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Abstract 

Multi-Agent Approach to Modeling and Implementing Fault-Tolerance 

in Reactive Autonomic Systems 
 

Nassir Shafiei-Dizaji 

 

 

Recently, autonomic computing has been proposed as a promising solution for software 

complexity in IT industry. As an autonomic approach, the Reactive Autonomic Systems 

Framework (RASF) proposes a formal modeling based on mathematical category theory, 

which addresses the self-* properties of reactive autonomic systems in a more abstract 

level. 

This thesis is about the specification and implementation of the reactive autonomic 

systems (RAS) through multi-agent approach by laying emphasis on the fault-tolerance 

property of RAS. Furthermore, this thesis proposes a model-driven approach to transform 

the RAS model to agent templates in multi-agent model using Extensible Stylesheet 

Language Transformation (XSLT). The multi-agent approach in this research is 

implemented by Jadex, a high-level Java-based agent programming language. The 

intelligent agents are created in Jadex based on the Belief-Desire-Intension (BDI) agent 

architecture.  The approach is illustrated on a case study. 
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Chapter 1: Introduction 

 

 

 

This thesis is about implementing the fault-tolerance property of Reactive Autonomic 

Systems (RAS) using Multi-Agent Systems (MAS) by Jadex, which is a high-level agent-

programming tool as well as transforming the RAS abstract meta-model to an 

implementable MAS meta-model using Extensible Stylesheet Language Transformation 

(XSLT).  

In this chapter, we will discuss the research questions, proposed approach, and 

motivation behind the selection of MAS to implement RAS using Jadex as a 

programming environment to develop intelligent agents in MAS. Moreover, our 

contribution in defining and modeling fault-tolerance property of RAS as MAS and 

implementing it with Jadex will be illustrated. Furthermore, the idea of developing the 

rules to transform the RAS meta-model to a MAS meta-model using XML model 

transformation framework will be presented. These transformation rules are used to 

produce Jadex agent templates with fault-tolerance property in MAS. Finally, we will 

present the outline of this thesis.   
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1.1. Context of Research 

Autonomic Computing. Autonomic computing is considered as one solution for today’s 

software problems such as excessive software complexity and enormous maintenance 

load [14, 22]. The primary goal of autonomic computing is self-management, which can 

be further decomposed into self-configuration, self-healing, self-optimization and self-

protection [14]. The absence of a formal framework for autonomic systems based on a 

strong theoretical backbone has encouraged the authors of [2] to propose Reactive 

Autonomic Systems Framework (RASF) specified using the mathematical Category 

Theory (CT). The CT is an abstract theory that examines mathematical concepts and their 

relationships by formalizing them as objects and arrows (morphisms) [23]. The different 

definitions and axioms of CT have been used to specify architectural and behavioral 

aspects of RASF. For example, the Reactive Autonomic Elements (RAE), which are the 

atomic components of RASF, are mapped to objects and their interactions to morphisms 

in CT.  

Since the RAS framework is very abstract, it needs to be implemented using the 

available current approaches for autonomic paradigm. One of the proper solutions to 

model and implement the autonomic systems seems to be the multi-agent approach since 

the autonomous behavior of intelligent agents can be easily mapped to self-* properties in 

RAS [25]. On the other side, plenty of frameworks and tools are available in the MAS 

domain to be acquired and utilized.  

Multi-Agent Systems. A Multi-Agent System (MAS) [9] is a software system consisting 

of a group of intelligent agents capable of autonomous actions that interact with each 

other through a given Agent Communication Language (ACL) [11] to achieve a specific 
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goal. The agents in the MAS cooperate, coordinate or negotiate with each other to 

achieve the goals that are difficult for a single agent to accomplish. The reactive and 

proactive properties of the intelligent agents as well as their cooperative or self-interested 

behaviors make them the ideal mapping for RAE in RAS framework. The Belief-Desire-

Intention (BDI) architecture is one of the well-known existing architectural models for 

MAS [9]. In BDI architecture, the rational agents [15] are defined as a philosophical 

model having specific notations for: 1) Beliefs: indicate the knowledge of the agent about 

its environment and other agents; 2) Desires: specify the goals that the agent may 

achieve; and 3) Intentions: indicate what the agent has chosen to accomplish as a plan 

[16]. In BDI model, the plans are triggered by internal goals as well as external messages 

from the environment or other agents. As a well-defined architecture for multi-agent 

systems, BDI has become the basis for a number of agent-oriented programming tools 

such as Jadex [26].    

Jadex. Jadex is a Java-based agent programming middle-ware that is based on Java 

Agent Development Framework (JADE) and complies with Foundation for Intelligent 

Physical Agents (FIPA) standard for agent communication. The architecture of Jadex 

follows the BDI model to define beliefs, goals, plans and message events for the 

intelligent agents. Each agent in Jadex is specified in an XML file called Agent 

Definition File (ADF) containing corresponding tags for beliefs, goals, events and plan 

headers. The body of the corresponding plans for each agent is defined in separate Java 

class files. These plans are triggered by internal goals specified in the ADF or by external 

message events coming from the environment or other agents [13]. The execution of the 

plans may modify beliefs, create new goals, send external messages or run other plans. 
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Also, it is possible to define common characteristics of agents in files called capability 

ADF having corresponding plan class files. These capabilities can be included in agents 

and used as needed. The standard and tangible architecture of Jadex permits developers to 

easily define agents and model complicated agent structures. The Java-based language of 

Jadex allows using it with any Java development environment such as Eclipse and taking 

advantage of all Java features. On the other hand, the XML format of the ADF allows for 

easy development and use of this file as a convenient output model for XML-based 

model transformation framework to convert the RAS meta-model to the MAS meta-

model.   

Model Transformation. Model Transformation (MT) is the process of converting one 

specific model to another model. In this process, the input model is called Left Hand Side 

(LHS) that conforms to a meta-model and the output model is called Right Hand Side 

(RHS) that conforms to another meta-model. To automate this process, there are some 

model transformation tools such as Extensible Stylesheet Language Transformation 

(XSLT) [45]. XSLT is an XML tool to define the transformation mappings from one 

input XML file to another XML or Text file. XSLT uses XPath language to define the 

rules and algorithms that are used in the conversion operation. 

In this thesis, we will define a grammar to create the XML representation of RAS, 

which will serve as an input model for XSLT. Both the architectural and behavioral 

aspects of RAS with regard to fault-tolerance to achieve self-healing property of RAE are 

serialized in XML format. The developed transformation rules will take RAS as input and 

convert it to the corresponding templates of agents and plans in Jadex.  
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1.2. Motivations 

The Reactive Autonomic Systems (RAS) framework uses very rich bases from 

mathematical Category Theory (CT) to define its static architectural structure and 

dynamic behavioral model. Each of the elements in the RAS framework is defined in a 

high abstraction level with categorical objects and the interaction between them is 

mapped to morphisms between these objects in corresponding categories [19]. The work 

done until now focuses on proving different autonomic properties in the RAS framework 

using mathematical axioms and theorems in category theory. For instance, in a very 

abstract level of fulfilling the fault-tolerance property, by using categorical properties, it 

is asserted that a Reactive Autonomic Element (RAE) can be replaced with a similar 

RAE (the substitutability property) [19]. This level of abstraction in terms of the 

necessity to implement and test what is proven mathematically requires a framework to 

put into practice the RAS framework. 

Our first motivation to use MAS as a mapping for RAS is to implement and test the 

properties of the RAS framework. It is obvious that the considerations to select MAS are 

based on the inherent similarities between the two frameworks and the enormous volume 

of work done in multi-agent community. Another reason that has encouraged us to 

choose MAS is the number of powerful tools to implement intelligent agents. It was very 

important to take advantage of a tool that is easy to use for modeling complex concepts. 

Jadex, a rich Java-based agent programming language, is an appropriate tool to map RAS 

models to MAS models. Some concepts in Jadex have helped us review the 

representation model of RAS in XML format and bring some changes in some cases. 
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Our second motivation is to propose a Model Transformation (MT) framework to 

produce multi-agent templates representing the RAS components that satisfy the self-

healing property. RAS presently has the form of architectural and sequence diagrams. 

The proposed framework defines a grammar for all components in RAS and serializes 

them into XML format. The result serves as an input to the MT framework that 

transforms it into agent template representations in Jadex considering in particular the 

fault-tolerance property of RAS. These templates can be used as blue-prints to design 

different systems that intend to comply with the RAS framework. 

1.3. Research Questions 

The research questions we are aiming to address in this work are listed next: 

1. How can RAS specifications of self-* properties be refined into MAS models? 

How do we refine the specifications of the RAS meta-model such as RAE using 

the MAS concepts such as intelligent agents?  

2. What is the best multi-agent architecture to choose for this purpose? What 

programming tool can we select conforming to this architecture? 

3. Can model transformation approach be applied to transform a model conforming 

to a RAS meta-model into a MAS meta-model? What is the best model 

transformation framework to be applied? 

1.4. Proposed Approach and Contributions 

The main goal of this thesis is the implementation of RAS with MAS using a model 

transformation framework to create necessary agent templates. In fact the contributions of 

this work are as follows: 
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1. Mapping the RAS structures to the corresponding MAS components [Chapter 3]: 

The atomic element in the RAS meta-model is Reactive Autonomic Object 

(RAO) which is mapped to an agent in the MAS meta-model. This means that for 

each RAO in the RAS meta-model, we create an ADF file in XML format 

containing the appropriate tags for beliefs, goals, plan headers and event messages. 

The composite elements of the RAS meta-model such as the Reactive Autonomic 

Component (RAC) are in fact the combination of RAO elements with proper 

communications between them. The mapping for these more elaborated structures 

in MAS is a series of corresponding agents that are capable to communicate with 

each other respectively. 

2. Mapping the behavioral model of RAS to MAS [Chapter 3]: The behavior of the 

RAS meta-model is captured using sequence diagrams. Using the Marsworld case 

study [5], we implement the fault-tolerance property of the RAS meta-model that 

involves the substitutability property of elements in the RAS framework to assert 

what was proven mathematically in [19]. Consequently, the reactive and proactive 

comportments of RAS elements for the fault-tolerance property are merged with 

the plan files. 

3. Using Jadex to implement the MAS model of RAS [Chapter 4]: Among all agent 

architectures, the Beliefs-Desires-Intentions (BDI) model is the appropriate 

choice for our approach. The justification is given in Chapter 2. In this model, we 

specify beliefs as the knowledge of the agent, desires as the goals to be fulfilled 

and the intentions as the plans to achieve the goals. An appropriate agent 

programming tool that is based upon BDI architecture is Jadex, which is a Java-
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based solution. Using Jadex, we have implemented Marsworld case study to 

prove the fault-tolerance property.  

4. Proposing a model transformation framework to develop agent templates [Chapter 

3]: Since Jadex uses XML format to define its agent profiles, it can serve as a 

suitable output format for model transformation frameworks such as Extensible 

Stylesheet Language Transformation (XSLT) that is based on XML input and 

output. For this purpose, we have defined a grammar to capture the RAS concepts 

in XML format that provide the input for our model transformation framework. 

This framework defines transformation rules that take the RAS meta-model 

concepts in XML format and transforms them to the BDI-based MAS agents in 

Jadex.  

Figure 1.1 illustrates the proposed approach and the contribution of this thesis. 

RAS Model

Abstract

RAS

Meta-model

Implementable

MAS

Meta-model

MAS Model

Implemented
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Transformation Rules
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A
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Chapter 3
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Chapter 3

 

Figure 1.1: The schema of the proposed approach. 
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1.5. Outline 

This thesis contains 6 chapters. Chapter 2 introduces the background that includes the 

description of the RAS framework, category theory, MAS, the Marsworld case study 

involving fault-tolerance property, the Jadex programming tool and the XSLT model 

transformation framework. Chapter 3 provides the main contribution describing the 

transformation process from RAS to MAS including the RAS grammar, input model, 

transformation rules, and output model. Chapter 4 illustrates the consideration of fault-

tolerance property using the Marsworld case study. In Chapter 5, we present some related 

work in autonomic computing, multi-agent systems and model transformation areas. 

Finally, in Chapter 6, we summarize our main contribution and identify directions for 

future work. 
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Chapter 2: Background 

 

 

 

2.1. Introduction 

Software systems are increasing in size and complexity so that their development and 

maintenance become more complicated. The present software solutions do not respond to 

this rapid change because the management of this mass of complexity goes beyond the 

capabilities of IT professionals. More and more the companies are looking for solutions 

that reduce human intervention in complex and time consuming tasks. The solution to 

this problem is a system that helps managers deal only with high-level critical tasks and 

handles low-level complex job itself. As a concrete example, we refer to the planet Mars 

exploration missions that are accomplished by robots. The message transmission between 

earth and Mars takes a long time and scientists need to minimize this communication and 

limit it to messages about crucial decisions. As a result, the robots must depend on their 

own intelligence. In fact, they have to be autonomous enough to carry out their own tasks. 

One solution is a system which manipulates a large number of inexpensive robots. These 

robots with simple capabilities are grouped together to form intelligent swarms. The 

coordination of actions between these robots is critical and a formal framework for their 

autonomic behavior is needed. 
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Many formal methods for swarm systems with autonomic behaviors are compared in 

[1]. However, according to the paper [19]: 1) it is not possible to come up with one single 

formal method that satisfies all necessary properties; 2) the proposed specifications 

cannot be easily transformed to program code; and 3) they cannot be applied as input to 

model checkers for automatic verification purposes. For proving the correctness of self-* 

properties, [2, 19] propose a formal framework named Reactive Autonomic Systems 

Framework (RASF) that tries to resolve the mentioned problems.  

RASF is a formal framework for modeling reactive autonomic systems with self-* 

properties. The self-* properties consist of self-management that can be attained by 

realizing self-configuration, self-healing, self-optimization and self-protection [14]. 

RASF is based on the mathematical Category Theory (CT) that models Reactive 

Autonomic Systems (RAS) [2]. The authors of [19] use different applications such as 

Mars case study to build a RAS meta-model with regard to CT. The RAS meta-modeling 

provides properties and constraints that are correct by construction rules based on formal 

verification embedded in the backend CT models [2]. 

RAS CT

CTMAS

Code

Modeling

Equivalence

proving

Modeling

Transformation/

Refinement

Implementation

The focus of this 

thesis

 

Figure 2.1: The schema of the whole project and the focus of this thesis. 
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In this research, we implement RAS through Multi-Agent Systems (MAS). Among 

different MAS frameworks we have selected the BDI model based on Beliefs, Desires, 

and Intentions that is a deliberative agent architecture. Java based agent development 

frameworks are widely used to implement complex systems and we are using Jadex that 

is based on XML and the Java programming language to elaborate agents in BDI multi-

agent model. Figure 2.1 depicts the whole picture of the project and the focus of this 

thesis. 

Figure 2.1 illustrates that the RAS components as well as the MAS components can 

be represented by the categorical concepts of CT. Using this representation, the RAS 

components can be mapped to MAS elements such as agents. The resulting MAS model 

is implemented by a multi-agent programming language such as Jadex. The work done in 

[2, 3, 4] focuses on self-monitoring property of RAS. This thesis concentrates on fault-

tolerance property with regard to substitutability property in RAS using Marsworld [5] as 

a motivating case study.  

The organization of the rest of this chapter is as follows: Section 2.2 describes the 

Mars exploration case study, which is used to illustrate our approach. Section 2.3 

explains the RAS framework. Section 2.4 gives a brief description about category theory. 

Section 2.5 makes a bridge between the RAS framework and CT in terms of 

substitutability property. Section 2.6 explains multi-agent systems and Jadex. In Section 

2.7 fault-tolerance mechanism based on the substitutability property will be discussed. 

Section 2.8 describes the model transformation framework and its XML-based tools. 

Finally, Section 2.9 states our conclusions. 
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2.2. Case Study 

The Marsworld [5] case study is used in the rest of this paper to illustrate our approach. 

In this case study, a group of robots accomplish ore exploitation on the planet Mars. To 

achieve this goal, these robots must locate ore resources in the area, mine them, and 

transport produced ore to a base. This process is completed by three types of robots. 

There is a sentry robot whose responsibility is to analyze suspicious spots to evaluate if 

there is enough ore to be mined. This type of robot has wider sensor range to better verify 

candidate locations. When the sentry robot evaluates a mine to be exploited, it sends its 

location to a second robot type known as production robot. This robot has devices to dig 

and mine ore. After finishing its job, the production robot calls the carry robot to 

transport the produced ore to home base. The carry robot has the necessary equipments to 

carry ore and the ability to move faster than the other robots. 

To better illustrate our approach, we have added two more types of robots to this case 

study. These two robots are more involved in administration and coordination tasks at the 

autonomic group level. The first robot of this type is group supervisor robot. The 

responsibility of this robot is to form exploitation groups, coordinate and validate its 

members. The second type of robots in a higher level of the hierarchy of robots is the 

system manager robot. This robot coordinates group supervisor robots, assigns mining 

tasks to them in different areas and can communicate with ground station on the Earth. 

These two robot types are very important since their jobs are critical to the system. They 

have their own backup robots and have access to the repositories of their own level. 
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Figure 2.2: A sample scenario of the Marsworld case study. 

Figure 2.2 shows a sample of the Marsworld scenario. In this example, the system 

manager robot after receiving corresponding commands from the Earth, assigns two 

mining areas to two group supervisor robots, supervisor1 and supervisor2. According to 

some parameters of these two areas such as the surface and capacity of ore, the group 

supervisor robots form their own groups that consist of sentry robots, production robots 

and carry robots and start mining the areas. Also, the supervisor robots can form their 

groups by requesting more resources, such as any type of robots, from other group 

supervisor robots pending on their availability. During the mining process, the group 

supervisor robot checks instantly its group’s members and also interchanges 

administrative messages with the system manager robot as well as other group supervisor 

robots. 

2.3. Reactive Autonomic Systems Framework 

In this section, we will explain the Reactive Autonomic Systems Framework (RASF) 

approach [2]. This is a formal approach for modeling reactive autonomic systems with 
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self-* properties that is based on the mathematical category theory. This section will 

demonstrate this framework from two perspectives: 1) architecture of the RAS meta-

model; and 2) behavior of the RAS meta-model. 

2.3.1. Architecture of the RAS meta-model 

Reactive Autonomic Systems (RAS)

Reactive Autonomic Component Groups (RACG)

Reactive Autonomic Components (RAC)

Reactive Autonomic Objects (RAO)

 

Figure 2.3: The architecture of the RAS meta-model. 

