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Abstract
We investigate the electronic properties of graphene nanostructures when the Fermi velocity
and the electrostatic potential vary in space. First, we consider the transmission T and
conductance G through single and double barriers. We show that G for velocity barriers differs
markedly from that for potential barriers for energies below the height of the latter and it
exhibits periodic oscillations as a function of the energy for strong velocity modulation. Special
attention is given to superlattices (SLs). It is shown that an applied bias can efficiently widen or
shrink the allowed minibands of velocity-modulated SLs. The spectrum in the Kronig–Penney
limit is periodic in the strength of the barriers. Collimation of an electron beam incident on an
SL with velocity and potential barriers is present but it disappears when the potential barriers
are absent. The number of additional Dirac points may change considerably if barriers and
wells have sufficiently different Fermi velocities.

(Some figures in this article are in colour only in the electronic version)Q.2

1. Introduction

Graphene is a monolayer of carbon atoms arranged on a
hexagonal lattice and was first synthesized in 2004 [1] despite
early theoretical works that doubted its existence. Since
then it has been the subject of intense study and research
made by both theoretical and experimental condensed matter
physicists. The unique property of charge carriers in graphene
is that they behave like relativistic massless, chiral fermions
with the ‘speed of light’ replaced by the Fermi velocity.
This brings about many unusual phenomena such as an
anomalous quantum Hall effect [2, 3], Klein tunnelling [4],
Zitterbewegung [5], etc. All these phenomena have been
studied extensively. Another reason for such a high interest
in this material is that nanostructures based on graphene may
find applications in nanoelectronics [5], as sensitive sensors of
magnetic fields and even of a gas [6]. Already exploiting the
submicron long mean-free paths in graphene-based devices has
led to the production of transistors [7].

Recently, there has been interest in velocity-modulated
structures [8, 9] of graphene where the Fermi velocity of

charge carriers is made to vary in space [10] by appropriate
doping [11], by placing a grounded metal plane close to
graphene [8], or by imprinting on it a lateral superlattice with
hexagonal symmetry [12]. In this work we investigate in
more detail ballistic transport not only through simple velocity
barriers [8, 9] but also through more complex nanostructures,
such as double barriers and superlattices (SLs) with both
velocity v(r) and/or potential V (r) variation in space that,
to our knowledge, has not been considered in the literature.
We find that the conductance of strongly modulated velocity
barriers oscillates periodically with the energy and differs
markedly from that for potential barriers and energies below
the height of the latter. In addition, we consider the collimation
of an electron beam incident on such SLs and the emergence
of extra Dirac points. In doing so we make contact with
the corresponding results for the usual SLs without velocity
modulation [13–17] and show that if the potential barriers are
absent, there is neither modulation nor additional Dirac points
but both reappear when such barriers are present.

The paper is organized as follows. In section 2 we present
the theoretical basis needed to study the transport properties of
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velocity-modulated structures made of graphene. In section 2
the model is used to evaluate the transmission through and
conductance of a single and double velocity barrier. Section 3
is devoted to SLs with periodic variation in the Fermi velocity
and barrier heights. The last section summarizes our results
and conclusions.

2. Theoretical framework

We consider a graphene sheet in which the electron velocity
varies in space, that is v = v(r). The relevant Hamiltonian,
which allows for a space-dependent velocity, is [8, 10]

Ĥ = −ih̄
√
v(r)�σ ·∇r

√
v(r). (1)

Here �σ = (σx , σy) is a two-dimensional (2D) Pauli matrix,
and � = (ψA, ψB)

T is a two component spinor. In obtaining
equation (1) it is assumed that the variation of the velocity is
slow enough on the scale of the lattice constant. It is convenient
to introduce the auxiliary spinor �(r) = √

v(r)�(r), which
leads to the following eigenvalue problem

Ĥ�(r) = −ih̄v(r)�σ · ∇r�(r) = E�(r), (2)

which is the familiar Dirac-like equation for usual graphene [5].
The boundary matching conditions can be inferred from the
continuity equation divJ(r) = 0, where the probability current
J(r) is given by

