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Abstract 
 

From Domain Models to Components – A Formal Transformation 

Approach Towards Dependable Software Development 

Afsoon Ghaemi 
 

Many academic, industrial, and government research units have unanimously 

acknowledged the importance of developing dependable software systems. At the same 

time they have also concurred on the difficulties and challenges to be surmounted in 

achieving the goal. The importance of domain analysis and linking domain models to 

software artifacts were also recognized by various researchers. However, no formal 

approach to domain analysis was attempted. The primary motivation for this thesis 

stems from this context. Component-based software engineering offers some attractive 

mechanisms to tackle the inherent complexity in developing dependable systems. 

Recently a formal approach has been put forth for such a development. This thesis 

provides a formal approach for domain analysis, and transforms the domain model to 

components desired by this development process.  

Formal Concept Analysis (FCA) is a mathematical theory for identifying and 

classifying concepts. This thesis taps its potential to formally analyze the domain in a 

software development context. It turns out that the approach presented in this thesis 

cannot be fully automated; nevertheless several useful contributions have been made.  

These include (1) capturing formal concepts and defining them in FCA; (2) defining 

composition rules to categorize formal concepts and their trustworthy properties; (3) 

integrating partial formal context tables to build the concept lattice; (4) specifying and 

developing a model transformation approach to construct trustworthy OWL ontology; (5) 

implementing a model transformation technique to generate the TADL specification of 

the reusable component-based system. The proposed approach is applied to CoCoME, 

as a benchmark case study in the domain of component-based development. 
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Chapter 1 

 

Introduction 

 

 

In this chapter, we explain the reason behind our interest in the study of Formal 

Concept Analysis (FCA) in order to conduct domain engineering, which is the basis for 

component-based development of dependable software systems. We state the research 

problem under consideration, describe our contributions, and present the structure of the 

thesis. 

 

1.1 Research Context 

 

This thesis is about designing, developing, and verifying a trustworthy domain model 

using Formal Concept Analysis (FCA). The result of FCA will lead to an automatically 

generated OWL ontology. Afterwards, the resulting ontology is automatically transformed 

into an architecture description language, called TADL [49], which is used to develop the 

trustworthy component-based systems. To reach this goal, a model transformation 

framework is implemented which produces automatically the detailed specification of 

reusable components and component-based architecture of the relevant trustworthy 
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system. The main focus on FCA theory is to compose concept hierarchy and provide a 

formal basis for domain analysis. 

During the last four decades, the many challenges in the development of dependable 

software systems have been addressed by many research and industrial organizations. 

Since society has come to rely on much software, and much software has direct impact 

on our daily life, it is important that such software be certified to be dependable. 

Healthcare domain and safety-critical domain are prime examples of application 

domains where software should be dependable.  Any incorrect execution or service 

outage in such software systems may lead to catastrophic consequences.  

Development of dependable software systems has two significant aspects: the 

correct implementation of system functionalities, and the selection of the appropriate 

fault tolerant mechanism to deal with the anticipated failures [61]. Hence, there is a need 

to design critical systems in such a way that these aspects would be provably correct. 

Towards this purpose, the credentials of trust should be formally defined along with their 

level of acceptance [48] while developing these systems.  

 

1.1.1 Trustworthiness 

 

Trustworthiness is the system property that denotes the degree of user confidence 

that the system will behave as expected [65, 8]. The terms trustworthiness and 

dependability are used interchangeably in literature [70]. Trustworthiness is a composite 

concept and the essential quality properties contributing to trustworthiness are safety, 

security, reliability, and availability. Since many of the current trustworthy systems also 

involve real-time, we also include timeliness to the quality attributes of trustworthiness 
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[65, 8, 51]. In order to develop trustworthy systems, all the mentioned properties must be 

combined together in one formal approach [48]. 

 

1.1.2 Component-Based Development (CBD) 

 

Component-Based Development (CBD) process is a special type of software 

development process tailored for developing reusable components and building systems 

by integrating existing components. Components provide and require services through 

public interfaces. Component-Based Software Engineering (CBSE) promises many 

advantages to software development including reuse, managing complexity, and 

reducing development time, effort, and cost. Complexity is effectively managed by 

dividing the problem into smaller problems of manageable magnitudes, each of which is 

handled separately in CBSE. The cost of development is reduced by reusing existing 

solutions to solve these sub-problems [70]. However, the current CBSE practices do not 

provide the essential needs for developing trustworthy systems, because there is no 

rigorous formal foundation for the specifications, composition, and verification of non-

functional requirements [48].  

In [1] the authors have proposed a component-based software engineering approach 

for developing trustworthy systems by providing a formal component model that 

collectively addresses the requirements of trustworthiness and detailing a formal 

component-based development framework. Also they have introduced an architecture 

description language, called TADL [49], in which the trustworthy component model can 

be faithfully described. The TADL specification provides a high level description of 

systems and makes it easy for software architects to understand the architecture and 

use it in the proposed formal approach. Many tools have been developed [89, 40] to 
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practice the formal approach in a practical software development process. Visual 

Modeling Tool (VMT) [89] is one of them. It is used as the user interface to construct 

trustworthy component models and component-based systems. Also, a model 

transformation tool [40] is used to analyze the TADL specification, and generate 

UPPAAL and TIMES timed automata for verifying the trustworthiness properties of the 

component. On the other hand, the input to the model transformation tool in [40] is to be 

generated by the software developer, which in turn demands a complete knowledge of 

the domain of application from which requirements are extracted.  

This thesis is a contribution in this context. The scope of this thesis is in the field of 

domain engineering to provide a formal approach for domain analysis and to construct a 

domain model that is automatically transformed to the architectural elements of the 

trustworthy component model. The schema of the whole project and the scope of this 

thesis are depicted in Figure 1.1. 

 

 

Figure 1.1: The schema of the whole project and the scope of this thesis 
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1.1.3 Domain Analysis 

 

A domain is a set of applications that share similar requirements, capabilities, and 

data. Domain engineering is the set of activities that define, model, construct and 

catalogue a set of artifacts specific to the domain. The artifacts include a model, 

architectures, components, applications, contexts of operations, and dependability 

criteria [55]. Domain engineering is an important first step in developing software 

systems. At the core of domain engineering, domain analysis is used to capture and 

classify the domain knowledge. It identifies the common and specific requirements that 

belong to the products in the domain. The collected requirements must include the 

necessary functionalities, the context of operation for each functionality and the 

dependability criteria that must be satisfied by the operations. The result of the domain 

analysis is a domain model which consists of knowledge about the domain by illustrating 

concepts, associations between concepts, and attributes of concepts. This knowledge 

can be stored in a knowledge base or ontology which contains vocabulary of the domain 

anatomy. This knowledge forms the foundation based on which software systems are 

developed. From the domain model, domain architecture is developed to form the basis 

for all domain products. Domain applications are designed based on the domain 

architecture and developed by reusing existing domain components [2].  

 

1.1.4 Ontology 

 

Ontology is a “content theory about the sorts of concepts, their properties, 

constraints, and the relations between concepts that are possible in a specified domain 

of knowledge” [14]. It includes machine-interpretable definitions of basic concepts in the 
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domain and relations among them. Ontology development is necessarily an iterative 

process and is a major approach for capturing and representing reusable knowledge 

[52]. Since concepts, relationships and their categorizations in a real world can be 

represented with domain-specific ontologies, they can be used as resources of domain 

knowledge for domain analysis. Nowadays, ontology technologies are frequently applied 

to many problem domains such as (1) communications, (2) computational inferences, 

and (3) reuse and organization of knowledge [34]. Ontology defines a common 

vocabulary for researchers who need to share information in a domain. In order to allow 

sharing and reusing ontologies, a common ontology language was developed and 

named ontology Web Language (OWL) [67, 32].  

OWL is a standard development language that is based on logical models. 

Therefore, it can benefit from the use of the reasoning about ontologies. Reasoning 

involves: (1) syntax checking, (2) consistency checking, (3) subsumption, checking 

whether a class description is more general than another class description, and (4) 

query answering. 

Many different tools are available for building and maintaining ontologies. The most 

well known and widely used ontology tools available on the market are Protégé, 

TopBraid Composer, CMapTools Ontology Editor (COE), Altova SemanticWorks, and 

SMORE/SWOOP. We review these tools in Chapter 2. Ontology editors mostly define 

the components of OWL ontologies such as individuals, properties, and classes. Also 

they use ontology reasonors providing automated inference services on OWL-DL 

ontologies. Some of them support query languages like SPARQL on ontologies.  
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1.1.5 Formal Concept Analysis (FCA) 

 

Formal Concept Analysis is a branch of applied mathematics based on the 

formalization of concept hierarchy and lattice theory [28]. FCA is able to reveal and 

visualize conceptual structures inherent in data while neither adding nor removing 

information from the underlying data [11]. This formalism is capable to approach the 

conceptual structure of an application domain and it may have the potential to provide a 

formal basis for domain analysis and domain modeling. During domain analysis, FCA 

techniques are used to extract extent objects and intent attributes. Then, formal contexts 

are built, where each formal context is a triple (G, M, I) such that G is the set of objects, 

M is the set of attributes, and I ⊆ G x M is a binary relation. On the set of all formal 

concepts of a formal context the sub-/super-concept relation ≤, defines the ordering 

relation that forms a complete lattice called the concept lattice B(G, M, I) [28]. As an 

ordered set, a concept lattice can be visualized by a line diagram. The nodes in the line 

diagram represent the formal concepts of the domain [18]. 

Over the last two decades, a collection of tools have emerged to help FCA users 

visualize and analyze concept lattices [75, 38]. They range from the earliest DOS-based 

implementations (e.g., ConImp and GLAD) to more recent implementations in Java like 

ToscanaJ [11], Galicia [81], ConExp [15], Coron [73], and Lattice Miner [59]. A main 

issue in the development of FCA tools is to visualize large concept lattices and provide 

efficient mechanisms to highlight patterns (e.g., concepts, associations) that could be 

relevant to the user [13]. FCA software tools such as ConExp, Lattice Miner and 

ToscanaJ implement basic functionalities needed to develop formal concepts, i.e., they 

define and store extent objects, intent attributes and their binary relationships in the 

http://en.wikipedia.org/wiki/Formal_concept_analysis
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formal context table, and then produce the relevant concept lattice. Afterwards, the 

obtained concept lattice may be saved as an XML-format Meta model. 

 

1.2 Difficulties and Drawbacks 

 

The development of dependable software systems is a difficult task. Also the current 

solutions have some drawbacks. 

Difficulties: The number of the assorted parameters influencing the quality of 

dependability, combined with the miscellaneous cases of failure events that should be 

considered, increases enormously the complexity of system development. The other 

problem is to be localized in the selection of the appropriate fault tolerant mechanism at 

the final development artifacts [61]. However, the trustworthiness should be provided 

from the primary steps of software development process, i.e., requirements analysis 

phase. Finally, lack of standard requirements specification languages and models is 

another obstacle to obtain accurate analysis and inference over large complex artifacts 

[85]. 

Drawbacks: Based on formal foundations and deep theoretical results, methods and 

tools have been developed to support specification, design, validation and verification of 

software systems. Many other formal specification and verification techniques have been 

applied to non-trivial case studies and are used in practice, e.g., for the development of 

safety critical systems.  

However, actual practice shows that the techniques for engineering software-

intensive systems suffer from many severe drawbacks in quality and from 

methodological shortcomings [85]: 
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 Pragmatic modeling languages and techniques have no clean scientific 

foundations which inhibit the construction of powerful analysis and development 

tools; 

 Formal approaches are not well-integrated with pragmatic methods and do not 

scale up to complex software-intensive systems; 

 The proposed solutions are too general to deal with the problem contexts so that 

domain analysis is failed to carry out and this has confronted us with the lack of 

standard domain-specific software components. 

 

1.3 Motivations 

 

Domain analysis plays a key role in developing dependable software systems. Types 

and number of trustworthy attributes such as safety, security, reliability, and availability 

vary from one domain to another domain. Besides, the dependability criterion is to be 

composed from attributes which are related to concepts in a domain and in turn 

concepts which belong to a specific application domain. Therefore, we learn that the 

dependability criterion is domain-dependent and should be formulated from domain 

concepts. As a result, finding an effective method for domain analysis becomes a 

necessary task for building dependable systems [2]. Domain analysis enables software 

engineers acquire or infer implicit knowledge that the stakeholders do not articulate, or 

assess the trade-offs that will be necessary between conflicting requirements [43]. 

Fortunately the experts in different domains in conjunction with the standardization 

bodies have recently started to make ontologies that more or less narrow this gap. 

Ontology not only is understandable by machines and humans, it also has inference 

rules that can automatically check for consistency. Although the importance of domain 
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analysis was recognized in the literature [14, 45] quite early, no formal domain analysis 

method was put forth for constructing dependable component-based systems [2].  So, 

our first motivation is to do a domain analysis by capturing domain components and the 

properties to be specified as part of the dependability criteria in order to establish a 

standard OWL ontology with the quality attributes. The target ontology can be utilized as 

a shared knowledge containing reusable components, and the queries and assertions 

are exchanged with ontology among domain experts. Besides, the consistency checking 

can be done using its inference rules. Moreover, the retrieved “trustworthy” ontology 

when applied to component-based development will produce a detailed specification of 

reusable components and a component-based architecture.  

To reach this goal, we prefer to go through a mathematical theory such as FCA. The 

use of a formal method for conceptual clustering and rule mining brings many 

advantages. First, formal models built using formal methods provide us concept 

classifications that can be formally analyzed. Conceptual hierarchies can be formed 

using precedence relations. Besides, derived implication and association rules of formal 

methods can be utilized to explore the conceptual structure, their constraints and their 

relationships. Applying accurate mathematical theories and using structured 

methodologies may prevent the resulting domain model from probable deficiencies such 

as redundancies, inconsistencies, and contradictions. Moreover, formal models facilitate 

the model transformation process and the implementation of automated tools. Hence, 

the employment of formal methods in domain analysis is our second motivation.  

Using formal methods leads to the construction of a formal model that remains in a 

high-level of abstraction and needs to be transformed to a more practical level and a 

convenient model. Since the transformation process is complicated enough to be 

achieved using manual methods, developing automated procedures for model 

transformation becomes an essential need for this thesis. Moreover, the employment of 
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automatic methods minimizes the human intervention to avoid errors in the 

transformation process. Hence, our third motivation is to automate the transformation 

process by using a Model Transformation approach.  

In this research, two transformation tools are developed, one of which automatically 

generates the OWL domain model from captured domain semantics implementing our 

defined transformation rules. The second tool automatically transforms OWL model into 

TADL model performing the specified transformation rules in [48]. It is important that the 

specified trustworthy properties be considered in transformation process of both 

mentioned transformation tools. 

  

1.4 Research Questions 

 

Domain analysis is a challenging task that involves identification and analysis of the 

applications, their detailed requirements, and the relations and data that exist in a 

specific domain. This research provides an ontology-based approach for domain 

engineering, and investigates how trustworthy criteria can be handled using formal 

methods. The derived domain model is transformed into the formal specifications of a 

component-based system containing trustworthy properties. 

The research questions addressed are the following: 

 What kind of formal model is suitable for domain analysis? Can Formal Concept 

Analysis (FCA) help us in formal modeling? How FCA can be used to help in 

dependable software development? 

 Since FCA is an abstract mathematical model for defining the formal concepts, 

how to define the complex artifacts of component-based systems like services 
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and interfaces in formal context tables so that finally, they could be transformed 

into component constructs in TADL?  

 How to recognize the trustworthy attributes in the software requirements 

specifications and transform them into the corresponding properties for formal 

analysis [48]? 

 How to minimize the human interference or guide it in such a manner that would 

lead to have consistent software specifications [48]?  

 How the system requirements, which are collected by domain analysis, are going 

to be transformed and represented in to the ontology [48]?   

 Can FCA be a “semantic basis” for OWL? What are the transformation rules from 

FCA to OWL? How OWL can help in consistency checking? 

 

1.5 Proposed Solutions and Contributions 

 

In order to answer the above questions, we introduce Formal Concept Analysis 

(FCA) as a mathematical theory for conceptual clustering and rule mining which is 

applied in requirements analysis and component retrieval. Also, OWL is used as a 

common ontology language to formally represent the results of domain analysis which 

allows reasoning about ontologies. Lattice Miner FCA tool and TopBraid Composer 

ontology tool are adopted as application platforms. TADL, an architecture description 

language, is applied as a high level specification for trustworthy component models. 

Since all the above tools use XML format to represent their input and output models, 

Extensible Stylesheet Language Transformation (XSLT) is adopted to perform model 

transformations.  
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The main concern of this thesis is developing an OWL ontology derived from the 

software requirements specifications by applying Formal Concept Analysis. Besides, the 

resulting trustworthy domain model is transformed to TADL specification in order to be 

used in dependable component-based software development. Indeed, the main 

contributions of this thesis are the following: 

1. Specification of the formal concepts, captured during domain analysis, to define 

formal context tables using FCA. To satisfy the trustworthiness, the quality 

properties safety, security and timeliness are also deliberated.  

2. Development of guidelines to define the formal context tables according to the 

component-based artifacts and trustworthy properties.   

3. Development of guidelines to integrate the partially defined formal context tables, 

to construct a unified and consistent formal concept lattice.    

4. Specification and implementation of a model transformation approach to 

generate a standard OWL ontology containing the trustworthy criteria.  

5. Implementation of the “transformation rules” defined in [48] to generate the TADL 

specification of the reusable components and the component-based architecture 

which are relevant to the obtained OWL ontology.  

 

1.6 Thesis Outline 

 

The rest of the thesis is structured as follows: Chapter 2 discusses the state of the 

art theory and tools related to this research. Chapter 3 introduces the problem statement 

of a benchmark case study that will be illustrated throughout the thesis. Chapters 4 to 7 

contain our main contributions. Chapter 4 states the research methodology for domain 

analysis. It discusses the presentation of formal context tables that lead to the 
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construction of the formal concept lattice. Chapter 5 provides an automated model 

transformation technique for generating OWL ontology from formal concept lattice. The 

implementation of the transformation rules which are presented in Chapter 5 is explained 

in Chapter 6. Chapter 7 includes the transformation algorithm of ontology to TADL and 

its implementation. In Chapter 8 the case study introduced in Chapter 3 is fully explained 

with the techniques and tools presented in this thesis. Also the results are critically 

discussed, comparing what is done in this research with what has been done in previous 

works [89, 40]. Finally, in Chapter 9 we conclude the thesis by summarizing our 

contributions and identifying directions for future work. 
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Chapter 2 

 

Thesis Background 

 

 

This chapter reviews basic concepts on which the rest of the thesis depends. This 

review will help the reader to understand the rationale behind the objectives, and to 

appreciate and judge the contributions of this thesis. This chapter is organized in three 

sections. Section 2.1 presents the Formal Concept Analysis (FCA) and its impact on 

software engineering. Then, the interactions between FCA and ontology and also some 

FCA tools are illustrated in this section. The formal definition of ontology and the 

different types of OWL ontology languages are explained in Section 2.2 in which the 

initial objectives of ontology and its utilized tools are also introduced. Section 2.3 

discusses the model transformation approach and proposes its implementation using 

XSLT Stylesheets and XPath [74, 47]. 

 

2.1 Formal Concept Analysis Theory and Tools 

 

Formal Concept Analysis [28], that is also named Galois Graphs, is introduced by 

WILLE [84] and WOLFF [87]. It is a mathematical theory of concept hierarchies based 
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on Lattice theory. FCA provides a conceptual framework for structuring, analyzing and 

visualizing concepts and concept hierarchies. In FCA, application domains are organized 

and structured according to Concept Lattices [23]. In other words, Formal Concept 

Analysis can capture the conceptual structure of an application domain [19]. It starts with 

an analysis of the formal context given by use cases and the relevant "things" involved in 

these cases. It produces a lattice visualized by a line diagram which is used as a design 

and decision aid for building an appropriate class/object structure. This structure is a 

prerequisite for further modeling steps, e.g. modeling of processes by sequence 

diagrams. The formal context and the concept lattice represent two different views on 

the same information. Usually a line diagram of the concept lattice is computed from the 

formal context and further investigation of the context data is done with the help of the 

diagram [18]. 

FCA has been applied in various fields of science, such as Psychology, Sociology, 

Medicine, Linguistics, and Computer Science. In each domain FCA makes the concepts 

and their relations explicit and precise [23]. In the domain of software engineering, FCA 

has typically been applied to support software maintenance activities [20, 21, 68, 69], the 

refactoring or modification of existing code [10, 24], and the identification of object-

oriented structures [60, 66, 79]. There is also a body of literature [17, 63, 64] reporting 

the application of FCA to the identification and maintenance of class hierarchies in 

database schemata. Beyond the identification of classes, FCA has also been applied to 

other areas of software engineering including requirements analysis [7, 12, 58] and 

component retrieval [22, 46]. There are some papers [22, 46, 76] which describe 

applications to detailed design. There are only a few papers describing applications to 

testing [5, 9]. No work has been done on the application of FCA to software integration, 

qualification testing, acceptance support or coding. Thus these areas present an 

opportunity to FCA researchers [77]. 
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2.1.1 FCA Theory 

 

In this section, we review the main principles of FCA by giving some definitions and 

using some examples. The detailed knowledge about FCA can be found in [28]. 

 Formal Context: The sets of formal objects and formal attributes together with 

their relation to each other form a formal context. The simplest format for writing 

down a formal context is a cross table. This is a rectangular table with one row 

for each object and one column for each attribute, having a cross in the 

intersection of row g with column m iff (g, m) I, where I is the incidence of the 

context [56].  

Definition 1: A formal context is defined [26, 16] as a triple (G, M, I) where G 

and M are sets and I is a binary relation I ⊆ G × M.  The elements of G and M 

are called objects and attributes, respectively. If g G and m M are in relation 

I, we write (g, m) I or g I M and say “object g has attribute M ‟‟. 

In FCA theory, there are no restrictions about the nature of objects and 

attributes. We may interchange the role of objects and attributes: if (G, M, I) is a 

formal context, then so is the dual context (M, G, I
-1

) (with (m, g)   I
-1

  (g, m) 

I). It is also not necessary that G and M be disjoint or even different [26, 16]. 

The Planets formal context table [16] shown in Figure 2.1 illustrates these. 

When implementing a Conceptual Information System using methods of 

Formal Concept Analysis, the data is modeled mathematically by a many-valued 

context and is transformed via conceptual scaling [27]. This means that a formal 

context called conceptual scale is defined for each of the many-valued attributes 

which has the values of the attribute as objects. If a many-valued context and a 

conceptual scale are given, we can derive the realized scale, i.e., a formal 
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context which has the objects of the many-valued context as objects and the 

attributes of the scale as attributes. In the realized scale, an object has an 

attribute if the value assigned to the object in the many- valued context has the 

attribute in the conceptual scale [11]. 

 

 

Figure 2.1: Planets Formal Context Table 

 

Definition 2: Many-valued context is a quadruple (G, M, W, I) consisting of three 

sets G, M, and W, and a ternary relation I ⊆ G × M × W such that (g, m, w1), (g, 

m, w2) I always implies w1 = w2. The elements of G, M, and W are respectively 

called objects, attributes, and attribute values. The tuple (g, m, w) I is read as 

the object g that has the value w for the attribute m. Mm is the set of all m 

attributes that each m Mm may be understood as a partial map from G into W 

with  

m(g) = w :  (g, m, w)   I. 

To obtain formal concepts from a many-valued context (G, M, W, I), FCA 

offers the method of conceptual scaling which assigns a formal context (Gm, Mm, 

Im) with m(G) ⊆ Gm, named a conceptual scale, to each (many-valued) attribute 
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mM. In most applications, a formal context (G, {m} × Mm, J) is derived 

from the many-valued context (G, M, W, I) by the conceptual scales (Gm, Mm, Im) 

(m M) where the relation J is defined by g J (m, n):  m(g) = n [27].  

 

 

Figure 2.2: Sample Binary Context Table 

 

 

Figure 2.3: Reduced Labeling Concept Lattice 

 

Some examples are extracted from [31] to illustrate the above definitions. 

Figure 2.2 and Figure 2.3 present the sample binary context table and its concept 
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lattice, while Figures 2.4, 2.5, and 2.6 illustrate the relevant many-valued context 

table and the concept lattice that are derived from conceptual scaling. 

 

        

 Figure 2.4 (L): Many-valued context                               Figure 2.4 (R): Conceptual scale 

 

 

Figure 2.5: One-valued context derived from many-valued context 

 

 Derivation Operators: Given a selection A ⊆ G of objects from a formal context 

(G, M, I), we may ask which attributes from M are common to all these objects. 

This defines an operator that produces for every set A ⊆ G of objects the set Aʹ 

of their common attributes. 

Definition 2: For A ⊆ G of objects from a formal context (G, M, I), we let Aʹ:= {m 

M | g I m for all g A}. Dually, we introduce for a set B ⊆ M of attributes Bʹ:= 
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{g G | g I m for all m B}. These two operators are the derivation operators for 

(G, M, I) [26, 16]. 

 

 

Figure 2.6: Concept Lattice of the derived one-valued context 

 

 Formal Concept: A pair of a set of formal objects and a set of formal attributes 

that is “closed” (i.e., one can neither enlarge the attribute nor the object set) is 

called a formal concept. The set of formal objects of a formal concept is called its 

extension. The set of formal attributes is called its intension. For a given formal 

context, the formal concepts, their extensions and intensions are uniquely 

defined and fixed [56]. 

Definition 3: The pair (A, B) is a formal concept of formal context (G, M, I) iff  A 

⊆ G,  B ⊆ M,   Aʹ = B,   and A = Bʹ. The set A is called the extent of the formal 

concept (A, B), and the set B is called its intent [26]. 
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Lemma 1: The pair (A, B) is a formal concept of (G, M, I) iff A ⊆ G, B ⊆ M, and 

A and B are each maximal (with respect to set inclusion) with the property A × B 

⊆ I [26].  

A formal context may have many formal concepts. The set of all formal concepts 

of (G, M, I) is denoted β (G, M, I). 

 Conceptual Hierarchy: Formal concepts can be (partially) ordered in a natural 

way. Again, the definition is inspired by the way we usually order concepts in a 

“subconcept-superconcept” hierarchy.  

Definition 4: Let (A1, B1) and (A2, B2) be formal concepts of (G, M, I). We say 

that (A1, B1) is a subconcept of (A2, B2) (and equivalently (A2, B2) is a 

superconcept of (A1, B1) iff A1 ⊆ A2. We use the ≤ symbol to express this relation 

and thus have: 

(A1, B1)  ≤  (A2, B2)      A1 ⊆ A2       B2 ⊆ B1. 

The set of all formal concepts of (G, M, I), ordered by this relation, is denoted 

β (G, M, I) and is called the concept lattice of the formal context (G, M, I) [26, 

16]. 

From a philosophical point of view a concept is a unit of thoughts consisting 

of two parts, the extension and the intension. The extension covers all objects 

belonging to this concept and the intension comprises all attributes valid for all 

those objects. Hence objects and attributes play an important role together with 

several relations. Example relations [86] are (1) the hierarchical “subconcept-

superconcept” relation between concepts, (2) the implication relation between 

attributes, and (3) the incidence relation “an object has an attribute”.  
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 Supremum and Infimum: The concept operations resemble more of the 

operations greatest common divisor and least common multiple. 

Definition 5: Let (M, ≤) be a partially ordered set, and A be a subset of M. A 

lower bound of A is an element s of M with s ≤ a, for all a   A. An upper bound of 

A is defined dually. If there exists a largest element in the set of all lower bounds 

of A, then it is called the infimum (or meet) of A. It is denoted inf A or ˄A. The 

supremum (or join) of A (sup A or ˅A) is defined dually. For A = {x, y}, we write 

also x ˄ y for their infimum, and x ˅ y for their supremum. We use the large 

symbols˅ and ˄ for arbitrary suprema and infima [26]. 

Lemma 2: For any two formal concepts (A1, B1) and (A2, B2) of some formal 

context we obtain [26, 16]  

1. the infimum (greatest common subconcept) of (A1, B1) and (A2, B2) as   

(A1, B1) ˄ (A2, B2) = (A1  A2  , (B1  B2)ʺ), 

2. the supremum (least common superconcept) of (A1, B1) and (A2, B2) as  

(A1, B1) ˅ (A2, B2) = ((A1  A2)ʺ ,  (B1  B2)). 

Note that: The operation (.)ʺ is a closure operator [28]. Sets A ⊆ G, B ⊆ M are 

called closed if A = Aʺ and B = Bʺ. Obviously, extents and intents are closed 

sets [44]. 

 Concept Lattice Diagram: The concept lattice of (G, M, I) is the set of all formal 

concepts of (G, M, I), ordered by the subconcept-superconcept relation. Ordered 

sets of moderate size can conveniently be displayed as order diagrams. In a line 

diagram, each node represents a formal concept. A concept c1 is a subconcept of 

a concept c2 if and only if there is a path of descending edges from the node 
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representing c2 to the node representing c1. The name of an object g is always 

attached to the node representing the smallest concept with g in its extent; dually, 

the name of an attribute m is always attached to the node representing the 

largest concept with m in its intent. We can read the context relation from the 

diagram because an object g has an attribute m if and only if the concept labeled 

by g is a subconcept of the one labeled by m. The extent of a concept consists of 

all objects whose labels are attached to subconcepts. Dually, the intent consists 

of all attributes attached to superconcepts [26]. Figure 2.7 shows the Planets 

concept lattice diagram of the formal context depicted in Figure 2.1. 

 

 

Figure 2.7: Planets Concept Lattice diagram 

 

 Complete Lattice: A lattice is an algebraic structure with two operations, called 

meet (infimum) and join (supremum) that satisfy certain natural conditions. With 

the ordering relation ≤, the set of all formal concepts of a formal context forms a 

complete lattice called the concept lattice β (G, M, I) [28]. 
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Definition 6: A partially ordered set  : = (V, ≤) is a lattice, if there exists, for 

every pair of elements x, y V, their infimum x ˄ y and their supremum x ˅ y 

[26]. 

Concept lattices have an additional property that they are complete lattices. 

This means that the operations of infimum and supremum do not only work for an 

input consisting of two elements, but also works for arbitrarily many elements. 

Definition 7: A partially ordered set  : = (V, ≤) is a complete lattice, if for every 

set A ⊆ V exist its infimum ˄V and its supremum ˅A [26]. 

Definition 8: Let P be a non-empty ordered set. 

(i) If x ˅ y and x ˄ y exist for all x, y P, then P is called a lattice. 

(ii) If ˅S and ˄S exist for all S ⊆ P, then P is called a complete lattice [16]. 

 Fundamental Theorem of Formal Concept Analysis: This theorem gives a 

precise formulation of the algebraic properties of concept lattices and is a basis 

for many other results. Its formulation contains some technical terms as follows: 

A set of elements of a complete lattice is called supremum-dense (join-dense), if 

every lattice element is a supremum of elements from this set. Dually, a set is 

called infimum-dense (meet-dense), if the infima that can be computed from this 

set exhaust all lattice elements [26, 16]. Figures 2.8 and Figure 2.9 depict join-

dense and meet-dense of Planets concept lattice in dashed areas. 

Definition 9: Two complete lattices V and W are isomorphic (V  W), if there 

exists a bijective mapping φ: V → W with   x ≤ y      φ (x) ≤ φ (y). The mapping 

φ is then called lattice isomorphism between V and W. 
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Figure 2.8: Join-dense of Planets Concept Lattice 

 

 

Figure 2.9: Meet-dense of Planets Concept Lattice 
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Theorem 1: The concept lattice of any formal context (G, M, I) is a complete 

lattice. For an arbitrary set {(Ai, Bi) | i I} ⊆ β (G, M, I) of formal concepts, the 

supremum is given by 

 = ( ( , ) 

and the infimum is given by 

 =  ( , ( ) 

A complete lattice L is isomorphic to β (G, M, I) iff there are mappings γ: G → L 

and  

μ: M → L such that  γ (G) is supremum-dense in L, and  μ (M) is infimum-dense 

in L, and 

g I m     γ (g)  ≤  μ (m) 

in particular, L   β (L, L, ≤) [26, 16].  

