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ABSTRACT

Identification of Soft-Error at Gate Level

Ghaith Bany Hamad

Due to shrinking feature size and significant reduction in noise margins, as

we are moving into very deep sub-micron technology, circuits have become more

susceptible to manufacturing defects, noise-related transient faults and interference

from radiation. Traditionally, soft errors have been a much greater concern in mem-

ories than in logic circuits. However, due to technology scaling, logic circuits have

become equally susceptible to soft errors. Moreover, enhanced usage of commer-

cial off the shelf (COTS) electronic components for avionics has also increased the

importance of analyzing soft errors in hardware circuits. Conventionally, under-

standing soft error glitches requires circuit level modeling, which requires informa-

tion available only at late stages in the design flow. Instead of this approach some

researchers have produced modeling techniques using Reduced Order Binary De-

cision Diagrams (ROBDD) and Algebraic Decision Diagrams (ADD), which does

allow analyzing soft error at an earlier stage in design flow. In this thesis, a new

methodology for modeling soft errors glitch propagation path using Multiway Deci-

sion Graphs is introduced. This modeling technique is applicable on both combina-

tional and asynchronous circuits. The proposed glitch propagation path modeling

technique jointly takes care of logical and electrical masking. Our methodology in-

volves new ways of injecting glitches including glitch injection in feedback paths of

asynchronous circuits. This work presents a complete framework to exhaustively

provide all the possible sequences of signals that lead to the possibility of glitch

propagation to the primary output in combinational and asynchronous circuits. In

addition, a new tool is developed based on the proposed methodology called Soft Er-

ror Glitch-Propagating Path Finder (SEGP-Finder) to automate the identification
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of these sequences of signals. This work helps designers identify the vulnerable cir-

cuit paths at the logic abstraction level. Also, this methodology allows designers to

apply radiation tolerance techniques on reduced sets of possibilities. By applying our

methodology on different combinational and asynchronous circuits an improvement

in terms of possible-fault injection vectors is observed. As an example, approxi-

mately 8% of all the possible input vectors and sequences is required for obtaining

exhaustive glitch propagation path identification in a representative implementation

of a bundled data asynchronous circuit. To the best of our knowledge, this is the

first time MDG based decision diagram based soft error identification approach is

proposed for combinational and asynchronous circuits.
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Chapter 1

Introduction

Digital designs have been growing fast in size and complexity over the past four

decades. As this complexity grows, reliability is becoming an increasingly major

concern for designers especially for mission critical systems such as avionic, medical

and banking applications. Fault tolerant design methods have been gaining increased

importance to provide more reliable designs. To allow the efficient design of a system

that can tolerate faults, a first natural step includes understanding the source of

induced errors, and most importantly, their analysis and modeling for the purpose

of guiding the design process.

A fault is an incorrect logic behavior that result from some physical defect,

imperfection, or flaw in the hardware or software part of the system. According to

their source or duration, faults classified as permanent, transient or intermittent.

Reliability issues in modern deep sub-micron technologies have aggravated because

designs implemented with scaled technologies have become more venerable to dis-

turbances induced by crosstalk and soft-errors. Therefore, there is a growing need

for understanding the effect of soft errors in digital design at an early stage in the

design flow. This work is an attempt in this direction.
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1.1 Soft Error

Soft errors can be defined as circuit errors caused due to excess charge carriers

induced primarily by external radiation, e.g., cosmic rays or alpha particles. If these

radiation events cause a charge generation large enough to perturb the logic value

on the output of a gate, a single-event transient (SET) is generated. If a SET is

propagated and latched into a memory element then it is called single event upset

(SEU).

Soft errors typically affect logic circuits in various ways. These faults can cause

an error in the system by changing the internal state, even though they last only

for a short time. The rate at which the soft error occurs is called Soft Error Rate

(SER). It is usually measured in FIT (Failure In Time), which is the number of

failures per 109 device hours. Researchers have shown that SER in logic is posing a

threat now [57] and will increase in occurrences rate by orders of magnitude within

the next few years [39]. As the technology is shrinking the possibility of occurrence

of soft errors in combinational circuit is getting as high as the possibility in SRAMs

[2].

It is well known that alpha particles cause soft errors. Different techniques

have been proposed to reduce the soft error rate due to alpha particles such as:

reducing the number of alpha particles emitted by the package; coating the chip

surface with a film that blocks alpha particle irradiation; and better design of the

memory device to make it less sensitive to alpha-induced soft errors. However, even

when reducing or attempting to eliminate alpha particle, soft errors are still there.

Recently, it has been found that cosmic ray neutrons also cause soft errors even at

ground level [43]. Approximately 95% of the particles capable of causing soft errors

are energetic neutrons [56]. Neutrons are uncharged and cannot disturb a circuit

on their own, but the notably undergo neutron capture by the nucleus of atoms in

a chip. This process may result in the production of charged secondaries, such as

alpha particles and oxygen nuclei, which can then cause soft errors.
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G1

G3

G2

G4

G5

0

0

0

0

0/1/0

0/1/0

Figure 1.1: SET effects.

Figure 1.1 reports an example of SET: the circuit is primary inputs are set to

0; thus the expected output value is 0 on both G4 and G5 outputs. When G3 is

struck by a particle with sufficient energy, its output switches to 1, for a duration

long enough so that it may propagate through to the primary outputs. As a result,

we observe a transition on both G4 and G5, whose outputs are set to 1. As soon as

the SET effects disappear, the outputs switch back to the expected value.

In combinational logic there are three masking effects (logical, electrical and

latching-window masking) that prevent the soft fault glitch from causing an error.

Modeling soft faults in combinational logic is always combined with modeling these

three masking effects. In the following section we discuss in more detail the im-

portance of modeling and detecting soft errors in combinational and asynchronous

circuits and the main challenges facing modeling the soft error in these circuits.

1.2 Problem Formulation

1.2.1 The Problem in Combinational Circuits

A digital circuit is defined as combinational if its steady-state output is completely

determined by the present inputs as shown in Figure 1.2. A combinational circuit

consists of input variables, logic gates and output variables. The logic gates accept

signals from the inputs and generate signals to the outputs. This process transforms

3



binary information from the given input data to a required output data. Combina-

tional circuits are employed extensively in the design of digital systems. Most digital

systems are made up of standard combinational blocks, such as adders, multipliers,

decoders etc. They perform specific digital functions commonly needed in the de-

sign of digital systems. Some combinational circuits, such as decoders, encoders and

multiplexers, can be used to control other devices such as decoder circuits [15, 16],

three-state buffers [17], register circuits [17], bus circuits, read / write memory op-

erations [18] and others. Decoder and other combinational circuits can be used in

mobile system, wireless networks and can be applied for other related communica-

tion systems [19, 20]. Decoder logic is essential for control units and memories [21].

N-inputs M-outputs

Figure 1.2: A popular representation of combinational circuits.

Traditionally, soft errors have been of greater concern in memories than in

logic circuits, because of the small cell size of memories. In contrast to this, three

factors prevented logic from becoming more susceptible to soft errors:

1. Logical masking - to be latched, a SET needs to be on the sensitized path

from the location where it originates to the latch;

2. Electrical masking - a SET needs to create a pulse that has a duration and

amplitude large enough to reach the latches. Due to the electrical properties

of the gates the pulse (glitch) passes through, it can be attenuated and even

completely masked before it reaches the latch.
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3. Latching-window masking- if the pulse reaches the latch and appears at its

input ”on time”, depending on its amplitude and duration, it can be latched.

 

Figure 1.3: Critical charge for SRAM/latch/logic [8].

However, as technology continues to scale, logic circuits are becoming much

more susceptible to soft errors [8] as shown in Figure 1.3. This figure shows a

decreasing trend in QCRIT . Where QCRIT is defined as the minimum amount of

induced charge required at a circuit node to cause a voltage pulse to propagate from

that node to the output and be of sufficient duration and magnitude to be reliably

latched. A higher QCRIT means fewer soft errors. Smaller feature sizes and lower

voltage levels allow lower energy particles to cause SETs. Figure 1.3 shows this

trend, where QCRIT of logic circuits continues to reduce with scaling in technology.

Hence the logic circuits in sub-100 nm era have become vulnerable to soft errors

even at terrestrial altitudes [38]. Therefore, soft error failure rates in combinational

logic are expected to become very important in the future and it may even exceed

soft error rates in memories [22].
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1.2.2 The Problem in Asynchronous Circuits

A combinational circuit does not store any data for the future time. In actual

implementation, these circuits contain logic gates without feedback signals. An

asynchronous circuit, on the other hand, has combinational feedback which can store

signal states. Its output, therefore, depends on both primary inputs and internal

states. The internal states, in turn, may depend upon previous primary inputs.

Asynchronous circuits are becoming more prevalent. Most commonly they

occur in the interfaces and the glue logic that binds the components of a system.

According to ITRS 2009, 25% of the global signals in integrated circuits will be

asynchronous handshakes by 2015 [5]. Asynchronous logic is adaptable to delay

variations and components designed to function asynchronously can be more easily

composed. Some of the often mentioned advantages of asynchronous circuits are

speed, low energy dissipation, modular design, immunity to metastable behavior,

freedom from clock skew, and low susceptibility to electromagnetic interference [23].

Figure 1.4 shows the difference between asynchronous and synchronous feedback. In

synchronous circuits:

• Synchronous feedback must wait for the clock.

• Always behaves as described in its state table.

• Input signals must not change when the clock does.

a – Asynchronous circuit b – Synchronous circuit

Q

Q
SET

CLR

S

R

Figure 1.4: Illustrates synchronous and asynchronous feedback.
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While in asynchronous circuits:

• Asynchronous feedback comes immediately with only gate delays.

• Inputs can come at any time.

• Circuits may not behave as described in the state table.

The design, verification, and testing of asynchronous circuits are complex prob-

lems. When modeling asynchronous circuits, certain requirements have to be taken

into consideration due to the special nature of those circuits. These requirements

are:

1. The initial values of inputs are governed by the relevant asynchronous proto-

cols.

2. Asynchronous circuits have feedback paths from the outputs to the inputs.

In the verification or the simulation of asynchronous circuits, the conditions

imposed by the protocol on these paths must be considered.

1.3 Thesis Contributions

In most of the previous work, electrical masking is analyzed through simulation [2],

while logical masking is analyzed by path tracing [1, 2, 3]. In comparison to [1, 2,

3, 4], where latching-window, electrical and logical masking are analyzed separately

and assumed independent, our approach provides a unified treatment of electrical

and logical masking, while including their joint dependency on input patterns and

circuit topology.

