clusters based on

the similarity of their term vectors; it highlights that even the standard it is held up against is far

from perfect. Both the cosine-similarity and the user-attributed scores fail to accurately represent

how related or interesting a post is to the discussion. It is one of the most spectacular cases of failure;

as Section 5.4.1 showed, both the TopicAl clusters and the evaluation derived from user-scores is

typically more accurate. However, it it important to keep in mind that the results of quantitative

evaluation should not be taken blindly.

5.5 Examining Hierarchical Clustering Results

(a) MetaOptimize (b) Moms4Mom

Figure 9: Classification of results of hierarchical clustering at different thresholds

48

Figure 10: Evaluation of hierarchical clustering for the MetaOptimize dataset

With the procedure detailed in Algorithm 5, all clustering decisions can be put in one of 4 classes:

true positives in blue, true negatives in orange, false positives in yellow and false negatives in green.

The results of these classifications is dependent on the threshold value used to merge clusters and

evaluate them. These results are shown for both datasets in Figure 9, for all threshold values of two

significant decimals in the range [0.01, 0.99].

These classifications can be used to compute measures of the accuracy of clustering that were

described in Section 5.3. Figure 10 shows the results of these measures on the hierarchical clustering

of the MetaOptimize dataset, for every threshold value between 0.01 and 0.99. Figure 11 shows the

same measures for the Moms4Mom dataset. Both figures are reproduced in detail in Appendix A.

49

Figure 11: Evaluation of hierarchical clustering for the Moms4Mom dataset

5.5.1 Precision

One startling characteristic of the precision measurements is the abrupt changes in value at certain

threshold values. Notably, there are sharp breaks in the precision measures at threshold 0.25, 0.33

and 0.5. This is a by-product of the evaluation method used. The QA websites used for this work

let their users assign points to rate the quality of postings, and these point totals are integers.

When these scores are scaled to the [0.0, 1.0] range, they are divided by the highest score found in

their containing thread, as described in Section 5.3. In threads where the maximum score is small,

the scaled scores become fractions with a small denominator. For example, in a thread where the

highest-scoring post has a score of 4, a post with score 2 will see its score scaled to 0.5.

This scaled score is the evaluation target, as it determines whether or not, for a given threshold

value, the post should or should not be clustered together with its thread. As cosine similarities

depend on the presence of many terms, there is a large variety of similarity scores, which are more

50

evenly distributed. The result of the cosine similarity measure is rarely such a crisp fraction. This

means that there are many posts which change classification around threshold values for such crisp

fractions. Using the above example of a post with a QA score of 2, in a thread where the highest-

scoring post has a score of 4, when the post is clustered with its thread, it is considered as a true

positive with a threshold below 0.5, while it is classified as a false positive for threshold values of

0.5 and over. This issue becomes less relevant as more users cast more votes on the importance of

questions.

For threshold values over 0.5, the precision score varies wildly, until a point where it reaches 0.

This is because the precision calculation considers only results classified as true positives and false

positives. Both of these classes represents cases where a post was clustered together with its thread,

whether rightly or wrongly. With higher threshold values, there are very few cases where clusters

are merged; At threshold 0.5, only 20% of nodes are merged. This means that when computing the

fraction in Equation 8, both the numerator and the denominator are so small that slight variations

in either have enormous effects on the Precision measurement. Threshold values over 0.5 yield so

few clusters that they are not useful for practical purposes.

It should also be noted that except for the aforementioned spikes, the precision scores are more

or less constant for the useful range of threshold values. In the MetaOptimize dataset, the precision

score remains in the range [0.45, 0.55] for all threshold values below 0.7, while in the Moms4Mom

dataset, the precision score remains in the range [0.65, 0.75] for all threshold values below 0.5.

This seems to indicate either an upper boundary on the accuracy of the clustering, or that term

occurrence outside the context is almost irrelevant

To summarize, the precision score changes very little with regards to the threshold value used,

but is very susceptible to side-effects of the evaluation procedure. In light of this, there are serious

doubts that the precision score computed here is a useful assessment of whether the successful

clusterings are “accurate”.

51

5.5.2 Recall

The Recall scores for both datasets vary between almost 1.0, when the threshold approaches 0, to

nearly 0.0, when the threshold approaches 1. The distribution of recall scores for various threshold

values follows a sigmoid curve, with some small discontinuities visible at threshold 0.33 and 0.5.