The first part of the theorem gives the precise formulation for infimum and 

supremum of arbitrary sets of formal concepts. The second part of the theorem 

gives, among other information, the fact that every complete lattice is isomorphic 

to a concept lattice. This means that for every complete lattice we must be able 

to find a set G of objects, a set M of attributes and a suitable relation I, such that 

the given lattice is isomorphic to β (G, M, I).The theorem does not only say how 

this can be done, it describes in fact all possibilities to achieve this [26]. 

 Implications: Implications have been studied by Ganter & Wille [29] since 1986. 

They can be used for a step-wise computer-guided construction of conceptual 

knowledge called “attribute exploration” [28] that is developed into “concept 

exploration” [72] which can be used to explore sub-lattices of larger data sets. An 

attribute implication of a context is a pair of subsets of attributes, say X, Y, for 
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which X’ ⊆ Yʹ, that is, each object having all attributes of X has also all attributes 

of Y. This notion corresponds to that of attribute inheritance in “Semantic nets” 

[23].  

Definition 10:  The implication relation A → B holds in a context (G, M, I) if 

every object intent respects A → B. That is, if each object that has all the 

attributes in A also has all the attributes in B. We also say that A → B is an 

implication of (G, M, I). The set A is called the premise, and B is its conclusion 

[26]. 

Proposition 1:  An implication A → B holds in a context (G, M, I) if and only if B 

⊆ A", which is equivalent to Aʹ ⊆ Bʹ. It then automatically holds in the set of all 

concept intents as well [26].  

Note that: The derivation operator (.)ʹ has been defined in Definition 2, and the 

closure operator (.)ʺ is defined in Lemma 2. 

An implication A → B holds in a context (G, M, I) if and only if each of the 

implications 

A → m,   m   B, 

holds (A → m is a short form for A → {m}). We can read this off from a concept 

lattice diagram in the following manner:  A → m holds if the infimum of the 

attribute concepts that correspond to the attributes in A is less than or equal to 

(partial order on the lattice) the attribute concept for m; formally, if  

˄ { μ a | a   A} ≤   μ m. 

A → B holds in a context (G, M, I) if  

˄ { μ a | a   A} ≤ ˄ { μ b | b   B}. 
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Informally, implications between attributes can be found along upward paths in 

the lattice. 

As an example, let us consider the Planets concept lattice (Figure 2.7). It is 

considered that  μ (DistanceFar) ≤ μ (MoonYes), which can be read as DistanceFar 

→ MoonYes, or “A planet which is far away has a moon." As another example, we 

refer to MoonNo → {DistanceNear, SizeSmall} that means “A planet with no moon is 

near and its size is small”. Also, the sample implication rule {DistanceNear, 

DistanceFar} → SizeLarge is always true, because its premise is contradictory. 

Implications obey Armstrong rules [44]:  

 

                                       

 

A minimal (in the number of implications) subset of implications, from which all 

other implications of a context can be deducted by means of Armstrong rules 

was characterized in [35]. This subset is called Duquenne-Guigues or stem base 

in the literature. Guigess and Duquenne [28] have proved that for every context 

with a finite set of attributes A, there is a sound, complete and non-redundant set 

of implications, called stem base or Duquenne–Guigues Basis. For this purpose, 

it defines a pseudo-intent as a set of attributes S which is not an intent (S" ≠ S), 

but contains the closure (P") of every proper subset that is also pseudo intent [4]. 

The premises of implications of the stem base can be given by pseudo-intents. 

For example, the Planets concept lattice (Figure 2.7) consists of 10 

implications, including: 

 DistanceFar → MoonYes  

 MoonNo → {DistanceNear, SizeSmall}. 
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Non-base implications such as  

 {DistanceFar, SizeSmall} → {MoonYes, SizeSmall}  

 MoonNo → DistanceNear  

can be derived by propositional logic [69]. 

 

2.1.2 Impact of FCA 

 

FCA has been successfully used in the field of Software Engineering; almost all 

phases of the software life cycle like software architecture, modularization, program 

code, and configuration analysis have taken advantage of FCA and its beneficial effects. 

However, early phases of the software development process including requirements 

elicitation, domain and system modeling have not yet adequately used FCA as a formal 

framework [37]. This situation is remedied in this thesis. 

“In principle, FCA can be used wherever concepts play a significant role in the 

software process.” Referring to this aspect of Formal Concept Analysis, we can focus on 

requirements engineering (RE), use case analysis (UCA), object-oriented modeling, the 

analysis of class/object hierarchies and component retrieval. One of the interesting 

typical applications of FCA is to extract class candidates from the use case descriptions 

of a System Requirement Specification (SRS). Also FCA provides a "crossing of 

perspectives" between the functional view and the data view respectively represented by 

the use cases and “things”. By this we mean that FCA fills the gap existing in almost all 

object oriented methods [37]. 

The class hierarchy as a principal component of object software development has 

been confronted with many difficulties in design and maintenance. Especially in the 

process of requirements evolution, when the size of the hierarchies grows and becomes 
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more elaborate as the result of modifications, this problem becomes more serious. 

Therefore, hierarchy construction and reconstruction that includes building the hierarchy 

from scratch, evolution of the class hierarchy to accommodate new requirements, 

reengineering of an existing class hierarchy, and merging existing hierarchies require 

vast work and effort in this field. Moreover, the existing algorithms in many recent 

approaches are not based on well-defined theoretical fundamentals. Formal Concept 

Analysis (FCA) would be an appropriate solution, since it proposes a natural theoretical 

framework for class hierarchy design and maintenance. In FCA, well-defined semantics 

which are independent from concrete algorithms are applied to the produced hierarchies. 

Also, the produced hierarchies comply with general quality criteria such as simplicity, 

comprehensibility, reusability, extensibility and maintainability. Besides, two other 

concrete quality criteria may be measured directly on the target software artifacts: 

 Minimizing redundancy: Minimizing redundancy is a well-known software 

design principle that a class hierarchy should be built on. That is, each artifact in 

the code/specifications has to be defined in one single place. In addition, it 

increases the consistency of final result since redundancy makes the 

maintenance of the resulting software more complex by making inconsistencies 

between duplicate artifacts. 

 Subclasses as specializations: Code reuse, especially in code libraries, is 

facilitated by inheritance hierarchies. Therefore, code sharing in the hierarchy for 

the reason of acquiring more comprehensibility and reusability may become the 

main purpose of creating the inheritance between the class hierarchies [31]. 

There are many software development scenarios within the class hierarchy life-cycle 

that take advantage of Formal Concept Analysis. Some inspiring examples are as 

design from scratch, refactoring, and reengineering. FCA provides a framework to deal 
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with various levels of specification details and offers different well-defined design 

structures [31]. 

 

2.1.3 FCA and Ontology 

 

Recent researches have revealed the interactions among FCA and Conceptual 

Modeling, Artificial Intelligence (in particular Description Logics), Object-Oriented 

databases, and software engineering. FCA techniques help also the development of the 

Semantic Web and, in particular, ontology engineering. A conceptual hierarchy is 

extracted from the domain to be used for the manual or semi-automatic development of 

ontology. Moreover, since there are vast and domain-dedicated ontologies in the Web, 

FCA can be used for reusing and combining these independently developed ontologies. 

According to this FCA facility, similarity reasoning which is the possibility of determining 

similar concepts has become the principal part of Semantic Web development, 

especially to perform ontology mapping, integration, and alignment. Generally, these are 

difficult tasks that are time-consuming and error-prone because they require human 

interaction [23]. 

Domain ontology and Formal Concept Analysis (FCA) have common goal of 

modeling concepts but each of them has its own specifications and purposes. Domain 

ontology deals with modeling a “shared understanding of the domain of interest” and 

capturing conceptual knowledge accepted by domain experts. However, FCA supports 

the user in analyzing and structuring a domain of interest. Domain concepts in FCA 

consist of two sets including objects and attributes. Objects are the instances of the 

concept in that domain and attributes are the descriptors of the concept. It is important to 

mention that, FCA emphasizes on both extensional and intensional aspects, however 
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only the intensional part is considered by ontology. As a matter of fact, objects are not 

necessary in defining ontology, but they are one of the main components of concepts in 

FCA [23].  

 

2.1.4 FCA Tools 

 

Many tools for Formal Concept Analysis have been developed and are used for the 

construction, visualization and manipulation of concept lattices. There are open-source 

tools for most platforms and programming environments. In this thesis, we are using 

Lattice Miner [59, 13], the open-source Java program, for the following reasons: (1) it 

has general features that are necessary to develop concept lattices; (2) it provides the 

definition of binary, valued and nested context tables which are required for establishing 

and merging complex context tables; (3) the retrieved XML format Meta model is 

readable and easy to be processed. In this section the tools Concept Explorer (ConExp), 

ToscanaJ, and Lattice Miner are described. 

 

2.1.4.1 Concept Explorer. Concept Explorer [15] (ConExp) is an interactive 

tool that allows users to properly explore the lattice by implementing basic functionality 

needed for study and research of Formal Concept Analysis (FCA). It can be used for 

analysis of simple attribute object tables, (called context in FCA) drawing the 

corresponding concept lattice and exploration of different dependencies, that exists 

between attributes. ConExp is released under BSD-style license. ConExp was first 

developed as a part of master‟s thesis at the National Technical University of Ukraine 

"KPI" in 2000. During the following years, it was extended and now is an open source 

project on Sourceforge [71]. Figure 2.10 depicts the same table of Figure 2.1, in Concept 

http://en.wikipedia.org/wiki/Formal_concept_analysis
http://en.wikipedia.org/wiki/Lattice_(order)
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Explorer tool. Figure 2.11 shows its concept lattice and Figure 2.12 its implication sets 

which are produced in Concept Explorer tool.  

 

 

Figure 2.10: Planets Formal Context Table in Concept Explorer Tool 

 

 

Figure 2.11: Planets Concept Lattice in Concept Explorer Tool 
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ConExp provides the functionality of “context processing”, consisting of “context 

editing”, “calculation of arrow relations”, and “reduction and purifying of context”. Also, 

the FCA operations such as “defining concepts count”, “calculating set of all concepts”, 

“construction of line diagrams”, “finding bases of implications and association rules 

holding in formal context”, “performing attribute exploration”, and “building concept 

lattices” are included.  

 

 

Figure 2.12: Planets implication sets in Concept Explorer Tool 

 

ConExp allows working with several different data formats. However, it is 

recommended to use “cex” as the ConExp native format. This is XML-based format that 

stores information about context, lattice line diagram, and also, whether implications 

and/or associative rules were calculated. ConExp consists of two parts: GUI front-end 

and Library for performing experiments with algorithms. There are some useful features 

like compressed option on the context editor to give a better overview on large contexts. 

The algorithm developed for finding bases of implications which holds in context is 

based on FCA notion of pseudo-intents (Duquenne–Guigues basis) [28] and is based on 
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top-down approach like algorithms for calculating set of concepts and building line 

diagram. 

 

2.1.4.2 ToscanaJ. ToscanaJ [11] was first implemented to realize the idea of 

Conceptual Information Systems which allow the analysis of data using concept-oriented 

methods. After ten years of development, the ToscanaJ suite provided programs for 

creating and using Conceptual Information Systems. Implemented as an open-source 

project and embedded into the larger Tockit [78] project, ToscanaJ is also a starting 

point for creating a common base for software development for Formal Concept 

Analysis. More than the older versions of Toscana it is open for extensions to support 

more advanced methods for conceptual analysis and retrieval of data. It is also 

developed as open source project on Sourceforge [71]. 

While ToscanaJ supports memory-mapped systems, its full potential can only be 

used in combination with a relational database system. If ToscanaJ runs connected to a 

relational database, the conceptual system engineer can customize label contents by 

giving SQL expressions in a specific XML syntax. To allow for easy deployment of 

smaller databases, ToscanaJ also comes with an embedded database engine. By this, a 

database engine is available in each ToscanaJ installation, which avoids the need for 

setting up a database engine or being bound to Windows and the Jet Engine (the 

database engine behind MS Access) with all its limitations. The engine embedded in 

ToscanaJ does not need any setup at all. ToscanaJ will just read an SQL script defining 

the database with “Create Table” and “Insert Into” statements and execute it on an 

internal database system.  

An editor called Elba has been developed to assist the conceptual system engineers 

in creating ToscanaJ systems based on data stored in a relational database. A 
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screenshot of Elba editing a line diagram is shown in Figure 2.13 [11]. When creating a 

new system, the user is presented with a dialog to choose the type of database to 

connect to (Figure 2.14-left) [11]. After choosing one type, the user enters the necessary 

information for connecting to the specific database. Then Elba retrieves information 

about the available data tables and the names of their columns and presents it in the last 

step of the dialog (Figure 2.14-right) [11], in order to support the specification of a 

mapping from the data table into a many-valued context. When this step is completed, 

the user can start defining the conceptual scales. The available methods to create 

scales are: 

 The method Attribute List is to be used as a first step towards the implementation 

of logical scaling [15]. Attributes are defined by SQL clauses and Elba creates 

the corresponding lattice by supporting all possible combinations. 

 Context Table method is flexible that allows the user enter arbitrary strings for 

objects and attributes and select the incidence relation as required.  

 Nominal Scale method enables the user to select single values from the set of all 

values as attributes of the scale. The user can also combine values using logical 

connectives. 

 Ordinal Scale is used for ordered values represented by numbers. The resulting 

line diagram is a simple chain. The user simply enters the separating values, how 

they should be ordered and if an object with the exact value belongs to the upper 

or lower node. As a variation, interordinal scales can be created. 

 Grid Scale allows the user to build the product of two ordinal scales in one 

diagram. If both scales refer to the same many-valued attribute, the resulting 

scale is the standard interordinal scale. If different attributes are chosen, the 

diagram visualizes the direct product of the two ordinal scales. 
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After the creation of the scale, a diagram with the same name is created. 

ToscanaJ also creates nested diagrams, although only one level of nesting is 

produced.  With both simple and nested diagrams, a highlighting function is available. 

Whenever the user clicks on a node, its filter and ideal are highlighted with stronger 

colors, while the rest of the diagram is slightly faded. Figure 2.15 shows the screenshot 

of two nested diagrams [27]. In the analysis process, clicking on one node results in a 

filter process, thus only the objects belonging to the selected node will be used for the 

following analysis. 

 

 

Figure 2.13: Elba‟s main window while a diagram is edited 

 

ToscanaJ is the first Toscana running on multiple platforms and it can be run without 

a database. It aims at users who have only basic knowledge of FCA and not as 

conceptual system engineer. It is able to edit a many-valued context as spreadsheet 

view and it can import several formats like csc files, cxt-format, and XML output. Once 

the data is entered, either by import or by entering it manually, the many-valued 
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attributes can be scaled step by step to create lattices and thus diagrams. Finally, the 

user interface has become more intuitive while offering the same relevant features [27, 

11]. 

 

   

Figure 2.14: Dialogs for defining the database connection in Elba 

 

 

Figure 2.15: Screenshot of ToscanaJ with nested diagram and highlighting 
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2.1.4.3 Lattice Miner. The initial objective of the FCA tool called Lattice Miner 

[59] was to focus on visualization mechanisms for the representation of concept lattices, 

including nested line diagrams [28]. Later on, many other interesting features were 

integrated into the tool. Lattice Miner is a Java-based platform whose functions are 

articulated around a core. The Lattice Miner core provides all low-level operations and 

structures for the representation and manipulation of contexts, concept lattices and 

association rules. Mainly, the core of Lattice Miner consists of three modules: context, 

concept and association rule modules. The user interface offers a context editor and 

concept lattice manipulator to assist the user in a set of tasks. The architecture of Lattice 

Miner is open and modular enough to allow the integration of new features and facilities 

in each one of its components [13]. 

 Context Module: The context module offers all the basic operations and 

structures to manipulate binary and valued contexts as well as context 

decomposition to produce nested line diagrams. Basic context operations include 

apposition, subposition, generalization, clarification, reduction, and the 

complementary context computation. Apposition and subposition operations [83] 

are intended to ease the visualization of large concept lattices and do not have 

straightforward computational interpretation. Apposition is the horizontal 

concatenation of partial contexts sharing the same set of objects. Subposition, or 

vertical assembly of contexts upon a common attribute set, is dual to apposition 

[28]. Generalization of objects and attributes [13] is another way to get an 

abstract view of data since it allows in most cases to reduce the size of concept 

lattices. The module provides also the arrow relations for context reduction and 

decomposition, which are the methods proposed [28] to simplify lattice display. 

The tool provides the definition of binary context table (.lmb file format), valued 
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context table (.lmv file format), and nested context table (.lmn file format). Also, 

the tool recognizes the binary context produced by ConExp software tool (.cex 

file format), and Galicia SLF binary context (.slf file format).  Figure 2.16 depicts 

the binary context editor where three levels of nesting are defined [13]. 

 

 

Figure 2.16: Binary Context Editor 

 

 

Figure 2.17: Concept Lattice, tree view structure 
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 Concept Module: The main function of the concept module is to generate the 

concepts of the current binary context and construct the corresponding lattice 

[13] (Figure 2.17). It provides the user with basic operators such as projection, 

selection, and exact search as well as advanced features like pair approximation. 

Some known algorithms such as Bordat‟s procedure, Godin‟s algorithm and 

NextClosure algorithm [25] are included in this module. 

 Association Rule Module: This module [13] includes procedures for computing 

the Duquenne-Guigues base using the notion of pseudo-intent, generic base 

using the notion of generator, and informative bases of approximate rules using 

the notion of generator. Implications with negation [50] can be obtained using the 

apposition [83] of a context and its complementary. This module embeds also 

procedures for the computation of a non-redundant family C of implications and 

the closure of a set Y of attributes for the given implication set C. 

 User Interface: The initial objective of Lattice Miner was to focus on lattice 

drawing and visualization either as a flat or nested structure by taking into 

account the cognitive process of human beings and known principles for lattice 

drawing (e.g., reducing the number of edge intersections, ensuring diagram 

symmetry). Some well-known visualization techniques such as focus & context 

and fisheye view have been implemented. The basic idea behind focus & context 

visualization paradigm is to allow a viewer to see important objects in full detail in 

the foreground (focus) while at the same time an overview of all the surrounding 

information (context) remains available in the background. The focus & context 

paradigm is translated into clear and blurred elements while the size of nodes 

and the intensity of their color were used to indicate their importance. Various 

forms of highlighting, labeling and animation are also provided. 



  43  

 

Nested line diagram (NLD) [28] is a visualization means that allows the drawing of a 

concept lattice as a sub-structure of the product lattice of a set of lattices by combining 

their respective line diagrams into a nested structure. Nested line diagrams are offered 

to better handle the display of large lattices. Figure 2.18 shows the third level of the 

nested line diagram corresponding to the binary context of Figure 2.16 [13]. Each one of 

the inner nodes of this diagram represents a combination of attributes from the previous 

two (outer) levels. Real inner concepts (see the node on the left hand-side of the 

diagram) are identified by colored nodes while void elements are in grey color. Each 

node of levels 1 and 2 can be expanded to exhibit its internal line diagram. Both flat and 

nested diagrams can be saved as an image. Simple (flat) lattices can also be saved as 

an XML format file [13]. 

 

 

Figure 2.18: Nested line diagram 
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2.2 Ontology 

 

A most commonly cited definition of ontology is the one offered by Gruber: “Ontology 

is a formal explicit specification of a shared conceptualization” [33]. A conceptualization 

is an abstract, simplified view of the world that we wish to represent for some purposes. 

Every knowledge base, knowledge-based system, or knowledge-level agent is 

committed to some conceptualization, explicitly or implicitly. A conceptualization, in this 

context, refers to an abstract model of how people think about things in the world, 

usually restricted to a particular subject area. An explicit specification means the 

concepts and relationships of the abstract model are given explicit terms and definitions 

[34]. 

Ontologies are used in artificial intelligence, the Semantic Web, systems 

engineering, software engineering, and information architecture as a form of knowledge 

representation about the world or some part of it. In computer science, ontology is a 

formal representation of the knowledge consisting of the concepts in a domain (classes), 

properties of each concept describing various features and attributes of the concept 

(roles or properties), and restrictions on properties (role restrictions). Ontology together 

with a set of individual instances of classes constitutes a knowledge base [52].  

Building ontologies is difficult, time-consuming, and expensive, particularly if the goal 

is the design of an ontology that is formal enough to support automated inference. One 

reason is that, ontologies require consensus across a community whose members may 

have radically different visions of the domain under consideration. In practice, the quest 

for consensus is dealt with in a variety of ways. At one extreme, small lightweight 

ontologies are developed by large numbers of people and then merged. At the other 

extreme, rigorous formal ontologies are developed by consortia and standards 

http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Semantic_Web
http://en.wikipedia.org/wiki/Systems_engineering
http://en.wikipedia.org/wiki/Systems_engineering
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Information_architecture
http://en.wikipedia.org/wiki/Knowledge_representation
http://en.wikipedia.org/wiki/Knowledge_representation
http://www.answers.com/topic/computer-science
http://www.answers.com/topic/universe-of-discourse
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organizations. In the former case, there will be a greater need for ontology mapping and 

merging, while the latter case will require better support for collaborative design and 

analysis [34].  

Although ontologies were originally motivated by the need for sharable and reusable 

knowledge bases, the reuse and sharing of ontologies themselves is still limited because 

the ontology users (and other designers) do not always share the same assumptions as 

the original designers. It is difficult for users to identify what the implicit assumptions 

were and to understand the key distinctions within the ontology [34]. Besides, the 

concepts included in ontology and the hierarchical ordering will be arbitrary to a certain 

extent, depending upon the purpose for which the ontology is created. This arises from 

the fact that objects are of varying importance for different purposes, and different 

properties of objects may be chosen as the criteria by which objects are classified. 

Subsequently, “domain-specific” ontologies are more applicable to industrial problems, 

but may be less reusable than generic ontologies.  

The main reasons to develop ontology are [62]: 

 To share common understanding of the structure of information among people or 

 software agents 

 To enable reuse of knowledge 

 To make domain assumptions explicit 

 To separate domain knowledge from the operational knowledge 

 To analyze domain knowledge 

 To increase interoperability among various domain of knowledge 

 To enhance scalability of new knowledge into the existing domain 

 To search/reason a specific knowledge in a domain knowledge 

Ontology is not only a hierarchy of terms, but also a fully axiomatized theory about 

the domain. Generally, applications of ontology can be classified in different categories 
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that one of them is “Ontology as Specification”. Ontology of a given domain is created 

and it provides a vocabulary for specifying requirements for one or more target 

applications. In this case, ontology can be viewed as a domain model. The ontology is 

used as a basis for specification and development of domain applications, allowing 

knowledge reuse. Thus, ontology development is one approach that has contributed to 

the early stages of domain analysis [3]. The captured conceptualization and relations 

should be formally specified. OWL can be used to formally represent the results of 

domain analysis. 

 

2.2.1 Ontology Web Language (OWL) 

 

OWL is a standard development language from the World Wide Web Consortium 

(W3C) [23] that facilitate describing the concepts in a domain and also the relationships 

holding between concepts. It provides sets of operators like intersection, union and 

negation for concept classification and analysis. Since it is based on logical models, 

OWL can benefit from the use of the reasoner which checks the consistency of all 

concepts and definitions in the ontology and also recognizes which concepts fit under 

which definitions so that it can maintain the class hierarchy correctly. This is particularly 

useful when dealing with cases where classes can have more than one parent [39].  

OWL ontologies may be categorized into three species or sub-languages: OWL-Lite, 

OWL-DL and OWL-Full. A defining feature of each sub-language is its expressiveness. 

OWL-Lite is the least expressive sub-language while, OWL-Full is the most expressive 

one. The expressiveness of OWL-DL falls between that of OWL-Lite and OWL-Full. 

OWL-Lite and OWL-DL are based on Description Logics with less expressiveness 

compared to OWL-Full. Description Logics are a decidable fragment of First Order Logic, 
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so can be used in automated reasoning. Therefore, it is possible to compute the 

classification hierarchy automatically and check for inconsistencies in an ontology that 

conforms to OWL-DL or OWL-Lite. The choice between OWL-Lite and OWL-DL may be 

based upon whether the simple constructs of OWL-Lite are sufficient or not. But still this 

checking depends strongly on how the ontology has been defined. OWL-Full is the most 

expressive OWL sub-language. It is intended to be used in situations where high 

expressiveness or powerful modeling facilities such as meta-classes is more important 

than being able to guarantee the decidability. It is therefore not possible to perform 

automated reasoning on OWL-Full ontologies [39]. Reasoning involves: (1) syntax 

checking, (2) consistency checking, ensuring that the ontology does not contain 

contradictory facts (3) subsumption, checking whether a class description is more 

general than another class description, and (4) query answering, retrieving knowledge 

from the knowledge base [67, 32].  

 

2.2.2 Ontology Tools 

 

Many different tools are available for building and maintaining ontologies. The most 

well known and widely used ontology tools available on the market are Protégé, 

TopBraid Composer, CMapTools Ontology Editor (COE), Altova SemanticWorks, and 

SMORE/SWOOP; among which most three important ones are described in this section. 

A set of necessary requirements have been made to evaluate the mentioned software 

tools. The resulting table can be found in Appendix A. Based on these requirements 

each tool has been evaluated and assigned a number on a 1 for poor – 10 for excellent 

scales in this Table [62]. In this survey, the tool TopBraid Composer is utilized for 

opening and representing the target OWL ontology.  



  48  

 

2.2.2.1 Protégé. Protégé [57] is a free, open-source ontology editor/creator and 

knowledge-base framework and perhaps the most widely-used ontology creation tool on 

the market. Using protégé, ontologies can be edited and created using RDF/OWL script 

language (including OWL Full, DL and Light) or through its java-based plug-and-play 

environment. This environment provides a tabbed view of ontology, allowing the user to 

separate the ontological elements and look at all of the characteristics and relationships 

attributed to each object. Files can be exported to Clips, OWL, N-Triple and TURTLE 

formats. 

Despite its ease of use compared to many other commercial and open-source 

ontology editors, Protégé does require a fundamental knowledge of ontology and its 

defined types of objects and relationships.  

OwlViz is a mapping visualization plugin designed for Protégé. It allows the user to 

view an ontology as a concept map. However, OwlViz does not illustrate the 

relationships between each object, nor does it allow the user to create or edit the 

ontology within this view. Similar plugins include OntoViz and Techquila are used, 

although OwlViz is the better of the three.  

 

2.2.2.2 TopBraid Composer. TopBraid Composer [80] is a professional 

development environment for W3C's Semantic Web standards RDF Schema, the OWL 

Web Ontology Language, the SPARQL Query Language and the Semantic Web Rule 

Language (SWRL). Composer provides a comprehensive set of features to cover the 

whole life cycle of semantic application development. In addition to being a complete 

ontology editor with refactoring support, composer also can be used as a run-time 

environment to execute rules, queries, reasoners and mash-ups. 
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Based on Eclipse, Composer can also be extended with custom Java plug-ins. This 

supports the rapid development of semantic applications in a single platform. Composer 

can be used to edit RDFS/OWL files in various formats, and also provides scalable 

database backends (Jena, AllegroGraph, Oracle 10g and Sesame) as well as multi-user 

support. 

It has a number of features which make it a very competitive tool comparable to 

Protégé. Among these features are Integrated Development Environment for Semantic 

Web applications, UML-like Class, Diagrams, classification and Consistency Checking, 

Rules, SPARQL Queries, Data Source Mapping, Geography and Location Mapping, 

Calendar and Chart Mash-Ups, Semantic Web and Mash-Up development with RDFs 

and GRDDL, Visual RDF Graphs, Multi-User Support, Ontology-Driven Forms, Form 

Customization, Source Code Editing, Imports and Namespace Management, Import of 

Databases, UML, XML Schema and Spreadsheets, and HTML Documentation 

Generation. 

TopBraid Composer is a very flexible platform that enables Java programmers to add 

customized extensions or to develop stand-alone Semantic Web applications. For 

example, it is fairly easy to add new kinds of windows, editors, menu entries or even new 

storage formats to Composer. One of the advantages of Composer is that it can serve 

as an application development framework: programmers can develop components as 

plug-ins and benefit from the rich features of Composer to run experiments and tests 

against real-world data. When the functionality has been sufficiently tested, the module 

can be deployed into a stand-alone application, especially on the TopBraid platform. 

 

2.2.2.3 CMapTools Ontology Editor (COE). CMapTools [41] allows 

users to construct, navigate, share and criticize knowledge models represented as 
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concept maps. The COE application provides users with an outlet to create ontology in 

the form of concept maps. This was the version we evaluated extensively. CMap Server 

allows a group to collaborate online and provide feedback to one another. 

CMapTools allow the user to import various types of XML and text documents and 

export ontologies in OWL, N-Triple (and its various formats) and TURTLE. It offers 

validation and concept suggestion tools. CMaps is a very appealing tool for our team‟s 

purpose as it is the only toolset which is primarily a mind/concept mapping tool with 

ontological features. The intended users of the tool require the ability to create maps that 

can be loaded by our ontology experts in ontology software and vice versa. 

One of the major benefits of CMap Tools is that users need only a very fundamental 

understanding of ontology (mostly the types of relationships they must define). The 

ontology can then be created as a concept map using a simple drag and drop interface. 

A styles template also allows the user to quickly and easily customize their objects, lines 

and map in general. When loading ontology into CMap, it recognizes the types of 

relationships used and provides the repository of relationships to choose from when 

creating a relationship within the concept map, which is very helpful for anyone working 

on an ontology created by another author. 

The zooming in and out is fairly limited and navigating large concept maps can be 

annoying when you need to work on multiple areas of ontology. So, CMap provides a 

Web Service where developers use the language of their choice and the Knowledge 

Exchange Architecture of CMapTools and the CMapServer known as KEA. The API for 

KEA consists of an XML specification for Web services interface. This allows 

programmers to create their own modules that provide some features that CMap 

currently do not provide, or possibly enhance an existing feature. 
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2.3 Model Transformation 

 

The motivation behind this short survey is to emphasize model transformation as a 

formal method in software design process, which in some level guaranties consistency 

and correctness of existing components. The model transformation process consists of 

starting from an initial requirements elicitation step and to continue through feeding 

acquired information to a formal framework known as FCA. This framework provides a 

formal model based on concept lattices that remains in high-level abstract layers and 

needs to be transformed to more practical and convenient models. To automate the 

transformation process, Model Transformation approaches with an extend domain of 

methods and tools are available. In this section we will not go deep into different Model 

Transformation methods but on the other hand we will search for the best approach and 

method that is convenient for our model.  

A model transformation in Model-Driven engineering takes as input a model 

conforming to a given Meta-model and produces as output another model conforming to 

a given Meta-model. To achieve this goal, there are many tools that support the 

automation of model transformation. These development tools not only offer the 

possibility of applying predefined model transformations on demand, but also offer a 

language that allows (advanced) users to define their own transformation rules and 

execute them on demand. 

Performing a model transformation, taking one or more models as input and 

producing one or more models as output, requires a clear understanding of  the abstract 

syntax and the semantics of both the source and target. A common technique for 

defining the abstract syntax of models and the inter-relationships between model 

elements is Meta-modeling. To define the required Meta-models, we need an 
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appropriate data schema to express input and output models. XML (Extensible Markup 

Language) is specially designed to be easy to use over the Web, to be human-readable 

and straightforward for applications to read and understand. XML is quickly becoming 

the universal syntax for information transfer; therefore a vast amount of XML 

transformation has XML as the destination as well as the source. The tools applied in 

this thesis will manipulate input and output models taking advantage of XML format. For 

example, the input model of transformation process is produced by an FCA tool known 

as Lattice Miner that creates the concept lattice in XML schema. Also, the final target 

model of this framework is considered to be an OWL ontology that certainly is in XML 

format. 

