

FROM DOMAIN MODELS TO COMPONENTS –

A FORMAL TRANSFORMATION APPROACH TOWARDS

DEPENDABLE SOFTWARE DEVELOPMENT

AFSOON GHAEMI

A THESIS

IN

THE DEPARTMENT

OF

COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF APPLIED SCIENCE (SOFTWARE

ENGINEERING)

CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

APRIL 2011

© AFSOON GHAEMI, 2011

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Afsoon Ghaemi

Entitled: From Domain Models to Components – A Formal Transformation

Approach Towards Dependable Software Development

and submitted in partial fulfillment of the requirements for the degree of

 Master of Applied Science (Software Engineering)

complies with the regulations of the University and meets the accepted standards
with respect to originality and quality.

Signed by the final examining committee:

 ______________________________________ Chair
 Dr. René Witte

 ______________________________________ Examiner
 Dr. Nematollaah Shiri

 ______________________________________ Examiner
 Dr. Olga Ormandjieva

 ______________________________________ Supervisor
 Dr. Vangalur Alagar

Approved by __
 Chair of Department or Graduate Program Director

__
 Dr. Robin A. L. Drew, Dean

 Faculty of Engineering and Computer Science

Date ___

 iii

Abstract

From Domain Models to Components – A Formal Transformation

Approach Towards Dependable Software Development

Afsoon Ghaemi

Many academic, industrial, and government research units have unanimously

acknowledged the importance of developing dependable software systems. At the same

time they have also concurred on the difficulties and challenges to be surmounted in

achieving the goal. The importance of domain analysis and linking domain models to

software artifacts were also recognized by various researchers. However, no formal

approach to domain analysis was attempted. The primary motivation for this thesis

stems from this context. Component-based software engineering offers some attractive

mechanisms to tackle the inherent complexity in developing dependable systems.

Recently a formal approach has been put forth for such a development. This thesis

provides a formal approach for domain analysis, and transforms the domain model to

components desired by this development process.

Formal Concept Analysis (FCA) is a mathematical theory for identifying and

classifying concepts. This thesis taps its potential to formally analyze the domain in a

software development context. It turns out that the approach presented in this thesis

cannot be fully automated; nevertheless several useful contributions have been made.

These include (1) capturing formal concepts and defining them in FCA; (2) defining

composition rules to categorize formal concepts and their trustworthy properties; (3)

integrating partial formal context tables to build the concept lattice; (4) specifying and

developing a model transformation approach to construct trustworthy OWL ontology; (5)

implementing a model transformation technique to generate the TADL specification of

the reusable component-based system. The proposed approach is applied to CoCoME,

as a benchmark case study in the domain of component-based development.

 iv

To my parents.

 v

Acknowledgments

This thesis would never have taken shape without the contribution of those who

spent their precious time and shared their valuable knowledge helping me to complete

my research.

First and foremost, I would like to express my profound appreciation to my

supervisor, Dr. Vangalur Alagar for his supervision and support. Also, my utmost

gratitude to Dr. Rokia Missaoui, whose encouragement and help enabled me to hurdle

the obstacles in learning challenging but attractive mathematical concepts.

In addition, I would like to take the opportunity to thank my examiners, Dr. Olga

Ormandjieva and Dr. Nematollaah Shiri, for their precious time to review my thesis and

give me helpful advice.

I also would like to thank Concordia University and the Faculty of Computer Science

and Software Engineering for offering me the precious opportunity and excellent

academic environment to achieve this work.

Finally, I would like to dedicate my ultimate love to my dearest husband, Nassir and

my beloved son, Arian for their encouragement and never ending support.

 vi

Table of Contents

List of Figures .. x

List of Tables ... xiv

1 Introduction ... 1

1.1 Research Context .. 1

1.1.1 Trustworthiness .. 2

1.1.2 Component-Based Development (CBD) ... 3

1.1.3 Domain Analysis ... 5

1.1.4 Ontology ... 5

1.1.5 Formal Concept Analysis (FCA) ... 7

1.2 Difficulties and Drawbacks .. 8

1.3 Motivations ... 9

1.4 Research Questions ... 11

1.5 Proposed Solutions and Contributions .. 12

1.6 Thesis Outline... 13

2 Thesis Background .. 15

2.1 Formal Concept Analysis Theory and Tools ... 15

2.1.1 FCA Theory .. 17

2.1.2 Impact of FCA .. 30

2.1.3 FCA and Ontology .. 32

2.1.4 FCA tools.. 33

2.1.4.1 Concept Explorer ... 33

2.1.4.2 ToscanaJ .. 36

2.1.4.3 Lettice Miner .. 40

../../Table%20of%20contents.docx#_Toc219420213
../../Table%20of%20contents.docx#_Toc219420213

 vii

2.2 Ontology ... 44

2.2.1 Ontology Web Language (OWL) ... 46

2.2.2 Ontology Tools ... 47

2.2.2.1 Protégé .. 48

2.2.2.2 TopBraid Composer ... 48

2.2.2.3 CMapTools Ontology Editor (COE) 49

2.3 Model Transformation ... 51

3 Case Study Statement .. 54

3.1 Common Component Modeling Example (CoCoME) 55

3.2 System Overview .. 55

3.3 System Requirements Specification ... 57

3.3.1 Process Sale .. 57

3.3.2 Manage Express Checkout ... 59

3.3.3 Order Products ... 60

3.3.4 Receive Ordered Products ... 61

3.3.5 Show Stock Reports ... 61

3.3.6 Show Delivery Reports ... 62

3.3.7 Change Price .. 62

3.3.8 Product Exchange .. 63

3.4 Transformation Tool for Verification Process .. 64

4 Methodology for Constructing Formal Context Tables 69

4.1 Partial Definition of Context Tables ... 70

4.1.1 Different Types of Formal Context Tables... 71

4.1.2 Definition of Attributes in Formal Context Tables 75

4.1.2.1 Primary Specifications of TADL Component Model 76

4.1.2.2 Keywords to Specify Parameters .. 79

 viii

4.1.2.3 Rules to Compose Partially Defined Context Tables 80

4.2 Construction of Unified Formal Context Table... 85

4.2.1 Rules to Integrate Partially Defined Context Tables 85

4.3 Concept Lattice Derivation .. 90

4.4 Advantages of the presented method ... 91

5 Transformation from Context Tables to Concepts Formation 93

5.1 Class Hierarchy in Concept Lattice ... 94

5.2 Class Hierarchy in Ontology ... 97

5.3 Transformation Rules to Build Ontology from FCA 103

5.3.1 Ontology Overview Definition Rule ... 104

5.3.2 Class Definition Rules .. 104

5.3.3 Class Hierarchy Definition Rules .. 106

5.3.4 Individual Definition Rules .. 108

5.3.5 Object Property Definition Rules ... 108

5.3.6 Implication Rules .. 112

5.4 Name Convention of Ontology Elements .. 113

5.5 Advantage of Proposed Technique ... 117

6 Implementation of Transformation from Concepts to Ontology 118

6.1 Input Model ... 119

6.1.1 Concept Lattice Structural Elements ... 119

6.1.2 Implication Rules of Concept Lattice ... 122

6.2 Output Model .. 125

6.3 Model Transformation ... 129

6.3.1 Lattice Reducer Procedure ... 130

6.3.2 Class Definer Procedure ... 132

6.3.3 Pre-phase Definition Procedure .. 137

 ix

6.3.4 Ontology Builder Procedure .. 140

7 Model Transformation from Ontology to Components 147

7.1 TADL XML Schemas .. 148

7.1.1 InterfaceType Schema.. 148

7.1.2 ComponentType Schema ... 149

7.1.3 ConnectorType Schema ... 151

7.1.4 ContractType Schema .. 152

7.1.5 PackageType Schema.. 155

7.1.6 RBAC Schema ... 155

7.1.7 System Schema ... 157

7.2 Transformation Rules ... 158

7.3 Model Transformation from OWL Ontology to TADL 163

8 Case Study and Evaluation .. 171

8.1 Case Study Implementation .. 172

8.1.1 Context Table Definition and Concept Lattice Derivation 172

8.1.2 Transformation from Concept Lattice to OWL Ontology 187

8.1.3 Transformation from OWL Ontology to TADL Description 191

8.2 Evaluation ... 195

9 Conclusion .. 201

9.1 Summary of Results ... 202

9.2 Assessment .. 205

9.3 Case Study ... 209

References ... 212

Appendix A .. 222

../../Table%20of%20contents.docx#_Toc219420331
../../Table%20of%20contents.docx#_Toc219420331

 x

List of Figures

Figure 1.1: The schema of the whole project and the scope of this thesis 4

Figure 2.1: Planets Formal Context Table .. 18

Figure 2.2: Sample Binary Context Table ... 19

Figure 2.3: Reduced Labeling Concept Lattice .. 19

Figure 2.4 (L): Many-valued context .. 20

Figure 2.4 (R): Conceptual scale ... 20

Figure 2.5: One-valued context derived from many-valued context 20

Figure 2.6: Concept Lattice of the derived one-valued context 21

Figure 2.7: Planets Concept Lattice diagram ... 24

Figure 2.8: Join-dense of Planets Concept Lattice ... 26

Figure 2.9: Meet-dense of Planets Concept Lattice ... 26

Figure 2.10: Planets Formal Context Table in Concept Explorer Tool 34

Figure 2.11: Planets Concept Lattice in Concept Explorer Tool 34

Figure 2.12: Planets implication sets in Concept Explorer Tool 35

Figure 2.13: Elba‟s main window while a diagram is edited ... 38

Figure 2.14: Dialogs for defining the database connection in Elba 39

Figure 2.15: Screenshot of ToscanaJ with nested diagram and highlighting 39

Figure 2.16: Binary Context Editor ... 41

Figure 2.17: Concept Lattice, tree view structure ... 41

Figure 2.18: Nested line diagram ... 43

Figure 2.19: XSLT processor ... 52

Figure 3.1: Hardware overview of Cash Desk .. 56

../../Table%20of%20contents.docx#_Toc219418082
../../Table%20of%20contents.docx#_Toc219418083
../../Table%20of%20contents.docx#_Toc219418083
../../Table%20of%20contents.docx#_Toc219418084
../../Table%20of%20contents.docx#_Toc219418085
../../Table%20of%20contents.docx#_Toc219418086
../../Table%20of%20contents.docx#_Toc219418087
../../Table%20of%20contents.docx#_Toc219418088
../../Table%20of%20contents.docx#_Toc219418089
../../Table%20of%20contents.docx#_Toc219418089
../../Table%20of%20contents.docx#_Toc219418089
../../Table%20of%20contents.docx#_Toc219418089
../../Table%20of%20contents.docx#_Toc219418089
../../Table%20of%20contents.docx#_Toc219418089
../../Table%20of%20contents.docx#_Toc219418089
../../Table%20of%20contents.docx#_Toc219418089
../../Table%20of%20contents.docx#_Toc219418089
../../Table%20of%20contents.docx#_Toc219418089
../../Table%20of%20contents.docx#_Toc219418090

 xi

Figure 3.2: Trading system use cases ... 58

Figure 3.3: Model Checker overview ... 65

Figure 3.4: Verifying safety and security properties in UPPAAL 66

Figure 4.1: Planets Valued Context Table (VCT) .. 72

Figure 4.2: Planets Binary Context Table (BCT)... 73

Figure 4.3: Table1 Valued Context Table (VCT) ... 73

Figure 4.4: Table2 Valued Context Table (VCT) ... 74

Figure 4.5: Table1 Binary Context Table (BCT) .. 74

Figure 4.6: Table2 Binary Context Table (BCT) .. 74

Figure 4.7: Table3 Nested Context Table (NCT) of Table1 and Table2 75

Figure 4.8: Table3 Binary Context Table .. 75

Figure 4.9 (L): Elements of ComponentType ... 77

Figure 4.9 (R): Elements of ContractType .. 77

Figure 4.10: Trustworthy component model ... 79

Figure 4.11: Concept1 Valued Context Table (VCT) ... 84

Figure 4.12: Concept1 Binary Context Table (BCT) ... 84

Figure 4.13: Concept2 Valued Context Table (VCT) .. 88

Figure 4.14: Concept2 Binary Context Table (BCT) ... 88

Figure 4.15: MergedConcepts Nested Context Table (NCT) .. 89

Figure 4.16: MergedConcepts Binary Context Table (BCT) ... 89

Figure 4.17: Merged and pruned MergedConcepts context table 90

Figure 4.18: MergedConcepts Concept Lattice .. 91

Figure 5.1: Planets Complete Labeling Concept Lattice... 95

Figure 5.2: Planets Reduced Labeling Concept Lattice ... 96

Figure 5.3: Various types of OWL properties.. 98

Figure 5.4: From FCA to OWL Ontology .. 103

../../Table%20of%20contents.docx#_Toc219418091
../../Table%20of%20contents.docx#_Toc219418092
../../Table%20of%20contents.docx#_Toc219418092

 xii

Figure 5.5: Sample hierarchy of object properties in OWL ontology 111

Figure 5.6: Class FRConcept1-Req3_IFRReq4 and its object 115

Figure 5.7: Properties hasFRPrivilege and hasnotFRPrivilege 115

Figure 5.8: Properties hasRolePrivilege and hasnotRolePrivilege 116

Figure 6.1: Lattice specifications in XML format ... 121

Figure 6.2: The Concept Lattice MergedConcepts XML file ... 121

Figure 6.3: Rules specifications in XML format .. 124

Figure 6.4: Implication rules of MergedConcepts Concept Lattice 124

Figure 6.5: Ontology overview specifications in OWL format 125

Figure 6.6: Ontological class specifications in OWL format .. 126

Figure 6.7: Individual specifications in OWL format ... 126

Figure 6.8: Object property specifications in OWL format .. 127

Figure 6.9: AllValuesFrom Property restriction specifications in OWL format 127

Figure 6.10: HasValue Property restriction specifications in OWL format 128

Figure 6.11: Equivalent class specifications in OWL format ... 128

Figure 6.12: Model Transformation from Concepts to Ontology 130

Figure 6.13: Output XML file of Lattice Reducer procedure.. 132

Figure 6.14: Output XML file of Class Definer procedure ... 137

Figure 6.15: Output XML file of Pre-phase Definition procedure 139

Figure 6.16: Output OWL file of Ontology Builder procedure 144

Figure 6.17: MergedConcepts OWL Ontology ... 145

Figure 6.18 (a): The schema of the proposed approach .. 146

Figure 6.18 (b): FCA part of the proposed approach .. 146

Figure 7.1: From OWL Ontology to TADL .. 161

Figure 7.2: Domain Engineering and Component Development 162

Figure 7.3: MergedConcepts TADL file in Visual Studio ... 168

 xiii

Figure 7.4: MergedConcepts TADL XML file (part1) ... 169

Figure 7.5: MergedConcepts TADL XML file (part2) ... 170

Figure 8.1: CashBox Valued Context Table (VCT) ... 176

Figure 8.2: CashBox Binary Context Table (BCT) .. 176

Figure 8.3: Cashier Valued Context Table (VCT) ... 178

Figure 8.4: Cashier Binary Context Table (BCT) .. 179

Figure 8.5: CashDesk Nested Context Table (NCT) ... 179

Figure 8.6: Merged and pruned CashDesk Binary Context Table (BCT) 180

Figure 8.7: Inventory Valued Context Table (VCT) ... 182

Figure 8.8: Inventory Binary Context Table (BCT) .. 183

Figure 8.9: CoCoME Binary Context Table (BCT) .. 184

Figure 8.10: CoCoME Concept Lattice .. 185

Figure 8.11: XML-format CoCoME Concept Lattice ... 186

Figure 8.12: XML-format implication rules of CoCoME Concept Lattice 187

Figure 8.13: CoCoME OWL Ontology .. 188

Figure 8.14: CoCoME TADL file ... 192

Figure 8.15: The tag Reactivity of CoCoME TADL file .. 193

Figure 8.16: The tag ConnectorType of CoCoME TADL file ... 194

 xiv

List of Tables

Table 4.1: Name Conventions for Attribute Types .. 83

Table 4.2: Conditions and Integration Rules to merge partial context tables 86

Table 4.3: Integration Rules and Actions to merge partial context tables 87

Table 5.1: Name Conventions for Ontology Elements .. 114

Table 8.1: Global variables in CoCoME case study.. 173

Table 8.2: CashBox functional requirement properties ... 174

Table 8.3: Attribute variables of CashBox context table.. 175

Table 8.4: Cashier functional requirement properties ... 177

Table 8.5: Attribute variables of Cashier context table .. 178

Table 8.6: Newly added attribute variables of CashDesk context table 180

Table 8.7: Inventory functional requirement properties ... 181

Table 8.8: Attribute variables of Inventory context table ... 182

Table 8.9: Newly added attribute variables of CoCoME context table 184

Table 8.10: Ontological Attribute/Multi-attribute/Property classes 189

Table 8.11: Ontological trustworthy classes ... 189

Table 8.12: Cashier Ontological functional requirement classes 190

Table 8.13: Ontological properties ... 191

../../Table%20of%20contents.docx#_Toc219418082
../../Table%20of%20contents.docx#_Toc219418083
../../Table%20of%20contents.docx#_Toc219418084
../../Table%20of%20contents.docx#_Toc219418085
../../Table%20of%20contents.docx#_Toc219418086
../../Table%20of%20contents.docx#_Toc219418087
../../Table%20of%20contents.docx#_Toc219418088
../../Table%20of%20contents.docx#_Toc219418089
../../Table%20of%20contents.docx#_Toc219418090
../../Table%20of%20contents.docx#_Toc219418091
../../Table%20of%20contents.docx#_Toc219418092
../../Table%20of%20contents.docx#_Toc219418092
../../Table%20of%20contents.docx#_Toc219418093
../../Table%20of%20contents.docx#_Toc219418094

 1

Chapter 1

Introduction

In this chapter, we explain the reason behind our interest in the study of Formal

Concept Analysis (FCA) in order to conduct domain engineering, which is the basis for

component-based development of dependable software systems. We state the research

problem under consideration, describe our contributions, and present the structure of the

thesis.

1.1 Research Context

This thesis is about designing, developing, and verifying a trustworthy domain model

using Formal Concept Analysis (FCA). The result of FCA will lead to an automatically

generated OWL ontology. Afterwards, the resulting ontology is automatically transformed

into an architecture description language, called TADL [49], which is used to develop the

trustworthy component-based systems. To reach this goal, a model transformation

framework is implemented which produces automatically the detailed specification of

reusable components and component-based architecture of the relevant trustworthy

 2

system. The main focus on FCA theory is to compose concept hierarchy and provide a

formal basis for domain analysis.

During the last four decades, the many challenges in the development of dependable

software systems have been addressed by many research and industrial organizations.

Since society has come to rely on much software, and much software has direct impact

on our daily life, it is important that such software be certified to be dependable.

Healthcare domain and safety-critical domain are prime examples of application

domains where software should be dependable. Any incorrect execution or service

outage in such software systems may lead to catastrophic consequences.

Development of dependable software systems has two significant aspects: the

correct implementation of system functionalities, and the selection of the appropriate

fault tolerant mechanism to deal with the anticipated failures [61]. Hence, there is a need

to design critical systems in such a way that these aspects would be provably correct.

Towards this purpose, the credentials of trust should be formally defined along with their

level of acceptance [48] while developing these systems.

1.1.1 Trustworthiness

Trustworthiness is the system property that denotes the degree of user confidence

that the system will behave as expected [65, 8]. The terms trustworthiness and

dependability are used interchangeably in literature [70]. Trustworthiness is a composite

concept and the essential quality properties contributing to trustworthiness are safety,

security, reliability, and availability. Since many of the current trustworthy systems also

involve real-time, we also include timeliness to the quality attributes of trustworthiness

 3

[65, 8, 51]. In order to develop trustworthy systems, all the mentioned properties must be

combined together in one formal approach [48].

1.1.2 Component-Based Development (CBD)

Component-Based Development (CBD) process is a special type of software

development process tailored for developing reusable components and building systems

by integrating existing components. Components provide and require services through

public interfaces. Component-Based Software Engineering (CBSE) promises many

advantages to software development including reuse, managing complexity, and

reducing development time, effort, and cost. Complexity is effectively managed by

dividing the problem into smaller problems of manageable magnitudes, each of which is

handled separately in CBSE. The cost of development is reduced by reusing existing

solutions to solve these sub-problems [70]. However, the current CBSE practices do not

provide the essential needs for developing trustworthy systems, because there is no

rigorous formal foundation for the specifications, composition, and verification of non-

functional requirements [48].

In [1] the authors have proposed a component-based software engineering approach

for developing trustworthy systems by providing a formal component model that

collectively addresses the requirements of trustworthiness and detailing a formal

component-based development framework. Also they have introduced an architecture

description language, called TADL [49], in which the trustworthy component model can

be faithfully described. The TADL specification provides a high level description of

systems and makes it easy for software architects to understand the architecture and

use it in the proposed formal approach. Many tools have been developed [89, 40] to

 4

practice the formal approach in a practical software development process. Visual

Modeling Tool (VMT) [89] is one of them. It is used as the user interface to construct

trustworthy component models and component-based systems. Also, a model

transformation tool [40] is used to analyze the TADL specification, and generate

UPPAAL and TIMES timed automata for verifying the trustworthiness properties of the

component. On the other hand, the input to the model transformation tool in [40] is to be

generated by the software developer, which in turn demands a complete knowledge of

the domain of application from which requirements are extracted.

This thesis is a contribution in this context. The scope of this thesis is in the field of

domain engineering to provide a formal approach for domain analysis and to construct a

domain model that is automatically transformed to the architectural elements of the

trustworthy component model. The schema of the whole project and the scope of this

thesis are depicted in Figure 1.1.

Figure 1.1: The schema of the whole project and the scope of this thesis

 5

1.1.3 Domain Analysis

A domain is a set of applications that share similar requirements, capabilities, and

data. Domain engineering is the set of activities that define, model, construct and

catalogue a set of artifacts specific to the domain. The artifacts include a model,

architectures, components, applications, contexts of operations, and dependability

criteria [55]. Domain engineering is an important first step in developing software

systems. At the core of domain engineering, domain analysis is used to capture and

classify the domain knowledge. It identifies the common and specific requirements that

belong to the products in the domain. The collected requirements must include the

necessary functionalities, the context of operation for each functionality and the

dependability criteria that must be satisfied by the operations. The result of the domain

analysis is a domain model which consists of knowledge about the domain by illustrating

concepts, associations between concepts, and attributes of concepts. This knowledge

can be stored in a knowledge base or ontology which contains vocabulary of the domain

anatomy. This knowledge forms the foundation based on which software systems are

developed. From the domain model, domain architecture is developed to form the basis

for all domain products. Domain applications are designed based on the domain

architecture and developed by reusing existing domain components [2].

1.1.4 Ontology

Ontology is a “content theory about the sorts of concepts, their properties,

constraints, and the relations between concepts that are possible in a specified domain

of knowledge” [14]. It includes machine-interpretable definitions of basic concepts in the

 6

domain and relations among them. Ontology development is necessarily an iterative

process and is a major approach for capturing and representing reusable knowledge

[52]. Since concepts, relationships and their categorizations in a real world can be

represented with domain-specific ontologies, they can be used as resources of domain

knowledge for domain analysis. Nowadays, ontology technologies are frequently applied

to many problem domains such as (1) communications, (2) computational inferences,

and (3) reuse and organization of knowledge [34]. Ontology defines a common

vocabulary for researchers who need to share information in a domain. In order to allow

sharing and reusing ontologies, a common ontology language was developed and

named ontology Web Language (OWL) [67, 32].

OWL is a standard development language that is based on logical models.

Therefore, it can benefit from the use of the reasoning about ontologies. Reasoning

involves: (1) syntax checking, (2) consistency checking, (3) subsumption, checking

whether a class description is more general than another class description, and (4)

query answering.

Many different tools are available for building and maintaining ontologies. The most

well known and widely used ontology tools available on the market are Protégé,

TopBraid Composer, CMapTools Ontology Editor (COE), Altova SemanticWorks, and

SMORE/SWOOP. We review these tools in Chapter 2. Ontology editors mostly define

the components of OWL ontologies such as individuals, properties, and classes. Also

they use ontology reasonors providing automated inference services on OWL-DL

ontologies. Some of them support query languages like SPARQL on ontologies.

 7

1.1.5 Formal Concept Analysis (FCA)

Formal Concept Analysis is a branch of applied mathematics based on the

formalization of concept hierarchy and lattice theory [28]. FCA is able to reveal and

visualize conceptual structures inherent in data while neither adding nor removing

information from the underlying data [11]. This formalism is capable to approach the

conceptual structure of an application domain and it may have the potential to provide a

formal basis for domain analysis and domain modeling. During domain analysis, FCA

techniques are used to extract extent objects and intent attributes. Then, formal contexts

are built, where each formal context is a triple (G, M, I) such that G is the set of objects,

M is the set of attributes, and I ⊆ G x M is a binary relation. On the set of all formal

concepts of a formal context the sub-/super-concept relation ≤, defines the ordering

relation that forms a complete lattice called the concept lattice B(G, M, I) [28]. As an

ordered set, a concept lattice can be visualized by a line diagram. The nodes in the line

diagram represent the formal concepts of the domain [18].

Over the last two decades, a collection of tools have emerged to help FCA users

visualize and analyze concept lattices [75, 38]. They range from the earliest DOS-based

implementations (e.g., ConImp and GLAD) to more recent implementations in Java like

ToscanaJ [11], Galicia [81], ConExp [15], Coron [73], and Lattice Miner [59]. A main

issue in the development of FCA tools is to visualize large concept lattices and provide

efficient mechanisms to highlight patterns (e.g., concepts, associations) that could be

relevant to the user [13]. FCA software tools such as ConExp, Lattice Miner and

ToscanaJ implement basic functionalities needed to develop formal concepts, i.e., they

define and store extent objects, intent attributes and their binary relationships in the

http://en.wikipedia.org/wiki/Formal_concept_analysis

 8

formal context table, and then produce the relevant concept lattice. Afterwards, the

obtained concept lattice may be saved as an XML-format Meta model.

1.2 Difficulties and Drawbacks

The development of dependable software systems is a difficult task. Also the current

solutions have some drawbacks.

Difficulties: The number of the assorted parameters influencing the quality of

dependability, combined with the miscellaneous cases of failure events that should be

considered, increases enormously the complexity of system development. The other

problem is to be localized in the selection of the appropriate fault tolerant mechanism at

the final development artifacts [61]. However, the trustworthiness should be provided

from the primary steps of software development process, i.e., requirements analysis

phase. Finally, lack of standard requirements specification languages and models is

another obstacle to obtain accurate analysis and inference over large complex artifacts

[85].

Drawbacks: Based on formal foundations and deep theoretical results, methods and

tools have been developed to support specification, design, validation and verification of

software systems. Many other formal specification and verification techniques have been

applied to non-trivial case studies and are used in practice, e.g., for the development of

safety critical systems.

However, actual practice shows that the techniques for engineering software-

intensive systems suffer from many severe drawbacks in quality and from

methodological shortcomings [85]:

 9

 Pragmatic modeling languages and techniques have no clean scientific

foundations which inhibit the construction of powerful analysis and development

tools;

 Formal approaches are not well-integrated with pragmatic methods and do not

scale up to complex software-intensive systems;

 The proposed solutions are too general to deal with the problem contexts so that

domain analysis is failed to carry out and this has confronted us with the lack of

standard domain-specific software components.

1.3 Motivations

Domain analysis plays a key role in developing dependable software systems. Types

and number of trustworthy attributes such as safety, security, reliability, and availability

vary from one domain to another domain. Besides, the dependability criterion is to be

composed from attributes which are related to concepts in a domain and in turn

concepts which belong to a specific application domain. Therefore, we learn that the

dependability criterion is domain-dependent and should be formulated from domain

concepts. As a result, finding an effective method for domain analysis becomes a

necessary task for building dependable systems [2]. Domain analysis enables software

engineers acquire or infer implicit knowledge that the stakeholders do not articulate, or

assess the trade-offs that will be necessary between conflicting requirements [43].

Fortunately the experts in different domains in conjunction with the standardization

bodies have recently started to make ontologies that more or less narrow this gap.

Ontology not only is understandable by machines and humans, it also has inference

rules that can automatically check for consistency. Although the importance of domain

 10

analysis was recognized in the literature [14, 45] quite early, no formal domain analysis

method was put forth for constructing dependable component-based systems [2]. So,

our first motivation is to do a domain analysis by capturing domain components and the

properties to be specified as part of the dependability criteria in order to establish a

standard OWL ontology with the quality attributes. The target ontology can be utilized as

a shared knowledge containing reusable components, and the queries and assertions

are exchanged with ontology among domain experts. Besides, the consistency checking

can be done using its inference rules. Moreover, the retrieved “trustworthy” ontology

when applied to component-based development will produce a detailed specification of

reusable components and a component-based architecture.

To reach this goal, we prefer to go through a mathematical theory such as FCA. The

use of a formal method for conceptual clustering and rule mining brings many

advantages. First, formal models built using formal methods provide us concept

classifications that can be formally analyzed. Conceptual hierarchies can be formed

using precedence relations. Besides, derived implication and association rules of formal

methods can be utilized to explore the conceptual structure, their constraints and their

relationships. Applying accurate mathematical theories and using structured

methodologies may prevent the resulting domain model from probable deficiencies such

as redundancies, inconsistencies, and contradictions. Moreover, formal models facilitate

the model transformation process and the implementation of automated tools. Hence,

the employment of formal methods in domain analysis is our second motivation.

Using formal methods leads to the construction of a formal model that remains in a

high-level of abstraction and needs to be transformed to a more practical level and a

convenient model. Since the transformation process is complicated enough to be

achieved using manual methods, developing automated procedures for model

transformation becomes an essential need for this thesis. Moreover, the employment of

 11

automatic methods minimizes the human intervention to avoid errors in the

transformation process. Hence, our third motivation is to automate the transformation

process by using a Model Transformation approach.

In this research, two transformation tools are developed, one of which automatically

generates the OWL domain model from captured domain semantics implementing our

defined transformation rules. The second tool automatically transforms OWL model into

TADL model performing the specified transformation rules in [48]. It is important that the

specified trustworthy properties be considered in transformation process of both

mentioned transformation tools.

1.4 Research Questions

Domain analysis is a challenging task that involves identification and analysis of the

applications, their detailed requirements, and the relations and data that exist in a

specific domain. This research provides an ontology-based approach for domain

engineering, and investigates how trustworthy criteria can be handled using formal

methods. The derived domain model is transformed into the formal specifications of a

component-based system containing trustworthy properties.

The research questions addressed are the following:

 What kind of formal model is suitable for domain analysis? Can Formal Concept

Analysis (FCA) help us in formal modeling? How FCA can be used to help in

dependable software development?

 Since FCA is an abstract mathematical model for defining the formal concepts,

how to define the complex artifacts of component-based systems like services

 12

and interfaces in formal context tables so that finally, they could be transformed

into component constructs in TADL?

 How to recognize the trustworthy attributes in the software requirements

specifications and transform them into the corresponding properties for formal

analysis [48]?

 How to minimize the human interference or guide it in such a manner that would

lead to have consistent software specifications [48]?

 How the system requirements, which are collected by domain analysis, are going

to be transformed and represented in to the ontology [48]?

 Can FCA be a “semantic basis” for OWL? What are the transformation rules from

FCA to OWL? How OWL can help in consistency checking?

1.5 Proposed Solutions and Contributions

In order to answer the above questions, we introduce Formal Concept Analysis

(FCA) as a mathematical theory for conceptual clustering and rule mining which is

applied in requirements analysis and component retrieval. Also, OWL is used as a

common ontology language to formally represent the results of domain analysis which

allows reasoning about ontologies. Lattice Miner FCA tool and TopBraid Composer

ontology tool are adopted as application platforms. TADL, an architecture description

language, is applied as a high level specification for trustworthy component models.

Since all the above tools use XML format to represent their input and output models,

Extensible Stylesheet Language Transformation (XSLT) is adopted to perform model

transformations.

 13

The main concern of this thesis is developing an OWL ontology derived from the

software requirements specifications by applying Formal Concept Analysis. Besides, the

resulting trustworthy domain model is transformed to TADL specification in order to be

used in dependable component-based software development. Indeed, the main

contributions of this thesis are the following:

1. Specification of the formal concepts, captured during domain analysis, to define

formal context tables using FCA. To satisfy the trustworthiness, the quality

properties safety, security and timeliness are also deliberated.

2. Development of guidelines to define the formal context tables according to the

component-based artifacts and trustworthy properties.

3. Development of guidelines to integrate the partially defined formal context tables,

to construct a unified and consistent formal concept lattice.

4. Specification and implementation of a model transformation approach to

generate a standard OWL ontology containing the trustworthy criteria.

5. Implementation of the “transformation rules” defined in [48] to generate the TADL

specification of the reusable components and the component-based architecture

which are relevant to the obtained OWL ontology.

1.6 Thesis Outline

The rest of the thesis is structured as follows: Chapter 2 discusses the state of the

art theory and tools related to this research. Chapter 3 introduces the problem statement

of a benchmark case study that will be illustrated throughout the thesis. Chapters 4 to 7

contain our main contributions. Chapter 4 states the research methodology for domain

analysis. It discusses the presentation of formal context tables that lead to the

 14

construction of the formal concept lattice. Chapter 5 provides an automated model

transformation technique for generating OWL ontology from formal concept lattice. The

implementation of the transformation rules which are presented in Chapter 5 is explained

in Chapter 6. Chapter 7 includes the transformation algorithm of ontology to TADL and

its implementation. In Chapter 8 the case study introduced in Chapter 3 is fully explained

with the techniques and tools presented in this thesis. Also the results are critically

discussed, comparing what is done in this research with what has been done in previous

works [89, 40]. Finally, in Chapter 9 we conclude the thesis by summarizing our

contributions and identifying directions for future work.

 15

Chapter 2

Thesis Background

This chapter reviews basic concepts on which the rest of the thesis depends. This

review will help the reader to understand the rationale behind the objectives, and to

appreciate and judge the contributions of this thesis. This chapter is organized in three

sections. Section 2.1 presents the Formal Concept Analysis (FCA) and its impact on

software engineering. Then, the interactions between FCA and ontology and also some

FCA tools are illustrated in this section. The formal definition of ontology and the

different types of OWL ontology languages are explained in Section 2.2 in which the

initial objectives of ontology and its utilized tools are also introduced. Section 2.3

discusses the model transformation approach and proposes its implementation using

XSLT Stylesheets and XPath [74, 47].