J(r) = v(r)�†(r)�σ�(r). (3)

However, we consider only piece-wise variations of v along
the x axis, v = v(x). This leads to the boundary matching
condition

√
v1�(x = 0−) = √

v2�(x = 0+), (4)

for v(0−) = v1 and v(0+) = v2.
The theoretical model will be first applied to the problem

of tunnelling through a single velocity barrier. Consider a
barrier of width D, made of two different slabs of graphene
(see figure 1(a)) such that the Fermi velocity is given by

v(x) =

⎧
⎪⎨

⎪⎩

v1, x < 0,

v2, 0 � x � D,

v1, x > D.

(5)

We denote by θ1 the angle of incidence on the barrier, by θ2

the angle inside the barrier, and by kx and qx the wavevectors
inside and outside the velocity barrier. The transmission T =
|t|2 in terms of the angles θ1 and θ2 reads [8]

T (vel)(θ1)

= cos2 θ1[1 − ξ 2 sin2 θ1]
cos2 θ1[1 − ξ 2 sin2 θ1] + (1 − ξ)2 sin2 θ1 sin2(qx D)

. (6)

The relation between the angles θ1 and θ2 can be found from
the conservation of energy and of the wavevector ky (due to
translational invariance along the y axis) as

sin θ1

sin θ2
= v1

v2
= 1

ξ
. (7)

Figure 1. Scheme of a velocity barrier (a) made of two graphene
slabs with different velocities v1 and v2, and (b) a usual potential
barrier with height V0 and v = vF everywhere the same.

This relation is in fact a quantum mechanical version of Snell’s
law in optics. For ξ > 1 one may define the critical angle
θ
(vel)
1c = arcsin(1/ξ) above which (θ1 � θ1c) the transmission is

negligible as the wavevector qx is then imaginary. Actually, the
transmission is exactly zero for θ1 = θ1c as can be seen from
equation (6). For θ1 > θ1c, equation (7) should be modified to
account for evanescent states

T (vel)(θ1)

= cos2 θ1[ξ 2 sin2 θ1 − 1]
cos2 θ1[ξ 2 sin2 θ1 − 1] + (1 − ξ)2 sin2(θ1) sinh2(κx D)

,

(8)

where κx = iqx = [k2
y − (EF/(h̄v2))

2]1/2. The critical angle
can also be defined for a standard potential barrier [18] by the
same argument. It is given by

θ
(pot)
1c = arcsin(|EF − V0|/|EF|). (9)

The values of qx and kx are given by

qx = [(EF/h̄v2)
2 − k2

y]1/2, kx = [(EF/h̄v1)
2 − k2

y]1/2.

(10)
Notice that equation (6) gives T = 1 for θ1 = 0 regardless
of the values of the other parameters which is another
manifestation of the Klein paradox in tunnelling, this time
through a velocity barrier. The transmission reaches unity also
for qx D = nπ , with n integer and qx given by equation (10),
as in the standard case [19] in which qx = [((EF−V0)/h̄v2)

2−
k2

y]1/2.
In figure 2 we plot the transmission through a barrier of

thickness D = 100 nm as a function of the angle of incidence
θ1 for EF = 50 meV and four different values of ξ : ξ = 0.2
(solid, black curve), ξ = 0.5 (dashed, blue curve), ξ = 1.2 Q.3

(dotted, red curve) and ξ = 1.5 (dash–dotted, green curve).
The Fermi velocity outside the barrier is kept constant at the
value v1 = 0.7 × 106 m s−1. Note that the transmission is
virtually zero for ξ > 1 (last two curves) and θ1 > θ1c. The
transmission is not exactly zero for θ1 > θ1c but it is very small
due to the evanescent nature of the states in the barrier.