Since our input and output models can be serialized as XML format using the XML 

Metadata, implementing model transformations using XSLT, which is a standard 

technology for transforming XML, seems very attractive. Extensible Stylesheet 

Language Transformation (XSLT) is an XML-tool to perform model transformation. It 

defines the mapping from some XML into another markup language like XML, HTML, or 

into plain text. XSLT Stylesheets are interpreted by XSLT processors, which generate a 

result from source XML. XSLT processors can be embedded in web browsers or be run 

from the command line to run Stylesheets. (Figure 2.19 [74]) 

 

 

Figure 2.19: XSLT processor 
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XSLT uses XPath to select parts of XML to process and to perform calculations. 

XPath, the XML Path Language, is a query language for selecting nodes from an XML 

document. The most important role of XPath is to collect information from an XML 

document by navigating through the document. A secondary role of XPath is as a 

general expression language, to perform calculations. There are two types of 

implementing approaches in XSLT transformation: Push and Pull.  

In the push approach, multiple templates are used, each matching different types of 

nodes to process a document-oriented XML. The contents of the input XML get pushed 

through the Stylesheet to be transformed. The final structure of the result is highly 

determined by the structure of the input.  

In the pull approach, some special nodes are selected to change the order in which 

the input is processed or to only process certain portions of the input. Mostly, pull 

method is used for data-oriented XML when the structure of the input XML is fixed and it 

is obvious what exact result is going to be obtained from the input. The final structure of 

the result is mainly determined by the structure of the Stylesheet and how the templates 

fit together. 

The best Stylesheet uses a hybrid of both approaches to process different parts of a 

particular XML document. In this survey, four Stylesheets have been created for 

implementing the transformation algorithms from FCA to ontology. All defined 

Stylesheets use both approaches to process different parts of input XML files. The 

templates are used to match the nodes that get pushed to the output XML files and the 

specified nodes are selected to change the structure of files.   

 

 

 

 

http://en.wikipedia.org/wiki/Query_language
http://en.wikipedia.org/wiki/Node_%28computer_science%29
http://en.wikipedia.org/wiki/XML
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Chapter 3 

 

Case Study Statement 

 

 

This Chapter explains the problem used as a case study in this thesis.  The problem, 

called Common Component Modeling Example (CoCoME) [36] has been given as the 

benchmark case study by the component based software engineering community. This 

case study is the test bed used to compare the merits and drawbacks of different 

component based development techniques.  

The author of [40] applied the trustworthy component-based methodology in [48] to 

CoCoME and showed that the approach in [48] is quite general to formally model such 

problems. However, the author of [40] identified the basic components only manually 

and created them using the Visual Modeling Tool [89]. In this thesis we use FCA to 

create ontology together with some semantic information and constraints on it which can 

be regarded as the domain model of the problem. The significance is that, to the best of 

our knowledge, FCA was never used by the software engineering research and 

development community as a means of formal domain analysis. OWL ontology is 

automatically constructed from the domain model and then it is automatically 

transformed into the trustworthy architecture language (TADL [49]) of the target 

component-based system.  
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First, the case study is briefly introduced. The detailed description of the case study 

can be found in [36]. Afterwards, the transformation tool in [40] is addressed as a tool to 

generate UPPAAL specification of CoCoME case study to verify the trustworthy 

properties. Next, the drawbacks of the solution stated in [89] and [40] are presented, and 

finally, we explain the work done in this thesis as a resolution to these problems.  

 

3.1 Common Component Modeling Example (CoCoME) 

 

CoCoME [36] is a common component modeling example that has been introduced 

by the component development community in order to evaluate and compare the 

practical application of existing component models using a common component-based 

system as a modeling example. CoCoME includes properties of real world systems and 

its size is limited to be modeled with reasonable effort. Besides, it comes from a domain 

which is easily understandable without heavy-weighted system requirements 

specifications.    

CoCoME is a trading system which includes all transactions concerning the sales in 

a supermarket, starting from the customer interaction at cash desk, product scanning, 

payments, and inventory updates. Also, it includes the management considerations like 

ordering goods from wholesalers, generating various kinds of reports and even the 

product exchange process on low stock which is systematically manipulated. 

 

3.2 System Overview 

 

The first element of the trading system in CoCoME case study is the “Cash Desk”. 

Figure 3.1 extracted from [36], depicts an overview of the cash desk where the customer 
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purchases the products and pays for them. The cashier scans the products and handles 

the payment. Furthermore, the system provides an express checkout to speed up the 

sale process in which the customer can order only a few goods and the payment must 

be in cash.  

The cash desk consists of the following devices: 

 Cash Box: starts and finishes the sale transaction, and holds the received cash. 

 Barcode Scanner: identifies the products being purchased. 

 Card Reader: handles card payments (cash payments are handled by the Cash 

Box). 

 Printer: prints the bill to be handed out to the customer at the end of the sale 

transaction. 

 Light Display: signals the customer the current mode of the cash desk to identify 

if it is in normal mode or in express mode. 

 Cash Desk PC: handles the sale transaction, communicates with the Bank, and 

integrates all devices at the cash desk. 

 

 

Figure 3.1: Hardware overview of Cash Desk 
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Each store consists of several cash desks connected to a Store Server and a Store 

Client in a network. The set of cash desks are called cash desk line. The manager is 

authorized to order products, view reports, change price, and administer the inventory by 

using the Store Client. Each store is connected to an Enterprise Server which in turn is 

connected to an Enterprise Client. 

 

3.3 System Requirements Specification  

 

The CoCoME case study introduces the trading system by defining the specifications 

of its use cases. The trading system use cases including all actors are presented in 

Figure 3.2 [36]. In this section, a brief description of the use cases including the 

functional and non-functional requirements of the trading system is presented. More 

details can be found in [36].  

 

3.3.1 Process Sale 

 

Purchasing goods by customers in store is provided in the Process Sale use case. 

The cashier is the only actor who interacts with the customer in this process when the 

customer presents the items to buy at the cash desk. The cashier begins the new sale 

process by pressing the start new sale button. Then the cashier enters the item identifier 

manually using the keyboard from the Cash Box or by using the Barcode Scanner. The 

system shows the product description, price and running total. Till now, one purchasing 

item is registered in the system. This process is repeated until the cashier ends entering 

items by pressing the sale finished button at the cash desk.  
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Figure 3.2: Trading system use cases 

 

There are two options for the payment, Bar Payment and Card Payment. The cashier 

initiates bar payment by pressing bar payment button at the Cash Box. The cashier 

enters the cash received from the customer using the Cash Box and hands over the 

change and closes the Cash Box. Likewise, the cashier initiates card payment by 

pressing card payment button at the Cash Box. The customer‟s card is pulled though the 

Card Reader and after the Bank‟s approval the card is returned to the customer. In the 

case of card refusal, the card payment can be turned into a bar payment by pressing the 

bar payment button. Afterwards, the completed sale is registered in the inventory and 

the stock is updated. If the inventory is not available, the system saves the sale and 

loges it as soon as the inventory is available again. Finally, the transaction is finished by 
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printing a receipt which is handed on to the customer. The time requirements for 

processing the sale transaction are the following:  

 Time for pressing the start new sale button = 1.0s; 

 Time for printing the bill = 3.0 s; 

 Time for pressing the sale finished button = 1.0 s; 

 Time for updating the inventory = 2.0 s; 

 Time for processing a bar payment = 120.0 s; 

 Time for pressing the bar payment button = 1.0 s; 

 Time for pressing the card payment button = 1.0 s; 

 Time for waiting for card validation = 30.0 s; 

 Time for scanning an item = 5.0 s; 

 Time for showing product description,  price, and running total = 1.0 s; 

 

3.3.2 Manage Express Checkout 

 

Changing Cash Desks from the normal mode to the express mode is provided in the 

Manage Express Checkout use case. However, the system enables the cashier to 

change it back to the normal mode by pressing the disable express mode button. This 

use case is triggered by the system when the condition for the express checkout is met, 

i.e., if 50% of all sales during the last 60 minutes has less than 8 items each. In this 

case, the Cash Desk which finishes the last sale will be changed to the express mode. 

So, the Light Display is switched to green and the maximum items per sale would be 8. 

Moreover, card payment is not allowed and the customer has to pay just in cash.  

In the case of deactivating the express mode by the cashier, the Light Display is 

switched from green to black and the limitation on the number of items per sale is 
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removed. Besides, the customer is capable to pay either by card or in cash. The time 

requirements for managing an express checkout are as follows:  

 Time for pressing the disable express mode button = 1.0 s; 

 Time for switching to express mode = 1.0 s; 

 Time for deactivating card payment = 1.0 s; 

 Time for switching the green Light Display on = 1.0 s; 

 

3.3.3 Order Products 

 

Ordering new product items is provided in the Order Products use case. The 

manager is the only actor who has the authority to do this process at the Store Client in 

the case of supplying the store with some new products. At first, two lists of products are 

demonstrated by the system: one is the list with all products; the other is the list with 

products which are running out of stock. The manager chooses the products to order 

and enters the corresponding amount for each product item, and then presses the order 

button at the Store Client. The system sends the orders to the appropriate suppliers and 

generates an order identifier for each. Then the results are presented to the manager. 

The time requirements for ordering products are as follows:  

 Time for pressing the order button = 1.0 s; 

 Time for displaying the lists of products = 1.0 s; 

 Time for entering the order and its amount = 10.0 s; 
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3.3.4 Receive Ordered Products 

 

Accounting the ordered products which are newly arrived at the store is provided in 

the Receive Ordered Products use case. The stock manager is the actor who has the 

authority to do this process at the Store Client when the ordered products arrive at the 

store. The attached order identifier which has been assigned during ordering the 

products is verified by the stock manager. If the delivery is complete and correct, the 

stock manager enters the order identifier and presses the roll in received order button. 

Then, the inventory is updated by the system. In the case that the delivery is not 

complete or correct, the stock manager sends the products back to the supplier and 

waits for the new delivery but no changes are registered at the system. The time 

requirements for receiving ordered products are as follows:  

 Time for pressing the roll in received order button = 1.0 s; 

 Time for updating the inventory = 1.0 s; 

 Time for displaying the ordered list = 1.0 s; 

 

3.3.5 Show Stock Reports 

 

Generating stock-related reports at the store is provided in the Show Stock Reports 

use case. The manager is the only actor who has the authority to see the statistics about 

the store in the reporting GUI. In this case, when the manager enters the store identifier 

at the Store Client and presses the create report button the system displays a report 

including all available stock items in the store. The time requirements for showing stock 

reports are the following:  

 Time for entering store Id and pressing the create report button = 1.0 s; 
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 Time for generating the stock report = 1.0 s; 

 

3.3.6 Show Delivery Reports 

 

Generating delivery-related reports about the enterprise is provided in the Show 

Delivery Reports use case. The manager is the only actor who has the authority to see 

the statistics about the enterprise in the reporting GUI In this case, when the manager 

enters the supplier identifier at the Store Client and presses the create report button the 

system displays a report including the calculated mean time to delivery for each supplier 

of a specific enterprise. The time requirements for showing delivery reports are the 

following:  

 Time for entering supplier Id and pressing create report button = 1.0 s; 

 Time for generating the delivery report = 1.0 s; 

 

3.3.7 Change Price 

 

Changing the price of the products is provided in the Change Price use case. The 

manager is the only actor who has the authority to change the price of the products in 

the store at the Store Client. At first, a list of all available products in the store is 

demonstrated. The manager selects a product item and changes its price, and then 

presses ENTER to confirm it. The system changes the price and updates the inventory. 

From now on, the product will be sold with its new price. The time requirements for 

changing the price are as follows: 

 Time for pressing ENTER = 1.0 s; 

 Time for displaying the price list = 1.0 s; 
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 Time for entering the new price = 5.0 s; 

 Time for updating the inventory = 5.0 s; 

 

3.3.8 Product Exchange 

 

Verifying the stock level for each product and sending a request to the Enterprise 

Server for such products are done in the Product Exchange use case. The Enterprise 

Server checks whether the required products are available at other stores and makes 

the necessary calculations to see if it is economical to ship the product to the requesting 

store. This Use Case is triggered by the system while only servers are involved as the 

actors. If the Store Server is connected to the Enterprise Server, the query of product 

shortage including its product identifier is sent. Otherwise, the query is queued and 

whenever the Enterprise Server is available it will be re-sent again. When the Enterprise 

Server receives the query, it determines all nearby stores which are less than 300 km 

away from the requesting store. Since the Enterprise Server does not have the current 

global data about the stores at any time, it asks them to flush their local data to the 

Enterprise Server in order to update its database. The time requirements for product 

exchange functionality are as follows: 

 Time for query from the requesting Store Server to the Enterprise Server = 2.0 s; 

 Time for query from the Enterprise Server to one nearby Store Server = 2.0 s; 

 Time for flushing the cache of one Store Server and returning the result = 2.0 s; 

 Time for making a decision by the Enterprise Server = 1.0 s; 

 Time for marking the products as incoming by the Enterprise Server = 2.0 s; 

 Time for sending the delivery request to the providing Store Server = 2.0 s; 
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3.4 Transformation Tool for Verification Process 

 

Design time analysis is an important step in the process of developing software 

systems, with the goal of ensuring that the system design conforms to the design 

constraints that are stated as part of the functional and non-functional requirements. 

There are some well-known techniques for formally analyzing a design. These include 

model checking, axiom-based formal verification, and real-time scheduling analysis that 

take into account resource constraints. The transformation tool [40] has used model 

checking and real-time schedulability techniques to verify that the system under 

development is both safe and secure. To do so, the architecture of a trustworthy system, 

formally described in Trustworthy Architectural Description Language (TADL), is taken 

as the input for the analysis stage and is transformed into behavior protocols used by 

existing verification tools. A tool based on such techniques has been designed and 

implemented which automatically generates two types of models from a TADL 

description. One is the UPPAAL model, on which the security and safety properties of 

the system under design are formally verified. The second output is the TIMES model, 

on which real-time schedulability analysis is performed. The techniques and tools are 

applied to the CoCoME case study to illustrate the transformation process from a system 

defined using TADL model to UPPAAL model. 

UPPAAL is one of the model checking tools which is used for the modeling, 

simulation and verification of real-time systems, and was jointly developed by Uppsala 

University and Aalborg University [6]. Model checking is the most successful approach in 

developing tools and techniques for checking the requirements and design of software 

systems. Figure 3.3 extracted from [53], shows the main idea behind model checking. 

The model checking tool takes as an input the requirements or design (called models) 
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and a property (called the specification) that the system should satisfy. The output of the 

tool is either yes, if it satisfies the specification and no, otherwise [53].  

 

 

Figure 3.3: Model Checker overview 

 

The main goal of UPPAAL tool is to model a system with timed automata using a 

graphical editor, simulate it to validate the behavior and then verify that the model is 

correct with respect to a certain set of properties. The UPPAAL verifier can be used to 

check the behavior of the system by defining different checking formulas. This can be 

done manually by the user after the system has been transformed into the UPPAAL 

model and opened using the UPPAAL tool. Figure 3.4 extracted from [40], shows the 

sample of the safety and security properties that were tested on the resulting UPPAAL 

model of the CoCoME case study. Also, the corresponding verification results are 

displayed in the status bar. 

Now, a question arises and it is “what is the justification of the components?” and 

“how the components have been developed?” to be used in such a verification process. 

As proposed in [89] and [40], the application developer focuses on the modeling and 

analysis aspects to design a visual model of a component-based system using Visual 

Modeling Tool [89] without being burdened by the formalism. VMT tool provides a 

graphical user interface for developers to design components, connectors and system 

configurations along with their attributes and properties. Also, VMT tool can 
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automatically generate the relevant formal behavior model in TADL description 

language. Afterwards, the resulting TADL specification represents the input file to the 

Transformation Tool [40]. The tool can then perform the transformation to UPPAAL or 

TIMES, depending on the selected transformation type. If the UPPAAL transformation is 

selected, the produced XML file is provided as the input to the UPPAAL model checking 

tool to perform the required verification and simulation. If TIMES transformation is 

selected, the produced XML file is provided as the input to the TIMES tool, where 

schedulability analysis can be performed.  

 

 

Figure 3.4: Verifying safety and security properties in UPPAAL 

 

The proposed solution in [89] and [40] has the following drawbacks: 

 The developer manually determines the system components as well as the 

functional and non-functional properties, intuitively and without following any 
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specific rules and methodologies and even without using the formal methods. As 

a consequence, some unpredictable deficiencies like redundancy, 

incompleteness, inconsistency, or contradiction may occur in system design. 

Even though VMT as a formal tool and TADL as a formal language are applied to 

fulfill the formalism, the verification process is done in the last steps of 

components design using model checking tools (UPPAAL tool), and/or 

schedulability analysis tools (TIMES tool). Actually, the analysis and reasoning 

about the behavior of the trustworthy components are burdened to the mentioned 

extended timed automata behavior models. 

  The UPPAAL tool can be used to verify whether the model is correct with 

respect to a certain set of properties that are manually specified by the user. The 

properties that can be checked using this feature are Reachability, Safety and 

Liveness. Since the checking formulas are manually defined, some significant 

properties may be ignored to be verified, or may not correctly addressed by the 

specified formulas.   

 When the verification rules of the UPPAAL model checker are performed, it may 

generate some results that are not satisfied by the UPPAAL verifier.  These 

special conditions are not predicted in [40] and it does not provide any solution 

for them. Maybe the system developer should go back to the design phase and 

modify the corresponding elements or parameters in VMT tool, in order to 

achieve the satisfaction of the manually defined rules. However, there is not any 

specific guideline for the developer to reach to this goal that justifies the 

trustworthiness properties. 

To solve the above problems, in this thesis, the Formal Concept Analysis as a 

mathematical theory is used to compose concept hierarchy and provide a formal basis 

for domain analysis that leads to design the component elements and other artifacts of 
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the system, including its functional and non-functional requirements. The application of 

FCA in the first stages of design has the advantage of constructing a consistent class 

hierarchy. Besides, by extracting the implication rules, the user would be able to make 

the logical deductions and discover the intra-concept relations between the system 

components and the design constraints. Afterwards, the derived system artifacts are 

automatically transformed to the OWL ontology elements by using model transformation 

process. The concept hierarchy developed in FCA is correspondingly transferred to the 

class hierarchy in resulting ontology and since the OWL ontology is based on logical 

models, the user can take advantage of using its reasoning engine to accomplish the 

syntax checking, consistency checking and subsumption. Therefore, if there would be 

any deficiency or contradiction in the developed ontology, the user can identify and fix it 

by modifying the relevant system elements in FCA. Finally, the verified ontology is 

automatically transformed to TADL architecture description language which is the formal 

specification of the dependable component-based system. The subsequent TADL file 

can be represented as the input file for the transformation tool in [40] to be transformed 

to UPPAAL model so that the safety and security properties of the system would be 

formally verified by UPPAAL model checking tool.   

The methodology to be outlined in this thesis will be applied to CoCoME case study 

in Chapter 8, so that, the OWL ontology and the relevant components in TADL will be 

derived. Then, the results will be compared with the work done in [89] and [40] to justify 

the necessity of using Formal Concept Analysis in order to get more accurate 

component models. 
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Chapter 4 

 

Methodology for Constructing Formal 

Context Tables 

 

 

In this Chapter, the process for capturing the formal concepts and the rules for 

defining and integrating formal context tables using FCA mathematical theory are 

introduced. Then the concept lattice corresponding to the deduced concept hierarchy is 

developed. The basic idea is to construct simple formal context tables that contain partial 

relational information, and then combine them into a large table that is complete with 

respect to the relational information on the objects and attributes occurring in the use 

cases. Therefore, the approach for developing the entire context table of a software 

application consists of the following two main steps: (1) Partially defining context tables, 

and (2) Constructing a unified formal context table. 

Identifying, defining and entering the concept definitions, especially in the case of 

large and complex application domains, are challenging tasks because it can be lengthy, 

costly, and controversial. User participation is particularly important in the early phases 

of software development which cannot be ignored. User has to be involved as much as 

possible to achieve a good and practicable analysis of the application field. Although the 
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beneficial techniques of text mining and some relevant tools are developed to reduce 

time and cost, some domain expert knowledge is required in this stage to capture the 

formal concepts and construct the context tables. Moreover, once the context tables are 

defined, they are joined and converted to a pruned concept lattice that is manually 

accomplished by the designer. The designer has to resolve possible conflicts and 

duplicates according to the rules provided in this work.  

In Section 4.1, the definition of partial context tables is discussed. First, different 

types of context tables and how they are related to one another are described. Next, 

some rules are provided for composing the context tables. In Section 4.2, the integration 

of the partially context tables and the construction of a unified formal context table are 

explained. Section 4.3 presents the concept lattice containing the derived formal concept 

hierarchy. Finally, the advantages of the presented methodology in this Chapter are 

discussed in Section 4.4. 

 

4.1 Partial Definition of Context Tables 

 

FCA considers a binary relation I (incidence) over a pair of sets O (objects) and A 

(attributes). The relation is given by the matrix of its incidence relation (oIa means that 

object o has the attribute a) which is called a formal context [82]. Formal context Table is 

the most flexible and basic data structure of FCA. For a given formal context, the formal 

concepts, their extensions and intensions are uniquely defined and fixed. The set of all 

formal concepts of a formal context, made up of the closed subsets ordered by set-

theoretical inclusion, forms a complete lattice, called the concept lattice. The user can 

derive a line diagram of the concept lattice from a given context, and conversely derive 

the context matching a line diagram.  
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The system to be developed may consist of several use cases, each containing 

some sets of various components. First, simple formal context tables that contain partial 

relational information are defined. Then the partially defined context tables are combined 

into a unified large table that is complete with respect to the relational information on 

objects and attributes occurring in the use cases. By this technique, the design phase is 

manipulated more precisely and efficiently. 

The software designer realizes the system specifications by using domain knowledge 

and intuitively captures the extent objects, the intent attributes, and their binary 

relationships to define the formal concepts. The extent objects are the occurrences of 

varying conditions and different combination of attributes. The intent attributes are the 

features, specifications and peripherals of objects.  

 

4.1.1 Different Types of Formal Context Tables 

 

In FCA there are two types of context tables. These are binary context table and 

many-valued context table: 

 Binary context table: Binary context table is a rectangular table with one row for 

each object and one column for each attribute, having a cross (x) in the 

intersection of row g with column m if and only if (g, m) I, where I is the 

incidence of the context [82]. As an example, we refer to Figure 2.2 and Figure 

2.3 of Chapter 2, presenting the sample binary context table and its concept 

lattice. 

 Many-valued context table: It is a context table in which the objects may have 

many-valued attributes. It consists of objects, attributes and the attribute values, 

where (g, m, w) I is read as “The object g has the value w for the attribute m‟‟. 
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To obtain formal concepts from a many-valued context, FCA offers the method of 

conceptual scaling [27] which transforms many-valued context tables to binary 

context tables. This means that a formal context called conceptual scale is 

defined for each of the many-valued attributes which has the values of the 

attribute as objects. If a many-valued context and a conceptual scale are given, 

we can derive the realized scale, i.e., a formal context which has the objects of 

the many-valued context as objects and the attributes of the scale as attributes. 

In the realized scale, an object has an attribute if the value assigned to the object 

in the many-valued context has the attribute in the conceptual scale [11]. Figures 

2.4, 2.5, and 2.6 of Chapter 2 illustrate a sample many-valued context table and 

the concept lattice that are derived from conceptual scaling.  

Lattice Miner [59, 13] is the FCA software tool employed in this thesis. It provides the 

definition of Binary Context Table (BCT), Valued Context Table (VCT), and Nested 

Context Table (NCT). The two latter tables may be automatically converted to binary 

context table. As an example, the Planets valued context table (Figure 4.1) is defined and 

converted to binary context table (Figure 4.2).  

 

 

Figure 4.1: Planets Valued Context Table (VCT) 
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BCT corresponds to the FCA binary context table and VCT corresponds to the many-

valued context table; while NCT is a combined table of two or more BCTs or VCTs. In 

NCT, the combined tables are concatenated with each other. When NCT is converted to 

BCT, the many-valued attributes are split into their diverse values. Lattice Miner tool 

differentiates the generated attributes by varying their names to make them unique. 

 

 

Figure 4.2: Planets Binary Context Table (BCT) 

 

 

Figure 4.3: Table1 Valued Context Table (VCT) 

 

For example, the sample valued context tables Table1 and Table2 are defined and 

depicted in Figure 4.3 and Figure 4.4. Then, they are converted to BCTs (Figure 4.5 and 
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Figure 4.6). Table3 is the nested context table of Table1 and Table2 shown in Figure 4.7. 

The NCT Table3 is converted to binary context table (Figure 4.8).  

 

 

Figure 4.4: Table2 Valued Context Table (VCT) 

 

 

Figure 4.5: Table1 Binary Context Table (BCT) 

 

 

Figure 4.6: Table2 Binary Context Table (BCT) 
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Figure 4.7: Table3 Nested Context Table (NCT) of Table1 and Table2 

 

 

Figure 4.8: Table3 Binary Context Table 

 

Since the context tables defined for large software systems will contain a large 

number of intent attributes, some of which may have many values, the maintenance of 

such messy context tables is time consuming and error-prone. Therefore, in this thesis, 

first we construct a many-valued context table for each partially defined table, and then 

convert them into their corresponding binary context tables. 

 

4.1.2 Definition of Attributes in Formal Context Tables 

 

Formal context table in FCA consists of the abstract elements such as objects and 

their attributes that finally leads to obtain formal concepts. However, the goal of this 

thesis is to extract the components and their related artifacts which are relevant to the 



  76  

 

component-based model for developing real-time reactive systems (TADL model). 

Therefore, a guideline specification is essential to help the designer in categorizing the 

concepts and to determine a convention for naming the attributes. Some primary 

specifications of TADL component model are described here to provide the necessary 

information. 

 

4.1.2.1 Primary Specifications of TADL Component Model. 

Some main elements of the TADL component model [49] are introduced as follows. 

 Component: A component provides and requests services through public 

interfaces. Also, it defines attributes that define local value-type properties. Each 

component consists of many elements, one of which is the contract as shown in 

Figure 4.9 (L). The contract defines the behavior of the component. 

 Contract: A contract defines the safety requirements that govern the interactions 

that occur at the interfaces of a component. Also, it defines time constraints that 

regulate the service requests and responses so that the reactions of a 

component respect any timeliness requirements. Predictability specification 

ensures that component reactions are precisely defined. Within the contract, a 

list of reactivity rules that define the request-response relationship between the 

services is given. The contents of the contract can be seen in Figure 4.9 (R).  

 Reactivity: Reactivity has two services, a request service and a response 

service. As part of the contract, there are also time constraints and data 

constraints, which are used for safety purposes. Contract also includes the 

reactions to the request event, and the update element to define the post 

condition of the reactivity. 
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 Service: Service is a functionality provided or required by a component through 

public interfaces. A service can be provided by only one interface. A service can 

have multiple data parameters. A data parameter is a variable passed on to a 

component within a request for a service or passed on with a provided service. 

The type of the request service defined in an interface is input and the type of the 

response service is output. The type of the service defined in an internal interface 

is internal. A service may be of type input in one component and may be of type 

output in another component. 

 

 

           Figure 4.9 (L): Elements of ComponentType          Figure 4.9 (R): Elements of ContractType 

 

 Safety contract: A safety property is considered as part of the contract on a 

component type. It controls the way services are provided or requested. Each 

contract has a one-to-one relationship with a component type. A contract can 

have one or more safety properties, where a safety property defines an invariant 

specification over the component behavior. Each contract contains at least one 
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reactivity property, each of which expressing a relationship between a request 

and a response. A contract may have data and time constraints. 

 Security mechanism: A security property deals with access control on the 

services and the data communicated with those services. The same security 

mechanism can be associated with several component types, and there is a one-

to-many relationship between a security mechanism and component types. Role-

Based Access Control (RBAC) is currently enforced as the only security 

mechanism, and has the following main elements: user, group, role and privilege. 

A user defines the identity on behalf of which the component will be executed. A 

group is a collection of users, and a user may belong to more than one group. A 

role defines the responsibilities that can be assigned to a user or a group in the 

system. A role aggregates a set of privileges, where each privilege defines a 

permission to perform a service or access to a data parameter. Security can be 

divided into two types: Service security and Data security. Service security 

considers the security of the services provided by the components, while Data 

security considers the security of the data transferred by the services. Service 

security ensures that: 

 every request received at a component interface is initialized by a user who 

has permission to request this service; if the user has no access permission, 

the request is ignored. 

 the user of a response sent from a component interface has permission to 

receive that response; if the user has no access permission, the response will 

not be sent. 

There are the similar definitions for Data security. Figure 4.10, which is taken from [49], 

shows the trustworthy component model. 
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Figure 4.10: Trustworthy component model 

 

 

4.1.2.2 Keywords to Specify Parameters. In a context table, rows 

denote objects and columns denote attributes. The incidence relation between an object 

and an attribute is shown by the corresponding crossing cell in the table. Some 
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keywords have been defined to address the specific parameters used in formal context 

table specification that are explained as follows: 

 Main Attribute: All partially defined context tables should have only one 

attribute, called main attribute, which is defined as the common attribute of all 

objects. The main attribute will be the intent of the supremum node in the derived 

concept lattice.  

  Property of Attribute: Every attribute in the context table may have one or 

more properties, defined as attributes. The properties of an attribute have the 

same incidence relation with the objects that the attribute has. In other words, 

whenever an object is in relation with an attribute, it is necessarily in relation with 

the attribute‟s properties. In the derived concept lattice, any attribute and its 

properties are gathered in the same node. 

 Time Constraint of Attribute: Every attribute or its properties may have only 

one time constraint each. Time constraints of attributes or their properties are 

defined as attributes in the context table. Time constraint attribute has the same 

incidence relation with the objects that the attribute or its property has. In other 

words, whenever an object is in relation with an attribute, it is necessarily in 

relation with the attribute‟s time constraint. In derived concept lattice, any 

attribute and its time constraint are gathered in the same node. 

 

4.1.2.3 Rules to Compose Partially Defined Context Tables. 

Now, we introduce our methodology for categorizing the concepts in the formal context 

tables as follows:  

 For each concept in the system, a partially defined context table is produced in 

FCA with the name of the concept. 
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 The name of the extent objects of the context table may be the name of the 

concept proceeded by a unique index. 

 A new attribute is defined in the context table as the main attribute, with the 

name of the concept. 

 For a pair of related functional requirements specified in the use-case analysis, 

an attribute is defined in the context table, called functional requirements 

attribute. The name of this attribute specifies the concept, the provided functional 

requirement and the requested functional requirement. Also, it is possible to 

define a functional requirement, so called internal, that is neither provided nor 

requested.    

 Each functional requirements attribute may have one or more data constraints 

that must be satisfied to enable the functional requirements. For each data 

constraint, one attribute is defined in the context table, called data constraint 

attribute. Data constraints of any functional requirements attribute have the same 

incidence relation with the objects that the functional requirements attribute has. 

It is possible that one data constraint belongs to more than one functional 

requirements attribute.  

 Each functional requirements attribute may have only one time constraint that 

defines the maximum allowed time between receiving a request and providing 

response. For the time constraint of the functional requirements attribute, the 

time constraint attribute is defined in the context table. Time constraint of any 

functional requirements attribute has the same incidence relation with the objects 

that the functional requirements attribute has. 

 Each functional requirements attribute may trigger one or more actions. The 

actions are one or more functional requirements to be performed when they are 
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triggered by the functional requirements attribute. So, the action attribute is 

defined that contains all of the actions corresponding to the functional 

requirements attribute.  

 Each functional requirements attribute may have one or more post conditions 

that lead to update the data parameters. So, for the updates related to the 

functional requirements attribute, the update attributes are defined in the context 

table.  

 Each functional requirement may have one or more role privileges that are 

permitted to perform that functional requirement. So, for some provided or 

requested functional requirements, the role privilege attributes are defined in the 

context table. The name of the role privilege specifies the role name and the 

functional requirement name. Also, the role privilege attribute can specify the role 

name that is not permitted to perform the given functional requirement. Role 

privilege attribute of a given functional requirement has the same incidence 

relation with the objects that the corresponding functional requirements attributes 

have. 

 If for any extent object there is no value for the many-valued attributes, a slash (/) 

is indicated in the corresponding crossing cell of the context table.  