In our work, by using Multiway Decision Graphs (MDGs), this information

is instead implicitly included inside the decision diagram, and therefore allows for

efficient concurrent computation of output error susceptibility caused by hits on

various internal nodes.
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In this work, we propose a new way to verify the glitch propagation by per-

forming invariant checking. This checking includes running reachability analysis and

checking the glitch propagation at each reachable state.

Because asynchronous circuits are becoming increasingly common due to their

introduction as an interfacing mechanism in cross clock domain communication, it

is extremely valuable to develop a technique that deals with modeling soft error

glitch propagation in asynchronous circuits at a higher abstraction level. In terms

of reviews of related work, proposed methodology and discussions, we believe our

contribution can be specified as:

• Initially this thesis proposes a new methodology to identify the effect of logical

masking of soft-faults and glitch propagation in both combinational and asyn-

chronous circuits using MDG. As yet, such techniques have not been explored

for soft error modeling or for analysis of glitch propagation in asynchronous

circuits.

• This work elaborated on a way around to keep the functionality of the asyn-

chronous systems while injecting glitches in feedback paths of asynchronous

circuits.

• This work provides a complete framework for modeling soft faults and glitch

propagation as well as a methodology to introduce them into asynchronous

and combinational circuits.

• We extended the proposed methodology to jointly capture the effects of both

electrical and logical masking of the Soft-Error glitch propagation for asyn-

chronous and combinational circuits.

• A new tool is developed to automate the proposed methodologies called soft

error glitch propagation finder (SEGP-Finder).

8



1.4 Thesis Outline

The rest of the thesis is organized as follows:

• In Chapter 2, we present some of the related works in the areas of Soft-Error,

the structure of Multiway Decision Graph (MDG), the MDG tool followed by

the MDG model checking approach and asynchronous circuits and its impor-

tance in modern deep sub-micron technologies.

• In Chapter 3, we discuss our proposed methodology for the identification of

soft-error glitches in both combinational and asynchronous circuits and provide

step by step description of the methodology. In this chapter, the methodology

considers only logical masking.

• In Chapter 4, we discuss our proposed methodology for modeling the effect of

both electrical and logical masking in combinational and asynchronous circuits.

• In Chapter 5, we explain the automation of the proposed methodology and

the mechanics of the tool SEGP-Finder. This chapter also contain the exper-

imental results showing the validation of our approach.

• We conclude the thesis by summarizing our work. Also we provide some future

research directions in Chapter 6.

9



Chapter 2

Preliminaries and Related Work

In this chapter, we provide some background information necessary to understand

the remaining chapters along with some related works. We start by providing some

related research work in modeling soft errors. We then describe the underlying

formal logic of MDG, the Abstract State Machine (ASM) and the MDG structure.

Finally, we provide an introduction to the MDG tool, the MDG model checker, and

the invariant specifications.

2.1 Soft Error Analysis and Modeling

Faulty systems (buggy in digital systems) can be very dangerous and very expensive;

especially system that have safety critical applications such as Magnetic Resonance

Imaging (MRI) machines, space shuttles, microprocessors and so on. This increases

the need for fault diagnosis and fault-tolerance-driven design methodologies [9].

Due to this need, a lot of research work has been done on analyzing and

modeling the effect of soft-errors [3, 32-35]. One of the earliest approaches was to

inject the fault at a certain internal node of the design and then run simulate the

circuit for different input sequences.

In most of the previous work, modeling the electrical and logical masking is

10



done separately such as [2, 31]. In [2], the analysis of electrical masking for each

path is performed within HSPICE simulator, and logical masking is analyzed for

each input vector and each path separately, by flipping the logic value of each node.

Using a mathematical model in order to analyze the propagation of a transient

fault through a chain of combinational gates has been proposed in [31]. Their work

was focused on estimating electrical masking on the sensitized path in the circuit,

while logical and latching-window masking were not included.

In [36], an independent computation of the soft error masking factors; logical,

electrical, and latching-window masking to find the soft-error tolerance of the circuit

is proposed. Some other works focused on modeling only one of the masking effects

such as in [37] where the focus is only on modeling the logical masking effect of

the circuit for given gate output probabilities, without considering electrical and

latching window masking.

In [10], the authors addressed the topic differently by proposing a modeling

technique using Reduced Order Binary Decision Diagram (ROBDD) and Algebraic

Decision Diagram (ADD), and combining the effects of logical, electrical and time

masking. ADD is used for glitch modeling and Binary Decision Diagram (BDD)

checks for the sensitization path. However, ROBDD suffers from state space explo-

sion. Also this technique uses two decision diagrams, due to the limited availability

of data types, to elaborate the glitch scenario.

In [30], a soft error modeling tool, FASER, is introduced that uses a modified

BDD called event BDD to analyze glitch propagation. Since BDDs based techniques

suffer from state space explosion problem, FASER [30] tries to resolve this issue

by using partitioning. However, the proposed partitioning methodology is very

constrained.
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2.2 Asynchronous Circuits

In this work, we use the term ”Asynchronous” to refer to circuits designed without

clocks, also known as Self-Timed circuits, where the clock is replaced by handshak-

ing signals. Asynchronous interface circuits are indispensable in many real-time

digital systems [7, 41]. It is used to describe a variety of design styles, which use

different assumptions about circuit properties. Two commonly used protocols in

asynchronous circuit are:

• Bundled data protocol [9, 10, 11], which uses ’conventional’ data processing

elements with completion indicated by a locally generated delay model.

• Delay-insensitive (DI) data-encoded protocol [8, 12, 13, 45], where arbitrary

delays through circuit elements can be accommodated. The latter style tends

to yield circuits which are larger than bundled data implementations, but

which are insensitive to layout and parametric variations and are thus ”correct

by design”.

In order to verify the behavior of this kind of asynchronous circuits, un-

derstanding the protocol the asynchronous circuit is following is very important.

Then the design can be verified under certain condition based on the used proto-

col. The next chapter discusses the implementation of our proposed technique on

asynchronous circuits in more details.

These asynchronous circuits have unbounded gate delay assumption, which

provides them with inherent tolerance to a broad class of delay faults. However,

in certain cases, faults occurring in asynchronous circuits can have catastrophic

effects due to the event ordering constraints and might cause circuit failure and can

sometimes lead to deadlock [46].

The authors in [53, 54] proposed a metric, sensitive time, to evaluate the sen-

sitivity of asynchronous circuits to transient faults and developed several harderning
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techniques for Quasi delay insensitive (QDI) circuits with full duplication of circuit

parts and synchronization of replicated results through C-elements [55].

The problem of soft errors in asynchronous burst-mode machines (ABMMs)

has been discussed in [44], and two solutions have been proposed. The first solution

is an error tolerance approach, which leverages the inherent functionality of Muller

C-elements, along with a variant of duplication, to suppress all transient errors. The

second solution is an error mitigation approach, which leverages a newly devised soft-

error susceptibility assessment method for ABMMs, along with partial duplication,

to suppress a carefully chosen subset of transient errors.

Control circuits in an asynchronous design are comprised mostly of Muller

C-elements. In [47], soft error analysis of four popular CMOS implementations of

the Muller C-element have been presented. The analysis shows that Safety Integrity

Level (SIL) implementation has the best soft error resilience. Optimization tech-

niques to improve the soft error resilience of C-elements are proposed in [47].

2.3 GP Modeling For Asynchronous Handshake

Schemes

The GP set is the set of conditions that allows a glitch to propagate, in different

logic gates and Muller C-elements [28]. Figure 2.1 shows the GP sets for the NOT,

AND, OR, and Muller C-elements. Using the GP sets in modeling glitches is initially

proposed for modeling crosstalk glitch in asynchronous circuits which is the work

done in [49]. In the following we explain this work to better understand of the theory

behind the GP sets. In the next chapter, we explain how the GP sets can be used

to model the soft error glitch as well.

In the related modeling framework, an aggressor line (AL) is a signal line which

performs a transition from logic level logic 0 to logic 1 (or logic 1 to logic 0), denoted

by T (or T’). T inflicts a crosstalk glitch G (G’) on the victim line (VL). Glitch on

13



Figure 2.1: GP sets for NOT, AND, OR, and Muller C-element [49].

a particular VL, for example A, due to T (T’) in AL is represented as GA(GA). VL

returns to its stable state after a bounded delay,△tG. In the context of asynchronous

handshake schemes in globally asynchronous locally synchronous (GALS) affected

by aggressor-to-quiet-line crosstalk (AQX), VL can glitch (i.e., G or G’) only if VL

and AL are at the same logic level before T (T’). Typically, channels linking two

mutually asynchronous communicating modules are vulnerable to AQX because of

the physical length of the required interconnections.

AL in (VL in) and AL out (VL out), respectively, denote whether the AL

(VL) signal is an inbound or outbound signal to the module. AL I (VL I) and

AL O (VL O) represent the corresponding input and output signals which are tran-

siting (glitching) toward T (G), respectively. Opposite transitions (glitches) are

represented as their complements (AL I’, AL O’, VL I’, VL O’). This notation is

summarized in Table 2.1.

DG (DG’) is a symbol used in our modeling method to represent composite logic

values of the form v/vg, where v and vg are values of the same signal in the glitch-free

and the erroneous circuit, respectively. The composite logic values that represent

possible error propagation 1/G’ and 0/G are denoted by the symbols DG and DG’,

respectively. The terminology was adopted as an extension of that used in the
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Table 2.1: Summary of AL and VL notations.

Wire Direction of the Logic Level ’1’
Name signal on the wire on the signal wire

Aggressor AL AL in, AL out AL I, AL O
Victim VL VL in, VL out VL I, VL O

D-algorithm [50, 51] at the foundation of testing methodologies.

In this work, we use the GP sets to model the soft error glitch. There are

some differences between soft error and crosstalk glitch. While crosstalk glitch can

occur at the primary input, soft error glitch only happens at the internal, and if that

internal node is primary input for combinational circuits then it can occur at the

primary input. Also, G, G’ is reactive to T, T’ in crosstalk glitch modeling, while

G, G’ can occur irrespective of T, T’ in soft error. In the next chapter, we discuss

modeling soft error glitch using GP sets in detail.