2.1 Formal Concept Analysis Theory and Tools

Formal Concept Analysis [28], that is also named Galois Graphs, is introduced by

WILLE [84] and WOLFF [87]. It is a mathematical theory of concept hierarchies based

 16

on Lattice theory. FCA provides a conceptual framework for structuring, analyzing and

visualizing concepts and concept hierarchies. In FCA, application domains are organized

and structured according to Concept Lattices [23]. In other words, Formal Concept

Analysis can capture the conceptual structure of an application domain [19]. It starts with

an analysis of the formal context given by use cases and the relevant "things" involved in

these cases. It produces a lattice visualized by a line diagram which is used as a design

and decision aid for building an appropriate class/object structure. This structure is a

prerequisite for further modeling steps, e.g. modeling of processes by sequence

diagrams. The formal context and the concept lattice represent two different views on

the same information. Usually a line diagram of the concept lattice is computed from the

formal context and further investigation of the context data is done with the help of the

diagram [18].

FCA has been applied in various fields of science, such as Psychology, Sociology,

Medicine, Linguistics, and Computer Science. In each domain FCA makes the concepts

and their relations explicit and precise [23]. In the domain of software engineering, FCA

has typically been applied to support software maintenance activities [20, 21, 68, 69], the

refactoring or modification of existing code [10, 24], and the identification of object-

oriented structures [60, 66, 79]. There is also a body of literature [17, 63, 64] reporting

the application of FCA to the identification and maintenance of class hierarchies in

database schemata. Beyond the identification of classes, FCA has also been applied to

other areas of software engineering including requirements analysis [7, 12, 58] and

component retrieval [22, 46]. There are some papers [22, 46, 76] which describe

applications to detailed design. There are only a few papers describing applications to

testing [5, 9]. No work has been done on the application of FCA to software integration,

qualification testing, acceptance support or coding. Thus these areas present an

opportunity to FCA researchers [77].

 17

2.1.1 FCA Theory

In this section, we review the main principles of FCA by giving some definitions and

using some examples. The detailed knowledge about FCA can be found in [28].

 Formal Context: The sets of formal objects and formal attributes together with

their relation to each other form a formal context. The simplest format for writing

down a formal context is a cross table. This is a rectangular table with one row

for each object and one column for each attribute, having a cross in the

intersection of row g with column m iff (g, m) I, where I is the incidence of the

context [56].

Definition 1: A formal context is defined [26, 16] as a triple (G, M, I) where G

and M are sets and I is a binary relation I ⊆ G × M. The elements of G and M

are called objects and attributes, respectively. If g G and m M are in relation

I, we write (g, m) I or g I M and say “object g has attribute M ‟‟.

In FCA theory, there are no restrictions about the nature of objects and

attributes. We may interchange the role of objects and attributes: if (G, M, I) is a

formal context, then so is the dual context (M, G, I
-1

) (with (m, g) I
-1

 (g, m)

I). It is also not necessary that G and M be disjoint or even different [26, 16].

The Planets formal context table [16] shown in Figure 2.1 illustrates these.

When implementing a Conceptual Information System using methods of

Formal Concept Analysis, the data is modeled mathematically by a many-valued

context and is transformed via conceptual scaling [27]. This means that a formal

context called conceptual scale is defined for each of the many-valued attributes

which has the values of the attribute as objects. If a many-valued context and a

conceptual scale are given, we can derive the realized scale, i.e., a formal

 18

context which has the objects of the many-valued context as objects and the

attributes of the scale as attributes. In the realized scale, an object has an

attribute if the value assigned to the object in the many- valued context has the

attribute in the conceptual scale [11].

Figure 2.1: Planets Formal Context Table

Definition 2: Many-valued context is a quadruple (G, M, W, I) consisting of three

sets G, M, and W, and a ternary relation I ⊆ G × M × W such that (g, m, w1), (g,

m, w2) I always implies w1 = w2. The elements of G, M, and W are respectively

called objects, attributes, and attribute values. The tuple (g, m, w) I is read as

the object g that has the value w for the attribute m. Mm is the set of all m

attributes that each m Mm may be understood as a partial map from G into W

with

m(g) = w : (g, m, w) I.

To obtain formal concepts from a many-valued context (G, M, W, I), FCA

offers the method of conceptual scaling which assigns a formal context (Gm, Mm,

Im) with m(G) ⊆ Gm, named a conceptual scale, to each (many-valued) attribute

 19

mM. In most applications, a formal context (G, {m} × Mm, J) is derived

from the many-valued context (G, M, W, I) by the conceptual scales (Gm, Mm, Im)

(m M) where the relation J is defined by g J (m, n): m(g) = n [27].

Figure 2.2: Sample Binary Context Table

Figure 2.3: Reduced Labeling Concept Lattice

Some examples are extracted from [31] to illustrate the above definitions.

Figure 2.2 and Figure 2.3 present the sample binary context table and its concept

 20

lattice, while Figures 2.4, 2.5, and 2.6 illustrate the relevant many-valued context

table and the concept lattice that are derived from conceptual scaling.

 Figure 2.4 (L): Many-valued context Figure 2.4 (R): Conceptual scale

Figure 2.5: One-valued context derived from many-valued context

 Derivation Operators: Given a selection A ⊆ G of objects from a formal context

(G, M, I), we may ask which attributes from M are common to all these objects.

This defines an operator that produces for every set A ⊆ G of objects the set Aʹ

of their common attributes.

Definition 2: For A ⊆ G of objects from a formal context (G, M, I), we let Aʹ:= {m

M | g I m for all g A}. Dually, we introduce for a set B ⊆ M of attributes Bʹ:=

 21

{g G | g I m for all m B}. These two operators are the derivation operators for

(G, M, I) [26, 16].

Figure 2.6: Concept Lattice of the derived one-valued context

 Formal Concept: A pair of a set of formal objects and a set of formal attributes

that is “closed” (i.e., one can neither enlarge the attribute nor the object set) is

called a formal concept. The set of formal objects of a formal concept is called its

extension. The set of formal attributes is called its intension. For a given formal

context, the formal concepts, their extensions and intensions are uniquely

defined and fixed [56].

Definition 3: The pair (A, B) is a formal concept of formal context (G, M, I) iff A

⊆ G, B ⊆ M, Aʹ = B, and A = Bʹ. The set A is called the extent of the formal

concept (A, B), and the set B is called its intent [26].

 22

Lemma 1: The pair (A, B) is a formal concept of (G, M, I) iff A ⊆ G, B ⊆ M, and

A and B are each maximal (with respect to set inclusion) with the property A × B

⊆ I [26].

A formal context may have many formal concepts. The set of all formal concepts

of (G, M, I) is denoted β (G, M, I).

 Conceptual Hierarchy: Formal concepts can be (partially) ordered in a natural

way. Again, the definition is inspired by the way we usually order concepts in a

“subconcept-superconcept” hierarchy.

Definition 4: Let (A1, B1) and (A2, B2) be formal concepts of (G, M, I). We say

that (A1, B1) is a subconcept of (A2, B2) (and equivalently (A2, B2) is a

superconcept of (A1, B1) iff A1 ⊆ A2. We use the ≤ symbol to express this relation

and thus have:

(A1, B1) ≤ (A2, B2) A1 ⊆ A2 B2 ⊆ B1.

The set of all formal concepts of (G, M, I), ordered by this relation, is denoted

β (G, M, I) and is called the concept lattice of the formal context (G, M, I) [26,

16].

From a philosophical point of view a concept is a unit of thoughts consisting

of two parts, the extension and the intension. The extension covers all objects

belonging to this concept and the intension comprises all attributes valid for all

those objects. Hence objects and attributes play an important role together with

several relations. Example relations [86] are (1) the hierarchical “subconcept-

superconcept” relation between concepts, (2) the implication relation between

attributes, and (3) the incidence relation “an object has an attribute”.

 23

 Supremum and Infimum: The concept operations resemble more of the

operations greatest common divisor and least common multiple.

Definition 5: Let (M, ≤) be a partially ordered set, and A be a subset of M. A

lower bound of A is an element s of M with s ≤ a, for all a A. An upper bound of

A is defined dually. If there exists a largest element in the set of all lower bounds

of A, then it is called the infimum (or meet) of A. It is denoted inf A or ˄A. The

supremum (or join) of A (sup A or ˅A) is defined dually. For A = {x, y}, we write

also x ˄ y for their infimum, and x ˅ y for their supremum. We use the large

symbols˅ and ˄ for arbitrary suprema and infima [26].

Lemma 2: For any two formal concepts (A1, B1) and (A2, B2) of some formal

context we obtain [26, 16]

1. the infimum (greatest common subconcept) of (A1, B1) and (A2, B2) as

(A1, B1) ˄ (A2, B2) = (A1 A2 , (B1 B2)ʺ),

2. the supremum (least common superconcept) of (A1, B1) and (A2, B2) as

(A1, B1) ˅ (A2, B2) = ((A1 A2)ʺ , (B1 B2)).

Note that: The operation (.)ʺ is a closure operator [28]. Sets A ⊆ G, B ⊆ M are

called closed if A = Aʺ and B = Bʺ. Obviously, extents and intents are closed

sets [44].

 Concept Lattice Diagram: The concept lattice of (G, M, I) is the set of all formal

concepts of (G, M, I), ordered by the subconcept-superconcept relation. Ordered

sets of moderate size can conveniently be displayed as order diagrams. In a line

diagram, each node represents a formal concept. A concept c1 is a subconcept of

a concept c2 if and only if there is a path of descending edges from the node

 24

representing c2 to the node representing c1. The name of an object g is always

attached to the node representing the smallest concept with g in its extent; dually,

the name of an attribute m is always attached to the node representing the

largest concept with m in its intent. We can read the context relation from the

diagram because an object g has an attribute m if and only if the concept labeled

by g is a subconcept of the one labeled by m. The extent of a concept consists of

all objects whose labels are attached to subconcepts. Dually, the intent consists

of all attributes attached to superconcepts [26]. Figure 2.7 shows the Planets

concept lattice diagram of the formal context depicted in Figure 2.1.

Figure 2.7: Planets Concept Lattice diagram

 Complete Lattice: A lattice is an algebraic structure with two operations, called

meet (infimum) and join (supremum) that satisfy certain natural conditions. With

the ordering relation ≤, the set of all formal concepts of a formal context forms a

complete lattice called the concept lattice β (G, M, I) [28].

 25

Definition 6: A partially ordered set : = (V, ≤) is a lattice, if there exists, for

every pair of elements x, y V, their infimum x ˄ y and their supremum x ˅ y

[26].

Concept lattices have an additional property that they are complete lattices.

This means that the operations of infimum and supremum do not only work for an

input consisting of two elements, but also works for arbitrarily many elements.

Definition 7: A partially ordered set : = (V, ≤) is a complete lattice, if for every

set A ⊆ V exist its infimum ˄V and its supremum ˅A [26].

Definition 8: Let P be a non-empty ordered set.

(i) If x ˅ y and x ˄ y exist for all x, y P, then P is called a lattice.

(ii) If ˅S and ˄S exist for all S ⊆ P, then P is called a complete lattice [16].

 Fundamental Theorem of Formal Concept Analysis: This theorem gives a

precise formulation of the algebraic properties of concept lattices and is a basis

for many other results. Its formulation contains some technical terms as follows:

A set of elements of a complete lattice is called supremum-dense (join-dense), if

every lattice element is a supremum of elements from this set. Dually, a set is

called infimum-dense (meet-dense), if the infima that can be computed from this

set exhaust all lattice elements [26, 16]. Figures 2.8 and Figure 2.9 depict join-

dense and meet-dense of Planets concept lattice in dashed areas.

Definition 9: Two complete lattices V and W are isomorphic (V W), if there

exists a bijective mapping φ: V → W with x ≤ y φ (x) ≤ φ (y). The mapping

φ is then called lattice isomorphism between V and W.

 26

Figure 2.8: Join-dense of Planets Concept Lattice

Figure 2.9: Meet-dense of Planets Concept Lattice

 27

Theorem 1: The concept lattice of any formal context (G, M, I) is a complete

lattice. For an arbitrary set {(Ai, Bi) | i I} ⊆ β (G, M, I) of formal concepts, the

supremum is given by

 = ((,)

and the infimum is given by

 = (, ()

A complete lattice L is isomorphic to β (G, M, I) iff there are mappings γ: G → L

and

μ: M → L such that γ (G) is supremum-dense in L, and μ (M) is infimum-dense

in L, and

g I m γ (g) ≤ μ (m)

in particular, L β (L, L, ≤) [26, 16].

The first part of the theorem gives the precise formulation for infimum and

supremum of arbitrary sets of formal concepts. The second part of the theorem

gives, among other information, the fact that every complete lattice is isomorphic

to a concept lattice. This means that for every complete lattice we must be able

to find a set G of objects, a set M of attributes and a suitable relation I, such that

the given lattice is isomorphic to β (G, M, I).The theorem does not only say how

this can be done, it describes in fact all possibilities to achieve this [26].

 Implications: Implications have been studied by Ganter & Wille [29] since 1986.

They can be used for a step-wise computer-guided construction of conceptual

knowledge called “attribute exploration” [28] that is developed into “concept

exploration” [72] which can be used to explore sub-lattices of larger data sets. An

attribute implication of a context is a pair of subsets of attributes, say X, Y, for

 28

which X’ ⊆ Yʹ, that is, each object having all attributes of X has also all attributes

of Y. This notion corresponds to that of attribute inheritance in “Semantic nets”

[23].

Definition 10: The implication relation A → B holds in a context (G, M, I) if

every object intent respects A → B. That is, if each object that has all the

attributes in A also has all the attributes in B. We also say that A → B is an

implication of (G, M, I). The set A is called the premise, and B is its conclusion

[26].

Proposition 1: An implication A → B holds in a context (G, M, I) if and only if B

⊆ A", which is equivalent to Aʹ ⊆ Bʹ. It then automatically holds in the set of all

concept intents as well [26].

Note that: The derivation operator (.)ʹ has been defined in Definition 2, and the

closure operator (.)ʺ is defined in Lemma 2.

An implication A → B holds in a context (G, M, I) if and only if each of the

implications

A → m, m B,

holds (A → m is a short form for A → {m}). We can read this off from a concept

lattice diagram in the following manner: A → m holds if the infimum of the

attribute concepts that correspond to the attributes in A is less than or equal to

(partial order on the lattice) the attribute concept for m; formally, if

˄ { μ a | a A} ≤ μ m.

A → B holds in a context (G, M, I) if

˄ { μ a | a A} ≤ ˄ { μ b | b B}.

 29

Informally, implications between attributes can be found along upward paths in

the lattice.

As an example, let us consider the Planets concept lattice (Figure 2.7). It is

considered that μ (DistanceFar) ≤ μ (MoonYes), which can be read as DistanceFar

→ MoonYes, or “A planet which is far away has a moon." As another example, we

refer to MoonNo → {DistanceNear, SizeSmall} that means “A planet with no moon is

near and its size is small”. Also, the sample implication rule {DistanceNear,

DistanceFar} → SizeLarge is always true, because its premise is contradictory.

Implications obey Armstrong rules [44]:

A minimal (in the number of implications) subset of implications, from which all

other implications of a context can be deducted by means of Armstrong rules

was characterized in [35]. This subset is called Duquenne-Guigues or stem base

in the literature. Guigess and Duquenne [28] have proved that for every context

with a finite set of attributes A, there is a sound, complete and non-redundant set

of implications, called stem base or Duquenne–Guigues Basis. For this purpose,

it defines a pseudo-intent as a set of attributes S which is not an intent (S" ≠ S),

but contains the closure (P") of every proper subset that is also pseudo intent [4].

The premises of implications of the stem base can be given by pseudo-intents.

For example, the Planets concept lattice (Figure 2.7) consists of 10

implications, including:

 DistanceFar → MoonYes

 MoonNo → {DistanceNear, SizeSmall}.

 30

Non-base implications such as

 {DistanceFar, SizeSmall} → {MoonYes, SizeSmall}

 MoonNo → DistanceNear

can be derived by propositional logic [69].

2.1.2 Impact of FCA

FCA has been successfully used in the field of Software Engineering; almost all

phases of the software life cycle like software architecture, modularization, program

code, and configuration analysis have taken advantage of FCA and its beneficial effects.

However, early phases of the software development process including requirements

elicitation, domain and system modeling have not yet adequately used FCA as a formal

framework [37]. This situation is remedied in this thesis.

“In principle, FCA can be used wherever concepts play a significant role in the

software process.” Referring to this aspect of Formal Concept Analysis, we can focus on

requirements engineering (RE), use case analysis (UCA), object-oriented modeling, the

analysis of class/object hierarchies and component retrieval. One of the interesting

typical applications of FCA is to extract class candidates from the use case descriptions

of a System Requirement Specification (SRS). Also FCA provides a "crossing of

perspectives" between the functional view and the data view respectively represented by

the use cases and “things”. By this we mean that FCA fills the gap existing in almost all

object oriented methods [37].

The class hierarchy as a principal component of object software development has

been confronted with many difficulties in design and maintenance. Especially in the

process of requirements evolution, when the size of the hierarchies grows and becomes

 31

more elaborate as the result of modifications, this problem becomes more serious.

Therefore, hierarchy construction and reconstruction that includes building the hierarchy

from scratch, evolution of the class hierarchy to accommodate new requirements,

reengineering of an existing class hierarchy, and merging existing hierarchies require

vast work and effort in this field. Moreover, the existing algorithms in many recent

approaches are not based on well-defined theoretical fundamentals. Formal Concept

Analysis (FCA) would be an appropriate solution, since it proposes a natural theoretical

framework for class hierarchy design and maintenance. In FCA, well-defined semantics

which are independent from concrete algorithms are applied to the produced hierarchies.

Also, the produced hierarchies comply with general quality criteria such as simplicity,

comprehensibility, reusability, extensibility and maintainability. Besides, two other

concrete quality criteria may be measured directly on the target software artifacts:

 Minimizing redundancy: Minimizing redundancy is a well-known software

design principle that a class hierarchy should be built on. That is, each artifact in

the code/specifications has to be defined in one single place. In addition, it

increases the consistency of final result since redundancy makes the

maintenance of the resulting software more complex by making inconsistencies

between duplicate artifacts.

 Subclasses as specializations: Code reuse, especially in code libraries, is

facilitated by inheritance hierarchies. Therefore, code sharing in the hierarchy for

the reason of acquiring more comprehensibility and reusability may become the

main purpose of creating the inheritance between the class hierarchies [31].

There are many software development scenarios within the class hierarchy life-cycle

that take advantage of Formal Concept Analysis. Some inspiring examples are as

design from scratch, refactoring, and reengineering. FCA provides a framework to deal

 32

with various levels of specification details and offers different well-defined design

structures [31].

2.1.3 FCA and Ontology

Recent researches have revealed the interactions among FCA and Conceptual

Modeling, Artificial Intelligence (in particular Description Logics), Object-Oriented

databases, and software engineering. FCA techniques help also the development of the

Semantic Web and, in particular, ontology engineering. A conceptual hierarchy is

extracted from the domain to be used for the manual or semi-automatic development of

ontology. Moreover, since there are vast and domain-dedicated ontologies in the Web,

FCA can be used for reusing and combining these independently developed ontologies.

According to this FCA facility, similarity reasoning which is the possibility of determining

similar concepts has become the principal part of Semantic Web development,

especially to perform ontology mapping, integration, and alignment. Generally, these are

difficult tasks that are time-consuming and error-prone because they require human

interaction [23].

Domain ontology and Formal Concept Analysis (FCA) have common goal of

modeling concepts but each of them has its own specifications and purposes. Domain

ontology deals with modeling a “shared understanding of the domain of interest” and

capturing conceptual knowledge accepted by domain experts. However, FCA supports

the user in analyzing and structuring a domain of interest. Domain concepts in FCA

consist of two sets including objects and attributes. Objects are the instances of the

concept in that domain and attributes are the descriptors of the concept. It is important to

mention that, FCA emphasizes on both extensional and intensional aspects, however

 33

only the intensional part is considered by ontology. As a matter of fact, objects are not

necessary in defining ontology, but they are one of the main components of concepts in

FCA [23].

2.1.4 FCA Tools

Many tools for Formal Concept Analysis have been developed and are used for the

construction, visualization and manipulation of concept lattices. There are open-source

tools for most platforms and programming environments. In this thesis, we are using

Lattice Miner [59, 13], the open-source Java program, for the following reasons: (1) it

has general features that are necessary to develop concept lattices; (2) it provides the

definition of binary, valued and nested context tables which are required for establishing

and merging complex context tables; (3) the retrieved XML format Meta model is

readable and easy to be processed. In this section the tools Concept Explorer (ConExp),

ToscanaJ, and Lattice Miner are described.

2.1.4.1 Concept Explorer. Concept Explorer [15] (ConExp) is an interactive

tool that allows users to properly explore the lattice by implementing basic functionality

needed for study and research of Formal Concept Analysis (FCA). It can be used for

analysis of simple attribute object tables, (called context in FCA) drawing the

corresponding concept lattice and exploration of different dependencies, that exists

between attributes. ConExp is released under BSD-style license. ConExp was first

developed as a part of master‟s thesis at the National Technical University of Ukraine

"KPI" in 2000. During the following years, it was extended and now is an open source

project on Sourceforge [71]. Figure 2.10 depicts the same table of Figure 2.1, in Concept

http://en.wikipedia.org/wiki/Formal_concept_analysis
http://en.wikipedia.org/wiki/Lattice_(order)

 34

Explorer tool. Figure 2.11 shows its concept lattice and Figure 2.12 its implication sets

which are produced in Concept Explorer tool.

Figure 2.10: Planets Formal Context Table in Concept Explorer Tool

Figure 2.11: Planets Concept Lattice in Concept Explorer Tool

 35

ConExp provides the functionality of “context processing”, consisting of “context

editing”, “calculation of arrow relations”, and “reduction and purifying of context”. Also,

the FCA operations such as “defining concepts count”, “calculating set of all concepts”,

“construction of line diagrams”, “finding bases of implications and association rules

holding in formal context”, “performing attribute exploration”, and “building concept

lattices” are included.

Figure 2.12: Planets implication sets in Concept Explorer Tool

ConExp allows working with several different data formats. However, it is

recommended to use “cex” as the ConExp native format. This is XML-based format that

stores information about context, lattice line diagram, and also, whether implications

and/or associative rules were calculated. ConExp consists of two parts: GUI front-end

and Library for performing experiments with algorithms. There are some useful features

like compressed option on the context editor to give a better overview on large contexts.

The algorithm developed for finding bases of implications which holds in context is

based on FCA notion of pseudo-intents (Duquenne–Guigues basis) [28] and is based on

 36

top-down approach like algorithms for calculating set of concepts and building line

diagram.

2.1.4.2 ToscanaJ. ToscanaJ [11] was first implemented to realize the idea of

Conceptual Information Systems which allow the analysis of data using concept-oriented

methods. After ten years of development, the ToscanaJ suite provided programs for

creating and using Conceptual Information Systems. Implemented as an open-source

project and embedded into the larger Tockit [78] project, ToscanaJ is also a starting

point for creating a common base for software development for Formal Concept

Analysis. More than the older versions of Toscana it is open for extensions to support

more advanced methods for conceptual analysis and retrieval of data. It is also

developed as open source project on Sourceforge [71].

While ToscanaJ supports memory-mapped systems, its full potential can only be

used in combination with a relational database system. If ToscanaJ runs connected to a

relational database, the conceptual system engineer can customize label contents by

giving SQL expressions in a specific XML syntax. To allow for easy deployment of

smaller databases, ToscanaJ also comes with an embedded database engine. By this, a

database engine is available in each ToscanaJ installation, which avoids the need for

setting up a database engine or being bound to Windows and the Jet Engine (the

database engine behind MS Access) with all its limitations. The engine embedded in

ToscanaJ does not need any setup at all. ToscanaJ will just read an SQL script defining

the database with “Create Table” and “Insert Into” statements and execute it on an

internal database system.

An editor called Elba has been developed to assist the conceptual system engineers

in creating ToscanaJ systems based on data stored in a relational database. A

 37

screenshot of Elba editing a line diagram is shown in Figure 2.13 [11]. When creating a

new system, the user is presented with a dialog to choose the type of database to

connect to (Figure 2.14-left) [11]. After choosing one type, the user enters the necessary

information for connecting to the specific database. Then Elba retrieves information

about the available data tables and the names of their columns and presents it in the last

step of the dialog (Figure 2.14-right) [11], in order to support the specification of a

mapping from the data table into a many-valued context. When this step is completed,

the user can start defining the conceptual scales. The available methods to create

scales are:

 The method Attribute List is to be used as a first step towards the implementation

of logical scaling [15]. Attributes are defined by SQL clauses and Elba creates

the corresponding lattice by supporting all possible combinations.

 Context Table method is flexible that allows the user enter arbitrary strings for

objects and attributes and select the incidence relation as required.

 Nominal Scale method enables the user to select single values from the set of all

values as attributes of the scale. The user can also combine values using logical

connectives.

 Ordinal Scale is used for ordered values represented by numbers. The resulting

line diagram is a simple chain. The user simply enters the separating values, how

they should be ordered and if an object with the exact value belongs to the upper

or lower node. As a variation, interordinal scales can be created.

 Grid Scale allows the user to build the product of two ordinal scales in one

diagram. If both scales refer to the same many-valued attribute, the resulting

scale is the standard interordinal scale. If different attributes are chosen, the

diagram visualizes the direct product of the two ordinal scales.

 38

After the creation of the scale, a diagram with the same name is created.

ToscanaJ also creates nested diagrams, although only one level of nesting is

produced. With both simple and nested diagrams, a highlighting function is available.

Whenever the user clicks on a node, its filter and ideal are highlighted with stronger

colors, while the rest of the diagram is slightly faded. Figure 2.15 shows the screenshot

of two nested diagrams [27]. In the analysis process, clicking on one node results in a

filter process, thus only the objects belonging to the selected node will be used for the

following analysis.

Figure 2.13: Elba‟s main window while a diagram is edited

ToscanaJ is the first Toscana running on multiple platforms and it can be run without

a database. It aims at users who have only basic knowledge of FCA and not as

conceptual system engineer. It is able to edit a many-valued context as spreadsheet

view and it can import several formats like csc files, cxt-format, and XML output. Once

the data is entered, either by import or by entering it manually, the many-valued

 39

attributes can be scaled step by step to create lattices and thus diagrams. Finally, the

user interface has become more intuitive while offering the same relevant features [27,

11].

Figure 2.14: Dialogs for defining the database connection in Elba

Figure 2.15: Screenshot of ToscanaJ with nested diagram and highlighting

 40

2.1.4.3 Lattice Miner. The initial objective of the FCA tool called Lattice Miner

[59] was to focus on visualization mechanisms for the representation of concept lattices,

including nested line diagrams [28]. Later on, many other interesting features were

integrated into the tool. Lattice Miner is a Java-based platform whose functions are

articulated around a core. The Lattice Miner core provides all low-level operations and

structures for the representation and manipulation of contexts, concept lattices and

association rules. Mainly, the core of Lattice Miner consists of three modules: context,

concept and association rule modules. The user interface offers a context editor and

concept lattice manipulator to assist the user in a set of tasks. The architecture of Lattice

Miner is open and modular enough to allow the integration of new features and facilities

in each one of its components [13].

 Context Module: The context module offers all the basic operations and

structures to manipulate binary and valued contexts as well as context

decomposition to produce nested line diagrams. Basic context operations include

apposition, subposition, generalization, clarification, reduction, and the

complementary context computation. Apposition and subposition operations [83]

are intended to ease the visualization of large concept lattices and do not have

straightforward computational interpretation. Apposition is the horizontal

concatenation of partial contexts sharing the same set of objects. Subposition, or

vertical assembly of contexts upon a common attribute set, is dual to apposition

[28]. Generalization of objects and attributes [13] is another way to get an

abstract view of data since it allows in most cases to reduce the size of concept

lattices. The module provides also the arrow relations for context reduction and

decomposition, which are the methods proposed [28] to simplify lattice display.

The tool provides the definition of binary context table (.lmb file format), valued

 41

context table (.lmv file format), and nested context table (.lmn file format). Also,

the tool recognizes the binary context produced by ConExp software tool (.cex

file format), and Galicia SLF binary context (.slf file format). Figure 2.16 depicts

the binary context editor where three levels of nesting are defined [13].

Figure 2.16: Binary Context Editor

Figure 2.17: Concept Lattice, tree view structure

 42

 Concept Module: The main function of the concept module is to generate the

concepts of the current binary context and construct the corresponding lattice

[13] (Figure 2.17). It provides the user with basic operators such as projection,

selection, and exact search as well as advanced features like pair approximation.

Some known algorithms such as Bordat‟s procedure, Godin‟s algorithm and

NextClosure algorithm [25] are included in this module.

 Association Rule Module: This module [13] includes procedures for computing

the Duquenne-Guigues base using the notion of pseudo-intent, generic base

using the notion of generator, and informative bases of approximate rules using

the notion of generator. Implications with negation [50] can be obtained using the

apposition [83] of a context and its complementary. This module embeds also

procedures for the computation of a non-redundant family C of implications and

the closure of a set Y of attributes for the given implication set C.

 User Interface: The initial objective of Lattice Miner was to focus on lattice

drawing and visualization either as a flat or nested structure by taking into

account the cognitive process of human beings and known principles for lattice

drawing (e.g., reducing the number of edge intersections, ensuring diagram

symmetry). Some well-known visualization techniques such as focus & context

and fisheye view have been implemented. The basic idea behind focus & context

visualization paradigm is to allow a viewer to see important objects in full detail in

the foreground (focus) while at the same time an overview of all the surrounding

information (context) remains available in the background. The focus & context

paradigm is translated into clear and blurred elements while the size of nodes

and the intensity of their color were used to indicate their importance. Various

forms of highlighting, labeling and animation are also provided.

 43

Nested line diagram (NLD) [28] is a visualization means that allows the drawing of a

concept lattice as a sub-structure of the product lattice of a set of lattices by combining

their respective line diagrams into a nested structure. Nested line diagrams are offered

to better handle the display of large lattices. Figure 2.18 shows the third level of the

nested line diagram corresponding to the binary context of Figure 2.16 [13]. Each one of

the inner nodes of this diagram represents a combination of attributes from the previous

two (outer) levels. Real inner concepts (see the node on the left hand-side of the

diagram) are identified by colored nodes while void elements are in grey color. Each

node of levels 1 and 2 can be expanded to exhibit its internal line diagram. Both flat and

nested diagrams can be saved as an image. Simple (flat) lattices can also be saved as

an XML format file [13].

Figure 2.18: Nested line diagram

 44

2.2 Ontology

A most commonly cited definition of ontology is the one offered by Gruber: “Ontology

is a formal explicit specification of a shared conceptualization” [33]. A conceptualization

is an abstract, simplified view of the world that we wish to represent for some purposes.

Every knowledge base, knowledge-based system, or knowledge-level agent is

committed to some conceptualization, explicitly or implicitly. A conceptualization, in this

context, refers to an abstract model of how people think about things in the world,

usually restricted to a particular subject area. An explicit specification means the

concepts and relationships of the abstract model are given explicit terms and definitions

[34].

Ontologies are used in artificial intelligence, the Semantic Web, systems

engineering, software engineering, and information architecture as a form of knowledge

representation about the world or some part of it. In computer science, ontology is a

formal representation of the knowledge consisting of the concepts in a domain (classes),

properties of each concept describing various features and attributes of the concept

(roles or properties), and restrictions on properties (role restrictions). Ontology together

with a set of individual instances of classes constitutes a knowledge base [52].

Building ontologies is difficult, time-consuming, and expensive, particularly if the goal

is the design of an ontology that is formal enough to support automated inference. One

reason is that, ontologies require consensus across a community whose members may

have radically different visions of the domain under consideration. In practice, the quest

for consensus is dealt with in a variety of ways. At one extreme, small lightweight

ontologies are developed by large numbers of people and then merged. At the other

extreme, rigorous formal ontologies are developed by consortia and standards

http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Semantic_Web
http://en.wikipedia.org/wiki/Systems_engineering
http://en.wikipedia.org/wiki/Systems_engineering
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Information_architecture
http://en.wikipedia.org/wiki/Knowledge_representation
http://en.wikipedia.org/wiki/Knowledge_representation
http://www.answers.com/topic/computer-science
http://www.answers.com/topic/universe-of-discourse

 45

organizations. In the former case, there will be a greater need for ontology mapping and

merging, while the latter case will require better support for collaborative design and

analysis [34].

Although ontologies were originally motivated by the need for sharable and reusable

knowledge bases, the reuse and sharing of ontologies themselves is still limited because

the ontology users (and other designers) do not always share the same assumptions as

the original designers. It is difficult for users to identify what the implicit assumptions

were and to understand the key distinctions within the ontology [34]. Besides, the

concepts included in ontology and the hierarchical ordering will be arbitrary to a certain

extent, depending upon the purpose for which the ontology is created. This arises from

the fact that objects are of varying importance for different purposes, and different

properties of objects may be chosen as the criteria by which objects are classified.

Subsequently, “domain-specific” ontologies are more applicable to industrial problems,

but may be less reusable than generic ontologies.

The main reasons to develop ontology are [62]:

 To share common understanding of the structure of information among people or

 software agents

 To enable reuse of knowledge

 To make domain assumptions explicit

 To separate domain knowledge from the operational knowledge

 To analyze domain knowledge

 To increase interoperability among various domain of knowledge

 To enhance scalability of new knowledge into the existing domain

 To search/reason a specific knowledge in a domain knowledge

Ontology is not only a hierarchy of terms, but also a fully axiomatized theory about

the domain. Generally, applications of ontology can be classified in different categories

 46

that one of them is “Ontology as Specification”. Ontology of a given domain is created

and it provides a vocabulary for specifying requirements for one or more target

applications. In this case, ontology can be viewed as a domain model. The ontology is

used as a basis for specification and development of domain applications, allowing

knowledge reuse. Thus, ontology development is one approach that has contributed to

the early stages of domain analysis [3]. The captured conceptualization and relations

should be formally specified. OWL can be used to formally represent the results of

domain analysis.

2.2.1 Ontology Web Language (OWL)

OWL is a standard development language from the World Wide Web Consortium

(W3C) [23] that facilitate describing the concepts in a domain and also the relationships

holding between concepts. It provides sets of operators like intersection, union and

negation for concept classification and analysis. Since it is based on logical models,

OWL can benefit from the use of the reasoner which checks the consistency of all

concepts and definitions in the ontology and also recognizes which concepts fit under

which definitions so that it can maintain the class hierarchy correctly. This is particularly

useful when dealing with cases where classes can have more than one parent [39].