It is interesting to compare equation (6) with the formula
for the transmission through a potential barrier in a graphene
which reads [5]

T (pot)(θ1)

= cos2 θ1 cos2 θ2

[cos θ1 cos θ2 cos(qx D)]2+(1−ss′ sin θ1 sin θ2)2 sin2(qx D)
.

(11)
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Figure 2. Transmission T through a velocity barrier versus the angle
of incidence θ1 for four different values of the velocity ratio of ξ
(=v2/v1), ξ = 0.2, 0.5, 1.2, and 1.5.

Here s = sgn(EF) and s = sgn(EF − V0). It is possible to
make a direct connection between equations (11) and (6) when
they are expressed in terms of the angles only. There is one
small point, here one should calculate the wavevectors using
the velocities of the corresponding materials. In equation (11)
both s and s ′ are +1 because there are no potential barriers,
and it is assumed EF > 0. Inserting ξ from equation (7) into
equation (6), one obtains that T (pot)(θ1) = T (vel)(θ1) are given
by the same expression but with the wavevectors qx defined
appropriately in each case.

At this point one may also define a critical angle, for total
reflection, if both velocity and potential barriers are present.
Following the same procedure gives

θ
(vp)
1c = arcsin

(
v1|EF − V2|
v2|EF − V1|

)
. (12)

The material denoted by ‘2’ acts as a barrier, so that
usually V1 = 0 and V2 = V0. Note that the critical angle
when there is only velocity modulation, θ(vel)

1c , does not depend
on the energy. In order to illustrate the dependence of the
transmission on both the angle of incidence and the energy,
one may construct a contour plot of T versus the momentum
components kx and ky . In figure 3 we show such contour plots
for two different values of ξ : (a) ξ = 0.2 (upper panel) and
ξ = 1.2 (lower panel). For ξ = 0.2 < 1 one sees the
oscillations near kx → 0, which are absent for ξ = 1.2,
that are due to small sinh2(κx D) in the latter. In both panels
the transmission is equal to 1 for small ky → 0, which is a
manifestation of Klein tunnelling.

Given the transmission amplitude one may calculate the
conductance, which is a measurable quantity. For small values
of an applied source-to-drain bias and very low temperatures
the conductance is given by

G = G0

∫ π/2

−π/2
T (EF, θ1) cos θ1 dθ1, (13)

with G0 = 2e2 EF L y/h2vF and L y the length of the slab in
the y direction. The factor cos θ1 comes from the probability
current density j = vF�

†σx� ∝ vF cos θ1.

Figure 3. Contour plots of the transmission versus momentum
components kx and ky for two different values of the parameter ξ :
(a) ξ = 0.2 and (b) ξ = 1.2. Notice the logarithmic scale in the
colour meter.

In figure 4 we plot the conductance through a single
velocity barrier versus the Fermi energy for four different
velocity ratios ξ = 0.2, 0.5, 1.2, and 1.5. The barrier width is
D = 100 nm, the velocity v1 = 0.7 × 106 m s−1, a = 1.42 Å
the lattice constant, and L y = 100

√
3a. The inset shows the

conductance through a potential barrier of the same width and
height V0 = 100 meV but for vF = 106 m s−1 everywhere,
i.e. for ξ = 1. The minimum near V0 = 100 meV is because
the real wavevector qx vanishes at this value, so almost does
the transmission, and correspondingly the conductance.

For ξ < 1 weak oscillations appear (dashed curve) that
completely disappear for ξ � 1. However, for very small
ξ � 1 we see regular oscillations, as the energy increases
(solid curve) that are in sharp contrast with those through the
usual potential barriers, see inset, as long as the energy is less
than the barrier height [20]. One further sees, upon contrasting
the solid and dashed curves, that these oscillations depend on ξ .

The oscillations for ξ � 1 can be understood as follows.
For ξ � 1 we may neglect the term −ξ 2 sin θ1 in equation (6)
and neglect the dependence of qx on θ1 since v2 � v1. This
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Figure 4. Conductance G through a velocity barrier as a function of
the Fermi energy EF for four different values of the velocity ratio ξ
(=v2/v1), ξ = 0.2, 0.5, 1.2, and 1.5. Inset: G through a single
potential barrier with V0 = 100 meV and vF = 106 m s−1 everywhere
(ξ = 1).