The different attribute types that might be defined in the context table and their 

corresponding name conventions are stated in Table 4.1. The + sign is used as a 

notation for string concatenation in the name convention. The „=‟ character is used as a 

separator inside the attribute name for implementation purposes. As an example, when 

defining a property of attribute that the attribute name is CashDesk and its property name 

is CashDeskId, the generated name according to this convention is PropertyCashDesk = 

CashDeskId (Table 4.1, row 1). 
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Table 4.1: Name Conventions for Attribute Types 

 Attribute Type Name Convention 

1 Property of Attribute ‘Property’ + attribute name + ‘=’ + property name 

2 Time Constraint of Attribute ‘TC’ + attribute name + ‘=’ + ‘T’ + time constraint value 

3 Time Constraint of Property ‘TC’ + ‘Property’ + property name + ‘=’ + ‘T’ + time constraint value 

4 Functional Requirements Attribute* 
‘FR’ + concept name + ‘-‘ + provided functional requirement name + ‘_’ + 

‘FR + requested functional requirement name 

5 Data Constraint Attribute ‘DC’ + data constraint name 

6 
Time Constraint of Functional 

Requirements Attribute 

‘TC’ + ‘FR + concept name + ‘-‘ + provided functional requirement name + 

‘_’ + ‘FR + requested functional requirement name + ‘=’ + ‘T’ + time 

constraint value 

7 Action Attribute** ‘Action’  

8 Update Attribute ‘Update’ + ‘DC’ + data constraint name 

9 Role Privilege ‘RolePrivilege’ + ‘-‘ +  role name + ‘_’ + functional requirement name 

10 Negative Role Privilege*** ‘RolePrivilegeNot’ + ‘-‘ +  role name + ‘_’ + functional requirement name 

 

 *
 In the name convention of Functional Requirements Attribute, if the provided or requested functional 

requirement is of type internal, the relevant keyword ‘FR is replaced by ‘IFR’.
 

 ** 
In the crossing cells corresponding to an Action Attribute, the action names separated by comas are 

registered. 
 *** Negative Role Privilege specifies the role name that is not permitted to perform the functional 
requirement. 
 TC: Time Constraint; DC: Data constraint; T: Time 

 

Example 1 

Suppose a system contains a concept named Concept1 for which a valued context 

table is defined as depicted in Figure 4.11. Then, it is converted to Concept1 binary 

context table (Figure 4.12). According to the rules to compose partially defined context 

tables presented in Section 4.1.2.3, some attributes are defined in Concept1 context table 

as follows:  

First, the main attribute Concept1 is defined. Assume that Concept1 provides the 

functional requirements Req1 and Req3, and requests the functional requirements Req2, 

and has the internal functional requirement Req4. Moreover, we consider that whenever 

Concep1 provides Req1, it requests Req2, and whenever Concept1 provides Req3, it 

requests Req4. So, the functional requirements attributes FRConcept1-Req1_FRReq2 and 

FRConcept1-Req3_IFRReq4 are defined in the Concept1 context table (see the name 
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conventions for attribute types Table 4.1, row 4). The data constraint attribute DCMode 

(Table 4.1, row 5) must be satisfied to enable the functional requirements attributes. 

DCMode has two values DataC1 and DataC2. The time constraint attribute TCFRConcept1-

Req3_IFRReq4=T5.0S (Table 4.1, row 6) defines the maximum allowed time to provide the 

functional requirement Req3. The Action attribute (Table 4.1, row7) is defined for the 

functional requirements attribute FRConcept1-Req3_IFRReq4 that triggers the functional 

requirement Req5. The update attribute UpdateDCMode (Table 4.1, row8) is defined for 

the functional requirements attribute FRConcept1-Req3_IFRReq4, and updates the value 

of data constraint attribute DCMode from DataC2 to DataC3.   

 

 

Figure 4.11: Concept1 Valued Context Table (VCT) 

 

 

Figure 4.12: Concept1 Binary Context Table (BCT) 
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4.2 Construction of Unified Formal Context Table 

 

The concepts and the functional requirement properties defined in many-valued 

context tables are converted to binary context tables. Then, they must be manually 

combined and pruned in order to construct a unified formal context table. Some 

redundant attributes should be removed, some properties of attributes should be 

converted to attributes or some attributes should be unified and merged together. To 

achieve this goal, a number of rules have been defined to guide the designer to do this 

process accurately and precisely. 

To obtain complete and assured results, it is recommended that the integration 

process is done gradually and in several steps accompanied by pruning operations. 

Developing an integration process that complies with this method would be much more 

reliable and efficient than defining a large combined context table which may contain 

deficiencies and/or redundancies. In the beginning, each many-valued context table is 

transformed into a binary context table, in other words all VCTs are converted to BCTs, 

and then the integration of the BCTs is manipulated one after another. The resulting 

context table obtained from combining two or more partially defined tables is merged 

subsequently by the other BCTs or merged context tables. This process continues 

progressively until the entire and unified formal context table is constructed. 

 

4.2.1 Rules to Integrate Partially Defined Context Tables 

 

The unified formal context table is derived now by combining the partially defined 

context tables. It is better to look for some priorities to identify the group of BCTs to be 

combined.  It is recommended to start from the context tables containing the concepts 
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which are related and have common functional requirements. This facilitates the 

integration process by determining the common attributes to be merged. To integrate the 

partially defined context tables, the following steps should be fulfilled: 

 A nested context table (NCT) is defined to combine the selected BCTs by 

assigning their table names for different levels of combination.  

 The defined NCT is converted to the corresponding BCT. 

 A main attribute with an arbitrary name is added to the combined BCT. 

 

Table 4.2: Conditions and Integration Rules to merge partial context tables 

 Attribute1 Conditions Attribute2 Conditions Rules  

1 (type = attribute) (is duplicate of Attribute1) Rule 1 

2 
(type = attribute) &   

(has properties or time constraint) 

(is duplicate of Attribute1) &  

(does not have the same properties or time constraint 

as Attribute1) 

Rule 1, Rule 2 

3  
(type = attribute) &  

(has properties or time constraint) 

(is duplicate of Attribute1) &  

(has at least one property or time constraint of 

Attribute1) 

Rule 1, Rule 2, 

Rule 3 

4 (type = attribute) 

(is duplicate of Attribute1) &  

(has at least one more property or time constraint than 

Attribute1) 

Rule 1, Rule 4 

5 (Attribute1 is to be eliminated)  Rule 5 

6 (type = property of Attribute3) 

(type = property of Attribute4) &  

(has the same name as Attribute1)  & (Attribute3 != 

Attribute4) 

Rule 6 

 

 

 The duplicate attributes are recognized to be merged or eliminated from the 

combined context table. Otherwise it will lead to redundancy and/or ambiguity. 

Table 4.2 specifies different conditions and their relevant integration rules to be 

applied in order to merge and prune the partially defined context tables. The 

integration rules and the corresponding actions are introduced in Table 4.3. The 

integration rules can be generalized for more than two duplicate attributes in the 

combined context tables. 
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Table 4.3: Integration Rules and Actions to merge partial context tables 

 Rules Actions  

1 Rule 1 
One of the duplicate attributes is eliminated. The extent objects in the relation with the removed 

attribute are denoted in the crossing cells of the remaining attribute. 

2 Rule 2 
The extent objects in the relation with the removed attribute are denoted in the crossing cells of the 

properties and the time constraint of the remaining attribute.  

3 Rule 3 
The properties and the time constraint of the removed attribute which are the same as the remaining 

attribute are also eliminated. 

4 Rule 4 

The properties and the time constraint of the removed attribute are maintained as the properties and 

time constraint of the remaining attribute. The extent objects in relation with the remaining attribute 

are denoted in the crossing cells of the maintained properties and time constraint. 

5 Rule 5 

The specified attribute to be eliminated along with its probable properties and time constraint are 

removed from the original many-valued context table. If any extent objects remain with no bond to 

any intent attribute, they are eliminated too. 

6 Rule 6* 

(1) The duplicate properties of different attributes cannot be merged and maintained as properties. 

One of the duplicate properties is eliminated based on the designer’s decision. Or, (2) they are 

merged and one of them is maintained as a new attribute. The extent objects in relation with the 

removed property are denoted in the crossing cells of the new attribute. Or, (3) they are maintained 

as two different properties with different names. The names of the duplicate properties are modified 

in the original many-valued context tables. If the duplicate properties have time constraints, the 

names of their time constraints are also modified accordingly.  
   

 *
 Rule 6 has three extensions and based on the designer‟s decision, one of them is conformed. 

  

Example 2 

Suppose the mentioned system in Example 1 has another concept named Concept2. 

The valued and binary context tables of Concept2 are shown in Figure 4.13 and Figure 

4.14. According to the rules to compose the partially defined context tables presented in 

Section 4.1.2.3, some attributes are defined in Concept2 context table as follows:  

First, the main attribute Concept2 is defined. Assume that Concept2 provides the 

functional requirements Req2 and Req5, and requests the functional requirements Req3 

and Req6. Also, it is considered that whenever Concep2 provides Req2, it requests Req3, 

and whenever Concept2 provides Req5, it requests Req6. So, the functional requirements 

attributes FRConcept2-Req2_FRReq3 and FRConcept2-Req5_FRReq6 are defined in the 

Concept2 context table (see the name convention in Table 4.1, row 4). The data 

constraint attribute DCMode (see the name convention in Table 4.1, row 5) must be 

satisfied to enable the functional requirements attributes. DCMode has two values 
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DataC1 and DataC3. The update attribute UpdateDCMode (see the name convention in 

Table 4.1, row8) is defined for the functional requirements attributes, and updates the 

value of data constraint attribute DCMode.    

 

 

Figure 4.13: Concept2 Valued Context Table (VCT) 

 

 

Figure 4.14: Concept2 Binary Context Table (BCT) 

 

According to the rules for integrating partially defined context tables presented in 

Section 4.2.1, two partially defined context tables Concept1 and Concept2 are merged and 

pruned as follows:  

First, the nested context table MergedConcepts is defined to combine the partially 

defined context tables Concept1 and Concept2 (Figure 4.15). Then, the defined NCT is 

converted to the corresponding BCT which is shown in Figure 4.16.The main attribute 

MergedConcepts is added to the combined BCT. The duplicate attribute DCMode_DataC1 

in the merged context table (Figure 4.16) has to be merged according to Rule 1 of the 
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conditions and integration Rules in Table 4.2. Then, according to the integration rules 

and actions in Table 4.3, one of the duplicate attributes is eliminated. The extent objects 

in relation with the removed attribute are denoted in the crossing cells of the remaining 

attribute. Also, for the main attribute MergedConcepts a property attribute named 

PropertyMergedConcepts=MergedConceptsId is defined (Table 4.1, row 1). On the other 

hand, the role privilege attributes RolePrivilege-Role1_Req1 and RolePrivilegeNot-

Role1_Req3 (Table 4.1, row 9 and row 10) are defined in the merged context table to 

specify that Role1 is permitted to perform the functional requirement Req1 and is not 

permitted to perform the functional requirement Req3. The resulting context table is 

depicted in Figure 4.17.  

 

 

Figure 4.15: MergedConcepts Nested Context Table (NCT) 

 

 

Figure 4.16: MergedConcepts Binary Context Table (BCT) 
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Figure 4.17: Merged and pruned MergedConcepts context table 

 

 

4.3 Concept Lattice Derivation 

 

So far, a unified formal context table is constructed that contains the required formal 

concepts, captured from system specifications. In this step, the concept lattice 

corresponding to the derived formal concept hierarchy is obtained. This process may be 

systematically done by FCA software tools. They have the facility to draw the concept 

lattice diagram from the given formal context table.  

Concept lattices are mathematical structures supported by a rich and well 

established formalism, namely, Formal Concept Analysis [28]. Wille [84] proposed to 

consider each element in the lattice as a concept and the corresponding graph (Hasse 

diagram) as the generalization/specialization relationship between concepts. From this 

perspective, the lattice represents a concept hierarchy. Each concept is a pair composed 

of an extension representing a subset of instances and an intension representing the 

common features for this set of instances [30]. The concepts of lattice are partially 

ordered in a “subconcept-superconcept” hierarchy. The main attribute of the unified 

formal context table is presented as the intent of the supremum node in the derived 

concept lattice. As an example, we refer to the concept lattice of merged and pruned 

MergedConcepts context table which is depicted in Figure 4.18.  
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Figure 4.18: MergedConcepts Concept Lattice 

 

Besides, FCA software tools, like Lattice Miner, provides the facility to extract the 

acquired concept lattice as an XML file with a special structural format that is editable by 

any XML editor. On the other hand, the implication rules are derived from the resulting 

concept lattice and are captured in another XML file. The XML file of concept lattice is 

merged with the XML file of the implication rules. The merged XML-format file can be 

saved to be transformed into the OWL-format ontology file. We discuss this at the next 

step of our methodology presented in Chapter 5. 

 

4.4 Advantages of the presented method 

 

When the partially defined formal context table is constructed and before starting the 

integration process, the OWL ontology corresponding to the given BCT can be obtained 
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by the model transformation process presented in this thesis (Chapter 5). Besides, in the 

intermediate steps of the integration process and before obtaining the final formal 

context table, the temporarily composed context table can be transformed into the 

corresponding OWL ontology. This is one of the privileges of the introduced 

methodology to construct formal context tables. Adhering to this technique provides the 

opportunity to verify the partially composed ontology at any stage of integration process. 

This affords the facility to find possible errors and inconsistencies before producing the 

final context table.   

Another advantage of this approach is that it is possible to go back to the previous 

steps at any stage of the process and make modifications to retrieve the desired outputs. 

If the designer decides to modify the context tables, it is better to make changes in the 

original context tables (VCTs) and not in the merged tables. Otherwise, the traceability 

aspect, which is the ability to link and verify design artifacts belonging to every step in a 

process chain, will be violated. As an example, eliminating an attribute in the combined 

context table, while it is conserved in the original tables, will lead to inconsistency and 

difficulties in the future maintenance of the tables.  
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Chapter 5 

 

Transformation from Context Tables to 

Concepts Formation 

 

 

The methodology for defining formal context tables has been presented in Chapter 4. 

In this Chapter, we analyze the resulting concept lattice obtained from formal context 

tables in FCA to realize the concepts and the concept hierarchy. Capturing this 

knowledge is necessary to find a model of shared understanding of the domain, 

determine the ontological classes, and build the one to one corresponding elements in 

ontology. One of the contributions of this thesis is to introduce a general solution to 

achieve this goal. A set of rules has been developed for transforming context tables to 

ontology. The proposed rules are implemented automatically by a model transformation 

approach that is presented in Chapter 6.  

This Chapter is structured as follows. In Section 5.1, the class hierarchy in concept 

lattice is discussed and the various relations between nodes are explained. The same 

analysis is done on ontological class hierarchy in Section 5.2, and the various relations 

and the property restrictions in ontologies are discussed. Then, the transformation rules 
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from lattice hierarchy into the ontological class hierarchy are provided in Section 5.3. 

Finally, in Section 5.4, the advantages of the proposed methodology are described. 

 

5.1 Class Hierarchy in Concept Lattice 

 

Formal Concept Analysis (FCA) provides a natural theoretical framework for class 

hierarchy design and maintenance. The hierarchies produced within this framework have 

a well-defined semantics that remains independent from the concrete algorithms used. 

In addition, the produced hierarchies tend to conform to general quality criteria such as 

simplicity, reusability, comprehensibility, extensibility and maintainability [31]. 

The concept lattice that is computed from the formal context table is depicted as a 

line diagram consisting of the nodes representing the formal concepts. Each node 

contains the objects and the attributes belonging to the formal concept corresponding to 

that node. The nodes are ordered in a „subconcept-superconcept’ hierarchy [26]. The 

formal concept of node A is subconcept of node B, if the extent of node A is the subset 

of the extent of node B. Equivalently stated, the formal concept of node A is subconcept 

of node B if the intent of node B is the subset of the intent of node A. Thus, while 

traversing the concept lattice from bottom to up, the number of objects in the extent of 

the upper nodes increases while the number of the attributes in the intent decreases.  

The two important operations in concept lattice are meet (infimum) and join 

(supremum) [26]. The infimum operation is applied on two or more concepts and the 

result is another concept in the same concept lattice. Its extension is obtained by 

intersecting the extensions of the given concepts, and its intension is obtained by taking 

the union of the intensions of the given concepts. The supremum operation is applied on 

two or more concepts and the result is another concept in the same concept lattice. Its 
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extension is obtained by taking the union of the extensions of the given concepts, and its 

intension is obtained by intersecting the intensions of the given concepts. As an 

example, we can refer to the Planets concept lattice depicted in Figure 5.1, which is 

derived from the Planets binary context table presented in Chapter 4, Figure 4.2. It is 

considered that, the extension of the supremum concept is the union of the extensions of 

its subconcepts. Similarly, the intension of the infimum concept is the union of the 

intensions of its superconcepts. 

 

 

Figure 5.1: Planets Complete Labeling Concept Lattice 

 

If every node in the concept lattice diagram is marked by the corresponding extents 

and intents, this would lead to a great cluttering of the picture. In order to overcome this 

problem the reduced labeling technique [88, 54] is used. In this method, each object and 

each attribute is entered only once in the diagram. A concept is labeled with attribute a, if 

it is the largest concept having a in its intent. This means that all the concepts below the 
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concept labeled with the attribute a contains a in their intent set of attributes. Similarly, a 

concept is labeled with an object o if it is the smallest concept having o in its extent. The 

reduced labeling does not lead to a loss of information, because the intent and extent of 

any concept can be read off from the diagram. Thus, the extent of any node in the line 

diagram contains the collection of all objects belonging to the nodes below and its intent 

contains the collection of all attributes belonging to the nodes above.  As an example, 

the reduced labeling concept lattice of the Planets context table is shown in Figure 5.2. 

We notice that the concept labeled with attribute Size_Small is the largest concept having 

the given attribute in its intent. Also, the concept labeled with the object Pluto is the 

smallest concept having the given object in its extent. 

 

 

Figure 5.2: Planets Reduced Labeling Concept Lattice 

 

Implication [26, 23] is another relation among the attributes of a context that can be 

used in conceptual knowledge and conceptual learning. An attribute implication of a 
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context is a pair of subsets of attributes, say X, Y, where each object having all attributes 

of X has also all attributes of Y, and this is depicted as X → Y. The set X is called the 

premise, and Y is its conclusion. Informally, implications between attributes can be found 

along upward paths in the lattice. Actually, we are not interested in all valid implications 

of the context, but only in a certain minimal basis of implications from which all other 

valid implications can be deducted [69]. 

 

5.2 Class Hierarchy in Ontology 

 

Like Formal Concept Analysis, domain ontology has the goal of modeling concepts; 

however it has its own specifications and purposes. Ontology deals with modeling 

shared understanding of the domain and capturing conceptual knowledge accepted by 

domain experts. Moreover, objects are not necessary in defining ontology and only the 

intensional aspect is considered by ontologies [23]. The concepts in ontology have the 

hierarchical order and the properties of objects are chosen as the criteria to classify the 

objects. Ontology may be visualized as an abstract graph with nodes representing the 

objects and labeled arcs representing the relations [62].  

Ontology Web Language (OWL) [67, 32] facilitates describing the concepts in a 

domain and also the relationships holding between concepts. It provides a set of 

operators like intersection, union and negation for concept classification and analysis. 

Since it is based on logical models, OWL can benefit from the use of the reasoner which 

checks the consistency of all concepts and definitions in the ontology and also 

recognizes which concepts fit under which definitions so that it can maintain the class 

hierarchy correctly.  
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OWL ontology consists of individuals, classes, and properties. Individuals represent 

the objects of the domain and are the instances of the classes. OWL classes are 

interpreted as sets that contain individuals. Classes are built up of descriptions that 

specify the conditions that must be satisfied by an individual to be a member of the 

class. Classes are a concrete representation of the concepts. Classes may be organized 

into a subclass-superclass hierarchy, which is also known as taxonomy. Subclasses 

specialize („are subsumed by‟) their superclasses. The empty ontology contains one 

class called Thing. The class Thing is the class that represents the set containing all 

individuals. So, all classes are subclasses of Thing [39]. 

 

hasRolePrivilege

Role1Request1

hasAge

“25” :integerMary

dc:role

“Cashier”User1

An annotation property, linking the class 

„User1‟ to the string “Cashier”.  

A datatype property linking the individual 

Mary to the string “25”, which has a type 

of integer.  

An object property linking the individual 

Request1 to the individual Role1.  

 

Figure 5.3: Various types of OWL properties 

 

OWL properties represent relationships. The two main types of properties in OWL 

are object properties and datatype properties. Object properties are binary relations 

between two individuals. Datatype properties describe relationships between individuals 

and data values. OWL also has a third type of property, called annotation property. 
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Annotation property can be used to add information (metadata) to classes, individuals 

and object/datatype properties. Note that it is also possible to create subproperties of 

object/datatype properties. However, it is not possible to mix and match the object 

properties and the datatype properties with regards to subproperties. For example, it is 

not possible to create an object property that is the subproperty of a datatype property 

and vice-versa. The various types of OWL properties are depicted in Figure 5.3. 

Object properties may have various characteristics as follows [39]: 

 Functional Property: For the given individual, there can be at most one related 

individual via the property. 

 Inverse Property: Property can have an inverse. For example, the inverse of 

property  hasOwner is the property IsOwnedBy. 

 Inverse Functional Property: For the given property, there can be at most one 

related individual via the inverse property. That means the inverse property is 

also functional. 

 Transitive Property: If property P is transitive, and P relates individual a to 

individual b, and also individual b to individual c, then it can be inferred that 

individual a is related to individual c via property P. If a property is transitive, then 

its inverse property should also be transitive. The transitive property cannot be 

functional. 

 Symmetric Property: If property P is symmetric, and P relates individual a to 

individual b, then it can be inferred that individual b is related to individual a via 

property P. 

 Antisymmetric Property: If property P is antisymmetric, and P relates individual 

a to individual b, then individual b cannot be related to individual a via property P. 

 Reflexive Property: If property P is reflexive, it relates individual a to itself. 
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 Irreflexive Property: If property P is reflexive, it relates individual a to individual 

b where individual a and individual b are not the same. 

Most of the mentioned characteristics of the object properties cannot be applied for the 

datatype properties. For example, datatype properties are not allowed to be transitive, 

symmetric or have inverse properties. 

Properties may have a domain and a range specified. Properties link individuals from 

the domain to individuals from the range. In OWL, domains and ranges are not 

constraints to be checked. However, they are considered as axioms in reasoning.  

In OWL, we can define restrictions. The restriction property describes an anonymous 

class of an individual, based on the relationships that members of the class participate 

in. OWL restrictions fall into three main categories [39]: 

 Quantifier Restriction: Quantifier restriction can be further categorized into 

existential restriction and universal restriction. Existential restriction, also known 

as „someValuesFrom‟ restriction, describes the class of individuals that 

participate in at least one relationship between a specified property and 

individuals that are members of a specified class. Existential restriction may be 

denoted by the existential quantifier . Universal restriction, also known as 

„allValuesFrom‟ restriction, describes the class of individuals that for a given 

property only have relationships between this property and individuals that are 

members of a specified class. Universal restriction may be denoted by the 

universal quantifier . 

 Cardinality Restriction: Cardinality restriction describes the class of individuals 

that have at least, at most or exactly a specified number of relationships with 

other individuals. For a given property P, a Minimum Cardinality Restriction 

specifies the minimum number of P relationships that an individual must 
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participate in. A Maximum Cardinality Restriction specifies the maximum number 

of P relationships that an individual can participate in. A Cardinality Restriction 

specifies the exact number of P relationships that an individual must participate 

in.  

 hasValue Restriction: The restriction „hasValue‟ describes the class of 

individuals that have at least one relationship between a specified property and a 

specific individual. The restriction „hasValue‟ is denoted by the symbol Э. 

We consider the sample MergedConcepts concept lattice presented in Chapter 4. The 

OWL ontology obtained after the model transformation process contains the above 

described property restrictions. As an example of the existential qualifier restriction, we 

can refer to the ontological class MergedConcepts that participates in at least one 

relationship between the property hasMergedConceptsProperty and individuals that are 

members of the class MergedConceptsId. The relevant OWL source code is illustrated as 

follows:  

 <owl:Class rdf:ID="MergedConcepts"> 

      <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 

         >MergedConcepts 

      </rdfs:label> 

      <rdfs:subClassOf rdf:resource="#MClass-MergedConcepts-PropertyMergedConceptsId"/> 

      <rdfs:subClassOf> 

         <owl:Restriction> 

            <owl:someValuesFrom rdf:resource="#MergedConceptsId"/> 

            <owl:onProperty> 

               <rdf:Property rdf:ID="hasMergedConceptsProperty"/> 

            </owl:onProperty> 

         </owl:Restriction> 

      </rdfs:subClassOf>                   

</owl:Class> 

 

As an example of the universal qualifier restriction, we can refer to the ontological 

class Concept1 that for the property hasProvidedFR has only relationships with the 

individuals that are members of either the class Req1 or the class Req3. The relevant 

OWL source code is illustrated as follows:  
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<owl:Class rdf:ID="Concept1"> 

      <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 

            >Concept1 

      </rdfs:label> 

      <rdfs:subClassOf rdf:resource="#MClass-MergedConcepts-PropertyMergedConceptsId"/> 

      <rdfs:subClassOf> 

            <owl:Restriction> 

                  <owl:onProperty> 

                        <rdf:Property rdf:ID="hasProvidedFR"/> 

                  </owl:onProperty> 

                  <owl:allValuesFrom> 

                        <owl:Class> 

                              <owl:unionOf rdf:parseType="Collection"> 

               <owl:Class rdf:about="#Req1"/> 

                                    <owl:Class rdf:about="#Req3"/>            

                              </owl:unionOf> 

                        </owl:Class> 

                  </owl:allValuesFrom> 

            </owl:Restriction> 

      </rdfs:subClassOf>                         

</owl:Class> 

 
As the example of the restriction „hasValue‟, we can refer to the ontological class 

FRConcept1-Req1_FRReq2 that has at least one relationship between the property 

hasMode and the specific individual DataC1. The relevant OWL source code is illustrated 

as follows:  

<owl:Class rdf:ID="FRConcept1-Req1_FRReq2"> 

      <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 

            >FRConcept1-Req1_FRReq2 

      </rdfs:label> 

      <rdfs:subClassOf rdf:resource="#Concept1"/> 

      <rdfs:subClassOf> 

            <owl:Restriction> 

                  <owl:hasValue rdf:resource="#DataC1"/> 

                  <owl:onProperty> 

                        <rdf:Property rdf:ID="hasMode"/>                                   

                  </owl:onProperty> 

            </owl:Restriction> 

      </rdfs:subClassOf>                                 

</owl:Class> 

 

Finally, we can conclude that the object relationships in OWL ontology are either the 

subclass-superclass relation that is defined by „subClassOf‟ keyword, or the arbitrary 

object properties that are defined to link the objects.   

 



  103  

 

5.3 Transformation Rules to Build Ontology from FCA 

 

This section introduces the transformation rules for the automatic generation of OWL 

ontology based on the analysis of the concept hierarchy derived from FCA. Concept 

lattice as a mathematical framework is the input model of this transformation process, so 

that its elements and their perceived relations are mapped into their relevant ontological 

elements in a one to one relationship. Basically, the formal concepts in FCA are going to 

be transformed into the concepts in ontology. Also, the relations between the formal 

concepts in FCA are going to be transformed into the relations among the concepts in 

ontology. Note that, the proposed transformation rules are defined based on the concept 

hierarchy that is retrieved from reduced labeling technique on the concept lattice. The 

principal schema of one to one corresponding relations among the elements of FCA and 

OWL ontology are shown in Figure 5.4.  

 

 

Figure 5.4: From FCA to OWL Ontology 
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The provided transformation rules are classified into six principal rules. These are, 

Ontology Overview Definition Rule, Class Definition Rules, Class Hierarchy Rules, 

Individual Definition Rules, Object Property Definition Rules, and Implication Rules. By 

adhering to the consecutive proposed rules, the ontological class hierarchy is composed 

to build the final OWL ontology. 

  

5.3.1 Ontology Overview Definition Rule 

 

Ontology overview consists of the base URI location, default namespace, and 

ontology language specified as the header of the ontology file. They are identified in the 

form of prefixes to abbreviate the URIs of the namespaces used in ontology.           

According to the ontology overview definition rule, the name of the ontology and the 

ontology overview parameters are defined based on the name of the derived concept 

lattice in FCA. A sample ontology overview is presented as follows:  

Base URI (Location): xml:base="http://example.org/CoCoME"> 

Default Namespace:   xmlns="http://example.org/CoCoME#"  

Owl: xmlns:owl="http://www.w3.org/2002/07/owl#" 

rdf: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"             

Rdfs:xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 

Xsd: xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 

       

5.3.2 Class Definition Rules 

 

Generally, formal concepts in FCA are transformed into the classes in ontology. 

However, more details are explained to clarify the particular significances and declare 

various class types as follows:   
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 Root Class: Supremum node in the lattice diagram is the top element of the 

concept hierarchy. The ontological class corresponding to the supremum node is 

called root class which is the parent of all other classes in the hierarchy. The 

name of the root class is the name of the attribute of the supremum node in the 

lattice. The root class is considered as the subclass of the class Thing in 

ontology. 

 Anonymous Node: The nodes in the lattice diagram without any intent or extent 

are called anonymous. In the transformation process, no class is defined in 

ontology corresponding to anonymous nodes.  

 Class/Multi-attribute Class: For each node with intent, a class is defined in 

ontology with the name of its attribute. If the intent of node contains more than 

one attribute, the name of the defined class is composed of the attribute names 

of the intent. Such a class is called Multi-attribute class, or briefly MClass.   

 Object Class: For each node without intent that has extent, a class is defined in 

ontology with the name of its objects. Such a class is called object class, or 

briefly ObjClass.  

 Object Classes Class: ObjectClasses is defined as a subclass of the root class. 

All object classes in the ontology are categorized as the subclasses of this class.  

 FRequirements Class: FRequirements is defined as a subclass of the root class. 

All functional requirements captured from the functional requirements attributes 

in concept lattice are categorized as the subclasses of this class.  

 Trustworthy Classes: Since the implementation of the trustworthiness is one of 

the contributions of this thesis, trustworthy classes are defined in OWL ontology 

in order to conform to the safety contracts and the security mechanisms specified 

in TADL component models.  
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o Time Constraint Class: To accomplish the safety requirement, the class 

TimeConstraint is defined as a subclass of the root class. Then, an equivalent 

class is defined for the class TimeConstraint that contains all time constraint 

values specified in the time constraint attributes of the concept lattice.  

o Data Constraints Class: To accomplish the safety requirements, the class 

DataConstraints is defined as the subclass of the root class. For each data 

constraint attribute of the concept lattice, a class is defined as the subclass of 

the class DataConstraints. Then, an equivalent class is defined for each data 

constraint class that contains all possible values it can hold. 

o Roles Class: To accomplish the security purposes, the class Roles is defined 

as the subclass of the root class. Then, for each role specified in the concept 

lattice, a role class is defined as the subclass of the class Roles. 

 

5.3.3 Class Hierarchy Definition Rules 

 

Concept hierarchy in FCA is transformed into the class hierarchy in ontology. Since 

for each non-anonymous node in concept lattice a corresponding class is defined in the 

ontology, the immediate superconcept of each node in the concept hierarchy is 

considered as the superclass of the ontological class corresponding to that node. So the 

relation „subClassOf‟ is defined in ontology between the node class and its superclass. 

The particular cases are explained accordingly: 

 Supremum node of the concept lattice is the top element of the concept 

hierarchy, and does not have any superconcept. Therefore, the root class which 

is corresponding to the supremum node is defined as the subclass of the class 

Thing in ontology. 
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 If the immediate superconcept of a given node is anonymous, the root class is 

defined as the superclass of the ontological class corresponding to the given 

node. The reason is that, for the anonymous nodes there is no corresponding 

class in the ontology, so it cannot be considered as the superclass.  

 Each object class is defined as the subclass of the class ObjectClasses. 