OWL ontologies may be categorized into three species or sub-languages: OWL-Lite,

OWL-DL and OWL-Full. A defining feature of each sub-language is its expressiveness.

OWL-Lite is the least expressive sub-language while, OWL-Full is the most expressive

one. The expressiveness of OWL-DL falls between that of OWL-Lite and OWL-Full.

OWL-Lite and OWL-DL are based on Description Logics with less expressiveness

compared to OWL-Full. Description Logics are a decidable fragment of First Order Logic,

 47

so can be used in automated reasoning. Therefore, it is possible to compute the

classification hierarchy automatically and check for inconsistencies in an ontology that

conforms to OWL-DL or OWL-Lite. The choice between OWL-Lite and OWL-DL may be

based upon whether the simple constructs of OWL-Lite are sufficient or not. But still this

checking depends strongly on how the ontology has been defined. OWL-Full is the most

expressive OWL sub-language. It is intended to be used in situations where high

expressiveness or powerful modeling facilities such as meta-classes is more important

than being able to guarantee the decidability. It is therefore not possible to perform

automated reasoning on OWL-Full ontologies [39]. Reasoning involves: (1) syntax

checking, (2) consistency checking, ensuring that the ontology does not contain

contradictory facts (3) subsumption, checking whether a class description is more

general than another class description, and (4) query answering, retrieving knowledge

from the knowledge base [67, 32].

2.2.2 Ontology Tools

Many different tools are available for building and maintaining ontologies. The most

well known and widely used ontology tools available on the market are Protégé,

TopBraid Composer, CMapTools Ontology Editor (COE), Altova SemanticWorks, and

SMORE/SWOOP; among which most three important ones are described in this section.

A set of necessary requirements have been made to evaluate the mentioned software

tools. The resulting table can be found in Appendix A. Based on these requirements

each tool has been evaluated and assigned a number on a 1 for poor – 10 for excellent

scales in this Table [62]. In this survey, the tool TopBraid Composer is utilized for

opening and representing the target OWL ontology.

 48

2.2.2.1 Protégé. Protégé [57] is a free, open-source ontology editor/creator and

knowledge-base framework and perhaps the most widely-used ontology creation tool on

the market. Using protégé, ontologies can be edited and created using RDF/OWL script

language (including OWL Full, DL and Light) or through its java-based plug-and-play

environment. This environment provides a tabbed view of ontology, allowing the user to

separate the ontological elements and look at all of the characteristics and relationships

attributed to each object. Files can be exported to Clips, OWL, N-Triple and TURTLE

formats.

Despite its ease of use compared to many other commercial and open-source

ontology editors, Protégé does require a fundamental knowledge of ontology and its

defined types of objects and relationships.

OwlViz is a mapping visualization plugin designed for Protégé. It allows the user to

view an ontology as a concept map. However, OwlViz does not illustrate the

relationships between each object, nor does it allow the user to create or edit the

ontology within this view. Similar plugins include OntoViz and Techquila are used,

although OwlViz is the better of the three.

2.2.2.2 TopBraid Composer. TopBraid Composer [80] is a professional

development environment for W3C's Semantic Web standards RDF Schema, the OWL

Web Ontology Language, the SPARQL Query Language and the Semantic Web Rule

Language (SWRL). Composer provides a comprehensive set of features to cover the

whole life cycle of semantic application development. In addition to being a complete

ontology editor with refactoring support, composer also can be used as a run-time

environment to execute rules, queries, reasoners and mash-ups.

 49

Based on Eclipse, Composer can also be extended with custom Java plug-ins. This

supports the rapid development of semantic applications in a single platform. Composer

can be used to edit RDFS/OWL files in various formats, and also provides scalable

database backends (Jena, AllegroGraph, Oracle 10g and Sesame) as well as multi-user

support.

It has a number of features which make it a very competitive tool comparable to

Protégé. Among these features are Integrated Development Environment for Semantic

Web applications, UML-like Class, Diagrams, classification and Consistency Checking,

Rules, SPARQL Queries, Data Source Mapping, Geography and Location Mapping,

Calendar and Chart Mash-Ups, Semantic Web and Mash-Up development with RDFs

and GRDDL, Visual RDF Graphs, Multi-User Support, Ontology-Driven Forms, Form

Customization, Source Code Editing, Imports and Namespace Management, Import of

Databases, UML, XML Schema and Spreadsheets, and HTML Documentation

Generation.

TopBraid Composer is a very flexible platform that enables Java programmers to add

customized extensions or to develop stand-alone Semantic Web applications. For

example, it is fairly easy to add new kinds of windows, editors, menu entries or even new

storage formats to Composer. One of the advantages of Composer is that it can serve

as an application development framework: programmers can develop components as

plug-ins and benefit from the rich features of Composer to run experiments and tests

against real-world data. When the functionality has been sufficiently tested, the module

can be deployed into a stand-alone application, especially on the TopBraid platform.

2.2.2.3 CMapTools Ontology Editor (COE). CMapTools [41] allows

users to construct, navigate, share and criticize knowledge models represented as

 50

concept maps. The COE application provides users with an outlet to create ontology in

the form of concept maps. This was the version we evaluated extensively. CMap Server

allows a group to collaborate online and provide feedback to one another.

CMapTools allow the user to import various types of XML and text documents and

export ontologies in OWL, N-Triple (and its various formats) and TURTLE. It offers

validation and concept suggestion tools. CMaps is a very appealing tool for our team‟s

purpose as it is the only toolset which is primarily a mind/concept mapping tool with

ontological features. The intended users of the tool require the ability to create maps that

can be loaded by our ontology experts in ontology software and vice versa.

One of the major benefits of CMap Tools is that users need only a very fundamental

understanding of ontology (mostly the types of relationships they must define). The

ontology can then be created as a concept map using a simple drag and drop interface.

A styles template also allows the user to quickly and easily customize their objects, lines

and map in general. When loading ontology into CMap, it recognizes the types of

relationships used and provides the repository of relationships to choose from when

creating a relationship within the concept map, which is very helpful for anyone working

on an ontology created by another author.

The zooming in and out is fairly limited and navigating large concept maps can be

annoying when you need to work on multiple areas of ontology. So, CMap provides a

Web Service where developers use the language of their choice and the Knowledge

Exchange Architecture of CMapTools and the CMapServer known as KEA. The API for

KEA consists of an XML specification for Web services interface. This allows

programmers to create their own modules that provide some features that CMap

currently do not provide, or possibly enhance an existing feature.

 51

2.3 Model Transformation

The motivation behind this short survey is to emphasize model transformation as a

formal method in software design process, which in some level guaranties consistency

and correctness of existing components. The model transformation process consists of

starting from an initial requirements elicitation step and to continue through feeding

acquired information to a formal framework known as FCA. This framework provides a

formal model based on concept lattices that remains in high-level abstract layers and

needs to be transformed to more practical and convenient models. To automate the

transformation process, Model Transformation approaches with an extend domain of

methods and tools are available. In this section we will not go deep into different Model

Transformation methods but on the other hand we will search for the best approach and

method that is convenient for our model.

A model transformation in Model-Driven engineering takes as input a model

conforming to a given Meta-model and produces as output another model conforming to

a given Meta-model. To achieve this goal, there are many tools that support the

automation of model transformation. These development tools not only offer the

possibility of applying predefined model transformations on demand, but also offer a

language that allows (advanced) users to define their own transformation rules and

execute them on demand.

Performing a model transformation, taking one or more models as input and

producing one or more models as output, requires a clear understanding of the abstract

syntax and the semantics of both the source and target. A common technique for

defining the abstract syntax of models and the inter-relationships between model

elements is Meta-modeling. To define the required Meta-models, we need an

 52

appropriate data schema to express input and output models. XML (Extensible Markup

Language) is specially designed to be easy to use over the Web, to be human-readable

and straightforward for applications to read and understand. XML is quickly becoming

the universal syntax for information transfer; therefore a vast amount of XML

transformation has XML as the destination as well as the source. The tools applied in

this thesis will manipulate input and output models taking advantage of XML format. For

example, the input model of transformation process is produced by an FCA tool known

as Lattice Miner that creates the concept lattice in XML schema. Also, the final target

model of this framework is considered to be an OWL ontology that certainly is in XML

format.

Since our input and output models can be serialized as XML format using the XML

Metadata, implementing model transformations using XSLT, which is a standard

technology for transforming XML, seems very attractive. Extensible Stylesheet

Language Transformation (XSLT) is an XML-tool to perform model transformation. It

defines the mapping from some XML into another markup language like XML, HTML, or

into plain text. XSLT Stylesheets are interpreted by XSLT processors, which generate a

result from source XML. XSLT processors can be embedded in web browsers or be run

from the command line to run Stylesheets. (Figure 2.19 [74])

Figure 2.19: XSLT processor

 53

XSLT uses XPath to select parts of XML to process and to perform calculations.

XPath, the XML Path Language, is a query language for selecting nodes from an XML

document. The most important role of XPath is to collect information from an XML

document by navigating through the document. A secondary role of XPath is as a

general expression language, to perform calculations. There are two types of

implementing approaches in XSLT transformation: Push and Pull.

In the push approach, multiple templates are used, each matching different types of

nodes to process a document-oriented XML. The contents of the input XML get pushed

through the Stylesheet to be transformed. The final structure of the result is highly

determined by the structure of the input.

In the pull approach, some special nodes are selected to change the order in which

the input is processed or to only process certain portions of the input. Mostly, pull

method is used for data-oriented XML when the structure of the input XML is fixed and it

is obvious what exact result is going to be obtained from the input. The final structure of

the result is mainly determined by the structure of the Stylesheet and how the templates

fit together.

The best Stylesheet uses a hybrid of both approaches to process different parts of a

particular XML document. In this survey, four Stylesheets have been created for

implementing the transformation algorithms from FCA to ontology. All defined

Stylesheets use both approaches to process different parts of input XML files. The

templates are used to match the nodes that get pushed to the output XML files and the

specified nodes are selected to change the structure of files.

http://en.wikipedia.org/wiki/Query_language
http://en.wikipedia.org/wiki/Node_%28computer_science%29
http://en.wikipedia.org/wiki/XML

 54

Chapter 3

Case Study Statement

This Chapter explains the problem used as a case study in this thesis. The problem,

called Common Component Modeling Example (CoCoME) [36] has been given as the

benchmark case study by the component based software engineering community. This

case study is the test bed used to compare the merits and drawbacks of different

component based development techniques.

The author of [40] applied the trustworthy component-based methodology in [48] to

CoCoME and showed that the approach in [48] is quite general to formally model such

problems. However, the author of [40] identified the basic components only manually

and created them using the Visual Modeling Tool [89]. In this thesis we use FCA to

create ontology together with some semantic information and constraints on it which can

be regarded as the domain model of the problem. The significance is that, to the best of

our knowledge, FCA was never used by the software engineering research and

development community as a means of formal domain analysis. OWL ontology is

automatically constructed from the domain model and then it is automatically

transformed into the trustworthy architecture language (TADL [49]) of the target

component-based system.

 55

First, the case study is briefly introduced. The detailed description of the case study

can be found in [36]. Afterwards, the transformation tool in [40] is addressed as a tool to

generate UPPAAL specification of CoCoME case study to verify the trustworthy

properties. Next, the drawbacks of the solution stated in [89] and [40] are presented, and

finally, we explain the work done in this thesis as a resolution to these problems.

3.1 Common Component Modeling Example (CoCoME)

CoCoME [36] is a common component modeling example that has been introduced

by the component development community in order to evaluate and compare the

practical application of existing component models using a common component-based

system as a modeling example. CoCoME includes properties of real world systems and

its size is limited to be modeled with reasonable effort. Besides, it comes from a domain

which is easily understandable without heavy-weighted system requirements

specifications.

CoCoME is a trading system which includes all transactions concerning the sales in

a supermarket, starting from the customer interaction at cash desk, product scanning,

payments, and inventory updates. Also, it includes the management considerations like

ordering goods from wholesalers, generating various kinds of reports and even the

product exchange process on low stock which is systematically manipulated.

3.2 System Overview

The first element of the trading system in CoCoME case study is the “Cash Desk”.

Figure 3.1 extracted from [36], depicts an overview of the cash desk where the customer

 56

purchases the products and pays for them. The cashier scans the products and handles

the payment. Furthermore, the system provides an express checkout to speed up the

sale process in which the customer can order only a few goods and the payment must

be in cash.

The cash desk consists of the following devices:

 Cash Box: starts and finishes the sale transaction, and holds the received cash.

 Barcode Scanner: identifies the products being purchased.

 Card Reader: handles card payments (cash payments are handled by the Cash

Box).

 Printer: prints the bill to be handed out to the customer at the end of the sale

transaction.

 Light Display: signals the customer the current mode of the cash desk to identify

if it is in normal mode or in express mode.

 Cash Desk PC: handles the sale transaction, communicates with the Bank, and

integrates all devices at the cash desk.

Figure 3.1: Hardware overview of Cash Desk

 57

Each store consists of several cash desks connected to a Store Server and a Store

Client in a network. The set of cash desks are called cash desk line. The manager is

authorized to order products, view reports, change price, and administer the inventory by

using the Store Client. Each store is connected to an Enterprise Server which in turn is

connected to an Enterprise Client.

3.3 System Requirements Specification

The CoCoME case study introduces the trading system by defining the specifications

of its use cases. The trading system use cases including all actors are presented in

Figure 3.2 [36]. In this section, a brief description of the use cases including the

functional and non-functional requirements of the trading system is presented. More

details can be found in [36].

3.3.1 Process Sale

Purchasing goods by customers in store is provided in the Process Sale use case.

The cashier is the only actor who interacts with the customer in this process when the

customer presents the items to buy at the cash desk. The cashier begins the new sale

process by pressing the start new sale button. Then the cashier enters the item identifier

manually using the keyboard from the Cash Box or by using the Barcode Scanner. The

system shows the product description, price and running total. Till now, one purchasing

item is registered in the system. This process is repeated until the cashier ends entering

items by pressing the sale finished button at the cash desk.

 58

Figure 3.2: Trading system use cases

There are two options for the payment, Bar Payment and Card Payment. The cashier

initiates bar payment by pressing bar payment button at the Cash Box. The cashier

enters the cash received from the customer using the Cash Box and hands over the

change and closes the Cash Box. Likewise, the cashier initiates card payment by

pressing card payment button at the Cash Box. The customer‟s card is pulled though the

Card Reader and after the Bank‟s approval the card is returned to the customer. In the

case of card refusal, the card payment can be turned into a bar payment by pressing the

bar payment button. Afterwards, the completed sale is registered in the inventory and

the stock is updated. If the inventory is not available, the system saves the sale and

loges it as soon as the inventory is available again. Finally, the transaction is finished by

 59

printing a receipt which is handed on to the customer. The time requirements for

processing the sale transaction are the following:

 Time for pressing the start new sale button = 1.0s;

 Time for printing the bill = 3.0 s;

 Time for pressing the sale finished button = 1.0 s;

 Time for updating the inventory = 2.0 s;

 Time for processing a bar payment = 120.0 s;

 Time for pressing the bar payment button = 1.0 s;

 Time for pressing the card payment button = 1.0 s;

 Time for waiting for card validation = 30.0 s;

 Time for scanning an item = 5.0 s;

 Time for showing product description, price, and running total = 1.0 s;

3.3.2 Manage Express Checkout

Changing Cash Desks from the normal mode to the express mode is provided in the

Manage Express Checkout use case. However, the system enables the cashier to

change it back to the normal mode by pressing the disable express mode button. This

use case is triggered by the system when the condition for the express checkout is met,

i.e., if 50% of all sales during the last 60 minutes has less than 8 items each. In this

case, the Cash Desk which finishes the last sale will be changed to the express mode.

So, the Light Display is switched to green and the maximum items per sale would be 8.

Moreover, card payment is not allowed and the customer has to pay just in cash.

In the case of deactivating the express mode by the cashier, the Light Display is

switched from green to black and the limitation on the number of items per sale is

 60

removed. Besides, the customer is capable to pay either by card or in cash. The time

requirements for managing an express checkout are as follows:

 Time for pressing the disable express mode button = 1.0 s;

 Time for switching to express mode = 1.0 s;

 Time for deactivating card payment = 1.0 s;

 Time for switching the green Light Display on = 1.0 s;

3.3.3 Order Products

Ordering new product items is provided in the Order Products use case. The

manager is the only actor who has the authority to do this process at the Store Client in

the case of supplying the store with some new products. At first, two lists of products are

demonstrated by the system: one is the list with all products; the other is the list with

products which are running out of stock. The manager chooses the products to order

and enters the corresponding amount for each product item, and then presses the order

button at the Store Client. The system sends the orders to the appropriate suppliers and

generates an order identifier for each. Then the results are presented to the manager.

The time requirements for ordering products are as follows:

 Time for pressing the order button = 1.0 s;

 Time for displaying the lists of products = 1.0 s;

 Time for entering the order and its amount = 10.0 s;

 61

3.3.4 Receive Ordered Products

Accounting the ordered products which are newly arrived at the store is provided in

the Receive Ordered Products use case. The stock manager is the actor who has the

authority to do this process at the Store Client when the ordered products arrive at the

store. The attached order identifier which has been assigned during ordering the

products is verified by the stock manager. If the delivery is complete and correct, the

stock manager enters the order identifier and presses the roll in received order button.

Then, the inventory is updated by the system. In the case that the delivery is not

complete or correct, the stock manager sends the products back to the supplier and

waits for the new delivery but no changes are registered at the system. The time

requirements for receiving ordered products are as follows:

 Time for pressing the roll in received order button = 1.0 s;

 Time for updating the inventory = 1.0 s;

 Time for displaying the ordered list = 1.0 s;

3.3.5 Show Stock Reports

Generating stock-related reports at the store is provided in the Show Stock Reports

use case. The manager is the only actor who has the authority to see the statistics about

the store in the reporting GUI. In this case, when the manager enters the store identifier

at the Store Client and presses the create report button the system displays a report

including all available stock items in the store. The time requirements for showing stock

reports are the following:

 Time for entering store Id and pressing the create report button = 1.0 s;

 62

 Time for generating the stock report = 1.0 s;

3.3.6 Show Delivery Reports

Generating delivery-related reports about the enterprise is provided in the Show

Delivery Reports use case. The manager is the only actor who has the authority to see

the statistics about the enterprise in the reporting GUI In this case, when the manager

enters the supplier identifier at the Store Client and presses the create report button the

system displays a report including the calculated mean time to delivery for each supplier

of a specific enterprise. The time requirements for showing delivery reports are the

following:

 Time for entering supplier Id and pressing create report button = 1.0 s;

 Time for generating the delivery report = 1.0 s;

3.3.7 Change Price

Changing the price of the products is provided in the Change Price use case. The

manager is the only actor who has the authority to change the price of the products in

the store at the Store Client. At first, a list of all available products in the store is

demonstrated. The manager selects a product item and changes its price, and then

presses ENTER to confirm it. The system changes the price and updates the inventory.

From now on, the product will be sold with its new price. The time requirements for

changing the price are as follows:

 Time for pressing ENTER = 1.0 s;

 Time for displaying the price list = 1.0 s;

 63

 Time for entering the new price = 5.0 s;

 Time for updating the inventory = 5.0 s;

3.3.8 Product Exchange

Verifying the stock level for each product and sending a request to the Enterprise

Server for such products are done in the Product Exchange use case. The Enterprise

Server checks whether the required products are available at other stores and makes

the necessary calculations to see if it is economical to ship the product to the requesting

store. This Use Case is triggered by the system while only servers are involved as the

actors. If the Store Server is connected to the Enterprise Server, the query of product

shortage including its product identifier is sent. Otherwise, the query is queued and

whenever the Enterprise Server is available it will be re-sent again. When the Enterprise

Server receives the query, it determines all nearby stores which are less than 300 km

away from the requesting store. Since the Enterprise Server does not have the current

global data about the stores at any time, it asks them to flush their local data to the

Enterprise Server in order to update its database. The time requirements for product

exchange functionality are as follows:

 Time for query from the requesting Store Server to the Enterprise Server = 2.0 s;

 Time for query from the Enterprise Server to one nearby Store Server = 2.0 s;

 Time for flushing the cache of one Store Server and returning the result = 2.0 s;

 Time for making a decision by the Enterprise Server = 1.0 s;

 Time for marking the products as incoming by the Enterprise Server = 2.0 s;

 Time for sending the delivery request to the providing Store Server = 2.0 s;

 64

3.4 Transformation Tool for Verification Process

Design time analysis is an important step in the process of developing software

systems, with the goal of ensuring that the system design conforms to the design

constraints that are stated as part of the functional and non-functional requirements.

There are some well-known techniques for formally analyzing a design. These include

model checking, axiom-based formal verification, and real-time scheduling analysis that

take into account resource constraints. The transformation tool [40] has used model

checking and real-time schedulability techniques to verify that the system under

development is both safe and secure. To do so, the architecture of a trustworthy system,

formally described in Trustworthy Architectural Description Language (TADL), is taken

as the input for the analysis stage and is transformed into behavior protocols used by

existing verification tools. A tool based on such techniques has been designed and

implemented which automatically generates two types of models from a TADL

description. One is the UPPAAL model, on which the security and safety properties of

the system under design are formally verified. The second output is the TIMES model,

on which real-time schedulability analysis is performed. The techniques and tools are

applied to the CoCoME case study to illustrate the transformation process from a system

defined using TADL model to UPPAAL model.

UPPAAL is one of the model checking tools which is used for the modeling,

simulation and verification of real-time systems, and was jointly developed by Uppsala

University and Aalborg University [6]. Model checking is the most successful approach in

developing tools and techniques for checking the requirements and design of software

systems. Figure 3.3 extracted from [53], shows the main idea behind model checking.

The model checking tool takes as an input the requirements or design (called models)

 65

and a property (called the specification) that the system should satisfy. The output of the

tool is either yes, if it satisfies the specification and no, otherwise [53].

Figure 3.3: Model Checker overview

The main goal of UPPAAL tool is to model a system with timed automata using a

graphical editor, simulate it to validate the behavior and then verify that the model is

correct with respect to a certain set of properties. The UPPAAL verifier can be used to

check the behavior of the system by defining different checking formulas. This can be

done manually by the user after the system has been transformed into the UPPAAL

model and opened using the UPPAAL tool. Figure 3.4 extracted from [40], shows the

sample of the safety and security properties that were tested on the resulting UPPAAL

model of the CoCoME case study. Also, the corresponding verification results are

displayed in the status bar.

Now, a question arises and it is “what is the justification of the components?” and

“how the components have been developed?” to be used in such a verification process.

As proposed in [89] and [40], the application developer focuses on the modeling and

analysis aspects to design a visual model of a component-based system using Visual

Modeling Tool [89] without being burdened by the formalism. VMT tool provides a

graphical user interface for developers to design components, connectors and system

configurations along with their attributes and properties. Also, VMT tool can

 66

automatically generate the relevant formal behavior model in TADL description

language. Afterwards, the resulting TADL specification represents the input file to the

Transformation Tool [40]. The tool can then perform the transformation to UPPAAL or

TIMES, depending on the selected transformation type. If the UPPAAL transformation is

selected, the produced XML file is provided as the input to the UPPAAL model checking

tool to perform the required verification and simulation. If TIMES transformation is

selected, the produced XML file is provided as the input to the TIMES tool, where

schedulability analysis can be performed.

Figure 3.4: Verifying safety and security properties in UPPAAL

The proposed solution in [89] and [40] has the following drawbacks:

 The developer manually determines the system components as well as the

functional and non-functional properties, intuitively and without following any

 67

specific rules and methodologies and even without using the formal methods. As

a consequence, some unpredictable deficiencies like redundancy,

incompleteness, inconsistency, or contradiction may occur in system design.

Even though VMT as a formal tool and TADL as a formal language are applied to

fulfill the formalism, the verification process is done in the last steps of

components design using model checking tools (UPPAAL tool), and/or

schedulability analysis tools (TIMES tool). Actually, the analysis and reasoning

about the behavior of the trustworthy components are burdened to the mentioned

extended timed automata behavior models.

 The UPPAAL tool can be used to verify whether the model is correct with

respect to a certain set of properties that are manually specified by the user. The

properties that can be checked using this feature are Reachability, Safety and

Liveness. Since the checking formulas are manually defined, some significant

properties may be ignored to be verified, or may not correctly addressed by the

specified formulas.

 When the verification rules of the UPPAAL model checker are performed, it may

generate some results that are not satisfied by the UPPAAL verifier. These

special conditions are not predicted in [40] and it does not provide any solution

for them. Maybe the system developer should go back to the design phase and

modify the corresponding elements or parameters in VMT tool, in order to

achieve the satisfaction of the manually defined rules. However, there is not any

specific guideline for the developer to reach to this goal that justifies the

trustworthiness properties.

To solve the above problems, in this thesis, the Formal Concept Analysis as a

mathematical theory is used to compose concept hierarchy and provide a formal basis

for domain analysis that leads to design the component elements and other artifacts of

 68

the system, including its functional and non-functional requirements. The application of

FCA in the first stages of design has the advantage of constructing a consistent class

hierarchy. Besides, by extracting the implication rules, the user would be able to make

the logical deductions and discover the intra-concept relations between the system

components and the design constraints. Afterwards, the derived system artifacts are

automatically transformed to the OWL ontology elements by using model transformation

process. The concept hierarchy developed in FCA is correspondingly transferred to the

class hierarchy in resulting ontology and since the OWL ontology is based on logical

models, the user can take advantage of using its reasoning engine to accomplish the

syntax checking, consistency checking and subsumption. Therefore, if there would be

any deficiency or contradiction in the developed ontology, the user can identify and fix it

by modifying the relevant system elements in FCA. Finally, the verified ontology is

automatically transformed to TADL architecture description language which is the formal

specification of the dependable component-based system. The subsequent TADL file

can be represented as the input file for the transformation tool in [40] to be transformed

to UPPAAL model so that the safety and security properties of the system would be

formally verified by UPPAAL model checking tool.

The methodology to be outlined in this thesis will be applied to CoCoME case study

in Chapter 8, so that, the OWL ontology and the relevant components in TADL will be

derived. Then, the results will be compared with the work done in [89] and [40] to justify

the necessity of using Formal Concept Analysis in order to get more accurate

component models.

 69

Chapter 4

Methodology for Constructing Formal

Context Tables

In this Chapter, the process for capturing the formal concepts and the rules for

defining and integrating formal context tables using FCA mathematical theory are

introduced. Then the concept lattice corresponding to the deduced concept hierarchy is

developed. The basic idea is to construct simple formal context tables that contain partial

relational information, and then combine them into a large table that is complete with

respect to the relational information on the objects and attributes occurring in the use

cases. Therefore, the approach for developing the entire context table of a software

application consists of the following two main steps: (1) Partially defining context tables,

and (2) Constructing a unified formal context table.

Identifying, defining and entering the concept definitions, especially in the case of

large and complex application domains, are challenging tasks because it can be lengthy,

costly, and controversial. User participation is particularly important in the early phases

of software development which cannot be ignored. User has to be involved as much as

possible to achieve a good and practicable analysis of the application field. Although the

 70

beneficial techniques of text mining and some relevant tools are developed to reduce

time and cost, some domain expert knowledge is required in this stage to capture the

formal concepts and construct the context tables. Moreover, once the context tables are

defined, they are joined and converted to a pruned concept lattice that is manually

accomplished by the designer. The designer has to resolve possible conflicts and

duplicates according to the rules provided in this work.

In Section 4.1, the definition of partial context tables is discussed. First, different

types of context tables and how they are related to one another are described. Next,

some rules are provided for composing the context tables. In Section 4.2, the integration

of the partially context tables and the construction of a unified formal context table are

explained. Section 4.3 presents the concept lattice containing the derived formal concept

hierarchy. Finally, the advantages of the presented methodology in this Chapter are

discussed in Section 4.4.

4.1 Partial Definition of Context Tables

FCA considers a binary relation I (incidence) over a pair of sets O (objects) and A

(attributes). The relation is given by the matrix of its incidence relation (oIa means that

object o has the attribute a) which is called a formal context [82]. Formal context Table is

the most flexible and basic data structure of FCA. For a given formal context, the formal

concepts, their extensions and intensions are uniquely defined and fixed. The set of all

formal concepts of a formal context, made up of the closed subsets ordered by set-

theoretical inclusion, forms a complete lattice, called the concept lattice. The user can

derive a line diagram of the concept lattice from a given context, and conversely derive

the context matching a line diagram.

 71

The system to be developed may consist of several use cases, each containing

some sets of various components. First, simple formal context tables that contain partial

relational information are defined. Then the partially defined context tables are combined

into a unified large table that is complete with respect to the relational information on

objects and attributes occurring in the use cases. By this technique, the design phase is

manipulated more precisely and efficiently.

The software designer realizes the system specifications by using domain knowledge

and intuitively captures the extent objects, the intent attributes, and their binary

relationships to define the formal concepts. The extent objects are the occurrences of

varying conditions and different combination of attributes. The intent attributes are the

features, specifications and peripherals of objects.

4.1.1 Different Types of Formal Context Tables

In FCA there are two types of context tables. These are binary context table and

many-valued context table:

 Binary context table: Binary context table is a rectangular table with one row for

each object and one column for each attribute, having a cross (x) in the

intersection of row g with column m if and only if (g, m) I, where I is the

incidence of the context [82]. As an example, we refer to Figure 2.2 and Figure

2.3 of Chapter 2, presenting the sample binary context table and its concept

lattice.

 Many-valued context table: It is a context table in which the objects may have

many-valued attributes. It consists of objects, attributes and the attribute values,

where (g, m, w) I is read as “The object g has the value w for the attribute m‟‟.

 72

To obtain formal concepts from a many-valued context, FCA offers the method of

conceptual scaling [27] which transforms many-valued context tables to binary

context tables. This means that a formal context called conceptual scale is

defined for each of the many-valued attributes which has the values of the

attribute as objects. If a many-valued context and a conceptual scale are given,

we can derive the realized scale, i.e., a formal context which has the objects of

the many-valued context as objects and the attributes of the scale as attributes.

In the realized scale, an object has an attribute if the value assigned to the object

in the many-valued context has the attribute in the conceptual scale [11]. Figures

2.4, 2.5, and 2.6 of Chapter 2 illustrate a sample many-valued context table and

the concept lattice that are derived from conceptual scaling.

Lattice Miner [59, 13] is the FCA software tool employed in this thesis. It provides the

definition of Binary Context Table (BCT), Valued Context Table (VCT), and Nested

Context Table (NCT). The two latter tables may be automatically converted to binary

context table. As an example, the Planets valued context table (Figure 4.1) is defined and

converted to binary context table (Figure 4.2).

Figure 4.1: Planets Valued Context Table (VCT)

 73

BCT corresponds to the FCA binary context table and VCT corresponds to the many-

valued context table; while NCT is a combined table of two or more BCTs or VCTs. In

NCT, the combined tables are concatenated with each other. When NCT is converted to

BCT, the many-valued attributes are split into their diverse values. Lattice Miner tool

differentiates the generated attributes by varying their names to make them unique.

Figure 4.2: Planets Binary Context Table (BCT)

Figure 4.3: Table1 Valued Context Table (VCT)

For example, the sample valued context tables Table1 and Table2 are defined and

depicted in Figure 4.3 and Figure 4.4. Then, they are converted to BCTs (Figure 4.5 and

 74

Figure 4.6). Table3 is the nested context table of Table1 and Table2 shown in Figure 4.7.

The NCT Table3 is converted to binary context table (Figure 4.8).

Figure 4.4: Table2 Valued Context Table (VCT)

Figure 4.5: Table1 Binary Context Table (BCT)

Figure 4.6: Table2 Binary Context Table (BCT)

 75

Figure 4.7: Table3 Nested Context Table (NCT) of Table1 and Table2

Figure 4.8: Table3 Binary Context Table

Since the context tables defined for large software systems will contain a large

number of intent attributes, some of which may have many values, the maintenance of

such messy context tables is time consuming and error-prone. Therefore, in this thesis,

first we construct a many-valued context table for each partially defined table, and then

convert them into their corresponding binary context tables.

4.1.2 Definition of Attributes in Formal Context Tables

Formal context table in FCA consists of the abstract elements such as objects and

their attributes that finally leads to obtain formal concepts. However, the goal of this

thesis is to extract the components and their related artifacts which are relevant to the

 76

component-based model for developing real-time reactive systems (TADL model).

Therefore, a guideline specification is essential to help the designer in categorizing the

concepts and to determine a convention for naming the attributes. Some primary

specifications of TADL component model are described here to provide the necessary

information.

4.1.2.1 Primary Specifications of TADL Component Model.

Some main elements of the TADL component model [49] are introduced as follows.

 Component: A component provides and requests services through public

interfaces. Also, it defines attributes that define local value-type properties. Each

component consists of many elements, one of which is the contract as shown in

Figure 4.9 (L). The contract defines the behavior of the component.

 Contract: A contract defines the safety requirements that govern the interactions

that occur at the interfaces of a component. Also, it defines time constraints that

regulate the service requests and responses so that the reactions of a

component respect any timeliness requirements. Predictability specification

ensures that component reactions are precisely defined. Within the contract, a

list of reactivity rules that define the request-response relationship between the

services is given. The contents of the contract can be seen in Figure 4.9 (R).

 Reactivity: Reactivity has two services, a request service and a response

service. As part of the contract, there are also time constraints and data

constraints, which are used for safety purposes. Contract also includes the

reactions to the request event, and the update element to define the post

condition of the reactivity.

 77

 Service: Service is a functionality provided or required by a component through

public interfaces. A service can be provided by only one interface. A service can

have multiple data parameters. A data parameter is a variable passed on to a

component within a request for a service or passed on with a provided service.

The type of the request service defined in an interface is input and the type of the

response service is output. The type of the service defined in an internal interface

is internal. A service may be of type input in one component and may be of type

output in another component.

 Figure 4.9 (L): Elements of ComponentType Figure 4.9 (R): Elements of ContractType

 Safety contract: A safety property is considered as part of the contract on a

component type. It controls the way services are provided or requested. Each

contract has a one-to-one relationship with a component type. A contract can

have one or more safety properties, where a safety property defines an invariant

specification over the component behavior. Each contract contains at least one

 78

reactivity property, each of which expressing a relationship between a request

and a response. A contract may have data and time constraints.

 Security mechanism: A security property deals with access control on the

services and the data communicated with those services. The same security

mechanism can be associated with several component types, and there is a one-

to-many relationship between a security mechanism and component types. Role-

Based Access Control (RBAC) is currently enforced as the only security

mechanism, and has the following main elements: user, group, role and privilege.