Figure 5. Comparison between the exact values of G (solid, black
curves) and the approximate (dashed, red curves), as given in
equation (14), for a single velocity barrier and two values of ξ : 0.2
and 0.5. For clarity the curves for ξ = 0.5 are shifted up by 0.5e2/h.

leads to the approximate formula for the conductivity

G = G0

1 − A

(

2 − A√
1 − A

ln
1 + √

1 − A

1 − √
1 − A

)

(14)

where A = (1 − ξ)2 sin2(EF D/h̄v1). In figure 5 we
compare G, given by equation (14), with the exact numerically
evaluated one of a velocity barrier for two values of ξ : 0.2
and 0.5. For clarity the curves for ξ = 0.5 are shifted up by
0.5e2/h. The agreement is quite satisfactory for ξ = 0.2 and
the oscillations are well reproduced.

In figure 6 we show the conductance through a double
barrier, with the same barrier parameters as in figure 4, and
an inter-barrier distance equal to the barrier widths d = D =
100 nm. For the sake of comparison, we show in the inset
the conductance through two potential barriers of the same
width and height V0 = 100 meV, while vF = 106 m s−1

everywhere, i.e. for ξ = 1. Notice again the near-vanishing of

Figure 6. Conductance G through a double velocity barrier, as a
function of the Fermi energy EF, for four different values of the
velocity ratio ξ (=v2/v1), ξ = 0.2, 0.5, 1.2, and 1.5. The inter-barrier
distance is d = 100 nm. Inset: G through a double potential barrier
with V0 = 100 meV and ξ = 1 (vF = 106 m s−1).

the transmission for V0 = 100 meV. The order of magnitude of
G is the same as for a single barrier, but, as expected, the local
maxima/minima for ξ = 0.2 and 0.5 are more pronounced
since the resonances in the transmission are sharper.

3. Velocity- and potential-barrier superlattices

3.1. Dispersion relation

Now we turn our attention to an SL with varying velocity
and height of the potential barriers. We assume that the SL
period d is the same in both cases and that the widths of the
regions of different potentials coincide with those of different
velocities. Of course, one may choose, for instance, the zero
potential to be in one or the other material (with different
v). Let us suppose that such an SL is made of two graphene
slabs A and B, of widths wa and wb, with velocities va, vb,
and electrostatic potentials VA, VB, respectively. If in each
constituent layer the electrostatic potential and velocity are
constant, V (x) = Vi , v(x) = vi , the wavefunction is a sum
of two terms corresponding to the two directions

�i(r) = ai
√
vi

(
1

si eiθi

)
eiqxi x + bi

√
vi

(
1

−si e−iθi

)
e−iqxi x,

(15)
where si = sgn(E − Vi) and tan θi = qxi/ky . Starting from
equations (4) and (15), one may construct a 2 × 2 boundary
matching matrix in the i th layer that connects the coefficients
(ai , bi) on both sides of this interface by the matrix

Mi = √
vi

(
1 1

si eiθi −si e−iθi

)
, (16)

where si = sgn(E − Vi). The propagation matrix Pi is the
same as in the standard case; with wi the width of the i th layer
it reads

Pi =
(

eiqiwi 0
0 e−iqiwi

)
. (17)

4
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In each layer i the relevant wavevectors qa and qb are given by

qa = [[(EF − VA)/h̄va]2 − k2
y]1/2,

qb = [[(EF − VB)/h̄vb]2 − k2
y]1/2.