2.4 Multiway Decision Graph (MDG)

2.4.1 Abstract State Machine (ASM)

MDG is an extension of Binary Decision Diagram (BDD) in the sense that it repre-

sents and manipulates a subset of first-order logic formulae suitable for large data

path circuits. One of the advantages of MDG over the other decision graph is that

a data value can be represented by a single variable of abstract sort, rather than

by concrete Boolean variables, and a data operation can be represented by an un-

interpreted function symbol. MDG and ROBDD are alike in the sense that both

require a fixed order of node labels along all paths. In ROBDD the entire variable

are Boolean. But in MDG every signal/variable must belong to an appropriate sort,

also a type definition must be provided for all functions. The MDG operations and

verification procedures are packaged as a set of tools and implemented in prolog
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[14] providing facilities for hardware verification: invariant checking, equivalence

checking and model checking. This work utilizes MDG to identify soft error glitch

propagation in asynchronous handshakes, which are extensively used for communi-

cation among CDC modules.

In MDG, a state machine is described using finite sets of input, state and

output variables, which are pair-wise disjoint. The behavior of a state machine is

defined by its transition/output relations including a set of reset states. An abstract

description of the state machine, called Abstract State Machine [24], is obtained by

letting some data input, state or output variables be of an abstract sort, and the

datapath operations be uninterpreted function symbols. As ROBDDs are used to

represent sets of states and transition/output relations for finite state machines

(FSM), MDGs are used to compactly encode sets of (abstract) states and transi-

tion/output relations for ASMs. This technique replaces the implicit enumeration

technique [25] with the implicit abstract enumeration [11].

2.4.2 Structure

MDGs are graph representation of a class of quantifier-free and negation-free first

order many sorted formulae. It subsumes the class of Bryant’s (ROBDDs) [6] while

accommodating abstract data and Uninterpreted Function symbols. MDG can be

seen as a Directed Acyclic Graph (DAG) with one root, whose leaves are labeled by

formulae of the logic True (T) [11], such that:

1. Every leaf node is labeled by the formula T, except if the graph G has a single

node, which may be labeled T or F.

2. The internal nodes are labeled by terms, and the edges issuing from an internal

node v are labeled by terms of the same sort as the label of v.
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Following is an example: Let graph G represent Boolean formula (¬x∧F0)∨

(x∧F1) Where, F0 and F1 are the Boolean formulas represented by the sub-graphs

G0 and G1 respectively. In many sorted first-order logic the graph G can be viewed

as representing a formula: ((x = 0) ∧ F0) ∨ (x = 1) ∧ F1)).

Three possible generalizations of G and the corresponding formulas are shown

in Figure 2.2. F0, F1 and F2 are first-order formulas represented by the sub-graphs

G0, G1 and G2 respectively:

1. From G to G′: x ∈ {0, 1} −→ x ∈ {0, 2, 3}, and graph G′ represents the

formula

((x = 0) ∧ F0) ∨ ((x = 2) ∧ F1) ∨ ((x = 3) ∧ F2).

2. From G to G′′: x ∈ {0, 1} −→ x ∈ {a, y, f(a, y)}, and graph G′′ represents the

formula

((x = a) ∧ F0) ∨ ((x = y) ∧ F1) ∨ ((x = f(a, y)) ∧ F2).

3. From G to G′′′: x ∈ {0, 1} −→ g(x) ∈ {0, 2, 3}, and graph G′′′ represents the

formula

((g(x) = 0) ∧ F0) ∨ ((g(x) = 2) ∧ F1) ∨ ((g(x) = 3) ∧ F2).

The above generalized decision graph G′, G′′ and G′′′ are examples of Multiway

Decision Graphs (MDGs). As in ordinary many-sorted First Order Logic (FOL),

terms are made out of sorts, constants, variables, and function symbols. Two kinds of

sorts are distinguished: concrete and abstract. Concrete sort is equipped with finite

enumerations, lists of individual constants. Concrete sorts are used to represent

control signals. Abstract sort has no enumeration available. A signal of an abstract

sort represents a data signal.
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Figure 2.2: BBDs to MDGs

2.4.3 The MDG-Tool sets

The MDG-tool [14] is a well known academic tool. It supports invariant checking,

sequential equivalence checking, and model checking. The MDG tool uses a prolog-

style hardware description language called the MDG-HDL [11]. MDG-HDL supports

structural, behavioral and mixed styles of coding. A structural specification is usu-

ally a netlist of components connected by signals. A behavioral description consists

of a tabular representation of the transition and output relations in the form of a

truth table.

The first step in the verification is to describe the design specifications and

implementations using MDG-HDL, as shown in Figure 2.3. The following input files

are needed to describe the design in MDG:
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Property

specification

Algebraic

Specification Variable

Order

Behavioral

Model

Yes/No

(CounterExample)

Structural

ModelModel Checking

Equivalence Checking

Invariant Checking

MDG Construction

Figure 2.3: The Structure of the MDGs-tool.

• The algebraic specification file defines sorts, function types and generic con-

stants used in hardware descriptions. And if necessary, it also includes the

rewrite rules which partially interpret the otherwise uninterpreted function

symbols.

• The symbol order file provides the custom (user-defined) symbol order for all

the variables and cross-operators which would appear in MDGs.

• The circuit description file declares signals and their sort assignments, com-

ponent network, outputs and the mapping between state variables and next

state variables. There is a special component construct table which is the tab-

ular representation for behavioral descriptions. For sequential circuits, we also

give the set of initial states and the transition/output relation partitioning

strategy.

• The invariant specification file defines the invariant to be checked during the

reachability analysis.
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2.4.4 Using MDG for Reachability Analysis

The presence of uninterpreted symbols in the logic means that we must distinguish

between a state machine M and its abstract description D in the logic. This is called

Abstract State Machine, a state machine given an abstract description in terms of

Directed Formulas DFs, or equivalently MDGs, as defined in [11, 58].

Definition 1. An abstract description of a state machine M is a tuple

D = (X, Y, Z, Y ′, IS, Tr,Or), where:

• X : finite set of input variables,

• Y : finite set of state variables,

• Z : finite set of output variables,

• IS : MDG of type U0 −→ Y , where U0 is a set of disjoint abstract variables,

IS is the abstract description of the set of initial states,

• Tr : MDG of type X ∪ Y −→ Y ′. Tr is the abstract description of the

transition relation,

• Or : MDG of type X ∪ Y −→ Z. Or is the abstract description of the output

relation.

Algorithm 1 shows how the analysis of the reachable states of M is performed

based on the abstract description D. The algorithm is initialized by the construction

of the initial MDG structure in Lines 1-3. In line 4-10, within the while loop, the

set of reachable states is computed. When the frontier set (Q) becomes empty (F),

the while loop terminates. A new MDG input is produced in line 6. In line 7,

next state is computed by the function next state using the RelP operation, that

takes the MDGs representing the set of inputs, the current state and the transition

relation as assignment, respectively. In line 8, The function frontier, computes
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the set difference using the PbyS operation, that approximates the set difference

between the newly reachable state in the current iteration from the reachable state

in the first iteration. Finally, the set of all reachable states so far is computed, in

line 9.

Algorithm 1 MDG Reachability Analysis

1: R := IS;
2: Q := IS;
3: i := 0;
4: while Q ̸= F do do
5: i := i+ 1;
6: IN := new inputs(i); -Produce new inputs
7: NS := next states(IN,Q, Tr); Compute next state
8: Q := frontier(NS,R); Set difference
9: R := union(R,Q); Merge with set of states reached previously

10: end while

2.4.5 Invariant Specification in MDG

An invariant file specifies the invariant condition to be checked during reachability

analysis [27]. An invariant condition can be specified by a combinational circuit

whose output signals are named by the variables that occur in the condition. By

convention, an assignment of values to those variables satisfies the condition iff

the outputs of the combinational circuit take those values for some assignment of

values to the inputs. An MDG representing the invariant is obtained from the

MDG representing the functionality of the combinational circuit by existentially

quantifying the concrete inputs. The variables representing abstract inputs are left

in the graph as implicitly quantified secondary variables [26].

For example, for the equivalence checking of two ASMs, we need to specify

the equality of two corresponding signals as an invariant. This is expressed by

the simple fork as shown in Figure 2.4 (a). The fork may yield different MDGs

depending on the sort of the signals. If u, x and y are of the Boolean sort, then
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u is existentially quantified and we get the MDG as shown in Figure 2.4 (b) which

simply represents x = y. If x and y are of an abstract sort, then we get an MDG

as shown in Figure 2.4 (c) which represents the formula (x = u) ∧ (y = u). Taking

the secondary variable u to be existentially quantified, the invariant is ∃u((x =

u) ∧ (y = u)), which is logically equivalent to x = y. This combinational circuit

is described completely in an invariant specification file, including the following

predicates: signal/2, component/2, outputs/1 and ordercond/1, which gives the

node order for the variables and the cross-function symbols appeared in the circuit.

y y

x

1 0

01

T

x

y

u

T

y

x

u

u

(a) (b) (c)

Figure 2.4: Invariant specification in MDG tool.

In this Chapter, we presented some of the basics required for better under-

standing the rest of chapters of this thesis. We provided the basics of Multiway

Decision Graph, MDG tool, GP sets, and asynchronous circuits. We have presented

some of the works related to soft error modeling in combinational and asynchronous

circuits. Furthermore, we also mentioned how our work differs from the related

work. In the next chapter, we describe our proposed methodology in detail.
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Chapter 3

Identification of Soft-Error Glitch

path: Considering Logical

Masking

In this chapter, we present the proposed methodology for the identification of soft-

errors in both combinational and asynchronous circuits. In this chapter, we deal with

the identification of soft error and modeling logical masking in logic circuits. Logical

masking has been explained in chapter 1. In section 3.1, we explain the main steps of

the proposed methodology. Section 3.2 discusses how we use the Glitch Propagation

(GP) sets to identify the soft error glitch and to model the logical masking effect.

We explain the new proposed technique for glitch injection at vulnerable nodes, also

the breaking and the initializing of the feedback in asynchronous circuits in Section

3.3. Section 3.4, explains how the invariant checking is used to verify the glitch

propagation property. The implementation of our approach on combinational logic

and asynchronous circuits is discussed in detail in section 3.5 and 3.6 respectively.
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3.1 The Proposed Methodology

This section presents an overview of the proposed technique; the flow chart of our

methodology is shown in Figure 3.1. This figure shows that our methodology re-

quires structural specifications as input. The next step is to inject a glitch at the

vulnerable nodes by modifying these structural specifications. The following step is

to examine the possibility of glitch propagation using formal verification techniques.