The RAS architecture consists of four layers, the Reactive Autonomic Objects (RAO) 

being the simplest element, the Reactive Autonomic Components (RAC), the Reactive 

Autonomic Component Groups (RACG), as well as Reactive Autonomic System (RAS). 

This architecture is illustrated in Figure 2.3. In [2] the implementation of autonomic 

properties is assigned to RAO Leaders (RAOL) at the RAC layer, to RAC Supervisors 

(RACS) at the RACG layer, and to RACG Manager (RACGM) at the RAS layer. Each 

layer in this model can only communicate with the layer immediately above or below it. 

This property provides more modularity for each layer and accords encapsulation and 

reuse attributes for this model. Using the sample example of Marsworld in Figure 2.2 

(Section 2.2), an instance of the RAS meta-model example is represented in Figure 2.4. 
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Carry Robot1 (RAC2)
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CU4

(RAOL4)

Sensor4

(RAO6)

Supervisor
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CU3

(RAOL3)

Sensor3

(RAO5)

Sentry Robot1 

(RAC3)

CU5

(RAOL5)

Sensor5

(RAO7)

Manager Robot 

(RACGM1)

CU7 (RAOL7)

Sensor7

(RAO9)

Supervisor Robot2 

(RACS2)

CU6 (RAOL6)

Sensor6

(RAO8)

Sentry Robot2 

(RAC4)

Director Group Exploration Group2 (RACG2)

Exploration Group1 

(RACG1)

Marsworld (RAS1)

 

Figure 2.4: The RAS model of the Marsworld case study. 

Starting from the simplest element in the RAS meta-model, RAO is the atomic 

member with primary reactive behavior. This element is modeled as a labeled transition 

system with additional ports, resources, attributes, and logical assertions on those 

attributes [3]. In the example above, Sensor1 (RAO1) and Drill1 (RAO2) are the RAOs 

and the control unit CU1 (RAOL1) is the RAOL belonging to Production Robot1 

(RAC1). The element immediately about RAO is RAC which is a set of the RAO 

members. One of the RAOs is the RAOL, which implements proactive behavior whereas 

the other RAOs exhibit reactive behavior. In this example, Production Robot1 (RAC1) 

and Carry Robot1 (RAC2) are of this type. The RACG in the higher layer is a group of 

RACs operating together to perform more elaborate tasks at the group level. RACG is the 

smallest Reactive Autonomic Element (RAE) in the RAS meta-model that can achieve a 

complete task in this framework. One of the elements in RACG is a RAC that has 
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administrative and coordinative tasks in the group and is named as RACS. The 

Supervisor Robot1 (RACS1) in the example is the supervisor of Exploration Group1 

(RACG1). Being a set of RACGs, RAS is the highest layer in this meta-model. One 

group in RAS is designated as a director group in which one of the RACs is known as the 

system manager (RACGM). RACGM has the responsibility of managing repositories and 

coordinating tasks between the groups. Figures 2.5, 2.6, and 2.7 depict the specifications 

of RAC, RACG and RAS [19]. 

RAC <name>  

   Members: <list of the RAO’s names in the RAC>  

   Configure: <list of the pairs of communicating members in the RAC>  

   Leader: <name of the RAO modeled as a leader for the RAC>  

   Supervisor: <name of the RACG’s supervisor to which the RAC belongs>  

   Neighbors: <list of the RAC’s names that belong to the same RACG>  

   Repository: <path of the RAC’s knowledge base>  

End RAC  

Figure 2.5: Specification of RAC [19]. 

RACG <name>  

   Members: <list of the RAC’s names in the RACG>  

   Configure: <list of the pairs of communicating members in the RACG>  

   Supervisor: <name of the RAO modeled as a supervisor for the RACG>  

   Manager: <name of the RAS’s manager to which the RACG belongs>  

   Neighbors: <list of the RACG’s names that belong to the same RAS>  

   Repository: <path of the RACG’s knowledge base>  

End RACG  

Figure 2.6: Specification of RACG [19]. 

RAS <name>  

   Members: <list of the RACG’s names in the RAS>  

   Manager: <name of the RAO modeled as a manager for the RAS>  

   Repository: <path of the RAS’s knowledge base>  

End RAS  

Figure 2.7: Specification of RAS [19]. 
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2.3.2. RAS meta-model of behavior 

In [3], the reactive behavior of RAO is modeled as a finite state machine augmented 

with ports, attributes, logical assertions on the attributes and time constraints. The 

autonomic behaviors of RAOL, RACS and RACGM are modeled as Intelligent Control 

Loops (ICL) as shown in Figure 2.8 [19].  

Monitor Analyze

Execute Plan

HandleException

[ HasChange/initialize(TCvar) ]

[ NoAction/reset(TCvar) ]

[ HandledMonitor ] [ HandledAnalyze ]

[ HandledPlan ][ HandledExecute ]

[ AnalyzeException ][ MonitorException ]

[ ExecuteException ] [ PlanException ]

[ ActionDone[TCvar<=t3] ]

[ HasPlan[TCvar<=t2] ]

[ HasAction[TCvar<=t1] ]

ActionFailed NoPlan

NoChange

 

Figure 2.8: The Intelligent Control Loop [19]. 

An ICL consists of states, events and transitions. The state denotes the current status 

of the component (Monitor, Analyze, Plan, Execute, HandleCondition). An event triggers 

a change from one state to another (for example [HasChange], [AnalyzeExeption]). A 

transition is a pair of states which specifies the sequence of change triggered by the 

corresponding event respecting a time constraint (for example T2:{Monitor, Analyze}; 
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[HasChange/initialize(TCVar)]). T2 is the name of the transition from Monitor state to 

Analyze state. TCVar is a local clock set to zero when the trigger is received. All timing 

requirements are specified in terms of TCVar. For instance, [hasPlan] has to be fired 

within 12 time units counting from receiving of the request for change. 

So far, we stated the static and dynamic aspects of RAS. Since the RAS framework is 

based on the mathematical Category Theory (CT), in the next section we will introduce 

the most principal concepts and definitions of CT. 

2.4. Category Theory 

This section introduces the basic notions of Category Theory (CT) required to understand 

the rest of the material presented in this thesis. Whereas today’s complex systems are at 

most represented by semi-formal diagrams having components and connectors to show 

interconnections between them, diagrams in CT have a formal intuitive meaning coming 

from practice. CT is much more complete than being compared to current modeling 

formalizations of software systems in covering semantics of interconnection, 

configuration, instantiation, and composition that are important aspects of engineering 

RAS with autonomic behavior [8]. 

CT is based on objects and the relationships between them. To make it clear, a 

category consists of objects (A, B, C, etc.) and morphisms (f: A → B, g: B → C, etc.). 

These morphisms, by defining the relationships between the objects, establish a structure 

for the category. On the other hand, CT provides a set of definitions, techniques, and 

diagrams that help the system to be examined as a part of a more complex system by 

building system hierarchies [8]. To understand more the categorical concepts in this 
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thesis, a few of the CT definitions is discussed below. However, the topic of CT is out of 

the scope of this thesis and more discussions about the formal definitions are given in [19, 

23]. 

Definition 2.1. A category C consists of the following data and rules [19]: 

 A class of objects: A, B, etc. We use |C| to denote the set of all objects, such as A, 

B  |C|. 

 A class of arrows (morphisms): f, g, etc. 

 For each arrow f: A → B, A is called the domain of f, denoted as dom(f), and B is 

called the codomain of f, denoted as cod(f). We use C(A,B) to indicate the set of 

all arrows in C from A to B. 

 For each pair of arrows f: A → B and g: B → C, a composite morphism is denoted 

as g ◦ f: A → C. 

 For each object A, an identity morphism has both domain A and codomain A as 

IdA: A → A. 

 Identity composition: f ◦ IdA = f = IdB ◦ f for each morphism f: A → B. 

 Associativity: h ◦ (g ◦ f) = (h ◦ g) ◦ f for each set of morphisms f: A → B, g: B → C, 

and h: C → D. 

 Inverse of a morphism f: A → B is a morphism g: B → A such that f ◦ g = IdB and 

g ◦ f = IdA; If f has an inverse, it is said to be an isomorphism; Also, A and B are 

said to be isomorphic. 

Definition 2.2. Let C and D be categories. C is a subcategory of D denoted as C D 

if |C| ⊆ |D|, and the morphisms of C are morphisms of D as C(Ai, Aj) ⊆ D(Ai, Aj) where 
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Ai, Aj   |C|; C is a full subcategory of D when C(Ai, Aj) = D(Ai, Aj) for all objects of C 

[19]. 

Definition 2.3. A functor F: C → D between two categories C and D is a mapping of 

objects to objects and arrows to arrows from C to D in the following way [19]: 

 Object mapping as F: |C| → |D|. 

 Arrow mapping as F: C(Ai, Aj) → D(F(Ai), F(Aj)). 

 Composition mapping as F(g ◦ f) = F(g) ◦ F(f) where g,  f C and F(g), F(f)D. 

 Identity mapping: F(IdA) = IdF(A) where IdAC and IdF(A)D.  

Definition 2.4. If C is a full subcategory of D and every DD is isomorphic to some 

object in C, then the insertion functor F: C → D is an equivalence [19]. 

2.5. Categorical Specification of the RAS Meta-Model 

According to the RAS meta-model, RAC can be specified as a category, say RAC. In this 

category, the objects are RAOs, for example RAO1, RAO2, etc. The interactions between 

these RAO members are modeled as morphisms, such as f: RAC (RAO1, RAO2). As an 

example of the Marsworld case study (Section 2.2), a production robot can be considered 

as a category, say Production-Robot1 (PR1) having the objects Drill1, Sensor1, 

Control-Unit1 (CU1) as well as the morphisms PR1 (Drill1, Sensor1), PR1 (CU1, 

Drill1), and PR1 (CU1, Sensor1). This definition can be extended to the RACG as it can 

be specified as a category, say RACG having objects RAC and their interactions as 

morphisms f: RACG (RACi, RACj) where RACi and RACj are objects belonging to 

RACG. RAS itself can be defined as a category, say RAS with RACG objects and the 
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interactions between them as morphisms f: RAS (RACGi, RACGj) where RACGi and 

RACGj are objects belonging to RAS.  

The internal and external behavioral specification of RAS is defined with categories 

TRANSITION and INTERACTION. As discussed in section 2.3.2, the internal 

behavior of the RAS framework is modeled by Intelligent Control Loop Model (ICLM). 

So, this behavioral model can be denoted as category TRANSITION, where the objects 

are sequences of transitions Seq1, Seq2, …, Seqn. For instance, Seq1 = <Trans1-1, Trans1-2, 

…, Trans1-m>, (n, m  ≥ 1), and morphisms are isomorphic relations between those 

sequences. A transition is defined as the tuple (state, event, state). As an example from 

ICLM (Figure 2.8), a transition can be Trans1-1 = (Monitor, HasChange, Analyze). 

For the reason of simplicity, we will refer to RAO, RAOL, RAC, RACS, RACG, and 

RAGM as Reactive Autonomic Element (RAE). The external interactions of RAS is 

modeled as category INTERACTION, where the objects are the sequences of actions 

Seq1, Seq2, …, Seqn. For example, Seq1 = <Act1-1, Act1-2, …, Act1-m>, (n, m  ≥ 1), and the 

morphisms are isomorphic relations between those objects. The actions are denoted as 

tuple (sender, TE, LE, receiver), stating the sender of TE, Trigger Event (TE) of the 

action, Last Event (LE) outputted from the action, and receiver of LE. To make it more 

understandable, an example from the Marsworld case study is: Act1-1 = (RACS, StartRAC, 

HeartbeatRAC, RACS). In this example action, RACS sends the triggering StartRAC 

event and receives the Heartbeat outputted event in response. For more information 

about the behavioral categories see [19]. 

Definition 2.5. The interactions of any RAE with other RAE’ or its social life in the 

category RAS is a subcategory of RAS denoted as SOCIAL(RAE), where the objects are 
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RAE and all other RAE’ |RAS| which have morphisms with RAE, and the morphisms are 

RAS(RAE, RAE’) as well as RAS(RAE’, RAE) [19]. 

The details of applying the Category Theory to prove self-* properties of RAS models 

can be found in [19].   

2.6. MAS (BDI) and Jadex 

The autonomous characteristics of self-* properties in the RAS model can be refined into 

multi-agent architecture. The purpose of this thesis is to demonstrate how the RAS model 

can be implemented with Multi Agent System (MAS) approach. There are many diverse 

ideas and tools from MAS community to be adapted to implement the RAS model, so it 

is necessary to have a comprehensive understanding of MAS framework selected for this 

purpose and the programming tool that will be used to carry out the implementation. 

According to [9], an agent is a computer system that can accomplish its task 

independently on behalf of its user, owner, or certain environment. In comparison to 

object-oriented model, agents are capable of making decisions and show more 

autonomous behavior than objects. They can sense the environment by their sensors and 

act by effectors [9]. 

  A Multi-Agent System (MAS) is a system that consists of a group of autonomous 

agents working together. These agents are capable of communicating with each other 

using an Agent Communication Language (ACL). In MAS agents are cooperating with 

one another to achieve goals of the whole system that is difficult to be reached by each 

individual agent [9]. The advantages of using MAS are presented in [10, 11, 12]. In [9], 
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the MAS model is studied from two perspectives: 1) agent interactions; 2) agent 

architecture. 

When the agent interaction is investigated, it is very important to know how the 

agents prioritize the tasks and resources in relation to other agents. They can have 

cooperative strategies for interaction or self-interested ones to improve their performance. 

Also the agents use different protocols and standards to interact with each other. The 

Agent Communication Language (ACL) defines this facet of multi-agent community [11]. 

The most popular ACLs  are Knowledge Query and Manipulation Language (KQML) 

and Foundation for Intelligent Physical Agents (FIPA) [10]. 

The architectural perspective specifies the internal structure of an agent. This 

structure consists of a set of component models [12] that communicate with each other. 

Three categories for agent architectures are presented in [9]: 1) deliberative agent 

architecture; 2) reactive agent architecture; and 3) hybrid agent architecture. One of the 

main deliberative agent architectures is the Belief-Desire-Intention (BDI) model. 

The BDI architecture defines some notations for beliefs, desires, as well as intentions 

[16]. Beliefs are the knowledge of the agent about itself, other agents, and the 

environment. Desires indicate the goals to be achieved by the agent. Intentions are what 

the agent has chosen to do to achieve a goal. Intentions are implemented as executing 

plans in multi-agent programming environments. The BDI architecture is a model to 

represent, update and process beliefs, desires, and intentions. Because it is a well-defined 

structure, agent developers have used the BDI model to provide implementation tools. 

One of the most widely used agent oriented programming softwares is Jadex that is based 

on Java Agent Development Framework (JADE) [13].  
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Jadex is a java-based and FIPA compliant agent development environment. Jadex 

agents are capable of executing plans as well as sending and receiving messages. These 

plans can be triggered by external messages from the environment or other agents, or 

internal goals. The advantages of Jadex as an agent programming tool in comparison with 

some other similar tools like Jade [44] and Jack [44] according to important criteria 

relevant for our research are listed in table 2.1.  

Tools 

Criteria 

Jadex Jade Jack 

Simplicity X X X 

Java-based X X X 

XML support X — — 

BDI-based X — X 

Eclipse plug-in X X X 

 

Table 2.1: The advantages of Jadex. 

The main concepts in Jadex are beliefs, goals, plans and messages. Beliefs in Jadex 

are stored as a database in the belief base. This database consists of a set of beliefs that 

make up the knowledge of the agent. The content of a belief in Jadex is a value known as 

a fact. Jadex also provides beliefs having a set of facts. This belief base can be updated 

during the execution of a plan. Jadex takes advantage of an Object Query Laguage (OQL) 

that looks like a query language (adapted from object-relational database world) [13] to 

create more complex select queries to search belief base. 

Goals are one of the most important motivational forces for Jadex agents to take 

action. An agent will keep up with a set of tasks for its goals until it assesses the goal as 

being reached, unreachable, or not desired anymore [13]. In Jadex, there are four kinds of 
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goals: 1) perform goal: states that some action should be done but any specific result is 

not expected; 2) achieve goal: a target is determined and the goal is to attain that target 

state; 3) query goal: is used to enquire information about something; and 4) maintain 

goal: is applied to preserve a state in its desired condition. 

Plans are the agents’ method and blueprint to perform their tasks. In fact a plan is 

what an agent executes in response to an internal or external trigger. In Jadex, a plan has 

two parts. The first part is the plan header that determines the conditions that trigger the 

plan. The second part is a Java class inherited from Plan class that overrides its body() 

method that is run when the plan is triggered. 

JADE Platform

Jadex Agent

ADF

<agent name= “Carry1”>

   <beliefs>

   ...

   <goals>

   ...

   <plans>

   ...

   <events>

   ...

</agent>

Plan

public class WalkAroundPlan

extends Plan

{

   ...

   public void body()

   {

      ...

   }

   ...

}

 

Figure 2.9: The structure of a Jadex agent [13]. 

  In Jadex an agent is defined in an XML file known as Agent Definition File (ADF). 

The XML tags in this file specify beliefs, goals, events, plans, and all other elements 

necessary for the agent definition. In fact all agents in Jadex are instantiated from the 
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ADF just like objects that are instantiated from class definitions. It is possible also to 

declare the initial state of an agent in ADF using configuration tag like the initial beliefs, 

initial goals, and initial plans. Plans in Jadex are the Java code each of which stored in a 

Java class file. The name of these plans must correspond to plan header definition in the 

ADF. Figure 2.9 illustrates an agent definition in Jadex and one of its plan files. Finally, 

Jadex comes with the Jadex Control Center (JCC) that is used to load and run Jadex 

agents [13]. 

2.7. Fault-Tolerance  

As discussed in [14], the most essential property of autonomic systems is self-

management that consists of: 1) self-configuration: the ability of adapting to the changing 

environment; 2) self-healing: the capability of detecting and resolving the problems; 3) 

self-optimization: the ability of tuning the resources; and 4) self-protection: the ability of 

self-defending against any damage. In this research, the focus is on self-healing property 

and fault-tolerance as a mechanism for achieving self-healing in RAS. 

The self-healing property denotes that an autonomic system is capable of finding 

(detecting) the faults. The autonomic system has the ability to analyze the problem using 

error log files or state snapshots. Using this knowledge, the autonomic system takes 

appropriate action to recover itself if possible or request human intervention in case of 

necessity [14]. 