(18)

The transfer matrix Tm connects two points one period apart,
e.g. points 1 and 2 in figure 7, in the manner

(
a2

b2

)
= Tm

(
a1

b1

)
. (19)

On the other hand, Bloch’s theorem applied to an SL with a
period d = wa +wb requires

(
a2

b2

)
= exp(iβxd)

(
a1

b1

)
, (20)

where βx is an additional quantum number that stems from the
periodicity of the SL. From equations (19) and (20) one sees
that exp(iβxd) is one of the eigenvalues of the transfer matrix
Tm , the other being its complex conjugate exp(−iβxd). One
easily arrives at the dispersion relation [19]

cos(βx d) = Tr Tm/2, (21)

which determines the band structure of the SL. Now the
transfer matrix Tm is given in terms of the propagation matrix
Pi and the boundary matching matrix Mi by

Tm = PAM−1
A MB PB M−1

B MA, (22)

where Pi and Mi are defined in equations (16) and (17).
Explicit calculation of the trace of the transfer matrix leads to

cos(βxd) = cos(qawa) cos(qbwb)

− sAsB − sin θA sin θB

cos θA cos θB
sin(qawa) sin(qbwb). (23)

Note that equation (23) is valid for all values of energies due
to the factors sA and sB, as long as qi are real. For large
transverse wavevectors ky , qi may become purely imaginary
and the cosine and sine functions should be replaced by
the hyperbolic functions. The allowed minibands satisfy
the condition | cos(βxd)| � 1 and their widths increase
with energy. The dispersion relation (23) is identical to
the one obtained for an SL of piece-wise constant potential
barriers [21] V (x). (Reference [4] considered the more
general case with a nonzero mass term, m > 0.) This can
be explained by the fact that the new boundary matching
matrices are the same as the old ones simply multiplied by√
vi but this factor cancels out when constructing the transfer

matrix. Alternatively, one may use the auxiliary spinor�(r) =√
v(r)�(r) from the outset.

It is interesting to take the Kronig–Penney limit of
equation (23) expressed by wb → 0 and VB → ∞ but in such
a way that the product VBwb is kept constant VBwb = h̄vF�B

with �B a dimensionless quantity. Then sB = −1, θB → 0
(qb 
 ky), and equation (23) turns into

cos(βx�) = cos(�B) cos(qawa)

+ sin(�B) sin(qawa)/sA cos θA cos θB. (24)

Figure 7. Scheme of a superlattice made by variation of both velocity
(v) and potentials V (x) (red lines). It is assumed that VA = 0.

Equation (24) shows that in this limit the spectrum is a periodic
function of the strength of the barriers ∝ �B in agreement
with [22]. Notice though that this limit can probably be
achieved only if the potential is present, since there is a
limitation in making the ratio vb/va high.

Returning to equation (23) one may investigate at what
(nonzero) values of the potentials VA and VB the forbidden
minibands disappear. This may happen for θA = 0 or normal
incidence. Then we have

cos(βx d) = cos(qawa ± qbwb), (25)

which always lies in the range [−1, 1]. The condition θA ≈
θB ≈ 0 may be approximately fulfilled if qa = qb and
E � VA, VB, which in turn entails

EF − VA

EF − VB
= va

vb
. (26)

Equation (26) may hold independent of the value of EF

if one considers the case when EF is very small, in a certain
range, compared to both VA and VB, as already assumed. This
leads to

VA

VB
≈ va

vb
. (27)

Let us assume, for instance, 0 meV � EF � 30 meV,
VA = 60 meV, VB = 120 meV, va = 5 × 105 m s−1,
and vb = 106 m s−1. The transmission through a finite SL
(N = 25, wa = wb = 20 nm) having such a potential
and velocity variation is shown in figure 8 by the solid, red
curve. For comparison, we also show the results when only
the velocity barriers (black curve) are present. Further, the
dashed, red curve corresponds to the transmission through an
infinite SL with both v(x) and V (x) varying. One can see that
the first allowed miniband is extended when VA and VB are
nonzero and VA/VB = va/vb. This confirms the approximate
relation (27) and opens the possibility to enhance or tune a
velocity-modulated SL by applying a bias. This could also
be important in the opposite situation when a usual graphene-
based SL (v(x) = const) does not attain a sufficiently high and
needed ratio qa/qb due to possible limitations in the maximum
allowed bias.

