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ABSTRACT 

Integrated Production-Inventory Models in Steel Mills Operating in a 

Fuzzy Environment  

Rami Afif As’ad, Ph.D. 

Concordia University, 2010 

 

Despite the paramount importance of the steel rolling industry and its vital 

contributions to a nation’s economic growth and pace of development, production 

planning in this industry has not received as much attention as opposed to other 

industries. The work presented in this thesis tackles the master production scheduling 

(MPS) problem encountered frequently in steel rolling mills producing reinforced 

steel bars of different grades and dimensions. At first, the production planning 

problem is dealt with under static demand conditions and is formulated as a mixed 

integer bilinear program (MIBLP) where the objective of this deterministic model is 

to provide insights into the combined effect of several interrelated factors such as 

batch production, scrap rate, complex setup time structure, overtime, backlogging and 

product substitution, on the planning decisions.  

Typically, MIBLPs are not readily solvable using off-the-shelf optimization 

packages necessitating the development of specifically tailored solution algorithms 

that can efficiently handle this class of models. The classical linearization approaches 

are first discussed and employed to the model at hand, and then a hybrid 

linearization-Benders decomposition technique is developed in order to separate the 
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complicating variables from the non-complicating ones. As a third alternative, a 

modified Branch-and-Bound (B&B) algorithm is proposed where the branching, 

bounding and fathoming criteria differ from those of classical B&B algorithms 

previously established in the literature. Numerical experiments have shown that the 

proposed B&B algorithm outperforms the other two approaches for larger problem 

instances with savings in computational time amounting to 48%.  

The second part of this thesis extends the previous analysis to allow for the 

incorporation of internal as well as external sources of uncertainty associated with 

end customers’ demand and production capacity in the planning decisions. In such 

situations, the implementation of the model on a rolling horizon basis is a common 

business practice but it requires the repetitive solution of the model at the beginning 

of each time period. As such, viable approximations that result in a tractable number 

of binary and/or integer variables and generate only exact schedules are developed. 

Computational experiments suggest that a fair compromise between the quality of the 

solutions and substantial computational time savings is achieved via the employment 

of these approximate models.    

The dynamic nature of the operating environment can also be captured using the 

concept of fuzzy set theory (FST). The use of FST allows for the incorporation of the 

decision maker’s subjective judgment in the context of mathematical models through 

flexible mathematical programming (FMP) approach and possibilistic programming 

(PP) approach. In this work, both of these approaches are combined where the 

volatility in demand is reflected by a flexible constraint expressed by a fuzzy set 

having a triangular membership function, and the production capacity is expressed as 
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a triangular fuzzy number. Numerical analysis illustrates the economical benefits 

obtained from using the fuzzy approach as compared to its deterministic counterpart.      
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Chapter 1 

 Introduction  

 

1.1    Background and Motivation  

The intensive competition in today’s operating environment has made it 

increasingly important for industrial enterprises to continuously seek the best 

practices towards managing their operations and, eventually, differentiate themselves 

from their competitors. In particular, the optimization of production and inventory 

related decisions provides a vital step towards a better fulfillment of customers’ needs 

at a minimum cost. Such decisions determine the required machining capacity, 

workforce levels, space utilization among other factors, which all combined have a 

direct impact on the financial health of an organization.    

Steel manufacturing, for instance, represents one of the backbone industries 

greatly affecting a nation’s economic growth and pace of development. Needless to 

say, a substantial portion of today’s indispensable products that are used on a daily 

basis and serve multiple purposes have steel ingredient in them, in one form or 

another, ranging from sophisticated high-tech products such as cars and airplanes, to 

much simpler products such as kitchen utensils. Steel mills, which are the focus of 

this research, produce a variety of the most essential products including steel wires, 
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pipes, bars, rods and sheets. In North America only, more than 100 million tons of 

steel are produced annually with an estimated value of over 50 billion dollars (Denton 

et al. 2003).   

 In general, the iron and steel industry is characterized by being both capital and 

energy intensive and, as such, the importance of effective production planning in such 

industry is by no means less than that in any other industry. For a rolling mill 

producing between 300,000 and one million tons of steel annually, the capital 

investment is measured in tens of millions of dollars (Denton et al. 2003). Upon 

realizing the major investments associated with the construction and operations of 

steel plants, the main concern of steel manufacturers has been the adoption of the 

latest technology advances in the production process as well as finding better ways to 

manage the rapid increase in product variety. However, in spite of the significance of 

steel industry, planning and scheduling problems in iron and steel production have 

not drawn as wide attention of the production and operations management research 

community as many other industries such as metal cutting and electronics industry 

(Tang et al. 2001). The work presented in this thesis targets this deficiency and 

bridges the gap between theory and practice through dealing with a realistic case 

study encountered in steel rolling mills. From a theoretical standpoint, the production 

planning problem addressed in this thesis falls under the broad class of the well 

known dynamic lot-sizing problem (DLSP). However, several practical extensions 

are incorporated in order to account for the technological constraints associated with 

the manufacturing process. Hence, it is important to step back and establish the 
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theoretical background behind the basic DLSP and shed some light on some of its 

distinguishing characteristics.  