Fault-tolerance is defined as the property that enables a system to continue operating 

properly in the event of the failure of (or one or more faults within) some of its 

components. Fault-tolerance is a sub-quality of Reliability according to the ISO 9126. 
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There are discussions about the similarities and differences between fault-tolerance and 

self-healing [17]. Fault-tolerance is an existing area that has proven to be effective at the 

later stages of design. In other words, fault-tolerance is an operationalization of the self-

healing property, which explains how to provide, by redundancy, service complying with 

the specification in spite of faults having occurred or occurring [18].   

Since in the RAS model there is a group of autonomic elements which work together, 

the fault can happen in any of the RAE components. Thus, fault-tolerance can be 

regarded as the recovery of a crashed element. According to the specifications of swarm 

systems [19] (a large number of inexpensive robots), if the crashed robot could be 

replaced with a similar available robot, the whole system must be able to continue to 

function properly. This property is called substitutability of RAE [19]. 

The substitutability property of an RAE denotes that the RAE can be replaced by 

another RAE’ if and only if 1) they belong to the same type (RAO, RAOL, RAC, RACS, 

RACG, or RACGM); 2) they have equivalent social lives as 

SOCIAL(RAE)~SOCIAL(RAE’); 3) when they are regarded as two categories, they 

have equivalent internal structure as CAT(RAE)~CAT(RAE’); 4) their internal as well as 

interactive behavior that is regarded as the following two categories, is equivalent as 

TRANSITION(RAE)~TRANSITION(RAE’) and INTERACTION(RAE)~ 

INTERACTION(RAE’).  

The authors in [19] use some scenarios from Marsworld case study to illustrate the 

substitutability property of different components in the RAS meta-model. These 

scenarios simulate the crash of a component in the RAS meta-model and show how the 

substitutability property is used to replace the damaged component to achieve fault-
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tolerance in the system. The implementation of fault-tolerance with Jadex for the 

Marsworld case study to prove the substitutability property is discussed in Chapter 4. 

2.8. Model Transformation 

Since it has been proven that substitutability property of RAE fulfills the fault-

tolerance of the RAS meta-model and considering similarities between reactive 

autonomic system and multi-agent community, this thesis proposes a model 

transformation framework to transform the RAS model to MAS. To carry out the 

transformation process, many model transformation approaches with an extend domain of 

methods and tools are available. In this section, we will not try to go in deep into 

different model transformation methods, but on the other hand we will identify an 

approach that is appropriate and convenient for our purpose. 

A model transformation in model-driven engineering [21] takes as input a model 

conforming to a given input meta-model and produces as output another model 

conforming to a given output meta-model. There are many tools that support the 

automation of model transformation. These model transformation development tools not 

only offer the possibility of applying predefined model transformations on demand, but 

also offer a language that allows (advanced) users to define their own transformation 

rules and execute them. 

Performing a model transformation, i.e., taking one or more models as input and 

producing one or more models as output, requires a clear understanding of the abstract 

syntax and semantics of both the source and target. A common technique for defining the 

abstract syntax of models and the inter-relationships between model elements is meta-
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modeling. To define the required meta-models, we need an appropriate data schema to 

express input and output models. There are some tools that use graphical schema to 

define their source and target specifications, e.g., DOME and GME2000 [21]. Also 

Unified Modeling Language (UML) is applied as a meta-model in a large number of tools 

such as Objecteering, RationalRose, and Together [21]. As stated in [20], these tools 

offer three transformation approaches for their users: the direct model manipulation 

approach, the intermediate representation approach, or the transformation language 

support approach [21].      

XML (Extensible Markup Language) is specially designed to be easy to use over the 

Web, to be human-readable and straightforward for applications to read and understand. 

XML is quickly becoming the universal syntax for information transfer; therefore a vast 

amount of information transformation uses XML as the input and/or output data format. 

Since our input and output models are serialized in XML format using the XML 

meta-data, implementing model transformations using Extensible Stylesheet Language 

Transformation (XSLT), which is a standard technology for transforming XML, seems 

very attractive. XSLT is an XML-tool to perform model transformation. It defines the 

mapping from XML into another markup language such as XML, HTML, or into plain 

text. XSLT stylesheets are interpreted by XSLT processors, which generate a result from 

source XML document. XSLT processors can be embedded in web browsers or be 

executed from the command line to run stylesheets [45]. Figure 2.10 depicts very simply 

the transformation process.  
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Document
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Result

Document
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Figure 2.10: The transformation process in XSLT. 

XSLT uses XPath to select parts of XML to process and to perform calculations. 

XPath, the XML Path Language, is a query language for selecting nodes from an XML 

document. The most important role of XPath is to collect information from an XML 

document by navigating through the document. A secondary role of XPath is as a general 

expression language, to perform calculations. 

2.9. Conclusion 

In this chapter, we discussed the RAS framework that proposes a formal model for 

specifying and verifying structure and behavior of RAS based on the mathematical 

category theory (see Figure 2.1). We illustrated how the different architectural elements 

of RASF as well as the behavioral prototype can be represented by this theory. Besides, 

we discussed how category theory can be used to model the self-healing property of 

RASF using substitutability property of the RAS components. In the next step, we 

showed that the multi-agent system is an appropriate solution to implement RAS. Finally, 

we discussed a model transformation blueprint using XSLT to transform RAS to MAS 

with regard to self-healing property. 

http://en.wikipedia.org/wiki/Query_language
http://en.wikipedia.org/wiki/Node_%28computer_science%29
http://en.wikipedia.org/wiki/XML
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In the next chapter, we will explain the details of the transformation process from RAS 

to MAS. The grammar that produces the input meta-model to the transformation engine 

will be presented. The input XML meta-model and the output meta-model in Jadex will 

be explained and finally the transformation rules that take the input model and produce 

the output model will be introduced. 
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Chapter 3: Transformation from RAS to MAS 

 

 

 

3.1. Introduction 

In this chapter, the transformation method from the RAS model to MAS model is 

discussed. To do this, the input and output file format will be investigated. The input 

meta-model of this transformation process is created using a grammar defined from the 

RAS architecture. The result of this grammar definition is an XML file that represents 

each type of the RAS elements. In fact, a set of transformation rules will be executed on 

this XML format to create the output model in Jadex, which is a Java-based MAS-BDI 

compatible agent programming tool. The output model in Jadex consists of Agent 

Definition Files (ADF) in XML format, which define beliefs, goals, message events and 

plan headers as well as the plan files in Java code that contain the body of executable 

plans. Figure 3.1 illustrates the transformation process. 

The RAS model 

in

XML format

Transformation 

rules

The MAS model in JADEX

ADF

XML

Plan

java ...
Plan

java

Plan

java

The RAS 

grammar
Used to 

specify

The RAS 

architecture

(Definitions 

and 

diagrams)

Used to 

define

 

Figure 3.1: Transformation process from RAS to MAS. 
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The first step in this transformation process, i.e. creating the RAS model in XML format 

from the RAS grammar, is done using the RAS definitions and diagrams (from the RAS 

architecture). The second step, i.e., defining transformation rules, is implemented using 

Extensible Stylesheet Language Transformation (XSLT) [45], which is a Model 

Transformation framework for XML format and its language XPath. The transformation 

rules will be analyzed from two angles, static architecture and dynamic behavior. The 

dynamic behavior will be focused on one self-* property, namely self-healing behavior of 

the RAS model using the sequence diagrams. 

3.2. The RAS Grammar 

In this section, the RAS grammar is illustrated. This grammar defines the RAS concepts 

including Reactive Autonomic Object (RAO), RAO Leader (RAOL), Reactive 

Autonomic Component (RAC), RAC Group (RACG), Group Manager (GM), Group 

Supervisor (GS) and Reactive Autonomic System (RAS) based on Extended BNF ISO 

14977 standard [24]. In this standard, the notation ―{}-‖ means ―one or more‖.  

RAOL = RAO, repository;  

repository = {property}-;  

property = name, type, {value}-;  

RAC = RAOL, {RAO}-;  

GM = RAC, RAS_repository;  

GS = RAC, RACG_repository;  

RACG = GS, {RAC}-;  

RAS = GM, {RACG}-;  

Figure 3.2: The RAS static grammar. 

Figure 3.2 shows the grammar for the RAS static architecture. This grammar uses 

regular expressions to define constants and operations. In the RAS architecture, RAO is 
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the atomic element that cannot be broken down. Following is the description of each of 

the regular expressions. 

RAOL = RAO, repository; RAOL is a RAO that is the leader of other RAOs inside 

the RAC. The leadership here means that RAOL contains a repository that stores 

persistent knowledge of RAC. 

repository = {property}-; The repository consists of one or more properties. This can 

be interpreted as a database for RAC. 

property = name, type, {value}-; The property is a triple consisting of the name of the 

property, its type and one or many values that can be assigned to it. In fact the properties 

are the pieces of information inside the repository. 

RAC = RAOL, {RAO}-; A RAC consists of one RAOL and one or many RAOs. These 

RAOs are communicating with each other and with the leader. 

GM = RAC, RAS_repository; A GM is an intelligent RAC having a repository that 

serves to store knowledge of different RACG groups in RAS. 

GS = RAC, RACG_repository; A GS is an intelligent RAC having a repository that 

serves to store knowledge of different members in a RACG group. 

RACG = GS, {RAC}-; A RACG consists of a GS that is itself a RAC and one or more 

RACs. 

RAS = GM, {RACG}-; A RAS captures the whole system that consists of a GM that is 

in fact a RAC and one or more RACGs. 

The behaviors of the RAO and RAC components are illustrated by the Extended BNF 

grammar shown in Figures 3.3 (a) and 3.3 (b). In fact, in the RAS model RAO is the 

atomic element having an atomic reactive behavior that consists of a trigger and the 
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corresponding plan to deal with it. The RAS model has also a proactive behavior that 

consists of a set of execution paths. Following is a short description for each of the 

regular expressions in Figures 3.3 (a) and 3.3 (b). 

RAO-behavior = {reactive-atomic}-; 

reactive-atomic = reactive-trigger, message; 

reactive-trigger = sender, event, receiver; 

message = sender, event, receiver; 

sender, receiver = RAO | RAOL | GM | GS | ENV; 

event = EO | EI | IN | timeout; 

timeout = integer; 

 

 

 

Figure 3.3 (a): The RAO behavioral grammar. 

 

RAO-behavior = {reactive-atomic}-; A RAO is the atomic element in the RAS model 

and his behavior consists of one or more reactive-atomic behaviors. 

reactive-atomic = reactive-trigger, message; A reactive-atomic behavior is defined as 

a trigger of a certain event and a response to that trigger. 

reactive-trigger = sender, event, receiver; A reactive-trigger consists of a sender of 

the trigger, for instance another RAO, an event that represents the trigger itself, and the 

receiver of the trigger. 

sender, receiver = RAO | RAOL | GM | GS | ENV; The sender and the receiver of the 

message or trigger can be one of the elements mentioned above. 

event = EO | EI | ON | timeout; An event can be of type EO (External Output), EI 

(External Input), IN (Internal) or an integer value that represents the timeout of a message. 

In this case no message is sent but this value determines how long the sender of the 

message must wait before issuing a timeout exception. 

RAC-behavior = {reactive | self-properties}-; 

reactive = {ex-path}-; 

ex-path = reactive-trigger | proactive-trigger, {message}; 

sender, receiver = RAO | RAOL | GM | GS | ENV; 

proactive-trigger = sender, IN, receiver; 

reactive-trigger = sender, event, receiver; 

message = sender, event, receiver; 

self-properties = {goal}-; 

goal = name, ex-path; 

 

Figure 3.3 (b): The RAC behavioral grammar. 
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timeout = integer; As mentioned above, timeout is an integer value that denotes the 

duration before taking action when there is no response message. 

proactive-trigger = sender, IN, receiver; Proactive-trigger is similar to reactive-

trigger with event replaced by internal event. 

ex-path = reactive-trigger | proactive-trigger, {message}-; An ex-path (execution 

path) consists of a trigger and one or more messages. 

RAC-behavior = {reactive | self-properties}; The behavior of the RAC element is the 

union of reactive and self-properties behavior. 

reactive = {ex-path}-; The reactive behavior of an element consists of one or more 

execution paths. 

self-properties = {goal}-; The self-properties of the RAS element consists of one or 

more goals. 

goal = name, ex-path; A goal is a combination of name representing the name of the 

goal and an execution path to achieve the goal. 

The above grammar will be used to produce XML files denoting each RAS element 

such as RAO and RAC. This process is done using the grammar expressions as a 

conceptual source. 

3.3. Input Model 

The input model to the transformation process is the RAS architecture captured and 

represented in XML format. This section will discuss this input XML file and its tags and 

attributes to better understand this input model. The input model defines the RAS 

framework from two points of views: static view and dynamic view. All the elements of 
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the RAS framework that consists of RAOs, RACs, RACGs and RAS are specified in XML 

format. RAOs are considered as atomic elements from architectural point of view. On the 

other hand, the behavioral structure of RAOs is specified in XML files as atomic 

behaviors that will be discussed later in this chapter. The section starts with the 

investigation of RAO and RAC that are the most important elements and then moves to 

the other elements to completely clarify the input structure. 

3.3.1. RAO Specification 

This element is the atomic element of the model and its behavior is assumed to be atomic. 

Figure 3.4 illustrates the XML specification of RAO. 

<RAO name = ―rao-name‖> 

 <REACTIVE-ATOMIC> 

  <TRIGGER name= ―trigger-name‖/> 

  <PLAN name= ―plan-name‖/> 

  <RESPONSE name= ―response-name‖/> 

 </REACTIVE-ATOMIC> 

</RAO> 

Figure 3.4: The RAO definition in XML format. 

For RAO there is no architectural definition since it is an atomic element. On the 

other hand, its reactive behavior is specified using trigger-response pairs, which capture 

the atomic behavior of RAO. Following is the description of the tags in Figure 3.4. 

The <RAO name = ―rao-name‖> </RAO> pair specifies the beginning and end of a 

RAO definition in XML format. The first tag has a name attribute that defines the name 

of the RAO. 
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Each RAO may have one or many <REACTIVE-ATOMIC> tags, and each one of 

them specifies one atomic behavior of the RAO. This tag has one <TRIGGER>, one 

<PLAN> and one <RESPONSE> sub-tag. 

The <TRIGGER> tag specifies the name of the message event that triggers the first 

action, which is executed in a plan body. The name of the trigger is specified in the name 

attribute of this tag. 

The <PLAN> tag determines the name of the plan to be executed when receiving the 

trigger. Executing this plan allows performing the atomic tasks and preparing the 

response message event. The name attribute in this tag defines the name of the plan that 

corresponds to an executable program. 

The <RESPONSE> sub-tag determines the response message event to be sent in 

response to the trigger received by the RAO. This response is created and sent in the plan 

body that is executed by the trigger. This tag has a name attribute that identifies the 

message event to be sent. 

3.3.2. RAC Specification 

RAC is the principal element of the model and consists of atomic elements RAOs with 

autonomic behavior. The XML specification of RAC consists of tags that define the static 

structure of this element and other tags that determine its behavior. Figure 3.5 shows the 

XML format defining RAC. 

3.3.2.1. Static view: 

The <RAC></RAC> tag surrounds all other tags of RAC and it has a name attribute 

that specifies the name of the RAC and can be any name of type string. This name is 

important because it is used by other model elements to refer to this element.  
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<RAC name = ―rac-name‖> 

 <MEMBERS> 

  <MEMBER name = ―rao-name‖/> 

 </MEMBERS> 

 <INTERACTIONS> 

  <INTERACTION source = ―source-rao‖ name = ―event-name‖ target = ―target-rao‖/> 

 </INTERACTIONS> 

 <REACTIVE-BEH> 

  <LIST-EX-PATH> 

  <EX-PATH name = ―ex-path-name‖> 

   <TRIGGER> 

    <SENDER name = ―environment‖/> 

    <EVENT name = ―trigger-name‖/> 

    <RECEIVER name = ―receiver-name‖/> 

   </TRIGGER> 

   <MESSAGE> 

    <SENDER name = ―sender-name‖/> 

    <EVENT name = ―event-name‖ type= ―event-type‖> 

     <TIMEOUT min= integer max = integer/> 

    </EVENT> 

    <RECEIVER name = ―receiver-name‖/> 

   </MESSAGE> 

  </EX-PATH> 

  </LIST-EX-PATH> 

 </REACTIVE-BEH> 

 <SELF-PROP> 

  <GOAL name = ―goal-name‖ path = ―ex-path-name‖> 

   <EX-PATH> 

    ... 

   </EX-PATH> 

  </GOAL> 

 </SELF-PROP> 

 <LEADER name = ―raol-name‖/> 

 <REPOSITORY> 

  <PROPERTY name=―property-name‖ type=―property-type‖>value</PROPERTY> 

 </ REPOSITORY> 

</RAC> 

Figure 3.5: The RAC definition in XML format. 

The <MEMBERS> </MEMBERS> tag group specifies all RAOs that belong to this RAC. 

Under this tag, for each RAO a <MEMBER name = ―rao-name‖/> is added. 
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The <INTERACTIONS> </INTERACTIONS> tag group defines the existence of 

any interaction between the specified RAOs. This information does not represent any 

dynamic feature of the model as it does not capture any behavioral aspect. As a matter of 

fact, only the communication structure of RAOs is captured in this tag. For each 

connection between two RAOs (for instance RAO1 and RAO2) one <INTERACTION 

source = ―RAO1‖ target = ―RAO2‖/> will be created under <INTERACTIONS> tag. 

The <LEADER name = ―rao-name‖/> tag specifies the RAO leader (RAOL) among the 

group. The name attribute determines the name of this RAOL in the RAC. 

The <SUPERVISOR name = ―rac-name‖/> tag defines the supervisor of the RAC in the 

RACG group containing this RAC. 

The <NEIGHBOURS> </NEIGHBOURS> tag group specifies the neighbor RACs that 

the current RAC can communicate with. For each neighbor RAC a <NEIGHBOUR name 

= ―rac-name‖/> sub-tag is added under <NEIGHBOURS> tag. 

The <REPOSITORY> </REPOSITORY> tag group specifies the knowledge inside a 

RAC. This knowledge can consist of any information about different properties. Inside 

this tag there is one sub-tag for each property. In the group <PROPERTY name = 

―property-name‖ type = ―property-type‖>value</PROPERTY> the name attribute 

specifies the name of the property, the type attribute specifies the data type of the 

property and the value content determines the value of the property. 