3.2. Collimation, extra Dirac points

The spectrum of a graphene-based SL exhibits [22] interesting
properties. For instance, the spectrum of a one-dimensional SL
can become highly anisotropic [13] for certain SL parameters.
This anisotropy can be made large enough so that the energy
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Figure 8. Transmission versus Fermi energy EF in an SL with both
velocity and potential barriers (red curve) and only velocity barriers
(black curve). The number of units is N = 25 and the other
parameters VA = 60 meV, VB = 2VA, va = 5 × 105 m s−1, and
vb = 2va, wa = wb = 20 nm. The dashed, red curve shows the
transmission of an infinite SL with both types of barriers.

spectrum is dispersionless in one direction [14]. This implies
that an electron beam incident on an SL becomes collimated
along the axis perpendicular to that direction. Further, if the
parameters of SL are carefully tuned, additional Dirac points
are possible [22, 16]. Here we extend this analysis to a SL
with spatial variation of both velocity and potential.

First, we begin by addressing the collimation of
an electron beam, when the energy dispersion becomes
approximately independent of ky . It is proven that the
collimation occurs in the vicinity of extra Dirac points [22, 17].
Starting from equation (23) it is possible to extract the
dispersion relation E(βx) with ky kept as a parameter. In
panel (a) of figure 9 we show such an SL dispersion relation
for three different values of ky: 0.0, 0.2π/d , and 0.4π/d . The
quantities are normalized such that ε = Ed/h̄va, βx0 = βx d ,
and ky0 = kyd , while the parameters of the SL are ξ = 0.9,
VB = 4π h̄vb/d , VA = 0, and va = 106 m s−1. For comparison
in panel (b) we show this dispersion relation for bulk graphene,
that is, with Vi = 0 and ξ = 1, when the SL quantum number
βx becomes identical to kx . From figure 9(a) it is obvious that
the energy dispersion is independent of ky in a wide range of
βx0, while in figure 9(b), for bulk graphene, it displays the
expected dependence ε = [β2

x0 + k2
y0]1/2.

It is important to emphasize that the collimation shown
in figure 9(a) is present only when the potential barriers
are present. For an SL with only the Fermi velocity v(x)
varying, the dispersion relation for the first miniband can be
approximated by

ε = 2ξ

1 + ξ
[β2

x0 + k2
y0]1/2, (28)

for small energies ε and ky0. The dependence on ky0 shows
that indeed there is no collimation in such an SL.

We now turn to the additional Dirac points. One wayQ.4

to locate them is to assume some special values of the
parameters [22] βx = 0 and wa = wb (equal barrier and well

Figure 9. (a) Dispersion relation ε(βx0) of a velocity- and
potential-modulated SL for three values of the wavevector ky0: 0.0
(black curve), 0.2 (red curve), and 0.4 (blue curve). The parameters
are ξ = 0.9, VB = 4π h̄vb/d (VA = 0), and va = 106 m s−1. For
comparison panel (b) shows this dispersion relation for bulk
graphene (ξ = 1, Vi = 0).

widths). It is assumed, as earlier, that VA = 0. First one finds
the energy Ee around which the spectrum exhibits symmetry,
that is when qa = qb which yields Ee = VB/(1 + ξ). The
dispersion relation becomes

1 = cos2 κ − [(εAεB − k2
y)/qaqb] sin2 κ, (29)

where εi (i = A, B) are the normalized energies E/h̄vi . One
can readily see two sets of solutions: (1) for ky = 0 and (2) for
κ = jπ ( j = 0, 1, 2, . . .).

Case (1) (ky = 0) corresponds to the main Dirac point and
is not of interest here.