A user defines the identity on behalf of which the component will be executed. A

group is a collection of users, and a user may belong to more than one group. A

role defines the responsibilities that can be assigned to a user or a group in the

system. A role aggregates a set of privileges, where each privilege defines a

permission to perform a service or access to a data parameter. Security can be

divided into two types: Service security and Data security. Service security

considers the security of the services provided by the components, while Data

security considers the security of the data transferred by the services. Service

security ensures that:

 every request received at a component interface is initialized by a user who

has permission to request this service; if the user has no access permission,

the request is ignored.

 the user of a response sent from a component interface has permission to

receive that response; if the user has no access permission, the response will

not be sent.

There are the similar definitions for Data security. Figure 4.10, which is taken from [49],

shows the trustworthy component model.

 79

Figure 4.10: Trustworthy component model

4.1.2.2 Keywords to Specify Parameters. In a context table, rows

denote objects and columns denote attributes. The incidence relation between an object

and an attribute is shown by the corresponding crossing cell in the table. Some

 80

keywords have been defined to address the specific parameters used in formal context

table specification that are explained as follows:

 Main Attribute: All partially defined context tables should have only one

attribute, called main attribute, which is defined as the common attribute of all

objects. The main attribute will be the intent of the supremum node in the derived

concept lattice.

 Property of Attribute: Every attribute in the context table may have one or

more properties, defined as attributes. The properties of an attribute have the

same incidence relation with the objects that the attribute has. In other words,

whenever an object is in relation with an attribute, it is necessarily in relation with

the attribute‟s properties. In the derived concept lattice, any attribute and its

properties are gathered in the same node.

 Time Constraint of Attribute: Every attribute or its properties may have only

one time constraint each. Time constraints of attributes or their properties are

defined as attributes in the context table. Time constraint attribute has the same

incidence relation with the objects that the attribute or its property has. In other

words, whenever an object is in relation with an attribute, it is necessarily in

relation with the attribute‟s time constraint. In derived concept lattice, any

attribute and its time constraint are gathered in the same node.

4.1.2.3 Rules to Compose Partially Defined Context Tables.

Now, we introduce our methodology for categorizing the concepts in the formal context

tables as follows:

 For each concept in the system, a partially defined context table is produced in

FCA with the name of the concept.

 81

 The name of the extent objects of the context table may be the name of the

concept proceeded by a unique index.

 A new attribute is defined in the context table as the main attribute, with the

name of the concept.

 For a pair of related functional requirements specified in the use-case analysis,

an attribute is defined in the context table, called functional requirements

attribute. The name of this attribute specifies the concept, the provided functional

requirement and the requested functional requirement. Also, it is possible to

define a functional requirement, so called internal, that is neither provided nor

requested.

 Each functional requirements attribute may have one or more data constraints

that must be satisfied to enable the functional requirements. For each data

constraint, one attribute is defined in the context table, called data constraint

attribute. Data constraints of any functional requirements attribute have the same

incidence relation with the objects that the functional requirements attribute has.

It is possible that one data constraint belongs to more than one functional

requirements attribute.

 Each functional requirements attribute may have only one time constraint that

defines the maximum allowed time between receiving a request and providing

response. For the time constraint of the functional requirements attribute, the

time constraint attribute is defined in the context table. Time constraint of any

functional requirements attribute has the same incidence relation with the objects

that the functional requirements attribute has.

 Each functional requirements attribute may trigger one or more actions. The

actions are one or more functional requirements to be performed when they are

 82

triggered by the functional requirements attribute. So, the action attribute is

defined that contains all of the actions corresponding to the functional

requirements attribute.

 Each functional requirements attribute may have one or more post conditions

that lead to update the data parameters. So, for the updates related to the

functional requirements attribute, the update attributes are defined in the context

table.

 Each functional requirement may have one or more role privileges that are

permitted to perform that functional requirement. So, for some provided or

requested functional requirements, the role privilege attributes are defined in the

context table. The name of the role privilege specifies the role name and the

functional requirement name. Also, the role privilege attribute can specify the role

name that is not permitted to perform the given functional requirement. Role

privilege attribute of a given functional requirement has the same incidence

relation with the objects that the corresponding functional requirements attributes

have.

 If for any extent object there is no value for the many-valued attributes, a slash (/)

is indicated in the corresponding crossing cell of the context table.

The different attribute types that might be defined in the context table and their

corresponding name conventions are stated in Table 4.1. The + sign is used as a

notation for string concatenation in the name convention. The „=‟ character is used as a

separator inside the attribute name for implementation purposes. As an example, when

defining a property of attribute that the attribute name is CashDesk and its property name

is CashDeskId, the generated name according to this convention is PropertyCashDesk =

CashDeskId (Table 4.1, row 1).

 83

Table 4.1: Name Conventions for Attribute Types

 Attribute Type Name Convention

1 Property of Attribute ‘Property’ + attribute name + ‘=’ + property name

2 Time Constraint of Attribute ‘TC’ + attribute name + ‘=’ + ‘T’ + time constraint value

3 Time Constraint of Property ‘TC’ + ‘Property’ + property name + ‘=’ + ‘T’ + time constraint value

4 Functional Requirements Attribute*
‘FR’ + concept name + ‘-‘ + provided functional requirement name + ‘_’ +

‘FR + requested functional requirement name

5 Data Constraint Attribute ‘DC’ + data constraint name

6
Time Constraint of Functional

Requirements Attribute

‘TC’ + ‘FR + concept name + ‘-‘ + provided functional requirement name +

‘_’ + ‘FR + requested functional requirement name + ‘=’ + ‘T’ + time

constraint value

7 Action Attribute** ‘Action’

8 Update Attribute ‘Update’ + ‘DC’ + data constraint name

9 Role Privilege ‘RolePrivilege’ + ‘-‘ + role name + ‘_’ + functional requirement name

10 Negative Role Privilege*** ‘RolePrivilegeNot’ + ‘-‘ + role name + ‘_’ + functional requirement name

 *
 In the name convention of Functional Requirements Attribute, if the provided or requested functional

requirement is of type internal, the relevant keyword ‘FR is replaced by ‘IFR’.

 **
In the crossing cells corresponding to an Action Attribute, the action names separated by comas are

registered.
 *** Negative Role Privilege specifies the role name that is not permitted to perform the functional
requirement.
 TC: Time Constraint; DC: Data constraint; T: Time

Example 1

Suppose a system contains a concept named Concept1 for which a valued context

table is defined as depicted in Figure 4.11. Then, it is converted to Concept1 binary

context table (Figure 4.12). According to the rules to compose partially defined context

tables presented in Section 4.1.2.3, some attributes are defined in Concept1 context table

as follows:

First, the main attribute Concept1 is defined. Assume that Concept1 provides the

functional requirements Req1 and Req3, and requests the functional requirements Req2,

and has the internal functional requirement Req4. Moreover, we consider that whenever

Concep1 provides Req1, it requests Req2, and whenever Concept1 provides Req3, it

requests Req4. So, the functional requirements attributes FRConcept1-Req1_FRReq2 and

FRConcept1-Req3_IFRReq4 are defined in the Concept1 context table (see the name

 84

conventions for attribute types Table 4.1, row 4). The data constraint attribute DCMode

(Table 4.1, row 5) must be satisfied to enable the functional requirements attributes.

DCMode has two values DataC1 and DataC2. The time constraint attribute TCFRConcept1-

Req3_IFRReq4=T5.0S (Table 4.1, row 6) defines the maximum allowed time to provide the

functional requirement Req3. The Action attribute (Table 4.1, row7) is defined for the

functional requirements attribute FRConcept1-Req3_IFRReq4 that triggers the functional

requirement Req5. The update attribute UpdateDCMode (Table 4.1, row8) is defined for

the functional requirements attribute FRConcept1-Req3_IFRReq4, and updates the value

of data constraint attribute DCMode from DataC2 to DataC3.

Figure 4.11: Concept1 Valued Context Table (VCT)

Figure 4.12: Concept1 Binary Context Table (BCT)

 85

4.2 Construction of Unified Formal Context Table

The concepts and the functional requirement properties defined in many-valued

context tables are converted to binary context tables. Then, they must be manually

combined and pruned in order to construct a unified formal context table. Some

redundant attributes should be removed, some properties of attributes should be

converted to attributes or some attributes should be unified and merged together. To

achieve this goal, a number of rules have been defined to guide the designer to do this

process accurately and precisely.

To obtain complete and assured results, it is recommended that the integration

process is done gradually and in several steps accompanied by pruning operations.

Developing an integration process that complies with this method would be much more

reliable and efficient than defining a large combined context table which may contain

deficiencies and/or redundancies. In the beginning, each many-valued context table is

transformed into a binary context table, in other words all VCTs are converted to BCTs,

and then the integration of the BCTs is manipulated one after another. The resulting

context table obtained from combining two or more partially defined tables is merged

subsequently by the other BCTs or merged context tables. This process continues

progressively until the entire and unified formal context table is constructed.

4.2.1 Rules to Integrate Partially Defined Context Tables

The unified formal context table is derived now by combining the partially defined

context tables. It is better to look for some priorities to identify the group of BCTs to be

combined. It is recommended to start from the context tables containing the concepts

 86

which are related and have common functional requirements. This facilitates the

integration process by determining the common attributes to be merged. To integrate the

partially defined context tables, the following steps should be fulfilled:

 A nested context table (NCT) is defined to combine the selected BCTs by

assigning their table names for different levels of combination.

 The defined NCT is converted to the corresponding BCT.

 A main attribute with an arbitrary name is added to the combined BCT.

Table 4.2: Conditions and Integration Rules to merge partial context tables

 Attribute1 Conditions Attribute2 Conditions Rules

1 (type = attribute) (is duplicate of Attribute1) Rule 1

2
(type = attribute) &

(has properties or time constraint)

(is duplicate of Attribute1) &

(does not have the same properties or time constraint

as Attribute1)

Rule 1, Rule 2

3
(type = attribute) &

(has properties or time constraint)

(is duplicate of Attribute1) &

(has at least one property or time constraint of

Attribute1)

Rule 1, Rule 2,

Rule 3

4 (type = attribute)

(is duplicate of Attribute1) &

(has at least one more property or time constraint than

Attribute1)

Rule 1, Rule 4

5 (Attribute1 is to be eliminated) Rule 5

6 (type = property of Attribute3)

(type = property of Attribute4) &

(has the same name as Attribute1) & (Attribute3 !=

Attribute4)

Rule 6

 The duplicate attributes are recognized to be merged or eliminated from the

combined context table. Otherwise it will lead to redundancy and/or ambiguity.

Table 4.2 specifies different conditions and their relevant integration rules to be

applied in order to merge and prune the partially defined context tables. The

integration rules and the corresponding actions are introduced in Table 4.3. The

integration rules can be generalized for more than two duplicate attributes in the

combined context tables.

 87

Table 4.3: Integration Rules and Actions to merge partial context tables

 Rules Actions

1 Rule 1
One of the duplicate attributes is eliminated. The extent objects in the relation with the removed

attribute are denoted in the crossing cells of the remaining attribute.

2 Rule 2
The extent objects in the relation with the removed attribute are denoted in the crossing cells of the

properties and the time constraint of the remaining attribute.

3 Rule 3
The properties and the time constraint of the removed attribute which are the same as the remaining

attribute are also eliminated.

4 Rule 4

The properties and the time constraint of the removed attribute are maintained as the properties and

time constraint of the remaining attribute. The extent objects in relation with the remaining attribute

are denoted in the crossing cells of the maintained properties and time constraint.

5 Rule 5

The specified attribute to be eliminated along with its probable properties and time constraint are

removed from the original many-valued context table. If any extent objects remain with no bond to

any intent attribute, they are eliminated too.

6 Rule 6*

(1) The duplicate properties of different attributes cannot be merged and maintained as properties.

One of the duplicate properties is eliminated based on the designer’s decision. Or, (2) they are

merged and one of them is maintained as a new attribute. The extent objects in relation with the

removed property are denoted in the crossing cells of the new attribute. Or, (3) they are maintained

as two different properties with different names. The names of the duplicate properties are modified

in the original many-valued context tables. If the duplicate properties have time constraints, the

names of their time constraints are also modified accordingly.

 *
 Rule 6 has three extensions and based on the designer‟s decision, one of them is conformed.

Example 2

Suppose the mentioned system in Example 1 has another concept named Concept2.

The valued and binary context tables of Concept2 are shown in Figure 4.13 and Figure

4.14. According to the rules to compose the partially defined context tables presented in

Section 4.1.2.3, some attributes are defined in Concept2 context table as follows:

First, the main attribute Concept2 is defined. Assume that Concept2 provides the

functional requirements Req2 and Req5, and requests the functional requirements Req3

and Req6. Also, it is considered that whenever Concep2 provides Req2, it requests Req3,

and whenever Concept2 provides Req5, it requests Req6. So, the functional requirements

attributes FRConcept2-Req2_FRReq3 and FRConcept2-Req5_FRReq6 are defined in the

Concept2 context table (see the name convention in Table 4.1, row 4). The data

constraint attribute DCMode (see the name convention in Table 4.1, row 5) must be

satisfied to enable the functional requirements attributes. DCMode has two values

 88

DataC1 and DataC3. The update attribute UpdateDCMode (see the name convention in

Table 4.1, row8) is defined for the functional requirements attributes, and updates the

value of data constraint attribute DCMode.

Figure 4.13: Concept2 Valued Context Table (VCT)

Figure 4.14: Concept2 Binary Context Table (BCT)

According to the rules for integrating partially defined context tables presented in

Section 4.2.1, two partially defined context tables Concept1 and Concept2 are merged and

pruned as follows:

First, the nested context table MergedConcepts is defined to combine the partially

defined context tables Concept1 and Concept2 (Figure 4.15). Then, the defined NCT is

converted to the corresponding BCT which is shown in Figure 4.16.The main attribute

MergedConcepts is added to the combined BCT. The duplicate attribute DCMode_DataC1

in the merged context table (Figure 4.16) has to be merged according to Rule 1 of the

 89

conditions and integration Rules in Table 4.2. Then, according to the integration rules

and actions in Table 4.3, one of the duplicate attributes is eliminated. The extent objects

in relation with the removed attribute are denoted in the crossing cells of the remaining

attribute. Also, for the main attribute MergedConcepts a property attribute named

PropertyMergedConcepts=MergedConceptsId is defined (Table 4.1, row 1). On the other

hand, the role privilege attributes RolePrivilege-Role1_Req1 and RolePrivilegeNot-

Role1_Req3 (Table 4.1, row 9 and row 10) are defined in the merged context table to

specify that Role1 is permitted to perform the functional requirement Req1 and is not

permitted to perform the functional requirement Req3. The resulting context table is

depicted in Figure 4.17.

Figure 4.15: MergedConcepts Nested Context Table (NCT)

Figure 4.16: MergedConcepts Binary Context Table (BCT)

 90

Figure 4.17: Merged and pruned MergedConcepts context table

4.3 Concept Lattice Derivation

So far, a unified formal context table is constructed that contains the required formal

concepts, captured from system specifications. In this step, the concept lattice

corresponding to the derived formal concept hierarchy is obtained. This process may be

systematically done by FCA software tools. They have the facility to draw the concept

lattice diagram from the given formal context table.

Concept lattices are mathematical structures supported by a rich and well

established formalism, namely, Formal Concept Analysis [28]. Wille [84] proposed to

consider each element in the lattice as a concept and the corresponding graph (Hasse

diagram) as the generalization/specialization relationship between concepts. From this

perspective, the lattice represents a concept hierarchy. Each concept is a pair composed

of an extension representing a subset of instances and an intension representing the

common features for this set of instances [30]. The concepts of lattice are partially

ordered in a “subconcept-superconcept” hierarchy. The main attribute of the unified

formal context table is presented as the intent of the supremum node in the derived

concept lattice. As an example, we refer to the concept lattice of merged and pruned

MergedConcepts context table which is depicted in Figure 4.18.

 91

Figure 4.18: MergedConcepts Concept Lattice

Besides, FCA software tools, like Lattice Miner, provides the facility to extract the

acquired concept lattice as an XML file with a special structural format that is editable by

any XML editor. On the other hand, the implication rules are derived from the resulting

concept lattice and are captured in another XML file. The XML file of concept lattice is

merged with the XML file of the implication rules. The merged XML-format file can be

saved to be transformed into the OWL-format ontology file. We discuss this at the next

step of our methodology presented in Chapter 5.

4.4 Advantages of the presented method

When the partially defined formal context table is constructed and before starting the

integration process, the OWL ontology corresponding to the given BCT can be obtained

 92

by the model transformation process presented in this thesis (Chapter 5). Besides, in the

intermediate steps of the integration process and before obtaining the final formal

context table, the temporarily composed context table can be transformed into the

corresponding OWL ontology. This is one of the privileges of the introduced

methodology to construct formal context tables. Adhering to this technique provides the

opportunity to verify the partially composed ontology at any stage of integration process.

This affords the facility to find possible errors and inconsistencies before producing the

final context table.

Another advantage of this approach is that it is possible to go back to the previous

steps at any stage of the process and make modifications to retrieve the desired outputs.

If the designer decides to modify the context tables, it is better to make changes in the

original context tables (VCTs) and not in the merged tables. Otherwise, the traceability

aspect, which is the ability to link and verify design artifacts belonging to every step in a

process chain, will be violated. As an example, eliminating an attribute in the combined

context table, while it is conserved in the original tables, will lead to inconsistency and

difficulties in the future maintenance of the tables.

 93

Chapter 5

Transformation from Context Tables to

Concepts Formation

The methodology for defining formal context tables has been presented in Chapter 4.

In this Chapter, we analyze the resulting concept lattice obtained from formal context

tables in FCA to realize the concepts and the concept hierarchy. Capturing this

knowledge is necessary to find a model of shared understanding of the domain,

determine the ontological classes, and build the one to one corresponding elements in

ontology. One of the contributions of this thesis is to introduce a general solution to

achieve this goal. A set of rules has been developed for transforming context tables to

ontology. The proposed rules are implemented automatically by a model transformation

approach that is presented in Chapter 6.

This Chapter is structured as follows. In Section 5.1, the class hierarchy in concept

lattice is discussed and the various relations between nodes are explained. The same

analysis is done on ontological class hierarchy in Section 5.2, and the various relations

and the property restrictions in ontologies are discussed. Then, the transformation rules

 94

from lattice hierarchy into the ontological class hierarchy are provided in Section 5.3.

Finally, in Section 5.4, the advantages of the proposed methodology are described.

5.1 Class Hierarchy in Concept Lattice

Formal Concept Analysis (FCA) provides a natural theoretical framework for class

hierarchy design and maintenance. The hierarchies produced within this framework have

a well-defined semantics that remains independent from the concrete algorithms used.

In addition, the produced hierarchies tend to conform to general quality criteria such as

simplicity, reusability, comprehensibility, extensibility and maintainability [31].

The concept lattice that is computed from the formal context table is depicted as a

line diagram consisting of the nodes representing the formal concepts. Each node

contains the objects and the attributes belonging to the formal concept corresponding to

that node. The nodes are ordered in a „subconcept-superconcept’ hierarchy [26]. The

formal concept of node A is subconcept of node B, if the extent of node A is the subset

of the extent of node B. Equivalently stated, the formal concept of node A is subconcept

of node B if the intent of node B is the subset of the intent of node A. Thus, while

traversing the concept lattice from bottom to up, the number of objects in the extent of

the upper nodes increases while the number of the attributes in the intent decreases.

The two important operations in concept lattice are meet (infimum) and join

(supremum) [26]. The infimum operation is applied on two or more concepts and the

result is another concept in the same concept lattice. Its extension is obtained by

intersecting the extensions of the given concepts, and its intension is obtained by taking

the union of the intensions of the given concepts. The supremum operation is applied on

two or more concepts and the result is another concept in the same concept lattice. Its

 95

extension is obtained by taking the union of the extensions of the given concepts, and its

intension is obtained by intersecting the intensions of the given concepts. As an

example, we can refer to the Planets concept lattice depicted in Figure 5.1, which is

derived from the Planets binary context table presented in Chapter 4, Figure 4.2. It is

considered that, the extension of the supremum concept is the union of the extensions of

its subconcepts. Similarly, the intension of the infimum concept is the union of the

intensions of its superconcepts.

Figure 5.1: Planets Complete Labeling Concept Lattice

If every node in the concept lattice diagram is marked by the corresponding extents

and intents, this would lead to a great cluttering of the picture. In order to overcome this

problem the reduced labeling technique [88, 54] is used. In this method, each object and

each attribute is entered only once in the diagram. A concept is labeled with attribute a, if

it is the largest concept having a in its intent. This means that all the concepts below the

 96

concept labeled with the attribute a contains a in their intent set of attributes. Similarly, a

concept is labeled with an object o if it is the smallest concept having o in its extent. The

reduced labeling does not lead to a loss of information, because the intent and extent of

any concept can be read off from the diagram. Thus, the extent of any node in the line

diagram contains the collection of all objects belonging to the nodes below and its intent

contains the collection of all attributes belonging to the nodes above. As an example,

the reduced labeling concept lattice of the Planets context table is shown in Figure 5.2.

We notice that the concept labeled with attribute Size_Small is the largest concept having

the given attribute in its intent. Also, the concept labeled with the object Pluto is the

smallest concept having the given object in its extent.

Figure 5.2: Planets Reduced Labeling Concept Lattice

Implication [26, 23] is another relation among the attributes of a context that can be

used in conceptual knowledge and conceptual learning. An attribute implication of a

 97

context is a pair of subsets of attributes, say X, Y, where each object having all attributes

of X has also all attributes of Y, and this is depicted as X → Y. The set X is called the

premise, and Y is its conclusion. Informally, implications between attributes can be found

along upward paths in the lattice. Actually, we are not interested in all valid implications

of the context, but only in a certain minimal basis of implications from which all other

valid implications can be deducted [69].

5.2 Class Hierarchy in Ontology

Like Formal Concept Analysis, domain ontology has the goal of modeling concepts;

however it has its own specifications and purposes. Ontology deals with modeling

shared understanding of the domain and capturing conceptual knowledge accepted by

domain experts. Moreover, objects are not necessary in defining ontology and only the

intensional aspect is considered by ontologies [23]. The concepts in ontology have the

hierarchical order and the properties of objects are chosen as the criteria to classify the

objects. Ontology may be visualized as an abstract graph with nodes representing the

objects and labeled arcs representing the relations [62].

Ontology Web Language (OWL) [67, 32] facilitates describing the concepts in a

domain and also the relationships holding between concepts. It provides a set of

operators like intersection, union and negation for concept classification and analysis.

Since it is based on logical models, OWL can benefit from the use of the reasoner which

checks the consistency of all concepts and definitions in the ontology and also

recognizes which concepts fit under which definitions so that it can maintain the class

hierarchy correctly.

 98

OWL ontology consists of individuals, classes, and properties. Individuals represent

the objects of the domain and are the instances of the classes. OWL classes are

interpreted as sets that contain individuals. Classes are built up of descriptions that

specify the conditions that must be satisfied by an individual to be a member of the

class. Classes are a concrete representation of the concepts. Classes may be organized

into a subclass-superclass hierarchy, which is also known as taxonomy. Subclasses

specialize („are subsumed by‟) their superclasses. The empty ontology contains one

class called Thing. The class Thing is the class that represents the set containing all

individuals. So, all classes are subclasses of Thing [39].

hasRolePrivilege

Role1Request1

hasAge

“25” :integerMary

dc:role

“Cashier”User1

An annotation property, linking the class

„User1‟ to the string “Cashier”.

A datatype property linking the individual

Mary to the string “25”, which has a type

of integer.

An object property linking the individual

Request1 to the individual Role1.

Figure 5.3: Various types of OWL properties

OWL properties represent relationships. The two main types of properties in OWL

are object properties and datatype properties. Object properties are binary relations

between two individuals. Datatype properties describe relationships between individuals

and data values. OWL also has a third type of property, called annotation property.

 99

Annotation property can be used to add information (metadata) to classes, individuals

and object/datatype properties. Note that it is also possible to create subproperties of

object/datatype properties. However, it is not possible to mix and match the object

properties and the datatype properties with regards to subproperties. For example, it is

not possible to create an object property that is the subproperty of a datatype property

and vice-versa. The various types of OWL properties are depicted in Figure 5.3.

Object properties may have various characteristics as follows [39]:

 Functional Property: For the given individual, there can be at most one related

individual via the property.

 Inverse Property: Property can have an inverse. For example, the inverse of

property hasOwner is the property IsOwnedBy.

 Inverse Functional Property: For the given property, there can be at most one

related individual via the inverse property. That means the inverse property is

also functional.

 Transitive Property: If property P is transitive, and P relates individual a to

individual b, and also individual b to individual c, then it can be inferred that

individual a is related to individual c via property P. If a property is transitive, then

its inverse property should also be transitive. The transitive property cannot be

functional.

 Symmetric Property: If property P is symmetric, and P relates individual a to

individual b, then it can be inferred that individual b is related to individual a via

property P.

 Antisymmetric Property: If property P is antisymmetric, and P relates individual

a to individual b, then individual b cannot be related to individual a via property P.

 Reflexive Property: If property P is reflexive, it relates individual a to itself.

 100

 Irreflexive Property: If property P is reflexive, it relates individual a to individual

b where individual a and individual b are not the same.

Most of the mentioned characteristics of the object properties cannot be applied for the

datatype properties. For example, datatype properties are not allowed to be transitive,

symmetric or have inverse properties.

Properties may have a domain and a range specified. Properties link individuals from

the domain to individuals from the range. In OWL, domains and ranges are not

constraints to be checked. However, they are considered as axioms in reasoning.

In OWL, we can define restrictions. The restriction property describes an anonymous

class of an individual, based on the relationships that members of the class participate

in. OWL restrictions fall into three main categories [39]:

 Quantifier Restriction: Quantifier restriction can be further categorized into

existential restriction and universal restriction. Existential restriction, also known

as „someValuesFrom‟ restriction, describes the class of individuals that

participate in at least one relationship between a specified property and

individuals that are members of a specified class. Existential restriction may be

denoted by the existential quantifier . Universal restriction, also known as

„allValuesFrom‟ restriction, describes the class of individuals that for a given

property only have relationships between this property and individuals that are

members of a specified class. Universal restriction may be denoted by the

universal quantifier .

 Cardinality Restriction: Cardinality restriction describes the class of individuals

that have at least, at most or exactly a specified number of relationships with

other individuals. For a given property P, a Minimum Cardinality Restriction

specifies the minimum number of P relationships that an individual must

 101

participate in. A Maximum Cardinality Restriction specifies the maximum number

of P relationships that an individual can participate in. A Cardinality Restriction

specifies the exact number of P relationships that an individual must participate

in.

 hasValue Restriction: The restriction „hasValue‟ describes the class of

individuals that have at least one relationship between a specified property and a

specific individual. The restriction „hasValue‟ is denoted by the symbol Э.

We consider the sample MergedConcepts concept lattice presented in Chapter 4. The

OWL ontology obtained after the model transformation process contains the above

described property restrictions. As an example of the existential qualifier restriction, we

can refer to the ontological class MergedConcepts that participates in at least one

relationship between the property hasMergedConceptsProperty and individuals that are

members of the class MergedConceptsId. The relevant OWL source code is illustrated as

follows:

 <owl:Class rdf:ID="MergedConcepts">

 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >MergedConcepts

 </rdfs:label>

 <rdfs:subClassOf rdf:resource="#MClass-MergedConcepts-PropertyMergedConceptsId"/>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:someValuesFrom rdf:resource="#MergedConceptsId"/>

 <owl:onProperty>

 <rdf:Property rdf:ID="hasMergedConceptsProperty"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

</owl:Class>

As an example of the universal qualifier restriction, we can refer to the ontological

class Concept1 that for the property hasProvidedFR has only relationships with the

individuals that are members of either the class Req1 or the class Req3. The relevant

OWL source code is illustrated as follows:

 102

<owl:Class rdf:ID="Concept1">

 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >Concept1

 </rdfs:label>

 <rdfs:subClassOf rdf:resource="#MClass-MergedConcepts-PropertyMergedConceptsId"/>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <rdf:Property rdf:ID="hasProvidedFR"/>

 </owl:onProperty>

 <owl:allValuesFrom>

 <owl:Class>

 <owl:unionOf rdf:parseType="Collection">

 <owl:Class rdf:about="#Req1"/>

 <owl:Class rdf:about="#Req3"/>

 </owl:unionOf>

 </owl:Class>

 </owl:allValuesFrom>

 </owl:Restriction>

 </rdfs:subClassOf>

</owl:Class>

As the example of the restriction „hasValue‟, we can refer to the ontological class

FRConcept1-Req1_FRReq2 that has at least one relationship between the property

hasMode and the specific individual DataC1. The relevant OWL source code is illustrated

as follows:

<owl:Class rdf:ID="FRConcept1-Req1_FRReq2">

 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >FRConcept1-Req1_FRReq2

 </rdfs:label>

 <rdfs:subClassOf rdf:resource="#Concept1"/>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:hasValue rdf:resource="#DataC1"/>

 <owl:onProperty>

 <rdf:Property rdf:ID="hasMode"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

</owl:Class>

Finally, we can conclude that the object relationships in OWL ontology are either the

subclass-superclass relation that is defined by „subClassOf‟ keyword, or the arbitrary

object properties that are defined to link the objects.

 103

5.3 Transformation Rules to Build Ontology from FCA

This section introduces the transformation rules for the automatic generation of OWL

ontology based on the analysis of the concept hierarchy derived from FCA. Concept

lattice as a mathematical framework is the input model of this transformation process, so

that its elements and their perceived relations are mapped into their relevant ontological

elements in a one to one relationship. Basically, the formal concepts in FCA are going to

be transformed into the concepts in ontology. Also, the relations between the formal

concepts in FCA are going to be transformed into the relations among the concepts in

ontology. Note that, the proposed transformation rules are defined based on the concept

hierarchy that is retrieved from reduced labeling technique on the concept lattice. The

principal schema of one to one corresponding relations among the elements of FCA and

OWL ontology are shown in Figure 5.4.

Figure 5.4: From FCA to OWL Ontology

 104

The provided transformation rules are classified into six principal rules. These are,

Ontology Overview Definition Rule, Class Definition Rules, Class Hierarchy Rules,

Individual Definition Rules, Object Property Definition Rules, and Implication Rules. By

adhering to the consecutive proposed rules, the ontological class hierarchy is composed

to build the final OWL ontology.

5.3.1 Ontology Overview Definition Rule

Ontology overview consists of the base URI location, default namespace, and

ontology language specified as the header of the ontology file. They are identified in the

form of prefixes to abbreviate the URIs of the namespaces used in ontology.

According to the ontology overview definition rule, the name of the ontology and the

ontology overview parameters are defined based on the name of the derived concept

lattice in FCA. A sample ontology overview is presented as follows:

Base URI (Location): xml:base="http://example.org/CoCoME">

Default Namespace: xmlns="http://example.org/CoCoME#"

Owl: xmlns:owl="http://www.w3.org/2002/07/owl#"

rdf: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

Rdfs:xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

Xsd: xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

5.3.2 Class Definition Rules

Generally, formal concepts in FCA are transformed into the classes in ontology.

However, more details are explained to clarify the particular significances and declare

various class types as follows:

 105

 Root Class: Supremum node in the lattice diagram is the top element of the

concept hierarchy. The ontological class corresponding to the supremum node is

called root class which is the parent of all other classes in the hierarchy. The

name of the root class is the name of the attribute of the supremum node in the

lattice. The root class is considered as the subclass of the class Thing in

ontology.

 Anonymous Node: The nodes in the lattice diagram without any intent or extent

are called anonymous. In the transformation process, no class is defined in

ontology corresponding to anonymous nodes.

 Class/Multi-attribute Class: For each node with intent, a class is defined in

ontology with the name of its attribute. If the intent of node contains more than

one attribute, the name of the defined class is composed of the attribute names

of the intent. Such a class is called Multi-attribute class, or briefly MClass.

 Object Class: For each node without intent that has extent, a class is defined in

ontology with the name of its objects. Such a class is called object class, or

briefly ObjClass.

 Object Classes Class: ObjectClasses is defined as a subclass of the root class.

All object classes in the ontology are categorized as the subclasses of this class.

 FRequirements Class: FRequirements is defined as a subclass of the root class.

All functional requirements captured from the functional requirements attributes

in concept lattice are categorized as the subclasses of this class.

 Trustworthy Classes: Since the implementation of the trustworthiness is one of

the contributions of this thesis, trustworthy classes are defined in OWL ontology

in order to conform to the safety contracts and the security mechanisms specified

in TADL component models.

 106

o Time Constraint Class: To accomplish the safety requirement, the class

TimeConstraint is defined as a subclass of the root class. Then, an equivalent

class is defined for the class TimeConstraint that contains all time constraint

values specified in the time constraint attributes of the concept lattice.

o Data Constraints Class: To accomplish the safety requirements, the class

DataConstraints is defined as the subclass of the root class. For each data

constraint attribute of the concept lattice, a class is defined as the subclass of

the class DataConstraints. Then, an equivalent class is defined for each data

constraint class that contains all possible values it can hold.

o Roles Class: To accomplish the security purposes, the class Roles is defined

as the subclass of the root class. Then, for each role specified in the concept

lattice, a role class is defined as the subclass of the class Roles.

5.3.3 Class Hierarchy Definition Rules

Concept hierarchy in FCA is transformed into the class hierarchy in ontology. Since

for each non-anonymous node in concept lattice a corresponding class is defined in the

ontology, the immediate superconcept of each node in the concept hierarchy is

considered as the superclass of the ontological class corresponding to that node. So the

relation „subClassOf‟ is defined in ontology between the node class and its superclass.

The particular cases are explained accordingly:

 Supremum node of the concept lattice is the top element of the concept

hierarchy, and does not have any superconcept. Therefore, the root class which

is corresponding to the supremum node is defined as the subclass of the class

Thing in ontology.

 107

 If the immediate superconcept of a given node is anonymous, the root class is

defined as the superclass of the ontological class corresponding to the given

node. The reason is that, for the anonymous nodes there is no corresponding

class in the ontology, so it cannot be considered as the superclass.

 Each object class is defined as the subclass of the class ObjectClasses.

 The functional requirements captured from the functional requirements attributes

in concept lattice may have three different types: provided, requested, and

internal. Accordingly, three classes called ProvidedFRs, RequestedFRs, and

InternalFRs are defined as the subclasses of the class FRequirements. So the

functional requirements in the ontology are categorized to be the subclass of one

the above subclasses, according to their class type.