 

 



42 

 

3.3.2.2. Dynamic behavior: 

The dynamic behavior is captured by two principal tags inside the RAC specification. 

The <REACTIVE-BEH> and <SELF-PROP> tags. The <REACTIVE-BEH> tag 

specifies the reactive behavior of the RAC element. The <SELF-PROP> tag determines 

the self-* properties of the RAC element.  

The <REACTIVE-BEH> </REACTIVE-BEH> tag group consists of one or more <EX-

PATH> tags each of which corresponds to one execution path of the RAC. These 

execution paths are captured from the sequence diagrams that determine the behavior of 

the element (see Figures 3.14 and 3.15 in this chapter). 

The <EX-PATH name = ―ex-path-name‖> </EX-PATH> tag group determines one 

execution path of the RAC element and consists of one triggering event, <TRIGGER>, 

and a sequence of one or more messages, <MESSAGE>. 

The <TRIGGER name = ―trigger-name‖/> tag is an external event recognized by the 

RAC element that triggers an event sequence. In fact it is the starting point of the 

execution path in the RAC element. 

The <MESSAGE> </MESSAGE> tag group defines one message sequence inside the 

execution path. Each <MESSAGE> tag consists of one sender, one event and one 

receiver of the event message. 

The <SENDER name = ―sender-rao‖/> tag specifies the sender RAO of the event 

message. It has a name attribute that represents the sender’s name. 



43 

 

The <EVENT name = ―event-name‖ type = ―event-type‖/> tag designates the event 

message that is sent by the RAO. This tag has a name property specifying the name of the 

event, and a type attribute defining the type of the event message. 

The <RECEIVER name = ―receiver-rao‖/> tag defines the receiver RAO of the event 

message. This tag has a name attribute that determines the receiver’s name.  

What is described till now about the behavioral model of RAC is the reactive behavior. In 

other words, this behavior is the reaction of the RAO to the incoming events from its 

environment or other RAOs. What will be discussed next is the definition of the proactive 

behavior of RAC. In fact the triggering of the proactive behavior is a goal internally 

defined inside the RAC component. For the RAS model this behavioral model 

corresponds to the self-* properties of RAC such as self-tolerance, self-optimization, self-

configuration, self-protection, etc.  

The proactive behavior of the RAC element is defined by <SELF-PROP> </SELF-

PROP> tag group. This tag consists of one or more goal tags. The RAC element has to 

achieve all of these goals to fulfill the specified self-* property. 

The <GOAL name = ―goal-name‖ path = ―ex-path-name‖/> tag has a name attribute and 

a path attribute. The name attribute specifies the name of the goal and the path attribute 

defines the execution path to be followed to achieve the goal. The execution path can be 

specified by just mentioning an ex-path-name that has been defined before or by directly 

specifying the execution path using a <EX-PATH> </EX-PATH> as a sub-tag inside the 

goal tag.  
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3.3.3. RACG Specification 

According to the grammar given in Figure 3.2, RACG consists of one or more RACs 

grouped together to achieve more complex goals. From the architecture and behavior 

perspectives, RACG is very similar to RAC. As can be seen in Figure 3.6, all the tags of 

RACG are the same as for RAC. The main difference is that RACG is one level higher in 

the hierarchy structure of RASF. In fact in a RAC the member elements are RAOs, but in 

a RACG the members are RACs. Another difference between RAC and RACG is that, in 

<INTERACTIONS> tag of RACG the source and the target attributes are RAC names. It 

is very important to know that the interaction between RACs in RACG is achieved via 

the RAOL element of the RAC components. In other words, the RAC itself is a group of 

RAOs that communicate with other RACs through its RAOL. In the transformation 

process, the RAC will be transformed to a group of agents such that each of them is 

replacing its composing RAOs. The leader in RACG definition is called here a supervisor 

and in fact is the most intelligent RAC in the group.  

<RACG name = ―racg-name‖> 

 <MEMBERS> 

  <MEMBER name = ―rac-name‖/> 

 </MEMBERS> 

 <INTERACTIONS> 

  <INTERACTION source = ―source-rac‖ name = ―event-name‖ target = ―target-rac‖/> 

 </INTERACTIONS> 

 <LEADER name = ―supervisor-name‖/> 

 <REPOSITORY> 

  <PROPERTY name=―property-name‖ type=―property-type‖>value</PROPERTY> 

 </ REPOSITORY> 

</RACG> 

Figure 3.6: The RACG definition in XML format. 
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The behavioral tags of RACG are exactly the same as for RAC. The only difference is 

that the communications between RACs are done through their RAOLs. 

3.4. Output Model 

The output model is the MAS framework in BDI architecture defined and implemented in 

Jadex. What is discussed so far is the input model serialized in XML format. To better 

understand and develop the transformation rules, we discuss the output model and the 

facilities it provides to specify the static architecture and dynamic behavior. 

The target model of this transformation is a BDI-based MAS model in Jadex; a Java- 

based multi agent platform. In this platform, the agents are defined by two file formats. 

The definition of the agent in XML format that is stored in a file called ADF (Agent 

Definition File) and the body of plans in the Java language format stored in text files 

having Java extension.  

The structure of Jadex agents is stored in ADF XML files. An ADF file consists of 

different tags to implement various concepts of the BDI model. This section discusses the 

most important tags that take part in our transformation process. Figure 3.7 introduces 

briefly the structure of an ADF file. 

The <agent> tag defines the header of the ADF file consisting of the name of the agent, 

the version of the xml schema and also the package declaration. What is specified in the 

package declaration is the location of the agent’s class files for beliefs and plans that 

would be searched for the first time. The ADF file is located in the package folder as 

mentioned in this tag attribute. 
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The <imports> tag is used to specify the list of library packages that contain different 

class definitions used in various sections of the ADF file. This tag is similar to the 

imports command in the Java programming language. 

The <capabilities> tag defines the capabilities included in the agent.  Each capability has 

its own ADF definition file, and also the plan body files but must be included inside an 

agent to be useful. In fact when a capability is added to an agent using <capabilities> tag, 

all the defined beliefs, goals, plans and events are available for the host agent. Generally 

speaking, capabilities can be regarded as libraries captured in XML format and Java 

programs conformed to Jadex so that any agent can have access to it. 

<agent name = ―agent_name‖ package = ―package_name‖ > 

 <imports> 

  <import>jadex.*</import> 

 </imports> 

 <capabilities> 

  <capability name = ―amscap‖ file = ―jadex.planlib.AMS‖/> 

 </capabilities> 

 <beliefs> 

  <belief name = ―belief_name‖ class = ―class_name‖> 

   <fact></fact> 

  </belief> 

 </beliefs> 

 <goals> 

  <achievegoal name = ―goal_name‖> 

   <dropcondition>condition</dropcondition> 

  </achievegoal> 

 </goals> 

 <plans> 

  <plan name = ―plan_name‖> 

   <body class = ―java_class_name‖/> 

   <trigger> 

    <goal ref = ―goal_name‖/> 

   </trigger> 

  </plan> 

 </plans> 

 <events> 

  <messageevent name = ―event_name‖ type = ―fipa‖ direction = ―direction‖> 
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  </messageevent> 

 </events> 

 <configurations> 

  <configuration name = ―configuration_name‖ > 

   <plans> 

    <initialplan ref = ―initial_plan_name‖/> 

   </plans> 

  </configuration> 

 </configurations> 

</agent> 

Figure 3.7: Jadex Agent Definition File in XML format. 

The <beliefs> tag specifies the knowledge of an agent in Jadex BDI model. Inside the 

<beliefs> tag there are two types of belief tags, namely, <belief> tag for the single valued 

beliefs and <beliefset> tag for the multi-valued beliefs. The <belief name = ―belief-name‖ 

type = ―belief-type‖> of <beliefset …> has a name attribute that specifies the name of the 

belief or belief set and a type attribute that determines the data type of the belief or belief 

set. Under these two tags the facts are defined using the <fact> or <facts> tags. For the 

<belief> tag there is just one <fact> tag and for the <beliefset> tag there is more than one 

<fact> tag or one <facts> tag. The content of the <fact> or <facts> tag is the value of the 

tag. For example, if the value of the fact is the name of a city (for instance Quebec), it is 

defined as <fact>―Quebec‖</fact>. 

The <goals> tag determines the goals definition of the agent. Goals are one of the 

principal components in the Jadex BDI model. There are four different types of goals 

supported in Jadex: perform goals, achieve goals, query goals, and maintain goals. For 

the description of each type of goal please refer to Section 2.6 in Chapter 2. The achieve 

goals are denoted by the tag <achievegaol>, the perform goals by <performgoal>, the 
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query goals by <querygoal>, and the maintain goals by <maintaingoal> tag. The first two 

types of goals are the most important ones in our transformation process. 

The <achievegoal name = ―goal-name‖> tag has an attribute name that specifies the name 

of the goal. Each goal can have one or many parameters that can be passed to it during its 

creation cycle. These parameters are specified by <parameters name = ―p-name‖ class = 

―c-name‖> tag that has a name and a class attribute. Also an <achievegoal> tag can have 

a <creationcondition> tag to specify the creation condition of the goal, a 

<contextcondition> tag to specify the condition that must hold to keep the goal active, a 

<dropcondition> tag to specify the drop condition of the goal, a <targetcondition> tag to 

specify the target condition of the goal, and a <deliberation> tag to inhibit other goals 

from execution. 

The <performgoal name = ―goal-name‖ retry = ―true‖ exclude = ―never‖> tag has an 

attribute name that defines the name of the goal. Two other important attributes are retry 

and exclude. The retry attribute means this goal will be repeated again when terminated 

and the exclude attribute determines the plans to be excluded after each execution. 

Similar to achieve goals, the tags <creationcondition>, <contextconditon>, 

<dropcondition>, and <targetconditon> can be added under <performgoal> tag to specify 

different kinds of conditions for the goal. Also the <deliberation> tag is used to define the 

inhibition of other goals. 

The <querygoal name = ―goal-name‖> tag defines the query goals and has an attribute 

name. This type of goal is similar to the previous two goals with a small difference in 

dealing with the output parameters. 
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The <maintaingoal name = ―goal-name‖> tag specifies the maintain goals. Like the 

previous three goal types it has also a name attribute to determine the name of the goal. 

Generally speaking, this goal differs from the other types in the way it is activated and 

terminated. Under the <maintaingoal> tag there is a <maintaincondition> sub-tag that 

specifies the condition that is necessary to maintain a situation. This goal also has the 

<dropconditon> tag to define the condition that terminates the goal. 

The <plans> tag defines the header part of the agent’s plans. This tag has one or more 

<plan> tags each of which declares a plan header for the agent. 

The <plan name = ―plan-name‖ priority = 0> tag identifies a plan using two attributes, 

name and priority. The name attribute is required to refer to the plan but the priority 

attribute is optional. The most important sub-tags in <plan> tag are the <body> and 

<trigger> tags. 

The <body> tag specifies the plan body Java class that is instantiated when the plan is 

triggered. For example if there is a plan named ping that corresponds to the Java class 

name PingPlan(), the body tag will be defined having the instantiation statement of the 

Java class in its content part like <body> new PingPlan() </body>. 

The <trigger> tag determines the triggering component of the plan that can be an event or 

a goal. Depending on what triggers the plan, the sub-tag of <trigger> would be a 

<messageevent> tag or a <goal> tag. For example if a message event named query-ping 

is triggering a plan, there will be a tag <messageevent ref = ―query-ping‖> tag under 

<trigger> tag in the plan. There are also some additional triggering tags such as the 
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<condition> tag to specify a precondition of the plan, the <beliefchange> and 

<beliefsetchange> tags to specify a trigger of a change of a belief or set of beliefs, and the 

<factadded> and <factremoved> tags to specify a trigger initiated from adding a fact or 

removing it from a belief set. 

The <events> tag defines the different events that the agent can react to. In Jadex there 

are two types of events. The internal events represented by the <internalevent> tag and 

the message events declared by the <messageevent> tag. 

The <internalevent name = ―event-name‖> tag specifies the internal events of an agent 

and has an attribute name. This type of events is used in an agent to transfer an internal 

message to all plans in which this event is specified as a triggering event. The internal 

event can have a parameter tag having two attributes name and class like <parameter 

name = ―parm-name‖ class = ―parm-type‖>. 

The <messageevent name = ―msg-name‖ type = ―msg-type‖ direction = ―direction‖> tag 

specifies the messages sent from and received by the agent. The name attribute defines 

the name of the message. The type attribute denotes the standard type of the message to 

be transferred. In this case, the fipa standard is always used. The direction attribute 

declares whether the agent is sending or receiving this message. The <messageevent> tag 

can have <parameter> sub-tags. These parameter sub-tags could be of various names and 

contents and will be described in the next section according to each specific use. 
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3.5. Transformation rules 

This section describes the rules to transform the input model called Left Hand Side 

(LHS) (the RAS meta-model) to the output model called Right Hand Side (RHS) (the 

MAS meta-model). The two previous sections dealt with the input and output models and 

the format of two meta-models in XML format. This section will investigate the rules to 

map each input component to its corresponding component in the output.  

To better understand the transformation rules, this section will use a special notation that 

fits the algorithms that are based on XSLT and XPath. XSLT and XPath traverse the 

input XML file from top to bottom and by visiting each tag it creates the output model. 

The transformation rules for the static view (architecture) and dynamic view (behavior) 

will be investigated in two different sections. 

3.5.1. Static view transformation: 

R1: <RAC> to <package> rule: Jadex is a Java based environment including all the 

concepts related to the MAS model. The concept of packages can be used to create the 

RAC encapsulation. The name attribute of the <RAC> tag will serve to create a package 

for the agents that belong to it.  

R2: <MEMBERS> to <package> rule: The <MEMBERS> tag that contains <RAO> 

tags will determine all the RAOs that belong to one RAC. In fact, the <RAC> tag 

declares the name of the package and the <MEMBERS> tag tells what agents belong to 

this RAC. 
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R3: <RAO> to <agent> rule: The atomic RAO component of RAS model is 

transformed to the <agent> tag with all its attributes. These attributes consist of name, 

package, xmlns, xmlns:xsi and xsi. The package attribute as mentioned before will be 

determined from RAC tag’s name attribute.  

R4: <INTERACTION> to <messageevent> rule: The <INTERACTION> tag will 

specify the messages that can be sent between agents. This tag has three attributes 

including the sender, event-name and receiver. The sender attribute is a RAO name that 

has been transformed to an agent. As a result, in the transformation process, a message 

event having event-name name will be created in the sender agent with the direction 

attribute valued ―send‖. Also the same message event will be created in the receiver agent 

but with the direction attribute having the value ―receive‖. Other attributes and also 

<parameter> sub-tags in the <messageevent> tag will have different values in different 

cases and environments. For example in our case study (see Chapter 4), the type attribute 

of <messageevent> tag has the value ―fipa‖ and according to the type of the message, the 

content of <parameter name = ―performative‖> tag can be SFipa.INFORM, 

SFipa.REQUEST, etc.  

R5: <LEADER> to <beliefs> rule: The <LEADER> tag can serve to determine the 

agent inside a RAC that will contain the repository of the RAC. In fact, all the knowledge 

of the RAC will be concentrated inside the leader agent by creating the <beliefs> tag 

containing the agent properties. 

R6: <REPOSITORY> to <beliefs> rule: The <REPOSITORY> tag will be transformed 

into <beliefs> tag inside the RAOL agent. As mentioned before, the <LEADER> tag will 
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specify the name of the leader agent. The property tags under this tag will be transformed 

to <belief> or <beliefset> tags. 

R7: <PROPERTY> to <belief> or <beliefset> rule: The <PROPERTY> tag is 

transformed to <belief> tag for single valued properties, and to <beliefset> tag for multi 

valued properties. The name attribute becomes the name of the belief, the type attribute 

becomes the type of the belief and the value content is transformed to <fact> sub-tags 

with the same value.   

3.5.2. Dynamic view transformation: 

The dynamic behavior of the RAS model is developed using the sequence diagrams 

for each of the self-* properties. These sequence diagrams show possible scenarios of 

self-* properties for each of the RAS elements. The transformation process takes 

advantage of these sequence diagrams captured in XML to develop the necessary 

templates for the corresponding plans in multi agent framework. The transformation rules 

are given below: 

R8: <EX-PATH> to <plan> rule: The <EX-PATH> tag represents an execution path of 

an element in one scenario that is captured from a sequence diagram for a self-* property. 

This tag consists of one <TRIGGER> sub-tag and one or more <MESSAGE> sub-tags 

sent and received by different participating agents in runtime. The <TRIGGER> tag 

determines the triggering event of the execution path and consists of a sender, an event 

and a receiver. For reactive execution paths, the sender of the trigger event is the 

environment. Otherwise, for the proactive execution paths, the sender of the trigger 
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would be an internal agent. Similarly, the <MESSAGE> tags have a sender, an event and 

a receiver and specify the subsequent message activity of the agent. For each <EX-

PATH> tag a <plan> tag will be created in the MAS model. This <plan> tag is in fact the 

header of the plan to be executed. The name of this <plan> tag will be the name attribute 

of the <EX-PATH> tag and its trigger will be the <EVENT> sub-tag’s name attribute of 

the <TRIGGER> tag.    

R9: <MESSAGE> to <plan> rule: Each <MESSAGE> tag is a triple consisting of 

<SENDER> tag specifying sender RAO, <EVENT> tag specifying the event being sent 

and <RECEIVER> tag specifying the receiver RAO. Each triple represents one action of 

the sequence diagram. For example if CU1 sends restart message to Sensor1 the 

following tags will capture this concept: 

<MESSAGE> 

 <SENDER name = ―CU1‖/> 

 <EVENT name = ―restart‖ type= ―sync‖/> 

 <RECEIVER name = ―Sensor1‖/> 

</MESSAGE> 

This action can be mapped only to plans in agent model because the plans determine the 

behavior of agents. Each of these <MESSAGE> tags will be transformed to the 

corresponding JAVA code in the plan body of the agent to create the templates of the 

dynamic model. As an example, the previous <MESSAGE> tag will be transformed to 

the following JAVA code in the plan body: 

public void body { 

 ...  

 IMessageEvent restart = CreateMessage(―restart‖) 

 try { 

  SendMessageAndWait(restart, timeout) 

  ... 

 } catch (TimeoutException te) { 

  ... 