Case (2) leads to

ky, j = ±[[(Ee − VB)/h̄vb]2 − (2 jπ/d)2]1/2. (30)

In figure 10 we show the dispersion curve ε(ky0) for an SL
having equal barrier and well widths for three values of the
parameter ξ : 0.9, 1.0, and 1.1. The wavevector ky and the
energy are normalized ky0 = kyd and ε = Ed/h̄va, while the
reference level for the energy is Ee = VB/(1 + ξ) and varies
with ξ . The Fermi velocity in the barrier is varied vb = ξva

6
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Figure 10. Dispersion relation ε(ky0) of velocity-and
potential-modulated SLs for three values of the parameter ξ : 0.9
(dotted red curve), 1.0 (solid black curve), and 1.1 (dashed blue
curve). Panel (a) corresponds to VB/h̄vb = 4π and panel (b) to
VB/h̄vb = 6π . The reference energy is that of the extra Dirac point
located at Ee = VB/(1 + ξ) and all quantities are normalized.

with va = 106 m s−1, while VA = 0 and VB = 6π h̄vF/d .
The second minima occur at values given by equation (30) for
j = 1. As seen in the figure, the difference in the curves is
already visible for a relative change in the Fermi velocities of
only 10%.

To locate additional Dirac points for less trivial cases,
i.e. for unequal barrier and well widths, one may assume
cos(qawa) = ±1 and cos(qbwb) = ±1 while the sine functions
are zero. This is fulfilled only if qawa = jπ and qbwb =
( j+2m)π where j and m are both integers. This in turn entails

[E j,m/h̄va]2 − k2
y = [ jπ/wa]2, (31)

((E j,m − VB)/h̄vb)
2 − k2

y = (( j + 2m)π/wb)
2. (32)

Solving for the energy E j,m, one arrives at a quadratic equation
for E j,m, whose solution is

E j,m = VB[−1 ±
√

1 + (ξ 2 − 1)C]/(ξ 2 − 1), (33)

with

C = 1 +
(

h̄vb

VB

)2
[(

jπ

wa

)2

−
(
( j + 2m)π

wb

)2
]

. (34)

Having found E j,m the wavevector ky j,m can be obtained from
equation (31); it is equal to

ky j,m = ±[(E j,m/h̄va)
2 − ( jπ/wa)

2]1/2. (35)

In the limit ξ → 1 equation (33) has only one set of solutions
E j,m = VB/2C and the result (B4) from [22] is obtained,
while for wa = wb and m = 0 one recovers E j,0 = Ee

and equation (35) turns into equation (30). According to
equation (33), there are no extra Dirac points in the absence
of potential barriers, i.e. for VB = 0. Note that equation (33) is
defined only for C � −1/(ξ 2−1), so that extra Dirac points do
not exist for any combination of integers j and m. This means
that the number of Dirac points in a certain range of energies
may change if the velocities va and vb are sufficiently different.
This is another difference with the standard case [22].

4. Conclusions

We investigated the electronic transport properties of graphene
nanostructures with spatial variation of the Fermi velocity
or/and of the potential. The conductance through a single and
double velocity barrier exhibits a non-monotonic dependence
on the Fermi energy EF for ξ < 1 (v2 < v1) that is significantly
different than that through the usual potential barriers for EF

smaller than their height. Depending on the value of ξ < 1, one
can see very well-pronounced oscillations in the conductance
of single and double velocity barriers, see figures 4–6.

We also investigated the dispersion relation of SLs in
which both vF(x) and V (x) vary in a piece-wise manner. It
was shown that it is possible to tune the low-energy spectrum
of a velocity-modulated SL by properly biasing it, that is, by
superimposing a usual potential SL, with the same period.
An example is the widening of the minibands inferred from
that of the corresponding transmission shown in figure 8.
Electron collimation is present in such SLs but disappears if
the usual potential barriers are absent. Extra Dirac points
have been found in some cases and their number may change
considerably if the difference in the Fermi velocity of the
constituent materials is sufficiently high. These extra Dirac
points disappear if the usual potential barriers are absent.
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