1.2    A closer look at the dynamic lot-sizing problem  

Typically, this class of problems refers to medium term planning decisions in 

which the production mix and quantities are usually planned ahead on a weekly or a 

monthly basis. The planning horizon is divided into a number of discrete time 

intervals of equal length, each having its own demand, hence the term dynamic. In a 

manufacturing firm context, a lot refers to the items produced consecutively, one after 

the other, on the same machine, production line, or facility since the last setup. The 

lot size is simply the number of items contained in a particular lot. Hence, lot-sizing 

is the activity to obtain simultaneously in which period, and in which number (i.e. lot 

size) different items should be produced such that the production plan is feasible. In 

general, making the right decisions in lot-sizing will affect directly the system 

performance and its productivity, which are important for a manufacturing firm’s 

ability to compete in the market (Karimi et al. 2003). 

However, a clear distinction has to be made between two different types of the 

LSPs. First, the continuous time scale, constant demand and infinite time scale lot 

sizing problems. The credit of initiating the work related to this problem goes to 

Harris (1913) where he introduced the widely used nowadays economic order 

quantity (EOQ) model. The basic economic manufacturing quantity (EMQ) model 

and the economic lot scheduling problem (ELSP) also fall under this category. The 

other class deals with the discrete time scale, dynamic demand and finite time horizon 

problems, usually referred to as the dynamic lot sizing problem (DLSP). Typically, 
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the latter case involves the development of a mathematical model that seeks the 

minimum setup cost, production cost and inventory holding cost. In reality, these 

costs differ from one item to another depending on the complexity and size of the 

item. Other types of costs include backorder, lost sales, outsourcing and rework cost 

depending on the context of the problem. The simplest form of the DLSP, which is 

the uncapacitated single item lot-sizing problem (USILSP), has been easily 

formulated in the literature as a mixed integer linear program (MILP) as follows:  

Minimize    ( )
1

T

t t t t t t
t

Z S Y C X h I
=

= + +∑           (1.1) 
 

      Subject to 
 

                    1t t t tI I X d−= + −         1, .....,t T=                    (1.2) 
 

          t t tX M Y≤          1, .....,t T=                    (1.3) 
 

       { }0,1tY ∈           1, .....,t T=                    (1.4) 
 

  , 0t tX I ≥          1, .....,t T=                    (1.5) 
 

Where: 
 

tS  : Setup cost in period t  

tC  : Variable unit production cost in period t  

th  : Unit inventory holding cost in period t  

td  : Demand in period t  

tY  = 
1 if 0tX >  

0   Otherwise  

tX  : Production quantity in period t  

tI  : Inventory at the end of period t   

tM  = 
T

k
k t

d
=
∑  
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The objective is to minimize the total cost composed of setup, production and 

inventory holding costs. Constraints (1.2) represent the inventory balance equations, 

and constraints (1.3) are the fixed charge constraints which establish the relation 

between the binary variable tY  and the continuous variable tX , and also set an upper 

bound on the production quantity per period.  

1.3    Characteristics of the dynamic lot-sizing models 

The DLSP covers a wide spectrum of production planning problems encountered 

in several industrial applications. Depending on the features of each, the DLSPs range 

from simple ones, which can be solved to optimality with exact algorithms such as 

the USILSP, to much more complicated ones (NP-complete) for which no optimal 

solution exists and a heuristic solution is adopted. Figure 1.1 provides a classification 

of the DLSPs based on the characteristics distinguishing them from one another. The 

figure combines and extends the work of Karimi et al. (2003) and Haase (1994).  

 
 

Figure 1.1: Characteristics of the dynamic lot-sizing problem 

Lot-sizing   
problems 

Planning horizon 
Big bucket vs. 
small buckets 

Number of levels 
Single-level vs. 

multi-level  

Number of products 
 Single-item vs. 

multi-item 

Capacity restriction
Uncapacitated vs. 

capacitated 

Nature of the 
product 

Demand Pattern 
- Static vs. dynamic

- Deterministic, 
probabilistic or fuzzy

Setup structure 
Simple vs. 
complex 

Service policy 
Backlogging vs. lost 

sales 



 6

1.3.1     Planning Horizon 
 

 The planning horizon for the DLSP is usually finite and it might be quite short 

that only one item can be produced in that period, or long enough to accommodate the 

production of several items within the same period. In the latter case, the problem is 

called big bucket where this differs from the small bucket, the first case, in the fact 

that it also considers the sequence of the production lots, which gives rise to the well 

known lot sizing and scheduling problem. In the literature, lot sizing and scheduling 

decisions are usually treated independently for simplifying the overall decision 

making problem (Ozdamar et al. 1998).    

 
1.3.2     Number of levels 
 

 Under this characteristic, the problems are classified as single-level or multi-level. 

When there does not exist a parent-component relationship between the items, or 

when the product is simple in the sense that the end product is directly produced from 

the raw material with no intermediate subassemblies, a single-level problem arises. 

Examples include metal casting and forging operations. However, when there exists a 

parent-component relationship among the items such that the demand at one level 

depends on that for its parent’s level, we have a multi-level problem. Three types of 

multi-level problems can be further distinguished based on the product structure. 