As with the precision scores, these discontinuities are the result of the way the integer scores are

mapped to decimal numbers, leading to threshold values where many nodes change evaluation class.

These discontinuities are more visible in the MetaOptimize results, but can also be found in the

Moms4Mom results. This is because instead of considering the false positives, the recall fraction has

the false negatives as part of its denominator. When approaching high threshold values, the number

of false positives drops to 0, while the number of false negatives stays almost constant. This means

the denominator of the fraction does not reach very small values, which explains why there are no

abrupt changes in the recall scores for high threshold values. The number of false negatives does

approach 0 when the threshold values approach 0.0; for those threshold values, however, the number

of true positives is so large that the denominator remains large, which ensures the fraction does not

change value sharply at certain threshold values.

As a consequence, unlike the Precision scores, the curve for Recall scores is very smooth. This

stability of the measurements indicates that the Recall score is less susceptible to side-effects of the

evaluation procedure. As such, it could be taken with a higher confidence in its usefulness than the

precision score.

The recall curves also confirm that higher threshold values are not useful for practical cluster-

ing. At a threshold value of 0.5, the recall score for the MetaOptimize dataset is 0.2426; in the

Moms4Mom dataset, it reaches 0.1337. In both cases, this shows that only a small fraction of the

useful clusterings were accomplished. This makes a strong case that the lower threshold values

provide a more useful set of clusters.

52

5.5.3 F1-Score and Rand Index

The F1-Score also shows an advantage for the hierarchical clustering for the lower threshold values.

However, this difference is mostly representative of the Recall score, as the Precision measurements

are relatively stable for this range of threshold values. This means the F1-Score tends to give higher

scores to classifications which produce the most clusters.

The Rand Index gives a different picture of the overall performance of clustering. It shows a low

score for low threshold values, and a higher score for the higher threshold values. This is because

unlike in other measures, true negatives count towards the Rand Index. For threshold values over

0.5, true negatives represent the majority of nodes classified in both datasets, as can be seen in

Figure 9. The majority of other nodes are classified as false negatives, as the clustering at such high

threshold values merges very few clusters, accurately or not. As such, the Rand Index tends to give

higher scores to classifications which produce very few useful clusters.

5.6 Comparing Clustering methods

The figures presented in Section 5.5 give a good idea of how well the hierarchical clustering deals with

different types of data. However, they paint an incomplete picture. In order to better understand just

how well the TopicAl system performs, it has to be compared with other approaches. The measures

of precision and recall were conceived for this specific purpose of comparing different approaches to a

given task. The difficulty with this is that TopicAl attempts to solve a different problem than what

existing systems were designed to do. This is why the evaluation procedure detailed in Section 5.3

had to be developed. There are no state-of-the-art results from last year’s conference against which

to measure this hierarchical clustering.

In order to paint a more complete picture, a baseline approach was necessary. The baseline used

here is bottom-up agglomerative clustering. In this algorithm, one initial cluster is created for every

element to be clustered. The similarity is computed between every pair of clusters, and the two

most-similar clusters are merged. The similarities are then recomputed between the newly-merged

53

cluster and every other remaining cluster. This process is repeated until the highest similarity falls

below the threshold value. This was chosen because it is one of the simplest clustering algorithms;

it makes no assumptions on the data to cluster, and its performance is easy to understand.

The bottom-up clustering also serves another, more practical purpose. Since the hierarchical

algorithm only considers merging clusters based on the structural links between them, there are

some valid merges that it cannot accomplish. For example, it cannot merge two related posts which

appear in two unrelated threads. This deficiency is an obstacle to using TopicAl for purpose of

querying the entire collection for text on a given topic. As was detailed in Section 3.4.1, a practical

implementation needs to supplement the hierarchical clustering with a bottom-up second pass. This

is why this section presents results for three methods of clustering: hierarchical-only, bottom-up

only, and a combined method with a hierarchical first pass and a bottom-up second pass.

There is a challenge in implementing bottom-up clustering, however. Since it needs to merge

the pair of clusters that has the highest similarity, it needs to compute and maintain the similarity

measure between all pairs of clusters. This requires keeping a very large matrix of similarity values in

memory. With the larger Moms4Mom dataset, this required more memory than the 8 GiB that the

most capable available computer possessed. This means that there are no results for the bottom-up

algorithm on the Moms4Mom dataset.