 } 

 ... 

} 
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In this example an instance of the restart message event is created in the plan body and 

then the plan sends this message and waits for the reply for a limited time period. This 

sending instruction is surrounded by a try-catch statement to catch the possible timeout 

exception. If the plan receives its response in time, it resumes the execution from the next 

statement right after the SendMessageAndWait command. If the receiving agent does not 

reply within the specified time period, the plan will fall into the catch block.  

This example, although simple, illustrated an idea of the transformation process. 

However,  the whole process is a little more complex. To better understand the rule, we 

will define three different types of <EVENT> sub-tag in <MESSAGE> tag: 

- Asynchronous message events: These are the message events that are sent and the 

sender does not wait for any response from the receiver agent. In this case the value 

of type attribute of <EVENT> tag is async. 

- Synchronous message event without timeout: This type of message event is sent 

and the sender waits for the response from the receiver until it gets the reply. The type 

attribute of the <EVENT> tag for this kind of message event is sync. 

- Synchronous message event with timeout: This type of message event is similar to 

the previous one but with a limited time constraint. The timeout value is specified in 

the <TIMEOUT> sub-tag of <EVENT> tag with a minimum and maximum value.  

- Empty message event: There is another type of message event that is the empty 

message. This type is used to capture the cases that the receiver does not respond in 

the determined time interval. For example if the CU1 sends a restart message to 
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Sensor1 and Sensor1 does not respond to it and CU1 must wait for the response 

minimum 10 time units and maximum 30 time units, the following <MESSAGE> tag 

will represent the situation:  

<MESSAGE> 

 <SENDER name = ―Sensor1‖/> 

 <EVENT type= ―sync‖> 

  <TIMEOUT min = 10 max = 30/> 

 </EVENT> 

 <RECEIVER name = ―CU1‖/> 

</MESSAGE> 

For each of the message events there is a solution to transform it to the MAS meta-model. 

In general all of the event types are transformed to JAVA code that sends a message 

event. The only difference is how the message is sent and how the plan deals with the 

response to the message. 

R10: Asynchronous message event rule: The simplest one of the four message types, 

asynchronous message event with the following format:  

<MESSAGE> 

 <SENDER name = ―sender_rao‖/> 

 <EVENT name = ―message_name‖ type= ―async‖/> 

 <RECEIVER name = ―receiver_rao‖/> 

</MESSAGE> 

Will be transformed to the following JAVA code in the agents plan body: 

public void body { 

 ...  

 IMessageEvent async_message = CreateMessage(―message_name‖); 

 try { 

  SendMessage(async_message); 

  ... 

 } catch (Exception e) { 

  ... 

 } 

 ... 

} 
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This program code consists of an instruction to instantiate a message event of class 

IMessageEvent and the SendMessage() method to send the message event. The 

SendMessage() method is enclosed in a try-catch statement to catch any possible 

exceptions. All the statements will be surrounded in the body method of the plan. 

R11: Synchronous message event without timeout rule: This type of message event 

will be sent by the sender agent and it will wait for a reply from the target agent. There is 

no waiting time limitation for this message event and the plan will be suspended until it 

gets the desired response from the destination agent. The following definition is a typical 

definition of this type of message event:   

<MESSAGE> 

 <SENDER name = ―sender_rao‖/> 

 <EVENT name = ―message_name‖ type= ―sync‖/> 

 <RECEIVER name = ―receiver_rao‖/> 

</MESSAGE> 

The transformation of the example is the program code in JAVA in the plan body that is 

created as follows: 

public void body { 

 ...  

 IMessageEvent sync_message = CreateMessage(―message_name‖); 

 try { 

  IMessageEvent reply_message = SendMessageAndWait(sync_message); 

  ... 

 } catch (Exception e) { 

  ... 

 } 

 ... 

} 

According to the example the transformation process will instantiate the corresponding 

message event class using CreateMessage() method. It will then send the created message 

instance by SendMessageAndWait() method and will wait for the reply to assign it to the 
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reply_message message event. This method is inside a try-catch statement to handle 

different exceptions. If the plan sends the message successfully and receives the reply as 

expected, it will continue its execution right after the SendMessageAndWait() sentence. 

If during this process any exception occurs, the plan will execute the catch block.   

R12: Synchronous message event with timeout rule: This message event is exactly the 

same but with a time limitation. This timeout interval is specified in the <TIMEOUT> 

sub-tag of the <EVENT> tag. The attribute min of <TIMEOUT> tag defines the 

minimum timeout value and the attribute max determines the maximum timeout value: 

<MESSAGE> 

 <SENDER name = ―sender_rao‖/> 

 <EVENT name = ―message_name‖ type= ―sync‖> 

  <TIMEOUT min = interger max = integer/> 

 </EVENT> 

 <RECEIVER name = ―receiver_rao‖/> 

</MESSAGE> 

In the JAVA code that is the result of the transformation process, the plan will create an 

instance of the corresponding message event. The SendMessageAndWait() method will 

be used to send the message and wait for a specified time period. Since the time period is 

declared as a minimum and a maximum value, there will be a waitFor() method before 

sending the message to make sure that the plan will wait for the minimum time units 

specified. The plan will use the try-catch statement to be sure to catch the timeout 

exception. 

public void body { 

 ...  

 IMessageEvent sync_message = CreateMessage(―message_name‖); 

 try { 

  waitFor(min); 

  IMessageEvent reply_message = SendMessageAndWait(sync_message, max - min); 

  ... 

 } catch (TimoutException te) {  ... } 

 ... 

} 
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R13: Empty message event rule: When an agent is waiting for a reply from another 

agent (whether by any of waitFor() methods or by getInitialEvent() method), it is possible 

that it does not receive any response and it must react to this event. This is defined in 

RAS model by empty messages and will be transformed to the action being included in 

the catch block of the timeout exception. For instance if CU1 sends a restart message to 

Sensor1 and it sends no message in the specified time limit (minimum 10 and maximum 

30 time units) to CU1, this will be captured in RAS as the following sequence: 

<MESSAGE> 

 <SENDER name = ―CU1‖/> 

 <EVENT name = ―restart‖ type= ―sync‖/> 

 <RECEIVER name = ―Sensor1‖/> 

</MESSAGE> 

<MESSAGE> 

 <SENDER name = ―Sensor1‖/> 

 <EVENT type= ―sync‖> 

  <TIMEOUT min = 10 max = 30/> 

 </EVENT> 

 <RECEIVER name = ―CU1‖/> 

</MESSAGE> 

The transformation process will create the following JAVA code for the two 

<MESSAGE> tags in the example: 

public void body { 

 ...  

 IMessageEvent restart = CreateMessage(―restart‖); 

 try { 

  waitFor(10); 

  IMessageEvent heartbeat = SendMessageAndWait(restart, 20); 

  ... 

 } catch (TimoutException te) { 

  //The code to send a request to CU8 to search for a Sensor agent will go here. 

  ... 

 } 

 ... 

} 

In this code an instance of restart message is instantiated. The process continues by 

waiting 10 units of time as specified in the empty message event. Then the agent will 
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send the message and will wait for 20 time units that is the difference between max and 

min values in <TIMEOUT> sub-tag. In the case of no response (empty message) the plan 

will fall in the catch block and the agent can send a message to CU8 agent to request 

another Sensor agent to substitute Sensor1. 

R14: <REACTIVE-BEH> vs. <SELF-PROP>: There are two principal behavioral tags 

that will contain <EX-PATH> tags; the <REACTIVE-BEH> tag and the <SELF-PROP> 

tag. The reactive behavior of the element in RAS model is defined by <REACTIVE-

BEH> tag. The execution paths under this tag are triggered with an external event from 

environment or another agent.  

On the other hand the proactive behavior of the element in RAS model is determined by 

<SELF-PROP> tag. The difference between this type of behavior and the reactive 

behavior of the element is the way the execution path is triggered. In this case the trigger 

is an internal event that is in fact the result of internal status of elements in 

communication. For example if a RAO decides to trigger an execution path to adapt itself 

to a situation, that will be considered as proactive behavior. The proactive behavior of 

elements in RAS model can be mapped to the goal definition of multi agent systems. 

From the four principal goal types in MAS, the <achievegoal> tag will be a good match 

for <SELF-PROP> tag.  

R15: <GOAL> to <achievegoal> rule: The <GOAL> sub-tag under <SELF-PROP> tag 

represents the proactive behavior of RAS model and will be transformed to 

<achievegoal> tag in MAS model. The name attribute of <achievegoal> tag will be the 

name attribute of <GOAL> tag. The plan of the agent that corresponds to the <EX-
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PATH> tag of the RAS element will have a trigger other that event messages. In fact the 

plan will be triggered by the goal. This goal will be created and dispatched in the plan 

that currently executes and evaluates the internal status of the agent (the monitoring plan 

of the RAO). In fact to implement this rule, there are three principal components that 

must be taken into account: 

1- Monitoring plan 

For the agents that represent RAOL elements, a plan will be created to monitor the other 

RAO elements in the group. In this plan the agent regularly sends messages to query the 

status of group agents. This plan will be started when the agent is activated. To specify 

this part we need a configuration section in RAC definition. 

public void body { 

 ...  

 while (agentActive) { 

  IMessageEvent checkstatus = CreateMessage(―checkstatus‖); 

  try { 

   waitFor(10); 

   IMessageEvent heartbeat = SendMessageAndWait(checkstatus, 20); 

   agentActive = true; 

  } catch (TimoutException te) { 

   //this part creates and dispatches self tolerance goal. 

   IGoal sf = createGoal(―self_tolerance‖); 

   dispatchTopLevelGoal(rs); 

   agentActive = false; 

   ... 

  } 

  ... 

 } 

} 

2- Self-* property goal 

A <achievegoal> will be created having the same name as the <GOAL> tag in the RAS 

specification. This goal will be created under the <goals> tag in the ADF file of the agent 

representing RAOL element.  
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3- Plan of the goal 

The plan header for the execution path will have a <trigger> tag specifying the goal that 

triggers it. If the name attribute of the goal is goal_name the plan header will be like the 

following definition in ADF file: 

<plan name = ―self_tolerance‖> 

 <body class = ―selfTolerancePlan‖/> 

  <trigger> 

   <goal ref = ―goal_name‖/> 

  </trigger> 

</plan> 

3.6. Example 

The following example will illustrate the transformation process using a simple model. In 

this example there are two RACs that communicate with each other. RAC1 is named 

Production Robot1 that consists of three RAOs including Sensor1, Drill1 and CU1 as the 

RAOL of the RAC. The second RAC is called Production Robot8 also having three 

RAOs consisting of Sensor8, Drill8 and CU8 as its RAOL. These two RACs can 

communicate with one another via their RAOLs as the control unit. Also the three RAOs 

inside the RACs are capable of interacting with each other.  

CU1 (RAOL1)

Sensor1

(RAO1)

Drill1

(RAO2)

Production Robot1 (RAC1)

Sensor8

(RAO8)

Drill8

(RAO9)

Production Robot8 (RAC8)

CU8   (RAOL8)

 

Figure 3.8: Two RACs communicating with each other. 
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Figure 3.8 represents the static model of these two RACs. In this Figure, CU1 can 

communicate with CU8 as well as Sensor8 and Drill8. The static view of the model can 

be serialized into XML format. Figures 3.9, 3.10 and 3.11 show the captured XML 

representation of RAO1, RAO2 and RAOL1 and Figures 3.12 and 3.13 show the 

definition of RAC1 and RAC8 again in XML format. 

<RAO name = ―Sensor1‖> 

 <REACTIVE-ATOMIC> 

  <TRIGGER name= ―restart‖/> 

  <PLAN name= ―restart-plan‖/> 

  <RESPONSE name= ―heartbeat‖/> 

 </REACTIVE-ATOMIC> 

</RAO> 

Figure 3.9: The XML definition of RAO1. 

 

<RAO name = ―Sensor8‖> 

 <REACTIVE-ATOMIC> 

  <TRIGGER name= ―request‖/> 

  <PLAN name= ―request-plan‖/> 

  <RESPONSE name= ―confirmed‖/> 

 </REACTIVE-ATOMIC> 

 <REACTIVE-ATOMIC> 

  <TRIGGER name= ―register‖/> 

  <PLAN name= ―register-plan‖/> 

  <RESPONSE name= ―heartbeat‖/> 

 </REACTIVE-ATOMIC> 

 <REACTIVE-ATOMIC> 

  <TRIGGER name= ―deregister‖/> 

  <PLAN name= ―deregister-plan‖/> 

  <RESPONSE name= ―confirmed‖/> 

 </REACTIVE-ATOMIC> 

</RAO> 

Figure 3.10: The XML definition of RAO8. 
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<RAO name = ―CU1‖> 

 <REACTIVE-ATOMIC> 

  <TRIGGER name= ―sensor-found‖/> 

  <PLAN name= ―sensor-found-plan‖/> 

  <RESPONSE name= ―register‖/> 

 </REACTIVE-ATOMIC> 

</RAO> 

Figure 3.11: The XML definition of RAOL1 (CU1). 

In the previous three figures, the XML definition of atomic behaviors in Sensor1, 

Sensor8 and CU1 is specified. For each atomic behavior a <REACTIVE-ATOMIC> tag 

is specified. There are three sub-tags, <TRIGGER>, <PLAN> and <RESPONSE>, that 

define each atomic behavior. Each atomic behavior is a reactive behavior that is triggered 

by the message event specified in name attribute of <TRIGGER> sub-tag. This trigger 

causes the RAO to respond to the trigger by executing a plan specified in the name 

attribute of <PLAN> sub-tag. This plan prepares and sends a response message event 

specified in the name attribute of <RESPONSE> sub-tag. For example in Figure 3.9 

when Sensor1 receives a restart message event it activates its restart-plan plan. In this 

plan the RAO element creates and sends a heartbeat message event in response to the 

trigger.  

<RAC name = ―Production Robot 1‖> 

 <MEMBERS> 

  <MEMBER name = ―CU1‖/> 

  <MEMBER name = ―Sensor1‖/> 

  <MEMBER name = ―Drill1‖/> 

 </MEMBERS> 

 <INTERACTIONS> 

  <INTERACTION source = ―CU1‖ name = ―restart‖ target = ―Sensor1‖/> 

  <INTERACTION source = ―Sensor1‖ name = ―heartbeat‖ target = ―CU1‖/> 

  <INTERACTION source = ―CU1‖ name = ―request_sensor‖ target = ―CU8‖/> 

  <INTERACTION source = ―CU1‖ name = ―register‖ target = ―Sensor8‖/> 

  <INTERACTION source = ―CU1‖ name = ―take_over_sensor‖ target = ―Drill1‖/> 

  <INTERACTION source = ―Drill1‖ name = ―confirmed‖ target = ―CU1‖/> 
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  <INTERACTION source = ―CU1‖ name = ―take_over_sensor‖ target = ―Drill8‖/> 

  <INTERACTION source = ―Drill8‖ name = ―confirmed‖ target = ―CU1‖/> 

 </INTERACTIONS> 

 <LEADER name = ―CU1‖/> 

 <REPOSITORY> 

  <PROPERTY name=―timeout‖ type=―String‖>milllisecond</PROPERTY> 

 </ REPOSITORY> 

</RAC> 

Figure 3.12: The XML definition of the static view of RAC1. 

<RAC name = ―Production Robot 8‖> 

 <MEMBERS> 

  <MEMBER name = ―CU8‖/> 

  <MEMBER name = ―Sensor8‖/> 

  <MEMBER name = ―Drill8‖/> 

 </MEMBERS> 

 <INTERACTIONS> 

  <INTERACTION source = ―CU8‖ name = ―restart‖ target = ―Sensor8‖/> 

  <INTERACTION source = ―Sensor8‖ name = ―heartbeat‖ target = ―CU8‖/> 

  <INTERACTION source = ―CU8‖ name = ―sensor_found‖ target = ―CU1‖/> 

  <INTERACTION source = ―Sensor8‖ name = ―heartbeat‖ target = ―CU1‖/> 

 </INTERACTIONS> 

 <LEADER name = ―CU1‖/> 

 <REPOSITORY> 

  <PROPERTY name=―timeout‖ type=―String‖>milllisecond</PROPERTY> 

 </ REPOSITORY> 

</RAC> 

 

Figure 3.13: The XML definition of the static view of RAC8. 

As shown in Figure 3.12, in the RAC definition the <MEMBERS> tag specifies the 

RAOs belonging to the RAC. This includes CU1, Sensor1 and Drill1 for Production 

Robot1 and CU8, Sensor8 and Drill8 for Production Robot8. The <INTERACTIONS> 

tag specifies the communication between different RAOs of the RAC and the name of the 

events assigned to each interaction. For example the first <INTERACTION> tag in 

Production Robot1 denotes that there is an event message from CU1 to Sensor1 called 

restart. The communication between two RACs, i.e., (CU1, CU8), (CU1, Sensor8), (CU1, 

Drill8), must be specified in RACG definition. To make the example simpler, we have 
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not defined the RACG specifications and we have considered that RAC1 has access to 

the knowledge of RAC8 components. Otherwise, the knowledge of interactions between 

the RAC components must be defined in RACG. 

The behavior of RAS is specified using sequence diagrams. For instance the fault 

tolerance property of the architecture specified in Figure 3.8 is shown in the sequence 

diagram given in Figure 3.14 [19]. 

 

Figure 3.14: The sequence diagram representing the fault tolerance property of RAC1. 

Figure 3.14 shows an execution path triggered by the CU1 element to achieve a goal that 

fulfills the fault tolerance property. In this sequence diagram, CU1 checks the status of 

Sensor1 by sending a check message. If Sensor1 does not reply in a limited time period, it 

is denoted here by a noheartbeat message. This means that if CU1 does not get a 

response in this time period it will trigger its fault tolerance plan that starts from the 3
rd
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step. In this case CU1 sends a restart message to Sensor1. If Sensor1 does not reply again, 

CU1 will request a sensor from CU8 by sending request_sensor message to it. 