These are: serial, assembly and general as shown in Figure 1.2 below. Obviously, the 

single level problems are a lot easier to solve as compared to the multi-level models.  
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    Figure 1.2: Various product structures 
 
1.3.3     Number of products 
 

 The number of end items accounted for in a lot-sizing model greatly affects the 

complexity of the problem. If there is only one end item (final product) to plan for, 

then a single-item problem arises. On the contrary, if planning is carried out for 

multiple end items, the problem becomes more involved and it is a multi-item 

planning problem.    

 
1.3.4     Resource constraints 
 
 In practice, a resource might refer to a machine capacity, storage space, available 

budget or manpower. Once abundant amount of resources exist, the problem is coined 

as “uncapacitated”. When there exist a restriction on one of the resources, e.g., 

production capacity, which resembles most practical real life systems, the problem is 

“capacitated” which adds another dimension of complexity to the model. 

  
1.3.5     Nature of the product 
 

 The nature of the end items also affects the production strategy, as perishable 

items shall not be produced way ahead of the time they are actually needed since they 

Serial Assembly General Level 

Final 
item 1 

2 

3 

4 
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might become obsolete while still in stock. The diary products set a good example for 

such items. Conversely, automobiles, for instance, represent those items which 

deteriorate over time reducing their value once sold after being in stock for a long 

time. Non-deteriorating items, those maintaining their value regardless of the storage 

period, are easier to deal with as it might be more economical to produce them ahead 

of time in periods of excess capacity.   

     
1.3.6     Demand Pattern  
 

 The firm might be facing a static demand over time, or one that changes from a 

time period to another (dynamic demand). Viewing it from a different perspective, if 

the demand is known with a high degree of certainty, then it is called “deterministic”. 

However, obtaining an exact value of the market demand might not be easily 

achievable or even not at all in case of a highly volatile demand, which necessitates 

the use of probability distributions to represent the “stochastic demand”. Another 

pattern that is commonly overlooked by researchers is dealing with the demand as a 

fuzzy quantity. That is, instead of assigning it a single crisp value, the demand is 

represented by a set that spans over a certain range, with a likelihood value specifying 

the degree of compatibility of each element with the set. The range and the 

compatibility (membership value) for each element is decided upon through 

experience and human subjective judgment, as explained in Section 1.4.   

 
1.3.7     Setup structure 
 

 Typically, whenever the manufacturing process is switched from producing one 

product to another, a setup activity is incurred, which entails a setup time as well as 
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an associated setup cost. A clear exception is the labor based operations where 

machinery is not involved such as some assembly processes. While a simple setup is 

the one independent of the products sequence, a setup activity that depends on the 

sequence of the products gives rise to a more complicated problem, which can be 

modeled as the famous traveling salesman problem (TSP).      

 
1.3.8     Service policy 
 

 The inventory levels maintained by the firm depend on its policy when it comes to 

demand fulfillment. Backlogging occurs when the demand of the current period 

cannot be satisfied on time and is thus satisfied in future periods. On the other end, a 

demand that is not satisfied momentarily in the same period with no chance of 

fulfilling it afterwards is lost and hence the title “lost sales”. The options of 

outsourcing or working overtime could also be utilized to handle the excess demand.  

At this juncture, it is important to establish the equivalence between the master 

production scheduling (MPS) problem and a specific class of DLSP. Both MPS and 

the big-bucket, multiple-item, single-level DLSP establish the production quantities 

for the final product in each period. The inventory management literature usually 

coins the term DLSP to refer to this class of problems while the production planning 

researchers mostly coin the MPS term. In this thesis, the production planning problem 

is tackled at the MPS level and hence the two terms are used interchangeably.  

1.4     Fuzzy set theory as applied to the lot-sizing problem  

 In reality, firms operate in a rapidly changing and constantly evolving 

environment, where several external factors such as market, technology, etc., play an 
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important role. As a result, the certainty assumption imposed in most lot-sizing 

models is often unsatisfied as the estimation of model parameters is based on the 

prediction of future events. Whenever there is a high level of ambiguity involved, the 

Fuzzy set theory (FST) approach stands out as the favorable one. In the second and 

third parts of this thesis, we make use of the FST to account for the uncertainties 

associated with customer demand and production capacity. The suitability of 

choosing the fuzzy tool to represent these quantities is briefly discussed below.    

1.4.1     Fuzzy demand   

 
When dealing with a make-to-stock (MTS) environment, the decisions made in a 

typical lot-sizing problem are of medium range planning horizon, which have a 

typical time frame ranging from a week to several months. Since the main goal of a 

lot-sizing model is to optimally decide on the production quantities and timings for a 

certain number of time periods in the future, lots of uncertainties are involved due to 

the continuously evolving nature of the environment in which a firm operates which 

makes the forecasts for future customer demand less reliable. With the multi-item 

case, the uncertainty is even more obvious in the sense that it might be associated 

with the volume or the mix. This uncertainty that is associated with future demand 

can be specified based on experts’ opinion and managerial subjective judgment. 

Possible representation for an uncertain demand using fuzzy sets is as follows: 

(a) Demand is around md , but definitely not less than ld  and not greater than ud . 