This methodology provides the number of nodes that are prone to glitches and gen-

erates counterexamples. These examples are the vulnerable conditions under which

glitches on a certain node propagate. The following sections further elaborate on

this flow chart.

Glitch Injection

Define Invariant

Verify If the 

glitch is 

propagating

using MDG

Identify the 

vulnerable conditions 

(Generate the 

counterexample).

Structural specification of the digital 

system

N= number of nodes

N=N+1

Yes

No

Yes

No

END

Figure 3.1: The flow chart of the proposed technique.
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3.2 Glitch Propagation (GP) sets

In section 2.3, we defined the GP set as a set of conditions that allow glitches to

propagate in different logic gates and Muller C-element. Also we discussed how

the GP sets used to model the crosstalk glitch in asynchronous circuits. The next

subsections explain how we combine the GP sets with the soft-error glitch in order

to build a new truth table for different logic gates and and Muller C-element.

3.2.1 Muller C-element

Table 3.1 shows the expansion of the GP sets in the form of a truth table. Each

GP set’s truth table has four possible values 0, 1, G,G′. If the glitch is from logic

0 towards logic 1 then it is represented as G and G′ represents the inverse case.

Composite value, DG represents that an un-affected node would have the value

′1′ while the glitch will force this node to glitch, G′. Hence, DG represents 1/G′.

Similar explanation elaborates DG′, which represents 0/G. Table 3.1 shows that if

the output of the C-element is logic ′1′ before the occurrence of a composite logic

value of DG in any or both inputs of the C-element, then, due to the glitch, the

output of the C-element will have a composite logic value of DG after the gate

propagation delay at time t+.

Table 3.1: The truth table for the C-element.

C-element
0 1 G G’

t- t+ t- t+ t- t+ t- t+

0
0 0 0 0 0 0 0 0
1 0 1 1 1 1 1 DG

1
0 0 0 1 0 DG’ 0 0
1 1 1 1 1 1 1 1

G
0 0 0 DG’ 0 NTS 0 NTS
1 1 1 1 1 NTS 1 NTS

G‘ 0 0 0 0 0 NTS 0 NTS
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3.2.2 Other Logic Gates

For all the logic gates (such as: AND, OR, NOT, NAND, XOR etc.) we apply the

same principle used in the previous section. For example, for the AND gate if one

of the inputs is zero then the output is zero without caring about the other inputs.

So the glitch can not propagate from the AND gate if one of the other inputs is

zero. We similarly expanded all the GP sets provided in [12] for all the logic gates

and came up with similar truth tables, which are shown in Table 3.2.

Table 3.2: Truth table for the AND, OR, and NOT gates.

0 1 DG DG‘
AND OR AND OR AND OR AND OR NOT

0 0 0 0 1 0 DG 0 DG’ 1
1 0 1 1 1 DG 1 DG’ 1 0

DG 0 DG DG 1 DG DG DG’ DG DG
DG’ 0 DG’ DG’ 1 1 DG’ DG DG’ DG’

3.3 Glitch Injection and Initialization

In order to insert glitches, we first need to translate the structural specification into

an MDG model. The MDG model contains declaration of the signals and their type

assignments, the component network, the outputs, and the mapping between state

variables and next state variables. In this work, we used an MDG based table, which

is the tabular representation for behavioral descriptions. Glitches are inserted using

the library of GP sets, which is created a priori. This library contains the GP sets in

the form of truth tables, with the logic values introduced in Table 3.1 and 3.2. We

modeled those truth tables in MDG while keeping the information provided in the

structural specifications. This method can be easily ported to any combinational

logic circuit.
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To inject glitches at all the possible nodes in a design, we used multiplexers,

which can select between a normal mode and a glitch mode during the simulation.

If a soft error needs to be analyzed at a particular node, it simply chooses the

glitch mode (defined as an enumerated data type), otherwise the normal operation

is carried out. Hence, the functionality of the circuit is preserved under the normal

mode. After building the MDG model and injecting the glitch, the next step is to

find if the glitch is able to propagate to the primary outputs.

3.4 Invariant Checking

To write an invariant, one needs to know the semantics of MDG-HDL. Since this

language was devised for sequential circuits, therefore, it includes the notion of

register at the end of the design. In our modeling of asynchronous circuits, these

registers always appear at the output of the design and hence do not disturb the

logic of the circuit. This also helps writing the invariant to check whether the glitch

can propagate to the primary output of the circuit or not. This can be written

in temporal logic as AG((reg out = 0)||(reg out = 1)), which means ”In all the

reachable states, the output of the register is equal to 1 or 0”. We can apply the same

invariant to all the asynchronous circuits as long as we are using the same semantics

of our defined enumerated data type. The next step is to check whether the glitch

is propagating for our particular glitch injection scenario or not. This is obtained

by performing a reachability analysis. This analysis checks that the invariants at all

the reachable state of the circuit are exhaustively analyzed for glitch propagation to

the primary output. Provided the invariant fails then counterexamples are provided

which we classify as vulnerable sequences to glitch propagation conditions.
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3.5 Soft Error Analysis on Combinational circuits

In this section, to illustrate the proposed technique, we apply our soft error analysis

on one combinational circuit.

G5

G4

G3

G1

G2

G6

C17V1

C17V4

C17V3

C17V2

a 

c

d

e

b

Register

sel

C17V5
y

C17V6

x

n

wGlitch signal

Figure 3.2: C17 with the glitch injected between G2 and G3.

Figure 3.2 shows the implementation of our technique on the ISCAS-85 bench-

mark circuit C17. A glitch is introduced in the circuit using a 2:1 multiplexer at a

potentially vulnerable internal node of the circuit. The glitch is inserted by having

one of the inputs of the multiplexer as a glitch signal and the other input as a normal

signal. Figure 3.2 shows an example implementation with a glitch inserted between

two nand gates, G2 and G3. A register is connected to one of the primary output

where we expect glitch propagation. Then the next step is to perform the invariant

checking, where MDG run reachability analysis and for each reachable state it checks

the invariant on the outputs. The same invariant is used as discussed in Section 3.4.

In case the invariant checking fails our proposed method provides counterexamples.

One such case is shown in Figure 3.3, which shows the counterexample when the

glitch is injected at node C17V2 in Figure 3.2. In our implementation, a critical se-

quence is defined as the sequence of input signals that allow the glitch at an internal

node to propagate to the primary outputs.

In Figure 3.3, it is shown that, starting from the initial state of the output
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=== The Counterexample ===

-------- Assumptions --------

-

-------- Initial state --------

-

reg_output_signal = 1

-

-------- Clock cycle 1 --------

-- The symbolic input --

-

a = 0

c = 1

select = 1

glitch_signal = dgp

-

-- The symbolic state --

reg_output_signal = dg

-------- Clock cycle 2 --------

-- The symbolic input --

-

-- Symbolic Output --

flag = 1

=== End of counterexample ===

-

Generating counter example took 0.010 seconds.

Figure 3.3: One of the counterexamples for the C17.
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register, the MDG tool provides the symbolic inputs which are the critical sequence

of inputs that allows the glitch on the node C17V2 to propagate to the primary

output. The critical sequence for the previous case is when the input signal c is at

logic ’1’, signal a at logic ’0’, and the select signal for the multiplexer is at logic

’1’. The verification time and the time needed to generate the counterexample are

between 10 and 20 millisecond. Table 3.3 shows the critical sequences for all the

internal nodes (C17V1-C17V6). In chapter 5, we propose a full automation of all

these steps.

Figure 3.4: MDG decision diagram for path G1 −→ G5 from circuit C17.

Table 3.3: Node wise Vulnerable Conditions for C17.

Internal node Vulnerable Conditions
C17V1 c = 0
C17V2 c = 1, a = 0
C17V3 c = 0
C17V4 a = 0, b = 0
C17V5 e = 0
C17V6 e = 1 , c = 0
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Our method utilized MDG which simplifies the use of decision diagram. Pre-

vious approaches utilize different techniques for sensitization paths and glitch mod-

eling. One such case is [10] where ADD is used for the glitch modeling and the

BDD checks for the sensitization path. Instead MDG in conjunction with GP sets

allows us to simply define a truth table, similar to Table 3.1 and 3.2, for each gate in

the circuit that not only depicts sensitization but also encapsulates glitch modeling

information. This is achievable because of enumerated data type of MDG and glitch

propagation modeling approach described in [12]. By modeling the circuit in MDG

using this kind of truth table, we are able to define both the glitch effect and the

sensitized path using one decision diagram as shown in Figure 3.4.

Figure 3.4 shows the MDG decision diagram for path G1 −→ G5 of the C17

circuit of ISCAS’85 benchmark. In our work, out of one decision diagram we are

able to model the logical masking and model the acceptable amplitude and width

needed by the glitch to propagate. As an example, modeling of the path sensitization

in Figure 3.4. Out G3 and out G5 in Figure 3.4 represent the output of gate 3 and

5 in Figure 3.2. It is shown that when out G3 is equal to 0 then the out G5 will

be 1 irrespective of the glitch value at the other input of G5. To model the glitch

we defined a new data type called glitch type which can be (0, 1, DG, DG’). The

Y signal in Figure 3.4 is an example of a glitch signal.

3.6 Soft Error Analysis on Asynchronous Circuits

As we explained in section 2.2, a digital system with asynchronous interfaces for in-

teraction between synchronous modules is known as a globally asynchronous locally

synchronous (GALS) systems. Several asynchronous interfaces have been proposed

for GALS systems. Broadly, based on their handshake protocol, these interfaces

can be divided into two classes, the bundled data protocol and delay-insensitive

(DI) data-encoded protocol. This section provides glitch propagation analysis for

31



representative circuits of both protocols.
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Figure 3.5: Hardware implementation of the data-encoded DI scheme.

3.6.1 Delay Insensitive (DI) Asynchronous Circuit

In the Delay-Insensitive design style there is no need for timing analysis, giving

designs that operate correctly regardless of the delay in the interconnecting wires.

1-of-4 data-encoded DI circuit is shown in Figure 3.5. The nx0 -to-nx3 group of

signals is set to high or logic ”1” as an initial condition. This group of signals is

represented as nx[0−3] in the rest of this thesis. Similarly, q[0−3] represents the

q0 -to-q3 group of signals, and out[0−3] represents the out0-to-out3 group of signals.

According to the 1-of-N DI data-encoded protocol, of which 1-of-4 is the special case

shown in Figure 3.5, only one of the input lines of in[0−3] can go high at a given

time. When any of these input signals becomes high (to transfer some data), the

corresponding line in the group nx[0−3] is pulled down to logic 0.