In order to still get some understanding of how well the hierarchical algorithm performed against

a well-known approach, a substitute was needed. The substitute proposed here is a bottom-up

clustering of one portion of the dataset: the thread nodes and the post nodes, but not the passage

nodes. The passages were omitted because there was no evaluation metric available to determine

whether or not a passage is related to its containing post. Because of this, it was possible that

removing the passages would not alter the results significantly, and this partial clustering would still

provide useful information about how well the hierarchical algorithm performed.

This assumption was not guaranteed to be true, and needed to be verified by itself. This is why

for the smaller MetaOptimize Dataset, both the complete and partial clustering were performed.

54

This helped highlight where the complete bottom-up clustering performed similarly to the partial

clustering, and where its performance differed.

It should be noted that some data points are missing for the assessment of the combined clustering

for high threshold values in the Moms4Mom. This is also because of memory limitations. The

hierarchical first pass reduces the number of clusters that the bottom-up second pass needs to

consider. This reduces the size of the matrix of distances between cluster pairs to a size that can

fit in the 8 GiB of memory of the most capable computer available, if the threshold value is low

enough. For threshold values of 0.6 and under, the hierarchical clustering reduced the number of

clusters enough to perform the bottom-up second pass. Since the more practically useful results

are obtained with threshold values under 0.5, this does provide enough information to ascertain the

usefulness of combined clustering.

(a) MetaOptimize (b) Moms4Mom

Figure 12: Numbers of clusters produced by different clustering methods

It should also be noted that since the partial bottom-up clustering worked on fewer elements,

it produced fewer clusters. Figure 12 shows the numbers of clusters produced by each clustering

method. The orange bar shows the number of clusters produced by hierarchical clustering, the

yellow bar shows combined clustering, the green bar shows bottom-up clustering of the complete

collection, while the blue bar shows the bottom-up clustering of only posts and threads. It can be

readily observed that the partial bottom-up clustering produces a much smaller number of clusters.

55

The bottom-up agglomerative clustering performed here is much more expensive then the hi-

erarchical clustering. In the larger Moms4Mom dataset, performing the bottom-up clustering at

threshold values over 0.5 took on the order of 10 hours; at threshold 0.1, it took over 27 hours. This

made it difficult to provide as many data points as in the assessment of the hierarchical clustering.

The results shown in this section are only computed for threshold values of 1 decimal place in the

range [0.1, 0.9], unlike the previous section.

(a) MetaOptimize (b) Moms4Mom

Figure 13: precision score for different clustering methods

(a) MetaOptimize (b) Moms4Mom

Figure 14: recall score for different clustering methods

It is reasonable to ask whether this approach to evaluation is objective, or whether it has an

unfair bias favoring the hierarchical model over more traditional approaches. The scores from stack

56

(a) MetaOptimize (b) Moms4Mom

Figure 15: F1-Score for different clustering methods

(a) MetaOptimize (b) Moms4Mom

Figure 16: Rand Index for different clustering methods

sites, as they are used in evaluation, only relate a post to the thread it appears in. The hierarchical

clustering has access to the link between post and thread, which standard, bottom-up clustering

does not.

This does not appear to be the case. The evaluation scores for both datasets show that, for

threshold values of 0.5 and over, the performance of both algorithms is very close. The only measure

where there is a marked difference is precision, where the bottom-up algorithm has an advantage over

the hierarchical algorithm. This is more noticeable for the MetaOptimize dataset, but it can also be

observed in the results of the Moms4Mom dataset. The bottom-up algorithm, which merges clusters

57

based only on the most-similar pairings, regardless of structural links, can still find the most-related

groupings, as established by the evaluation scores. This makes a strong case that the bottom-up

algorithm has the same ability to find the related pairings as the algorithm that is informed about

the structure.

The challenge then becomes to explain the large discrepancy in favor of the hierarchical algorithm

for the lower threshold values. All measures for both datasets show that for threshold values close

to 0.2, the hierarchical algorithm performs much better than the bottom-up algorithm. This gap

is especially pronounced for the recall score. This can be explained because of the way bottom-up

agglomerative clustering works. Two clusters are only merged when, of all the existing clusters, they

are the pair with the highest similarity. In this situation, this means that their term spaces have the

most in common of any pair of nodes in the text hierarchy - regardless of where in the hierarchy they

are located. For high threshold values, this works well, as clusters are merged when their contents

are nearly identical.