This is represented by a triangular fuzzy number.  
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(b) Demand definitely falls in the interval [ ],l ud d  with a high degree of possibility 

to fall in the smaller interval [ ],lm umd d . This is called a trapezoidal fuzzy 

number. 

(c) Demand is much larger than ld , represented by a linear membership function. 

(d) Demand is much smaller than ud , represented by a linear membership function.     

The above natural language expressions can be represented as fuzzy sets with the 

possibility distributions shown in Figure 1.3. 

       Figure 1.3: Alternative fuzzy sets to represent fuzzy demand 
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A membership function of fuzzy customer demand can be derived either from 

subjective manager belief or from its probability distribution if it exists (Dubois and 

Prade 1994). However, it is important to note that possibility distribution differs from 

the probability distribution both in principle and in practice. Petrovic et al. (1999) 

demonstrate the suitability of using fuzzy sets to describe customer demand through 

an example: 

  “Consider customer demand as in Figure 1.3 (b). Suppose that circumstances have 

brought into existence a strong belief that customer demand can be 2+ ud  with 

possibility 1. In such a case, it is easy to modify the existing possibility distribution by 

simply adding a new possible value of demand with no other changes of the 

distribution. Let us notice that such an intervention, having a probability distribution, 

is not straightforward at all”.   

In some practical situations, the demand pattern can be adequately modeled with 

deterministic or probabilistic values. However, in other situations, the validity of such 

representation is highly questionable. Examples include: 

1. A company entering a new market sector and aiming towards building a chain of 

new customers.  

2. The product is newly introduced to the market, and the company has no clue of 

what the future demand pattern would look like.   

3. In the absence of reliable historical data of the demand that are representative of 

the future demand, or when these data are not a trusted source any more due to a 

change in the operating environment or other factors (the global financial crisis 

that took place in 2008-2009 sets a good example for this case).     
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As the first to introduce the application of fuzzy set theory to the DLSP, Lee et al. 

(1990) identified two advantages of using fuzzy numbers and membership functions 

to model demand: 

1. Fuzzy set theory allows both the uncertain demand and the subjective judgment of 

the decision maker to be incorporated into the lot-sizing decisions.  

2. Fuzzy part period balancing, which is a heuristic used to solve the USILSP, 

provides a richer source of data for the decision maker to use in terms of the 

membership value associated with the lot sizes and costs.  

 

1.4.2     Fuzzy capacity 
 

Production processes typically operate at a finite rate which, in most practical 

situations, limits the firm’s capability to supply a wider range of products to various 

markets. In most of finite capacity lot-sizing models available in the literature, the 

capacity is assumed to have a crisp value known in advance. There are several factors 

associated with the capacity level. Namely, machines, workforce, shop floor space 

requirements, and availability of raw material, or work-in-process once needed, and 

budget availability. During the operation of the production processes, unforeseen 

events associated with one of the previous factors might be encountered.  

Obviously, the major elements of a production process are machines, equipments 

and tools. As a machine is composed of several mechanical and electrical 

components, there is always a possibility of a machine breakdown or a failure of parts 

happening. Even with a preventive maintenance (PM) policy in place, a PM activity 

is unlikely to restore the machine back to the “as good as new” condition unless a 

complete overhaul takes place. Furthermore, in case of an unplanned process failure, 
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the duration of a corrective maintenance (CM) action aimed at restoring the process 

to the operational status depends on the parts to be fixed or replaced and on the 

availability of spare parts, as needed. Another incident frequently encountered is the 

production of faulty or defective items. Such items consume partial capacity, during 

production, with no actual contribution to the output delivered to the customer. In 

addition, there is a setup activity associated with switching production from one item 

to another, and the duration of this setup may vary between workers depending on 

experience. A setup delay can happen or, conversely, a setup might be accomplished 

faster than usual due to a skilled worker performing it.     

Even when machine’s availability turns out to be precisely as expected, the 

workers responsible for operating those machines add another dimension of 

uncertainty to the capacity. Workers absenteeism or on-job injuries due to a 

hazardous working environment, which is the case for steel mills, could cause the 

machine to be idle for some time unless a substitute worker is readily available. With 

no obstacles concerning machines, labor or space, the production process might still 

starve due to late deliveries of work-in-process from the previous production process, 

or a late arrival of a shipment of raw material from an external supplier.   

The need to deal with capacity as a vague and imprecise quantity rather than 

assigning it a single crisp value stems from the uncertainties associated with the 

above mentioned factors affecting capacity. Unplanned machine breakdown, faulty 

production, workers injury, space limitation and electricity outage, all result in a 

production time capacity being less than what is planned for. On the other hand, 

working extra shifts or overtime, and workers operating more efficiently contribute to 
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a capacity larger than what was thought of. Hence, the assumption of constant 

capacity is clearly an oversimplified version of the situations encountered in practice, 

where the above factors are completely ignored. A better approach would be to 

represent the capacity with a fuzzy set, triangular or trapezoidal as shown in parts (a) 

and (b) of Figure 1.3 respectively. The most likely value(s) would represent the 

expected available capacity based on experience, intuition and subjective human 

judgment. The left-most and the right-most values represent the most pessimistic and 

the most optimistic capacity levels, respectively.  