The soft error analysis of this kind of the asynchronous circuits is similar to

combinational circuit implementation, we added multiplexer at the internal nodes to

add glitches in asynchronous circuits as well. However, overall, the implementation
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of our technique to asynchronous circuits is more involved. This is mainly due to the

feedback path required for initial conditions to follow the asynchronous protocols.

Figure 3.6 shows the asynchronous delay insensitive (DI) circuit after implementing

the proposed methodology. Here, an initialization mechanism is introduced as a

combination of multiplexers, registers, and decoders. We also needed to break the

feedback path in order to comply with the MDG-tool. In order to keep the func-

tionality of the asynchronous circuit after breaking the feedback path, we added a

combination of multiplexer and register. This addition is to initiate the input part

of the feedback which is the nxa signal in Figure 3.6. By controlling the initial value

of the feedback signal, we are able to keep the functionality of the circuit.
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nx1

nx2
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Figure 3.6: Asynchronous Delay Insensitive (DI) circuit after the implementation

3.6.2 Bundled Data Protocol based Asynchronous Circuit

The term bundled-data refers to a situation where the data signals use normal

Boolean levels to encode information, and where separate request and acknowl-

edge wires are bundled with the data signals. Such as the circuit in Figure 3.7.
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Immediately upon activation by a switching event on Den it issues a request for

a clock stretch Ri+ which gets acknowledged by Ai+. When the clock is ensured

to be and remain low, the external handshake cycle on Rp/Ap gets processed and

subsequently the clock may resume again.

By following the same steps applied to the DI circuit, we implemented our

methodology on the bundled-data-protocol based circuit. Figure 3.8 shows the asyn-

chronous bundled data circuit after implementing our methodology. The inputs of

the multiplexer are all the possible input sequences that the input can have based

on the bundle data protocol [29]. After one of the initial sequences is chosen by the

multiplexer, it will be stored in the register. The decoder will give a value for each

input of the circuit based on the chosen initial sequence. BDV1 to BDV8 are the

potential vulnerable internal nodes where we inserted the glitches.
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Figure 3.8: Asynchronous Bundle Data circuit with the initialization technique.
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3.7 Summary

In this chapter, we presented the proposed methodology for the identification of soft-

errors in both combinational and asynchronous circuits. Also we provided step by

step description of our methodology with examples. We proposed a new technique

for the glitch injection at vulnerable nodes and the breaking and the initializing

of the feedback in asynchronous circuits. We discussed the implementation of our

approach on combinational logic and asynchronous circuits. Later on in this thesis,

we discuss the experimental results of the implementation of this methodology. An

automation of the proposed methodology will be proposed in chapter 5. The goal of

the proposed methodology of this chapter is to model the effect of logical masking

in logic circuits. In the next chapter, we extend this methodology in order to model

the both electrical and logical masking.
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Chapter 4

Identification of Soft Error Glitch

Propagation Path: Considering

Electrical and Logical Masking

In the previous chapter, we explained our methodology to model the effect of log-

ical masking in both combinational and asynchronous circuits. In this chapter, we

explain how the proposed methodology in the previous chapter can be extended

to model the effect of both electrical and logical masking. In Section 4.1, we give

a brief description of electrical masking effect in logic circuits. Assumptions and

notations required to identify the soft error glitch propagation, while considering

electrical masking along with logical masking, are explained in Section 4.2. In Sec-

tion 4.3, these assumptions are used to model the combined effect of electrical and

logical masking utilizing the concept of GP sets. For implementing these modeling

concepts over combinational and asynchronous circuits we proposed a methodology

which is elaborated in Section 4.4.
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4.1 Electrical Masking

As explained in chapter 1, there are three types of masking that can prevent a tran-

sient glitch in combinational logic from propagating to the primary outputs: logical

masking, electrical masking, and latch window or time masking [39, 40]. Logical

masking happens when one of the other inputs of a gate is in controlling state

(e.g., 0 for a NAND gate) so that the transient is blocked. Latch window mask-

ing means that the arrival of the transient pulse is outside of the latching window

for the sequential elements. Electrical masking happens when the voltage transient

resulting from a particle strike is attenuated by subsequent logic gates because of

the electrical property of logic gates [15]. This work primarily deals with the iden-

tification and the verification of soft-error glitch propagation in combinational and

asynchronous circuits, therefore modeling the latching time windows masking effect

is not discussed.

The possibility of glitch propagation in systems, which are subject to logical

and electrical masking, depends on following factors. First the glitch magnitude

at the output, which is a function of the initial amplitude of the glitch and the

attenuation on the sensitized paths and the second factor is the duration of the

glitch. Some notations are defined and a few assumptions are made in order to

accurately model these effects, which are explained in the next section.

4.2 Assumptions and Notations

When the glitch hits the internal nodes, it requires certain threshold amplitude and

duration to charge or discharge the node. Due to electrical masking the amplitude

and the interval of the soft error glitch reduce as it propagates through the design.

Sometimes this reduction in the amplitude and the interval prevents glitch from

reaching the output. Traditionally, electrical simulations are used to understand the

effects of electrical masking. In this work, this information is extracted beforehand
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and utilized at logic level of abstraction. Using the results of electrical simulations

it is safe to conclude that regular FO4 (fan-out of 4) gates may completely mask the

glitch propagation if it is applied to four similar cascaded gates [52]. Keeping this

fact in consideration, following we provide assumptions regarding the glitch charac-

teristics as it propagates through the design to model the electrical masking.

Classification of glitches to facilitate modeling of electrical masking: As a

soft error hits the internal node of the design it can create glitches of different ampli-

tude and duration. In order to accommodate different levels of possible glitches we

classify them based on the mentioned parameters. It is assumed that the glitch with

the most strength (i.e both the amplitude and duration is well above the threshold

value of the subsequent gates) can pass the complete depth of the combinational

circuit without losing its strength. This type of glitch is given the name G dp4

in our analysis. The glitch with next highest amplitude and duration, which is

subjected to attenuation due to electrical masking, is classified into three further

categories namely G dp3, G dp2, G dp1. The numeric value at the end of each glitch

is attributed to how many gates these glitches may propagate in the worst case. For

simplicity of analysis we further assumed that if G dp3 occurs and passes to the first

level of gates, the attenuated strength of the glitch can be represented by G dp2.

Similarly G dp1 may represent the occurrence of glitch of strength G dp1 at that

node or attenuated strengths of G dp3 and G dp2 after passing through 2 gates and

1 gate respectively as shown in Figure 4.1. The assumption that the glitch travels

a depth of approximately three gates is inspired by the modeling provided in [52].

Formally the classification of glitches is provided below, and further elaborated in

Figure 4.2.

1. G dp4 : If the amplitude is within (a ≥ a1), and its time duration is within the

interval (△t2 < d < △t1) as shown in Figure 4.2, then the glitch propagates

through all the cascaded gates without loosing its strength. This is the worst
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case where the glitch has the highest amplitude and duration.

2. G dp3 : If the amplitude is within (a3 < a < a2), and its time duration is

within the interval (△t3 < d < △t2) as shown in Figure 4.2, then the glitch

propagates through two cascaded gates.

3. G dp2 : If the amplitude is within (a4 < a < a3), and its time duration is

within the interval (△t4 < d < △t3) as shown in Figure 4.2, then the glitch

propagates through one cascaded gate.

4. G dp1 : If the amplitude is within (0 < a < a4), and its time duration is within

the interval (0 < d < △t4) as shown in Figure 4.2, then the glitch does not

propagate at all.

Putting Logical and Electrical Masking Together: Figure 4.1 shows the case

when G dp3 amplitude is (a3 < a < a2) and the duration is (△t3 < d < △t2). This

glitch is injected at the output of gate G1. This glitch now is controlling the next

gate (G2) if and only if the other input of G2 is at logic ’1’; otherwise it will be

logically masked as we explained in the previous chapter. As the glitch propagates

through G2, electrical masking reduces the amplitude and the interval and hence

the output of G2 shows a glitch of strength G dp2 only. As the glitch reaches at

G3
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G1

G4

G_dp3

G_dp1

Combinational Logic

G_dp2

G5

G_dp4

G_dp4

G_dp4

G_dp4

Figure 4.1: Glitch propagation with electrical masking.
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Figure 4.2: A glitch at the (a) output of initial gate G1, (b) output of gate G2, (c)
output of gate G3 on sensitized path.

the input of G2 with level G dp2 assuming that the output G5 is logic ’1’ then the

glitch characteristics reduction from the propagation through G3 is represented by

moving the glitch from G dp2 to G dp1. In the next sections we combine these

assumptions with the GP sets in order to build the truth table for each logic gate.

4.3 Modeling Electrical and Logical masking

In section 3.2, we used the GP sets to build the truth table for different logic gates

and Muller C-element in order to model logical masking. In this section, we extend

this principle to model both electrical and logical masking. Table 4.1 shows the com-

bination of electrical and logical masking by extending the truth tables, which was

previously made for the logical masking only. This table shows the corresponding

output of AND gate for all possible inputs combinations. For example, if the glitch

is injected at one of the inputs of AND gates with level G dp3 then provide the
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other input is at logic ’0’ the glitch will not be able to propagate to the output due

to logical masking. If the other input is logic ’1’ one then the glitch will propagates

to the output due to logical masking. Whereas if the non-glitch input is at lo logic

’1’ then the glitch on the other input may propagate to the output.

There are two possible transition scenarios with soft error glitch, either the

original signal transits from logic ’0’ towards ’1’ or logic ’1’ towards ’0’. It is assumed

that the glitch signals are represented as G dp4, G dp3, G dp2, and G dp1 in the

former case, and they are represented as glitch signals G dp4’, G dp3’, G dp2’ and

G dp1’ in the later case. Both cases are included in Table 4.1. For example, if one

of the inputs for the AND gate is logic ’1’, and the other input is G dp3 or G dp3’

then the output will be G dp2/G dp2’. The same principle is used to build Table

4.2 which shows the corresponding outputs for all the possible inputs combinations

in the case of OR gate.

In order to illustrate this technique, we applied it on the circuit in Figure

4.1. This circuit is a combination of different AND gates. As a first step a glitch

is injected at one of the internal node. Here we injected it at the output of G2

(out G2). Injecting the glitch at the internal node is done using multiplexers as

explained before. Next step is to define the behaviour for each gate by extracting

the truth table for it from Table 4.1.