 The functional requirements captured from the functional requirements attributes 

in concept lattice may have three different types: provided, requested, and 

internal. Accordingly, three classes called ProvidedFRs, RequestedFRs, and 

InternalFRs are defined as the subclasses of the class FRequirements. So the 

functional requirements in the ontology are categorized to be the subclass of one 

the above subclasses, according to their class type.  

 If a given node is not corresponding to an object class and has more than one 

superconcept in the hierarchy, then the corresponding class will have more than 

one superclass in the ontology. First, the root class is defined as one of the 

superclasses. Second, the intersection of the classes corresponding to the 

superconcepts of the given node is defined as another superclass. Subsequently, 

if any of the superconcepts of the given node is anonymous, the superconcepts 

of the anonymous node are captured from the hierarchy and added to the set of 

superclasses.  

 If a given node has some property attribute in its intent, the corresponding class 

is a MClass that is already defined in the ontology. For the main attribute of that 

node, a main-attribute class with the name of the main attribute is defined as the 

subclass of that MClass. Afterwards, for each property attribute in the intent of the 

given node, a new property class with the name of the property attribute is 

defined as the subclass of the MClass.  



  108  

 

5.3.4 Individual Definition Rules 

 

Basically, the objects of formal concepts are transformed into the individuals in 

ontology. The particular details are described accordingly: 

 If the objects belong to the extent of a given node, which has both intent and 

extent, the objects are defined as the individuals or instances of the ontological 

class corresponding to that node. 

 If the objects belong to the extent of a given node that is corresponding to an 

object class, the objects are defined as the individuals or instances of that object 

class. 

 

5.3.5 Object Property Definition Rules 

 

Generally, various types of relations among the formal concepts are transformed into 

the relevant object properties in ontology. More details are specified as follows: 

 has Constraint: One of the object properties defined in the ontology is the 

property hasConstraint. The property hasConstraint is defined to manipulate the 

trustworthy requirements in ontology. The object classes do not have constraints 

because they do not have any attribute to be restricted by any constraint. The 

subproperties of the property hasConstraint are explained as follows:  

o has Time Constraint: The property hasTimeConstraint is defined as the 

subproperty of the property hasConstraint, with the range class TimeConstraint. 

It relates an attribute class, a property class, or a functional requirement with 

its time constraint and specifies the relevant time value.  
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o has Data Constraint: The property hasDataConstraint is defined as the 

subproperty of the property hasConstraint, with the range class 

DataConstraints. For each data constraint class which is defined as the 

subclass of the class DataConstraints, a corresponding data constraint 

property is defined as the subproperty of the property hasDataConstraint. The 

range is the data constraint class. The data constraint properties relate the 

functional requirements with their data constraints and specify their relevant 

data values.   

o has Security Constraint: The property hasSecurityConstraint  is defined as 

the subproperty of the property hasConstraint. The property 

hasSecurityConstraint specifies the triple security requirement (role, functional 

requirement, privilege) and defines whether or not a user has the privilege of 

accessing the functional requirement. It consists of the following 

subproperties: 

 has Role Privilege: The property hasRolePrivilege is defined as the 

subproperty of the property hasSecurityConstraint, with the domain class 

FRequirements and the range class Roles. This property relates a given 

functional requirement with the role that has the privilege of access to that 

functional requirement. 

 hasnot Role Privilege: The property hasnotRolePrivilege is defined as the 

subproperty of the property hasSecurityConstraint, with the domain class 

FRequirements and the range class Roles. This property relates a given 

functional requirement with the role that does not have the privilege of 

access to that functional requirement. 
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 has FR Privilege: The property hasFRPrivilege is defined as the 

subproperty of the property hasSecurityConstraint, with the domain class 

Roles and the range class FRequirements. This property relates a role with 

the functional requirements and the role has the privilege of access to 

those functional requirements. 

 hasnot FR Privilege: The property hasnotFRPrivilege is defined as the 

subproperty of the property hasSecurityConstraint, with the domain class 

Roles and the range class FRequirements. This property relates a role with 

given functional requirements that the role does not have any privilege of 

access to those functional requirements. 

Other than the property hasConstraint which is applied to specify the trustworthy 

attributes, there are some other general properties which are defined to relate the 

individuals as follows: 

 has Functional Requirement: The property hasFRequirement is defined to relate 

any concept with the functional requirements that the concept provides or 

requests. This property consists of three subproperties as follows: 

o has Provided FR: The property hasProvidedFR is defined as the subproperty 

of the property hasFRequirement, with the range class ProvidedFRs. This 

property relates a concept with its provided functional requirements.  

o has Requested FR: The property hasRequestedFR is defined as the 

subproperty of the property hasFRequirement, with the range class 

RequestedFRs. This property relates a concept with its requested functional 

requirements.  

o has Internal FR: The property hasInternalFR is defined as the subproperty of 

the property hasFRequirement, with the range class InternalFRs. This property 

relates a concept with its internal functional requirements.  
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 has Property: The property hasProperty is defined to relate a main attribute class 

with its property attributes. For each multi-attribute class defined in the ontology, 

a new property is defined as the subproperty of the property hasProperty that 

contains the name of the main attribute of the MClass. The range is the MClass 

and the domain is the main attribute class. Each hasProperty is the inverse 

property of its corresponding isPropertyOf. 

 is Property Of: The property isPropertyOf is defined to relate the property 

attributes with their main attribute class. For each hasProperty defined in ontology, 

an isPropertyOf is defined in ontology that contains the name of the main attribute 

of the MClass. The property isPropertyOf is the inverse property of its 

corresponding hasProperty. The domain is the MClass and the range is the main 

attribute class.  

 

 

Figure 5.5: Sample hierarchy of object properties in OWL ontology 

 

 has Object Class Property: The property hasObjClassProperty is defined to 

relate all object classes with their superclasses in the hierarchy. All object 
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classes defined in ontology are related to their superclasses by the same 

property, with the domain ObjClasses. The superclasses of a given object class 

are determined by traversing through the lattice hierarchy to find all 

superconcepts of the concept corresponding to the given object class. This 

process continues by extracting the superconcepts of the superconcepts until the 

supremum node of the lattice is reached. If any extracted superconcept is 

anonymous or is corresponding to another object class, it is ignored. If any 

obtained superconcept is MClass, its main attribute class is considered as the 

superclass of the given object class.   

Figure 5.5 illustrates the hierarchy of the object properties in the obtained OWL 

ontology.  

 

5.3.6 Implication Rules 

 

In FCA, the implication rules help us to better realize the relations among the 

concepts. The implication rules can be derived from the propositional logic to provide the 

pairs of subsets of attributes, so that if an object has all attributes of a premise, then it 

has also all attributes of the conclusion. Besides, FCA software tools can derive the 

implication rules from the concept lattice of a context. The XML-format file of the concept 

lattice is merged with the XML-format file of the implication rules and the unified XML file 

is transformed into the OWL ontology.  

Among the implication rules derived from the concept lattice, there is the relationship 

between the functional requirements attribute of a concept as the premise and its data 

constraints as the conclusion. Therefore, the functional requirements attributes of a 

concept and their related data constraints and their values are extracted from the 
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implication rules. As an example, we consider the concept CashBox and its functional 

requirements attribute IFRCashBox-CheckIfExpress__FRCheckLastHour as the premise of 

an implication rule and the data constraint DCMode_Done as the conclusion.  After the 

transformation process and according to the object property definition rules, the 

ontological class corresponding to the mentioned functional requirements attribute will 

have the property hasMode with the value Done in the ontology.  

The same implication rules exist for the actions and the data parameter updates. 

Since the actions and updates are not transformed into the ontological elements, they 

are not involved in the transformation rules to build the ontology, but will be considered 

in the TADL component model.  

<rule> 

    <premise> 

        {IFRCashBox-CheckIfExpress_FRCheckLastHour_} 

    </premise> 

    <consequence> 

        {CashBox_, CashDesk, CoCoME, DCMode_Done, PropertyCashDesk=CashDeskId, 

        PropertyCashDesk=CashDeskPC, PropertyCashDesk=InStore, PropertyCashDesk=Sale, 

        UpdateDCMode_Waiting} 

    </consequence> 

    <support>0.04</support> 

    <confidence>1.0</confidence> 

</rule> 

 

5.4 Name Convention of Ontology Elements 

 

The different elements that are formed in ontology by the automatic transformation 

process and their corresponding name conventions are stated in Table 5.1. The + sign is 

used as a notation for string concatenation in the name convention. The sign * is used 

as a notation for repeating the same structure in the name convention. As an example, 
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when defining a role class that the role name is Cashier, the name convention is Role-

Cashier (see Table 5.1, row 2). 

 

Table 5.1: Name Conventions for Ontology Elements 

 Ontology Element Name Convention 

1 Multi-attribute Class 
‘MClass’ + ‘-‘ + main attribute name + (‘-’ + ‘Property’ + property 

attribute name)* 

2 Role Class ‘Role’ + ‘-‘ + role name 

3 Object Class ‘ObjClass’ + ‘-’ + object class name 

4 has property Property ‘has’ + main attribute of the MClass + ‘Property’ 

5 is property of Property ‘is’ + main attribute of the MClass + ‘PropertyOf’ 

6 has data constraint Property ‘has’ + data constraint name 

 

 

Example 

As an example, we can refer to the sample context table MergedConcepts presented 

in Chapter 4, Figure 4.18 and its corresponding concept lattice presented in Chapter 4, 

Figure 4.19. According to the class definition rules provided in this Chapter, the 

ontological classes Concept1 and Concept2 are derived from the concepts Concept1 and 

Concept2 belonging to the concept lattice MergedConcepts. Also, the functional 

requirements attribute FRConcept1-Req3_IFRReq4 has the data constraint hasMode with 

the value DataC2 and a time constraint with the value 5.0 seconds. According to the 

individual definition rules, the object Object2 is the only individual of the class 

FRConcept1-Req3_IFRReq4. The ontological class FRConcept1-Req3_IFRReq4 and its 

object are illustrated in Figure 5.6.  
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Figure 5.6: Class FRConcept1-Req3_IFRReq4 and its object 

 

 

Figure 5.7: Properties hasFRPrivilege and hasnotFRPrivilege 
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According to the object property definition rules, two „has Security Constraints‟ are 

depicted in Figure 5.7 and Figure 5.8. As an example for „has FR Privilege‟ (Figure 5.7), 

the class Role1 is defined with the property hasFRPrivilege to have access to the 

functional requirement Req1. The property hasnotFRPrivilege indicates that Role1 has no 

access permission to the functional requirement Req3. As an example for „has Role 

Privilege‟ (Figure 5.8), the class Req1 is defined with the property hasRolePrivilege to be 

accessed by Role1. The property hasnotRolePrivilege indicates that the functional 

requirement Req3 cannot be accessed by Role1. 

 

 

Figure 5.8: Properties hasRolePrivilege and hasnotRolePrivilege 
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5.5 Advantage of Proposed Technique 

 

The proposed technique to build the OWL ontology from the FCA concept lattice has 

some advantages. First, the generated concept hierarchy is consistent. Next, the 

implication rules detect concept relationships accurately. Besides, trustworthy criteria are 

specified at domain level, which is the principle need for developing dependable 

software systems. Moreover, the defined rules and conventions improve the quality of 

software design. Furthermore, the proposed technique to build the OWL ontology from 

the concept lattice has the flexibility to be accomplished at any stage of the formal 

context construction. It means, the transformation rules are applied either to construct 

the partially formed OWL ontologies from the partially defined context tables, or to 

compose the final ontology corresponding to the entire unified context table. This facility 

provides a specific opportunity for the designer to examine the partially formed 

ontologies for inconsistencies, redundancies, or contradictions before the design stage 

terminates. This can be achieved by using the reasoning engine of the OWL ontology. 

The steps to be followed are (1) syntax checking, (2) consistency checking to ensure 

that the ontology does not contain contradictions, (3) subsumption checking, which is to 

ensure that a class description is more general than another class description, and (4) 

query answering, which involves retrieving knowledge from the knowledge base [67, 32]. 

Therefore, the designer can go back to the previous step, if necessary, of defining formal 

context tables and modify the deficiencies until all checking are successfully completed. 

Thus, our approach not only is applying FCA as the mathematical framework to take 

advantage of the formalism, but also is getting benefit from the reasoning engine of OWL 

ontology to ensure the dependability of the developed product. 

 



  118  

 

 

 

Chapter 6 

 

Implementation of Transformation from 

Concepts to Ontology 

 

 

The transformation rules introduced in Chapter 5 are implemented in this Chapter. 

An automated model transformation technique for generating the OWL ontology from the 

concept lattice is proposed. The input meta-model is an XML format file that is obtained 

by merging the concept lattice and its derived implication rules created by the FCA 

software tool. The output model in OWL format consists of the definitions of ontology 

overview, classes, individuals, and object properties as well as the class hierarchy which 

includes the subclass-superclass relationships. 

In Section 6.1, the structure of the input meta-model is described and the XML 

format of the input file that conforms to the concept lattice specifications is presented. 

Then, in Section 6.2, the structural elements in ontology are explained to represent the 

OWL output model. Section 6.3 discusses the model transformation consisting of the 

four transformation procedures, which are implemented by using XSLT [74, 47] model 

transformation framework and XPath [74] language. The transformation procedures are 

defined independently to accomplish the transformation process in several steps. In 
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each transformation step, the input model is processed to produce the output model, 

which in turn will be the input model of the next transformation step. Finally, the 

transformation rules from concept lattice to OWL ontology are fulfilled by executing all 

transformation steps sequentially, and the target OWL ontology is derived as the output 

model of the last transformation step.    

 

6.1 Input Model 

 

The input model of the transformation process, serialized in XML format, contains the 

concept lattice and its derived implication rules, which are captured from the unified 

formal context table in FCA. Lattice Miner [59, 13] is the FCA software tool which is 

employed in this thesis to generate the concept lattice and its implication rules. The 

generated input XML file consists of two main parts that are concatenated to compose 

the input model: (1) the structural elements of the concept lattice, (2) the implication 

rules derived from the concept lattice. It has to be mentioned that, obtained concept 

lattice is not a reduced labeling lattice, but a complete lattice. To clarify the input model, 

its structural elements are declared as follows:  

 

6.1.1 Concept Lattice Structural Elements 

 

 The root element <LAT> with two attributes Desc and type represents the 

specified concept lattice. The attribute Desc contains the name of the defined 

formal context and its corresponding concept lattice. The attribute type contains 

the lattice type, i.e., “Concept Lattice”. The root element <LAT> contains the 

other child elements <OBJS>, <ATTS>, <NODS>, and <rules_base>. The child 
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element <rules_base> is the root element of the implication rules that is 

discussed in Subsection 6.1.2.  

 The element <OBJS> consisting of <OBJ> child elements represents the defined 

objects of the lattice. Each <OBJ> element has the attribute id. The contents of 

the tag <OBJ> are the names of the objects in the extent of the nodes of the 

concept lattice. 

 The element <ATTS> consisting of the child element <ATT> represents the 

defined attributes of the lattice. Each <ATT> element has the attribute id. The 

contents of the tag <ATT> are the names of the attributes in the intent of the 

nodes of the concept lattice. 

 The element <NODS> consisting of the child elements <NOD> represents the 

concept lattice nodes. Each <NOD> element consists of the attribute id, and the 

child elements <EXT>, <INT> and <SUP_NOD>. 

 The child element <EXT> of <NOD> consists of <OBJ> child elements 

representing the objects in the extent of the lattice node denoted by the element 

<NOD>. Each <OBJ> child element has an attribute id. 

 The child element <INT> of <NOD> consists of <ATT> child elements 

representing the attributes in the intent of the lattice node denoted by <NOD>. 

Each <ATT> child element has an attribute id. 

 The child element <SUP_NOD> of <NOD> consists of <PARENT> child elements 

representing the immediate superconcepts of the lattice node denoted by 

<NOD>. Each <PARENT> child element has an attribute id. 

Figure 6.1 illustrates the XML specifications of concept lattice structural elements. 

The tag <LAT> is the root element. 
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<LAT Desc=" lattice-name" type="ConceptLattice"> 

      <MINSUPP>0.0</MINSUPP> 

      <OBJS> 

            <OBJ id="object-id">object-name</OBJ> 

      </OBJS> 

      <ATTS> 

            <ATT id="attribute-id">attribute-name</ATT> 

      </ATTS> 

      <NODS> 

            <NOD id="node-id"> 

                  <EXT> 

                        <OBJ id="object-id" /> 

                  </EXT> 

                  <INT> 

                        <ATT id="attribute-id" /> 

                  </INT> 

                  <SUP_NOD > 

                        <PARENT id="parent-id" /> 

                  </SUP_NOD> 

            </NOD> 

      </NODS> 

      <rules_base/> 

</LAT> 

Figure 6.1: Lattice specifications in XML format 

 

 

Figure 6.2: The Concept Lattice MergedConcepts XML file 
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As an example, we can refer to the concept lattice MergedConcepts presented in 

Chapter 4, Figure 4.19. The structural elements of the XML file derived from the concept 

lattice MergedConcepts are illustrated in Figure 6.2, which is captured by Lattice Miner.  

 

6.1.2 Implication Rules of Concept Lattice 

 

 The root element <rules_base> represents the implication rules of the concept 

lattice, that contains the child elements <specs> and <rules>. 

 The element <specs> defines the specifications of the rules and consists of the 

child elements <context_name>, <minimal_support>, and <minimal_confidence>. 

 The child element <context_name> specifies the name of the defined formal 

context and its corresponding concept lattice. 

 The child element <minimal_support> specifies the minimum threshold on 

support, to use a constraint on selecting the significant and interesting rules from 

the set of all possible rules. The support supp(X) of a set of attributes X is 

defined as the proportion of objects in the extent of the node in the concept 

lattice which contain the set of attributes. At the time of capturing the implication 

rules from the concept lattice, the software tool asks for specifying the minimal 

support. Therefore, the proportion support of the selected implication rules is not 

less than the minimal support (≥δ). 

 The child element <minimal_confidence> specifies the minimum threshold on 

confidence, to be used as a constraint for selecting the significant and interesting 

rules from the set of all possible rules. The confidence of a rule is defined as conf 

(X→ Y) = supp(X  Y)/supp(X). It means that for the specified confidence 

percentage, the rule (X → Y) is correct for the objects having the set of attributes 
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belonging to X. At the time of capturing the implication rules from the concept 

lattice, the software tool asks for specifying the minimal confidence. Therefore, 

the proportion confidence of the selected implication rules is not less than the 

minimal confidence (≥γ).   

 The element <rules> consists of the child elements <rules_number> and <rules>. 

The element <rules_number> contains the number of the selected implication 

rules according to the minimal support and minimal confidence constraints. The 

element <rules> consists of <rule> child elements. Each <rule> element 

represents an implication rule of the concept lattice and consists of the child 

elements <premise>, <consequence>, <support>, and <confidence>. 

 The child element <premise> contains a set of attributes X that are at the left-

hand-side of the implication rule X → Y. It means each object having all attributes 

of X has also all attributes of Y. 

 The child element <consequence> contains a set of attributes Y that are at the 

right-hand-side of the implication rule X → Y. It means each object having all 

attributes of X has also all attributes of Y. 

 The child element <support> holds the proportion support of the current <rule> 

element that is not less than the minimal support. 

 The child element <confidence> holds the proportion confidence of the current 

<rule> element that is not less than the minimal confidence.  

Figure 6.3 depicts the XML specifications of the implication rules of concept lattice. 

The tag <rules-base> is the root element. 
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< rules_base> 

      <specs> 

            <context_name>context-name</context_name> 

            <minimal_support>minimal_support</minimal_support> 

            <minimal_confidence>minimal_confidence</minimal_confidence> 

      </specs> 

      <rules> 

            <rules_number>rules_number</rules_number> 

            <rule> 

                  <premise>{premise-name}</premise> 

                  <consequence>{consequence-name}</consequence> 

                  <support>support-number</support> 

                  <confidence>confidence-number</confidence> 

            </rule> 

      </rules> 

</ rules_base > 

Figure 6.3: Rules specifications in XML format 

 

The implication rules depicted in Figure 6.4 are derived from the sample concept 

lattice MergedConcepts presented in Chapter 4, Figure 4.19. The implication rules are 

captured by Lattice Miner.  

 

 

Figure 6.4: Implication rules of MergedConcepts Concept Lattice  
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6.2 Output Model 

 

The output model of the transformation process is an OWL format file of Ontology. 

TopBraid Composer [80] is the ontology software tool which is employed in this thesis to 

open the output OWL file and demonstrate its correctness using the reasoning engine. 

The OWL format output model consists of the definitions of ontology overview, classes, 

individuals, properties, object restrictions, equivalent classes, as well as the class 

hierarchy which indicates the subclass-superclass relationships. To clarify the output 

model, its structural elements are declared as follows:  

 Ontology overview consists of the base URI location, default namespace, and 

ontology language specified as the header of the ontology file. They are identified 

in the form of prefixes to abbreviate the URIs of the namespaces used in 

ontology. Also, an annotation element adds the information about the ontology 

which is provided by the tag <versionInfo>. The name of the ontology and the 

ontology overview parameters are defined based on the name of the concept 

lattice in FCA. Figure 6.5 illustrates the OWL specifications of the ontology 

overview. 

 

<rdf:RDF 

      xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"             

      xmlns="http://example.org/lattice-name#"  

      xmlns:owl="http://www.w3.org/2002/07/owl#" 

      xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 

      xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 

      xml:base="http://example.org/lattice-name"> 

      <owl:Ontology rdf:about=""> 

            <owl:versionInfo rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

                  version-information 

            </owl:versionInfo> 

      </owl:Ontology> 

</ rdf:RDF > 

Figure 6.5: Ontology overview specifications in OWL format 
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 Ontological classes and the class hierarchy are defined based on the formal 

concepts and the concept hierarchy in FCA. Various class types are defined in 

ontology that all of them follow the same structural elements. The class 

specifications consist of the class name, its label name and its superclass name. 

Figure 6.6 illustrates the OWL specifications of the ontological classes. 

 Individuals in ontology are defined based on the objects of the extents in the 

concept lattice. The individual specifications consist of the individual name and 

its label name. Figure 6.7 shows the OWL specifications of the individuals. 

 

<owl:Class rdf:ID="class-name"> 

      <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 

            >label-name 

      </rdfs:label> 

      <rdfs:subClassOf>                     

            <owl:Class rdf:about="#superclass-name"/>                     

      </rdfs:subClassOf> 

</owl:Class> 

Figure 6.6: Ontological class specifications in OWL format 

 

< class-name rdf:ID=”individual-name”> 

      <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 

            >individual-name 

      </rdfs:label> 

</class-name> 

Figure 6.7: Individual specifications in OWL format 

 

 Object properties in ontology are defined based on the various relationships that 

hold among the formal concepts. Various object property types are defined in 

ontology that all of them follow the same structural elements. The object property 

specifications consist of the property name, its inverse property name if 

applicable, its domain and range class names, and its super-property name. 

Figure 6.8 illustrates the OWL specifications of the object properties. 
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   <rdf:Property rdf:about="#property-name"> 

      <owl:inverseOf> 

            <rdf:Property rdf:about="#inverse-property-name"/> 

      </owl:inverseOf> 

      <rdfs:domain rdf:resource="#class-name"/> 

      <rdfs:range rdf:resource="# class-name "/> 

      <rdfs:subPropertyOf> 

            <rdf:Property rdf:about="#super-property-name"/> 

      </rdfs:subPropertyOf> 

</rdf:Property> 

Figure 6.8: Object property specifications in OWL format 

 

 Property restrictions are defined for the classes that hold the object property 

relations. In addition to the class specifications, the property restriction consists 

of another subclass element that contains the restriction child element that is 

imposed on a property. It can be a quantifier restriction, cardinality restriction, or 

hasValue restriction. Figure 6.9 and Figure 6.10 illustrate the OWL specifications 

of the two sample property restrictions. 

 

<owl:Class rdf:ID="class-name"> 

      <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 

            >label-name 

      </rdfs:label> 

      <rdfs:subClassOf>                     

            <owl:Class rdf:about="#superclass-name"/>                     

      </rdfs:subClassOf> 

      <rdfs:subClassOf> 

            <owl:Restriction> 

                  <owl:onProperty> 

                        <rdf:Property rdf:ID="property-name"/> 

                  </owl:onProperty> 

                  <owl:allValuesFrom> 

                        <owl:Class> 

                              <owl:intersectionOf rdf:parseType="Collection"> 

                                    <owl:Class rdf:about="#class-name"/> 

                              </owl:intersectionOf> 

                        </owl:Class> 

                  </owl:allValuesFrom> 

            </owl:Restriction> 

      </rdfs:subClassOf> 

</owl:Class> 

Figure 6.9: AllValuesFrom Property restriction specifications in OWL format 
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<owl:Class rdf:ID="class-name"> 

      <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 

            >label-name 

      </rdfs:label> 

      <rdfs:subClassOf>                     

            <owl:Class rdf:about="#superclass-name"/>                     

      </rdfs:subClassOf> 

      <rdfs:subClassOf> 

            <owl:Restriction>                   

                  <owl:onProperty> 

                        <rdf:Property rdf:ID="property-name"/> 

                  </owl:onProperty> 

                  <owl:hasValue rdf:resource=”#property-value”/>                         

            </owl:Restriction> 

      </rdfs:subClassOf> 

</owl:Class> 

Figure 6.10: HasValue Property restriction specifications in OWL format 

 

<owl:Class rdf:ID="class-name"> 

      <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 

            >label-name 

      </rdfs:label> 

      <rdfs:subClassOf>                     

            <owl:Class rdf:about="#superclass-name"/>                     

      </rdfs:subClassOf> 

      <owl:equivalentClass> 

            <owl:Class> 

                  <owl:oneOf rdf:parseType="Collection"> 

                        <class-name rdf:ID="individual-value"/> 

                  </owl:oneOf> 

            </owl:Class> 

      </owl:equivalentClass>                          

</owl:Class> 

Figure 6.11: Equivalent class specifications in OWL format 

 

 Equivalent classes are other class axioms that are used to define another 

relation type between the classes in ontology. So, a class can be defined as the 

equivalent class of another class or some more restrictions can be imposed to 

simulate the specialization between the classes. Moreover, a class can be 

defined equivalent to the set of individuals that are described in the enumeration. 

In this case, these individuals have been asserted to be all different from each 

other and the class can only be one of them and nothing else. Figure 6.11 

illustrates the OWL specifications of the equivalent class to the set of individuals. 
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As part of the class specifications, the equivalent class consists of another 

<owl:Class> element that contains the „oneOf‟ restriction that is imposed on the 

set of individuals. 

 

 

6.3 Model Transformation 

 

In this Section, our proposed transformation techniques is introduced to transform 

the concept lattice as the input model into the OWL ontology as the output model. This 

model transformation consists of four transformation procedures: (1) Lattice Reducer, (2) 

Class Definer, (3) Pre-phase Definition, and (4) Ontology Builder. Each transformation 

procedure is defined independently. They are executed successively to accomplish the 

transformation approach through several steps. 

The transformation procedures are implemented by using XSLT model transformation 

framework and XPath language. As discussed before, the procedures use a hybrid of 

Push and Pull methods to do the process. Templates are used to match the nodes that 

get pushed to the output XML files and the specified nodes are selected to change the 

structure of files. Each transformation procedure is separately defined by a XSL 

Stylesheet. 

In the beginning, the transformation procedures specified by XSL Stylesheets are 

implemented by XSLT 2.0 using the trial version of Oxygen XML Editor 11.2. Later on, 

the XSLT transformation is performed by java programming using the XSLT jar files. The 

second platform has two advantages. First, the resulting XSLT transformation programs 

are independent of different versions of tools. Second, the defined transformation 

procedures are executed as an application package, all at once, which is much more 

efficient.  
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In each transformation step, the input model is processed to produce the output 

model, which in turn will be the input model of the next transformation step. By executing 

the transformation procedures successively, the transformation process is completed 

and the OWL ontology is obtained. However, the entire transformation process is 

automatically done in the background. Figure 6.12 depicts the model transformation from 

concepts to ontology.   

 

 

Figure 6.12: Model Transformation from Concepts to Ontology 

 

 

6.3.1 Lattice Reducer Procedure 

 

Lattice Reducer is the first transformation procedure that transforms the concept 

lattice to the reduced labeling lattice. Also, it prunes the input XML file by removing the 

extra and inappropriate attributes that are generated through the conversion process 

from VCT to BCT in lattice Miner software tool. The input model described in Section 6.1 
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is the input XML file of the Lattice Reducer procedure that is transformed into another 

intermediate XML file. Lattice Reducer procedure consists of the following steps which 

are executed successively:  

 Step 1: The attributes type and Desc of the element <LAT>, the element 

<OBJS>/<OBJ>, the element <NOD>/<SUP_NOD>/<PARENT>, and the 

element <LAT>/<rules>, as well as its child elements and attributes are 

unchanged by the transformation.  

 Step 2: The elements <ATTS>/<ATT>, which are the attributes of the concept 

lattice are unchanged by the transformation, except for the elements ending with 

slash character. For such <ATTS>/<ATT> elements, the attribute comment with 

the value “Ignored” is added. These attributes correspond to the objects that no 

value is specified for them and are automatically generated by Lattice Miner 

through the conversion process from VCT to BCT.  

 Step 3: To transform the concept lattice to the reduced labeling lattice, if any of 

their extent objects is found in the succeeding <NOD> elements, it must be 

removed. So, for such <NOD>/<EXT>/<OBJ> element, a comment attribute with 

the value “Ignored” is added.  

 Step 4: To transform the concept lattice to the reduced labeling lattice, if any of 

their intent attributes is found in the preceding <NOD> elements, it must be 

removed. So, for such <NOD>/<INT>/<ATT> element, a comment attribute with 

the value “Ignored” is added. 

 Step 5: For the elements <NOD>/<INT>/<ATT> that are time constraint, data 

constraint, update, action, or role privilege, a comment attribute with the value 

“Ignored” is added. 
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 Step 6: The element <NOD>/<INT>/<ATT> which ends with slash character is 

tagged as “Ignored” to be eliminated from the output model.  

As an example, the Lattice Reducer procedure is applied to the sample concept 

lattice MergedConcepts, which is introduced in Chapter 4. The XML-format of the concept 

lattice MergedConcepts is illustrated in Figure 6.2 and is considered as the input of the 

Lattice Reducer procedure. The yielded output XML file is depicted in Figure 6.13. 

 

 

Figure 6.13: Output XML file of Lattice Reducer procedure 

 

 

6.3.2 Class Definer Procedure  

 

Class Definer is the second transformation procedure that determines the ontological 

classes corresponding to the formal concepts in the concept lattice. The subclass-
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superclass relations in addition to the property relations are figured out.  Also, the safety 

properties and the security constraints are identified. Finally, the functional requirements 

as a part of the functional requirements attributes are specified with their data 

constraints, updates, and reactions. The output XML file acquired from Lattice Reducer 

procedure is the input of the Class Definer procedure. The input is transformed into 

another intermediate XML file. Class Definer procedure consists of the following steps, 

which are executed successively:   

 Step 1: The attributes type and Desc of the element <LAT>, the element 

<OBJS>/<OBJ>, the element <NOD>/<SUP_NOD>/<PARENT>, and the 

element <LAT>/<rules>, as well as its child elements and attributes are 

unchanged by the transformation.  

 Step 2: The elements <ATTS>/<ATT>, which are the attributes of the concept 

lattice, are unchanged by the transformation, except for the intent attributes 

having the comment attribute with the value “Ignored”.   

 Step 3: The child elements <EXT>/<OBJ> and <INT>/<ATT> of the element 

<NODS>/<NOD> are unchanged by the transformation, except for the extent 

objects and intent attributes having the comment attribute with the value “Ignored”. 

 Step 4: The new element <NODNAMES>/<NOD>, having the attributes id, name, 

parent, and mainName, is added to the output XML file. Each <NOD> element 

corresponds to a node in the concept lattice with the same id, which contains the 

detected ontological class name and its superclass. The element <NOD> without 

any attribute name and parent, called anonymous node, is not the candidate for 

any ontological classes. The detected ontological classes are from various class 

types such as root class, attribute/multi-attribute class, and object class 

(described in Chapter 5). The attribute mainName is assigned to the name of the 
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main attribute of the multi-attribute class. For the object class, all superconcepts 

are extracted from the lattice hierarchy and added as the element 

<NODNAMES>/<NOD>/<SUP>. The technique for determining the 

superconcepts of an object class is described in Chapter 5. 