1.5     Research Objectives 
  

 Effective production planning at steel rolling mills bares a great importance and 

plays a major role towards reducing the high costs associated with constructing and 

operating steel plants. Moreover, there are some distinguishing features of the steel 

rolling process that sets it apart from the other industries and that needs to be taken 

into consideration in order for the developed production plans to be implementable. 

These features include complex setup time structure, batch manufacturing, scrap and 

production rates that depend on the input and output material, overtime, allowed 

backlogging and one-way substitutability of the end-items.  

 Our objective in the first phase of this research is to develop an optimized master 

production schedule (MPS) that considers the above interrelated factors under static 

demand conditions. Studying these factors under static conditions shall provide 

greater insights on the combined effect they have on the production planning 

decisions and the tradeoffs amongst them. As the problem involves multiple inputs 

and multiple outputs (i.e., both are available in different sizes and grades as explained 
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later in Chapter 3), the objective is not only to optimize the production and inventory 

of the end-items, but also to establish the input-output combinations and accordingly 

the raw material (i.e., input) procurement and inventory policy. It is also the objective 

of this phase to define and develop a unified framework for the existing solution 

methodologies capable of handling the proposed mathematical model. We seek to 

study several alternative solution algorithms with varying performance capabilities in 

terms of efficiency and quality of solutions obtained.  

The second phase of this research is geared towards optimizing the production 

and inventory related decisions while taking into account the dynamic nature of the 

operating environment. This dynamicity is mainly attributed to highly changing 

customers’ preferences coupled with their heightened expectations of shortened 

delivery lead times. Under these conditions of demand volatility, the development of 

an optimized MPS turns out to be a challenging task. Hence, to achieve the stated 

objective, we need to develop efficient mathematical models that capture the frequent 

changes in the problem parameters and quickly react to these changes on a rolling 

horizon basis.  

The rigidity requirement of classical mathematical programming techniques is 

overcome through the use of FST which allows for uncertainties in demand to be 

taken into account. The second face of this research also aims at establishing the 

benefits obtained via adopting fuzzy mathematical programming techniques as 

opposed to the use of its crisp counterpart. We emphasize on establishing the missing 

distinction in the literature between the two approaches typically adopted to handle 

fuzziness within mathematical programming models, namely flexible mathematical 
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programming (FMP) and possibilistic programming (PP). In the context of FMP, 

aggregation operators are used to combine the fuzzy sets defining the objective 

function and the constraints in order to obtain the fuzzy decision set. This research 

shall utilize two different operators, one of which is compensatory while the other is 

not, in an attempt to evaluate the benefits obtained via each operator in terms of 

savings in the total costs incurred.  

In the last part of this research, the goal is to incorporate both internal as well as 

external sources of uncertainty associated with production capacity and customers’ 

demand into the planning decisions. Hence, we need to investigate how various 

sources of uncertainty can be represented differently and incorporated simultaneously 

within the same mathematical model through the combined utilization of FMP and PP 

approaches. Since the decision maker specifies the minimum acceptable possibility 

level, it is also the objective of this analysis to study the effect of varying the 

possibility levels on the planning decisions, and the total cost incurred. . 

1.6    Research Methodology  

 An outline of the adopted research methodology to tackle the production planning 

problem at hand is given in Figure 1.4. After conducting several visits to the plant and 

identifying a realistic problem encountered frequently in steel rolling mills, a 

literature review is carried out and the relevant theoretical basis for such problem is 

established. Then, the necessary data is acquired and the problem is formally defined 

along with the stipulated assumptions and the distinguishing characteristic of this 

industry. The technique of mathematical programming is employed in order to 

optimize the operations at the steel mill under static conditions through the 
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construction of a mathematical model that incorporates the technological constraints 

associated with the manufacturing process. The solution to the proposed model is 

obtained through several solution algorithms; namely the classical linearization 

approach, a hybrid linearization-Benders decomposition approach and a modified 

branch-and-bound algorithm, where all these algorithms were coded in AMPL 

programming language and solved using CPLEX 11.0 solver. To account for demand 

uncertainties, the original model is first applied on a rolling horizon basis where the 

decisions concerning the most immediate time period only are implemented before 

rolling the horizon forward and updating the problem parameters. This requires the 

repetitive solution of the exact model and hence viable approximations that target the 

complicating aspects of the exact model are developed. The alternative approach to 

deal with demand uncertainty is the use of FST where the material balance constraints 

are treated as flexible/soft constraints. The resulting fuzzy model is non-symmetric 

which calls for the fuzzification of the objective function first. The linearization 

approach coupled with exterior penalty function methods (EPFM) is adopted in order 

to identify the interval of allowance on the decision maker’s (DM) aspiration level. 

The aggregation of the fuzzy sets representing the DM aspiration level as well as the 

constraints is accomplished using two different aggregation operators which results in 

two variants of the approximate auxiliary models. In the last phase, both uncertain 

demand and production capacity are accounted for in a fuzzy model where the 

concepts of FMP and PP are jointly employed. In addition, we utilize the weighted 

average method in order to deal with triangular fuzzy numbers and the fuzzy ranking 

method in order to deal with constraints involving fuzzy quantities on both sides. To   
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      Figure 1.4: Research methodology 
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serve testing and validation purposes for the developed models, several problem 

instances with different degrees of complexity are prepared. The values of the input 

parameters are generated from realistic data ranges so that the practicality of the 

developed models and solution algorithms is ensured.                