 If a given node is not corresponding to an object class and has more than one

superconcept in the hierarchy, then the corresponding class will have more than

one superclass in the ontology. First, the root class is defined as one of the

superclasses. Second, the intersection of the classes corresponding to the

superconcepts of the given node is defined as another superclass. Subsequently,

if any of the superconcepts of the given node is anonymous, the superconcepts

of the anonymous node are captured from the hierarchy and added to the set of

superclasses.

 If a given node has some property attribute in its intent, the corresponding class

is a MClass that is already defined in the ontology. For the main attribute of that

node, a main-attribute class with the name of the main attribute is defined as the

subclass of that MClass. Afterwards, for each property attribute in the intent of the

given node, a new property class with the name of the property attribute is

defined as the subclass of the MClass.

 108

5.3.4 Individual Definition Rules

Basically, the objects of formal concepts are transformed into the individuals in

ontology. The particular details are described accordingly:

 If the objects belong to the extent of a given node, which has both intent and

extent, the objects are defined as the individuals or instances of the ontological

class corresponding to that node.

 If the objects belong to the extent of a given node that is corresponding to an

object class, the objects are defined as the individuals or instances of that object

class.

5.3.5 Object Property Definition Rules

Generally, various types of relations among the formal concepts are transformed into

the relevant object properties in ontology. More details are specified as follows:

 has Constraint: One of the object properties defined in the ontology is the

property hasConstraint. The property hasConstraint is defined to manipulate the

trustworthy requirements in ontology. The object classes do not have constraints

because they do not have any attribute to be restricted by any constraint. The

subproperties of the property hasConstraint are explained as follows:

o has Time Constraint: The property hasTimeConstraint is defined as the

subproperty of the property hasConstraint, with the range class TimeConstraint.

It relates an attribute class, a property class, or a functional requirement with

its time constraint and specifies the relevant time value.

 109

o has Data Constraint: The property hasDataConstraint is defined as the

subproperty of the property hasConstraint, with the range class

DataConstraints. For each data constraint class which is defined as the

subclass of the class DataConstraints, a corresponding data constraint

property is defined as the subproperty of the property hasDataConstraint. The

range is the data constraint class. The data constraint properties relate the

functional requirements with their data constraints and specify their relevant

data values.

o has Security Constraint: The property hasSecurityConstraint is defined as

the subproperty of the property hasConstraint. The property

hasSecurityConstraint specifies the triple security requirement (role, functional

requirement, privilege) and defines whether or not a user has the privilege of

accessing the functional requirement. It consists of the following

subproperties:

 has Role Privilege: The property hasRolePrivilege is defined as the

subproperty of the property hasSecurityConstraint, with the domain class

FRequirements and the range class Roles. This property relates a given

functional requirement with the role that has the privilege of access to that

functional requirement.

 hasnot Role Privilege: The property hasnotRolePrivilege is defined as the

subproperty of the property hasSecurityConstraint, with the domain class

FRequirements and the range class Roles. This property relates a given

functional requirement with the role that does not have the privilege of

access to that functional requirement.

 110

 has FR Privilege: The property hasFRPrivilege is defined as the

subproperty of the property hasSecurityConstraint, with the domain class

Roles and the range class FRequirements. This property relates a role with

the functional requirements and the role has the privilege of access to

those functional requirements.

 hasnot FR Privilege: The property hasnotFRPrivilege is defined as the

subproperty of the property hasSecurityConstraint, with the domain class

Roles and the range class FRequirements. This property relates a role with

given functional requirements that the role does not have any privilege of

access to those functional requirements.

Other than the property hasConstraint which is applied to specify the trustworthy

attributes, there are some other general properties which are defined to relate the

individuals as follows:

 has Functional Requirement: The property hasFRequirement is defined to relate

any concept with the functional requirements that the concept provides or

requests. This property consists of three subproperties as follows:

o has Provided FR: The property hasProvidedFR is defined as the subproperty

of the property hasFRequirement, with the range class ProvidedFRs. This

property relates a concept with its provided functional requirements.

o has Requested FR: The property hasRequestedFR is defined as the

subproperty of the property hasFRequirement, with the range class

RequestedFRs. This property relates a concept with its requested functional

requirements.

o has Internal FR: The property hasInternalFR is defined as the subproperty of

the property hasFRequirement, with the range class InternalFRs. This property

relates a concept with its internal functional requirements.

 111

 has Property: The property hasProperty is defined to relate a main attribute class

with its property attributes. For each multi-attribute class defined in the ontology,

a new property is defined as the subproperty of the property hasProperty that

contains the name of the main attribute of the MClass. The range is the MClass

and the domain is the main attribute class. Each hasProperty is the inverse

property of its corresponding isPropertyOf.

 is Property Of: The property isPropertyOf is defined to relate the property

attributes with their main attribute class. For each hasProperty defined in ontology,

an isPropertyOf is defined in ontology that contains the name of the main attribute

of the MClass. The property isPropertyOf is the inverse property of its

corresponding hasProperty. The domain is the MClass and the range is the main

attribute class.

Figure 5.5: Sample hierarchy of object properties in OWL ontology

 has Object Class Property: The property hasObjClassProperty is defined to

relate all object classes with their superclasses in the hierarchy. All object

 112

classes defined in ontology are related to their superclasses by the same

property, with the domain ObjClasses. The superclasses of a given object class

are determined by traversing through the lattice hierarchy to find all

superconcepts of the concept corresponding to the given object class. This

process continues by extracting the superconcepts of the superconcepts until the

supremum node of the lattice is reached. If any extracted superconcept is

anonymous or is corresponding to another object class, it is ignored. If any

obtained superconcept is MClass, its main attribute class is considered as the

superclass of the given object class.

Figure 5.5 illustrates the hierarchy of the object properties in the obtained OWL

ontology.

5.3.6 Implication Rules

In FCA, the implication rules help us to better realize the relations among the

concepts. The implication rules can be derived from the propositional logic to provide the

pairs of subsets of attributes, so that if an object has all attributes of a premise, then it

has also all attributes of the conclusion. Besides, FCA software tools can derive the

implication rules from the concept lattice of a context. The XML-format file of the concept

lattice is merged with the XML-format file of the implication rules and the unified XML file

is transformed into the OWL ontology.

Among the implication rules derived from the concept lattice, there is the relationship

between the functional requirements attribute of a concept as the premise and its data

constraints as the conclusion. Therefore, the functional requirements attributes of a

concept and their related data constraints and their values are extracted from the

 113

implication rules. As an example, we consider the concept CashBox and its functional

requirements attribute IFRCashBox-CheckIfExpress__FRCheckLastHour as the premise of

an implication rule and the data constraint DCMode_Done as the conclusion. After the

transformation process and according to the object property definition rules, the

ontological class corresponding to the mentioned functional requirements attribute will

have the property hasMode with the value Done in the ontology.

The same implication rules exist for the actions and the data parameter updates.

Since the actions and updates are not transformed into the ontological elements, they

are not involved in the transformation rules to build the ontology, but will be considered

in the TADL component model.

<rule>

 <premise>

 {IFRCashBox-CheckIfExpress_FRCheckLastHour_}

 </premise>

 <consequence>

 {CashBox_, CashDesk, CoCoME, DCMode_Done, PropertyCashDesk=CashDeskId,

 PropertyCashDesk=CashDeskPC, PropertyCashDesk=InStore, PropertyCashDesk=Sale,

 UpdateDCMode_Waiting}

 </consequence>

 <support>0.04</support>

 <confidence>1.0</confidence>

</rule>

5.4 Name Convention of Ontology Elements

The different elements that are formed in ontology by the automatic transformation

process and their corresponding name conventions are stated in Table 5.1. The + sign is

used as a notation for string concatenation in the name convention. The sign * is used

as a notation for repeating the same structure in the name convention. As an example,

 114

when defining a role class that the role name is Cashier, the name convention is Role-

Cashier (see Table 5.1, row 2).

Table 5.1: Name Conventions for Ontology Elements

 Ontology Element Name Convention

1 Multi-attribute Class
‘MClass’ + ‘-‘ + main attribute name + (‘-’ + ‘Property’ + property

attribute name)*

2 Role Class ‘Role’ + ‘-‘ + role name

3 Object Class ‘ObjClass’ + ‘-’ + object class name

4 has property Property ‘has’ + main attribute of the MClass + ‘Property’

5 is property of Property ‘is’ + main attribute of the MClass + ‘PropertyOf’

6 has data constraint Property ‘has’ + data constraint name

Example

As an example, we can refer to the sample context table MergedConcepts presented

in Chapter 4, Figure 4.18 and its corresponding concept lattice presented in Chapter 4,

Figure 4.19. According to the class definition rules provided in this Chapter, the

ontological classes Concept1 and Concept2 are derived from the concepts Concept1 and

Concept2 belonging to the concept lattice MergedConcepts. Also, the functional

requirements attribute FRConcept1-Req3_IFRReq4 has the data constraint hasMode with

the value DataC2 and a time constraint with the value 5.0 seconds. According to the

individual definition rules, the object Object2 is the only individual of the class

FRConcept1-Req3_IFRReq4. The ontological class FRConcept1-Req3_IFRReq4 and its

object are illustrated in Figure 5.6.

 115

Figure 5.6: Class FRConcept1-Req3_IFRReq4 and its object

Figure 5.7: Properties hasFRPrivilege and hasnotFRPrivilege

 116

According to the object property definition rules, two „has Security Constraints‟ are

depicted in Figure 5.7 and Figure 5.8. As an example for „has FR Privilege‟ (Figure 5.7),

the class Role1 is defined with the property hasFRPrivilege to have access to the

functional requirement Req1. The property hasnotFRPrivilege indicates that Role1 has no

access permission to the functional requirement Req3. As an example for „has Role

Privilege‟ (Figure 5.8), the class Req1 is defined with the property hasRolePrivilege to be

accessed by Role1. The property hasnotRolePrivilege indicates that the functional

requirement Req3 cannot be accessed by Role1.

Figure 5.8: Properties hasRolePrivilege and hasnotRolePrivilege

 117

5.5 Advantage of Proposed Technique

The proposed technique to build the OWL ontology from the FCA concept lattice has

some advantages. First, the generated concept hierarchy is consistent. Next, the

implication rules detect concept relationships accurately. Besides, trustworthy criteria are

specified at domain level, which is the principle need for developing dependable

software systems. Moreover, the defined rules and conventions improve the quality of

software design. Furthermore, the proposed technique to build the OWL ontology from

the concept lattice has the flexibility to be accomplished at any stage of the formal

context construction. It means, the transformation rules are applied either to construct

the partially formed OWL ontologies from the partially defined context tables, or to

compose the final ontology corresponding to the entire unified context table. This facility

provides a specific opportunity for the designer to examine the partially formed

ontologies for inconsistencies, redundancies, or contradictions before the design stage

terminates. This can be achieved by using the reasoning engine of the OWL ontology.

The steps to be followed are (1) syntax checking, (2) consistency checking to ensure

that the ontology does not contain contradictions, (3) subsumption checking, which is to

ensure that a class description is more general than another class description, and (4)

query answering, which involves retrieving knowledge from the knowledge base [67, 32].

Therefore, the designer can go back to the previous step, if necessary, of defining formal

context tables and modify the deficiencies until all checking are successfully completed.

Thus, our approach not only is applying FCA as the mathematical framework to take

advantage of the formalism, but also is getting benefit from the reasoning engine of OWL

ontology to ensure the dependability of the developed product.

 118

Chapter 6

Implementation of Transformation from

Concepts to Ontology

The transformation rules introduced in Chapter 5 are implemented in this Chapter.

An automated model transformation technique for generating the OWL ontology from the

concept lattice is proposed. The input meta-model is an XML format file that is obtained

by merging the concept lattice and its derived implication rules created by the FCA

software tool. The output model in OWL format consists of the definitions of ontology

overview, classes, individuals, and object properties as well as the class hierarchy which

includes the subclass-superclass relationships.

In Section 6.1, the structure of the input meta-model is described and the XML

format of the input file that conforms to the concept lattice specifications is presented.

Then, in Section 6.2, the structural elements in ontology are explained to represent the

OWL output model. Section 6.3 discusses the model transformation consisting of the

four transformation procedures, which are implemented by using XSLT [74, 47] model

transformation framework and XPath [74] language. The transformation procedures are

defined independently to accomplish the transformation process in several steps. In

 119

each transformation step, the input model is processed to produce the output model,

which in turn will be the input model of the next transformation step. Finally, the

transformation rules from concept lattice to OWL ontology are fulfilled by executing all

transformation steps sequentially, and the target OWL ontology is derived as the output

model of the last transformation step.

6.1 Input Model

The input model of the transformation process, serialized in XML format, contains the

concept lattice and its derived implication rules, which are captured from the unified

formal context table in FCA. Lattice Miner [59, 13] is the FCA software tool which is

employed in this thesis to generate the concept lattice and its implication rules. The

generated input XML file consists of two main parts that are concatenated to compose

the input model: (1) the structural elements of the concept lattice, (2) the implication

rules derived from the concept lattice. It has to be mentioned that, obtained concept

lattice is not a reduced labeling lattice, but a complete lattice. To clarify the input model,

its structural elements are declared as follows:

6.1.1 Concept Lattice Structural Elements

 The root element <LAT> with two attributes Desc and type represents the

specified concept lattice. The attribute Desc contains the name of the defined

formal context and its corresponding concept lattice. The attribute type contains

the lattice type, i.e., “Concept Lattice”. The root element <LAT> contains the

other child elements <OBJS>, <ATTS>, <NODS>, and <rules_base>. The child

 120

element <rules_base> is the root element of the implication rules that is

discussed in Subsection 6.1.2.

 The element <OBJS> consisting of <OBJ> child elements represents the defined

objects of the lattice. Each <OBJ> element has the attribute id. The contents of

the tag <OBJ> are the names of the objects in the extent of the nodes of the

concept lattice.

 The element <ATTS> consisting of the child element <ATT> represents the

defined attributes of the lattice. Each <ATT> element has the attribute id. The

contents of the tag <ATT> are the names of the attributes in the intent of the

nodes of the concept lattice.

 The element <NODS> consisting of the child elements <NOD> represents the

concept lattice nodes. Each <NOD> element consists of the attribute id, and the

child elements <EXT>, <INT> and <SUP_NOD>.

 The child element <EXT> of <NOD> consists of <OBJ> child elements

representing the objects in the extent of the lattice node denoted by the element

<NOD>. Each <OBJ> child element has an attribute id.

 The child element <INT> of <NOD> consists of <ATT> child elements

representing the attributes in the intent of the lattice node denoted by <NOD>.

Each <ATT> child element has an attribute id.

 The child element <SUP_NOD> of <NOD> consists of <PARENT> child elements

representing the immediate superconcepts of the lattice node denoted by

<NOD>. Each <PARENT> child element has an attribute id.

Figure 6.1 illustrates the XML specifications of concept lattice structural elements.

The tag <LAT> is the root element.

 121

<LAT Desc=" lattice-name" type="ConceptLattice">

 <MINSUPP>0.0</MINSUPP>

 <OBJS>

 <OBJ id="object-id">object-name</OBJ>

 </OBJS>

 <ATTS>

 <ATT id="attribute-id">attribute-name</ATT>

 </ATTS>

 <NODS>

 <NOD id="node-id">

 <EXT>

 <OBJ id="object-id" />

 </EXT>

 <INT>

 <ATT id="attribute-id" />

 </INT>

 <SUP_NOD >

 <PARENT id="parent-id" />

 </SUP_NOD>

 </NOD>

 </NODS>

 <rules_base/>

</LAT>

Figure 6.1: Lattice specifications in XML format

Figure 6.2: The Concept Lattice MergedConcepts XML file

 122

As an example, we can refer to the concept lattice MergedConcepts presented in

Chapter 4, Figure 4.19. The structural elements of the XML file derived from the concept

lattice MergedConcepts are illustrated in Figure 6.2, which is captured by Lattice Miner.

6.1.2 Implication Rules of Concept Lattice

 The root element <rules_base> represents the implication rules of the concept

lattice, that contains the child elements <specs> and <rules>.

 The element <specs> defines the specifications of the rules and consists of the

child elements <context_name>, <minimal_support>, and <minimal_confidence>.

 The child element <context_name> specifies the name of the defined formal

context and its corresponding concept lattice.

 The child element <minimal_support> specifies the minimum threshold on

support, to use a constraint on selecting the significant and interesting rules from

the set of all possible rules. The support supp(X) of a set of attributes X is

defined as the proportion of objects in the extent of the node in the concept

lattice which contain the set of attributes. At the time of capturing the implication

rules from the concept lattice, the software tool asks for specifying the minimal

support. Therefore, the proportion support of the selected implication rules is not

less than the minimal support (≥δ).

 The child element <minimal_confidence> specifies the minimum threshold on

confidence, to be used as a constraint for selecting the significant and interesting

rules from the set of all possible rules. The confidence of a rule is defined as conf

(X→ Y) = supp(X Y)/supp(X). It means that for the specified confidence

percentage, the rule (X → Y) is correct for the objects having the set of attributes

 123

belonging to X. At the time of capturing the implication rules from the concept

lattice, the software tool asks for specifying the minimal confidence. Therefore,

the proportion confidence of the selected implication rules is not less than the

minimal confidence (≥γ).

 The element <rules> consists of the child elements <rules_number> and <rules>.

The element <rules_number> contains the number of the selected implication

rules according to the minimal support and minimal confidence constraints. The

element <rules> consists of <rule> child elements. Each <rule> element

represents an implication rule of the concept lattice and consists of the child

elements <premise>, <consequence>, <support>, and <confidence>.

 The child element <premise> contains a set of attributes X that are at the left-

hand-side of the implication rule X → Y. It means each object having all attributes

of X has also all attributes of Y.

 The child element <consequence> contains a set of attributes Y that are at the

right-hand-side of the implication rule X → Y. It means each object having all

attributes of X has also all attributes of Y.

 The child element <support> holds the proportion support of the current <rule>

element that is not less than the minimal support.

 The child element <confidence> holds the proportion confidence of the current

<rule> element that is not less than the minimal confidence.

Figure 6.3 depicts the XML specifications of the implication rules of concept lattice.

The tag <rules-base> is the root element.

 124

< rules_base>

 <specs>

 <context_name>context-name</context_name>

 <minimal_support>minimal_support</minimal_support>

 <minimal_confidence>minimal_confidence</minimal_confidence>

 </specs>

 <rules>

 <rules_number>rules_number</rules_number>

 <rule>

 <premise>{premise-name}</premise>

 <consequence>{consequence-name}</consequence>

 <support>support-number</support>

 <confidence>confidence-number</confidence>

 </rule>

 </rules>

</ rules_base >

Figure 6.3: Rules specifications in XML format

The implication rules depicted in Figure 6.4 are derived from the sample concept

lattice MergedConcepts presented in Chapter 4, Figure 4.19. The implication rules are

captured by Lattice Miner.

Figure 6.4: Implication rules of MergedConcepts Concept Lattice

 125

6.2 Output Model

The output model of the transformation process is an OWL format file of Ontology.

TopBraid Composer [80] is the ontology software tool which is employed in this thesis to

open the output OWL file and demonstrate its correctness using the reasoning engine.

The OWL format output model consists of the definitions of ontology overview, classes,

individuals, properties, object restrictions, equivalent classes, as well as the class

hierarchy which indicates the subclass-superclass relationships. To clarify the output

model, its structural elements are declared as follows:

 Ontology overview consists of the base URI location, default namespace, and

ontology language specified as the header of the ontology file. They are identified

in the form of prefixes to abbreviate the URIs of the namespaces used in

ontology. Also, an annotation element adds the information about the ontology

which is provided by the tag <versionInfo>. The name of the ontology and the

ontology overview parameters are defined based on the name of the concept

lattice in FCA. Figure 6.5 illustrates the OWL specifications of the ontology

overview.

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns="http://example.org/lattice-name#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xml:base="http://example.org/lattice-name">

 <owl:Ontology rdf:about="">

 <owl:versionInfo rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 version-information

 </owl:versionInfo>

 </owl:Ontology>

</ rdf:RDF >

Figure 6.5: Ontology overview specifications in OWL format

 126

 Ontological classes and the class hierarchy are defined based on the formal

concepts and the concept hierarchy in FCA. Various class types are defined in

ontology that all of them follow the same structural elements. The class

specifications consist of the class name, its label name and its superclass name.

Figure 6.6 illustrates the OWL specifications of the ontological classes.

 Individuals in ontology are defined based on the objects of the extents in the

concept lattice. The individual specifications consist of the individual name and

its label name. Figure 6.7 shows the OWL specifications of the individuals.

<owl:Class rdf:ID="class-name">

 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >label-name

 </rdfs:label>

 <rdfs:subClassOf>

 <owl:Class rdf:about="#superclass-name"/>

 </rdfs:subClassOf>

</owl:Class>

Figure 6.6: Ontological class specifications in OWL format

< class-name rdf:ID=”individual-name”>

 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >individual-name

 </rdfs:label>

</class-name>

Figure 6.7: Individual specifications in OWL format

 Object properties in ontology are defined based on the various relationships that

hold among the formal concepts. Various object property types are defined in

ontology that all of them follow the same structural elements. The object property

specifications consist of the property name, its inverse property name if

applicable, its domain and range class names, and its super-property name.

Figure 6.8 illustrates the OWL specifications of the object properties.

 127

 <rdf:Property rdf:about="#property-name">

 <owl:inverseOf>

 <rdf:Property rdf:about="#inverse-property-name"/>

 </owl:inverseOf>

 <rdfs:domain rdf:resource="#class-name"/>

 <rdfs:range rdf:resource="# class-name "/>

 <rdfs:subPropertyOf>

 <rdf:Property rdf:about="#super-property-name"/>

 </rdfs:subPropertyOf>

</rdf:Property>

Figure 6.8: Object property specifications in OWL format

 Property restrictions are defined for the classes that hold the object property

relations. In addition to the class specifications, the property restriction consists

of another subclass element that contains the restriction child element that is

imposed on a property. It can be a quantifier restriction, cardinality restriction, or

hasValue restriction. Figure 6.9 and Figure 6.10 illustrate the OWL specifications

of the two sample property restrictions.

<owl:Class rdf:ID="class-name">

 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >label-name

 </rdfs:label>

 <rdfs:subClassOf>

 <owl:Class rdf:about="#superclass-name"/>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <rdf:Property rdf:ID="property-name"/>

 </owl:onProperty>

 <owl:allValuesFrom>

 <owl:Class>

 <owl:intersectionOf rdf:parseType="Collection">

 <owl:Class rdf:about="#class-name"/>

 </owl:intersectionOf>

 </owl:Class>

 </owl:allValuesFrom>

 </owl:Restriction>

 </rdfs:subClassOf>

</owl:Class>

Figure 6.9: AllValuesFrom Property restriction specifications in OWL format

 128

<owl:Class rdf:ID="class-name">

 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >label-name

 </rdfs:label>

 <rdfs:subClassOf>

 <owl:Class rdf:about="#superclass-name"/>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <rdf:Property rdf:ID="property-name"/>

 </owl:onProperty>

 <owl:hasValue rdf:resource=”#property-value”/>

 </owl:Restriction>

 </rdfs:subClassOf>

</owl:Class>

Figure 6.10: HasValue Property restriction specifications in OWL format

<owl:Class rdf:ID="class-name">

 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >label-name

 </rdfs:label>

 <rdfs:subClassOf>

 <owl:Class rdf:about="#superclass-name"/>

 </rdfs:subClassOf>

 <owl:equivalentClass>

 <owl:Class>

 <owl:oneOf rdf:parseType="Collection">

 <class-name rdf:ID="individual-value"/>

 </owl:oneOf>

 </owl:Class>

 </owl:equivalentClass>

</owl:Class>

Figure 6.11: Equivalent class specifications in OWL format

 Equivalent classes are other class axioms that are used to define another

relation type between the classes in ontology. So, a class can be defined as the

equivalent class of another class or some more restrictions can be imposed to

simulate the specialization between the classes. Moreover, a class can be

defined equivalent to the set of individuals that are described in the enumeration.

In this case, these individuals have been asserted to be all different from each

other and the class can only be one of them and nothing else. Figure 6.11

illustrates the OWL specifications of the equivalent class to the set of individuals.

 129

As part of the class specifications, the equivalent class consists of another

<owl:Class> element that contains the „oneOf‟ restriction that is imposed on the

set of individuals.

6.3 Model Transformation

In this Section, our proposed transformation techniques is introduced to transform

the concept lattice as the input model into the OWL ontology as the output model. This

model transformation consists of four transformation procedures: (1) Lattice Reducer, (2)

Class Definer, (3) Pre-phase Definition, and (4) Ontology Builder. Each transformation

procedure is defined independently. They are executed successively to accomplish the

transformation approach through several steps.

The transformation procedures are implemented by using XSLT model transformation

framework and XPath language. As discussed before, the procedures use a hybrid of

Push and Pull methods to do the process. Templates are used to match the nodes that

get pushed to the output XML files and the specified nodes are selected to change the

structure of files. Each transformation procedure is separately defined by a XSL

Stylesheet.

In the beginning, the transformation procedures specified by XSL Stylesheets are

implemented by XSLT 2.0 using the trial version of Oxygen XML Editor 11.2. Later on,

the XSLT transformation is performed by java programming using the XSLT jar files. The

second platform has two advantages. First, the resulting XSLT transformation programs

are independent of different versions of tools. Second, the defined transformation

procedures are executed as an application package, all at once, which is much more

efficient.

 130

In each transformation step, the input model is processed to produce the output

model, which in turn will be the input model of the next transformation step. By executing

the transformation procedures successively, the transformation process is completed

and the OWL ontology is obtained. However, the entire transformation process is

automatically done in the background. Figure 6.12 depicts the model transformation from

concepts to ontology.

Figure 6.12: Model Transformation from Concepts to Ontology

6.3.1 Lattice Reducer Procedure

Lattice Reducer is the first transformation procedure that transforms the concept

lattice to the reduced labeling lattice. Also, it prunes the input XML file by removing the

extra and inappropriate attributes that are generated through the conversion process

from VCT to BCT in lattice Miner software tool. The input model described in Section 6.1

 131

is the input XML file of the Lattice Reducer procedure that is transformed into another

intermediate XML file. Lattice Reducer procedure consists of the following steps which

are executed successively:

 Step 1: The attributes type and Desc of the element <LAT>, the element

<OBJS>/<OBJ>, the element <NOD>/<SUP_NOD>/<PARENT>, and the

element <LAT>/<rules>, as well as its child elements and attributes are

unchanged by the transformation.

 Step 2: The elements <ATTS>/<ATT>, which are the attributes of the concept

lattice are unchanged by the transformation, except for the elements ending with

slash character. For such <ATTS>/<ATT> elements, the attribute comment with

the value “Ignored” is added. These attributes correspond to the objects that no

value is specified for them and are automatically generated by Lattice Miner

through the conversion process from VCT to BCT.

 Step 3: To transform the concept lattice to the reduced labeling lattice, if any of

their extent objects is found in the succeeding <NOD> elements, it must be

removed. So, for such <NOD>/<EXT>/<OBJ> element, a comment attribute with

the value “Ignored” is added.

 Step 4: To transform the concept lattice to the reduced labeling lattice, if any of

their intent attributes is found in the preceding <NOD> elements, it must be

removed. So, for such <NOD>/<INT>/<ATT> element, a comment attribute with

the value “Ignored” is added.

 Step 5: For the elements <NOD>/<INT>/<ATT> that are time constraint, data

constraint, update, action, or role privilege, a comment attribute with the value

“Ignored” is added.

 132

 Step 6: The element <NOD>/<INT>/<ATT> which ends with slash character is

tagged as “Ignored” to be eliminated from the output model.

As an example, the Lattice Reducer procedure is applied to the sample concept

lattice MergedConcepts, which is introduced in Chapter 4. The XML-format of the concept

lattice MergedConcepts is illustrated in Figure 6.2 and is considered as the input of the

Lattice Reducer procedure. The yielded output XML file is depicted in Figure 6.13.

Figure 6.13: Output XML file of Lattice Reducer procedure

6.3.2 Class Definer Procedure

Class Definer is the second transformation procedure that determines the ontological

classes corresponding to the formal concepts in the concept lattice. The subclass-

 133

superclass relations in addition to the property relations are figured out. Also, the safety

properties and the security constraints are identified. Finally, the functional requirements

as a part of the functional requirements attributes are specified with their data

constraints, updates, and reactions. The output XML file acquired from Lattice Reducer

procedure is the input of the Class Definer procedure. The input is transformed into

another intermediate XML file. Class Definer procedure consists of the following steps,

which are executed successively:

 Step 1: The attributes type and Desc of the element <LAT>, the element

<OBJS>/<OBJ>, the element <NOD>/<SUP_NOD>/<PARENT>, and the

element <LAT>/<rules>, as well as its child elements and attributes are

unchanged by the transformation.

 Step 2: The elements <ATTS>/<ATT>, which are the attributes of the concept

lattice, are unchanged by the transformation, except for the intent attributes

having the comment attribute with the value “Ignored”.

 Step 3: The child elements <EXT>/<OBJ> and <INT>/<ATT> of the element

<NODS>/<NOD> are unchanged by the transformation, except for the extent

objects and intent attributes having the comment attribute with the value “Ignored”.

 Step 4: The new element <NODNAMES>/<NOD>, having the attributes id, name,

parent, and mainName, is added to the output XML file. Each <NOD> element

corresponds to a node in the concept lattice with the same id, which contains the

detected ontological class name and its superclass. The element <NOD> without

any attribute name and parent, called anonymous node, is not the candidate for

any ontological classes. The detected ontological classes are from various class

types such as root class, attribute/multi-attribute class, and object class

(described in Chapter 5). The attribute mainName is assigned to the name of the

 134

main attribute of the multi-attribute class. For the object class, all superconcepts

are extracted from the lattice hierarchy and added as the element

<NODNAMES>/<NOD>/<SUP>. The technique for determining the

superconcepts of an object class is described in Chapter 5.

 Step 5: To specify the time constraint properties, the new element

<TIMECONSTRAINTS>/<TC>, having the attributes id, name, and value, is added

to the output XML file. Each <TC> element corresponds to the time constraint of

either an attribute class or a property attribute class. The attribute id is assigned

to the id attribute of the corresponding time constraint property of the element

<ATTS>/<ATT>. The attribute name is assigned to the attribute class name that

time constraint is defined for. The attribute value is assigned to the time value.

Only one time constraint may be defined for any attribute class or property

attribute class.

 Step 6: To specify the data constraint properties, the new element

<DATACONSTRAINTS>/<DC>, having the attributes id and name, is added to

the output XML file. Each <DC> element corresponds to a data constraint

property of an attribute class. The attribute id is assigned to the id attribute of the

corresponding data constraint property of the element <ATTS>/<ATT>. The

attribute name contains both the data constraint name and value.

 Step 7: To specify the updates of data constraint properties, the new element

<UPDATEDATACONSTRAINTS>/<UDC>, having the attributes id and name, is

added to the output XML file. Each <UDC> element corresponds to an updated

data constraint. The attribute id is assigned to the id attribute of the

corresponding update of the element <ATTS>/<ATT>. The attribute name

contains both the updated data constraint name and value.

 135

 Step 8: To specify the actions, the new element <ACTIONS>/<ACT>, having the

attributes id, name, and component, is added to the output XML file. Each <ACT>

element corresponds to a functional requirements attribute that may contain a set

of actions. The attribute id is assigned to the id attribute of the corresponding

action of the element <ATTS>/<ATT>. The attribute name contains the action

name. The attribute concept is assigned to the concept name that the action

belongs to. The concept name is derived from the implication rules.

 Step 9: To specify the property hasProperty, the new element

<HASPROPERTIES>/<HP>, having the attributes id, domain, and name, is added

to the output XML file. The element <HP> corresponds to the property

hasProperty, which generates the relation between a main attribute class and its

property attribute classes. The attribute id is assigned to the id attribute of the

corresponding property attribute of the element <ATTS>/<ATT>. The attribute

domain is assigned to the main attribute class name. The attribute name is

assigned to the property attribute class name.

 Step 10: To specify the role privileges, the new element

<ROLEPRIVILEGES>/<RP>, having the attributes id and name, is added to the

output XML file. Each <RP> element corresponds to a role privilege attribute.

The attribute id is assigned to the id attribute of the corresponding role privilege

of the element <ATTS>/<ATT>. The attribute name contains both the role name

and the functional requirement name that the role has the privilege of accessing.

Also, the attribute name may contain the role name that does not have any

privilege of accessing to the given functional requirement.

 Step 11: The new element <FREQUIREMENTS>/<FR>, having the attributes

name, from, and to, is added to the output XML file. The element <FR>

 136

corresponds to a functional requirements attribute containing the provided and

requested functional requirements. The attribute name is assigned to the

functional requirement attribute name. The attribute from is assigned to the

concept name having the provided functional requirement. The attribute to is

assigned to the concept name having the requested functional requirement. For

the internal functional requirements, the attributes from and to will indicate the

internal functional requirements.

 Step 12: The element <FR>/<DCS> specifies the data constraint of the

functional requirements attribute. The element <DCS>/<DC>, having the attribute

name, corresponds to a data constraint of the functional requirements attribute.

The attribute name is assigned to the data constraint name.

 Step 13: The element <FR>/<UPDATES> specifies the updated data constraint.

The element <UPDATES>/<UP>, having the attribute name, corresponds to an

updated data constraint. The attribute name is assigned to the name of the

updated data constraint and its new value.

 Step 14: The element <FR>/<FRACTIONS> specifies the actions of the

functional requirements attribute. The element <FRACTIONS>/<AC>, having the

attribute name, corresponds to a functional requirements attribute that may

contain a set of actions. The attribute name contains the functional requirement

attribute name.

As an example, the Class Definer procedure is applied to the sample concept lattice

MergedConcepts. The XML file illustrated in Figure 6.13 is considered as the input of the

Class Definer procedure. The yielded output XML file is depicted in Figure 6.14.

 137

Figure 6.14: Output XML file of Class Definer procedure

6.3.3 Pre-phase Definition Procedure

Pre-phase Definition is the third transformation procedure that determines the parent

nodes, concept relation types and functional requirement types, which are the necessary

data for the next phase where the OWL ontology will be composed. The output XML file

acquired from Class Definer procedure is the input model of the Pre-phase Definition

procedure that is transformed into another intermediate XML file. Pre-phase Definition

procedure consists of the following steps.