However, the situation changes over time. As clusters get merged, the maximum similarity

between any two clusters becomes quickly much lower. When approximately 20% of clusters have

been merged - or, more precisely, when the merging of clusters has reduced the number of clusters

by approximately 20%, the maximum similarity between any two clusters reaches 0.5. This means

that there are very few cases where the relatedness of two pieces of text is expressed by a very

high similarity of their term spaces. Most related pairs of text nodes in the hierarchy have much

lower similarity; this is where the bottom-up algorithm’s tendency to favor only similarity begins to

hamper its performance.

The bottom-up method will merge all nodes with a very similar term space together, regardless

of their positions in the hierarchy. By greedily merging posts solely based on term-space similarity,

the bottom-up algorithm fails to consider whether a post is related to the discussion in which it

occurs. The resulting clusters are more homogeneous for high threshold values, but as can be clearly

seen in the results, for low threshold values, which represent the similarity between most related

58

posts, the cohesion becomes lower than with the hierarchical algorithm.

By contrast, the hierarchical algorithm will only merge nodes that are linked in the hierarchy.

For high threshold values, the clusters are notably less cohesive, but conversely, the cohesion is much

less susceptible to change when the threshold varies. This is because the structure linking threads,

posts and passages is the only factor determining which clusters can be merged. The bottom-up

algorithm, in order to merge two pieces of related text with a similarity of 0.3, needs to merge

every piece of text with a higher term-space similarity beforehand. In doing so, the clusters form

around a core of common terms, but also accumulate every term with a low weight in the same term

vectors. Individually, these low-weight terms make no difference to the results, but after thousands

of clustering steps accumulate significant weight in a cluster’s term space. Eventually, two pieces of

related text end up in clusters that are not similar enough to be merged. By only considering pieces

of text related by the social structure found in the discussion, the hierarchical clustering procedure

can cut through this noise and, for the more useful, lower threshold values, produces superior results.

One obvious negative consequence of this is that the hierarchical algorithm has no way of linking

related posts found in different threads. This is the reason why a practical system needs to com-

plement the hierarchical clustering with a more basic, all-pairs type of clustering. Because it takes

place after the first step, the bottom-up algorithm can avoid many of the pitfalls that undermined its

performance when it was run alone. The clustering is not initiated on singleton clusters representing

one piece of text, but on larger, more heterogeneous clusters that already account for some of the

diversity of terms that can be found in related pieces of text. As can be seen from the results of

combined clustering, the second pass accounts for a large reduction of the number of clusters, which

does result in more heterogeneous clusters. While this results in a reduction of the precision score,

it also leads to an improvement in the recall score.

59

5.6.1 Cluster Cohesion

There are some other quantitative measures that can be used to assess the hierarchical clustering.

One possible measure of the effectiveness of clustering is Cluster Cohesion, which measures how

much elements in a cluster are related to each other. This can be implemented as the mean cosine

distance between the cluster’s term vector and the term vectors of each clustered element, as shown

in Equation 13. The average Cohesion for all clusters in the dataset is an indication of the quality

of the clustering results. As with other measures, this is dependent on the dataset, as well as the

threshold used to cluster the dataset.

(a) MetaOptimize (b) Moms4Mom

Figure 17: Cluster Cohesion for different clustering methods

~C =

|C|
∑

i=1

~vi (12)

ClusterCohesion(C) =

∑|C|
i=1

CosineSimilarity(~C, ~vi)

|C|
(13)

The cohesion results for both datasets are shown in Figure 17. They show that, unlike other

measurements, there is a wide difference between the cohesion of partial bottom-up clusters and

complete bottom-up clusters. When clustering without passages, the maximum cohesion at high

threshold approaches 1.0, while bottom-up clusters built with passages have a maximum cohesion

closer to 0.8.

60

One thing that becomes apparent is that the hierarchical clusters have roughly the same maxi-

mum cohesion as the bottom-up clusters, and the combined clusters. This could be taken to mean

that the two clustering approaches are comparable, even though the hierarchical clusters are done

by doing a small fraction of the work. However, while the clustering methodology varies, both these

scores are computed on the hierarchical index. Since flat clusters can also be made using a more

traditional, flat index, this warrants further investigation.

Another point of interest is that the clusters obtained by combining the two clustering approaches

actually yields clusters that are less coherent than using either approach independently. This is

contrary to initial expectations; the motivation of combining both approaches was to make better,

more coherent clusters. However, this lower coherence does not necessarily mean the clusters are less

useful. The combined clusters are the result of doing bottom-up clustering on the hierarchically-built

clusters, which are already heterogeneous, as they only allow clustering together elements related

by context. It would be difficult for a system clustering already-heterogeneous elements to combine

them in ways which make them less disparate.