1.7    Thesis outline  

 The remainder of this thesis is organized as follows. Chapter 2 reviews the 

literature for the general DLSP, in its basic and extended forms, and the more relevant 

production planning practices in the steel rolling industry. In Chapter 3, a formal 

definition of the problem is given along with a mathematical formulation that 

addresses the various aspects of the operating environment and the manufacturing 

process. This initial model assumes the availability of highly reliable demand 

forecasts and relatively accurate capacity estimates. Hence, it seeks to provide some 

insights into the impact of several interrelated factors on the planning decisions under 

stable operating conditions. As the developed model is a mixed integer bilinear 

program (MIBLP), the theoretical background for those solution methodologies that 

can be directly applied or specifically modified to solve this class of models is 

provided in the appendix. The application/customization of these algorithms to the 

model at hand is detailed in Chapter 4 and also their performance is benchmarked 

against one another for several problem instances.  

 The second part of the research takes the problem one step closer to reality 

through incorporating uncertainties associated with end customer demand in the 

planning process. Chapter 5 addresses these uncertainties through the inclusion of 
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both the forecasted demand and the confirmed customers’ orders and then applying 

the resulting model on a rolling horizon basis, where production in the most 

immediate time period is established based on the confirmed orders. Due to the 

substantial computation time required to solve the exact model at the beginning of 

each period, approximate models that result in a tractable number of binary and/or 

integer variables are developed and tested. In Chapter 6, the alternative approach of 

utilizing FST, which allows for the incorporation of the decision maker’s preference 

modeling, is presented. A brief background is first established followed by a clear 

distinction between the FMP and PP, which represent the commonly used concepts to 

handle existent fuzziness in mathematical programs. The “min operator” and the 

“convex combination of the min and max operators” are used to aggregate the fuzzy 

sets representing the objective function and the constraints. The resulting auxiliary 

models are solved under different settings of the problem parameters in an attempt to 

quantify the benefits obtained form using the fuzzy models instead of the crisp ones. 

 In the last part of this research, Chapter 7 addresses jointly the uncertainties 

associated with the demand and the production capacity in the same model. The 

importance of this model is to illustrate how different uncertainty sources can be 

expressed through combining the concepts of FMP and PP in one mathematical 

model. The utilization of the weighted average method and the fuzzy ranking 

technique shall be of particular interest to future researchers. A summary of the 

research work, concluding remarks and suggestions for future research directions are 

stated in Chapter 8.   
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Chapter 2 

 Literature Review 

 

2.1   Introduction  

The production planning problem addressed in this thesis can be viewed as an 

instance of the well know dynamic lot-sizing problem (DLSP) with several 

extensions that are needed to account for the actual practice. As shall be explained in 

Chapter 3, the steel rolling process has a continuous flowshop layout and, as far as 

this work is concerned, can thus be dealt with as a single stage Lot-sizing problem 

(LSP). Undoubtedly, this class of LSPs is simpler to handle as opposed to the multi-

stage version, since the latter involves deciding upon the production or purchasing lot 

sizes for several items constituting a product’s bill-of-material (BOM). Hence, the 

work reviewed in this chapter focuses on the single stage DLS models as these are 

more relevant to the production planning problem at hand. The literature review 

presented in this chapter is divided into two main sections. The first discusses the 

work related to the LSP in the general context, in its basic and extended forms, while 

the second considers the more related work addressing production planning problems 

as applied to the steel industry. As we introduce some of the concepts and solution 
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methodologies utilized in this research, the relevant literature will be reviewed in the 

respective chapters.   

2.2   Single Stage Dynamic Lot-Sizing Problem 

Due to its wide spread applications in various industries, the DLSP has received a 

great deal of interest from industrial practitioners as well as academic researchers. 

Since the introduction of this problem through the famous work of Wagner-Whitin 

(1958) and Manne (1958), there have been numerous amounts of research addressing 

the DLSP in different sittings and under various assumptions. The state-of-the-art 

advances in the DLSP could be found in De Bodt et al. (1984), Bahl et al. (1987), 

Maes and Van Wassenhove (1988), Wolsey (1995), Drexl and Kimms (1997), Karimi 

et al. (2003), Brahimi et al. (2006), Jans and Degraeve (2007, 2008) and Quadt and 

Kuhn (2008). However, as reported by Karimi et al. (2003): “There has been little 

literature regarding problems such as capacitated lot sizing problems (CLSP) with 

backlogging or with setup times and setup carry-over”. The review of this section is 

divided into subsections, each considering the work related to an issue that is 

addressed in the thesis. 

2.2.1    Basic lot-sizing models  

Maes and Van Wassenhove (1986a) points out that capacitated lot sizing models 

are powerful and very flexible but slow (or impossible) to solve if the problem 

instance is very large. In terms of complexity theory, the capacitated single item lot-

sizing problem (CSILSP) is NP-hard in general. It is even NP-hard for very special 
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cases (Bitran and Yanasse 1982). However, Chen et al. (1994) proved through a 

pseudo-polynomial dynamic programming algorithm that the CSILSP is not NP-hard 

in the strong sense.  