 Step 1: The attributes type and Desc of <LAT>, its child elements <OBJS>,

<ATTS>, <NODS>, and <NODNAMES>, besides all their child elements and

attributes are unchanged by the transformation. Also, the child elements

<TIMECONSTRAINTS>, <DATACONSTRAINTS>, <HASPROPERTIES>,

 138

<ROLEPRIVILEGES>, <FREQUIREMENTS>, <UPDATEDATACONSTRAINTS>

, <ACTIONS>, and <rules> of <LAT>, as well as their child elements and

attributes are unchanged by the transformation.

 Step 2: To specify the subclass-superclass hierarchy among the concepts, the

new element <PARENTNODES>/<PN>, having the attributes id and name, are

added to the output XML file. Each <PN> element corresponds to a class

representing a concept. The first <PN> element contains the root class

representing the main concept. The attribute id is assigned to the id attribute of

the corresponding class node of the element <NODNAMES>/<NOD>. The

attribute name is assigned to the class name.

 Step 3: The element <PN>/<CHILDREN>/<CH>, having the attribute name,

corresponds to only the subclasses of the element <PN> which represent the

concepts. The attribute name contains the subclass name.

 Step 4: To specify the relations among the functional requirements of the

concepts, the new element <ConceptRelationTypes>/<CONCEPT>, having the

attribute name, is added to the output XML file. Each <CONCEPT> element

corresponds to a class representing a concept, which has relation with other

concepts. The attribute name is assigned to the name attribute of the

corresponding class node of the element <NODNAMES>/<NOD>. For the multi-

attribute classes, the attribute mainName is specified.

 Step 5: The element <CONCEPT>/<ConceptRelations>/<CR>, having the

attribute name, corresponds only to the classes, which represent the concepts

and have relation with the element <CONCEPT>.

 Step 6: To specify various functional requirement types of the concepts, the new

element <FRTYPES>/<CONC>, having the attribute name, is added to the output

 139

XML file. Each <CONC> element corresponds to a class representing a concept,

which has relation with other concepts. The attribute name is assigned to the

name attribute of the corresponding class node of the element

<NODNAMES>/<NOD>. For the multi-attribute classes, the attribute mainName is

specified.

 Step 7: The element <FRTYPES>/<CONC> consists of the child elements

<InternalFRs>, <ProvidedFRs>, and <RequestedFRs>, which contain the child

elements <INTFR>, <PFR>, and <RFR> respectively. The attribute name of these

elements contains the functional requirement names of their relevant functional

requirement types.

Figure 6.15: Output XML file of Pre-phase Definition procedure

 140

As an example, the Pre-phase Definition procedure is applied to the sample concept

lattice MergedConcepts. The XML file illustrated in Figure 6.14 is considered as the input

of the Pre-phase Definition procedure. The yielded output XML file is depicted in Figure

6.15.

6.3.4 Ontology Builder Procedure

Ontology Builder is the fourth and last transformation procedure that builds the target

OWL ontology. The output XML file acquired from Pre-phase Definition procedure is the

input model of the Ontology Builder procedure. Actually, the transformation rules

described in Chapter 5 are implemented in this procedure and the data transformed by

previous procedures are used to do this job properly. One of the benefits of developing

several procedures to do the transformation process is to exempt the designer from

defining all details in the context tables of FCA. That means, only the required data are

manually specified by user and the rest of the job, which are expanding and extracting

the necessary information from the data, are accomplished automatically by the model

transformation process. The OWL format output model consists of the definitions of

ontology overview, classes, individuals, object properties, object restrictions, equivalent

classes, as well as the class hierarchy which includes the subclass-superclass

relationships. Ontology Builder procedure consists of the following steps which are

executed successively:

 Step 1: Ontology Overview is defined based on the attribute Desc of the element

<LAT>. Also, an annotation about the ontology is added as the tag

<owl:versionInfo> to the output OWL file.

 141

 Step 2: The property hasConstraint, its subproperty hasSecurityConstraint, and also

the subproperties of the property hasSecurityConstraint are defined.

 Step 3: The class Roles is defined as the subclass of the root class. Then, the

role names and privileges of accessing to the functional requirement names are

extracted from the element <ROLEPRIVILEGES>/<RP>, and defined as the

subclasses of the class Roles. For each defined role class, the restriction

allValuesFrom is defined on the properties hasFRPrivilege and hasnotFRPrivilege.

 Step 4: The class FRequirements is defined as the subclass of the root class.

Then, the classes ProvidedFRs, RequestedFRs, and InternalFRs are defined as the

subclasses of the class FRequirements.

 Step 5: The property hasFRequirement and its subclasses hasProvidedFR,

hasRequestedFR, and hasInternalFR are defined.

 Step 6: All provided, requested, and internal functional requirement classes are

extracted from the element <FRTYPES>/<CONC> and are defined as the

subclasses of their relevant functional requirement classes. The actions are also

defined as the requested functional requirement classes. Besides, the role

privileges of the functional requirements are extracted from the element

<ROLEPRIVILEGES>/<RP>, and for each defined functional requirement class,

the restriction hasValue are defined on the properties hasRolePrivilege and

hasnotRolePrivilege.

 Step 7: The property hasDataConstraint is defined as the subproperty of the

property hasConstraint. Then, all data constraints are extracted from the element

<DATACONSTRAINTS>/<DC>, and are defined as the subproperties of the

property hasDataConstraint.

 142

 Step 8: The class DataConstraints is defined as the subclass of the root class.

Then, all data constraints are extracted from the element

<DATACONSTRAINTS>/<DC>, and are defined as the subclasses of the class

DataConstraints. Besides, their values are specified by the equivalent class

definition.

 Step 9: The property hasTimeConstraint is defined as the subproperty of the

property hasConstraint.

 Step 10: The class TimeConstraint is defined as the subclass of the root class.

Then, all time constraint values are extracted from the element

<TIMECONSTRAINTS>/<TC>, and are specified by the equivalent class

definition.

 Step 11: The property hasProperty is defined. Then, for each main attribute class

extracted from the element <HASPROPERTIES>/<HP>, a property is defined as

the subproperty of the property hasProperty. The defined property is determined

as the inverse property of its corresponding property isPropertyOf.

 Step 12: The property isPropertyOf is defined. Then, for each main attribute class

extracted from the element <HASPROPERTIES>/<HP>, a property is defined as

the subproperty of the property isPropertyOf. The defined property is determined

as the inverse property of its corresponding property hasProperty.

 Step 13: For the object classes, the class ObjClasses is defined as the subclass

of the root class. Also, the property hasObjClassProperty is defined.

 Step 14: For all nodes specified in the element <NODNAMES>/<NOD>, the

corresponding classes and their superclasses are defined. For multi-attribute

classes, the main attribute and the property attributes are defined as the

subclasses of the MClass.

 143

 Step 15: The object classes are defined as the subclasses of the class

ObjClasses. Also, the restriction someValuesFrom is defined on the property

hasObjClassProperty for the superclasses of the object class that are extracted

from the element <NODNAMES>/<NOD >/<SUP>.

 Step 16: For the classes that have any corresponding time constraint property in

the element <TIMECONSTRAINTS>/<TC>, the restriction hasValue is defined on

the property hasTimeConstraint.

 Step 17: For the multi-attribute classes, the restriction someValuesFrom is defined

on the property hasProperty of the main attribute class. Also, the restriction

someValuesFrom is defined on the property isPropertyOf of the property attribute

classes.

 Step 18: For the classes that have any corresponding functional requirements in

the element <FRTYPES>/<CONC>, the restriction allValuesFrom is defined on

the relevant subproperties of the property hasFRequirement.

 Step 19: For the classes that have any corresponding data constraints on the

functional requirements in the element

<FREQUIREMENTS>/<FR>/<DCS>/<DC>, the restriction hasValue is defined on

the relevant subproperties of the property hasDataConstraint.

 Step 20: For the classes that have any extent objects in the element

<EXT>/<OBJ> of the corresponding nodes, the object names are extracted from

the element <OBJS>/<OBJ> and defined as the individuals of the classes.

As an example, the Ontology Builder procedure is applied to the sample concept

lattice MergedConcepts. The XML file illustrated in Figure 6.15 is considered as the input

of the Ontology Builder procedure. The yielded output OWL file is depicted in Figure

6.16.

 144

Figure 6.16: Output OWL file of Ontology Builder procedure

The obtained OWL file is opened in the TopBraid Composer software tool. The

derived MergedConcepts OWL ontology is illustrated in Figure 6.17.

Figures 6.18 (a) and Figure 6.18 (b) illustrate the proposed approach and the

contribution of this thesis. Domain analysis is fulfilled by the application of Formal

Concept Analysis. The provided framework consists of two model transformation

process: from formal concepts to OWL ontology, and from OWL ontology to TADL

description language. The transformation process is done by using the XSLT model

 145

transformation framework. The FCA software tool, Lattice Miner, and the ontology

software tool, TopBraid Composer are applied to generate formal TADL artifacts. Finally,

the obtained TADL description language may be used in component-based software

development.

Figure 6.17: MergedConcepts OWL Ontology

 146

Figure 6.18 (a): The schema of the proposed approach

Figure 6.18 (b): FCA part of the proposed approach

 147

Chapter 7

Model Transformation from Ontology to

Components

In this Chapter, the OWL ontology is automatically transformed into the architecture

description language TADL [49], which in turn will be used to develop the trustworthy

component-based systems. To do so, we have implemented a model transformation

framework to produce automatically the specifications of reusable components and

component-based architecture of the relevant trustworthy system. The input meta-model

is an OWL format file that consists of the definitions of ontology overview, classes,

individuals, properties, safety and security requirement properties, as well as the class

hierarchy, including the subclass-superclass relationships. The output model in XML

format is TADL architecture description language. The transformation rules are captured

from [48], which are implemented by applying XSLT [74, 47] model transformation

framework and XPath [74] language.

In Section 7.1, the structure of the output meta-model is introduced by presenting the

XML schemas of TADL. Section 7.2 presents the transformation rules. Section 7.3

 148

discusses the transformation model from OWL ontology to TADL description language,

which specifies the reusable components and the component-based architecture.

7.1 TADL XML Schemas

TADL [49], the trustworthy architecture description language, is defined as a high

level specification for dependable component models. TADL has an XML-based

representation containing the system definition which satisfies the trustworthy

component model XML-based schemas. The XML schemas that correspond to the

TADL description are explained as follows.

7.1.1 InterfaceType Schema

The interface type schema contains an ordered sequence of the following sub

elements:

 name: a simple element to specify the name of the interface.

 protocol: a simple element to specify the protocol of an interface.

 Attribute: a complex element to specify the attributes of an interface. It is an

ordered sequence of the simple elements name, datatype, value, and

description.

 ServiceType: a complex element to specify the service types of an interface. It is

an ordered sequence of the following sub-elements:

 name: a simple element to specify the name of a service

 id: a simple element to specify a unique identifier for a service.

 type: a simple element to specify a service type.

 149

 Attribute: a complex element to specify the attributes of a service. It is an

ordered sequence of the simple elements name, datatype, value, and

description.

 constraint: a simple element to specify the constraints in a service.

 ParameterType: a complex element to specify the parameters in a service. It

is an ordered sequence of the simple elements name, datatype, value, and

description.

 Property: a complex element to specify the properties of a service. It is an

ordered sequence of the simple elements name and value.

 description: a simple text element to store the annotation of the service.

 description: a simple text element to store the annotation of the interface.

The terms minOccurs and maxOccurs in the XML Schema respectively specify the

minimum and maximum occurrences of an element.

7.1.2 ComponentType Schema

The component type schema contains an ordered sequence of the following sub

elements:

 name: a simple element to specify the name of a component.

 Property: a complex element to specify the properties of a component. It is an

ordered sequence of the simple elements name and value.

 Attribute: a complex element to specify the attributes of a component. It is an

ordered sequence of the simple elements name, datatype, value, and

description.

 constraint: a simple element to specify the constraints of a component.

 150

 User: a complex element to define the users of a component. The schema of the

user is discussed in section 7.1.6.

 InterfaceType: a complex element to specify the interfaces of a component. The

schema of the interface type is discussed in section 7.1.1.

 ArchitectureType: a complex element to specify the architectural structure of a

component. It is composed of an ordered sequence of the following elements:

 name: a simple element to specify the name of an architecture.

 ComponentType: a complex element to specify the components in the

architecture. The schema of the component type is discussed in section

7.1.2.

 ConnectorType: a complex element to specify the connectors in the

architecture. The schema of the connector type is discussed in section 7.1.3.

 Attribute: a complex element to specify the attributes of the architecture. It is

an ordered sequence of the simple elements name, datatype, value, and

description.

 constraint: a simple element to specify the constraints in an architecture.

 Attachment: a complex element to define the connections of a connector

role and the interface of a component. It is composed of an ordered

sequence of the following elements:

o name: a simple element to specify the name of an attachment.

o ConnectorType: a complex element to specify the connector in an

attachment. The schema of the connector type is discussed in section

7.1.3.

o ConnectorRoleType: a complex element to specify the connector role in

an attachment. The schema of the connector role type is discussed in

section 7.1.3.

 151

o InterfaceType: a complex element to specify the interface in an

attachment. The schema of the interface type is discussed in section

7.1.1.

o ComponentType: a complex element to specify the component in an

attachment. The schema of the component type is discussed in section

7.1.2.

o InterfaceType: a complex element to specify the other interface in an

attachment. The schema of the interface type is discussed in section

7.1.1.

o description: a simple text element to store the annotation of the

attachment.

 description: a simple text element to store the annotation of the architecture.

 ContractType: a complex element to specify the safety contract of a component.

The schema of the contract type is discussed in section 7.1.4.

 description: a simple text element to store the annotation of the component.

7.1.3 ConnectorType Schema

The connector type schema contains an ordered sequence of the following sub

elements:

 name: a simple element to specify the name of a connector.

 ConnectorRoleType: a complex element to specify the roles of a connector. It is

composed of an ordered sequence of the following elements:

 name: a simple element to specify the name of the connector role.

 152

 Attribute: a complex element to specify the attributes of a connector role. It

is an ordered sequence of the simple elements name, datatype, value, and

description.

 constraint: a simple element to specify the constraints of a connector role.

 InterfaceType: a complex element to specify the interface attached to the

connector role. The schema of the interface type is discussed in section

7.1.1.

 description: a simple text element to store the annotation of the connector

role.

 Attribute: a complex element to specify the attributes of a connector. It is an

ordered sequence of the simple elements name, datatype, value, and

description.

 constraint: a simple element to specify the constraints of a connector.

 description: a simple text element to store the annotation of the connector.

7.1.4 ContractType Schema

The contract type schema contains an ordered sequence of the following sub

elements:

 name: a simple element to specify the name of a contract.

 DataConstraint: a complex element to specify the data constraints in a reactivity

of a contract. It is composed of an ordered sequence of the following elements:

 name: a simple element to specify the name of a data constraint.

 Request ServiceType: a complex element to specify the request service of a

data constraint. The schema of the service type is discussed in section 7.1.1.

 153

 Response ServiceType: a complex element to specify the response service

of a data constraint. The schema of the service type is discussed in section

7.1.1.

 constraint: a simple element to specify the constraints in a data constraint.

 description: a simple text element to store the annotation of the data

constraint.

 TimeConstraint: a complex element to specify the time constraints in a reactivity

of a contract. It is composed of an ordered sequence of the following elements:

 name: a simple element to specify the name of the time constraint.

 Attribute: a complex element to specify the attributes of a time constraint. It

is an ordered sequence of the simple elements name, datatype, value, and

description.

 constraint: a simple element to specify the constraints in a time constraint.

 Request ServiceType: a complex element to specify the request service of a

time constraint. The schema of the service type is discussed in section 7.1.1.

 Response ServiceType: a complex element to specify the response service

of a time constraint. The schema of the service type is discussed in section

7.1.1.

 maxSafeTime: a simple element to specify the maximum allowed time

between receiving a request and providing a response.

 description: a simple text element to store the annotation of the time

constraint.

 Reactivity: a complex element to specify the reactivity property of a contract.

 name: a simple element to specify the name of a reactivity.

 id: a simple element to specify a unique identifier for each reactivity.

 154

 Request ServiceType: a complex element to specify the request service of

reactivity. The schema of the service type is discussed in section 7.1.1.

 Response ServiceType: a complex element to specify the response service

of reactivity. The schema of the service type is discussed in section 7.1.1.

 DataConstraint: a complex element to include data constraints in reactivity.

The schema of the data constraint has been discussed above.

 TimeConstraint: a complex element to include time constraints in reactivity.

The schema of the time constraint has been discussed above.

 Update: a complex element to specify the updates of the data parameters. It

is an ordered sequence of the simple elements toBeUpdated and value.

 description: a simple text element to store the annotation of the reactivity.

 SafetyProperty: a complex element to specify the safety property of a contract.

It is composed of an ordered sequence of the following elements:

 name: a simple element to specify the name of a safety property.

 ServiceType: a complex element to specify the services that are restricted

by the safety property. The schema of the service type is discussed in section

7.1.1.

 constraint: a simple element to specify the constraints in a safety property.

 description: a simple text element to store the annotation of the safety

property.

 description: a simple text element to store the annotation of the contract.

 155

7.1.5 PackageType Schema

The package type schema contains an ordered sequence of the following sub

elements:

 name: a simple element to specify the name of a package.

 Version: a simple element to specify the version of a package.

 InterfaceType: a complex element to specify the interfaces in a package. The

schema of the interface type is discussed in section 7.1.1.

 ContractType: a complex element to specify the contracts in a package. The

schema of the contract type is discussed in section 7.1.4.

 ConnectorType: a complex element to specify the connectors in a package. The

schema of the connector type is discussed in section 7.1.3.

 ComponentType: a complex element to specify the components in a package.

The schema of the component type is discussed in section 7.1.2.

 description: a simple text element to store the annotation of the package.

 PackageType: a complex element to specify the sub packages in a package.

7.1.6 RBAC Schema

The Role-Based Access Control (RBAC) schema contains an ordered sequence of

the following sub elements:

 name: a simple element to specify the name of a RBAC.

 User/Group/Role/Privilege: a complex element in a RBAC. The schema of

Users/ Groups/Roles/Privileges is composed of an ordered sequence of the

following:

 156

 name: a simple element to specify the name of the

users/groups/roles/privileges.

 Attribute: a complex element to specify the attributes of a

user/group/role/privilege. It is an ordered sequence of the simple elements

name, datatype, value, and description.

 constraint: a simple element to specify the constraints of a

user/group/role/privilege.

 description: a simple element to store the annotation of a

user/group/role/privilege.

 UserGroupAssignments: a complex element to specify the user-group

assignments. It is composed of an ordered sequence of the complex elements

User and Group.

 UserRolesAssignments: a complex element to specify the user-role

assignments. It is composed of an ordered sequence of the complex elements

User and Role.

 GroupRolesAssignments: a complex element to specify the group-role

assignments. It is composed of an ordered sequence of the complex elements

Group and Role.

 ServiceType: a complex element to include the services that is restricted by the

RBAC. The schema of the service type is discussed in section 7.1.1.

 ParameterType: a complex element to include the parameters that is restricted

by the RBAC. The schema of the parameter type is discussed in section 7.1.1.

 PrivilegesForServices: a complex element to assign service privileges to

specific roles. It is composed of an ordered sequence of the composite elements

ServiceType, Privilege, and Role.

 157

 PrivilegesForDataParameters: a complex element to assign data parameter

privileges to specific roles. It is composed of an ordered sequence of the

composite elements ParameterType, Privilege, and Role.

 description: a simple text element to store the annotation of the RBAC.

7.1.7 System Schema

The system configuration schema contains an ordered sequence of the following sub

elements:

 name: a simple element to specify the name of a system.

 Attribute: a complex element to specify the attributes of a system. It is an

ordered sequence of the simple elements name, datatype, value, and

description.

 ComponentType: a complex element to specify the components in a system.

The schema of the component type is discussed in section 7.1.2.

 Deploy: a complex element to state the hardware component in which each

software component is deployed. It is composed of an ordered sequence of the

complex elements HardwareComponentType and ComponentType. The schema

of ComponentType is discussed in section 7.1.2, and the schema of a hardware

component type is composed of a sequence as follows:

 name: a simple element to specify the name of the hardware component.

 Attribute: a complex element to specify the attributes of a hardware

component. It is an ordered sequence of the simple elements name,

datatype, value, and description.

 158

 constraints: a simple element to specify the constraints of a hardware

component.

 InterfaceType: a complex element to specify the interfaces of a hardware

component. The schema of an interface type is discussed in section 7.1.1.

 description: a simple text element to store the annotation of the hardware

component.

 description: a simple text element to store the annotation of the system.

 RBAC: a complex element to include a security mechanism in a system. The

schema of the RBAC is discussed in section 7.1.6.

7.2 Transformation Rules

Component-based development is a particular software production method, tailored

for developing reusable components and integrating existing components to create

software systems. The primary reason for using component-based methodology in

software development is that, it increases reuse potential. Components, their

specifications, and other system artifacts can be used because they exist as

independent architectural elements. Components are composed only on demand. On

the other hand, ontologies has provided powerful improvements for creating and storing

reusable knowledge building blocks in a well defined machine-readable format. Since

reuse requires domain knowledge, and it is embedded in ontology, it seems reasonable

to use ontology for deriving the reusable concepts and transforming them to reusable

components. Motivated by this rationale, the OWL ontology obtained in Section 6 is now

transformed into components, as described by TADL. We use XML to represent both

OWL and TADL and explain the model transformation process from the OWL to TADL.

 159

Ontology is a domain model that results in detailed specifications of reusable

knowledge. When it is applied to component-based development, detailed specification

of reusable components and component-based architectures are produced. In order to

achieve an efficient component-based development, appropriate domain ontology must

be built. The captured conceptualization and relations in ontology should be formally

specified, so we have used OWL to formally represent the results of domain analysis.

Besides, OWL provides the facility of sharing and reusing ontologies, as well as using

the ontology reasoning to accomplish syntax consistency and subsumption checking.

Subsequently, this enables mapping the OWL ontology formalization to formal TADL

description.

The model transformation process from OWL ontology to TADL components

implements the transformation rules in [48] by using XSLT [74, 47] model transformation

framework and XPath language [74]. According to the transformation rules [48], mapping

occurs between OWL language constructs and their relevant TADL constructs as

follows:

 Entities are mapped to components [48]. The part-of relation between entities is

mapped to composite components where a component consists of multiple

constituent components. Note that the sub-class-of relation is not supported in

the current version of TADL.

 Data are mapped to attributes [48]. An attribute is a data element that can be

associated with any construct in TADL.

 Functional requirements are mapped to services [48]. For every functional

requirement, a service is created in TADL. Also, two events are created for each

service: a request for service and a response of the service. The has-property

and request-property relations help identify which component is providing the

service and which components are consuming it. A service is provided by the

 160

component which is related to the functional requirement by the has-property

relation. An interface is created for each component. The request and response

events are associated with this interface. The services provided and consumed

by the component are provided and requested at this interface. A connector is

created for every request-property relation to provide a means to communicate

requested and provided services. If two components are related by multiple

service requests then it is sufficient to create one connector for the

communication between the two components.

 Non-functional requirements are used to define the contract of each component

[48]. The contract contains services, safety, security, reliability, availability, and

any other non-functional requirements. A one to one mapping occurs between

elements of these types of non-functional requirements. For example, a safety

property is created in the component contract for every safety requirement in the

ontology.

 Constraints are mapped into their corresponding synonym in TADL [48]. A

constraint is an invariant on services.

The principal schema of one to one corresponding relations among the elements of

OWL ontology and TADL constructs are shown in Figure 7.1.

Figure 7.2 illustrates [48] the steps of capturing domain components by application of

domain engineering. Domain analysis, as the first step of domain engineering, aims to

understand each system, its interactions with other systems, the constituent

components, their functional and non-functional requirements, and the data and events

stored and communicated between them. Domain analysis yields an ontology

representing the knowledge base of the domain. Building ontologies is a major approach

for capturing and representing reusable knowledge. The domain architecture can be

deduced from the ontology. It includes the applications, their relations, and

 161

trustworthiness. The domain architecture when applied to a special application is called

the application architecture. The application architecture including the constituent

domain concepts and their detail specifications are transformed into the TADL

components, which is generated from the ontology. A component definition contains the

details about data and trustworthiness aspects, as well as the functional, non-functional,

and structural requirements. This knowledge and the resulting TADL specifications are

stored in a repository and reused in system development processes.

Figure 7.1: From OWL Ontology to TADL

During the component development, the component requirements are defined in

TADL for new components or reused from the repository for existing domain

components .To validate the formal component definitions an iterative process of

validation is conducted to ensure that the system design is syntactically and semantically

correct with respect to TADL correction rules. Then, the specification is analyzed and the

component behavior is generated automatically as extended time-automata using the

 162

transformation tool [40]. The output is an extended time automata which is compatible

with the UPPAAL modeling language. Afterwards, verification is conducted using

UPPAAL model checking techniques to verify the correctness of the design. An iterative

process of verification occurs until the design successfully passes the validation checks

on functional requirements, and safety, security, and timeliness properties. In case of

errors or violation of any requirement, the component is redesigned using TADL

specifications and the process starts over again. If the system design is correct, the

selected components, which are retrieved from the repository, are integrated to develop

the component-based system.

Figure 7.2: Domain Engineering and Component Development

 163

7.3 Model Transformation from OWL Ontology to TADL

The model transformation process from OWL ontology to TADL is implemented by

using XSLT model transformation framework and XPath language. The XSLT

transformation process is performed by java programming, using the XSLT jar files. The

input model of this transformation process is the OWL file derived from the

transformation model in Chapter 6. The output model is the TADL XML schemas, which

are described in Section 7.1. The transformation rules are described in Section 7.2.

The model transformation process consists of several steps, which are executed

successively. The description of TADL XML schema composed in each step is as

follows:

 Step 1: The new element <Configuration>, having the attribute name and the

child elements<componentType> and <RBAC>, is added to the output XML file.

The attribute name is set to the ontology name, which is taken from the name of

the root class.

 Step 2: The new element <components>, having the attribute name and the child

elements <attribute>, <interfaceTypes>, <architectureType>, and <contract>, is

added to the output XML file. The attribute name is set to the ontology name,

which is taken from the name of the root class. The child element <attribute>

consists of the attributes name and value which are assigned to the ontological

element <DATACONSTRAINTS>/<DC>.

 Step 3: The new element <interfaceTypes>, having the attribute name and the

child element <serviceType>, is added to the output XML file. The attribute name

is assigned to the ontological element <ConceptRelationTypes>/<CONCEPT>.

The element <serviceType>, having the attributes name and type, are assigned to

 164

the ontological element <FRTYPES>/<CONC>. The attribute type is defined

according to the child elements <InternalFRs>, <ProvidedFRs>, or

<RequestedFRs> of the element <FRTYPES>/<CONC>.

 Step 4: The element <architectureType>, having the attribute name and the child

elements <componentType> and <connectorType>, is added to the output XML

file. Composite components are implemented by the element <architectureType>

of the ComponentType schema. The attribute name is set to the composite

component name.

 Step 5: The element <architectureType>/<componentType>, is added to the

output XML file. The element <componentType> are assigned to the ontological

element <PARENTNODES>/<PN>.

 Step 6: The element <<connectorType>, having the attribute name and the child

element <connectorRoleType>, is added to the output XML file. All constituent

components of a composite component are connected by the connector types in

which their interface types are defined. The attribute name is assigned to the

ontological element

<ConceptRelationTypes>/<CONCEPT>/<ConceptRelations>/<CR>.

 Step 7: The element <connectorType>/<connectorRoleType>, having the

attribute name and the child element <interfaceTypes>, is added to the output

XML file. The attribute name is assigned to the ontological element

<ConceptRelations>/<CR>. Each <connectorType> consists of two

<connectorRoleType> child elements. The second connector role type is defined

as the inverse of the first one, it means, the attribute type of the <serviceType>

elements that belongs to the interface types are exchanged.

 165

 Step 8: The element <interfaceTypes> is added and its constituent child

elements are assigned to the ontological elements as explained in Step 3, except

that the attribute type of the element <serviceType> may be of type input or

output (but not of type internal).

 Step 9: The element <contract>, having the attribute name and the child elements

<dataConstraint>, <timeConstraint>, and <reactivity>, is added to the output XML

file. The attribute name is assigned to the concept name.

 Step 10: The element <contract>/<dataConstraint>, having the attribute name

and the child elements <service-request>, <service-response>, and <constraint>,

is added. The attribute name is assigned to the concept name. The attributes

name and type of the request and response services are assigned to the

ontological element <FREQUIREMENTS>/<FR>. The element <constraint> is

set to the data constraints and their values, which are assigned to the ontological

element <DCS>/<DC>.

 Step 11: The element <contract>/<timeConstraint>, having the attribute name

and the child elements <service-request>, <service-response>, and

<maxSafeTime>, is added. The attribute name is assigned to the concept name.

The attributes name and type of the request and response services are assigned

to the ontological element <TIMECONSTRAINTS>/<TC>. The element

<maxSafeTime> is assigned to the attribute value of the tag <TC>.

 Step 12: The element <contract>/<reactivity>, having the attribute name and the

child elements <service-request>, <service-response>, <dataConstraint>,

<timeConstraint>, <update>, and <action>, is added. The attribute name is

assigned to the concept name. The attributes name and type of the request and

 166

response services are assigned to the ontological element

<FREQUIREMENTS>/<FR>.

 Step 13: The element <reactivity>/<dataConstraint> is added to the output XML

file, if the reactivity has any data constraint. The element <dataConstraint> and

its child elements are assigned to the ontological elements, as explained in Step

10.

 Step 14: The element <reactivity>/<timeConstraint> is added to the output XML

file, if the reactivity has any time constraint. The element <timeConstraint> and

its child elements are assigned to the ontological elements, as explained in Step

11.

 Step 15: The element <reactivity>/<update> is added to the output XML file, if

the reactivity has any update property. The attributes toBeUpdated and value are

assigned to the ontological element <UPDATES>/<UP>.

 Step 16: The element <reactivity>/<action> is added to the output XML file, if the

reactivity has any reaction property. The attribute name is assigned to the

ontological element <FRACTIONS>/<AC> and the attributes from and to are

assigned to the element <FREQUIREMENTS>/<FR>.

 Step 17: The element <RBAC>, having the attribute name and the child elements

<users>, <userRolesAssignments>, <privilegesForServices>, <serviceType> and

<roles> is added to the output XML file. The attribute name is assigned to the

name of the root class.

 Step 18: The child elements <users>, <roles> and <serviceType> of <RBAC>,

having the attribute name, are added to the output XML file. The attribute name is

assigned to the ontological element <ROLEPRIVILEGES>/<RP>.

 167

 Step 19: The element <RBAC>/<userRolesAssignments>, having the child

elements <users> and <roles>, is added to the output XML file.

 Step 20: The element <RBAC>/<privilegesForServices>, having the child

elements <service>, <privilege>, and <role>, is added. The elements <service>

and <role> are assigned to the ontological elements, as explained in Step 18.

The attribute name of the element <privilege> is set to true or false, according to

the content of the ontological element <ROLEPRIVILEGES>/<RP>.

The obtained TADL file complies with the XML schemas that are explained in

Section 7.1. After the transformation process, the MergedConcepts TADL file is opened in

the Microsoft Visual Studio software tool, which is depicted in Figure 7.3.

Figure 7.4 and Figure 7.5 show two parts of the MergedConcepts TADL XML file,

which are automatically generated through the model transformation process. In Figure

7.4, one of the reactivity properties of the component Concept1 is depicted. The

connector type Concept1_Concept2 and the two relevant connector role types are shown

in Figure 7.5.

 168

Figure 7.3: MergedConcepts TADL file in Visual Studio

 169

<reactivity>

 <name>Concept1-2</name>

 <id/>

 <service-request>

 <name>Req3</name>

 <id/><type>input</type>

 <constraint/>

 </service-request>

 <service-response>

 <name>Req4</name>

 <id/><type>output</type>

 <constraint/>

 </service-response>

 <dataConstraint>

 <name>Concept1DataConstraint2</name>

 <service-request>

 <name>Req3</name>

 <id/><type>input</type>

 <constraint/>

 </service-request>

 <service-response>

 <name>Req4</name>

 <id/><type>output</type>

 <constraint/>

 </service-response>

 <constraint>Mode==DataC2</constraint>

 <descreption/>

 </dataConstraint>

 <timeConstraint>

 <name>Concept1TimeConstraint1</name>

 <constraint/>

 <service-request>

 <name>Req3</name>

 <id/><type>input</type>

 <constraint/>

 </service-request>

 <service-response>

 <name>Req4</name>

 <id/><type>output</type>

 <constraint/>

 </service-response>

 <maxSafeTime>5</maxSafeTime>

 </timeConstraint>

 <update>

 <toBeUpdated>Mode</toBeUpdated>

 <value>DataC3</value>

 </update>

 <action>

 <name>Req5</name>

 <id/><type/><description/>

 <from>Req4</from>

 <FromId/><to>idel</to>

 </action>

</reactivity>

Figure 7.4: MergedConcepts TADL XML file (part1)

 170

<connectorType>

 <name>ConnectorTypeConcept1_Concept2</name>

 <connectorRoleType>

 <name>ConnectorRoleType1Concept1_Concept2</name>

 <constraint/>

 <interfaceTypes>

 <name>Concept1_Concept2</name>

 <protocol/>

 <serviceType>

 <name>Req3</name>

 <id/><type>input</type>

 <constraint/>

 </serviceType>

 <serviceType>

 <name>Req2</name>

 <id/><type>output</type>

 <constraint/>

 </serviceType>

 <serviceType>

 <name>Req5</name>

 <id/><type>output</type>

 <constraint/>

 </serviceType>

 </interfaceTypes>

 </connectorRoleType>

 <connectorRoleType>

 <name>ConnectorRoleType2Concept1_Concept2</name>

 <constraint/>

 <interfaceTypes>

 <name>Concept2_Concept1</name>

 <protocol/>

 <serviceType>

 <name>Req3</name>

 <id/><type>output</type>

 <constraint/>

 </serviceType>

 <serviceType>

 <name>Req2</name>

 <id/><type>input</type>

 <constraint/>

 </serviceType>

 <serviceType>

 <name>Req5</name>

 <id/><type>input</type>

 <constraint/>

 </serviceType>

 </interfaceTypes>

 </connectorRoleType>

 <constraint/>

 <descreption/>

</connectorType>

Figure 7.5: MergedConcepts TADL XML file (part2)

 171

Chapter 8

Case Study and Evaluation

The Common Component Modeling Example (CoCoME) case study explained in

Chapter 3 is used to present the methodology introduced in this thesis. One of the

contributions of our approach is the application of Formal Concept Analysis (FCA) in

domain analysis to develop OWL ontology as a domain model, and then transform

automatically the derived ontology into the TADL description of the target component-

based system. Therefore, the introduced techniques and tools are applied to the

CoCoME case study, to demonstrate that the methodology described in this thesis can

be generalized to common component-based systems. Afterwards, we are going to

evaluate our approach by discussing the obtained results and comparing them with what

has been done in previous works such as the VMT tool [89] and the Transformation tool

[40].