5.7 Concluding Remarks on the Evaluation Procedure

Assessing the quality of these results proved to be as much of a challenge as developing the sys-

tem itself. This is, in part, because the TopicAl attempted to solve a different problem than what

previously-available collections were intended to evaluate. The hierarchical indexing and clustering

attempt to address the full breadth of topics covered in threaded discussion, including topics men-

tioned only in passing, in tangential, “off-topic” postings, without making any assumptions about

what the reader’s interests may be. Relying on user-attributed relevance scores provided a useful

point of comparison, which can be obtained from social websites covering a wide range of topics.

Performance concerns limited the choice of stack sites used for evaluation to relatively small com-

munities, where user participation is not high enough to guarantee enough redundancy in scoring

for the evaluation procedure to provide perfectly reliable results.

61

Nevertheless, the evaluation results shown here have provided useful insights into the performance

of hierarchical clustering on social text. In particular, they have shown that hierarchical clustering,

by focusing on social structure, will avoid being waylaid by spurious similarity between pieces of text

that do not appear in a shared context. In a sense, this follows how human readers process threaded

discussion; a person reading a post on a given topic will read other posts in the same thread before

trying to find related posts in different threads. Hierarchical clustering avoids being “distracted”

by following the same principle of looking within the context provided by the discussion structure.

When implementing a reading aid, or a recommender system, which is intended to help humans

parse the reams of social text, there are clear benefits in working with the same assumptions that

human readers have.

62

Chapter 6

Conclusion

The hierarchical indexing and clustering presented here produced an improvement in the quality of

clustering results over the baseline bottom-up approach, while significantly reducing the complexity

of the clustering task. This suggests the hierarchical approach is better-suited to incrementally

indexing the ever-increasing volumes of structured text currently being produced. This is because it

integrates the notion of context, enabling it to consider a piece of text at different levels of granularity.

Context is emerging as an important notion which researchers are using to narrow down focus on

large amounts of text for different uses.

Social media poses challenges for Information Retrieval which are still unresolved. By opening

the web to discussion by anyone, about any subject, this has produced enormous quantities of text

which cannot be simply considered as “web-pages” without losing much of the information which

they contain. This has spurred much new research into social text, where many different approaches

attempt to find information from on-line discussion in ways that are informed by the structure of

social text.

The approach proposed here was in line with the basic Computer Science principle of divide-and-

conquer. Regardless of the specifics of the formatting used to represent discussion for the web, what

we call social text can be understood using a common set of metaphors. A site can be considered as

63

a set of threads, a thread as a set of posts, and a post as a set of passages. This relationship between

pieces of text forms a hierarchy, where each level provides the context within which to understand

elements as the lower level.

The hierarchical indexing method proposed in this thesis uses this hierarchy of contexts to apply

well-known text indexing methods in a recursive manner. This is unlike web search engines, which

are not informed by social structure and treat social text as documents in whichever form the

software represents them for the web. The hierarchical indexing treats a post both as a document

in the collection that is its thread, and as a collection of its own passages. Likewise, the thread acts

both as a collection of posts and as a document in the collection that is the entire social discussion

platform. By considering the text at multiple levels of granularity, this approach allows the system

to identify information mentioned only in passing, in an otherwise-unrelated context, while still

giving a useful picture of the discussion as a whole. This method can be used when implementing

the interface to a social-media website, to help the reader focus on parts of the discussion that are

pertinent to the reader’s interests by highlighting points where the discussion diverges to different

topics. This would help readers focus on the information they require from the text, without the

distractions that reliably arise in public discussions.

The hierarchical structure of social text can also be used to implement clustering, to group

together parts of the discussion that share the same topic. By focusing on the text content within

its different contexts, hierarchical indexing allows to make more accurate representation of which

information is specific to a passage, which is related to a single complete post and which is related to

an entire discussion thread. This way, a post that changes subject from its discussion thread can be

clustered with text on this specific topic, while the other posts in the thread, as well as the thread

as-a-whole, will belong in another cluster.

Using the structure to inform text clustering has been shown to provide results that can be com-

parable to a traditional approach. When considering the lower threshold values, which give the most

useful clusters, the hierarchical clustering appears to perform better than traditional approaches, by

64

focusing on nodes related by the discussion’s structure. This can be accomplished using a fraction

of the resources necessary for the baseline algorithm, while taking orders of magnitude less time.