Table 4.1: The truth table for AND gate.

0 1 G dp4/G dp4’ G dp3/G dp3’ G dp2/G dp2’ G dp1/G dp1’
0 0 0 0/0 0/0 0/0 0/0
1 0 1 G dp4/ G dp2/ G dp1/ 0/

G dp4’ G dp2’ G dp1’ 1
G dp4/ 0/ G dp4/ G dp4/ G dp4/ G dp4/ G dp4/’
G dp4’ 0 G dp4’ G dp4’ G dp4’ G dp4’ G dp4’
G dp3/ 0/ G dp2/ G dp4/ G dp2/ G dp2/ G dp2/
G dp3’ 0 G dp2’ G dp4’ G dp2’ G dp2’ G dp2’
G dp2/ 0/ G dp1/ G dp4/ G dp2/ G dp1/ G dp1/
G dp2’ 0 G dp1’ G dp4’ G dp2’ G dp1’ G dp1’
G dp1/ 0/ 0/ G dp4/ G dp2/ G dp1/ 1/
G dp1’ 0 1 G dp4’ G dp2’ G dp1’ 0
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One of the contributions this work is to propose an easier representation by

modeling both logical and electrical masking in one decision diagram, which is the

multiway decision graph. Figure 4.3 shows the multiway decision graph (MDG) for

the circuit in Figure 4.1 at the output of G3. Signals out G5, out G3 and out G2

present the outputs of G5, G3 and G2 in Figure 4.1 respectively. This decision

graph is similar to what we have in Table 4.1 for the case of AND gates. As shown

in this figure G3 is an AND gate which has two inputs; the first one is coming from

the output of G5, and the second one is coming from the output of G2. Starting

with out G5 if it is logic 0 then the output of G3 is logic ’0’ regardless of the value

of out G2 which is the glitch signal. But if out G5 is equal logic ’1’ then the output

of G3 is dependent on the output of G5. In the last case, the glitch can propagate

to the output of G3 if it has sufficient amplitude and duration. Figure 4.3 shows all

the possible cases of out G5, out G2 and the corresponding output of G3 (out G3).

Table 4.2: The truth table for OR gate.

0 1 G dp4/G dp4’ G dp3/G dp3’ G dp2/G dp2’ G dp1/G dp1’
0 0 1 G dp4 G dp2 G dp1 0

/G dp4’ /G dp2’ /G dp1’ /1
1 0 1 1/1 1/1 1/1 1/1

G dp4 G dp4 1 G dp4 G dp4 G dp4 G dp4
/G dp4’ /G dp4’ /1 /G dp4’ /G dp4’ /G dp4’ /G dp4’
G dp3 G dp2 1 G dp4 G dp2 G dp2 G dp2
/G dp3’ /G dp2’ /1 /G dp4’ /G dp2’ /G dp2’ /G dp2’
G dp2 G dp1/ 1 G dp4/ G dp2 G dp1 G dp1
/G dp2’ /G dp1’ /1 /G dp4’ /G dp2’ /G dp1’ /G dp1’
G dp1 0 1 G dp4 G dp2 G dp1 0
/G dp1’ /1 /1 /G dp4’ /G dp2’ /G dp1’ /1

43



Out_G5

Out_G2

T

0

1

0 1

G_dp1

G_dp4

0

0 1

0

G_dp4

G_dp3

G_dp2

Out_G3Out_G3Out_G3Out_G3Out_G3Out_G3Out_G3

G_dp2

Figure 4.3: Multiway Decision Graph.

4.4 The Proposed Methodology

This section presents an overview of the proposed technique. Figure 4.4 shows the

flow chart of our methodology for integrating electrical and logical masking. This is

similar to Figure 3.1, with the exception of introduction of the glitch depth block.

Our methodology requires structural specifications as input, which is the MDG-

HDL description of the design. The next step is to specify the initial glitch depth to

be injected. This addition is done by defining a new signal type called glitch type

signal. This signal type can take any of the following values: 1, 0, G dp1, G dp2,

G dp3, G dp4. After that the next step is the glitch injection at the vulnerable

nodes of the design by modifying the structural specifications. The glitch injection

mechanism is similar to the one adapted in the previous chapter, where multiplexers

are added at the internal nodes. These multiplexers can choose among the normal

mode and the various possible glitch injection values. These glitches are injected for
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any of the desired level, among G dp1 to G dp4, as and when required.

After injecting the design with glitches the next logical step is to identify the

conditions under which the glitches at a particular internal node may propagate to

the primary output. Invariant checking, a formal verification approach, is applied

to examine the possibility of glitch propagation. An invariant, similar to what is

used in Section 3.4, is applied over to perform this verification. It can be written in

temporal logic as:

AG((reg out = 1) ∨ (reg out = 0))

Which means for all the reachable state in the design the output is always logic ’1’

or logic ’0’.

In case the glitch can reach the output, which means that both electrical

and logical masking did not prevent the glitch from propagating. In this case our

technique provides the user with a counterexample. The designer can infer the

following from the counterexample:

• The critical sequences, which are the input sequences that allow the glitch to

propagate to the output. With these sequences logical masking alone cannot

prevent the glitch from reaching the output.

• The minimum glitch depth required by the glitch signal at the vulnerable

nodes in order to be able to propagate and reach the primary output.

The flow chart in Figure 4.4 shows that our technique allows the user to verify

the glitch propagation with different glitch depths. Start with verifying the glitch

propagation at the first level (G dp1) then after that verify the glitch propagation

with different depth level such as: G dp3, etc.
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Figure 4.4: The flow chart for the proposed methodology.

46



4.5 Summary

In this chapter, we proposed a new methodology to model the combine effect of

electrical and logical masking. We extended the proposed methodology in chapter

3 to model the effect of both masking. We explained the proposed methodology in

detail. We discussed in detail the identification of soft error glitch, we built our own

assumption and notation for the identification of the glitch. Then we defined new

truth tables for each logic gates along with GP sets concepts. The implementation of

this methodology will be explained later in this thesis. In order to make the proposed

methodologies applicable on large design with large number of internal nodes. In

the next chapter we propose a full automation of the proposed methodologies.

Based on our observation we assumed that G dp4 is maximum stages required

glitches to completely attenuated. The number of cascaded gates that the glitch can

propagate through in our work is mainly depending on the following:

• The initial value of the glitch which it is injected at the internal node. For

example, if the glitch is injected with G dp3 then the glitch can propagate

through 2 gates in the propagation path before it reaches to G dp1 as shown

in Figure 4.1. If the glitch at level G dp2 then maximum it can propagate

through 1 gates before it reaches to G dp1.

• As an initial assumption, we assumed that all the gates have the same size.

Different behaviour for each gate is possible by creating different truth tables

for each gate to define its own behaviour.
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Chapter 5

SEGP-Finder : Automating

Identification of Soft Error

Glitch-Propagating Paths(SEGP)

In this chapter, we proposes a new tool, soft error glitch-propagating path finder

SEGP-Finder to identify the propagation of soft error at gate level. SEGP-Finder

models electrical and logical masking effects and verify the glitch propagation by

implementing previous proposed methodology. The applicability of the tool over

combinational and asynchronous circuits is illustrated by implementing 8-bit adders,

multipliers, and the Self-timed multiple-group pipeline asynchronous handshake cir-

cuits.

5.1 Identification of Soft-Error at Gate-Level

In order to explain the automation of the proposed technique, we are providing

usage of the files that are required by MDG. Our automation tool (described in next

section) modifies these files; therefore this information is helpful in understanding

the contextual details:
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• The algebraic specification file defines sorts, function types and generic con-

stants used in hardware descriptions. In our work, this file contains the defini-

tion of the glitch sort signal, where 0, 1, DG, DGP are the possible values for

this signal in the design when logical masking is only modeled. G dp1, G dp2,

G dp3, G dp4 are the possible values in case of modeling both electrical and

logical masking.

• The symbol order file provides the custom (user-defined) symbol order for all

the variables and cross-operators which would appear in MDG model.

• The circuit description file declares signals and their sort assignments, com-

ponent network, outputs and the mapping between state variables and next

state variables.

• The invariant specification file defines the invariant to be checked during the

reachability analysis. E.g. the invariant (written in temporal logic)AG((reg out =

0)||(reg out = 1)) means ”In all the reachable states, the output of the register

is equal to 1 or 0”.

5.2 SEGP-Finder

This section explains the features of the proposed tool (SEGP-Finder). This tool

implements the methodology in the previous chapter. Flow chart of SEGP-Finder is

shown in Figure 5.1. It illustrates that the input of our tool is the Gate-level MDG-

HDL model of the design combined with the GP sets and the glitch identification.

There are four main stages shown in Figure 5.1. The first one is to annotate the

MDG Model where modifications are applied on the design file to accommodate

possible soft error glitches at the vulnerable nodes. Output of the annotated MDG

Model is given to the invariant generator, which provides the MDG-invariant. Next

is the MDG verification step where we perform the invariant checking in MDG.
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Finally, SEGP-Finder analyzes the results and generates result file. The following

sections discuss the details of these stages.

MDG-Invariant

Checker

Result analysis

GATE Level

MDG-model

Annoutated MDG 

Model

Invariant

Genrator

Result File

Figure 5.1: The flow chart of the SEGP-Finder.

5.3 Annotate the MDG Model

Annotating the effects of soft error glitches in the design is implemented by anno-

tator, shown in Figure 5.2. As the name suggests, annotator prepares the design

written in MDG-HDL to perform verification. The goal here is to modify the MDG-

HDL model of the design to accommodate soft error glitches. This is done by

modifying the MDG input files as explained in Section 2 and graphically shown in

Figure 5.2.

Next step is to inject the glitch for each internal node. It shows that for

each new description file annotator injects the glitch at one internal node. This is

a recursive process done for all the internal nodes. As an example, for ”Spec 1”

our program injects the glitch at the first internal node. The annotator adds a
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Alg. fileInv. file Order file Spec. file

Figure 5.2: The annotator.

multiplexer (mux) component to the design in ”Spec 1”. This introduction of mux

component is made possible by modifying the subsequent connecting gates. To il-

lustrate fully the working algorithm, consider the small circuit example in Figure

5.3 (ISCAS-85 benchmark circuit C17 with glitch inserted at N1). To perform this

glitch injection at N1, the annotator opens the ”Spec 1” and adds a mux component

to the design at N1 which, in MDG-HDL, is the following:

component(mux, mux( sel(select) ,inputs([(0,N1), (1,y)]) , output(n select init))).