<RAC name = ―Production Robot 1‖> 

 <SELF-PROP> 

  <GOAL name = ―self-tolerance‖ path = ―sensor-recovery‖/> 

  <EX-PATH name = ―sensor-recovery‖> 

   <TRIGGER> 

    <SENDER name = ―CU1‖/> 

    <EVENT name = ―check‖/> 

    <RECEIVER name = ―Sensor1‖/> 

   </TRIGGER> 

   <MESSAGE> 

    <SENDER name = ―CU1‖/> 

    <EVENT name = ―restart‖ type= ―event-type‖> 

     <TIMEOUT min= 10 max = 30/> 

    </EVENT> 

    <RECEIVER name = ―Sensor1‖/> 

   </MESSAGE> 

   <MESSAGE> 

    <SENDER name = ―CU1‖/> 

    <EVENT name = ―request_sensor‖ type= ―event-type‖/> 

    <RECEIVER name = ―CU8‖/> 

   </MESSAGE> 

   <MESSAGE> 

    <SENDER name = ―CU8‖/> 

    <EVENT name = ―sensor_found‖ type= ―event-type‖/> 

    <RECEIVER name = ―CU1‖/> 

   </MESSAGE> 

   <MESSAGE> 

    <SENDER name = ―CU1‖/> 

    <EVENT name = ―register‖ type= ―event-type‖/> 

    <RECEIVER name = ―Sensor8‖/> 

   </MESSAGE> 

   <MESSAGE> 

    <SENDER name = ―Sensor8‖/> 

    <EVENT name = ―heartbeat‖ type= ―event-type‖/> 

    <RECEIVER name = ―CU1‖/> 

   </MESSAGE> 

  </EX-PATH> 

 </SELF-PROP> 

</RAC> 

Figure 3.15: The XML definition of the behavioral fault tolerance property of RAC1. 
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<RAC name = ―Production Robot 8‖> 

 <SELF-PROP> 

  <GOAL name = ―self-tolerance-reply‖ path = ―sensor-supply‖/> 

  <EX-PATH name = ―sensor-supply‖> 

   <TRIGGER> 

    <SENDER name = ―CU1‖/> 

    <EVENT name = ―request_sensor‖/> 

    <RECEIVER name = ―CU8‖/> 

   </TRIGGER> 

   <MESSAGE> 

    <SENDER name = ―CU8‖/> 

    <EVENT name = ―request‖ type= ―event-type‖/> 

    <RECEIVER name = ―Sensor8‖/> 

   </MESSAGE> 

   <MESSAGE> 

    <SENDER name = ―Sensor8‖/> 

    <EVENT name = ―confirmed‖ type= ―event-type‖/> 

    <RECEIVER name = ―CU8‖/> 

   </MESSAGE> 

   <MESSAGE> 

    <SENDER name = ―CU8‖/> 

    <EVENT name = ―deregister‖ type= ―event-type‖/> 

    <RECEIVER name = ―Sensor8‖/> 

   </MESSAGE> 

   <MESSAGE> 

    <SENDER name = ―CU8‖/> 

    <EVENT name = ―sensor_found‖ type= ―event-type‖/> 

    <RECEIVER name = ―CU1‖/> 

   </MESSAGE> 

  </EX-PATH> 

 </SELF-PROP> 

</RAC> 

Figure 3.16: The XML definition of the behavioral fault tolerance property of RAC8. 

CU8 when receiving this message searches its lookup directory to find the sensor and 

sends a request message to see if it is available. By receiving a confirmed message from 

the sensor, CU8 will send a deregister message to Seosor8. After receiving the 

deregistration confirmation, CU8 will send a sensor_found message to CU1 including the 

address of Sensor8. Finally, CU1 will register Sensor8 to its directory by sending a 
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register message to it and Sensor8 will send a heartbeat message to CU1 in response. 

This execution path will be captured in XML format as shown in Figures 3.15 and 3.16. 

The static architecture of two RACs shown in previous Figures, together with the 

dynamic behavior of these two RACs and the RAOs inside them represented in XML 

format will be served as the input to the transformation process. As discussed earlier, the 

output of this process will include the ADF files denoting the agents in XML format and 

the corresponding JAVA programs for the plans. 

In the first step of transformation process, according to the rule R3, for each RAO 

definition in XML format an agent will be created. Figure 3.17 shows the elements that 

will be created in MAS model for this example. Each agent is an XML ADF file that 

conforms to the Jadex specifications. 

 
Production Robot 8 package

Production Robot 1 package

CU1Sensor1

CU8Sensor8

Drill1

Drill8

restart

plan

register

plan

request-

sensor

plan

sensor-

found

plan

deregister

plan

request

plan

sensor-

recovery

plan

sensor-

supply

plan

 

Figure 3.17: The MAS model created from model transformation process. 
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For example the CU1.xml file that represents a RAOL definition in RAS model, will 

be transformed to CU1.agent.xml agent definition file that contains the Jadex format 

agent definition tags. There are some specific header tags and tags to import Jadex 

libraries used in the agent that must be created in the ADF of the agent in this step (Please, 

see the Appendix for more details.): 

CU1.xml -> CU1.agent.xml 

Sensor1.xml -> Sensor1.agent.xml 

In the second step, the RAC definition will be used to group the agents in a package to 

show that they belong to the same RAC. The rules that are applied in this step are R1 and 

R2 rules, which group the agents in a package that belong to one RAC: 

CU1, Sensor1, Drill1 -> Production Robot 1 package 

CU8, Sensor8, Drill8 -> Production Robot 8 package 

In the third step, according to the rule R4, the <INTERACTIONS> tag will be utilized to 

create the event messages between different RAOs. Using this tag, the transformation 

process will create two message events, one message of type ―output‖ in the source RAO 

having the name specified in the name attribute and one message of type ―input‖ in the 

target RAO having the same name.  

Interaction tag -> ―output‖ message in source RAO, ―input‖ message in target RAO 

For example, the following <INTERACTION> tag of the input file: 

<INTERACTION source="CU1" name="restart" target="Sensor1"/>  

 

will be transformed to the following <messageevent> tag in CU1.agent.xml output file: 
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<messageevent name="restart" type="fipa" direction="send">                                     

  <parameter direction="fixed" class="String" name="performative">                                     

    <value>SFipa.REQUEST</value>                                     

  </parameter> 

</messageevent> 

and to the following <messagevent> tag in Sensor1.agent.xml output file: 

<messageevent name="restart" type="fipa" direction="receive">                                     

  <parameter direction="fixed" class="String" name="performative">                                     

    <value>SFipa.REQUEST</value>                                     

  </parameter> 

</messageevent> 

In the fourth step, the process will use the <REPOSITORY> tag to create the beliefs in 

RAOL agents. For each <PROPERTY> tag in the repository a belief will be created in 

the ADF file with the same type and for each value of this property a fact will be added to 

this belief. This step refers to the rule R6. 

Property in Repository -> belief 

For example the following <PROPERTY> tag: 

<PROPERTY name=“timeout” type=“String”>milllisecond</PROPERTY> 

 

Will create the following <belief> tag in CU1.agent.xml ADF file for CU1 RAOL: 

<belief name="timeout" class="string"> 

 <fact>millisecond</fact> 

</belief> 

In the fifth step, according to rule R9, the transformation process will take advantage of 

atomic behaviors defined inside RAO XML files to create atomic plans for agents. In this 

example, the atomic behaviors consist of restart, request, register and deregister. The 

transformation process will generate one Java file (for example restart.java) for each of 

these atomic behaviors. These Java programs contain a body() method that is executed 

when the plan is triggered.     
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restart -> restart plan 

request -> request plan 

These Java programs are code templates that only contain the necessary code to fulfill the 

fault-tolerance property. They must be customized by the programmers according to the 

capabilities of each multi-agent system.   

In the last step, using self-* property definitions in RAC, the transformation process will 

create fault-tolerance plans for CU2 agent and its complementary behavior in CU8 agent. 

The execution path in self property tag will determine the messages sent by the RAOL 

and actions done in response. According to the rules R8, R9 and R14 discussed before in 

this chapter, each of the <MESSAGE> tags in the execution path will create the 

corresponding Java program statements in the plan. 

sensor-recovery -> sensor-recovery plan 

sensor-supply -> sensor-supply plan 

For example, the tag <EX-PATH name = ―sensor-recovery‖> will generate a plan sensor-

recovery.java with a body() method that contains message sending and receiving 

commands according to the input execution path and the rules R11, R12 and R13. 

3.7. Conclusion 

In this chapter, we discussed the transformation approach to convert the RAS model to 

MAS model. The input model to this model transformation method is captured in XML 

format from the RAS architecture. The output model is the agent definition templates in 

Jadex including the Agent Definition File (ADF) in XML format as well as plan source 

codes in Java. The transformation rules provide the conversion of input model to output 
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model. These transformation rules are implemented in XSLT [45], a model 

transformation tool of XML-based models and its language called XPath to create Jadex 

templates from RAS XML definition. 

The input model or LHS discussed in this chapter is created using a grammar based 

on the Extended BNF standard [24]. This grammar is used to create the static and the 

dynamic model of RAS in XML format to permit the easy transformation of the LHS. 

The output model or RHS is the Jadex BDI model that is a powerful Java based agent 

programming environment. The objective of this chapter was to represent the important 

features and specifications of this model to have a better view of the output format. The 

chapter presented the transformation rules according to the input and output model 

discussed before. These transformation rules take each input item and transform it to the 

corresponding element in the output file. Finally, the chapter discussed a simple example 

of transformation process to better illustrate the different concepts. 
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Chapter 4: Implementation of Fault-Tolerance in Case Study 

 

 

 

In this thesis, we present the implementation of fault-tolerance mechanism in the 

Marsworld case study using Jadex, a BDI-based multi-agent programming add-in with 

Eclipse Java development environment. 

In Chapter 3, we proposed a model transformation approach to create agent templates 

of MAS in Jadex from RAS. These agent templates consist of ADF files in XML format 

for agent definitions and Java programs for agent plans. In this chapter, we customize 

these agent templates for Marsworld case study to implement it in an executable example 

for the purpose of observing its correctness.    

4.1. The Marsworld Case Study as a MAS 

To illustrate how the substitutability property (see Chapter 2) guarantees the fault-

tolerance property of the RAS meta-model, the Marsworld case study has been used and 

implemented in Jadex. To reduce the complexity of the case study, we have modeled the 

RAC level as the lowest layer. This means that in this case study we will map the RAC 

(not the RAO) in the RAS meta-model to the agent in the MAS meta-model. In the 

Marsworld case study there are five types of agents (robots), Manager, Supervisor, 

Sentry, Production, and Carry agents. 
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Manager creates and manages the Supervisor agents. This agent is the starting point 

of the system and can interact with the user. In fact the user interface of the system is 

implemented in this agent to provide a tool for human interaction. Figure 4.1 depicts the 

main components of the Manager agent in Jadex. As shown in this Figure, there are two 

principal plans in this agent, MarsworldGUI and StarterPlan. The MarsworldGUI plan is 

responsible for initializing and handling the graphical part of the case study as well as the 

interactions of the user with the program. This includes the mouse click events that the 

user performs to kill  an agent. In this case, the Manager agent sends a request_shutdown 

message to the agent that has received the click event. The StarterPlan plan initiates a 

supervisor agent and assigns it to an exploration area. The white shapes in Figure 4.1 are 

from the Marsworld example [5, 13]. 

Manager Agent

«initialplan»

starter

«beliefs»

StarterPlan
Trigger=starter

MarsworldGUI

Trigger=User

«messageevent»

request_shutdown

BeliefBase:Event:Plan:
 

Figure 4.1: The Jadex architecture of the Manager agent. 

Supervisor is in charge of an exploration group to exploit ore mines. After its 

creation, this agent initiates a number of Sentry agents to find and analyze the ore targets 

in the exploration area assigned by Manager. Besides, the Supervisor agent has the 

ability to search and find target mines. If a target is found, this agent assigns the task of 

analyzing the target to an available Sentry agent and subsequently forms a group of 
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Production and Carry agents to do the exploiting task. As presented in Figure 4.2, the 

Supervisor agent has a recovery plan for each existing agent type of the exploration 

group. These recovery plans consist of RecoverCarryPlan, RecoverProductionPlan and 

RecoverSentryPlan. The Supervisor agent has another plan called CheckAgentsPlan 

which checks regularly the group member agents and creates a recovery goal for any 

agent that is damaged. Subsequently, the created goal triggers the corresponding recovery 

plan. The Supervisor agent activates the recovered agent by sending the appropriate 

request message to it such as request_producer for the Production agent.  

Supervisor Agent

CheckAgentsPlan
Trigger=check_agents

RecoverSentryPlan
Trigger=recover_sentry

«performgoalref»

check_agents

«achievegoal»

recover_carry

«messageevent»

reply_goal_recovery

«messageevent»

request_carries

«messageevent»

request_goal_recovery

«messageevent»

request_analyse

«beliefs»

RecoverProductionPlan
Trigger=recover_production

«achievegoal»

recover_production

«achievegoal»

recover_sentry

RecoverCarryPlan
Trigger=recover_carry

«messageevent»

request_producer

BeliefBase:Goal:Event:Plan:
 

Figure 4.2: The Jadex architecture of the Supervisor agent. 

The Sentry agent analyzes the mines that it has found or are assigned to it by the 

Supervisor agent. After finishing the analyzing process, it calls the available Production 

agents to exploit ore in the target mine. Figure 4.3 depicts the Jadex architecture of the 

Sentry agent. The recovery plans and their triggering messages and goals are presented in 
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this Figure. The RecoverPlan plan is triggered by reception of request_goal_recovery 

message and subsequently creates recover_goal goal that triggers the RecoverGoalPlan 

plan. The location recovery is accomplished by RecoverLocationPlan plan triggered by 

request_location_recovery message. To simulate the damage of the Sentry agent for 

fault-tolerance tests, a plan called ShutdownPlan is provided in this agent that is triggered 

by the user among the Manager agent that sends a request_shutdown message. The white 

shapes are from the Marsworld example [5, 13]. 

Sentry Agent

RecoverGoalPlan
Trigger=recover_goal

RecoverLocationPlan
Trigger=request_location_recovery

RecoverPlan
Trigger=request_goal_recovery

ShutdownPlan
Trigger=request_shutdown

«messageevent»

request_producer

SentryPlan
Trigger=request_analyse

«messageevent»

request_analyse

«achievegoal»

recover_goal

«messageevent»

request_goal_recovery

«messageevent»

request_location_recovery

createGoal(recover_goal)

«messageevent»

request_shutdown

«beliefs»

«performgoal»

sentry

BeliefBase:Goal:Event:Plan:

«messageevent»

reply_goal_recovery

 

Figure 4.3: The Jadex architecture of the Sentry agent. 

Production is called by Sentry agent to exploit ore in a specific target mine. Figure 

4.4 shows the principal components of the Production agent. Similar to the Sentry agent, 

there are three plans to accomplish the recovery process. Besides, the shutdownPlan plan 

is provided to simulate an unexpected accident that lead to the crash of the agent. In 

Figure 4.4, the white shapes refer to the components that come from the Marsworld 

example [5, 13]. After finishing the production task, the Production agent calls the 

available Carry agents to carry produced ore in the mine to the home base. 
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Production Agent

RecoverGoalPlan
Trigger=recover_goal

RecoverLocationPlan
Trigger=request_location_recovery

RecoverPlan
Trigger=request_goal_recovery

ShutdownPlan
Trigger=request_shutdown

«beliefs»

BeliefBase:Goal:Event:Plan:

«achievegoal»

recover_goal

«messageevent»

request_shutdown

«messageevent»

request_goal_recovery

«messageevent»

request_location_recovery

createGoal(recover_goal)

ProductionPlan
Trigger=request_production

«messageevent»

request_production

«performgoal»

produce

«messageevent»

request_carries

«messageevent»

reply_goal_recovery

 

Figure 4.4: The Jadex architecture of the Production agent. 

The Carry agent has a limited capacity of ore so that it travels between the target mine 

and home base [5]. From fault-tolerance point of view, the Carry agent is quite similar to 

the Production agent. Figure 4.5 represents the most important components of the Carry 

agent. The white shapes refer to the Marsworld example [5, 13]. 

Carry Agent

RecoverGoalPlan
Trigger=recover_goal

RecoverLocationPlan
Trigger=request_location_recovery

«performgoal»

carry

RecoverPlan
Trigger=request_goal_recovery

«achievegoal»

recover_goal

«messageevent»

request_carry

«beliefs»

ShutdownPlan
Trigger=request_shutdown

«messageevent»

request_shutdown

«messageevent»

request_goal_recovery

«messageevent»

reply_goal_recovery

«messageevent»

request_location_recovery

CarryPlan
Trigger=carry or request_carry

createGoal(recover_goal)

BeliefBase:Goal:Event:Plan:
 

Figure 4.5: The Jadex architecture of the Carry agent. 
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4.2. Fault-Tolerance in Marsworld 

In order to simulate the malfunctioning of one agent in terms of fault-tolerance property 

verification, the user’s click on the agent in GUI is considered as a signal to disable it. 

This is done inside the mouse click event listener of the environment panel in the 

MarsworldGUI plan of the manager agent. If the x and y of the clicked point falls inside 

the surface of any agent, it creates a message event that tells the agent to shutdown itself. 

Figure 4.6 depicts the shutdown sequence diagram. 

 

Figure 4.6: The Shutdown sequence diagram. 

For each agent there is a shutdown plan that takes a snapshot of the agent and pushes 

it into a queue and then shuts down the agent. This snapshot is retrieved later by the 

Supervisor agent to recover the damaged agent and consists of: 1) the agent snapshot: last 

updated copy of the agent’s belief-base; 2) goal snapshot: information about the current 

goal of the agent; and 3) message snapshot: the message event queue representing the 
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information of messages that the agent has received. Figure 4.7 illustrates the pseudo 

code of the ShutdownPlan plan for each group agent. 

begin 

 create new agent snapshot 

 copy dynamic belief-base information to agent snapshot 

 copy dispatched goals to agent snapshot 

 copy event message queue to agent snapshot 

 add the agent snapshot to agent snapshot queue 

 kill agent 

end 

Figure 4.7: The ShutdownPlan pseudo-code of the group agents. 

The Supervisor agent has a perform goal named check_agents (Figure 4.8) that 

checks continuously the state of the agents belonging to its exploration group by 

triggering the plan CheckAgentsPlan.  

begin 

 get online information of agents from repository 

 for (each agent in the group) { 

  get the status of the agent 

  if (the agent is inactive) { 

   get the agent type 

   if (the agent is a carry_agent) { 

    create goal recover_carry 

    dispatch top level goal recover_carry 

   } 

   if (the agent is a production_agent) { 

    create goal recover_production 

    dispatch top level goal recover_production 

   } 

   if (the agent is a sentry_agent) { 

    create goal recover_sentry 

    dispatch top level goal recover_sentry 

   } 

  } 

 } 

end 

Figure 4.8: The CheckAgentsPlan plan of the Supervisor agent. 