Since it was first introduced, the DLSP has seen many contributions, some of 

which were from a modeling perspective through providing tighter formulations of 

the problem, while others developed solution algorithms that outperform the already 

existing ones in either the solution time or the quality of the solutions obtained or 

even both. This section intends to highlight the advances made in the basic DLSP (i.e. 

with no extensions).    

Wagner and Whitin (1958) and Manne (1958) started a whole new research 

direction in their seminal papers. Wagner-Whitin (WW) proved that there exists an 

optimal solution to the uncapacitated SILSP in which production never takes place in 

a period while having inventory left from the previous period. This property implies 

that production in one period, if any, should satisfy the demand for an integral 

number of consecutive periods. Based on this property, they developed a dynamic 

programming (DP) algorithm of 2( )O m , with m  being the number of time periods. 

The complexity of the DP algorithm for the uncapacitated SILSP was independently 

reduced from 2( )O T  for the case of WW to (O T log )T  by several authors including 

Federgruen and Tzur (1991), Wagelmans et al. (1992) and Aggarwal and Park 

(1993). Manne (1958) proposed an innovative formulation for the capacitated version 

of the problem with setup times incorporated. He explicitly models all the possible 

schedules with different setup sequences. Evans (1985) proposed a shortest path 

formulation for the USILSP based on a graph representation of the problem. As the 
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reformulations provide improved lower bounds on the optimal solution value, their 

LP solution can also be used to construct heuristic solutions. Belvaux and Wolsey 

(2001) explain how many extensions of the basic lot sizing models can be modeled in 

order to obtain better formulations. A recent survey of the modeling techniques as 

applied to the LSPs is given by Jans and Degraeve (2008).  

From a solution methodology perspective, there exists several heuristics that are 

dedicated for solving the USILSP. Those heuristics are usually easier to implement 

than the WW algorithm. Examples include economic order quantity based on average 

demand, least period cost (Silver and Meal 1973), least unit cost, part-period 

balancing among many others. A discussion of such heuristics can be found in Silver 

et al. (1998). Moreover, Bitran et al. (1984), Axsäter (1985) and Coleman (1992) 

studied the performance of some of these heuristics and developed worst-case bounds 

under several demand classes. A dynamic programming based algorithm for the 

USILSP was developed By Kirca (1990). First, the algorithm generates the set of all 

feasible cumulative production levels that may occur in an optimal solution, and then 

a DP procedure is carried out over this set. Diaby (1993) developed an efficient post-

optimization procedure that re-computes the optimal schedule starting from the WW 

solution for the case where some set ups are imposed or prohibited. Chung et al. 

(1994) constructed a hybrid algorithm combining both DP and branch and bound 

towards solving the same problem.     

On the other hand, the CMILSP has received remarkable attention as it is a more 

challenging problem to solve. Several exact solution methods have been proposed. 

Barany et al. (1984) and Pochet and Wolsey (1991) used valid inequalities (strong 
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cutting planes) to solve the problem. Eppen and Martin (1987) established a shortest 

path formulation of the DP recursion presented in WW, where this network 

formulation sets a tighter lower bound for the problem. Constantino (1998) also 

derived families of strong valid inequalities and showed that they are sufficient to 

completely describe the convex hulls of the sets of feasible solutions. Belvaux and 

Wolsey (2000) developed an efficient branch-and-cut based software that includes 

preprocessing and cutting planes for a variety of lot sizing models.  

Apart from the exact methods, there are some heuristics that have been 

specifically tailored for solving the CMILSP. Dixon and Silver (1981) extended the 

Silver-Meal heuristic to the capacitated multi item case. The criterion is to select that 

item for which a one period increase in the supply results in the largest decrease in 

average cost per unit time per unit of capacity absorbed (Jans and Degraeve 2007). 

Dogmaraci et al. (1981) developed a forward sweep algorithm along with a greedy 

search starting from the lot-for-lot solution. Karni and Roll (1982) use the WW 

schedules as a starting point and try to achieve feasibility while optimizing cost 

through shifting production. Maes and Van Wassenhove (1986c) implemented several 

cost criteria in their ABC heuristic to determine whether or not to include next 

period’s demand, and several other rules to determine the order of the items. Finally, 

Kirka and Kökten (1994) developed an efficient item-by-item heuristic where items 

are selected one at a time, and then a single item problem is solved with adapted 

capacities and extra bounds on production and inventory to ensure the feasibility of 

the overall problem.  
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Another approach towards solving the CMILSP is the use of Lagrangian 

relaxation, e.g., Thizy and Van Wasenhove (1985), Trigerio et al. (1989) and Diaby 

et al. (1992). The traditional practice in this approach is to get rid of the complicating 

capacity constraint through a dualized term in the objective function coupled with a 

specific set of positive multipliers. The resulting problem is a lot easier to solve and 

may be decomposed into separate single item uncapacitated subproblems for each 

item.      