 172

8.1 Case Study Implementation

Common Component Modeling Example [36], which is a benchmark case study for

testing the modeling ability of component-based systems, is provided to explain our

approach. We have tested our methodologies on CoCoME case study to illustrate and

verify the process.

One of the composite components of the CoCoME case study, explained in Chapter

3, is the Store System. The Store System contains some other components such as

CashBox, Cashier, and Inventory which are implemented to illustrate the methodology

presented in this thesis. The implementation process consists of 3 steps. These are (1)

formal context table definition in FCA and concept lattice derivation, (2) transformation

model from concept lattice to OWL ontology, and (3) transformation model from OWL

ontology to TADL description.

8.1.1 Context Table Definition and Concept Lattice Derivation

Before going into the details of each concept and its corresponding context table, it is

important to introduce the global-level variables, which are defined as the data

parameters to make constraints on the functional requirement properties. These

variables with their possible values are described in Table 8.1.

At first, formal context tables that contain the concepts including objects and their

attributes are defined. Then, the partially defined context tables are combined into a

unified table that respects entirely the relational information on objects and attributes

occurring in the use cases. The many-valued context tables are defined and converted

into the binary context tables by using the conceptual scaling method. The lattice miner

 173

software tool is used to define the Valued Context Tables (VCTs), which are converted

into the Binary Context Tables (BCTs).

Table 8.1: Global variables in CoCoME case study

 Variable Values Description

1 Mode

{Disable, Done,

InSale, Ready,

Waiting}

Used to control the mode of the Cash Box; Disable: CashBox is in

disabling process of the express mode, Done: Sale is done, InSale:

Sale is in process, Ready: CashBox is ready, Waiting: CashBox is

waiting.

2 IsExpress {Express, Normal}
Used to represent the operation of the Cash Box, which can either

be in express or in normal mode.

3 IsMore {1, 2}
Used to represesnt if more items remain to perchase; 1: No more

item, 2: More item.

4 Authorization {1, 2}
Used to represent the authorization results of the card payment;

1:Approved, 2:Declined.

5 PaymentMethod {1, 2} Used to represent the method of payment; 1: Cash, 2: Card.

CashBox

First, a partial context table is defined for the concept CashBox, which performs the

sale process initiated by the cashier, and holds the received cash. The concept CashBox

has the following functional requirements:

 The functional requirements provided by the concept CashBox are PassItem,

BarCode, Info, SaleFinished, Cash, Card, Approved, Declined, YesExpress, NotExpress,

DisableExpress.

 The functional requirements requested by the concept CashBox are Scan, GetInfo,

Pay, ReadCard, Print, CheckLastHour, TurnLightOn, AddToInventory, IsMoreItem,

TurnLightOff.

 The functional requirements internally accomplished within the concept CashBox

are AddTotal, ReturnChange, CheckIfExpress, Ignore, ChangeModeToNormal.

The functional requirement properties of the concept CashBox are shown in Table

8.2. The functional requirement properties consist of the following main elements:

 174

Provided functional requirement, Requested functional requirement, Data constraint

(represents the pre-conditions), Time constraint, Update (represents the post-

conditions), and Action (represents the triggered functional requirements) (See Table

8.2).

Table 8.2: CashBox functional requirement properties

 Provided

Functional

Requirement

Requested

Functional

Requirement

Data Constraint Time

Constraint

Updates Actions

1 PassItem Scan
Mode==InSale

IsMore==2

2 Barcode GetInfo
Mode==InSale

AddToInventory

Print

3 Info AddTotal
Mode==InSale

1.0S IsMoreItem

4 SaleFinished Pay
Mode==InSale

IsMore==1
1.0S

5 Cash ReturnChange

Mode==InSale

IsMore==1

PaymentMethod==1

120.0S Mode:=Done
AddToInventory

Print

6 Card ReadCard

Mode==InSale

PaymentMethod==2

IsExpress==Normal

1.0S

7 Approved Print

Mode==InSale

IsMore==1

PaymentMethod==2

IsExpress==Normal

Authorization==1

 Mode:=Done AddToInventory

8 Declined Pay

Mode==InSale

IsMore==1

PaymentMethod==2

IsExpress==Normal

Authorization==2

9 CheckIfExpress CheckLastHour
Mode==Done

 Mode:=Waiting

10 YesExpress TurnLightOn
Mode==Waiting

1.0S

Mode:=Ready

IsExpress:=Express

11 NotExpress Ignore
Mode==Waiting

Mode:=Ready

IsExpress:=Normal
TurnLightOff

12 DisableExpress
ChangeModeTo

Normal

Mode==Disable

IsExpress==Express 1.0S IsExpress:=Normal TurnLightOff

The functional requirement properties of the concept CashBox are defined as the

attribute variables in the CashBox context table, depicted in Table 8.3.

 175

Table 8.3: Attribute variables of CashBox context table

Attribute Variable Type Values

CashBox Main Attribute

DCMode DC Attribute
{Done, Disable, InSale,

Waiting}

DCIsExpress DC Attribute {Express, Normal}

DCPaymentMethod DC Attribute {1, 2}

DCIsMore DC Attribute {1, 2}

DCAuthorization DC Attribute {1, 2}

IFRCashBox-CheckIfExpress_FRCheckLastHour
Functional Requirements

Attribute

FRCashBox-DisableExpress_IFRChangeModeToNormal
Functional Requirements

Attribute

FRCashBox-YesExpress_FRTurnLightOn
Functional Requirements

Attribute

FRCashBox-NotExpress_IFRIgnore
Functional Requirements

Attribute

FRCashBox-Info_IFRAddTotal
Functional Requirements

Attribute

FRCashBox-Cash_IFRReturnChange
Functional Requirements

Attribute

FRCashBox-SaleFinished_FRPay
Functional Requirements

Attribute

FRCashBox-Card_FRReadCard
Functional Requirements

Attribute

FRCashBox-PassItem_FRScan
Functional Requirements

Attribute

FRCashBox-Barcode_FRGetInfo
Functional Requirements

Attribute

FRCashBox-Approved_FRPrint
Functional Requirements

Attribute

FRCashBox-Declined_FRPay
Functional Requirements

Attribute

UpdateDCMode Update Attribute {Done, Ready, Waiting}

UpdateDCIsExpress Update Attribute {Express, Normal}

Action Action Attribute

{AddToInventory, Print,

TurnLightOff,

IsMoreItem}

TCFRCashBox-DisableExpress_IFRChangeModeToNormal
TC of Functional

Requirements Attribute
T1.0S

TCFRCashBox-YesExpress_FRTurnLightOn
TC of Functional

Requirements Attribute
T1.0S

TCFRCashBox-Info_IFRAddTotal
TC of Functional

Requirements Attribute
T1.0S

TCFRCashBox-Cash_IFRReturnChange
TC of Functional

Requirements Attribute
T120.0S

TCFRCashBox-SaleFinished_FRPay
TC of Functional

Requirements Attribute
T1.0S

TCFRCashBox-Card_FRReadCard
TC of Functional

Requirements Attribute
T1.0S

 176

The attribute variables of the concept CashBox are determined in the valued context

table shown in Figure 8.1. Then, it is converted into the corresponding BCT, which is

shown in Figure 8.2.

Figure 8.1: CashBox Valued Context Table (VCT)

Figure 8.2: CashBox Binary Context Table (BCT)

Cashier

The other partially defined context table is for concept Cashier, who operates the

cash box, begins/ends the sale process, scans the products, handles the payment, and

 177

manages the cash box mode. The concept Cashier has the following functional

requirements:

 The functional requirements provided by the concept Cashier are IsMoreItem, Pay.

 The functional requirements requested by the concept Cashier are DisableExpress,

PassItem, SaleFinished, Cash, Card.

 The functional requirements internally accomplished within the concept Cashier

are CancelExpress, StartSale.

Some functional requirement properties of concept Cashier are shown in Table 8.4.

The functional requirement properties consist of the following main elements: Provided

functional requirement, Requested functional requirement, Data constraint (represents

the pre-conditions), Time constraint, Update (represents the post-conditions), and Action

(represents the triggered functional requirements) (See Table 8.4).

Table 8.4: Cashier functional requirement properties

 Provided

Functional

Requirement

Requested

Functional

Requirement

Data Constraint Time

Constraint

Updates Actions

1 CancelExpress DisableExpress
Mode==Ready

IsExpress==Express
 Mode:=Disable

2 StartSale PassItem Mode==Ready 1.0S Mode:=InSale

3 IsMoreItem PassItem
Mode==InSale

IsMore==2

4 IsMoreItem SaleFinished
Mode==InSale

IsMore==1

5 Pay Cash

Mode==InSale

IsMore==1

PaymentMethod==1

6 Pay Card

Mode==InSale

IsMore==1

PaymentMethod==2

IsExpress==Normal

The functional requirement properties of the concept Cashier are defined as the

attribute variables in the Cashier context table, which are depicted in Table 8.5.

 178

Table 8.5: Attribute variables of Cashier context table

Attribute Variable Type Values

Cashier Main Attribute

DCMode DC Attribute {Ready, InSale}

DCIsExpress DC Attribute {Express, Normal}

DCPaymentMethod DC Attribute {1, 2}

DCIsMore DC Attribute {1, 2}

IFRCashier-CancelExpress_FRDisableExpress Functional Requirements Attribute

FRCashier-Pay_FRCard Functional Requirements Attribute

FRCashier-Pay_FRCash Functional Requirements Attribute

FRCashier-IsMoreItem_FRSaleFinished Functional Requirements Attribute

FRCashier-IsMoreItem_FRPassItem Functional Requirements Attribute

IFRCashier-StartSale_FRPassItem Functional Requirements Attribute

UpdateDCMode Update Attribute {Disable, InSale}

TCIFRCashier-StartSale_FRPassItem
TC of Functional Requirements

Attribute
T1.0S

The attribute variables of the concept Cashier are determined in the valued context

table shown in Figure 8.3. Then, it is converted into the corresponding BCT, which is

shown in Figure 8.4.

Figure 8.3: Cashier Valued Context Table (VCT)

CashDesk

Now, it is the time to merge the two defined context tables CashBox and Cashier, and

build the CashDesk context table. The context table CashDesk is constructed according to

 179

the integration rules defined in Chapter 4. First, a nested context table (NCT) is defined

to combine the CashBox and Cashier, which is depicted in Figure 8.5. Then the defined

NCT is converted to the corresponding BCT and pruned by merging the duplicate

attributes, as shown in Figure 8.6.

A main attribute with the name CashDesk is added to the combined BCT.

Figure 8.4: Cashier Binary Context Table (BCT)

Figure 8.5: CashDesk Nested Context Table (NCT)

 180

Figure 8.6: Merged and pruned CashDesk Binary Context Table (BCT)

The duplicate attributes of the context tables CashBox and Cashier are as following:

DCMode_InSale, DCIsExpress_Express, DCIsExpress_Normal, DCPaymentMethod_1,

DCPaymentMethod_2, DCIsMore_1, DCIsMore_2. According to the conditions and

integration rules discussed in Chapter 4 the partial context tables are merged and

pruned. Rule 1 is applied for the above duplicate attributes. So, one of the duplicate

attributes is eliminated, and the extent objects in relation with the removed attribute are

denoted in the crossing cells of the remaining attribute.

Table 8.6: Newly added attribute variables of CashDesk context table

Attribute Variable Type Values

CashDesk Main Attribute

PropertyCashDesk=CashDeskId Property of Attribute

PropertyCashDesk=Sale Property of Attribute

PropertyCashDesk=CashDeskPC Property of Attribute

PropertyCashDesk=InStore Property of Attribute

 181

Besides, the attribute variables in CashBox and Cashier are merged and transferred

into CashDesk context table. Some attribute variables identifying the property attributes of

the main attribute CashDesk are added to the CashDesk context table. The newly added

attribute variables of CashDesk context table are shown in Table 8.6.

Inventory

The other partially defined context table is the concept Inventory, which represents

the store server inventory. All information about the store such as the completed sale

process is registered in the inventory. The concept Inventory has the following functional

requirements:

 The functional requirements provided by the concept Inventory are GetInfo,

CheckLastHour, AddToInventory.

 The functional requirements requested by the concept Inventory are Info,

YesExpress, NotExpress.

 The functional requirement internally accomplished within the concept Inventory is

InfoAdded.

Table 8.7: Inventory functional requirement properties

 Provided

Functional

Requirement

Requested

Functional

Requirement

Data Constraint Time

Constraint

Updates Actions

1 GetInfo Info Mode==InSale

2 CheckLastHour YesExpress Mode==Waiting

3 CheckLastHour NotExpress Mode== Waiting

4 AddToInventory InfoAdded Mode==InSale 2.0S

Some functional requirement properties of the concept Inventory are shown in Table

8.7. The functional requirement properties consist of the following main elements:

 182

Provided functional requirement, Requested functional requirement, Data constraint

(represents the pre-conditions), Time constraint, Update (represents the post-

conditions), and Action (represents the triggered functional requirements) (See Table

8.7).

The functional requirement properties of the concept Inventory are defined as the

attribute variables in the Inventory context table, which are depicted in Table 8.8.

Table 8.8: Attribute variables of Inventory context table

Attribute Variable Type Values

Inventory Main Attribute

DCMode DC Attribute {Waiting, InSale}

FRInventory-CheckLastHour_FRYesExpress Functional Requirements Attribute

FRInventory-GetInfo_FRInfo Functional Requirements Attribute

FRInventory-CheckLastHour_FRNotExpress Functional Requirements Attribute

FRInventory-AddToInventory_IFRInfoAdded Functional Requirements Attribute

TCFRInventory-AddToInventory_IFRInfoAdded
TC of Functional Requirements

Attribute
T2.0S

The attribute variables of the concept Inventory are determined in the valued context

table shown in Figure 8.7. Then, it is converted into the corresponding BCT, which is

shown in Figure 8.8.

Figure 8.7: Inventory Valued Context Table (VCT)

 183

Figure 8.8: Inventory Binary Context Table (BCT)

CoCoME

When all the context tables are constructed, they can be combined according to the

integration rules explained in Chapter 4. CoCoME, the unified context table, is derived

from the combination of CashDesk and Inventory context tables. First, a nested context

table (NCT) is defined to combine the mentioned context tables, and then the defined

NCT is converted to the corresponding BCT and pruned by merging the duplicate

attributes. A main attribute with the name CoCoME is added to the combined BCT.

The duplicate attributes of the context tables CashDesk and Inventory are

DCMode_InSale, and DCMode_Waiting.

According to the conditions and integration rules discussed in Chapter 4, the partially

defined context tables are merged and pruned. Rule 1 is applied for the above duplicate

attributes. So, one of the duplicate attributes is eliminated, and the extent objects in

relation with the removed attribute are denoted in the crossing cells of the remaining

attribute. The obtained unified context table is depicted in Figure 8.9.

Besides the attribute variables in CashDesk and Inventory that are merged and

transferred into CoCoME context table, some attribute variables identifying the security

properties are added to the CoCoME context table. The security property is one of the

essential credentials of trustworthiness during the design stage. The security properties

 184

are role privilege attributes that specify which role has or does not have the privilege of

providing which functional requirement. The newly added attribute variables of CoCoME

context table are shown in Table 8.9.

Figure 8.9: CoCoME Binary Context Table (BCT)

Table 8.9: Newly added attribute variables of CoCoME context table

Attribute Variable Type Values

CoCoME Main Attribute

RolePrivilege-Cashier_CancelExpress Role Privilege

RolePrivilege-Cashier_IsMoreItem Role Privilege

RolePrivilege-Cashier_Pay Role Privilege

RolePrivilege-Cashier_StartSale Role Privilege

RolePrivilegeNot-StockManager_CancelExpress Negative Role Privilege

RolePrivilegeNot-StockManager_IsMoreItem Negative Role Privilege

RolePrivilegeNot-Manager_IsMoreItem Negative Role Privilege

So far, the unified context table CoCoME is constructed which contains the formal

concepts, captured from the system requirements specifications. In this step, the

 185

concept lattice corresponding to the derived formal concept hierarchy is generated by

the Lattice Miner [59, 13] software tool.

Figure 8.10: CoCoME Concept Lattice

There is a facility of drawing the concept lattice diagram from the given formal

context table that is provided by almost FCA software tools. The lattice represents the

concept hierarchy. The main attribute CoCoME of the unified formal context table is

presented as the intent of the supremum node in the derived concept lattice. The intents

and extents are represented in the boxes beside the nodes. The reduced labeling

concept lattice of the context table CoCoME is shown in Figure 8.10.

Afterwards, the concept lattice CoCoME is saved as an XML file by Lattice Miner.

Although Lattice Miner can show the reduced labeling concept lattice, it cannot be saved

as a reduced labeling XML file. The reducing process is done as the first step of the

model transformation process described in Chapter 5. The acquired XML-format file of

 186

the concept lattice CoCoME is opened in Microsoft Visual Studio and depicted in Figure

8.11.

Figure 8.11: XML-format CoCoME Concept Lattice

Also, the implication rules are derived from the concept lattice CoCoME and exported

in another XML file, which is depicted in Figure 8.12. The value of the minimum support

has been assigned to one percent and the minimum confidence is assigned to hundred

percent. Finally, the XML file of concept lattice and the XML file of the implication rules

are merged. The merged XML-format file is conserved to be transformed into the OWL-

format ontology at the next step of our methodology, which is described in the following

section.

 187

Figure 8.12: XML-format implication rules of CoCoME Concept Lattice

8.1.2 Transformation from Concept Lattice to OWL Ontology

In this step, the concept lattice CoCoME is automatically transformed into the OWL-

format ontology by executing the transformation rules defined in Chapter 5. Basically,

the formal concepts in FCA are going to be transformed into the classes in ontology, and

the relations between the formal concepts in FCA are going to be transformed into the

relations among the ontological classes. After the transformation process, the

constructed OWL ontology may be opened in TopBraid Composer [80] software tool,

which is shown in Figure 8.13.

 188

Figure 8.13: CoCoME OWL Ontology

The OWL ontology CoCoME consists of the class definitions, individuals, properties,

subclass-superclass hierarchy, as well as the safety and security requirements.

Moreover, the elements of this ontology are distributed to separate tables, (see Tables

8.10, 8.11, 8.12, and 8.13) in order to categorize the elements, specify their types,

super-elements, properties and individuals or values accordingly. The attribute/Multi-

attribute classes, and also the property classes of the ontology CoCoME along with their

super-classes, properties and possible individuals are illustrated in Table 8.10.

The trustworthy classes, consisting of data constraints, time constraints, and role

classes, along with their super-classes, properties and values are determined in Table

8.11.

 189

Table 8.10: Ontological Attribute/Multi-attribute/Property classes

 Ontological

Element

Ontological

Element Type
Super-element Property Individual

1 CoCoME Root Class Thing

2 Inventory Attribute Class CoCoME

hasProvidedFR,

hasInternalFR,

hasRequestedFR

{Inventory1, Inventory2,

Inventory3, Inventory4}

3 MClass-CashDesk
Multi-attribute

Class
MClass-CashDesk hasCashDeskProperty

4 CashBox Attribute Class MClass-CashDesk

hasProvidedFR,

hasInternalFR,

hasRequestedFR

{CashBox1, CashBox2,

CashBox3, CashBox4,

CashBox5,…, CashBox12}

5 Cashier Attribute Class MClass-CashDesk

hasProvidedFR,

hasInternalFR,

hasRequestedFR

{Cashier1,Cashier2,

Cashier3, Cashier4,

Cashier5, Cashier6}

6 CashDeskId Property Class MClass-CashDesk isCashDeskPropertyOf

7 CashDeskPC Property Class MClass-CashDesk isCashDeskPropertyOf

8 Sale Property Class MClass-CashDesk isCashDeskPropertyOf

9 InStore Property Class MClass-CashDesk isCashDeskPropertyOf

Table 8.11: Ontological trustworthy classes

 Ontological

Element

Ontological

Element Type
Super-element Property Value

1 DataConstraints Trustworthy Class CoCoME

2 Authorization DataConstraint Class DataConstraints {1, 2}

3 IsExpress DataConstraint Class DataConstraints {Express, Normal}

4 IsMore DataConstraint Class DataConstraints {1, 2}

5 Mode DataConstraint Class DataConstraints
{Disable, Done InSale,

Ready, Waiting}

6 PaymentMethod DataConstraint Class DataConstraints {1, 2}

7 TimeConstraint Trustworthy Class CoCoME {T1.0S, T2.0S, T120.0S}

8 Roles Trustworthy Class CoCoME

9 Role-Cashier Role Class Roles hasFRPrivilege

10 Role-Manager Role Class Roles hasFRPrivilege

11 Role-StockManager Role Class Roles hasFRPrivilege

The provided, requested, and internal functional requirements of the concept Cashier,

and their super-classes and properties are illustrated in Table 8.12.

 190

Table 8.12: Cashier Ontological functional requirement classes

Ontological Element

Ontological Element

Type

Super-

element
Property

1 FRequirements Attribute Class CoCoME

2 ProvidedFRs Attribute Class FRequirements

3 InternalFRs Attribute Class FRequirements

4 RequestedFRs Attribute Class FRequirements

5 IsMoreItem
Functional Requirement

Class
ProvidedFRs

hasRolePrivilege

hasnotRolePrivilege

6 Pay
Functional Requirement

Class
ProvidedFRs hasRolePrivilege

7 CancelExpress
Functional Requirement

Class
InternalFRs

hasRolePrivilege

hasnotRolePrivilege

8 StartSale
Functional Requirement

Class
InternalFRs hasRolePrivilege

9 PassItem
Functional Requirement

Class
RequestedFRs

10 SaleFinished
Functional Requirement

Class
RequestedFRs

11 DisableExpress
Functional Requirement

Class
RequestedFRs

12 Card
Functional Requirement

Class
RequestedFRs

13 Cash
Functional Requirement

Class
RequestedFRs

14 IFRCashier-CancelExpress__FRDisableExpress Attribute Class Cashier
hasMode

hasIsExpress

15 IFRCashier-StartSale__FRPassItem Attribute Class Cashier
hasMode

hasTimeConstraint

16 FRCashier-IsMoreItem__FRPassItem Attribute Class Cashier
hasMode

hasIsMore

17 FRCashier-IsMoreItem__FRSaleFinished Attribute Class Cashier
hasMode

hasIsMore

18 FRCashier-Pay__FRCard Attribute Class Cashier

hasMode

hasIsExpress

hasIsMore

hasPaymentMethod

19 FRCashier-Pay__FRCash Attribute Class Cashier

hasMode

hasIsMore

hasPaymentMethod

Finally, the defined properties of the ontology CoCoME and their super-properties,

domains, and ranges are stated in Table 8.13.

The OWL ontology CoCoME was verified in TopBraid Composer software tool by

running the inferences including superclass and consistency checking, and no

contradiction or redundancy was found.

 191

Table 8.13: Ontological properties

Ontological

Property
Super-property Domain Range Inverse of

1 hasConstraint

2 hasDataConstraint hasConstraint DataConstraints

3 hasAuthorization hasDataConstraint Authorization

4 hasIsExpress hasDataConstraint IsExpress

5 hasIsMore hasDataConstraint IsMore

6 hasMode hasDataConstraint Mode

7 hasPaymentMethod hasDataConstraint PaymentMethod

8 hasSecurityConstraint hasConstraint

9 hasRolePrivilege hasSecurityConstraint FRequirements Roles

10 hasnotRolePrivilege hasSecurityConstraint FRequirements Roles

11 hasFRPrivilege hasSecurityConstraint Roles FRequirements

12 hasnotFRPrivilege hasSecurityConstraint Roles FRequirements

13 hasTimeConstraint hasConstraint TimeConstraint

14 hasProperty isPropertyOf

15 hasCashDeskProperty hasProperty CashDesk
MClass-

CashDesk

isCashDeskPropertyOf

16 isPropertyOf hasProperty

17 isCashDeskPropertyOf isPropertyOf MClass-CashDesk CashDesk hasCashDeskProperty

18 hasFRequirement

19 hasProvidedFR hasFRequirement ProvidedFRs

20 hasInternalFR hasFRequirement InternalFRs

21 hasRequestedFR hasFRequirement RequestedFRs

8.1.3 Transformation from OWL Ontology to TADL Description

In this step, the OWL ontology CoCoME obtained from model transformation process

is automatically transformed to TADL description language by mapping the ontological

elements to their corresponding TADL constructs. This mapping is accomplished by the

model transformation processing explained in Chapter 7. The automatically generated

output meta-model is the CoCoME TADL XML-format file that contains the detailed

specifications of reusable components and component-based architecture of the

relevant trustworthy system. The obtained TADL file complies with the XML schemas

 192

that are explained in Chapter 7. After the transformation process, the CoCoME TADL

XML-format file is opened in Microsoft Visual Studio and depicted in Figure 8.14. Figure

8.15 and Figure 8.16 show two parts of the CoCoME TADL XML file, which are

automatically generated through the model transformation process. In Figure 8.15, one

of the reactivity properties of the component CashBox is depicted. The connector type

CashBox_Inventory and the two relevant connector role types are shown in Figure 8.16.

Figure 8.14: CoCoME TADL file

 193

<reactivity>

 <name>CashBox2</name>

 <id/>

 <service-request>

 <name>DisableExpress</name>

 <id/><type>input</type>

 <constraint/>

 </service-request>

 <service-response>

 <name>ChangeModeToNormal</name>

 <id/><type>output</type>

 <constraint/>

 </service-response>

 <dataConstraint>

 <name>CashBoxDataConstraint2</name>

 <service-request>

 <name>DisableExpress</name>

 <id/><type>input</type>

 <constraint/>

 </service-request>

 <service-response>

 <name>ChangeModeToNormal</name>

 <id/><type>output</type>

 <constraint/>

 </service-response>

 <constraint>IsExpress==Express and Mode==Disable</constraint>

 <descreption/>

 </dataConstraint>

 <timeConstraint>

 <name>CashBoxTimeConstraint3</name>

 <constraint/>

 <service-request>

 <name>DisableExpress</name>

 <id/><type>input</type>

 <constraint/>

 </service-request>

 <service-response>

 <name>ChangeModeToNormal</name>

 <id/><type>output</type>

 <constraint/>

 </service-response>

 <maxSafeTime>1</maxSafeTime>

 </timeConstraint>

 <update>

 <toBeUpdated>IsExpress</toBeUpdated>

 <value>Normal</value>

 </update>

 <action>

 <name>TurnLightOff</name>

 <id/><type/><description/>

 <from>ChangeModeToNormal</from>

 <FromId/><to>idel</to>

 </action>

</reactivity>

Figure 8.15: The tag Reactivity of CoCoME TADL file

 194

 <connectorType>

 <name>ConnectorTypeCashBox_Inventory</name>

 <connectorRoleType>

 <name>ConnectorRoleType1CashBox_Inventory</name>

 <constraint/>

 <interfaceType>

 <name>CashBox_Inventory</name>

 <protocol/>

 <serviceType>

 <name>Info</name><id/><type>input</type>

 <constraint/>

 </serviceType>

 <serviceType>

 <name>YesExpress</name><id/><type>input</type><constraint/>

 </serviceType>

 <serviceType>

 <name>NotExpress</name><id/><type>input</type><constraint/>

 </serviceType>

 <serviceType>

 <name>CheckLastHour</name><id/><type>output</type><constraint/>

 </serviceType>

 <serviceType>

 <name>GetInfo</name><id/><type>output</type><constraint/>

 </serviceType>

 <serviceType>

 <name>AddToInventory</name><id/><type>output</type><constraint/>

 </serviceType>

 </interfaceType>

 </connectorRoleType>

 <connectorRoleType>

 <name>ConnectorRoleType2CashBox_Inventory</name>

 <constraint/>

 <interfaceType>

 <name>Inventory_CashBox</name>

 <protocol/>

 <serviceType>

 <name>Info</name><id/><type>output</type><constraint/>

 </serviceType>

 <serviceType>

 <name>YesExpress</name><id/><type>output</type><constraint/>

 </serviceType>

 <serviceType>

 <name>NotExpress</name><id/><type>output</type><constraint/>

 </serviceType>

 <serviceType>

 <name>CheckLastHour</name><id/><type>input</type><constraint/>

 </serviceType>

 <serviceType>

 <name>GetInfo</name><id/><type>input</type><constraint/>

 </serviceType>

 <serviceType>

 <name>AddToInventory</name><id/><type>input</type><constraint/>

 </serviceType>

 </interfaceType>

 </connectorRoleType>

 <constraint/>

 <descreption/>

</connectorType>

Figure 8.16: The tag ConnectorType of CoCoME TADL file

 195

8.2 Evaluation

In this Section, we evaluate the results of our approach by reviewing the proposed

methodologies and comparing them with the previous works done by VMT tool [89] and

Transformation tool [40].

The VMT tool [89] generates the TADL description language of component-based

systems by providing a graphical user interface for developers to manually design

components, connectors and system configuration. The derived TADL file from the VMT

tool represents the formal behavior model, which contains all XML schemas described in

Chapter 7. Presently, the VMT tool does not have the facility of opening the TADL files

created by tools, other than VMT.

The Transformation tool [40] takes the obtained TADL description as the input file

and transforms it to XML-format files for UPPALL and TIMES tools. The Transformation

tool does not support the architecture type of TADL. That means the composite

components and their interior sub-components cannot be transformed and verified by

the UPPAAL and TIMES tools. By adding this feature in future, all component types of

TADL description language can be verified by the model checking tools such as

UPPAAL and TIMES.

The drawbacks of the solution stated in [89] and [40] are mentioned in Chapter 3.

Below, the significance of the solutions obtained by using the Formal Concept Analysis

formalism is discussed.

In this thesis, Formal Concept Analysis (FCA), a mathematical theory based on the

formalization of concept hierarchy and lattice theory, has been applied for domain

analysis. This effort itself is both new and novel. It was never attempted before. The

application of FCA in the first stages of design has the advantage of constructing a

 196

consistent class hierarchy. As a concrete example we refer to the implemented CoCoME

case study, in which the functional requirement properties of the concept CashBox (see

Table 8.2) consists of provided and requested functional requirements, data constraints,

time constraints, updates and actions. First, the attribute variables of the concept

CashBox are defined separately from the attribute variables of other concepts (see Table

8.3). Second, the names of the functional requirement properties and their time

constraints are distinctively defined by including the name of the concept CashBox, e.g.,

FRCashBox-SaleFinished_FRPay is one of the functional requirement properties of

CashBox that provides the functional requirement SaleFinished and requests the functional

requirement Pay. Third, the attribute variables like data constraints, updates, and actions

which may be shared between the context tables are integrated and pruned in the

merged context tables, e.g., DCMode_InSale is a shared attribute variable between

CashBox and Cashier binary context tables (see Figure 8.2 and Figure 8.4) that has been

merged in the CashDesk binary context table (see Figure 8.6).

Besides, by extracting the implication rules, the user would be able to make the

logical deductions and discover the intra-concept relations between the concepts, their

functional requirements and the constraints of the functional requirements. As another

concrete example we refer to the generated implication rules of the concept lattice

CoCoME (see Figure 8.12). Each implication rule has the following structure:

<rule>

 <premise>

 {FRCashBox-NotExpress__IFRIgnore}

 </premise>

 <consequence>

 {Action_TurnLightOff, CashBox_, CashDesk, CoCoME, DCMode_Waiting,

 UpdateDCIsExpress_Normal, UpdateDCMode_Ready}

 </consequence>

 <support>0.04</support>

 <confidence>1.0</confidence>

</rule>

 197

The above implication rule implies that each object having the functional requirement

attribute FRCashBox-NotExpress_IFRIgnore, with the support of four percent and the

confidence of hundred percent, also has all the attribute variables within the

consequence element. In other words, whenever the functional requirement FRCashBox-

NotExpress_IFRIgnore occurs, the data constraint Mode has the value Waiting, which is

updated to Ready. Also, the data constraint IsExpress is updated to Normal, and the action

TurnLightOff is triggered by the functional requirement NotExpress.

Some guidelines are specified to merge the defined context tables (see the rules to

compose and integrate partially defined context tables in Chapter 4). As an example, the

time constraint definition of a functional requirement property has the following notation:

TCFRCashBox-SaleFinished_FRPay=T1.0S that indicates the maximum allowed time to

fulfill the functional requirement SaleFinished.

It is important to mention that, the trustworthy credentials such as the safety and

security requirements are identified in the context tables of FCA. As an example of

security property we refer to the role privileges that are defined in CoCoME binary

context table (see Figure 8.9). As an example, the role privilege RolePrivilege-

Cashier_Pay implies that any user having the role Cashier has the privilege of providing

the functional requirement Pay. Also, the mentioned role privilege attribute is in incidence

relation with the objects CashBox7, CashBox12, Cashier2, and Cashier3 having the

functional requirement attributes FRCashBox-SaleFinished_FRPay, FRCashBox-

Declined_FRPay, FRCashier-Pay_FRCard, and FRCashier-Pay_FRCash, respectively. On

the other hand, the negative role privilege attribute, e.g., RolePrivilegeNot-

Manager_IsMoreItem declares that any user having the role Manager does not have the

privilege of access to provide the functional requirement IsMoreItem.

An OWL ontology, as a formal representation of domain knowledge is automatically

produced by the model transformation process. So, the concept hierarchy developed in

 198

the concept lattice of FCA is correspondingly transferred to the class hierarchy in the

resulting ontology. Finally, the OWL ontology CoCoME is opened in TopBraid Composer

software tool. As a concrete example, we refer to the functional requirement properties

of the concept Inventory in the concept lattice CoCoME (see Figure 8.10). After the model

transformation process from concepts to ontology, the subconcepts of the concept

Inventory have the corresponding class hierarchy generated in ontology, which are

depicted as the subclasses of the class Inventory (see Figure 8.13).

It has to be mentioned that, the implication rules derived from the concept lattice

CoCoME are applied to the model transformation process from concepts to ontology, in

order to capture the concepts holding the premise-consequence relationship. By

detecting such intra-concept relations in concept lattice, we figured out the

corresponding ontological classes and their relationships more accurately. For instance,

the following implication rule implies that when the functional requirement Approved is

provided and the functional requirement Print is requested, with the confidence of

hundred percent the data constraint Mode has the value InSale, and is updated to Done.