This hierarchical approach does not completely alleviate the need for the traditional, bottom-up

approach, which can find related pieces of text without relying on structure. However, combin-

ing the two approaches yields better results than either method taken separately, while requiring

significantly fewer resources than the bottom-up approach alone.

The evaluation process to validate the clustering was based on discussion sites where the user

community can rate the quality of postings. This user-attributed score constitutes a standard against

which the generated clusters can be compared. Relating the similarity measure used in clustering to

the user scores proved to be a challenge. There are still unresolved issues concerning the evaluation

method, as the usefulness of some of the measurements was undermined by the side-effects of the

evaluation procedure. Nonetheless, by relying on a measure of relevance provided by the same

community that produced the discussion, this method can be used to evaluate the accuracy of

information retrieval in social text at multiple levels of granularity, regardless of the subject matter,

without employing human judges to produce an evaluation collection. There is hope that with a

sufficiently-large community, the side-effects of this method can be overcome.

6.1 Future Work

The TopicAl system described in this thesis has demonstrated its usefulness in finding related post-

ings in an online discussion. However, the capabilities of the current implementation are limited

by performance concerns. Keeping the index for the entire hierarchy in memory limits the size of

discussion sites that can be processed. Aside from simply using a computer with more RAM, there is

an obvious strategy to mitigate this problem: move the index out of the main memory to a secondary

storage, such as a hard drive. This effectively augments the maximum size of the discussion that the

system can process by several orders of magnitude. Of course, using a hard drive for storage is orders

of magnitude slower than using RAM; some care must be put into the efficiency of input/output

65

operations. The recent advent of flash-based solid-state drives also provides a way to use secondary

storage that is significantly faster than traditional hard disk drives.

The more advanced file-systems in modern operating systems can not only span multiple disks,

but also multiple hosts, in a transparent fashion - even over the internet. This would conceivably en-

able discussions of any size to be indexed. It would also provide the possibility to distribute the work

of indexing the pieces of text between different computers. Some work would certainly be needed in

order to ensure the integrity of the data in such a distributed system, but the hierarchical structure

of discussion already divides the data into separate areas which can be processed independently.

Once the factors limiting performance are dealt with, many more advanced language modeling

techniques can be used. As mentioned in Section 3.2.4, the large amounts of memory used by

LSA’s term-space expansion made it unsuitable. While the social sites used for evaluation were

possibly too small to provide the redundancy needed to make LSA’s term-space expansion effective,

improvements in use of memory would enable larger datasets to be used.

It should also be noted that while the indexing and clustering procedures presented here are

premised on the idea of exploiting the hierarchical structure found in social text, there is nothing in

the algorithms themselves that is specific to social text. Any collection of text that is organized in

a hierarchical fashion could be processed this way. One obvious case is the family of XML formats

used for documentation, such as DocBook. Another such case, perhaps more related in spirit to

social text, is the growing number of “folksonomies” - community-built knowledge repositories. The

best-known of these sites is indubitably Wikipedia, but any sufficiently-large wiki where pages are

classified in a coherent hierarchy of categories could be parsed and input into the current TopicAl

system.

Another area that warrants further investigations is the different hierarchies that relate pieces of

text. The TopicAl system used the containment hierarchy, as it provides context to a piece of text in

a way that is easy to understand, while making a hierarchy that has a fixed depth. There are other

hierarchies to be found in social text, which may yet be used to provide context for Information

66

Retrieval. One which has been mentioned previously is the reply structure, where a post is not a

descendent of the thread containing it, but of the previous post to which it is replying. This can be

extended to the passage level; when a reply quotes portions of a previous message, the passages that

come after a quoted portion in the reply can be considered as descendants of the quoted passage

in the original message. In many animated online discussions, a single contentious passage may be

quoted in dozens of replies. Considering the reply-passages together may be more interesting than

simply considering the reply-passage inside the post where it occurs.

Another structure that can be investigated is authorship, where the parent of a given post-node

is a node not representing its thread, but its author. This can be extended down to the passage-

level, to contrast the passages that are original to a post with those that were quoted from other

posts, written by other authors. This could be used to automatically identify sub-communities of

authors interested in the same topics, and measure each author’s influence over others. There is a

rich variety of links in the structure of social text that provide context, which can be used to find

related content.