 Step 5: To specify the time constraint properties, the new element 

<TIMECONSTRAINTS>/<TC>, having the attributes id, name, and value, is added 

to the output XML file. Each <TC> element corresponds to the time constraint of 

either an attribute class or a property attribute class. The attribute id is assigned 

to the id attribute of the corresponding time constraint property of the element 

<ATTS>/<ATT>. The attribute name is assigned to the attribute class name that 

time constraint is defined for. The attribute value is assigned to the time value. 

Only one time constraint may be defined for any attribute class or property 

attribute class. 

 Step 6: To specify the data constraint properties, the new element 

<DATACONSTRAINTS>/<DC>, having the attributes id and name, is added to 

the output XML file. Each <DC> element corresponds to a data constraint 

property of an attribute class. The attribute id is assigned to the id attribute of the 

corresponding data constraint property of the element <ATTS>/<ATT>. The 

attribute name contains both the data constraint name and value. 

 Step 7: To specify the updates of data constraint properties, the new element 

<UPDATEDATACONSTRAINTS>/<UDC>, having the attributes id and name, is 

added to the output XML file. Each <UDC> element corresponds to an updated 

data constraint. The attribute id is assigned to the id attribute of the 

corresponding update of the element <ATTS>/<ATT>. The attribute name 

contains both the updated data constraint name and value. 
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 Step 8: To specify the actions, the new element <ACTIONS>/<ACT>, having the 

attributes id, name, and component, is added to the output XML file. Each <ACT> 

element corresponds to a functional requirements attribute that may contain a set 

of actions. The attribute id is assigned to the id attribute of the corresponding 

action of the element <ATTS>/<ATT>. The attribute name contains the action 

name. The attribute concept is assigned to the concept name that the action 

belongs to. The concept name is derived from the implication rules. 

 Step 9: To specify the property hasProperty, the new element 

<HASPROPERTIES>/<HP>, having the attributes id, domain, and name, is added 

to the output XML file. The element <HP> corresponds to the property 

hasProperty, which generates the relation between a main attribute class and its 

property attribute classes. The attribute id is assigned to the id attribute of the 

corresponding property attribute of the element <ATTS>/<ATT>. The attribute 

domain is assigned to the main attribute class name. The attribute name is 

assigned to the property attribute class name. 

 Step 10: To specify the role privileges, the new element 

<ROLEPRIVILEGES>/<RP>, having the attributes id and name, is added to the 

output XML file. Each <RP> element corresponds to a role privilege attribute. 

The attribute id is assigned to the id attribute of the corresponding role privilege 

of the element <ATTS>/<ATT>. The attribute name contains both the role name 

and the functional requirement name that the role has the privilege of accessing. 

Also, the attribute name may contain the role name that does not have any 

privilege of accessing to the given functional requirement. 

 Step 11: The new element <FREQUIREMENTS>/<FR>, having the attributes 

name, from, and to, is added to the output XML file. The element <FR> 
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corresponds to a functional requirements attribute containing the provided and 

requested functional requirements. The attribute name is assigned to the 

functional requirement attribute name. The attribute from is assigned to the 

concept name having the provided functional requirement. The attribute to is 

assigned to the concept name having the requested functional requirement. For 

the internal functional requirements, the attributes from and to will indicate the 

internal functional requirements.  

 Step 12: The element <FR>/<DCS> specifies the data constraint of the 

functional requirements attribute. The element <DCS>/<DC>, having the attribute 

name, corresponds to a data constraint of the functional requirements attribute. 

The attribute name is assigned to the data constraint name.  

 Step 13: The element <FR>/<UPDATES> specifies the updated data constraint. 

The element <UPDATES>/<UP>, having the attribute name, corresponds to an 

updated data constraint. The attribute name is assigned to the name of the 

updated data constraint and its new value.  

 Step 14: The element <FR>/<FRACTIONS> specifies the actions of the 

functional requirements attribute. The element <FRACTIONS>/<AC>, having the 

attribute name, corresponds to a functional requirements attribute that may 

contain a set of actions. The attribute name contains the functional requirement 

attribute name. 

As an example, the Class Definer procedure is applied to the sample concept lattice 

MergedConcepts. The XML file illustrated in Figure 6.13 is considered as the input of the 

Class Definer procedure. The yielded output XML file is depicted in Figure 6.14.  
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Figure 6.14: Output XML file of Class Definer procedure 

 

 

6.3.3 Pre-phase Definition Procedure 

 

Pre-phase Definition is the third transformation procedure that determines the parent 

nodes, concept relation types and functional requirement types, which are the necessary 

data for the next phase where the OWL ontology will be composed. The output XML file 

acquired from Class Definer procedure is the input model of the Pre-phase Definition 

procedure that is transformed into another intermediate XML file. Pre-phase Definition 

procedure consists of the following steps. 

 Step 1: The attributes type and Desc of <LAT>, its child elements <OBJS>, 

<ATTS>, <NODS>, and <NODNAMES>, besides all their child elements and 

attributes are unchanged by the transformation. Also, the child elements 

<TIMECONSTRAINTS>, <DATACONSTRAINTS>, <HASPROPERTIES>, 
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<ROLEPRIVILEGES>, <FREQUIREMENTS>, <UPDATEDATACONSTRAINTS> 

, <ACTIONS>, and <rules> of <LAT>, as well as their child elements and 

attributes are unchanged by the transformation.  

 Step 2: To specify the subclass-superclass hierarchy among the concepts, the 

new element <PARENTNODES>/<PN>, having the attributes id and name, are 

added to the output XML file. Each <PN> element corresponds to a class 

representing a concept. The first <PN> element contains the root class 

representing the main concept. The attribute id is assigned to the id attribute of 

the corresponding class node of the element <NODNAMES>/<NOD>. The 

attribute name is assigned to the class name.  

 Step 3: The element <PN>/<CHILDREN>/<CH>, having the attribute name, 

corresponds to only the subclasses of the element <PN> which represent the 

concepts. The attribute name contains the subclass name.  

 Step 4: To specify the relations among the functional requirements of the 

concepts, the new element <ConceptRelationTypes>/<CONCEPT>, having the 

attribute name, is added to the output XML file. Each <CONCEPT> element 

corresponds to a class representing a concept, which has relation with other 

concepts. The attribute name is assigned to the name attribute of the 

corresponding class node of the element <NODNAMES>/<NOD>. For the multi-

attribute classes, the attribute mainName is specified.  

 Step 5: The element <CONCEPT>/<ConceptRelations>/<CR>, having the 

attribute name, corresponds only to the classes, which represent the concepts 

and have relation with the element <CONCEPT>.  

 Step 6: To specify various functional requirement types of the concepts, the new 

element <FRTYPES>/<CONC>, having the attribute name, is added to the output 
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XML file. Each <CONC> element corresponds to a class representing a concept, 

which has relation with other concepts. The attribute name is assigned to the 

name attribute of the corresponding class node of the element 

<NODNAMES>/<NOD>. For the multi-attribute classes, the attribute mainName is 

specified.  

 Step 7: The element <FRTYPES>/<CONC> consists of the child elements 

<InternalFRs>, <ProvidedFRs>, and <RequestedFRs>, which contain the child 

elements <INTFR>, <PFR>, and <RFR> respectively. The attribute name of these 

elements contains the functional requirement names of their relevant functional 

requirement types. 

 

 

Figure 6.15: Output XML file of Pre-phase Definition procedure 
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As an example, the Pre-phase Definition procedure is applied to the sample concept 

lattice MergedConcepts. The XML file illustrated in Figure 6.14 is considered as the input 

of the Pre-phase Definition procedure. The yielded output XML file is depicted in Figure 

6.15. 

 

6.3.4 Ontology Builder Procedure 

 

Ontology Builder is the fourth and last transformation procedure that builds the target 

OWL ontology. The output XML file acquired from Pre-phase Definition procedure is the 

input model of the Ontology Builder procedure.  Actually, the transformation rules 

described in Chapter 5 are implemented in this procedure and the data transformed by 

previous procedures are used to do this job properly. One of the benefits of developing 

several procedures to do the transformation process is to exempt the designer from 

defining all details in the context tables of FCA. That means, only the required data are 

manually specified by user and the rest of the job, which are expanding and extracting 

the necessary information from the data, are accomplished automatically by the model 

transformation process. The OWL format output model consists of the definitions of 

ontology overview, classes, individuals, object properties, object restrictions, equivalent 

classes, as well as the class hierarchy which includes the subclass-superclass 

relationships. Ontology Builder procedure consists of the following steps which are 

executed successively:  

 Step 1: Ontology Overview is defined based on the attribute Desc of the element 

<LAT>. Also, an annotation about the ontology is added as the tag 

<owl:versionInfo> to the output OWL file.  
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 Step 2: The property hasConstraint, its subproperty hasSecurityConstraint, and also 

the subproperties of the property hasSecurityConstraint are defined.  

 Step 3: The class Roles is defined as the subclass of the root class. Then, the 

role names and privileges of accessing to the functional requirement names are 

extracted from the element <ROLEPRIVILEGES>/<RP>, and defined as the 

subclasses of the class Roles. For each defined role class, the restriction 

allValuesFrom is defined on the properties hasFRPrivilege and hasnotFRPrivilege.   

 Step 4: The class FRequirements is defined as the subclass of the root class. 

Then, the classes ProvidedFRs, RequestedFRs, and InternalFRs are defined as the 

subclasses of the class FRequirements. 

 Step 5: The property hasFRequirement and its subclasses hasProvidedFR, 

hasRequestedFR, and hasInternalFR are defined.  

 Step 6: All provided, requested, and internal functional requirement classes are 

extracted from the element <FRTYPES>/<CONC> and are defined as the 

subclasses of their relevant functional requirement classes. The actions are also 

defined as the requested functional requirement classes. Besides, the role 

privileges of the functional requirements are extracted from the element 

<ROLEPRIVILEGES>/<RP>, and for each defined functional requirement class, 

the restriction hasValue are defined on the properties hasRolePrivilege and 

hasnotRolePrivilege.   

 Step 7: The property hasDataConstraint is defined as the subproperty of the 

property hasConstraint. Then, all data constraints are extracted from the element 

<DATACONSTRAINTS>/<DC>, and are defined as the subproperties of the 

property hasDataConstraint.  
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 Step 8: The class DataConstraints is defined as the subclass of the root class. 

Then, all data constraints are extracted from the element 

<DATACONSTRAINTS>/<DC>, and are defined as the subclasses of the class 

DataConstraints. Besides, their values are specified by the equivalent class 

definition.  

 Step 9: The property hasTimeConstraint is defined as the subproperty of the 

property hasConstraint. 

 Step 10: The class TimeConstraint is defined as the subclass of the root class. 

Then, all time constraint values are extracted from the element 

<TIMECONSTRAINTS>/<TC>, and are specified by the equivalent class 

definition.  

 Step 11: The property hasProperty is defined. Then, for each main attribute class 

extracted from the element <HASPROPERTIES>/<HP>, a property is defined as 

the subproperty of the property hasProperty. The defined property is determined 

as the inverse property of its corresponding property isPropertyOf.  

 Step 12: The property isPropertyOf is defined. Then, for each main attribute class 

extracted from the element <HASPROPERTIES>/<HP>, a property is defined as 

the subproperty of the property isPropertyOf. The defined property is determined 

as the inverse property of its corresponding property hasProperty.  

 Step 13: For the object classes, the class ObjClasses is defined as the subclass 

of the root class. Also, the property hasObjClassProperty is defined. 

 Step 14: For all nodes specified in the element <NODNAMES>/<NOD>, the 

corresponding classes and their superclasses are defined. For multi-attribute 

classes, the main attribute and the property attributes are defined as the 

subclasses of the MClass.  
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 Step 15: The object classes are defined as the subclasses of the class 

ObjClasses. Also, the restriction someValuesFrom is defined on the property 

hasObjClassProperty for the superclasses of the object class that are extracted 

from the element <NODNAMES>/<NOD >/<SUP>. 

 Step 16: For the classes that have any corresponding time constraint property in 

the element <TIMECONSTRAINTS>/<TC>, the restriction hasValue is defined on 

the property hasTimeConstraint.  

 Step 17: For the multi-attribute classes, the restriction someValuesFrom is defined 

on the property hasProperty of the main attribute class. Also, the restriction 

someValuesFrom is defined on the property isPropertyOf of the property attribute 

classes. 

 Step 18: For the classes that have any corresponding functional requirements in 

the element <FRTYPES>/<CONC>, the restriction allValuesFrom is defined on 

the relevant subproperties of the property hasFRequirement. 

 Step 19: For the classes that have any corresponding data constraints on the 

functional requirements in the element 

<FREQUIREMENTS>/<FR>/<DCS>/<DC>, the restriction hasValue is defined on 

the relevant subproperties of the property hasDataConstraint. 

 Step 20: For the classes that have any extent objects in the element 

<EXT>/<OBJ> of the corresponding nodes, the object names are extracted from 

the element <OBJS>/<OBJ> and defined as the individuals of the classes. 

As an example, the Ontology Builder procedure is applied to the sample concept 

lattice MergedConcepts. The XML file illustrated in Figure 6.15 is considered as the input 

of the Ontology Builder procedure. The yielded output OWL file is depicted in Figure 

6.16. 
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Figure 6.16: Output OWL file of Ontology Builder procedure 

 

The obtained OWL file is opened in the TopBraid Composer software tool. The 

derived MergedConcepts OWL ontology is illustrated in Figure 6.17.  

Figures 6.18 (a) and Figure 6.18 (b) illustrate the proposed approach and the 

contribution of this thesis. Domain analysis is fulfilled by the application of Formal 

Concept Analysis. The provided framework consists of two model transformation 

process: from formal concepts to OWL ontology, and from OWL ontology to TADL 

description language. The transformation process is done by using the XSLT model 
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transformation framework. The FCA software tool, Lattice Miner, and the ontology 

software tool, TopBraid Composer are applied to generate formal TADL artifacts. Finally, 

the obtained TADL description language may be used in component-based software 

development.   

 

 

Figure 6.17: MergedConcepts OWL Ontology 
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Figure 6.18 (a): The schema of the proposed approach 

 

 

 

Figure 6.18 (b): FCA part of the proposed approach 
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Chapter 7 

 

Model Transformation from Ontology to 

Components 

 

 

In this Chapter, the OWL ontology is automatically transformed into the architecture 

description language TADL [49], which in turn will be used to develop the trustworthy 

component-based systems. To do so, we have implemented a model transformation 

framework to produce automatically the specifications of reusable components and 

component-based architecture of the relevant trustworthy system. The input meta-model 

is an OWL format file that consists of the definitions of ontology overview, classes, 

individuals, properties, safety and security requirement properties, as well as the class 

hierarchy, including the subclass-superclass relationships. The output model in XML 

format is TADL architecture description language. The transformation rules are captured 

from [48], which are implemented by applying XSLT [74, 47] model transformation 

framework and XPath [74] language. 

In Section 7.1, the structure of the output meta-model is introduced by presenting the 

XML schemas of TADL. Section 7.2 presents the transformation rules. Section 7.3 
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discusses the transformation model from OWL ontology to TADL description language, 

which specifies the reusable components and the component-based architecture. 

 

7.1 TADL XML Schemas 

 

TADL [49], the trustworthy architecture description language, is defined as a high 

level specification for dependable component models. TADL has an XML-based 

representation containing the system definition which satisfies the trustworthy 

component model XML-based schemas. The XML schemas that correspond to the 

TADL description are explained as follows.   

 

7.1.1 InterfaceType Schema 

 

The interface type schema contains an ordered sequence of the following sub 

elements: 

 name: a simple element to specify the name of the interface. 

 protocol: a simple element to specify the protocol of an interface. 

 Attribute: a complex element to specify the attributes of an interface. It is an 

ordered sequence of the simple elements name, datatype, value, and 

description. 

 ServiceType: a complex element to specify the service types of an interface. It is 

an ordered sequence of the following sub-elements: 

 name: a simple element to specify the name of a service 

 id: a simple element to specify a unique identifier for a service. 

 type: a simple element to specify a service type. 
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 Attribute: a complex element to specify the attributes of a service. It is an 

ordered sequence of the simple elements name, datatype, value, and 

description. 

 constraint: a simple element to specify the constraints in a service. 

 ParameterType: a complex element to specify the parameters in a service. It 

is an ordered sequence of the simple elements name, datatype, value, and 

description. 

 Property: a complex element to specify the properties of a service. It is an 

ordered sequence of the simple elements name and value. 

 description: a simple text element to store the annotation of the service. 

 description: a simple text element to store the annotation of the interface.  

The terms minOccurs and maxOccurs in the XML Schema respectively specify the 

minimum and maximum occurrences of an element. 

 

7.1.2 ComponentType Schema 

 

The component type schema contains an ordered sequence of the following sub 

elements: 

 name: a simple element to specify the name of a component. 

 Property: a complex element to specify the properties of a component. It is an 

ordered sequence of the simple elements name and value. 

 Attribute: a complex element to specify the attributes of a component. It is an 

ordered sequence of the simple elements name, datatype, value, and 

description. 

 constraint: a simple element to specify the constraints of a component. 
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 User: a complex element to define the users of a component. The schema of the 

user is discussed in section 7.1.6. 

 InterfaceType: a complex element to specify the interfaces of a component. The 

schema of the interface type is discussed in section 7.1.1. 

 ArchitectureType: a complex element to specify the architectural structure of a 

component. It is composed of an ordered sequence of the following elements: 

 name: a simple element to specify the name of an architecture. 

 ComponentType: a complex element to specify the components in the 

architecture. The schema of the component type is discussed in section 

7.1.2. 

 ConnectorType: a complex element to specify the connectors in the 

architecture. The schema of the connector type is discussed in section 7.1.3. 

 Attribute: a complex element to specify the attributes of the architecture. It is 

an ordered sequence of the simple elements name, datatype, value, and 

description. 

 constraint: a simple element to specify the constraints in an architecture. 

 Attachment: a complex element to define the connections of a connector 

role and the interface of a component. It is composed of an ordered 

sequence of the following elements: 

o name: a simple element to specify the name of an attachment. 

o ConnectorType: a complex element to specify the connector in an 

attachment. The schema of the connector type is discussed in section 

7.1.3. 

o ConnectorRoleType: a complex element to specify the connector role in 

an attachment. The schema of the connector role type is discussed in 

section 7.1.3. 
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o InterfaceType: a complex element to specify the interface in an 

attachment. The schema of the interface type is discussed in section 

7.1.1. 

o ComponentType: a complex element to specify the component in an 

attachment. The schema of the component type is discussed in section 

7.1.2. 

o InterfaceType: a complex element to specify the other interface in an 

attachment. The schema of the interface type is discussed in section 

7.1.1. 

o description: a simple text element to store the annotation of the 

attachment. 

 description: a simple text element to store the annotation of the architecture. 

 ContractType: a complex element to specify the safety contract of a component. 

The schema of the contract type is discussed in section 7.1.4. 

 description: a simple text element to store the annotation of the component. 

 

7.1.3 ConnectorType Schema 

 

The connector type schema contains an ordered sequence of the following sub 

elements: 

 name: a simple element to specify the name of a connector. 

 ConnectorRoleType: a complex element to specify the roles of a connector. It is 

composed of an ordered sequence of the following elements: 

 name: a simple element to specify the name of the connector role. 
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 Attribute: a complex element to specify the attributes of a connector role. It 

is an ordered sequence of the simple elements name, datatype, value, and 

description. 

 constraint: a simple element to specify the constraints of a connector role. 

 InterfaceType: a complex element to specify the interface attached to the 

connector role. The schema of the interface type is discussed in section 

7.1.1. 

 description: a simple text element to store the annotation of the connector 

role. 

 Attribute: a complex element to specify the attributes of a connector. It is an 

ordered sequence of the simple elements name, datatype, value, and 

description. 

 constraint: a simple element to specify the constraints of a connector. 

 description: a simple text element to store the annotation of the connector. 

 

7.1.4 ContractType Schema 

 

The contract type schema contains an ordered sequence of the following sub 

elements: 

 name: a simple element to specify the name of a contract. 

 DataConstraint: a complex element to specify the data constraints in a reactivity 

of a contract. It is composed of an ordered sequence of the following elements: 

 name: a simple element to specify the name of a data constraint. 

 Request ServiceType: a complex element to specify the request service of a 

data constraint. The schema of the service type is discussed in section 7.1.1. 
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 Response ServiceType: a complex element to specify the response service 

of a data constraint. The schema of the service type is discussed in section 

7.1.1. 

 constraint: a simple element to specify the constraints in a data constraint. 

 description: a simple text element to store the annotation of the data 

constraint. 

 TimeConstraint: a complex element to specify the time constraints in a reactivity 

of a contract. It is composed of an ordered sequence of the following elements: 

 name: a simple element to specify the name of the time constraint. 

 Attribute: a complex element to specify the attributes of a time constraint. It 

is an ordered sequence of the simple elements name, datatype, value, and 

description. 

 constraint: a simple element to specify the constraints in a time constraint. 

 Request ServiceType: a complex element to specify the request service of a 

time constraint. The schema of the service type is discussed in section 7.1.1. 

 Response ServiceType: a complex element to specify the response service 

of a time constraint. The schema of the service type is discussed in section 

7.1.1. 

 maxSafeTime: a simple element to specify the maximum allowed time 

between receiving a request and providing a response. 

 description: a simple text element to store the annotation of the time 

constraint. 

 Reactivity: a complex element to specify the reactivity property of a contract. 

 name: a simple element to specify the name of a reactivity. 

 id: a simple element to specify a unique identifier for each reactivity.  
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 Request ServiceType: a complex element to specify the request service of 

reactivity. The schema of the service type is discussed in section 7.1.1. 

 Response ServiceType: a complex element to specify the response service 

of reactivity. The schema of the service type is discussed in section 7.1.1. 

 DataConstraint: a complex element to include data constraints in reactivity. 

The schema of the data constraint has been discussed above. 

 TimeConstraint: a complex element to include time constraints in reactivity. 

The schema of the time constraint has been discussed above. 

 Update: a complex element to specify the updates of the data parameters. It 

is an ordered sequence of the simple elements toBeUpdated and value. 

 description: a simple text element to store the annotation of the reactivity. 

 SafetyProperty: a complex element to specify the safety property of a contract. 

It is composed of an ordered sequence of the following elements: 

 name: a simple element to specify the name of a safety property. 

 ServiceType: a complex element to specify the services that are restricted 

by the safety property. The schema of the service type is discussed in section 

7.1.1. 

 constraint: a simple element to specify the constraints in a safety property. 

 description: a simple text element to store the annotation of the safety 

property.  

 description: a simple text element to store the annotation of the contract. 
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7.1.5 PackageType Schema 

 

The package type schema contains an ordered sequence of the following sub 

elements: 

 name: a simple element to specify the name of a package. 

 Version: a simple element to specify the version of a package. 

 InterfaceType: a complex element to specify the interfaces in a package. The 

schema of the interface type is discussed in section 7.1.1. 

 ContractType: a complex element to specify the contracts in a package. The 

schema of the contract type is discussed in section 7.1.4. 

 ConnectorType: a complex element to specify the connectors in a package. The 

schema of the connector type is discussed in section 7.1.3. 

 ComponentType: a complex element to specify the components in a package. 

The schema of the component type is discussed in section 7.1.2. 

 description: a simple text element to store the annotation of the package. 

 PackageType: a complex element to specify the sub packages in a package. 

 

7.1.6 RBAC Schema 

 

The Role-Based Access Control (RBAC) schema contains an ordered sequence of 

the following sub elements: 

 name: a simple element to specify the name of a RBAC. 

 User/Group/Role/Privilege: a complex element in a RBAC. The schema of 

Users/ Groups/Roles/Privileges is composed of an ordered sequence of the 

following: 
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 name: a simple element to specify the name of the 

users/groups/roles/privileges. 

 Attribute: a complex element to specify the attributes of a 

user/group/role/privilege. It is an ordered sequence of the simple elements 

name, datatype, value, and description. 

 constraint: a simple element to specify the constraints of a 

user/group/role/privilege. 

 description: a simple element to store the annotation of a 

user/group/role/privilege. 

 UserGroupAssignments: a complex element to specify the user-group 

assignments. It is composed of an ordered sequence of the complex elements 

User and Group. 

 UserRolesAssignments: a complex element to specify the user-role 

assignments. It is composed of an ordered sequence of the complex elements 

User and Role. 

 GroupRolesAssignments: a complex element to specify the group-role 

assignments. It is composed of an ordered sequence of the complex elements 

Group and Role. 

 ServiceType: a complex element to include the services that is restricted by the 

RBAC. The schema of the service type is discussed in section 7.1.1. 

 ParameterType: a complex element to include the parameters that is restricted 

by the RBAC. The schema of the parameter type is discussed in section 7.1.1. 

 PrivilegesForServices: a complex element to assign service privileges to 

specific roles. It is composed of an ordered sequence of the composite elements 

ServiceType, Privilege, and Role. 
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 PrivilegesForDataParameters: a complex element to assign data parameter 

privileges to specific roles. It is composed of an ordered sequence of the 

composite elements ParameterType, Privilege, and Role. 

 description: a simple text element to store the annotation of the RBAC. 

 

7.1.7 System Schema 

 

The system configuration schema contains an ordered sequence of the following sub 

elements: 

 name: a simple element to specify the name of a system. 

 Attribute: a complex element to specify the attributes of a system. It is an 

ordered sequence of the simple elements name, datatype, value, and 

description. 

 ComponentType: a complex element to specify the components in a system. 

The schema of the component type is discussed in section 7.1.2. 

 Deploy: a complex element to state the hardware component in which each 

software component is deployed. It is composed of an ordered sequence of the 

complex elements HardwareComponentType and ComponentType. The schema 

of ComponentType is discussed in section 7.1.2, and the schema of a hardware 

component type is composed of a sequence as follows: 

 name: a simple element to specify the name of the hardware component. 

 Attribute: a complex element to specify the attributes of a hardware 

component. It is an ordered sequence of the simple elements name, 

datatype, value, and description. 
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 constraints: a simple element to specify the constraints of a hardware 

component. 

 InterfaceType: a complex element to specify the interfaces of a hardware 

component. The schema of an interface type is discussed in section 7.1.1. 

 description: a simple text element to store the annotation of the hardware 

component. 

 description: a simple text element to store the annotation of the system. 

 RBAC: a complex element to include a security mechanism in a system. The 

schema of the RBAC is discussed in section 7.1.6. 

 

7.2 Transformation Rules 

 

Component-based development is a particular software production method, tailored 

for developing reusable components and integrating existing components to create 

software systems. The primary reason for using component-based methodology in 

software development is that, it increases reuse potential. Components, their 

specifications, and other system artifacts can be used because they exist as 

independent architectural elements. Components are composed only on demand. On 

the other hand, ontologies has provided powerful improvements for creating and storing 

reusable knowledge building blocks in a well defined machine-readable format. Since 

reuse requires domain knowledge, and it is embedded in ontology, it seems reasonable 

to use ontology for deriving the reusable concepts and transforming them to reusable 

components. Motivated by this rationale, the OWL ontology obtained in Section 6 is now 

transformed into components, as described by TADL. We use XML to represent both 

OWL and TADL and explain the model transformation process from the OWL to TADL. 
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Ontology is a domain model that results in detailed specifications of reusable 

knowledge. When it is applied to component-based development, detailed specification 

of reusable components and component-based architectures are produced.  In order to 

achieve an efficient component-based development, appropriate domain ontology must 

be built. The captured conceptualization and relations in ontology should be formally 

specified, so we have used OWL to formally represent the results of domain analysis. 

Besides, OWL provides the facility of sharing and reusing ontologies, as well as using 

the ontology reasoning to accomplish syntax consistency and subsumption checking. 

Subsequently, this enables mapping the OWL ontology formalization to formal TADL 

description. 

The model transformation process from OWL ontology to TADL components 

implements the transformation rules in [48] by using XSLT [74, 47] model transformation 

framework and XPath language [74]. According to the transformation rules [48], mapping 

occurs between OWL language constructs and their relevant TADL constructs as 

follows: 

 Entities are mapped to components [48]. The part-of relation between entities is 

mapped to composite components where a component consists of multiple 

constituent components. Note that the sub-class-of relation is not supported in 

the current version of TADL. 

 Data are mapped to attributes [48]. An attribute is a data element that can be 

associated with any construct in TADL. 

 Functional requirements are mapped to services [48]. For every functional 

requirement, a service is created in TADL. Also, two events are created for each 

service: a request for service and a response of the service. The has-property 

and request-property relations help identify which component is providing the 

service and which components are consuming it. A service is provided by the 
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component which is related to the functional requirement by the has-property 

relation. An interface is created for each component. The request and response 

events are associated with this interface. The services provided and consumed 

by the component are provided and requested at this interface. A connector is 

created for every request-property relation to provide a means to communicate 

requested and provided services. If two components are related by multiple 

service requests then it is sufficient to create one connector for the 

communication between the two components. 

 Non-functional requirements are used to define the contract of each component 

[48]. The contract contains services, safety, security, reliability, availability, and 

any other non-functional requirements. A one to one mapping occurs between 

elements of these types of non-functional requirements. For example, a safety 

property is created in the component contract for every safety requirement in the 

ontology.  

 Constraints are mapped into their corresponding synonym in TADL [48]. A 

constraint is an invariant on services.  

The principal schema of one to one corresponding relations among the elements of 

OWL ontology and TADL constructs are shown in Figure 7.1.  

Figure 7.2 illustrates [48] the steps of capturing domain components by application of 

domain engineering. Domain analysis, as the first step of domain engineering, aims to 

understand each system, its interactions with other systems, the constituent 

components, their functional and non-functional requirements, and the data and events 

stored and communicated between them. Domain analysis yields an ontology 

representing the knowledge base of the domain. Building ontologies is a major approach 

for capturing and representing reusable knowledge. The domain architecture can be 

deduced from the ontology. It includes the applications, their relations, and 
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trustworthiness. The domain architecture when applied to a special application is called 

the application architecture. The application architecture including the constituent 

domain concepts and their detail specifications are transformed into the TADL 

components, which is generated from the ontology. A component definition contains the 

details about data and trustworthiness aspects, as well as the functional, non-functional, 

and structural requirements. This knowledge and the resulting TADL specifications are 

stored in a repository and reused in system development processes. 

 

 

Figure 7.1: From OWL Ontology to TADL 

 

During the component development, the component requirements are defined in 

TADL for new components or reused from the repository for existing domain 

components .To validate the formal component definitions an iterative process of 

validation is conducted to ensure that the system design is syntactically and semantically 

correct with respect to TADL correction rules. Then, the specification is analyzed and the 

component behavior is generated automatically as extended time-automata using the 
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transformation tool [40]. The output is an extended time automata which is compatible 

with the UPPAAL modeling language. Afterwards, verification is conducted using 

UPPAAL model checking techniques to verify the correctness of the design. An iterative 

process of verification occurs until the design successfully passes the validation checks 

on functional requirements, and safety, security, and timeliness properties. In case of 

errors or violation of any requirement, the component is redesigned using TADL 

specifications and the process starts over again. If the system design is correct, the 

selected components, which are retrieved from the repository, are integrated to develop 

the component-based system.  

 

 

Figure 7.2: Domain Engineering and Component Development 
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7.3 Model Transformation from OWL Ontology to TADL 

 

The model transformation process from OWL ontology to TADL is implemented by 

using XSLT model transformation framework and XPath language. The XSLT 

transformation process is performed by java programming, using the XSLT jar files. The 

input model of this transformation process is the OWL file derived from the 

transformation model in Chapter 6. The output model is the TADL XML schemas, which 

are described in Section 7.1. The transformation rules are described in Section 7.2.  