This plan, which is a Java program stored in CheckAgentsPlan.java file, has a 

method called body(). In the body() method, which is executed when the plan is triggered 
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by the corresponding goal, if the Supervisor agent detects any inactive agent in the group, 

it verifies its type and then selects the appropriate recovery plan for that type of agent and 

subsequently creates the respective top level goal for its recovery. Figure 4.8 depicts the 

pseudo code of CheckAgentsPlan plan of the Supervisor agent. 

 

Figure 4.9: The Carry recovery sequence diagram. 

The Supervisor agent has a recovery plan for each of the group agents including the 

Sentry agent, the Production agent, and the Carry agent. For example if the Carry agent 

is damaged, the Supervisor selects the RecoverCarryPlan to recover the Carry agent. 

Figure 4.9 illustrates the sequence diagram of recovery process for the Carry agent.  

The RecoverCarryPlan plan, which is also a Java program having a body() method, 

consists of four steps to recover the Carry agent: 1) it creates a new Carry agent from 

scratch; 2) it recovers the miscellaneous agent information or in fact the belief-base such 

as the location of the agent; 3) it deals with the goal recovery; and 4) it recovers the 
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message event queue of the Carry agent. Figure 4.10 shows the pseudo code of the 

RecoverCarryPlan plan of the Supervisor agent. 

begin 

 create goal ams_create_agent 

 dispatch sub goal ams_create_agent and wait 

 create message event request_location_recovery 

 set the content of message event to location of agent snapshot 

 send message request_location_recovery and wait 

 create message event request_goal_recovery 

 get the goal snapshot from agent snapshot 

 set the content of message event to goal snapshot 

 send message request_goal_recovery and wait 

 get message event queue 

 while (there is a message event in the queue) { 

  create message event request_carries 

  set the receiver of the message as the agent identifier 

  set the content of the message to the content of the message event from queue 

  send message request_carries 

 } 

end 

Figure 4.10: The RecoverCarryPlan plan of the Supervisor agent. 

4.3. Agent Creation 

To create a new agent the ams_create_agent goal of amscap capability of AMS agent is 

used. Capabilities in Jadex are predefined libraries that provide ready-to-use 

functionalities for different purposes such as agent creation, search, shutdown, etc [13]. 

When an agent of a certain type is created, in fact the static initial state of that agent type 

is recovered automatically. This primary state consists of the initial values and conditions 

of beliefs, goals and plans. For example any agent has a belief called my_vision 

indicating its visual perception. This belief has different values for different types of 

agents. For instance, the default value of 0.05 for this belief in Carry agent denotes that 

this agent can only sense the objects in this range. When a new agent of type Carry is 

created, this belief is initiated to the default value 0.05. This type of information can be 
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considered as static initial status of an agent and is recovered in agent creation phase. 

There is another type of status information that is dynamic and changing over time. For 

instance, the location of an agent is dynamic since it is changing when the agent is 

moving around.   

The recovery of dynamic status of the agents is based on the status snapshots taken at 

shutdown moment of the agent. This information is a copy of the current status of beliefs, 

goals and events received by the agent that is captured and stored when the agent is 

shutdown. For example, the current location of the Carry agent is stored in an object of 

class AgentSnapshot that takes the current location of the agent in shutdown plan. In 

order to simulate the ongoing access of the Supervisor agent to the information of its 

group, there must be a way to inform it of the current status of its agents. In real world, 

this information is stored in log files in a safe place that is not damaged easily, such as 

the black box of an airplane. In our research the AgentSnapshot class contains this 

important dynamic information like location, the stack of goal snapshots and the name of 

the damaged agent. The name of the damaged agent is kept since we will use it to access 

the previous message event queue to recover it.  

4.4. Recovery of Location using Agent Snapshot 

The Supervisor agent polls the current agent snapshot from the agent snapshot queue and 

creates the message event request_location_recovery and sends this message to the newly 

created Carry agent to recover its location. When the location of the Carry agent is 

recovered, it starts its tasks from the recovered location. We have chosen the location to 

recover since in the Marsworld Jadex example it is more tangible and can be observed in 
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the scenario. In real world the location of a robot that is damaged may be of no interest to 

be recovered. Figure 4.11 shows the RecoverLocationPlan plan of the Carry agent. 

begin 

 while (not end of mission) { 

  wait for message request_location_recovery 

  get content of the request_location_recovery message as location 

  set the fact of the belief my_location to location 

  create goal walk_around  

  dispatch to level goal walk_around 

 } 

end 

Figure 4.11: The RecoverLocationPlan plan of the Carry agent. 

When this message event is received by the new Carry agent, it triggers the 

RecoverLocationPlan plan, where, the agent is waiting for the request_location_recovery 

message and when receiving, it restores the location of the agent from agent snapshot and 

sets the current location of the agent to this value and then creates the walk_around goal 

to start the walking of the agent from this location. The walk_around goal is a perform 

goal that is followed by the agent when there is nothing else to do. On the other hand, 

when an agent is moving around it can find new sources of ore and inform the Supervisor 

agent of their existence. This walk_around goal is inhibited if in the next step of recovery 

the carry_ore goal is recovered because the latter has a higher priority to the former. 

4.5. Current Goal in Hand 

The current plan that the agent is pursuing must be recovered. For example, if a Carry 

agent has loaded ore and wants to deliver it to the home base, it is in the middle of the 

carry_ore plan. The only way to get a snapshot of the plan execution is to store useful 

variables from different steps of the plan (commit and rollback). For example, if the 



85 

 

loaded ore is zero, it means that the Carry agent wants to move to the target mine and 

reload ore; if it is greater than zero, it means that the Carry agent is moving from the 

target mine to the home base in terms of delivering its loaded ore.  

To recover the current goal, the Supervisor agent takes advantage of the 

GoalSnapshot stack inside the AgentSnapshot class. The Supervisor agent creates a 

request_goal_recovery message event and puts the GoalSnapshot as its content and sends 

the request to the new Carry agent. If there is no goal to recover the value of null is set as 

the goal to recover. After sending the request, the Supervisor agent waits for the reply 

from the Carry agent to see if it has finished its recovery process. This is done by using 

the sendMessageAndWait method to establish a conversation between the two agents. 

The reason is that the new Carry agent has to finish the unfinished goal of the damaged 

agent before moving to its message event queue 

begin 

 get the goal snapshot from the log 

 get the target mine location 

 get the target mine ore amount 

 get the ore load amount carried by the previous agent 

 get the capacity of the agent 

 while ((ore amount in the mine) or (ore load amount) is not zero) { 

  if (ore load amount is zero) { 

   create move_destination goal 

   set the destination parameter to target mine 

   dispatch subgoal move_destination to target mine and wait 

   retrieve ore amount according to the capacity 

  } 

  if (ore load amount is more than zero) { 

   create move_destination goal 

   set the destination parameter to home base 

   dispatch subgoal move_destination to home base and wait 

   deliver ore amount loaded to the agent 

  } 

 } 

end 

 

Figure 4.12: The RecoverGoalPlan plan of the Carry agent. 
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to pick an event message to start a new carry_ore goal. In fact, by establishing a 

conversation between the two agents and waiting for the reply, the recovery plan in the 

Supervisor side is suspended until a response comes back from Carry agent. Figure 4.12 

depicts the pseudo code for the RecoverGoalPlan plan of the Carry agent. 

On receiving a request for the goal recovery, the Carry agent triggers its plan to 

recover the goal using the goal snapshot information, by which the Carry agent uses to 

identify the step of the task that the damaged agent was executing when a problem 

happened. In our example, the necessary data to recover the goal that is found in the goal 

snapshot object consists of: 

 Goal type: identifying the type of the goal to be recovered, such as carry_ore. 

 Target location: specifying the target location from which the Carry agent carries 

ore to the home base. 

 Ore load: indicating the ore amount loaded to the Carry agent. This variable can 

be used as an indicator to determine whether the Carry agent is carrying ore to the 

home base or is moving to the target mine to reload ore. 

In the RecoverGoalPlan plan the Carry agent restores the target location and ore load 

from the goal snapshot. If the ore load is zero, this means that the Carry agent has to 

move to the target mine to reload ore and carry it to the home base. Therefore, the 

starting point in this case will be moving to the target mine and reloading ore. If the ore 

load is greater than zero, this means that the damaged agent was carrying a certain 

amount of ore to the home base. In this case, the ore is loaded to the new Carry agent and 

then it moves to the home base to deliver ore. In fact the RecoverGoalPlan is a special 

copy of CarryOrePlan with a facility of conditional entrance points according to variable 
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checkpoints. This task continues until all the ore in that target is carried to the home base. 

After finishing the goal, the Carry agent pops the goal from the stack. The reason that the 

goal is not deleted from the queue in this point is that if anything happens to the new 

Carry agent in the middle of the recovery process, we will keep the recovery snapshot 

record in the stack for another new agent to recover it. 

After finishing this task, the Carry agent creates its carry goal that listens to the 

request_carry message events. These message events can be from the Supervisor agent 

that is recovering the message event queue of the damaged agent or from the Production 

agents as expected in the normal behavior of the system. If this carry goal is not started, 

the Carry agent will not listen to request_carry event messages and these messages will 

not be captured.   

In this point that the Carry agent is listening to request_carry message events, the 

Supervisor agent can start the recovery of the message events. Therefore, the Carry agent 

creates a reply message event named reply_goal_recovery in response to message 

request_goal_recovery of the Supervisor agent. This action activates again the recovery 

plan in the Supervisor side. 

4.6. Message Event Queue Recovery 

Each agent has a message event queue that stores all incoming unprocessed message 

events for that agent. When a message event is received by an agent and it is doing 

another job and cannot process the message, the agent pushes the message in a queue and 

handles it later. When the agent is damaged, this message event queue must be recovered 

because in fact it represents the assigned responsibilities of the agent.  
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When the Supervisor agent receives the reply for the request_goal_recovery message 

event, it is sure that the goal has been recovered; thus, it starts to recover the message 

event queue of the damaged agent. The message events of each agent are stored in a 

snapshot queue corresponding to its unique ID. 

This message events snapshot queue is created inside the ProductionPlan plan of the 

Production agents. In this plan, after finishing the production task, the Production agent 

calls the existing Carry agents by creating and sending the request_carry message events 

to them. At the same time, the created request_carry message objects are pushed into the 

message event snapshot queue of each of the Carry agents.   

On recovery, the Supervisor agent takes this message event snapshot queue and 

creates a message event for each element stored in the queue and sends it to the new 

Carry agent. More clearly, for the request_carry message event, the Supervisor agent 

restores the message snapshot from the queue, creates a corresponding message event and 

assigns the restored RequestCarry object as its content and sends it to the new Carry 

agent. This operation is repeated for all elements of the message event queue snapshot 

and simulates the copying of the restored message event queue to the new Carry agent’s 

message event queue. 

By restoring the message event queue, the recovery task is completed and the agent 

can continue its normal process. Although there may be some message events assigned to 

the new agent which has not been processed yet, but they become the responsibility of the 

new agent and will be handled with priority. 
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4.7. Fault-Tolerance of Marsworld in Other Levels 

The fault tolerance in group level demands that the system is capable of recovering all of 

the group members. For each of the agents in the group there is a recovery plan in the 

Supervisor agent. The RecoverProductionPlan plan handles the recovery of Production 

agents and the RecoverSentryPlan plan recovers the Sentry agents.  

The RecoverProductionPlan plan similar to the recovery plan of the Carry agent, 

creates a new Production agent, recovers its location, recovers its goal in hand that is 

produce_ore goal and recovers its message event queue after receiving the goal recovery 

confirmation reply from Production. In the Production agent there are the corresponding 

RecoverPlan, RecoverLocationPlan and RecoverGoalPlan plans that fulfill the job. 

For the Sentry agent the recovery plan is RecoverSentryPlan plan on the Supervisor 

side to handle the static recovery, the recovery of location, goal and message event queue. 

On the Sentry side there are the corresponding RecoverPlan, RecoverLocationPlan and 

RecoverGoalPlan plans. 

Although the recovery of each agent in the group is similar to each other, the goal 

recovery part can be very different from agent to agent. In fact the most important and 

complicated recovery plan is that of the goal. The sequence diagrams of the goal 

algorithm can be used to divide it to smaller tasks and register checkpoints to accomplish 

the recovery process. Figure 4.13 depicts a snapshot of the recovery scenario in the 

Marsworld case study. This snapshot shows the moment that the user has clicked on 

Carry_3 agent. This user action  
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Figure 4.13: A snapshot of the recovery scenario of the Marsworld case study. 

has caused the deactivation of the Carry_3 agent. Subsequently, the Supervisor_0 agent 

has started the recovery plan that has created the Carry_4 agent to fulfill the fault-

tolerance property. The newly created Carry_4 agent finishes the recovered tasks of 

Carry_3 agent and continues to function as a Carry agent in the group to terminate the 

mission successfully.  

4.8. Replacement instead of Creation 

Until now in this case study, it is considered that agents can be easily created at any time, 

but in the real world, the system has to take advantage of only the existing robots (agents) 

in the exploration area and their availability has to be taken into account. For example, if 

a Carry agent crashes, the Supervisor agent has to find the most available Carry agent 
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instead of simply creating a new Carry agent and assign the task to it. This availability 

can be defined in terms of the location of the agent, either the agent is idle or doing 

something and the time schedule that it finishes its task. 

By considering those parameters, the Supervisor agent can choose the proper agent to 

replace the damaged one and assign the recovery task to it. After choosing the agent, first 

of all, the Supervisor agent waits for that agent until it achieves any incomplete goal in 

hand. The selected agent can have any position thus the location recovery is different. 

The Supervisor agent may ask the selected Carry agent to move to the recovered location 

by creating move_destination goal in RecoverLocationPlan plan of that Carry agent; 

otherwise, it can ignore location recovery and directly start the goal recovery. The goal 

recovery can be more or less similar to what we have seen until now. The only difference 

is when the Supervisor agent decides not to recover the location. In this case the Carry 

agent will start goal recovery from its current location. After goal recovery and when the 

Supervisor agent receives the confirmation response from Carry agent, it can recover the 

message event queue. 

This replacement is possible if we prove that the selected agent is the same as the 

crashed one as the substitutability property that is presented in Chapter 2.  

4.9. Conclusion 

In this chapter we explained the Marsworld case study. Marsworld is a Mars exploration 

simulation program developed in Jadex that consists of five different types of robots 

(agents): Manager, Supervisor, Sentry, Production, and Carry. When the program is 
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started, these agents are assigned to an exploration area containing ore mines to be 

exploited. 

The objective in this chapter has been the implementation of fault-tolerance property 

of RAS model with Marsworld case study. To fulfill this objective, recovery plans for 

each agent type is provided using the RAS architecture and behavior. Also a crash 

simulation plan is embedded in each agent to test and analyze different scenarios of 

Marsworld case study.  

We have run this program with different scenarios, i.e., with different number and 

type of agents crashed, and in each case the result of the mission is what was expected. In 

each test the crashed agent was successfully recovered and the whole system continued 

its mission correctly to the end. On the other hand, comparing to the four conditions of 

the substitutability property (see Chapter 2, Section 2.7), we notice that all are satisfied 

by the recovery plan. The first condition is met because the same type of agent is chosen. 

For the second condition the two agents have the same message event structure defined in 

the ADF. Since the replaced agents have exactly the same internal structure and the belief 

base is restored from log information, the third condition is also fulfilled. Finally to 

satisfy the last condition, the recovery plan recovers the event queue (INTERACTION) 

and current goal (TRANSITION) of the crashed agent. 
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Chapter 5: Related Work 

 

 

 

In this chapter, we review the related work to multi-agent systems, reactive autonomic 

systems and model transformation. 

5.1. Multi-Agent Systems for Autonomic Computing 

Some of the related work published in the literature that uses the multi-agent technology 

to implement the autonomic systems can be summarized as follows: 

In [25], the authors have developed a distributed software architecture called Unity 

for autonomic systems based on multi-agent components known as autonomic elements. 

Unity addresses the achievement of self-management properties such as self-

configuration, self-healing, and self-optimization in a dynamic multi-application 

environment. This paper illustrates the self-configuration of Unity elements at runtime 

initialization, their method to accomplish recovery from some specific faults as well as 

management of computational resources among them. 

In [27] and [28], the authors have introduced Rudder, a peer to peer agent framework 

to support autonomic applications in distributed environments. In [27], the focus is on the 

flexible interaction between agents in systems that are logically decentralized, physically 

distributed. The peer agents in Rudder use specific protocols to discover, coordinate and 
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control distributed elements in decentralized environments. These distributed cooperating 

agents use negotiation strategies to decide and enact the most appropriate adaptation 

plans. In this paper a peer to peer scalable coordination space called COMIT is proposed 

to provide communication abstractions. 

In [28], Rudder is proposed to support autonomic applications that continuously 

interact with the environment and with each other to manage their execution in pervasive 

Grid environments. This management task consists of monitoring, adaptation and 

optimization of the execution that demands effective coordination services. This paper 

presents the architecture and operation of Rudder to support the autonomic applications. 

These applications take advantage of Rudder to coordinate autonomic components and 

adapt to the requirements and context changes.  

The authors in [30] have developed an Autonomic Information System (AIS) by 

adopting a multi-agent approach. The information system provided by AIS 

accommodates its processing algorithms and/or information sources to provide necessary 

information in different efficiency levels. This paper illustrates the accomplishment of 

certain self-* properties of autonomic systems in AIS and compares it with non-

autonomic systems to evaluate its performance. The paper [30] states that AIS is based on 

the Organization Model for Adaptive Computational Systems (OMACS) [31], which 

provides the information needed to develop self-organization property of autonomic 

systems and also allows the reuse and systematically production of autonomic application. 

The author in [35] has proposed autonomic computing as a solution for cost-effective 

and efficient telehealth systems in high demanding health care domain. In order to 

develop autonomic architectures for telehealth systems, this paper uses a multi-agent 
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approach. One example of telehealth systems that is presented in this paper to be 

developed by a multi-agent autonomic system architecture is telemonitoring. 

Telemonitoring is a system that monitors continuously the health conditions of patients in 

post-surgery and patients with chronic diseases or life-threatening health problems. This 

paper states the importance of self-management property for health care systems to 

justify the importance of autonomic systems in this domain.     