One difficulty of using these hierarchies is that they are not actually hierarchies. A message can

quote different previous messages, from different branches in the reply tree. When this happens, the

link structure is no longer a tree, but a directed acyclic graph. When dealing with blog posts that

can be edited after-the-fact to quote their own comment thread, the directed graph can actually gain

cycles. Considering the authorship context, the link structure of a discussion between two authors

who repeatedly reply to each other will also yield cycles. The algorithms presented in Chapter 3

assume that a node is present in only one context. It is not clear that the hierarchical clustering

makes sense if a node has more than one parent, or more than one term-vector. The depth-first

traversal in indexing will certainly not work for graphs with cycles; in order to use these structures

as context, a different indexing algorithm will be needed.

If the indexing were adapted to deal with generalized directed graphs, then TopicAl could be

used to process normal web pages, treating it as the context in which to index the other pages to

67

which it links. It would be challenging to do this over the entire web, as web pages contain not

only text, but navigation elements, advertisements and non-text contents. Focusing on a specific

site, such as WikiPedia or another large-scale collaborative resource with many internal links and a

strong focus, would provide interesting avenues.

68

Appendix A

Detailed Results

Figure 18 shows the graph for the results on the MetaOptimize dataset. Figure 19 shows the graph

for the results on the Moms4Mom dataset.

69

Figure 18: Evaluation of edge clustering for the MetaOptimize dataset: Large Format

70

Figure 19: Evaluation of edge clustering for the Moms4Mom dataset: Large Format

71

Bibliography

[All02] James Allan. Topic Detection and Tracking: Event-based Information Organization,

chapter 1: Introduction to Topic Detection and Tracking, pages 1–16. Kluwer Academic

Publishers, 2002.

[BBFD08] U. Bojrs, J. G. Breslin, A. Finn, and S. Decker. Using the semantic web for linking and

reusing data across web 2.0 communities. Web Semant., 6(1):21–28, February 2008.

[BdR07] Jeroen Bulters and Maartin de Rijke. Discovering Weblog Communities. In International

Conference on Weblogs and Social Media, 2007.

[BP98] Sergey Brin and Lawrence Page. The Anatomy of a Large-Scale Hypertextual Web

Search Engine. In Seventh International World-Wide Web Conference (WWW 1998),

1998.

[CBBK09] Harr Chen, S.R.K. Branavan, Regina Barzilay, and David R. Karger. Global models

of document structure using latent permutations. In Proceedings of Human Language

Technologies: The 2009 Annual Conference of the North American Chapter of the As-

sociation for Computational Linguistics, pages 371–379, Boulder, Colorado, June 2009.

Association for Computational Linguistics.

[CM09] Kino Coursey and Rada Mihalcea. Topic Identification Using Wikipedia Graph Central-

ity. In Proceedings of Human Language Technologies: The 2009 Annual Conference of

72

the North American Chapter of the Association for Computational Linguistics, Compan-

ion Volume: Short Papers, pages 117–120, Boulder, Colorado, June 2009. Association

for Computational Linguistics.

[DB10] Julien Dubuc and Sabine Bergler. Structure-Aware Topic Clustering in Social Media. In

DocEng ’10: Proceedings of the 10th ACM Symposium on Document Engineering, 2010.

[DDF+90] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and

Richard Harshman. Indexing by latent semantic analysis. Journal of the American

Society for Information Science, 41(6):391–407, 1990.

[DLK06] Hoa Trang Dang, Jimmy Lin, and Diane Kelly. Overview of the TREC 2006 Question

Answering Track. In 15th Text REtrieval Conference, 2006.

[GLMF09] Michaela Götz, Jure Leskovec, Mary McGlohon, and Christos Faloutsos. Modeling Blog

Dynamics. In Proceedings of the Third International ICWSM Conference, 2009.

[GZZ+10] Zhen Guo, Shenghuo Zhu, Zhongfei (Mark) Zhang, Yun Chi, and Yihong Gong. A Topic

Model for Linked Documents and Update Rules for Its Estimation. In Proceedings of

the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10), 2010.

[HCL07] Qi He, Kuiyu Chang, and Ee-Peng Lim. Analyzing Feature Trajectories for Event

Detection. In SIGIR ’07: Proceedings of the 30th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, pages 207–214, New

York, NY, USA, 2007. ACM.

[Hea93] Hearst, Marti A. TextTiling: A Quantitative Approach to Discourse. Technical report,

University of California at Berkeley, 1993.