In MDG every signal in the design is sequentially arranged in the order file

which is the representation format of net-list in MDG. The signals related to the

new mux component need to be inserted in the order file. The annotator creates a

copy of the original order file. Next it opens the new order file and adds these new

glitch signals to the order list of the design.

In order to run the MDG to do our verification one time the user has to guide

or interact with MDG nine times. It is very hard to do this for large design with

large number of internal nodes. In this tool we handle this issue by writing a prolog

script for each glitch verification case. The number of these scripts is equal to the

number of the internal nodes. These scripts are automatically generated without

any interference from the user.
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Figure 5.3: C17 with the glitch injected between G1and G5.

5.4 MDG Invocation and Result Organization

The proposed approach includes running all the prolog scripts in sequence. This

can be done by writing a shell script. This script is generated automatically by

the annotator and it performs two main functions. The first function is to run all

the prolog scripts as shown in the top box of Figure 5.4. In the second step MDG

verification results for all the iterations are stored into separate files. Therefore the

number of result files is equal to the number of the internal nodes. Afterwards, as

shown in Figure 5.4, an analysis is run on these result files. Here the tool extracts

the critical sequence, the counterexamples, along with verification time information

from each result file. Next section further discusses these results.
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Figure 5.4: User Transparent MDG Invocation and Result Analysis.

5.5 Experimental Results

We performed our verification using a SUN RAY2 computer, with the SUSE Linux

Enterprise Server 10 operating system, over an Intel core i7-860 processor.

5.5.1 Implementation

Logical Masking

For the Combinational circuits starting with the C17 circuit, for each design we

injected glitches at every internal node of the circuit and invariant checking is per-

formed in each case.
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Figure 5.5: C17 with the glitch injected between G1 and G5.

=== The Counterexample ===

-------- Assumptions --------

-

-------- Initial state --------

reg_output_signal = 1

-------- Clock cycle 1 --------

-- The symbolic input --

c = 0

select = 1

glitch_signal = dgp

-- The symbolic state --

reg_output_signal = dg

-------- Clock cycle 2 --------

-- The symbolic input --

-

-- Symbolic Output --

flag = 1

=== End of counterexample ===

Generating counter example took 0.010 seconds.

Figure 5.6: One of the counterexamples for the C17.
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As we explained before, our proposed method provides counterexamples in

case the invariant checking fails. One such case is shown in Figure 5.6, which shows

the counterexample when the glitch is injected at node C17V1 in Figure 5.3. In

Figure 5.6, it is shown that, starting from the initial state of the output register,

the MDG tool provides the symbolic inputs which are the critical sequence of inputs

that allows the glitch on the node C17V1 to propagate to the primary output. The

critical sequence for the previous case is when the input signal c is at logic ’0’ and

the select signal for the multiplexer is at logic ’1’. The verification time and the

time needed to generate the counterexample are between 10 and 20 millisecond.

SEGPfinder collects all the counterexamples for the target circuit and provide the

user back with table that includes all the results such as Table 5.1 for the C17

circuit. Table 5.1 shows the critical sequences of all the internal nodes of the C17

circuit (C17V1-C17V6) .

Table 5.1: Node wise vulnerable conditions for C17.

Internal node Vulnerable Conditions
C17V1 c = 0
C17V2 c = 1, a = 0
C17V3 c = 0
C17V4 a = 0, b = 0
C17V5 e = 0
C17V6 e = 1 , c = 0

The second example on the combinational circuit implementation is the 4-bit

adder which is shown in 5.7. By giving the MDG model of the 4-bit adder as input

to our tool Table 5.2 is the output. This table shows the corresponding critical

sequence or vulnerable condition for each internal node. a0 = 0, b0 = 0, select =

1, glitch signal = dg is the critical sequence when the glitch is injected at node N2

in Figure 5.7. Based on the result shown in Table 5.2 logical masking effect alone

is not able to prevent the glitch from propagating. Later in this section, we show
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Figure 5.7: Gate-Level representation of 4-bit adder circuit.

the modeling of the electrical masking effect in this circuit, then we verify if both

masking effects can prevent the glitch propagation.

Table 5.2: Node wise vulnerable conditions for 4-Bit adder circuit.

Node name Verification Vulnerable Condition
time (sec.)

N1 0.37 select = 1, glitch signal = dg, cin0= 0.
N2 0.34 select = 1, glitch signal = dg, a0 = 0, b0=0.
N3 0.34 select = 1, glitch signal = dgp, cin0= 0.
N4 0.34 select = 1, glitch signal = dgp, a1 = 0, b1 = 0.
N5 0.33 select = 1, glitch signal = dg, cin1 = 0.
N6 0.33 select = 1, glitch signal = dgp, a1 =0, b1 =1.
N7 0.33 select = 1, glitch signal = dg, cin1= 0.
N8 0.36 select = 1, glitch signal = dg, a2 = 0, b2=0.
N9 0.34 select = 1, glitch signal = dg, cin2= 0.
N10 0.36 select = 1, glitch signal = dgp, a2 = 0, b2 =1.
N11 0.37 select = 1, glitch signal = dg, a2= 0, b2=0.
N12 0.39 select = 1, glitch signal = dg, a3 = 0, b3 = 0.
N13 0.38 select = 1, glitch signal = dgp,cin3 = 0.
N14 0.37 select = 1, glitch signal = dgp,a3 = 0, b3 = 0.
N15 0.37 select = 1, glitch signal = dgp,cin3= 0.
N16 0.35 select = 1, glitch signal = dgp,cin3= 1,a3=0, b3=1.
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For asynchronous circuits, we not only have to consider the input values but

also the order in which signals get asserted. For example, according to the 1-of-N

DI data-encoded protocol, of which 1-of-4 is the special case shown in Figure 3.6,

only one of the input lines can go high at a given time. When any of these input

signals becomes high (to transfer some data), the corresponding line in the signal

group nx[0-3] is pulled down to logic ”0”. Based on this protocol, the possible

input sequences (Z0-Z3) are obtained. We call these possible input sequences initial

input sequences of the multiplexer in Figure 3.6. Based on the chosen initial input

sequence from the multiplexer, the decoder gives certain values for each input of the

circuit. To ease reading, we have provided these initial sequences in Table 5.3.

Table 5.3: The initial sequences for the DI circuit.

Initial sequence
The input value

q0 q1 q2 q3 nxa out ack
Z0 1 0 0 0 1 0
Z1 0 1 0 0 1 0
Z2 0 0 0 0 0 1
Z3 0 0 0 0 1 0

Table 5.4 shows the critical sequence for all the internal nodes for the DI circuit

under all the possible input sequences. The previous state output of the C-element

X is represented by t IsX. Select2 is the selection signal of the multiplexer at the

internal node. Table 5.4 shows that the glitches at internal node can propagate

under all the possible input sequences if the previous value of the output C-element

is logic ’1’.

The vulnerable nodes for the bundle data circuit in Figure 3.8 are identified

as BDV1 to BDV8. For the introduction of glitches at each node, there is a specific

critical sequence for the glitch to propagate. Such as, introducing glitch at BDV1
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Table 5.4: Node wise vulnerable conditions for DI asynchronous circuit.

Internal Node Initial sequences Vulnerable Conditions
Nx0 Z0 t ls5 = 0, glitch signal = dgp, select2 = 1.
Nx0 Z1 t ls5 = 1, glitch signal = dg, select2 = 1.
Nx0 Z2 t ls5 = 1, glitch signal = dg, select2 = 1.
Nx0 Z3 t ls5 = 1, glitch signal = dg. select2 = 1.
Nx1 Z0 t ls6 = 0, glitch signal = dgp select2 = 1.
Nx1 Z1 t ls6 = 1, glitch signal = dg select2 = 1.
Nx1 Z2 t ls6 = 1, glitch signal = dg, select2 = 1.
Nx1 Z3 t ls6 = 1, glitch signal = dgp select2 = 1.
Nx2 Z0 t ls7 = 0, glitch signal = dgp select2 = 1.
Nx2 Z1 t ls7 = 1, glitch signal = dg select2 = 1.
Nx2 Z2 t ls7 = 1, glitch signal = dgp select2 = 1.
Nx2 Z3 t ls7 = 1, glitch signal = dg select2 = 1.
Nx3 Z0 t ls8 = 0, glitch signal = dgp select2 = 1.
Nx3 Z1 t ls8 = 1, glitch signal = dg select2 = 1.
Nx3 Z2 t ls8 = 1, glitch signal = dgp select2 = 1.
Nx3 Z3 t ls8 = 1, glitch signal = dg select2 = 1.

in Figure 3.8, then the counterexample shows that the critical sequence is Reset=1,

Z0=1, Ai=1 or Reset=1, Z0=1, Rp=1. We applied our MDG model and performed

our verification methodology for all the identified vulnerable nodes of the circuit

and a log of critical sequences was taken. We obtained a table similar to Tables 5.1

and 5.4 for bundled data protocol as well, but because of space limitation, we did

not put it here.

Figure 5.8 shows the self-timed multiple-group pipeline circuit [48] to be verified

using our technique. In order to verify the glitch propagation for this asynchronous

circuit we started with verifying the completion detection part which is shown in

Figure 5.9. A gate level representation of the 3-of-6 completion detection is shown in

Figure 5.9. We injected the glitch at the inputs of the completion detections shown

in Figure 5.9. Table 5.5 shows partial results of this design when the initial values

of all primary inputs are zero.
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Figure 5.8: Self-timed multiple-group pipeline [48]

c
C

op

d1
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d5

Figure 5.9: 3-of-6 completion detection.

Electrical Masking

In our tool SEGP-Finder we implemented the proposed methodology which we dis-

cussed in chapter 4, in order to model the electrical masking. Here we show our tool

results for modeling electrical masking on different combinational and asynchronous

circuits. Starting with the 4-bit adder circuit shown in Figure 5.10. A gate level

representation of the 4-bit adder is shown in Figure 5.7. As we explained earlier the

4-bit adder consists of multiple full adder blocks. So one efficient way to verify this

design is to verify one of the full adders. We injected the glitch at one internal node

of the full adder circuit then we verified the glitch propagation for all the outputs.
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Table 5.5: Node wise vulnerable conditions for the self-timed multiple-group pipeline
circuit.

Node name Verification Vulnerable Condition
time (sec.)