The model transformation process consists of several steps, which are executed 

successively. The description of TADL XML schema composed in each step is as 

follows:  

 Step 1: The new element <Configuration>, having the attribute name and the 

child elements<componentType> and <RBAC>, is added to the output XML file. 

The attribute name is set to the ontology name, which is taken from the name of 

the root class. 

 Step 2: The new element <components>, having the attribute name and the child 

elements <attribute>, <interfaceTypes>, <architectureType>, and <contract>, is 

added to the output XML file. The attribute name is set to the ontology name, 

which is taken from the name of the root class. The child element <attribute> 

consists of the attributes name and value which are assigned to the ontological 

element <DATACONSTRAINTS>/<DC>. 

 Step 3: The new element <interfaceTypes>, having the attribute name and the 

child element <serviceType>, is added to the output XML file. The attribute name 

is assigned to the ontological element <ConceptRelationTypes>/<CONCEPT>. 

The element <serviceType>, having the attributes name and type, are assigned to 
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the ontological element <FRTYPES>/<CONC>. The attribute type is defined 

according to the child elements <InternalFRs>, <ProvidedFRs>, or 

<RequestedFRs> of the element <FRTYPES>/<CONC>. 

 Step 4: The element <architectureType>, having the attribute name and the child 

elements <componentType> and <connectorType>, is added to the output XML 

file. Composite components are implemented by the element <architectureType> 

of the ComponentType schema. The attribute name is set to the composite 

component name.  

 Step 5: The element <architectureType>/<componentType>, is added to the 

output XML file. The element <componentType> are assigned to the ontological 

element <PARENTNODES>/<PN>.  

 Step 6: The element <<connectorType>, having the attribute name and the child 

element <connectorRoleType>, is added to the output XML file. All constituent 

components of a composite component are connected by the connector types in 

which their interface types are defined. The attribute name is assigned to the 

ontological element 

<ConceptRelationTypes>/<CONCEPT>/<ConceptRelations>/<CR>. 

 Step 7: The element <connectorType>/<connectorRoleType>, having the 

attribute name and the child element <interfaceTypes>, is added to the output 

XML file. The attribute name is assigned to the ontological element 

<ConceptRelations>/<CR>. Each <connectorType> consists of two 

<connectorRoleType> child elements. The second connector role type is defined 

as the inverse of the first one, it means, the attribute type of the <serviceType> 

elements that belongs to the interface types are exchanged. 
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 Step 8: The element <interfaceTypes> is added and its constituent child 

elements are assigned to the ontological elements as explained in Step 3, except 

that the attribute type of the element <serviceType> may be of type input or 

output (but not of type internal). 

 Step 9: The element <contract>, having the attribute name and the child elements 

<dataConstraint>, <timeConstraint>, and <reactivity>, is added to the output XML 

file. The attribute name is assigned to the concept name.  

 Step 10: The element <contract>/<dataConstraint>, having the attribute name 

and the child elements <service-request>, <service-response>, and <constraint>, 

is added.  The attribute name is assigned to the concept name. The attributes 

name and type of the request and response services are assigned to the 

ontological element <FREQUIREMENTS>/<FR>. The element <constraint> is 

set to the data constraints and their values, which are assigned to the ontological 

element <DCS>/<DC>. 

 Step 11: The element <contract>/<timeConstraint>, having the attribute name 

and the child elements <service-request>, <service-response>, and 

<maxSafeTime>, is added. The attribute name is assigned to the concept name. 

The attributes name and type of the request and response services are assigned 

to the ontological element <TIMECONSTRAINTS>/<TC>. The element 

<maxSafeTime> is assigned to the attribute value of the tag <TC>. 

 Step 12: The element <contract>/<reactivity>, having the attribute name and the 

child elements <service-request>, <service-response>, <dataConstraint>, 

<timeConstraint>, <update>, and <action>, is added. The attribute name is 

assigned to the concept name. The attributes name and type of the request and 
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response services are assigned to the ontological element 

<FREQUIREMENTS>/<FR>.  

 Step 13: The element <reactivity>/<dataConstraint> is added to the output XML 

file, if the reactivity has any data constraint. The element <dataConstraint> and 

its child elements are assigned to the ontological elements, as explained in Step 

10.  

 Step 14: The element <reactivity>/<timeConstraint> is added to the output XML 

file, if the reactivity has any time constraint. The element <timeConstraint> and 

its child elements are assigned to the ontological elements, as explained in Step 

11.  

 Step 15: The element <reactivity>/<update> is added to the output XML file, if 

the reactivity has any update property. The attributes toBeUpdated and value are 

assigned to the ontological element <UPDATES>/<UP>.  

 Step 16: The element <reactivity>/<action> is added to the output XML file, if the 

reactivity has any reaction property. The attribute name is assigned to the 

ontological element <FRACTIONS>/<AC> and the attributes from and to are 

assigned to the element <FREQUIREMENTS>/<FR>. 

 Step 17: The element <RBAC>, having the attribute name and the child elements 

<users>, <userRolesAssignments>, <privilegesForServices>, <serviceType> and 

<roles> is added to the output XML file. The attribute name is assigned to the 

name of the root class.  

 Step 18: The child elements <users>, <roles> and <serviceType> of <RBAC>, 

having the attribute name, are added to the output XML file. The attribute name is 

assigned to the ontological element <ROLEPRIVILEGES>/<RP>.  
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 Step 19: The element <RBAC>/<userRolesAssignments>, having the child 

elements <users> and <roles>, is added to the output XML file.  

 Step 20: The element <RBAC>/<privilegesForServices>, having the child 

elements <service>, <privilege>, and <role>, is added. The elements <service> 

and <role> are assigned to the ontological elements, as explained in Step 18. 

The attribute name of the element <privilege> is set to true or false, according to 

the content of the ontological element <ROLEPRIVILEGES>/<RP>. 

 

The obtained TADL file complies with the XML schemas that are explained in 

Section 7.1. After the transformation process, the MergedConcepts TADL file is opened in 

the Microsoft Visual Studio software tool, which is depicted in Figure 7.3.  

Figure 7.4 and Figure 7.5 show two parts of the MergedConcepts TADL XML file, 

which are automatically generated through the model transformation process. In Figure 

7.4, one of the reactivity properties of the component Concept1 is depicted. The 

connector type Concept1_Concept2 and the two relevant connector role types are shown 

in Figure 7.5. 
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Figure 7.3: MergedConcepts TADL file in Visual Studio 
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<reactivity> 

      <name>Concept1-2</name> 

      <id/> 

      <service-request> 

            <name>Req3</name> 

            <id/><type>input</type> 

            <constraint/> 

      </service-request> 

      <service-response> 

            <name>Req4</name> 

            <id/><type>output</type> 

            <constraint/> 

      </service-response> 

      <dataConstraint> 

            <name>Concept1DataConstraint2</name> 

            <service-request> 

                  <name>Req3</name> 

                  <id/><type>input</type> 

                  <constraint/> 

            </service-request> 

            <service-response> 

                  <name>Req4</name> 

                  <id/><type>output</type> 

                  <constraint/> 

            </service-response> 

            <constraint>Mode==DataC2</constraint> 

            <descreption/> 

      </dataConstraint> 

      <timeConstraint> 

            <name>Concept1TimeConstraint1</name> 

            <constraint/> 

            <service-request> 

                  <name>Req3</name> 

                  <id/><type>input</type> 

                  <constraint/> 

            </service-request> 

            <service-response> 

                  <name>Req4</name> 

                  <id/><type>output</type> 

                  <constraint/> 

            </service-response> 

            <maxSafeTime>5</maxSafeTime> 

      </timeConstraint> 

      <update> 

            <toBeUpdated>Mode</toBeUpdated> 

            <value>DataC3</value> 

      </update> 

      <action> 

            <name>Req5</name> 

            <id/><type/><description/> 

            <from>Req4</from> 

            <FromId/><to>idel</to> 

      </action> 

</reactivity> 

Figure 7.4: MergedConcepts TADL XML file (part1) 
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<connectorType> 

      <name>ConnectorTypeConcept1_Concept2</name> 

      <connectorRoleType> 

            <name>ConnectorRoleType1Concept1_Concept2</name> 

            <constraint/> 

            <interfaceTypes> 

                  <name>Concept1_Concept2</name> 

                  <protocol/> 

                  <serviceType> 

                        <name>Req3</name> 

                        <id/><type>input</type> 

                        <constraint/> 

                  </serviceType> 

                  <serviceType> 

                        <name>Req2</name> 

                        <id/><type>output</type> 

                        <constraint/> 

                  </serviceType> 

                  <serviceType> 

                        <name>Req5</name> 

                        <id/><type>output</type> 

                        <constraint/> 

                  </serviceType> 

            </interfaceTypes> 

      </connectorRoleType> 

      <connectorRoleType> 

            <name>ConnectorRoleType2Concept1_Concept2</name> 

            <constraint/> 

            <interfaceTypes> 

                  <name>Concept2_Concept1</name> 

                  <protocol/> 

                  <serviceType> 

                        <name>Req3</name> 

                        <id/><type>output</type> 

                        <constraint/> 

                  </serviceType> 

                  <serviceType> 

                        <name>Req2</name> 

                        <id/><type>input</type> 

                        <constraint/> 

                  </serviceType> 

                  <serviceType> 

                        <name>Req5</name> 

                        <id/><type>input</type> 

                        <constraint/> 

                  </serviceType> 

            </interfaceTypes> 

      </connectorRoleType> 

      <constraint/> 

      <descreption/> 

</connectorType> 

 

Figure 7.5: MergedConcepts TADL XML file (part2) 
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Chapter 8 

 

Case Study and Evaluation 

 

 

The Common Component Modeling Example (CoCoME) case study explained in 

Chapter 3 is used to present the methodology introduced in this thesis. One of the 

contributions of our approach is the application of Formal Concept Analysis (FCA) in 

domain analysis to develop OWL ontology as a domain model, and then transform 

automatically the derived ontology into the TADL description of the target component-

based system. Therefore, the introduced techniques and tools are applied to the 

CoCoME case study, to demonstrate that the methodology described in this thesis can 

be generalized to common component-based systems. Afterwards, we are going to 

evaluate our approach by discussing the obtained results and comparing them with what 

has been done in previous works such as the VMT tool [89] and the Transformation tool 

[40].  
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8.1 Case Study Implementation 

 

Common Component Modeling Example [36], which is a benchmark case study for 

testing the modeling ability of component-based systems, is provided to explain our 

approach. We have tested our methodologies on CoCoME case study to illustrate and 

verify the process. 

One of the composite components of the CoCoME case study, explained in Chapter 

3, is the Store System. The Store System contains some other components such as 

CashBox, Cashier, and Inventory which are implemented to illustrate the methodology 

presented in this thesis. The implementation process consists of 3 steps. These are (1) 

formal context table definition in FCA and concept lattice derivation, (2) transformation 

model from concept lattice to OWL ontology, and (3) transformation model from OWL 

ontology to TADL description. 

 

8.1.1 Context Table Definition and Concept Lattice Derivation 

 

Before going into the details of each concept and its corresponding context table, it is 

important to introduce the global-level variables, which are defined as the data 

parameters to make constraints on the functional requirement properties. These 

variables with their possible values are described in Table 8.1. 

At first, formal context tables that contain the concepts including objects and their 

attributes are defined. Then, the partially defined context tables are combined into a 

unified table that respects entirely the relational information on objects and attributes 

occurring in the use cases. The many-valued context tables are defined and converted 

into the binary context tables by using the conceptual scaling method. The lattice miner 
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software tool is used to define the Valued Context Tables (VCTs), which are converted 

into the Binary Context Tables (BCTs). 

 

Table 8.1: Global variables in CoCoME case study 

 Variable Values Description 

1 Mode 

{Disable, Done, 

InSale, Ready, 

Waiting} 

Used to control the mode of the Cash Box; Disable: CashBox is in 

disabling process of the express mode, Done: Sale is done, InSale: 

Sale is in process, Ready: CashBox is ready, Waiting: CashBox is 

waiting. 

2 IsExpress {Express, Normal} 
Used to represent the operation of the Cash Box, which can either 

be in express or in normal mode. 

3  IsMore {1, 2} 
Used to represesnt if more items remain to perchase; 1: No more 

item, 2: More item. 

4 Authorization {1, 2} 
Used to represent the authorization results of the card payment; 

1:Approved, 2:Declined. 

5 PaymentMethod {1, 2} Used to represent the method of payment; 1: Cash,  2: Card. 

 

 

CashBox  

First, a partial context table is defined for the concept CashBox, which performs the 

sale process initiated by the cashier, and holds the received cash. The concept CashBox 

has the following functional requirements: 

 The functional requirements provided by the concept CashBox are PassItem, 

BarCode, Info, SaleFinished, Cash, Card, Approved, Declined, YesExpress, NotExpress, 

DisableExpress. 

 The functional requirements requested by the concept CashBox are Scan, GetInfo, 

Pay, ReadCard, Print, CheckLastHour, TurnLightOn, AddToInventory, IsMoreItem, 

TurnLightOff. 

 The functional requirements internally accomplished within the concept CashBox 

are AddTotal, ReturnChange, CheckIfExpress, Ignore, ChangeModeToNormal. 

The functional requirement properties of the concept CashBox are shown in Table 

8.2. The functional requirement properties consist of the following main elements: 
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Provided functional requirement, Requested functional requirement, Data constraint 

(represents the pre-conditions), Time constraint, Update (represents the post-

conditions), and Action (represents the triggered functional requirements) (See Table 

8.2). 

 

Table 8.2: CashBox functional requirement properties 

 Provided 

Functional 

Requirement 

Requested 

Functional 

Requirement 

Data Constraint Time 

Constraint 

Updates Actions 

1 PassItem Scan 
Mode==InSale 

IsMore==2 
   

2 Barcode GetInfo 
Mode==InSale 

 
  

AddToInventory 

Print 

3 Info AddTotal 
Mode==InSale 

 
1.0S  IsMoreItem 

4 SaleFinished Pay 
Mode==InSale 

IsMore==1 
1.0S   

5 Cash ReturnChange 

Mode==InSale 

IsMore==1 

PaymentMethod==1 

120.0S Mode:=Done 
AddToInventory 

Print 

6 Card ReadCard 

Mode==InSale 

PaymentMethod==2 

IsExpress==Normal 

1.0S   

7 Approved Print 

Mode==InSale 

IsMore==1 

PaymentMethod==2 

IsExpress==Normal  

Authorization==1 

 Mode:=Done AddToInventory 

8 Declined Pay 

Mode==InSale 

IsMore==1 

PaymentMethod==2 

IsExpress==Normal  

Authorization==2 

   

9 CheckIfExpress CheckLastHour 
Mode==Done 

 
 Mode:=Waiting  

10 YesExpress TurnLightOn 
Mode==Waiting 

 
1.0S 

Mode:=Ready 

IsExpress:=Express 
 

11 NotExpress Ignore 
Mode==Waiting 

 
 

Mode:=Ready 

IsExpress:=Normal 
TurnLightOff 

12 DisableExpress 
ChangeModeTo

Normal 

Mode==Disable 

IsExpress==Express 1.0S IsExpress:=Normal TurnLightOff 

 

 

The functional requirement properties of the concept CashBox are defined as the 

attribute variables in the CashBox context table, depicted in Table 8.3. 
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Table 8.3: Attribute variables of CashBox context table 

Attribute Variable Type Values 

CashBox Main Attribute  

DCMode DC Attribute 
{Done, Disable, InSale,   

Waiting} 

DCIsExpress DC Attribute {Express, Normal} 

DCPaymentMethod DC Attribute {1, 2} 

DCIsMore DC Attribute {1, 2} 

DCAuthorization DC Attribute {1, 2} 

IFRCashBox-CheckIfExpress_FRCheckLastHour 
Functional Requirements 

Attribute 
 

FRCashBox-DisableExpress_IFRChangeModeToNormal 
Functional Requirements 

Attribute 
 

FRCashBox-YesExpress_FRTurnLightOn 
Functional Requirements 

Attribute 
 

FRCashBox-NotExpress_IFRIgnore 
Functional Requirements 

Attribute 
 

FRCashBox-Info_IFRAddTotal 
Functional Requirements 

Attribute 
 

FRCashBox-Cash_IFRReturnChange 
Functional Requirements 

Attribute 
 

FRCashBox-SaleFinished_FRPay 
Functional Requirements 

Attribute 
 

FRCashBox-Card_FRReadCard 
Functional Requirements 

Attribute 
 

FRCashBox-PassItem_FRScan 
Functional Requirements 

Attribute 
 

FRCashBox-Barcode_FRGetInfo 
Functional Requirements 

Attribute 
 

FRCashBox-Approved_FRPrint 
Functional Requirements 

Attribute 
 

FRCashBox-Declined_FRPay 
Functional Requirements 

Attribute 
 

UpdateDCMode Update Attribute {Done, Ready, Waiting} 

UpdateDCIsExpress Update Attribute {Express, Normal} 

Action Action Attribute 

{AddToInventory, Print,  

TurnLightOff, 

IsMoreItem}  

TCFRCashBox-DisableExpress_IFRChangeModeToNormal 
TC of Functional 

Requirements Attribute 
T1.0S 

TCFRCashBox-YesExpress_FRTurnLightOn 
TC of Functional 

Requirements Attribute 
T1.0S 

TCFRCashBox-Info_IFRAddTotal 
TC of Functional 

Requirements Attribute 
T1.0S 

TCFRCashBox-Cash_IFRReturnChange 
TC of Functional 

Requirements Attribute 
T120.0S 

TCFRCashBox-SaleFinished_FRPay 
TC of Functional 

Requirements Attribute 
T1.0S 

TCFRCashBox-Card_FRReadCard 
TC of Functional 

Requirements Attribute 
T1.0S 
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The attribute variables of the concept CashBox are determined in the valued context 

table shown in Figure 8.1. Then, it is converted into the corresponding BCT, which is 

shown in Figure 8.2. 

 

 

Figure 8.1: CashBox Valued Context Table (VCT) 

 

 

Figure 8.2: CashBox Binary Context Table (BCT) 

 

 

Cashier 

The other partially defined context table is for concept Cashier, who operates the 

cash box, begins/ends the sale process, scans the products, handles the payment, and 
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manages the cash box mode. The concept Cashier has the following functional 

requirements: 

 The functional requirements provided by the concept Cashier are IsMoreItem, Pay. 

 The functional requirements requested by the concept Cashier are DisableExpress, 

PassItem, SaleFinished, Cash, Card. 

 The functional requirements internally accomplished within the concept Cashier 

are CancelExpress, StartSale. 

Some functional requirement properties of concept Cashier are shown in Table 8.4. 

The functional requirement properties consist of the following main elements: Provided 

functional requirement, Requested functional requirement, Data constraint (represents 

the pre-conditions), Time constraint, Update (represents the post-conditions), and Action 

(represents the triggered functional requirements) (See Table 8.4). 

 

Table 8.4: Cashier functional requirement properties 

 Provided 

Functional 

Requirement 

Requested 

Functional 

Requirement 

Data Constraint Time 

Constraint 

Updates Actions 

1 CancelExpress DisableExpress 
Mode==Ready 

IsExpress==Express 
 Mode:=Disable  

2 StartSale PassItem Mode==Ready 1.0S Mode:=InSale  

3 IsMoreItem PassItem 
Mode==InSale 

IsMore==2 
   

4 IsMoreItem SaleFinished 
Mode==InSale 

IsMore==1 
   

5 Pay Cash 

Mode==InSale 

IsMore==1 

PaymentMethod==1 

   

6 Pay Card 

Mode==InSale 

IsMore==1 

PaymentMethod==2 

IsExpress==Normal 

   

 

 

The functional requirement properties of the concept Cashier are defined as the 

attribute variables in the Cashier context table, which are depicted in Table 8.5. 
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Table 8.5: Attribute variables of Cashier context table 

Attribute Variable Type Values 

Cashier Main Attribute  

DCMode DC Attribute {Ready, InSale} 

DCIsExpress DC Attribute {Express, Normal} 

DCPaymentMethod DC Attribute {1, 2} 

DCIsMore DC Attribute {1, 2} 

IFRCashier-CancelExpress_FRDisableExpress Functional Requirements Attribute  

FRCashier-Pay_FRCard Functional Requirements Attribute  

FRCashier-Pay_FRCash Functional Requirements Attribute  

FRCashier-IsMoreItem_FRSaleFinished Functional Requirements Attribute  

FRCashier-IsMoreItem_FRPassItem Functional Requirements Attribute  

IFRCashier-StartSale_FRPassItem Functional Requirements Attribute  

UpdateDCMode Update Attribute {Disable, InSale} 

TCIFRCashier-StartSale_FRPassItem 
TC of Functional Requirements 

Attribute 
T1.0S 

 

 

The attribute variables of the concept Cashier are determined in the valued context 

table shown in Figure 8.3. Then, it is converted into the corresponding BCT, which is 

shown in Figure 8.4.  

 

 

Figure 8.3: Cashier Valued Context Table (VCT) 

 

CashDesk 

Now, it is the time to merge the two defined context tables CashBox and Cashier, and 

build the CashDesk context table. The context table CashDesk is constructed according to 
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the integration rules defined in Chapter 4. First, a nested context table (NCT) is defined 

to combine the CashBox and Cashier, which is depicted in Figure 8.5. Then the defined 

NCT is converted to the corresponding BCT and pruned by merging the duplicate 

attributes, as shown in Figure 8.6.  

A main attribute with the name CashDesk is added to the combined BCT. 

 

 

Figure 8.4: Cashier Binary Context Table (BCT) 

 

 

Figure 8.5: CashDesk Nested Context Table (NCT) 
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Figure 8.6: Merged and pruned CashDesk Binary Context Table (BCT) 

 

The duplicate attributes of the context tables CashBox and Cashier are as following: 

DCMode_InSale, DCIsExpress_Express, DCIsExpress_Normal, DCPaymentMethod_1, 

DCPaymentMethod_2, DCIsMore_1, DCIsMore_2. According to the conditions and 

integration rules discussed in Chapter 4 the partial context tables are merged and 

pruned.  Rule 1 is applied for the above duplicate attributes. So, one of the duplicate 

attributes is eliminated, and the extent objects in relation with the removed attribute are 

denoted in the crossing cells of the remaining attribute. 

 

Table 8.6: Newly added attribute variables of CashDesk context table 

Attribute Variable Type Values 

CashDesk Main Attribute  

PropertyCashDesk=CashDeskId Property of Attribute  

PropertyCashDesk=Sale Property of Attribute  

PropertyCashDesk=CashDeskPC Property of Attribute  

PropertyCashDesk=InStore Property of Attribute  
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Besides, the attribute variables in CashBox and Cashier are merged and transferred 

into CashDesk context table. Some attribute variables identifying the property attributes of 

the main attribute CashDesk are added to the CashDesk context table. The newly added 

attribute variables of CashDesk context table are shown in Table 8.6. 

 

Inventory 

The other partially defined context table is the concept Inventory, which represents 

the store server inventory. All information about the store such as the completed sale 

process is registered in the inventory. The concept Inventory has the following functional 

requirements: 

 The functional requirements provided by the concept Inventory are GetInfo, 

CheckLastHour, AddToInventory. 

 The functional requirements requested by the concept Inventory are Info, 

YesExpress, NotExpress. 

 The functional requirement internally accomplished within the concept Inventory is 

InfoAdded. 

 

Table 8.7: Inventory functional requirement properties 

 Provided 

Functional 

Requirement 

Requested 

Functional 

Requirement 

Data Constraint Time 

Constraint 

Updates Actions 

1 GetInfo Info Mode==InSale    

2 CheckLastHour YesExpress Mode==Waiting    

3 CheckLastHour NotExpress Mode== Waiting    

4 AddToInventory InfoAdded Mode==InSale 2.0S   

 

 

Some functional requirement properties of the concept Inventory are shown in Table 

8.7. The functional requirement properties consist of the following main elements: 



  182  

 

Provided functional requirement, Requested functional requirement, Data constraint 

(represents the pre-conditions), Time constraint, Update (represents the post-

conditions), and Action (represents the triggered functional requirements) (See Table 

8.7). 

The functional requirement properties of the concept Inventory are defined as the 

attribute variables in the Inventory context table, which are depicted in Table 8.8.  

 

Table 8.8: Attribute variables of Inventory context table 

Attribute Variable Type Values 

Inventory Main Attribute  

DCMode DC Attribute {Waiting, InSale} 

FRInventory-CheckLastHour_FRYesExpress Functional Requirements Attribute  

FRInventory-GetInfo_FRInfo Functional Requirements Attribute  

FRInventory-CheckLastHour_FRNotExpress Functional Requirements Attribute  

FRInventory-AddToInventory_IFRInfoAdded Functional Requirements Attribute  

TCFRInventory-AddToInventory_IFRInfoAdded 
TC of Functional Requirements 

Attribute 
T2.0S 

 

 

The attribute variables of the concept Inventory are determined in the valued context 

table shown in Figure 8.7. Then, it is converted into the corresponding BCT, which is 

shown in Figure 8.8.  

 

 

Figure 8.7: Inventory Valued Context Table (VCT) 
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Figure 8.8: Inventory Binary Context Table (BCT) 

 

 

CoCoME 

When all the context tables are constructed, they can be combined according to the 

integration rules explained in Chapter 4. CoCoME, the unified context table, is derived 

from the combination of CashDesk and Inventory context tables. First, a nested context 

table (NCT) is defined to combine the mentioned context tables, and then the defined 

NCT is converted to the corresponding BCT and pruned by merging the duplicate 

attributes. A main attribute with the name CoCoME is added to the combined BCT. 

The duplicate attributes of the context tables CashDesk and Inventory are 

DCMode_InSale, and DCMode_Waiting. 

According to the conditions and integration rules discussed in Chapter 4, the partially 

defined context tables are merged and pruned.  Rule 1 is applied for the above duplicate 

attributes. So, one of the duplicate attributes is eliminated, and the extent objects in 

relation with the removed attribute are denoted in the crossing cells of the remaining 

attribute. The obtained unified context table is depicted in Figure 8.9. 

Besides the attribute variables in CashDesk and Inventory that are merged and 

transferred into CoCoME context table, some attribute variables identifying the security 

properties are added to the CoCoME context table. The security property is one of the 

essential credentials of trustworthiness during the design stage. The security properties 
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are role privilege attributes that specify which role has or does not have the privilege of 

providing which functional requirement. The newly added attribute variables of CoCoME 

context table are shown in Table 8.9. 

 

 

Figure 8.9: CoCoME Binary Context Table (BCT) 

 

Table 8.9: Newly added attribute variables of CoCoME context table 

Attribute Variable Type Values 

CoCoME Main Attribute  

RolePrivilege-Cashier_CancelExpress Role Privilege  

RolePrivilege-Cashier_IsMoreItem Role Privilege  

RolePrivilege-Cashier_Pay Role Privilege  

RolePrivilege-Cashier_StartSale Role Privilege  

RolePrivilegeNot-StockManager_CancelExpress Negative Role Privilege  

RolePrivilegeNot-StockManager_IsMoreItem Negative Role Privilege  

RolePrivilegeNot-Manager_IsMoreItem Negative Role Privilege  

 

 

So far, the unified context table CoCoME is constructed which contains the formal 

concepts, captured from the system requirements specifications. In this step, the 
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concept lattice corresponding to the derived formal concept hierarchy is generated by 

the Lattice Miner [59, 13] software tool.  

 

 

Figure 8.10: CoCoME Concept Lattice  

 

There is a facility of drawing the concept lattice diagram from the given formal 

context table that is provided by almost FCA software tools. The lattice represents the 

concept hierarchy. The main attribute CoCoME of the unified formal context table is 

presented as the intent of the supremum node in the derived concept lattice. The intents 

and extents are represented in the boxes beside the nodes. The reduced labeling 

concept lattice of the context table CoCoME is shown in Figure 8.10.  

Afterwards, the concept lattice CoCoME is saved as an XML file by Lattice Miner. 

Although Lattice Miner can show the reduced labeling concept lattice, it cannot be saved 

as a reduced labeling XML file. The reducing process is done as the first step of the 

model transformation process described in Chapter 5. The acquired XML-format file of 
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the concept lattice CoCoME is opened in Microsoft Visual Studio and depicted in Figure 

8.11.  

 

 

Figure 8.11: XML-format CoCoME Concept Lattice  

 

Also, the implication rules are derived from the concept lattice CoCoME and exported 

in another XML file, which is depicted in Figure 8.12. The value of the minimum support 

has been assigned to one percent and the minimum confidence is assigned to hundred 

percent. Finally, the XML file of concept lattice and the XML file of the implication rules 

are merged. The merged XML-format file is conserved to be transformed into the OWL-

format ontology at the next step of our methodology, which is described in the following 

section. 
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Figure 8.12: XML-format implication rules of CoCoME Concept Lattice  

 

 

8.1.2 Transformation from Concept Lattice to OWL Ontology 

 

In this step, the concept lattice CoCoME is automatically transformed into the OWL-

format ontology by executing the transformation rules defined in Chapter 5. Basically, 

the formal concepts in FCA are going to be transformed into the classes in ontology, and 

the relations between the formal concepts in FCA are going to be transformed into the 

relations among the ontological classes. After the transformation process, the 

constructed OWL ontology may be opened in TopBraid Composer [80] software tool, 

which is shown in Figure 8.13.  
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Figure 8.13: CoCoME OWL Ontology 

 

The OWL ontology CoCoME consists of the class definitions, individuals, properties, 

subclass-superclass hierarchy, as well as the safety and security requirements. 

Moreover, the elements of this ontology are distributed to separate tables, (see Tables 

8.10, 8.11, 8.12, and 8.13) in order to categorize the elements, specify their types, 

super-elements, properties and individuals or values accordingly. The attribute/Multi-

attribute classes, and also the property classes of the ontology CoCoME along with their 

super-classes, properties and possible individuals are illustrated in Table 8.10.  

The trustworthy classes, consisting of data constraints, time constraints, and role 

classes, along with their super-classes, properties and values are determined in Table 

8.11.  
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Table 8.10: Ontological Attribute/Multi-attribute/Property classes 

 Ontological 

Element 

Ontological 

Element Type 
Super-element Property Individual 

1 CoCoME Root Class Thing   

2 Inventory Attribute Class CoCoME 

hasProvidedFR, 

hasInternalFR, 

hasRequestedFR 

{Inventory1, Inventory2,    

Inventory3, Inventory4} 

3 MClass-CashDesk 
Multi-attribute 

Class 
MClass-CashDesk hasCashDeskProperty  

4 CashBox Attribute Class MClass-CashDesk 

hasProvidedFR, 

hasInternalFR, 

hasRequestedFR 

{CashBox1, CashBox2, 

CashBox3, CashBox4, 

CashBox5,…, CashBox12} 

5 Cashier Attribute Class MClass-CashDesk 

hasProvidedFR, 

hasInternalFR, 

hasRequestedFR 

{Cashier1,Cashier2, 

Cashier3, Cashier4, 

Cashier5, Cashier6} 

6 CashDeskId Property Class MClass-CashDesk isCashDeskPropertyOf  

7 CashDeskPC Property Class MClass-CashDesk isCashDeskPropertyOf  

8 Sale Property Class MClass-CashDesk isCashDeskPropertyOf  

9 InStore Property Class MClass-CashDesk isCashDeskPropertyOf  

 

 

Table 8.11: Ontological trustworthy classes 

 Ontological 

Element 

Ontological 

Element Type 
Super-element Property Value 

1 DataConstraints Trustworthy Class CoCoME   

2 Authorization DataConstraint Class DataConstraints  {1, 2} 

3 IsExpress DataConstraint Class DataConstraints  {Express, Normal} 

4 IsMore     DataConstraint Class DataConstraints  {1, 2} 

5 Mode DataConstraint Class DataConstraints  
{Disable, Done InSale, 

Ready, Waiting} 

6 PaymentMethod     DataConstraint Class DataConstraints  {1, 2} 

7 TimeConstraint Trustworthy Class CoCoME  {T1.0S, T2.0S, T120.0S} 

8 Roles Trustworthy Class CoCoME   

9 Role-Cashier Role Class Roles hasFRPrivilege  

10 Role-Manager Role Class Roles hasFRPrivilege  

11 Role-StockManager Role Class Roles hasFRPrivilege  

 

 

The provided, requested, and internal functional requirements of the concept Cashier, 

and their super-classes and properties are illustrated in Table 8.12.  
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Table 8.12: Cashier Ontological functional requirement classes 

 
Ontological Element 

Ontological Element 

Type 

Super-

element 
Property 

1 FRequirements Attribute Class CoCoME  

2 ProvidedFRs Attribute Class FRequirements  

3 InternalFRs Attribute Class FRequirements  

4 RequestedFRs Attribute Class FRequirements  

5 IsMoreItem 
Functional Requirement  

Class 
ProvidedFRs 

hasRolePrivilege 

hasnotRolePrivilege 

6 Pay 
Functional Requirement  

Class 
ProvidedFRs hasRolePrivilege 

7 CancelExpress 
Functional Requirement  

Class 
InternalFRs 

hasRolePrivilege 

hasnotRolePrivilege 

8 StartSale 
Functional Requirement  

Class 
InternalFRs hasRolePrivilege 

9 PassItem 
Functional Requirement  

Class 
RequestedFRs  

10 SaleFinished 
Functional Requirement  

Class 
RequestedFRs  

11 DisableExpress 
Functional Requirement  

Class 
RequestedFRs  

12 Card 
Functional Requirement  

Class 
RequestedFRs  

13 Cash 
Functional Requirement  

Class 
RequestedFRs  

14 IFRCashier-CancelExpress__FRDisableExpress Attribute Class Cashier 
hasMode 

hasIsExpress 

15 IFRCashier-StartSale__FRPassItem Attribute Class Cashier 
hasMode 

hasTimeConstraint 

16 FRCashier-IsMoreItem__FRPassItem Attribute Class Cashier 
hasMode 

hasIsMore 

17 FRCashier-IsMoreItem__FRSaleFinished Attribute Class Cashier 
hasMode 

hasIsMore 

18 FRCashier-Pay__FRCard Attribute Class Cashier 

hasMode 

hasIsExpress 

hasIsMore 

hasPaymentMethod 

19 FRCashier-Pay__FRCash Attribute Class Cashier 

hasMode 

hasIsMore 

hasPaymentMethod 

 

 

Finally, the defined properties of the ontology CoCoME and their super-properties, 

domains, and ranges are stated in Table 8.13. 