[Joh02] Barbara Johnstone. Discourse Analysis, chapter Discourse Structure: Parts and Se-

quences, page 76. Blackwell Publishing, 2002.

73

[MOS09] Craig Macdonald, Iadh Ounis, and Ian Soboroff. Overview of the TREC-2009 Blog

Track. In TREC 2009, 2009.

[MS03] Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural Lan-

guage Processing. MIT Press, 2003.

[NDW07] Lan Nie, Brian D. Davison, and Baoning Wu. From Whence Does Your Authority

Come? Utilizing Community Relevance in Ranking. In AAAI’07: Proceedings of the

22nd National Conference on Artificial Intelligence, pages 1421–1426. AAAI Press, 2007.

[Por80] M. F. Porter. An algorithm for suffix stripping. Program: electronic library and infor-

mation systems, 14(3):130–137, 1980.

[SJ72] Karen Spärck Jones. A statistical interpretation of term specificity and its application

in retrieval. Journal of Documentation, 28:11–21, 1972.

[SMG+07] Bingjun Sun, Prasenjit Mitra, C. Lee Giles, John Yen, and Hongyuan Zha. Topic

Segmentation with Shared Topic Detection and Alignment of Multiple Documents. In

SIGIR ’07: Proceedings of the 30th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, pages 199–206, New York, NY,

USA, 2007. ACM.

[WBC+10] Hao Wu, Jiajun Bu, Chun Chen, Can Wang, Guang Qiu, Lijun Zhang, and Jianfeng

Shen. Modeling Dynamic Multi-Topic Discussions in Online Forums. In Proceedings of

the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10), 2010.

[WCB10] Danny Wyatt, Tanzeem Choudhury, and Jeff Bilmes. Discovering Long Range Properties

of Social Networks with Multi-Valued Time-Inhomogeneous Models. In Proceedings of

the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10), 2010.

74

[WO09] Lidan Wang and Douglas W. Oard. Context-based message expansion for disentangle-

ment of interleaved text conversations. In Proceedings of Human Language Technolo-

gies: The 2009 Annual Conference of the North American Chapter of the Association for

Computational Linguistics, pages 200–208, Boulder, Colorado, June 2009. Association

for Computational Linguistics.

[YCS09] Tae Yano, William W. Cohen, and Noah A. Smith. Predicting Response to Political

Blog Posts with Topic Models. In Proceedings of Human Language Technologies: The

2009 Annual Conference of the North American Chapter of the Association for Com-

putational Linguistics, pages 477–485, Boulder, Colorado, June 2009. Association for

Computational Linguistics.

[ZM07] Quiankun Zhao and Prasenjit Mitra. Event Detection and Visualization for Social Text

Streams. In International Conference on Weblogs and Social Media, 2007.

[ZZW07] Kuo Zhang, Juan Zi, and Li Gang Wu. New Event Detection Based on Indexing-tree and

Named Entity. In SIGIR ’07: Proceedings of the 30th Annual International ACM SIGIR

Conference on Research and development in Information Retrieval, pages 215–222, New

York, NY, USA, 2007. ACM.

75

	List of Algorithms
	List of Figures
	List of Tables
	Introduction
	Social Media as a Source of Information
	Example of Difficulties in Finding Information
	The Need for fine-grained information

	Previous Work
	Topic Detection and Topic Modeling
	Social Media Mining

	A Model of Varying Granularity for Text Indexing and Clustering
	Modeling Social Text
	Indexing Social Text along its Hierarchical Structure
	TF-IDF
	Hierarchical Indexing
	Hierarchical Indexing Procedure
	Other Approaches to Indexing

	Querying
	Clustering Social Text with the Hierarchical Index
	Measuring Similarity
	Hierarchical Clustering in Social Text
	Consequences of Hierarchical Clustering

	Implementation
	Platform
	Parsing Data Sources
	Indexing Implementation
	Clustering Implementation

	Analysis
	Evaluation Data
	Evaluation Issues
	Evaluation Methodology
	Case Studies
	MetaOptimize Thread 1742
	Moms4Mom Thread 5313

	Examining Hierarchical Clustering Results
	Precision
	Recall
	F1-Score and Rand Index

	Comparing Clustering methods
	Cluster Cohesion

	Concluding Remarks on the Evaluation Procedure

	Conclusion
	Future Work

	Detailed Results
	Bibliography