D0 0.70 select=1,glitch signal=dg,feed1=0,in1=0,
in3=0,in4=0,in5= 0,t ls1=1,t ls2=0,t ls3=1

D1 0.73 select=1,glitch signal=dg,feed1=0,in2=0,
in3=0,in1=0,in5=0,t ls1=1,t ls2=0,t ls3= 1.

D2 0.73 select=1,glitch signal=dg,feed1=0,in1=0,
in2= 0,in4=0,in5=0,t ls1=1,t ls2=0,t ls3=1.

D3 0.74 select=1,glitch signal=dg,feed1=0,in1= 0,
in2 = 0,in3=0,in5 = 0,t ls1 = 1,t ls2 = 0,t ls3 = 1.

D4 0.75 select =1, glitch signal=dg, feed1=0,in1=0,
,in2 =0,in3=0,in4=0,in6=1,t ls9=1,t ls2=0,t ls3 = 1.

D5 0.70 select=1,glitch signal=dgp,feed1=0,in1=0,in2=0,
in3=0,in4=0,in5=1,t ls8 = 1,t ls2 =0,t ls3= 1.

Out of the results shown in Table 5.6, we are able to find that the glitch can

propagate from the full adder where it is injected to the next full adder based on the

glitch assumption we have. By keeping the glitch in the same position as before (at

node N1) and checking the carry of the second full adder in Figure 5.10 we noticed

that the invariant checking a success which means that the glitch cannot reach that

point due to the electrical masking. Because the 4-bit adder is a combination of full

Table 5.6: The result when a glitch the glitch inserted at the output of N1.

primary Glitch depth Vulnerable Conditions
output at the output
S0 G dp2 select = 1, glitch signal = G dp3, cin0 = 0.
C0 G dp1 select = 1, glitch signal = G dp3,

cin0 = 1, a0 = 1,b0 = 0.
S1 G dp1 select = 1, glitch signal = G dp3,

cin0 = 1,a0=0, a1 = 0, b1 = 0.
C2 Safe Safe
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Figure 5.10: 4-bit adder circuit.

adder blocks we do not need to verify the glitch propagation for all the full adders.

Verifying one block saves time and reduces complexity.

Figure 5.11: 4-bit multiplier circuit.

A combinational multiplier is a good example for showing how our technique

can be used to verify electrical masking because we have sufficient depth. The 4-bit

multiplier circuit is shown in 5.11. The scheme that is shown in Figure 5.11 is often

referred to as ripple carry since each more significant column in the sum must wait

for the carries to be computed in the less significant columns before its corresponding

sum bit can be computed.

In the figure above the two bits to be added enter from the top, any carry in
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from the right enters from the right, and any carry out exits from the left of each

block. The output from the bottom of a block is the sum. The least significant

output bit, S0 (the first column), involves only two input bits and is computed as

the simple output of an AND gate. This operation cannot generate a carry out.

The next output bit, S1, involves the sum of two partial products. A half adder is

used to form the sum since there can be no carry in from the first column; however,

a carry out can be produced. The third output bit, S2, is formed from the sum of

three (1-bit) partial products plus a possible carry in from the previous bit. This

operation requires two cascaded adders (one half adder and one full adder) to sum

the four possible input bits (three partial products and one possible carry in from the

right). The remaining output bits are formed similarly. Because in some columns

we must add more than two binary numbers, there may be more than one carry out

generated to the left. Similar to the 4-bit adder, we injected the glitch with different

depth and for all the internal nodes.

5.5.2 Discussion

In this section, a comparison is provided between our proposed soft-error estimation

technique and other contemporary techniques. Conventionally, the total number of

tested input sequences for the glitch propagation can be found using the following

formula:

f(x, y) = 2x ∗ y (5.1)

Where x is the number of primary input and y is the number of internal nodes

(vulnerable nodes). For example, the total number of tested input sequences for the

C17 is 192 because it has 5 input and 6 internal nodes. Our methodology allows

the designer to determine the smallest set of input sequences that are responsible

for soft-error glitch propagation. Table 5.8 illustrates this fact; as it can be seen,
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the required number of the inputs to the sequence to be verified is reduced in all

the cases. For example, for the C17, instead of verifying the circuit for 192 input

sequences, using our technique, we need to verify the circuit under only 6 sequences.

The results shown in all the tables in this section can be provided to the designers to

analyze and possibly avoid the soft error glitch propagation using logic design and

circuit techniques. These results are also beneficial to DFT groups so that it can

be made sure that these logic paths have ample controllable and observable points.

This information can help a protocol developer to refrain from using the vulnerable

paths as much as possible. Another advantage of our tool is the possibility of

applying partially instead of doing it for all the internal nodes. It helps a designer

in investigating only part of the design; partial verification is of course time efficient.

The fact that SEGP-Finder has been successfully applied to relatively large circuits

proves the scalability of the technique.
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Table 5.7: Node wise vulnerable conditions for 4-Bit adder circuit.

Node name Verification Vulnerable Condition
time (sec.)

N1 0.37 select = 1, glitch signal = G dp3,
cin0= 0.

N2 0.34 select = 1, glitch signal = G dp3,
a0 = 0, b1 = 0.

N3 0.34 select = 1, glitch signal = G dp3,
cin0 = 0.

N4 0.34 select = 1, glitch signal = G dp3,
a1 = 0, b1 = 0.

N5 0.33 select = 1, glitch signal = G dp3,
cin1 = 0.

N6 0.33 select = 1, glitch signal = G dp3,
a1 = 0, b1 = 1.

N7 0.33 select = 1, glitch signal = G dp3,
cin1 = 0.

N8 0.36 select = 1, glitch signal = G dp3,
a2 = 0, b2 = 0.

N9 0.34 select = 1, glitch signal = G dp3,
cin2 = 0.

N10 0.36 select = 1, glitch signal = G dp3,
a2 = 0, b2 = 1.

N11 0.37 select = 1, glitch signal = G dp3,
a2 = 0, b2 = 0.

N12 0.39 select = 1, glitch signal = G dp3,
a3 = 0, b3 = 0.

N13 0.38 select = 1, glitch signal = G dp3,
cin3 = 0.

N14 0.37 select = 1, glitch signal = G dp3,
a3 = 0, b3 = 0.

N15 0.37 select = 1,glitch signal = G dp3,
cin3= 0.

N16 0.35 select = 1, glitch signal = G dp3,
cin3 = 1,a3 = 0, b3 = 0.
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Table 5.8: Identifiable vulnerable input sequences.

Number of
Required number of inputs

% of require
verification

Available inputs Proposed
internal nodes inputs time

C17 6 192 6 3.125 1.8
4-bit adder 20 5120 20 0.39 6.2

DI 4 256 16 6.25 5.6
Bundle data 8 1024 80 7.8125 28
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5.6 Summary

In this chapter, SEGP-Finder has been proposed, which is a new tool to identify

the propagation soft error glitch at gate level. We explained how SEGP-Finder

models electrical and logical masking effects and verify the glitch propagation by

implementing previous proposed methodology. SEGP-Finder has been tested over

many combinational and asynchronous circuits. Considerably large designs, such

as adders and multipliers, have been implemented with little intervention require-

ment, emphasizes the efficiency and scalability of this tool. It is shown that the

counter-examples, generated from this methodology, can be exploited at various de-

sign abstraction levels. Based on the results indicate that SEGP-Finder is fast and

accurate compared with simulation based techniques. The overall verification time

is linearly related to the number of internal nodes.
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Chapter 6

Conclusion and Future Work

We proposed a novel method to identify paths that can propagate soft faults and

glitches in both combinational and asynchronous circuits. This technique provides

the critical sequence of inputs for both combinational and asynchronous circuits at

an early stage of the design cycle. It helps designers applying radiation tolerance

techniques on limited parts of data paths. The proposed technique also considerably

reduces the number of required fault injection vectors. Only 7.8 % and 6.25 % of

the total input sequences need to be injected to characterize the complex bundled

data protocol based and 1-of-4 DI based asynchronous circuits, respectively.

A methodology for automating the Identification of paths propagating soft

faults and glitches is presented. The proposed automation tool, SEGP-Finder has

been tested over many combinational and asynchronous circuits. Fair size designs,

such as an 8-bit adder and the 4-bit multiplier, have been analyzed with little human

intervention, which is a promising result with respect to the efficiency and scalability

of this tool. It is shown that the counterexamples, generated with this methodology,

can be exploited at various design abstraction levels.

To the best of our knowledge, this is the very first time multiway decision

graphs have been used to model, analyze, and verify glitch related behaviour of
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digital circuits. The proposed technique offers many benefits. It provides the de-

signer information about what to expect in case of a soft error occurrence in the

circuit. Based on this information, the designer may alter the design, insert mitiga-

tion mechanisms at particular nodes rather than introducing complete redundancy

(as is the case with triple module redundancy TMR), or simply avoid vulnerable

design scenarios.

The proposed methodology and tool cannot handle sequential circuits at this

time. So in order to make it more general, we plan to extend it in the future to

include sequential circuits. Also this work does not contain timing analysis since

our verification core is the MDG does not support timing analysis. Therefore, latch

window masking was not modeled in this work, because modeling this masking effect

requires knowledge of the glitch arrival time window. Extending the work in this

thesis can be done along different paths, such as extending the methodology to

sequential circuits. This can be done by proposing a new technique to model the

SR-Latches components and other sequential component.

Building on our work, soft error analysis at higher abstraction levels can also

be performed. Starting from the gate level soft error analysis for some of the most

commonly used combinational blocks in digital design, new GP sets for bigger blocks

can be defined, then, from these GP sets, we can build new truth tables to define

the behaviour for the combinational blocks. After that, a library containing the soft

error defined behaviour for all basic combinational blocks can be built and used for

soft error analysis.

In order to explain our last idea, a 4-bit adder circuit which is shown in Figure

5.10 can be constructed from a number of 1-bit full adders, so instead of verifying

the soft error propagation for the whole design at the gate level. We can use the

proposed methodology to verify glitch propagation for a 1-bit full adder at the gate

level. Out of this verification, we can extract the GP sets for this circuit. Then the

next step would be to build the a truth table defining the behaviour of this circuit
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based on the extracted GP sets. The last step is to store the new defined behaviour

in our library. In the future if we want to verify 4-bit or 8-bit adders or an adder

of any size , what we need to do is just to call the 1-bit full adder models from the

library and connect them and then the verification can be performed at the RTL

level. The same approach can be applied to other circuits such as multipliers.

Finally, we believe this thesis is an important milestone towards building a

complete environment for modeling, analysis, and verification of soft error in logic

circuits.
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