The OWL ontology CoCoME was verified in TopBraid Composer software tool by 

running the inferences including superclass and consistency checking, and no 

contradiction or redundancy was found. 
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Table 8.13: Ontological properties 

 
Ontological 

Property 
Super-property Domain Range Inverse of 

1 hasConstraint     

2 hasDataConstraint hasConstraint  DataConstraints  

3 hasAuthorization hasDataConstraint  Authorization  

4 hasIsExpress hasDataConstraint  IsExpress  

5 hasIsMore hasDataConstraint  IsMore  

6 hasMode hasDataConstraint  Mode  

7 hasPaymentMethod hasDataConstraint  PaymentMethod  

8 hasSecurityConstraint hasConstraint    

9 hasRolePrivilege hasSecurityConstraint FRequirements Roles  

10 hasnotRolePrivilege hasSecurityConstraint FRequirements Roles  

11 hasFRPrivilege hasSecurityConstraint Roles FRequirements  

12 hasnotFRPrivilege hasSecurityConstraint Roles FRequirements  

13 hasTimeConstraint hasConstraint  TimeConstraint  

14 hasProperty    isPropertyOf 

15 hasCashDeskProperty hasProperty CashDesk 
MClass-

CashDesk 

isCashDeskPropertyOf 

16 isPropertyOf    hasProperty 

17 isCashDeskPropertyOf isPropertyOf MClass-CashDesk CashDesk hasCashDeskProperty 

18 hasFRequirement     

19 hasProvidedFR hasFRequirement  ProvidedFRs  

20 hasInternalFR hasFRequirement  InternalFRs  

21 hasRequestedFR hasFRequirement  RequestedFRs  

 

 

 

8.1.3 Transformation from OWL Ontology to TADL Description 

 

In this step, the OWL ontology CoCoME obtained from model transformation process 

is automatically transformed to TADL description language by mapping the ontological 

elements to their corresponding TADL constructs. This mapping is accomplished by the 

model transformation processing explained in Chapter 7. The automatically generated 

output meta-model is the CoCoME TADL XML-format file that contains the detailed 

specifications of reusable components and component-based architecture of the 

relevant trustworthy system. The obtained TADL file complies with the XML schemas 



  192  

 

that are explained in Chapter 7. After the transformation process, the CoCoME TADL 

XML-format file is opened in Microsoft Visual Studio and depicted in Figure 8.14. Figure 

8.15 and Figure 8.16 show two parts of the CoCoME TADL XML file, which are 

automatically generated through the model transformation process. In Figure 8.15, one 

of the reactivity properties of the component CashBox is depicted. The connector type 

CashBox_Inventory and the two relevant connector role types are shown in Figure 8.16. 

 

 

Figure 8.14: CoCoME TADL file 
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<reactivity> 

      <name>CashBox2</name> 

      <id/> 

      <service-request> 

            <name>DisableExpress</name> 

            <id/><type>input</type> 

            <constraint/> 

      </service-request> 

      <service-response> 

            <name>ChangeModeToNormal</name> 

            <id/><type>output</type> 

            <constraint/> 

      </service-response> 

      <dataConstraint> 

            <name>CashBoxDataConstraint2</name> 

            <service-request> 

                  <name>DisableExpress</name> 

                  <id/><type>input</type> 

                  <constraint/> 

            </service-request> 

            <service-response> 

                  <name>ChangeModeToNormal</name> 

                  <id/><type>output</type> 

                  <constraint/> 

            </service-response> 

            <constraint>IsExpress==Express and Mode==Disable</constraint> 

            <descreption/> 

      </dataConstraint> 

      <timeConstraint> 

            <name>CashBoxTimeConstraint3</name> 

            <constraint/> 

            <service-request> 

                  <name>DisableExpress</name> 

                  <id/><type>input</type> 

                  <constraint/> 

            </service-request> 

            <service-response> 

                  <name>ChangeModeToNormal</name> 

                  <id/><type>output</type> 

                  <constraint/> 

            </service-response> 

            <maxSafeTime>1</maxSafeTime> 

      </timeConstraint> 

      <update> 

            <toBeUpdated>IsExpress</toBeUpdated> 

            <value>Normal</value> 

      </update> 

      <action> 

            <name>TurnLightOff</name> 

            <id/><type/><description/> 

            <from>ChangeModeToNormal</from> 

            <FromId/><to>idel</to> 

      </action> 

</reactivity> 

Figure 8.15: The tag Reactivity of CoCoME TADL file 
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 <connectorType> 

      <name>ConnectorTypeCashBox_Inventory</name> 

      <connectorRoleType> 

            <name>ConnectorRoleType1CashBox_Inventory</name> 

            <constraint/> 

            <interfaceType> 

                  <name>CashBox_Inventory</name> 

                  <protocol/> 

                  <serviceType> 

                        <name>Info</name><id/><type>input</type> 

                        <constraint/> 

                  </serviceType> 

                  <serviceType> 

                        <name>YesExpress</name><id/><type>input</type><constraint/> 

                  </serviceType> 

                  <serviceType> 

                        <name>NotExpress</name><id/><type>input</type><constraint/> 

                  </serviceType> 

                  <serviceType> 

                        <name>CheckLastHour</name><id/><type>output</type><constraint/> 

                  </serviceType> 

                  <serviceType> 

                        <name>GetInfo</name><id/><type>output</type><constraint/> 

                  </serviceType> 

                  <serviceType> 

                        <name>AddToInventory</name><id/><type>output</type><constraint/> 

                  </serviceType> 

            </interfaceType> 

      </connectorRoleType> 

      <connectorRoleType> 

            <name>ConnectorRoleType2CashBox_Inventory</name> 

            <constraint/> 

            <interfaceType> 

                  <name>Inventory_CashBox</name> 

                  <protocol/> 

                  <serviceType> 

                        <name>Info</name><id/><type>output</type><constraint/> 

                  </serviceType> 

                  <serviceType> 

                        <name>YesExpress</name><id/><type>output</type><constraint/> 

                  </serviceType> 

                  <serviceType> 

                        <name>NotExpress</name><id/><type>output</type><constraint/> 

                  </serviceType> 

                  <serviceType> 

                        <name>CheckLastHour</name><id/><type>input</type><constraint/> 

                  </serviceType> 

                  <serviceType> 

                        <name>GetInfo</name><id/><type>input</type><constraint/> 

                  </serviceType> 

                  <serviceType> 

                        <name>AddToInventory</name><id/><type>input</type><constraint/> 

                  </serviceType> 

            </interfaceType> 

      </connectorRoleType> 

      <constraint/> 

      <descreption/> 

</connectorType> 

Figure 8.16: The tag ConnectorType of CoCoME TADL file 
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8.2 Evaluation 

 

In this Section, we evaluate the results of our approach by reviewing the proposed 

methodologies and comparing them with the previous works done by VMT tool [89] and 

Transformation tool [40].  

The VMT tool [89] generates the TADL description language of component-based 

systems by providing a graphical user interface for developers to manually design 

components, connectors and system configuration. The derived TADL file from the VMT 

tool represents the formal behavior model, which contains all XML schemas described in 

Chapter 7. Presently, the VMT tool does not have the facility of opening the TADL files 

created by tools, other than VMT.  

The Transformation tool [40] takes the obtained TADL description as the input file 

and transforms it to XML-format files for UPPALL and TIMES tools. The Transformation 

tool does not support the architecture type of TADL. That means the composite 

components and their interior sub-components cannot be transformed and verified by 

the UPPAAL and TIMES tools. By adding this feature in future, all component types of 

TADL description language can be verified by the model checking tools such as 

UPPAAL and TIMES. 

The drawbacks of the solution stated in [89] and [40] are mentioned in Chapter 3. 

Below, the significance of the solutions obtained by using the Formal Concept Analysis 

formalism is discussed.  

In this thesis, Formal Concept Analysis (FCA), a mathematical theory based on the 

formalization of concept hierarchy and lattice theory, has been applied for domain 

analysis. This effort itself is both new and novel. It was never attempted before. The 

application of FCA in the first stages of design has the advantage of constructing a 
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consistent class hierarchy. As a concrete example we refer to the implemented CoCoME 

case study, in which the functional requirement properties of the concept CashBox (see 

Table 8.2) consists of provided and requested functional requirements, data constraints, 

time constraints, updates and actions. First, the attribute variables of the concept 

CashBox are defined separately from the attribute variables of other concepts (see Table 

8.3). Second, the names of the functional requirement properties and their time 

constraints are distinctively defined by including the name of the concept CashBox, e.g., 

FRCashBox-SaleFinished_FRPay is one of the functional requirement properties of 

CashBox that provides the functional requirement SaleFinished and requests the functional 

requirement Pay. Third, the attribute variables like data constraints, updates, and actions 

which may be shared between the context tables are integrated and pruned in the 

merged context tables, e.g., DCMode_InSale is a shared attribute variable between 

CashBox and Cashier binary context tables (see Figure 8.2 and Figure 8.4) that has been 

merged in the CashDesk binary context table (see Figure 8.6).  

Besides, by extracting the implication rules, the user would be able to make the 

logical deductions and discover the intra-concept relations between the concepts, their 

functional requirements and the constraints of the functional requirements. As another 

concrete example we refer to the generated implication rules of the concept lattice 

CoCoME (see Figure 8.12). Each implication rule has the following structure: 

<rule> 

    <premise> 

         {FRCashBox-NotExpress__IFRIgnore} 

    </premise> 

    <consequence> 

        {Action_TurnLightOff, CashBox_, CashDesk, CoCoME, DCMode_Waiting, 

        UpdateDCIsExpress_Normal, UpdateDCMode_Ready} 

    </consequence> 

    <support>0.04</support> 

    <confidence>1.0</confidence> 

</rule> 
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The above implication rule implies that each object having the functional requirement 

attribute FRCashBox-NotExpress_IFRIgnore, with the support of four percent and the 

confidence of hundred percent, also has all the attribute variables within the 

consequence element. In other words, whenever the functional requirement FRCashBox-

NotExpress_IFRIgnore occurs, the data constraint Mode has the value Waiting, which is 

updated to Ready. Also, the data constraint IsExpress is updated to Normal, and the action 

TurnLightOff is triggered by the functional requirement NotExpress.  

Some guidelines are specified to merge the defined context tables (see the rules to 

compose and integrate partially defined context tables in Chapter 4). As an example, the 

time constraint definition of a functional requirement property has the following notation: 

TCFRCashBox-SaleFinished_FRPay=T1.0S that indicates the maximum allowed time to 

fulfill the functional requirement SaleFinished.  

It is important to mention that, the trustworthy credentials such as the safety and 

security requirements are identified in the context tables of FCA. As an example of 

security property we refer to the role privileges that are defined in CoCoME binary 

context table (see Figure 8.9). As an example, the role privilege RolePrivilege-

Cashier_Pay implies that any user having the role Cashier has the privilege of providing 

the functional requirement Pay. Also, the mentioned role privilege attribute is in incidence 

relation with the objects CashBox7, CashBox12, Cashier2, and Cashier3 having the 

functional requirement attributes FRCashBox-SaleFinished_FRPay, FRCashBox-

Declined_FRPay, FRCashier-Pay_FRCard, and FRCashier-Pay_FRCash, respectively. On 

the other hand, the negative role privilege attribute, e.g., RolePrivilegeNot-

Manager_IsMoreItem declares that any user having the role Manager does not have the 

privilege of access to provide the functional requirement IsMoreItem. 

An OWL ontology, as a formal representation of domain knowledge is automatically 

produced by the model transformation process. So, the concept hierarchy developed in 
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the concept lattice of FCA is correspondingly transferred to the class hierarchy in the 

resulting ontology. Finally, the OWL ontology CoCoME is opened in TopBraid Composer 

software tool. As a concrete example, we refer to the functional requirement properties 

of the concept Inventory in the concept lattice CoCoME (see Figure 8.10). After the model 

transformation process from concepts to ontology, the subconcepts of the concept 

Inventory have the corresponding class hierarchy generated in ontology, which are 

depicted as the subclasses of the class Inventory (see Figure 8.13).   

It has to be mentioned that, the implication rules derived from the concept lattice 

CoCoME are applied to the model transformation process from concepts to ontology, in 

order to capture the concepts holding the premise-consequence relationship. By 

detecting such intra-concept relations in concept lattice, we figured out the 

corresponding ontological classes and their relationships more accurately.  For instance, 

the following implication rule implies that when the functional requirement Approved is 

provided and the functional requirement Print is requested, with the confidence of 

hundred percent the data constraint Mode has the value InSale, and is updated to Done. 

Also, the functional requirement AddToInventory is triggered by providing the functional 

requirement Approved.  

<rule> 

    <premise>{FRCashBox-Approved__FRPrint} 

    </premise> 

    <consequence>{Action_AddToInventory, CashBox_, CashDesk, CoCoME, DCAuthorization_1,    

    DCIsExpress_Normal, DCIsMore_1, DCMode_InSale, DCPaymentMethod_2,   

    UpdateDCMode_Done} 

    </consequence> 

    <support>0.04</support> 

    <confidence>1.0</confidence> 

</rule> 
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The target ontology can be utilized as a shared knowledge containing reusable 

concepts, and the queries and assertions are exchanged with ontology among domain 

experts. Since the OWL ontology is based on logical models, the user can take 

advantage of using its reasoning engine to accomplish the syntax checking, consistency 

checking and subsumption. Therefore, if there would be any deficiency or contradiction 

in the developed ontology, the user can identify and fix it by modifying the relevant 

context tables of FCA. The iterative process of validation is conducted to ensure that the 

system design is syntactically and semantically correct with respect to ontology 

reasoning. The OWL ontology CoCoME was verified in TopBraid Composer software tool 

by running the inferences including superclass inference, and consistency checking 

inference and no contradiction or redundancy was found.  

One of the advantages of our methodology is that, the ontology verification process 

can be done for any partially defined context table and not necessarily for the final 

integrated context table. For example, when the concept CashBox along with its 

functional and non-functional requirements is defined in CashBox context table, it may be 

separately converted to build the OWL ontology CashBox, which is opened in TopBraid 

Composer and verified by running inferences.   

Afterwards, the verified ontology is automatically transformed to TADL [49] 

architecture description language which is the formal specification of the dependable 

component-based system. The implemented model transformation process supports the 

architecture type of TADL. That means, the composite components and their interior 

sub-components are generated properly. As an example, we refer to the CoCoME TADL 

file that consists of the component types CashBox, Cashier, and Inventory. The CashBox 

and Cashier components are defined inside an architecture type named CashDesk. The 

composite component CashDesk and the component Inventory are defined inside the 

architecture type StoreSystem.  
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Finally, for doing the formal analysis of design, the architecture of the trustworthy 

system, formally described in TADL, is taken as the input for the analysis stage and is 

transformed to the behavior protocols which are used by existing concept verification 

tools. The transformation tool [40] has used model checking and real-time schedulability 

techniques to verify that the system under development is both safe and secure. This 

tool automatically generates two model types from a TADL description. One is the 

UPPAAL model on which the security and safety properties of the system under design 

are formally verified. The second type is the TIMES model, on which real-time 

schedulability analysis is performed.  

The CoCoME TADL file, which is generated through the provided model 

transformation process in this thesis, was examined by the Transformation tool [40] to 

generate the UPPAAL and TIMES model types. However, since the Transformation tool 

[40] does not support the architecture type in TADL, the inner level component types 

were not created in the output models. Therefore, we temporarily changed the TADL file 

so that all defined components within the architecture types were transferred to the first 

level of the hierarchy. In other words, the hierarchy of the components was changed to a 

linear architecture. After doing this adjustment, the CoCoME TADL file was converted by 

the Transformation tool [40] and the output model was successfully evaluated by the 

UPPAAL verification tool. 
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Chapter 9 

 

Conclusion 

 

 

This thesis has introduced a formal approach that aims to perform domain analysis 

by an application of Formal Concept Analysis (FCA) theory.  Although the work 

presented in this thesis was primarily motivated by the methodology proposed in [48] for 

the development of dependable software systems, the framework that has been 

developed in this thesis will be useful for any component-based software development 

methodology. The current Component-Based Software Engineering (CBSE) practices 

have not adequately dealt with the practical aspects of domain analysis, yet all CBSE 

approaches agree on its importance. When faced with the construction of trustworthy 

software it is necessary to develop trustworthiness criteria at the domain level [42].  

Many of the available solutions in CBSE either cannot or do not provide a 

mechanism for constructing and specifying trustworthiness criteria at the domain level. It 

is also the case that existing solutions do not making use of formalisms and easy-to-use 

formal analysis tools in the current analysis methods. The results of this thesis address 

these drawbacks and offers effective solutions. 

A trustworthy domain model is constructed in the thesis, by introducing and 

implementing automatic model transformation approaches.  The OWL ontology obtained 
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from the initial FCA models may be verified by running the inference checking of 

ontology software tools, and/or comparing to other existing ontologies in the same 

domain. The trustworthy requirements are specified at the first stage of design activities 

and the obtained OWL ontology is transformed to the target TADL component model. 

The trustworthiness properties are thus stated based on domain properties. We 

demonstrated this methodology by means of the Common Component Modeling 

Example (CoCoME) [36] case study. 

 

9.1 Summary of Results 

 

In this section, we discuss and evaluate the results achieved in this thesis with 

respect to the contributions stated in Chapter 1.  

1. Defining “Formal Concepts” and “Trustworthy Properties” using FCA through 

domain analysis.  In Chapter 4, we provided a domain analysis methodology for 

capturing the formal concepts and constructing formal context tables using FCA 

mathematical theory. The research problems, proposed solutions, and limitation 

are stated below: 

 Problem 1: The currently available analysis methods do not use formalisms, 

or have difficult to use formal analysis tools.   

 Solution 1: The application of FCA in the first stages of design had the 

advantage of constructing a concrete formal concept hierarchy. Moreover, the 

rules extracted by the formal methods enabled us to make the logical 

deductions to identify the relations among the concepts and the design 

constraints.  
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 Problem 2: The maintenance of the messy context tables defined for the 

software systems containing large number of intent attributes, is time 

consuming and error-prone. 

 Solution 2: We took advantage of many-valued context tables and converted 

them to their corresponding binary context tables.  

 Limitation: In the provided approach, capturing formal concepts from the 

system requirements specifications, also defining and merging the formal 

context tables are manually done. A future contribution can be the application 

of text mining techniques and using the relevant tools to reduce time and 

cost. However, the role of the designer may not be ignored, since some 

domain expert knowledge is required in this field. 

2. Defining rules and conventions to specify “Component-based Artifacts and 

Trustworthy Properties” in formal context tables.  In Chapter 4, we provided the 

rules to categorize the concepts and determine the name conventions for the 

various attribute names of the formal context tables. Also, the safety, security 

and timeliness properties were defined in the formal context tables. The research 

problems, proposed solutions, and limitation are stated below. 

 Problem 1: The component models are localized in the selection of the 

appropriate fault tolerant mechanisms at the final development stages, and 

not at the primary steps of software development process. 

 Solution 1: The trustworthy requirements were defined as the attributes of the 

formal context tables, at the first steps of the software design. 

 Limitation: The proposed methodology provides the facility of composing 

safety, security, and timeliness properties. Further research is required to 
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extend the rules for defining other trustworthy requirements such as reliability 

and availability. 

3. Defining rules and conventions to integrate “Partially Defined Context Tables” 

and construct “Unified Formal Concept Lattice”.  In Chapter 4, the integration 

rules were introduced to merge and prune the partially defined context tables in 

order to construct a unified formal context table. Also, the defined priorities 

identified the group of BCTs to be combined. Some redundant attributes were 

removed, some properties of attributes were converted to attributes and some 

attributes were unified and merged together. 

 Limitation: The integration process of partially defined context tables is 

manually done. Further research is required to investigate automated 

methods.  

4. Defining and implementing a “Model Transformation Approach” to generate 

“OWL Ontology” containing the “Trustworthy Requirements” from formal concept 

lattice.  In Chapters 5 and 6, a model transformation approach was provided to 

transform concept lattice to OWL ontology. The obtained OWL domain model 

contains the trustworthy criteria. The research problems, proposed solutions, and 

limitation are stated below: 

 Problem 1: The concept lattice that is transformed to OWL ontology is not a 

reduced labeling lattice, but a complete lattice, in which every node is marked 

by all corresponding extents and intents. This will lead to a great cluttering of 

the picture and the redundancy of data. 

 Solution 1: The reduced labeling technique was used to overcome this 

problem. In Chapter 6, the transformation algorithm “Lattice Reducer” was 

developed as the first step of the proposed model transformation technique 

and transformed the concept lattice to the reduced labeling lattice.  
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 Problem 2: Besides the „subconcept-superconcept’ order among the nodes of 

a concept lattice, there is an essential need to realize other relations among 

the attributes of a context.  

 Solution 2: In Chapters 5 and 6, the implication rules derived from the 

concept lattice were applied to the model transformation process in order to 

capture the concepts holding the premise-consequence relationship. By 

detecting such intra-concept relations in concept lattice, we figured out the 

corresponding ontological classes and their relationships, more accurately.   

 Limitation: Whenever the designer makes any change in the target ontology, 

the modifications are not reflected in the defined formal context tables in 

FCA. Further research is required to implement reverse transformation 

process from ontology to FCA context tables. This new opportunity will 

provide the facility of backward traceability to reduce the effort required to 

determine the impacts of modifications. 

5. Generating “TADL Specification” of the component-based system by 

implementation of a “Model Transformation Technique” from OWL ontology.  In 

Chapter 7, we implemented a model transformation framework to automatically 

produce the TADL specification of reusable component-based architecture of the 

relevant trustworthy system. 

 

9.2 Assessment 

 

The formal approach presented in this thesis is a contribution to CBSE via taking 

advantage of formalism, provided by FCA mathematical theory and OWL domain model 

ontology. When the obtained OWL ontology passes the verification of the reasoning 
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check, it is transformed automatically to the TADL architecture description language 

which is the formal specification of the dependable component-based system.  In this 

section, we evaluate our formal approach with respect to completeness, reusability, 

testability, and usability criteria. 

Completeness: Are the formal artifacts generated in our methodology complete? Is the 

completeness criteria retained through the model transformation processes?  

The completeness of the constituent elements of our methodology is illustrated as 

follows:  

 Ontology: Through model transformation process, all derived formal concepts are 

transformed to their corresponding artifacts in OWL ontology. It can be confirmed 

from the provided rules in Chapter 5 that for each defined formal concept 

belonging to the context tables, there is a corresponding class, property or 

individual in the target OWL ontology. This OWL ontology can be compared to 

the corresponding existing ontologies in the same domain to verify its 

completeness. Any incompleteness detected in this step can be adjusted by 

returning back to the context table definition step.  

 Component Model: The obtained OWL ontology was transformed to the formal 

component model which includes all the elements specified in the TADL XML 

Schemas presented in Chapter 7.  Since the created TADL description is a one 

to one mapping from a complete OWL ontology, then we can claim that it is also 

complete.  

 Trustworthiness: All trustworthy properties regarding to the TADL specification 

such as safety, security, and timeliness are sufficiently defined as non-functional 

requirements from the first stages of design in the FCA formal context tables. 

The same trustworthy specifications are entirely transformed to the generated 

OWL ontology and also to the target TADL component model. So, the 
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transformation is complete with respect to trustworthiness property stated at the 

domain level, however only domain experts can ensure an acceptable 

completeness level for the property.  

 Case Study: We have tested our approach on Common Component Modeling 

Example, which is a benchmark case study for testing the modeling ability of 

component models. The results are provided in Chapter 8. It shows that our 

methodology is capable of modeling such case study, by doing domain analysis, 

building OWL ontology, and generating TADL specification of such component 

model.  

Reusability: Does the formal artifacts generated in our methodology support reuse?  

The reusability of the constituent elements of our methodology is illustrated as follows: 

 Formal Concepts: The objects and attributes as the abstract elements of the 

formal context tables are reusable and may be defined in several formal context 

tables. Also, every formal context table corresponding to a concept in the use 

case is defined separately. So, they may be merged with other formal context 

tables or may be reused for other systems.    

 Ontology: Building ontologies is a major approach for capturing and representing 

reusable knowledge. The ontological elements including classes, properties and 

individuals may be used for creating and storing reusable building blocks in a 

well defined machine-readable format. Also, the ontologies can be merged 

together. In this thesis, the reusable concepts are derived from ontology and 

transformed to reusable components. 

 Component Model: Since every TADL element is described separately, it is 

possible to reuse these definitions for different systems. The defined repository 
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tool hosts the component-based system specifications so that the elements can 

be reused. 

Testability: Is it possible to validate whether or not the specifications of the formal 

artifacts generated in our methodology are right?   

The testability of the constituent elements of our methodology is illustrated as follows: 

 Formal Concepts: There are well-formed rules and name conventions provided in 

Chapter 4 for defining and verifying the objects and various attribute types of the 

formal context tables. Also, each partially defined context table can be 

automatically transformed to the partially formed OWL ontology and verified by 

the reasoning engine of the ontology software tools. On the other hand, the 

implication rules derived from the concept lattice can be considered as a 

confident source of data to verify the correctness of the relations holding among 

the concepts. 

 Ontology: OWL ontology can be verified by the reasoning engine of the ontology. 

The verification includes syntax and consistency checking to ensure that the 

ontology does not contain contradictions. It also includes subsumption to ensure 

that subclasses are defined correctly.  

 Component Model: There are some well-formed rules provided for the elements 

of the TADL formal model. Also, the Transformation tool [40] transforms the 

TADL description to XML files for UPPAAL and TIMES model checkers. As an 

example, UPPAAL model checker performs the required verification, simulation, 

and schedulability analysis.  

Usability: Are the process steps easy for the designer to follow?  

The usability of the constituent elements of our methodology is illustrated as follows: 
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 Formal Concepts: Although FCA is a mathematical theory, following the provided 

rules and name conventions, and defining the abstract elements of the formal 

context tables in a FCA software tool is not a complex task. Also, the integration 

rules are provided to merge and prune the partially defined context tables. The 

rest of the process consists of drawing concept lattice diagram, extracting lattice 

in an XML file, generating the implication rules and exporting them to an XML file, 

which are automatically accomplished by Lattice Miner software tool.    

 Ontology: OWL ontology is a formal domain model that is based on description 

logics. The formalism is working in the background, while the OWL ontology is 

automatically generated by the model transformation techniques. The results are 

represented in the user interface of the TopBraid Composer software tool, and 

the user can easily run the automated reasoning to verify the obtained ontology. 

 Component Model: The formal component model, which is automatically 

generated by implementing the model transformation techniques, is based on the 

TADL XML Schemas. Then, the Transformation tool [40] automatically produces 

two extended timed automata to be verified by the model checking tools UPPAAL 

and TIMES. Thus, the whole process is supported by tools.  

 

9.3 Case Study 

 

In this section, we briefly state the work done to apply our design methodology on a 

benchmark case study in the field of component-based development. The case study is 

the Common Component Modeling Example (CoCoME) [36]. The goals of applying our 

methodology on this case study are: 
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 Test the domain analysis and construction of the formal context tables and 

concept lattice in Lattice Miner software tool; the application of FCA in the 

first stages of design had the advantage of constructing a consistent class 

hierarchy.  

 Test the rules to compose partially defined context tables, based on the 

TADL component elements. The trustworthy credentials such as safety, 

security, and timeliness were included.  

 Test the rules to integrate  partially defined context tables;  

 Test the implication rules extracted from the derived concept lattice. By using 

the implication rules, the user can make the logical deductions to verify the 

intra-concept relations between the concepts and design constraints. 

 Test the automatic model transformation process, which transforms concept 

lattice to OWL ontology. By using the implication rules derived from concept 

lattice, ontological classes and their relationships were figured out. 

 Verification of the obtained OWL ontology in TopBraid Composer software 

tool by running the inferences including superclass inference and consistency 

checking inference. No contradiction or redundancy was found. 

 Test the automatic model transformation process, which transforms the 

verified OWL ontology to TADL specification. The implemented model 

transformation supports the architecture type of TADL. It means the 

composite components and their interior sub-components were generated 

properly. 

 Test the automatic model transformation process, which transforms TADL 

description to extended timed automata. 
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 Test the verification of the properties of trustworthiness in the obtained 

extended timed automata by the UPPAAL model checker. The safety and 

security properties were successfully evaluated by the UPPAAL verification 

tool. 
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Appendix A.  

Table of Requirements for Evaluating Ontology Tools 

 

Features 

Protégé 

(w/OwlViz) 

Altova 

SemanticWorks 

SMORE 

/SWOOP 

CMAP 

Tools(COE) 

 

TopBraid 

Create Presentations 2 2 2 6 2 

Present Presentations (Step through) 2 2 2 8 2 

Record Meeting Minutes - Template 2 2 2 6 2 

Linking between maps 
4 4 2 7 5 

Word Processor import/export 2 4 5 7 2 

Save Map as Template 4 5 4 7 4 

Spellchecking 3 6 6 9 5 

File Attachments 1 2 4 7 7 

Usability      

Personal productivity (Easy Mind 

Map creation) 

3 4 2 8 5 

Ease of use 6 3 5 7 8 

Technical and User Support      

Customizable elements for maps 3 4 2 8 5 

Exposed SDK 10 2 4 6 10 

Support Materials 9 7 5 8 10 

Speed 8 6 8 7 8 

System requirements (PC specs) 9 7 9 9 8 

User community support 10 8 6 9 9 

Help support 9 9 6 9 9 

Cost 10 7 10 10 4 

Company support 10 8 4 8 9 

Company stability 8 10 5 7 9 

Mac Support 10 1 1 10 10 

IBM-PC Support 10 10 10 10 10 

Ontology Related      

Create Ontology 10 10 6 6 9 

Export OWL-RDF file 10 10 9 8 10 

Create named links 8 9 7 9 10 

Total Score 70.05 62 54 79 73.90 

 