In [36], the authors have described two prototype agent-based systems developed at 

NASA Goddard Space Flight Center (GSFC). These two systems, the Lights-out Ground 

Operations System (LOGOS) and the Agent Concept Testbed (ACT) address the use of 

consultations and swarms of nanosatellites that decrease project costs but may cause long 

delays in communications and loss of contact with the ground control station. The paper 

[36] discusses the agent-based architecture of LOGOS and ACT, which may be the future 

of space flight missions. The authors in paper [36] present one scenario example for each 

of the proposed agent-based architectures and illustrate the self-configuration, self-

optimization, self-healing, and self-protection properties of autonomic agents in the 

examples. 

The publication [38] surveys the main approaches for fault-tolerance in multi-agent 

systems: redundancy (replication) and exception handling. This paper states that 

redundancy is a method to tolerate faults and errors in components of multi-agent 

systems. However, to implement the fault-tolerance in multi-agent systems, the designer 

must take into account not only the cost of initial redundant components, but also the 

increasing expenses of their maintenance. The paper illustrates exception handling as an 
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error prone process, which implicates some programming workload. It explains the future 

direction of exception handling towards automatic error diagnosis beyond tolerance limits. 

All the related work presented so far has supported the idea that the multi-agent 

systems are the appropriate solution for autonomic systems, which justifies the choice of 

MAS for refining RAS. However, these solutions do not propose a clear mapping from 

autonomic systems to multi-agent systems. The well-defined architecture of RAS allowed 

for proposing one to one mapping between RAS components and MAS components. This 

mapping is used to develop a model transformation approach that automates the 

transformation of the abstract RAS meta-model to the implementable MAS meta-model 

(see Chapter 3, Section 3.5).  

5.2. Agent Programming Tools for Autonomic Systems 

In this thesis, Jadex, a Java-based agent programming language is selected as the 

implementation tool for MAS. However, other development tools and programming 

languages have been used to implement intelligent agent-based systems:  

In [29], the authors have presented the IBM Agent Building and Learning 

Environment (ABLE), a toolkit for developing multi-agent autonomic systems. This 

toolkit consists of a lightweight Java agent framework, a comprehensive JavaBeans 

library of intelligent software components, a set of tools for testing and development, and 

an agent platform that provides a set of services for ABLE agents. The paper proposes the 

ABLE distributed agent platform to convince how new features and capabilities can be 

added to autonomic systems. Using three case studies, the paper explains: 1) the 
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Autotune agent: a closed-loop controller agent; 2) the Subsumption agent: an agent for 

specific behaviors and strategies; and 3) the Autonomic agent: an agent with sensors and 

effectors for interacting with the environment, other Subsumption agents, and other 

autonomic components in the system. These components form the dynamic model of the 

autonomic system, its environment, emotions, planning, and executive-level decision-

making. 

In [32], the authors have proposed an infrastructure called Multi-Agent system based 

Autonomic Computing Environment (MAACE) for autonomic computing. MAACE is a 

multi-agent-based architecture based on two previous proposals from the authors: an 

Infrastructure for Managing and Controlling Agent Cooperation (IMCAC) [33] and an 

Infrastructure for Managing and Controlling the Social Behavior of Agents (IMCSBA) 

[34]. The authors in paper [32] state the advantage of using the MAACE environment to 

manage and control software systems using multi-agent solutions. This environment 

provides dynamically programmable control and management services by J2EE, CORBA, 

and .NET technologies to develop intelligent applications. These services include agent 

federation, agent mediate and agent monitoring. The MAACE infrastructure is used to 

support the self-configuration and self-healing of network-centric applications.  

The authors in [37] have proposed a model of adaptive agent based on well-defined 

reusable components in order to simplify autonomic systems development. This model 

implements the non-functional mechanisms such as communication, mobility or 

adaptation skills by taking advantage of these reusable components. The adaptive agent 

matches to its runtime environment by changing its components dynamically and 

autonomously. This improves the safety and performance specifically in open, pervasive, 
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or large-scale distributed applications. In [37], the authors have presented a tool called 

Agent
φ
 for adaptive agent modeling. This tool consists of a set of operating micro-

components, a graphical modeler, an architecture generator (in Java) and a tool for 

minimization of the architecture. 

Regarding the tools and languages used in the discussed related work, Jadex seems an 

appropriate choice for this thesis. Jadex has many advantages over the other development 

tools and frameworks such as its flexibility thanks to its XML-based format to define 

agents and its Java-based format to develop plans for agents (see Table. 2.1 in Chapter 2). 

The flexible BDI-based architecture of Jadex is another strong reason to give preference 

to it over other agent programming tools to develop intelligent autonomic systems. 

Besides, its XML-format Agent Definition File (ADF) has encouraged us to use it as a 

proper meta-model for our model transformation approach.  

5.3. Model Transformation 

Our research proposes a model transformation approach to transfer the RAS meta-model 

to the MAS meta-model. There are many model transformation tools that provide 

different techniques according to their input and output models. Following is a brief 

discussion about some of these approaches:   

In [42], the authors have proposed a classification dividing different models in model 

transformation area into abstract space and concrete space models. For instance, XML 

can be classified as the unique concrete level representation technology, whereas UML 

may be grouped as the abstract level representations. This paper states that model 
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transformation is an important paradigm in many areas and should be dealt with both at 

the abstract and concrete levels. The authors of agree that XSLT as a transformation tool 

in concrete space has to play a central role and more tools must be developed in abstract 

level that define translation schemes from these languages to XSLT. The paper shows 

that the problem is more simplified by defining a common meta-meta-model for all 

models in abstract space which is based on canonical XML transformation. The MOF and 

XMI standards of Object Management Group (OMG) are used to illustrate this approach.   

In [43] the authors have introduced MTRANS project, a general framework for model 

transformation. The authors in this paper try to keep the MTRANS framework the most 

general possible, by using the meta-modeling approach, which defines the semantics of 

each model. MTRANS uses XSLT to transform models, but establishes an abstraction 

level above XSLT, which is easier to understand. According to this paper, MTRANS 

supplies a language, which is composed by a fixed instruction set, plus a part depending 

on the meta-models used. MTRANS can be used to transform MOF compliant models.  

Considering the above related work in model transformation and because both our 

input and output models are in XML format, XSLT seems to be a convenient choice for 

implementing our model transformation approach. Moreover, the XML standard and 

XSLT framework have already started to grow, industry wide. As an example, we can 

refer to Microsoft BizTalk Server that takes advantage of XSLT transformation to 

provide a solution that allows organizations to more easily connect disparate systems.  
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Chapter 6: Conclusion 

 

 

 

This thesis aimed at implementing Reactive Autonomic System (RAS) models with 

Multi-Agent System (MAS) models and introducing a model transformation framework 

for this purpose. We proposed our approach with the purpose of providing solutions for 

the following research questions: 

1. How can we refine the RAS models in terms of self-* properties into MAS 

models? 

2. What is the appropriate MAS architecture and development agent programming 

tool to implement RAS? 

3. How can we propose a model transformation approach to transform the RAS 

meta-models to the MAS meta-models?  

6.1. Contributions 

This thesis proposed an automatic refinement of Reactive Autonomic Systems (RAS) 

models with Multi-Agent Systems (MAS) models and the development of a model 

transformation framework that establishes/generates the required MAS agent templates 

from RAS. Besides, this work focuses on Jadex BDI-based agent programming tool to 
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specify and implement the fault-tolerance property of RAS. The main contributions of 

this thesis are summarised below: 

1. Mapping the RAS static components such as Reactive Autonomic Objects (RAO) 

to the corresponding MAS components such as agents [Chapter 3]. 

2. Mapping the behavioral model of RAS to behavioral components in MAS such as 

goals and plans [Chapter 3]. 

3. Defining an Extended BNF grammar to capture the RAS static and dynamic 

models in XML format [Chapter 3].  

4. Proposing a model transformation framework to transform the RAS components 

to agent templates in MAS [Chapter 3]. 

5. Specification and implementation of fault-tolerance property of RAS using BDI 

architecture and Jadex BDI-based agent programming tool [Chapter 4]. 

6.2. Discussions 

The architecture of the RAS meta-model has a layered structure consisting of the 

following components, starting from the lower most primary layer to the top composite 

layer: RAO, RAC, RACG, and RAS. In the lowest layer, there is Reactive Autonomic 

Object (RAO), which is the atomic component in RAS. Other components in RAS are 

composite structures built from one or more RAO components communicating with each 

other. On the other hand, the most primitive component in the MAS meta-model that acts 

as an autonomic structure is the intelligent agent. In this thesis, we have mapped the RAO 

component to the agent in MAS. In this mapping, for each RAO an Agent Definition File 

(ADF) in XML format representing the agent will be generated. This ADF file contains 
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the definition of building blocks of the agent such as beliefs, goals, events, and plan 

headers in Jadex BDI-based format. To accomplish the mapping process for the 

composite elements of RAS, they are decomposed to the atomic RAO with the 

corresponding communicational link between them. In this case, we create one agent for 

each RAO having their communicational structure defined as message events in the ADF 

file for each agent.     

The behavioral model of RAS is presented with sequence diagrams. These sequence 

diagrams show the interactions between different components in RAS. The sequence of 

interactions in these diagrams is converted to consecutive message triples consisting of 

Sender, Message, and Receiver in XML format. This stream of messages called 

Execution Path is used to capture the behavior of RAS. In comparison, the behavior of 

MAS is defined by plans that are programs in Java. Each agent can have different plans 

that are triggered from different sources such as external messages or internally defined 

goals. The aim is to define plans and their triggering sources (messages, goals) according 

to the execution paths of RAS. Since the RAS model must have the self-* properties of 

autonomic systems such as self-healing, the generated MAS component templates from 

the sequence diagrams for each self-* property will reflect the characteristics of the 

converted RAS model. 

In this thesis, among all agent architectures, the Belief-Desires-Intentions (BDI) 

model is chosen as the implementation framework. Jadex, as a powerful agent-

programming tools based on BDI architecture serves as the development software. The 

Jadex components are based on the Java programming language, which provides a library 

that can be used in any Java programming IDE such as Eclipse. The communication 
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protocol in Jadex is based on FIPA, which is a common agent communication protocol. 

This thesis uses Jadex to implement the fault-tolerance property in Marsworld [5] case 

study. Using Jadex library, this case study defines the mapped RAS components as 

agents and shows that the substitutability property of RAS components can guarantee 

fault-tolerance. 

The RAS meta-model definitions are presented in diagrams and graphical 

representations that cannot be used in current standard model transformation tools. To 

capture the static and dynamic aspects of RAS in XML format, this thesis has developed 

and defined an extended BNF grammar. Using this grammar, we can manually create 

XML description of each RAS component such as RAO, RAC, etc. The advantage of this 

grammar is that it allows the automation of RAS transformation to MAS by developing 

tools that capture the graphical model of RAS as input and create the model in XML as 

output. 

XML is used as a language to describe both the RAS and MAS models. The standard 

and flexible format of XML permits us to use it in model transformation tools. This thesis 

proposes a model transformation framework that gets the RAS XML-based model and 

transforms it to a Jadex-based MAS model. This framework is based on Extensible 

Stylesheet Language Transformation (XSLT), which is an XML-based model 

transformation tool. The transformation rules of this model convert the static architecture 

of RAS (the RAS components to MAS agents) as well as the dynamic behavior (the fault-

tolerance sequence diagrams of RAS to the plan templates of MAS). The generated 

multi-agent templates in Jadex reflect the anticipated fault-tolerant behaviors. 
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6.3. Future Work 

This thesis is about the implementation of Reactive Autonomic Systems (RAS) model 

with Multi-Agent Systems (MAS) model, which opens the door to several research 

opportunities. Future research may include extending our method to other reactive 

autonomic systems in industrial scale. In addition, the following orientations could be 

considered in the future: 

 Our implementation focuses on fault-tolerance property of reactive autonomic 

systems. Whereas, the self-* properties of autonomic systems include self-

configuration, self-optimization, self-protection, etc., a future work would be the 

extension of our model to these properties. 

 The process of the RAS model generation from the defined EBNF-based 

grammar is done manually in this thesis. One direction for future work is the 

automation of XML-based description of the RAS model. This tool would get 

the different graphical representations of RAS as input and create automatically 

the XML files from it. 

 Another tool that would be interesting to develop is an IDE to design the RAS 

model components graphically. This tool can simplify the design process of the 

RAS model and also can embed the tools to create the RAS XML-based files. 

 Our fault-tolerance model is based on substitutability property of the RAS 

components. Several negotiation strategies for different interests could be added 

in the future for more sophisticated interactions. Moreover, the semantics of the 
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recovery plans to have more efficient fault-tolerance techniques should be 

developed. 

 There are some graphical modeling environments for multi-agent systems such 

as Agent Modeling Language (AML). Some add-ins of notations could be added 

to this modeling language in terms of reactive autonomic agent. This special 

kind of agent could act as an intelligent agent with the self-* properties of 

reactive autonomic systems. 
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Appendix: XSLT transformation example 

 

 

 

Table App 1. A sample XSLT program source code: 

 

<?xml version="1.0"?> 

<xsl:stylesheet version="2.0" 

                xmlns:xsl="http://www.w3.org/1999/XSL/Transform"  

                xmlns:xs="http://www.w3.org/2001/XMLSchema" exclude-

result-prefixes="xs"> 

                                 

    <xsl:output method="xml" indent="yes" version="1.0" /> 

     

    <xsl:template match="/"> 

      <agent xmlns="http://jadex.sourceforge.net/jadex" 

        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" > 

 

        <xsl:attribute name="name"> 

          <xsl:value-of select="RAC/MEMBER/@name" /> 

        </xsl:attribute> 

 

        <xsl:attribute name="package"> 

          <xsl:value-of select="concat('marsworld.',/RAC/@name)" /> 

        </xsl:attribute> 

 

        <xsl:text> 

</xsl:text> 

        <imports> 

          <import>jadex.adapter.fipa.*</import> 

          <import>jadex.runtime.*</import> 

          <import>jadex.planlib.*</import> 

          <import>java.util.Stack</import> 

        </imports> 

 

        <events> 

          <xsl:text> 

</xsl:text> 

          <xsl:for-each select="/RAC/INTERACTIONS/INTERACTION"> 

            <xsl:if test="@source = /RAC/MEMBER/@name"> 

              <messageevent name="{@name}"> 

                <xsl:attribute name="type"> 

                  <xsl:value-of select="'fipa'" /> 

                </xsl:attribute> 

                <xsl:attribute name="direction"> 

                  <xsl:value-of select="'send'" /> 
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                </xsl:attribute> 

                <xsl:text>                                     

  </xsl:text> 

 

                <parameter name="performative" class="String" 

direction="fixed"> 

                  <xsl:text>                                     

    </xsl:text> 

                  <value>SFipa.REQUEST</value> 

                  <xsl:text>                                     

  </xsl:text> 

                </parameter> 

              </messageevent> 

            </xsl:if> 

 

            <xsl:if test="@target = /RAC/MEMBER/@name"> 

              <messageevent name="{@name}"> 

                <xsl:attribute name="type"> 

                  <xsl:value-of select="'fipa'" /> 

                </xsl:attribute> 

                <xsl:attribute name="direction"> 

                  <xsl:value-of select="'receive'" /> 

                </xsl:attribute> 

                <xsl:text>                                     

  </xsl:text> 

                <parameter name="performative" class="String" 

direction="fixed"> 

                  <xsl:text>                                     

    </xsl:text> 

                  <value>SFipa.REQUEST</value> 

                  <xsl:text>                                     

  </xsl:text> 

                </parameter> 

              </messageevent> 

            </xsl:if> 

            <xsl:text>                                     

</xsl:text> 

          </xsl:for-each> 

 

        </events> 

      </agent> 

    </xsl:template> 

</xsl:stylesheet> 

 

  

Table App 2. The input XML file example: 

 

<?xml version="1.0" encoding="UTF-8"?> 

<RAC name = "rac-name"> 

  <MEMBER name = "CU1"/> 

  <INTERACTIONS> 
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    <INTERACTION source="CU1" name="restart" target="Sensor1"/> 

    <INTERACTION source="Sensor1" name="heartbeat" target="CU1"/> 

    <INTERACTION source="CU1" name="request_sensor" target="CU8"/> 

    <INTERACTION source="CU1" name="register" target="Sensor8"/> 

    <INTERACTION source="CU1" name="take_over_sensor" target="Drill1"/> 

    <INTERACTION source="Drill1" name="confirm" target="CU1"/> 

  </INTERACTIONS> 

  <LEADER name = "CU1"/> 

</RAC> 

   

Table App 3. The output ADF file example: 

 

<?xml version="1.0" encoding="UTF-8"?> 

<agent xmlns="http://jadex.sourceforge.net/jadex" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" name="CU1" 

package="marsworld.rac-name"> 

 

<imports> 

<import>jadex.adapter.fipa.*</import> 

<import>jadex.runtime.*</import> 

<import>jadex.planlib.*</import> 

<import>java.util.Stack</import> 

</imports>                                     

 

<events> 

<messageevent name="restart" type="fipa" direction="send">                                     

  <parameter direction="fixed" class="String" name="performative">                                     

    <value>SFipa.REQUEST</value>                                     

  </parameter> 

</messageevent>                                     

 

<messageevent name="heartbeat" type="fipa" direction="receive">                                     

  <parameter direction="fixed" class="String" name="performative">                                     

    <value>SFipa.REQUEST</value>                                     

  </parameter> 

</messageevent>                                     

 

<messageevent name="request_sensor" type="fipa" direction="send">                                     

  <parameter direction="fixed" class="String" name="performative">                                     

    <value>SFipa.REQUEST</value>                                     

  </parameter> 

</messageevent>                                     

 

<messageevent name="register" type="fipa" direction="send">                                     

  <parameter direction="fixed" class="String" name="performative">                                     

    <value>SFipa.REQUEST</value>                                     

  </parameter> 

</messageevent>                                     

 

<messageevent name="take_over_sensor" type="fipa" direction="send">                                     

  <parameter direction="fixed" class="String" name="performative">                                     

    <value>SFipa.REQUEST</value>                                     

  </parameter> 

</messageevent>                                     
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<messageevent name="confirm" type="fipa" direction="receive">                                     

  <parameter direction="fixed" class="String" name="performative">                                     

    <value>SFipa.REQUEST</value>                                     

  </parameter> 

</messageevent>                                     

</events> 

</agent> 

 

 

 

 