Also, the functional requirement AddToInventory is triggered by providing the functional

requirement Approved.

<rule>

 <premise>{FRCashBox-Approved__FRPrint}

 </premise>

 <consequence>{Action_AddToInventory, CashBox_, CashDesk, CoCoME, DCAuthorization_1,

 DCIsExpress_Normal, DCIsMore_1, DCMode_InSale, DCPaymentMethod_2,

 UpdateDCMode_Done}

 </consequence>

 <support>0.04</support>

 <confidence>1.0</confidence>

</rule>

 199

The target ontology can be utilized as a shared knowledge containing reusable

concepts, and the queries and assertions are exchanged with ontology among domain

experts. Since the OWL ontology is based on logical models, the user can take

advantage of using its reasoning engine to accomplish the syntax checking, consistency

checking and subsumption. Therefore, if there would be any deficiency or contradiction

in the developed ontology, the user can identify and fix it by modifying the relevant

context tables of FCA. The iterative process of validation is conducted to ensure that the

system design is syntactically and semantically correct with respect to ontology

reasoning. The OWL ontology CoCoME was verified in TopBraid Composer software tool

by running the inferences including superclass inference, and consistency checking

inference and no contradiction or redundancy was found.

One of the advantages of our methodology is that, the ontology verification process

can be done for any partially defined context table and not necessarily for the final

integrated context table. For example, when the concept CashBox along with its

functional and non-functional requirements is defined in CashBox context table, it may be

separately converted to build the OWL ontology CashBox, which is opened in TopBraid

Composer and verified by running inferences.

Afterwards, the verified ontology is automatically transformed to TADL [49]

architecture description language which is the formal specification of the dependable

component-based system. The implemented model transformation process supports the

architecture type of TADL. That means, the composite components and their interior

sub-components are generated properly. As an example, we refer to the CoCoME TADL

file that consists of the component types CashBox, Cashier, and Inventory. The CashBox

and Cashier components are defined inside an architecture type named CashDesk. The

composite component CashDesk and the component Inventory are defined inside the

architecture type StoreSystem.

 200

Finally, for doing the formal analysis of design, the architecture of the trustworthy

system, formally described in TADL, is taken as the input for the analysis stage and is

transformed to the behavior protocols which are used by existing concept verification

tools. The transformation tool [40] has used model checking and real-time schedulability

techniques to verify that the system under development is both safe and secure. This

tool automatically generates two model types from a TADL description. One is the

UPPAAL model on which the security and safety properties of the system under design

are formally verified. The second type is the TIMES model, on which real-time

schedulability analysis is performed.

The CoCoME TADL file, which is generated through the provided model

transformation process in this thesis, was examined by the Transformation tool [40] to

generate the UPPAAL and TIMES model types. However, since the Transformation tool

[40] does not support the architecture type in TADL, the inner level component types

were not created in the output models. Therefore, we temporarily changed the TADL file

so that all defined components within the architecture types were transferred to the first

level of the hierarchy. In other words, the hierarchy of the components was changed to a

linear architecture. After doing this adjustment, the CoCoME TADL file was converted by

the Transformation tool [40] and the output model was successfully evaluated by the

UPPAAL verification tool.

 201

Chapter 9

Conclusion

This thesis has introduced a formal approach that aims to perform domain analysis

by an application of Formal Concept Analysis (FCA) theory. Although the work

presented in this thesis was primarily motivated by the methodology proposed in [48] for

the development of dependable software systems, the framework that has been

developed in this thesis will be useful for any component-based software development

methodology. The current Component-Based Software Engineering (CBSE) practices

have not adequately dealt with the practical aspects of domain analysis, yet all CBSE

approaches agree on its importance. When faced with the construction of trustworthy

software it is necessary to develop trustworthiness criteria at the domain level [42].

Many of the available solutions in CBSE either cannot or do not provide a

mechanism for constructing and specifying trustworthiness criteria at the domain level. It

is also the case that existing solutions do not making use of formalisms and easy-to-use

formal analysis tools in the current analysis methods. The results of this thesis address

these drawbacks and offers effective solutions.

A trustworthy domain model is constructed in the thesis, by introducing and

implementing automatic model transformation approaches. The OWL ontology obtained

 202

from the initial FCA models may be verified by running the inference checking of

ontology software tools, and/or comparing to other existing ontologies in the same

domain. The trustworthy requirements are specified at the first stage of design activities

and the obtained OWL ontology is transformed to the target TADL component model.

The trustworthiness properties are thus stated based on domain properties. We

demonstrated this methodology by means of the Common Component Modeling

Example (CoCoME) [36] case study.

9.1 Summary of Results

In this section, we discuss and evaluate the results achieved in this thesis with

respect to the contributions stated in Chapter 1.

1. Defining “Formal Concepts” and “Trustworthy Properties” using FCA through

domain analysis. In Chapter 4, we provided a domain analysis methodology for

capturing the formal concepts and constructing formal context tables using FCA

mathematical theory. The research problems, proposed solutions, and limitation

are stated below:

 Problem 1: The currently available analysis methods do not use formalisms,

or have difficult to use formal analysis tools.

 Solution 1: The application of FCA in the first stages of design had the

advantage of constructing a concrete formal concept hierarchy. Moreover, the

rules extracted by the formal methods enabled us to make the logical

deductions to identify the relations among the concepts and the design

constraints.

 203

 Problem 2: The maintenance of the messy context tables defined for the

software systems containing large number of intent attributes, is time

consuming and error-prone.

 Solution 2: We took advantage of many-valued context tables and converted

them to their corresponding binary context tables.

 Limitation: In the provided approach, capturing formal concepts from the

system requirements specifications, also defining and merging the formal

context tables are manually done. A future contribution can be the application

of text mining techniques and using the relevant tools to reduce time and

cost. However, the role of the designer may not be ignored, since some

domain expert knowledge is required in this field.

2. Defining rules and conventions to specify “Component-based Artifacts and

Trustworthy Properties” in formal context tables. In Chapter 4, we provided the

rules to categorize the concepts and determine the name conventions for the

various attribute names of the formal context tables. Also, the safety, security

and timeliness properties were defined in the formal context tables. The research

problems, proposed solutions, and limitation are stated below.

 Problem 1: The component models are localized in the selection of the

appropriate fault tolerant mechanisms at the final development stages, and

not at the primary steps of software development process.

 Solution 1: The trustworthy requirements were defined as the attributes of the

formal context tables, at the first steps of the software design.

 Limitation: The proposed methodology provides the facility of composing

safety, security, and timeliness properties. Further research is required to

 204

extend the rules for defining other trustworthy requirements such as reliability

and availability.

3. Defining rules and conventions to integrate “Partially Defined Context Tables”

and construct “Unified Formal Concept Lattice”. In Chapter 4, the integration

rules were introduced to merge and prune the partially defined context tables in

order to construct a unified formal context table. Also, the defined priorities

identified the group of BCTs to be combined. Some redundant attributes were

removed, some properties of attributes were converted to attributes and some

attributes were unified and merged together.

 Limitation: The integration process of partially defined context tables is

manually done. Further research is required to investigate automated

methods.

4. Defining and implementing a “Model Transformation Approach” to generate

“OWL Ontology” containing the “Trustworthy Requirements” from formal concept

lattice. In Chapters 5 and 6, a model transformation approach was provided to

transform concept lattice to OWL ontology. The obtained OWL domain model

contains the trustworthy criteria. The research problems, proposed solutions, and

limitation are stated below:

 Problem 1: The concept lattice that is transformed to OWL ontology is not a

reduced labeling lattice, but a complete lattice, in which every node is marked

by all corresponding extents and intents. This will lead to a great cluttering of

the picture and the redundancy of data.

 Solution 1: The reduced labeling technique was used to overcome this

problem. In Chapter 6, the transformation algorithm “Lattice Reducer” was

developed as the first step of the proposed model transformation technique

and transformed the concept lattice to the reduced labeling lattice.

 205

 Problem 2: Besides the „subconcept-superconcept’ order among the nodes of

a concept lattice, there is an essential need to realize other relations among

the attributes of a context.

 Solution 2: In Chapters 5 and 6, the implication rules derived from the

concept lattice were applied to the model transformation process in order to

capture the concepts holding the premise-consequence relationship. By

detecting such intra-concept relations in concept lattice, we figured out the

corresponding ontological classes and their relationships, more accurately.

 Limitation: Whenever the designer makes any change in the target ontology,

the modifications are not reflected in the defined formal context tables in

FCA. Further research is required to implement reverse transformation

process from ontology to FCA context tables. This new opportunity will

provide the facility of backward traceability to reduce the effort required to

determine the impacts of modifications.

5. Generating “TADL Specification” of the component-based system by

implementation of a “Model Transformation Technique” from OWL ontology. In

Chapter 7, we implemented a model transformation framework to automatically

produce the TADL specification of reusable component-based architecture of the

relevant trustworthy system.

9.2 Assessment

The formal approach presented in this thesis is a contribution to CBSE via taking

advantage of formalism, provided by FCA mathematical theory and OWL domain model

ontology. When the obtained OWL ontology passes the verification of the reasoning

 206

check, it is transformed automatically to the TADL architecture description language

which is the formal specification of the dependable component-based system. In this

section, we evaluate our formal approach with respect to completeness, reusability,

testability, and usability criteria.

Completeness: Are the formal artifacts generated in our methodology complete? Is the

completeness criteria retained through the model transformation processes?

The completeness of the constituent elements of our methodology is illustrated as

follows:

 Ontology: Through model transformation process, all derived formal concepts are

transformed to their corresponding artifacts in OWL ontology. It can be confirmed

from the provided rules in Chapter 5 that for each defined formal concept

belonging to the context tables, there is a corresponding class, property or

individual in the target OWL ontology. This OWL ontology can be compared to

the corresponding existing ontologies in the same domain to verify its

completeness. Any incompleteness detected in this step can be adjusted by

returning back to the context table definition step.

 Component Model: The obtained OWL ontology was transformed to the formal

component model which includes all the elements specified in the TADL XML

Schemas presented in Chapter 7. Since the created TADL description is a one

to one mapping from a complete OWL ontology, then we can claim that it is also

complete.

 Trustworthiness: All trustworthy properties regarding to the TADL specification

such as safety, security, and timeliness are sufficiently defined as non-functional

requirements from the first stages of design in the FCA formal context tables.

The same trustworthy specifications are entirely transformed to the generated

OWL ontology and also to the target TADL component model. So, the

 207

transformation is complete with respect to trustworthiness property stated at the

domain level, however only domain experts can ensure an acceptable

completeness level for the property.

 Case Study: We have tested our approach on Common Component Modeling

Example, which is a benchmark case study for testing the modeling ability of

component models. The results are provided in Chapter 8. It shows that our

methodology is capable of modeling such case study, by doing domain analysis,

building OWL ontology, and generating TADL specification of such component

model.

Reusability: Does the formal artifacts generated in our methodology support reuse?

The reusability of the constituent elements of our methodology is illustrated as follows:

 Formal Concepts: The objects and attributes as the abstract elements of the

formal context tables are reusable and may be defined in several formal context

tables. Also, every formal context table corresponding to a concept in the use

case is defined separately. So, they may be merged with other formal context

tables or may be reused for other systems.

 Ontology: Building ontologies is a major approach for capturing and representing

reusable knowledge. The ontological elements including classes, properties and

individuals may be used for creating and storing reusable building blocks in a

well defined machine-readable format. Also, the ontologies can be merged

together. In this thesis, the reusable concepts are derived from ontology and

transformed to reusable components.

 Component Model: Since every TADL element is described separately, it is

possible to reuse these definitions for different systems. The defined repository

 208

tool hosts the component-based system specifications so that the elements can

be reused.

Testability: Is it possible to validate whether or not the specifications of the formal

artifacts generated in our methodology are right?

The testability of the constituent elements of our methodology is illustrated as follows:

 Formal Concepts: There are well-formed rules and name conventions provided in

Chapter 4 for defining and verifying the objects and various attribute types of the

formal context tables. Also, each partially defined context table can be

automatically transformed to the partially formed OWL ontology and verified by

the reasoning engine of the ontology software tools. On the other hand, the

implication rules derived from the concept lattice can be considered as a

confident source of data to verify the correctness of the relations holding among

the concepts.

 Ontology: OWL ontology can be verified by the reasoning engine of the ontology.

The verification includes syntax and consistency checking to ensure that the

ontology does not contain contradictions. It also includes subsumption to ensure

that subclasses are defined correctly.

 Component Model: There are some well-formed rules provided for the elements

of the TADL formal model. Also, the Transformation tool [40] transforms the

TADL description to XML files for UPPAAL and TIMES model checkers. As an

example, UPPAAL model checker performs the required verification, simulation,

and schedulability analysis.

Usability: Are the process steps easy for the designer to follow?

The usability of the constituent elements of our methodology is illustrated as follows:

 209

 Formal Concepts: Although FCA is a mathematical theory, following the provided

rules and name conventions, and defining the abstract elements of the formal

context tables in a FCA software tool is not a complex task. Also, the integration

rules are provided to merge and prune the partially defined context tables. The

rest of the process consists of drawing concept lattice diagram, extracting lattice

in an XML file, generating the implication rules and exporting them to an XML file,

which are automatically accomplished by Lattice Miner software tool.

 Ontology: OWL ontology is a formal domain model that is based on description

logics. The formalism is working in the background, while the OWL ontology is

automatically generated by the model transformation techniques. The results are

represented in the user interface of the TopBraid Composer software tool, and

the user can easily run the automated reasoning to verify the obtained ontology.

 Component Model: The formal component model, which is automatically

generated by implementing the model transformation techniques, is based on the

TADL XML Schemas. Then, the Transformation tool [40] automatically produces

two extended timed automata to be verified by the model checking tools UPPAAL

and TIMES. Thus, the whole process is supported by tools.

9.3 Case Study

In this section, we briefly state the work done to apply our design methodology on a

benchmark case study in the field of component-based development. The case study is

the Common Component Modeling Example (CoCoME) [36]. The goals of applying our

methodology on this case study are:

 210

 Test the domain analysis and construction of the formal context tables and

concept lattice in Lattice Miner software tool; the application of FCA in the

first stages of design had the advantage of constructing a consistent class

hierarchy.

 Test the rules to compose partially defined context tables, based on the

TADL component elements. The trustworthy credentials such as safety,

security, and timeliness were included.

 Test the rules to integrate partially defined context tables;

 Test the implication rules extracted from the derived concept lattice. By using

the implication rules, the user can make the logical deductions to verify the

intra-concept relations between the concepts and design constraints.

 Test the automatic model transformation process, which transforms concept

lattice to OWL ontology. By using the implication rules derived from concept

lattice, ontological classes and their relationships were figured out.

 Verification of the obtained OWL ontology in TopBraid Composer software

tool by running the inferences including superclass inference and consistency

checking inference. No contradiction or redundancy was found.

 Test the automatic model transformation process, which transforms the

verified OWL ontology to TADL specification. The implemented model

transformation supports the architecture type of TADL. It means the

composite components and their interior sub-components were generated

properly.

 Test the automatic model transformation process, which transforms TADL

description to extended timed automata.

 211

 Test the verification of the properties of trustworthiness in the obtained

extended timed automata by the UPPAAL model checker. The safety and

security properties were successfully evaluated by the UPPAAL verification

tool.

 212

References

[1] V. Alagar and M. Mohammad. A component model for trustworthy real-time

reactive systems development. In International Workshop on Formal Aspects of

Component Software (FACS07), Sophia-Antipolis, France, September 2007.

[2] V. Alagar, M. Mohammad, and K. Wan. The Role of Concept, Context, and

Component for Dependable Software Development. In Proceedings of

ICFCA'2010. vol. 5986, pp.34-50, Springer, 2010.

[3] R. De Almeida Falbo, G. Guizzardi, and K. Duarte. An Ontological Approach to

Domain Engineering. In: International Conference on Software Engineering and

Knowledge Engineering (SEKE), pp. 351--358, Ischia, Italy, 2002.

[4] J. A. Alonso, J. Borrego, M. J. Hidalgo, F. J. Martín, and J. L. Ruiz. Verification of

the formal concept analysis. RACSAM (Revista de la Real Academia de Ciencias),

Serie A: Matematicas, 98:3–16, 2004.

[5] G. Ammons, D.Mandelin, R. Bodik, and J.R. Larus. Debugging temporal

specifications with concept analysis. In Proceedings of the Conference on

Programming Language Design and Implementation PLDI‟03. ACM, June 2003.

[6] T. Amnell, G. Behrmann, J. Bengtsson, P. R. D‟Argenio, A. David, A. Fehnker, T.

Hune, B. Jeannet, K. G. Larsen, M. O. Möller, P. Pettersson, C. Weise, and W. Yi.

UPPAAL - Now, Next, and Future. In F. Cassez, C. Jard, B. Rozoy, and M. Ryan,

editors, Modeling and Verification of Parallel Processes, number 2067 in Lecture

Notes in Computer Science Tutorial, pages 100 125. Springer–Verlag, 2001.

 213

[7] U. Andelfinger. Diskursive Anforderungsanalyse. Ein Beitrag zum

Reduktionsproblem bei Systementwicklungen in der Informatik. Peter Lang,

Frankfurt, 1997.

[8] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr. Basic concepts and

taxonomy of dependable and secure computing. IEEE Transactions on

Dependable and Secure Computing,(1):11–33, 2004.

[9] T. Ball. The concept of dynamic analysis. In Proceedings of ACM SIGSOFT

Symposium on the Foundations of Software Engineering, pages 216–234,

September 1999.

[10] K. Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley,

2000.

[11] P. Becker and J. H. Correia. The TosCanaJ suite for implementing conceptual

information systems. LNCS (LNAI), vol. 3626, pp. 324–348. Springer, Heidelberg

(2005).

[12] K. Böttger, R. Schwitter, D. Richards, O. Aguilera, and D. Mollá. Reconciling use

cases via controlled language and graphical models. In INAP‟2001 - Proceedings

of the 14th International Conference on Applications of Prolog, pages 20–22,

Japan, October 2001. University of Tokyo.

[13] L. Boumedjout and L. Kwuida. Lattice Miner: A Tool for Concept Lattice

Construction and Exploration. In Supplementary Proceeding of International

Conference on Formal concept analysis (ICFCA'10), 2010.

[14] B. Chandrasekaran, J. R. Josephson, and V. R. Benjamins. What are ontologies,

and why do we need them? IEEE Intelligent Systems, 14(1):20–26, 1999.

[15] Concept explorer: http://conexp.sourceforge.net/license.html ,last accessed on

March 15, 2011.

http://conexp.sourceforge.net/license.html

 214

[16] B. A. Davey and H. A. Priestly. Introduction to Lattices and Order. Cambridge,

U.K.: Cambridge Univ. Press, 1990.

[17] H. Dicky, C. Dony, M. Huchard, and T. Libourel. ARES, adding a class and

restructuring inheritance hierarchy. In BDA : Onzièmes Journées Bases de

Données Avancées, pages 25 42, 1995.

[18] S. Düwel and W. Hesse. Bridging the gap between Use Case Analysis and Class

Structure Design by Formal Concept Analysis. In: J. Ebert, U. Frank (Hrsg.):

Modelle und Modellierungssprachen in Informatik und Wirtschaftsinformatik. Proc.

"Modellierung 2000", pp. 27-40, Fölbach-Verlag, Koblenz 2000.

[19] S. Düwel and W. Hesse. Identifying Candidate Objects During System Analysis,

Proc. CAiSE'98/IFIP 8.1 3rdInt. Workshop on Evaluation of ModelingMethods in

System Analysis and Design (EMMSAD'98), Pisa 1998.

[20] T. Eisenbarth, R. Koschke, and D. Simon. Aiding program comprehension by static

and dynamic feature analysis. In Proceedings of ICSM2001 - The International

Conference on Software Maintenance, pages 602–611. IEEE Computer Society

Press, 2001.

[21] T. Eisenbarth, R. Koschke, and D. Simon. Locating features in source code. IEEE

Transactions on Software Engineering, 29(3):195–209, March 2003.

[22] B. Fischer. Specification-based browsing of software component libraries. In

Automated Software Engineering, pages 74–83, 1998.

[23] A. Formica. Ontology-based concept similarity in Formal Concept Analysis.

Information Sciences, 176(18):2624–2641, 2006.

[24] M. Fowler. Refactoring, Improving the Design of Existing Code. Addison Wesley,

1999.

[25] B. Ganter. Two basic algorithms in concept analysis. Preprint 831, Technische

Hochschule Darmstadt, June 1984.

 215

[26] B. Ganter and G. Stumme. Formal Concept Analysis: Methods and Applications in

Computer Science. TU Dresden. 2003.

[27] B. Ganter and R. Wille. Conceptual scaling. In F. Roberts (Ed.), Applications of

combinatorics and graph theory to the biological and social sciences. Berlin:

Springer, 139-167, 1989.

[28] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foundations.

Springer-Verlag New York, Inc., 1999.

[29] B. Ganter and R. Wille. Implikationen und Abhangigkeiten zwischen Merkmalen. In

P. O. Degens, H.-J. Hermes, and O. Opitz (Eds.), Die Klassifikation und ihr Umfeld.

Frankfurt: Indeks, 171-185, 1986.

[30] R. Godin, R. Missaoui, and H. Alaoui. Incremental concept formation algorithms

based on Galois (concept) lattices. Computational Intelligence, 11(2):246-267

(1995).

[31] R. Godin and P. Valtchev. Formal concept analysis-based class hierarchy design

in object-oriented software development. In: B. Ganter, G. Stumme, and R. Wille.

(eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 192–207. Springer,

Heidelberg (2005).

[32] B. C. Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, and U. Sattler. Owl

2: The next step for owl. Web Semantics: Science, Services and Agents on the

World Wide Web, 6(4):309–322, 2008.

[33] T. R. Gruber. A translation approach to portable ontology specifications.

Knowledge Acquisition, 5: 199-220, 1993.

[34] M. Gruninger and J. Lee. Ontology: Applications and Design. Commun. ACM,

45(2), 2002.

[35] J.-L. Guigues and V. Duquenne. Familles minimales d’implications informatives

résultant d’un tableau de données binaries. Math. Sci. Hum. 24, 95, 5–18, 1986.

 216

[36] S. Herold, H. Klus, Y. Welsch, C. Deiters, A. Rausch, R. Reussner, K. Krogmann,

H. Koziolek, R. Mirandola, B. Hummel, M. Meisinger, and C. Pfaller. The Common

Component Modeling Example. volume 5153 of LNCS, chapter CoCoME - The

Common Component Modeling Example, pages 16–53. Springer, Heidelberg,

2008.

[37] W. Hesse and T. Tilley. Formal Concept Analysis Used for Software Analysis and

Modeling. In B. Ganter, G. Stumme and R. Wille, editors, Formal Concept Analysis:

Foundations and Applications, pages 288-303. Springer-Verlag, Germany, 2005.

[38] P. Hitzler and H. Schärfe. Conceptual Structures in Practice. Chapman & Hall/CRC

Press, Boca Raton, FL, 2009.

[39] M. Horridge, S. Jupp, G. Moulton, A. Rector, R. Stevens, and C. Wroe. A Practical

Guide To Building OWL Ontologies Using Protégé 4 and CO-ODE Tools. Edition

1.1, The University Of Manchester, October 16, 2007.

[40] N. Ibrahim. Transforming architectural descriptions of component based systems

for formal analysis. Master thesis, Concordia University, 2008.

[41] IHMC Cmap Tools: http://cmap.ihmc.us/ ,last accessed on March 15, 2011.

[42] D. Jackson. “A Direct Path to Dependable Software: Who could fault an approach

that offers greater credibility at reduced cost?”, Communications of the ACM, Vol.

52 No. 4, 2009, Pages 78-88, A version of this article with a fuller list of references

is available at http://sdg.csail.mit.edu/publications.html ,last accessed on March 15,

2011.

[43] H. Kaiya and M. Saeki. Using domain ontology as domain knowledge for

requirements elicitation. In Proc. Of the IEEE Int. Req. Eng. Conf. (RE), pages

186–195, 2006.

[44] S. Kuznetsov. On the intractability of computing the Duquenne-Guigues base. J.

Univers. Comput. Sci. 10(8), 927–933, 2004.

http://cmap.ihmc.us/
http://sdg.csail.mit.edu/publications.html

 217

[45] Y. Q. Lee and W. Y. Zhao. Domain requirements elicitation and analysis-An

ontology-based approach. In: Proceedings of Workshop on Computational Science

in Software Engineering (CSSE), pp. 805-813, 2006.

[46] C. Lindig. Concept-based component retrieval. In J. Köhler, F., Giunchiglia, C.

Green, and C. Walther, editors, Working Notes of the IJCAI-95 Workshop: Formal

Approaches to the Reuse of Plans, Proofs, and Programs, pages 21–25, August

1995.

[47] S. Mangano. XSLT Cookbook. O'Reilly, 2nd Edition, December 2005.

[48] M. Mohammad. A Formal Component-Based Software Engineering Approach for

Developing Trustworthy Systems. PhD thesis, Department of Computer Science

and Software Engineering, Concordia University, Montreal, Canada (2009).

[49] M. Mohammad and V. Alagar. TADL - An Architecture Description Language for

Trustworthy Component-Based Systems. In Proceedings of the 2nd European

Conference of Software Architecture(ECSA 2008), Lecture Notes in Computer

Science (LNCS 5292), 290-297, October 2008.

[50] R. Missaoui, L. Nourine, and Y. Renaud. Generating positive and negative exact

rules using formal concept analysis: Problems and solutions. In ICFCA, pages

169–181, 2008.

[51] C. Mundie, P. de Vries, P. Haynes, and M. Corwine. Trustworthy computing.

Microsoft White Paper, October 2002.

[52] N. F. Noy and D. L. McGuinness. Ontology development 101: A guide to creating

your first ontology. Technical Report KSL-01-05, Stanford Knowledge Systems

Laboratory, 2001.

[53] G. K. Palshikar. An introduction to model checking.

http://www.embedded.com/columns/technicalinsights/17603352?requestid=179878

, December 2004, last accessed on March 15, 2011.

 218

[54] Y. Park. Software retrieval by samples using concept analysis. Journal of Systems

and Software, 2000. 54(3): p. 179-83.

[55] R. Pressman. Software Engineering: A Practitioner’s Approach. McGraw-Hill, 2005.

[56] U. Priss. Formal Concept Analysis in information science. Annual Review of

Information Science and Technology (ARIST) 40 (2006), in press.

[57] Protégé: http://protege.stanford.edu/ ,last accessed on March 15, 2011.

[58] D. Richards, K. Boettger, and A. Fure. Using RECOCASE to compare use cases

from multiple viewpoints. In Proceedings of the 13th Australasian Conference on

Information Systems ACIS 2002, Melbourne, December 2002.

[59] G. Roberge. Visualisation des résultats de la fouille des données dans les treillis

des concepts. Master‟s thesis, Université du Québec en Outaouais, 2007.

[60] H.A. Sahraoui, W. Melo, H. Lounis, and F. Dumont. Applying concept formation

methods to object identification in procedural code. In Proceedings of International

Conference on Automated Software Engineering (ASE ‟97), pages 210–218. IEEE,

November 1997.

[61] T. Saridakis. Robust Development of Dependable Software Systems, in Rapport

de recherche INRIA, juin 1999.

[62] B. K. Sarker, P. Wallace, and W. Gill. Some Observations on Mind Map and

Ontology Building Tools for Knowledge Management. Ubiquity - Association for

Computing Machinery, 2008.

[63] I. Schmitt and S. Conrad. Restructuring object-oriented database schemata by

concept analysis. In T. Polle, T. Ripke, and K.-D. Schewe, editors, Fundamentals

of Information Systems (Post-Proceedings 7th International Workshop on

Foundations of Models and Languages for Data and Objects FoMLaDO‟98), pages

177–185, Boston, 1999. Kluwer Academic Publishers.

http://protege.stanford.edu/

 219

[64] I. Schmitt and G. Saake. Merging inheritance hierarchies for database integration.

In Proceedings of the 3rd International Conference on Cooperative Information

Systems (CoopIS‟98), New York, August 1998.

[65] F. B. Schneider, S. M. Bellovin, and A. S. Inouye. Building trustworthy systems:

Lessons from the ptn and internet. IEEE Internet Computing, 3(6):64–72, 1999.

[66] M. Siff and T. Reps. Identifying modules via concept analysis. In Proceedings of

the International Conference on Software Maintenance, pages 170–179. IEEE

Computer Society Press, 1997.

[67] M. K. Smith, C. Welty, and D. L. McGuinness. Owl web ontology language guide.

W3C Recommendation, February 2004. http://www.w3.org/TR/2004/REC-owl-guide-

20040210/ last accessed on March 15, 2011.

[68] G. Snelting. Software reengineering based on concept lattices. In Proceedings 4th

European Conference on Software Maintenance and Reengineeering, pages 3–12.

IEEE, 2000.

[69] G. Snelting and F. Tip. Understanding Class Hierarchies Using Concept Analysis,

ACM Transactions on Programming Languages and Systems, pp. 540-582, May

2000.

[70] I. Sommerville. Software Engineering. Addison Wesley, 8th edition, 2007.

[71] Sourceforge: http://www.sourceforge.net/ ,last accessed on March 15, 2011.

[72] G. Stumme. Concept Exploration - A Tool for Creating and Exploring Conceptual

Hierarchies. In D. Lukose, H. Delugach, M. Keeler, L. Searle, and J. F. Sowa

(Eds.), Conceptual Structures: Fulfilling Peirce‟s Dream. Proc. ICCS‟97. LNAI

1257. Berlin: Springer, 318-331,1997.

[73] L. Szathmary and A. Napoli. Coron: A framework for levelwise itemset mining

Algorithms. In Supplementary Proceedings of the Third International Conf. on

Formal Concept Analysis (ICFCA‟05), Lens, pages 110–113, 2005.

http://www.w3.org/TR/2004/REC-owl-guide-20040210/
http://www.w3.org/TR/2004/REC-owl-guide-20040210/
http://www.sourceforge.net/

 220

[74] J. Tennison. Beginning XSLT 2.0: From Novice to Professional. Apress, 2nd

edition, 2005.

[75] T. Tilley. Tool support for FCA. In ICFCA, pages 104–111, 2004.

[76] T. Tilley. Towards an FCA based tool for visualising formal specifications. In B.

Ganter and A. de Moor, editors, Using Conceptual Structures: Contributions to

ICCS 2003, pages 227–240. Shaker Verlag, 2003.

[77] T. Tilley, R. Cole, P. Becker, and P. Eklund. A Survey of Formal Concept Analysis

Support for Software Engineering Activities. In Proc. 1st International Conference

on Formal Concept Analysis, 2003.

[78] Tockit: http://www.tockit.org/ ,last accessed on March 15, 2011.

[79] P. Tonella. Concept analysis for module restructuring. IEEE Transactions on

Software Engineering, 27(4):351–363, April 2001.

[80] TopBraid Composer: http://www.topbraidcomposer.com/ ,last accessed on March

15, 2011.

[81] P. Valtchev, D. Grosser, C. Roume, and M. R. Hacene. Galicia: An open platform

for lattices, In Using Conceptual Structures: Contributions to the 11th Intl.

Conference on Conceptual Structures (ICCS‟03, pages 241–254. Shaker Verlag,

2003.

[82] P. Valtchev, R. Missaoui, and R. Godin. Formal concept analysis for knowledge

discovery and data mining: the new challenges. In: P. Eklund (Ed.), Concept

Lattices: Proceedings of the Second International Conference on Formal Concept

Analysis (FCA‟04), Lecture Notes in Computer Science, vol. 2961, Springer, Berlin,

2004, pp. 352–371.

[83] P. Valtchev, R. Missaoui, and P. Lebrun. A partition-based approach towards

building Galois (concept) lattices. Discrete Mathematics, 256(3):801-829, 2002.

http://www.tockit.org/
http://www.topbraidcomposer.com/

 221

[84] R. Wille. Restructuring lattice theory: an approach based on hierarchies of

concepts. In Ordered sets. Edited by I. Rival. Reidel, Boston, pp. 445-470, 1982.

[85] M. Wirsing and , R. Ronchaud, editors. Report on the EU/NSF Strategic Workshop

on Engineering Software-Intensive Systems, Edinburgh, UK, May 2004.

[86] K. E. Wolff. A first course in Formal Concept Analysis - How to understand line

diagrams. In: Faulbaum, F. (ed.): SoftStat´93, Advances in Statistical Software 4,

Gustav Fischer Verlag, Stuttgart 1994, 429-438.

[87] K. E. Wolff. Einführung in die Formale Begriffsanalyse. Actes 19e Séminaire

Lotharingien de Combinatoire. 85-96. Strasbourg, Publication de l' Institut de

Recherche Mathématique Avancée, 1988.

[88] S. Yevtushenko. Computing and Visualizing Concept Lattices. PhD thesis, TU

Darmstadt, Germany, 2004.

[89] Z. Yun. A visual modeling tool for the development of trustworthy component-

based systems. Master thesis, Concordia University, 2009.

 222

Appendix A.

Table of Requirements for Evaluating Ontology Tools

Features

Protégé

(w/OwlViz)

Altova

SemanticWorks

SMORE

/SWOOP

CMAP

Tools(COE)

TopBraid

Create Presentations 2 2 2 6 2

Present Presentations (Step through) 2 2 2 8 2

Record Meeting Minutes - Template 2 2 2 6 2

Linking between maps
4 4 2 7 5

Word Processor import/export 2 4 5 7 2

Save Map as Template 4 5 4 7 4

Spellchecking 3 6 6 9 5

File Attachments 1 2 4 7 7

Usability

Personal productivity (Easy Mind

Map creation)

3 4 2 8 5

Ease of use 6 3 5 7 8

Technical and User Support

Customizable elements for maps 3 4 2 8 5

Exposed SDK 10 2 4 6 10

Support Materials 9 7 5 8 10

Speed 8 6 8 7 8

System requirements (PC specs) 9 7 9 9 8

User community support 10 8 6 9 9

Help support 9 9 6 9 9

Cost 10 7 10 10 4

Company support 10 8 4 8 9

Company stability 8 10 5 7 9

Mac Support 10 1 1 10 10

IBM-PC Support 10 10 10 10 10

Ontology Related

Create Ontology 10 10 6 6 9

Export OWL-RDF file 10 10 9 8 10

Create named links 8 9 7 9 10

Total Score 70.05 62 54 79 73.90