Polynomial approximation technique has also been applied towards solving the 

LSPs. Bitran and Matsuo (1986) proposed a pseudo-polynomial approximation 

algorithm for the CMILSP based on Manne’s (1958) formulation. Gavish and 

Johnson (1990) developed a fully polynomial approximation scheme for the 

capacitated single item lot scheduling problem. Furthermore, Van Hoesel and 

Wagelmans (2001) presented a fully polynomial algorithm for the CSILSP, which 

produces solutions with a relative deviation from the optimality that is bounded by a 

constant.  

Meta-heuristics such as Tabu search (e.g. Hindi 1996) and Genetic algorithms 

(e.g. Gutierrez et al. 2001) have also been specifically developed to solve the 

CMILSP. It is interesting to note that no implementation of meta-heuristics for 

solving the CSILSP can be found, as concluded by Brahimi et al. (2006) in their 

review paper. On the other hand, Cattrysse et al. (1990) discussed the set-partitioning 

formulation of the CMILSP and used heuristics to convert the possibly fractional 

solution from the column generation step to a feasible integer one. In a different 

heuristic, Hindi (1995) implemented the branch and bound method as a solution 
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strategy for the CMILSP. Chen and Thizy (1990) gave a comprehensive analysis of 

relaxation methods for the problem and showed it to be strongly NP-hard. A 

comparison of the performance of several solution heuristics can be found in Maes 

and Van Wassenhove (1986b).  

2.2.2   Lot sizing models with Extensions  

The numerous extensions of the basic lot sizing problem discussed in the 

literature demonstrate its flexibility to model a variety of industrial problems. Each of 

the following subsections presents the advances made towards modeling as well as 

solving an extended version of the basic LSP.       

2.2.2.1    Lot sizing models with allowed stockouts  

In practice, the capacity is typically finite and bounded by several factor such as 

machines, workers, availability of raw material and storage areas among many others. 

In such situations, a manufacturer might not be capable of completely fulfilling a 

certain period’s demand on time due to insufficient capacity. There are two strategies 

to deal with the remaining portion of demand or the “unmet demand”. First, it might 

be lost in the sense that a competitor will be the one satisfying this portion of demand. 

This explains the situation where we have “lost sales”, a phenomenon that usually 

takes place in the retailing industry. There is a certain attached cost resulting from 

revenue loss, or penalty cost due to loss of customer goodwill. Secondly, the unmet 

demand can be satisfied at a later period of time. If the whole demand is satisfied late, 

this is referred to as “complete backlogging” (the words backlogging and 

backordering can be used interchangeably). In the case of late fulfillment of only a 
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portion of the demand, “partial backlogging” takes place. From a mathematical 

perspective, permitting backlogging means that inventory levels can be negative. In 

the steel industry, most customers are long term customers, and the manufacturer 

might make use of his power alongside customer’s loyalty to backlog a portion of the 

demand at a certain additional cost, called “backlogging cost”.  

Both cases have been addressed in the literature, with the lost sales situation being 

dealt with to a lesser extent. Sandbothe and Thompson (1990) proposed a necessary 

condition for an optimal solution and obtained an 3( )O T  algorithm when production 

capacity is constant, and an (2 )TO  algorithm for the case of time-varying production 

capacity. In a 1993 paper, they extended their work through imposing restrictions on 

both production and inventory capacities, and obtained an algorithm with the (2 )TO  

time complexity. Aksen et al. (2003) introduced a profit maximization model for the 

USILSP with lost sales, where costs and selling prices were assumed to be time-

variant. They showed that losing demand in spite of a nonzero inventory at hand can 

sometimes be more profitable if costs or prices vary. Liu et al. (2004) developed a 

strongly polynomial algorithm for the lost sales case with bounded inventory, non-

increasing setup cost, and time varying production, inventory holding and lost sales 

costs. Liu and Tu (2008) studied the CSILSP with limited inventory capacity and 

time-varying functions of demands and costs.   

One of the earliest works to consider backlogging is due to Zangwill (1966a), 

where he proposed a deterministic single-item multi-period production and inventory 

model having concave production cost and piecewise concave inventory costs. The 

inventory can be backlogged to a maximum of α  periods, where α  is called the 



 30

backlog limit. Zangwill (1966b) extended his previous work to the multi-product 

multi-facility case with facilities being in series or in parallel, under the same cost 

structure. Love (1973) was the first to present an 3( )O T  DP algorithm with constant 

inventory capacity, concave production and holding costs. Swoveland (1975) 

developed a solution algorithm for the case of a piecewise concave production and 

holding costs or backlogging costs. Moreover, Gupta and Brennan (1992) introduced 

an easy and robust alternative to the WW backorder algorithm, proposed by Webster 

(1989). Federgruen and Tzur (1993) proposed a simple (O n log )n  solution algorithm 

for the CSILSP with backlogging. Miller and Yang (1994) employed lagrangian 

decomposition and lagrangian relaxation to exploit the underlying network structure 

of the CMILSP with backlogging. The alternative plant location and shortest path 

reformulations for the ULSP with backlogging were presented by Pocuhet and 

Wolsey (1988). Recently, Chu and Chu (2007) developed a polynomial algorithm for 

the CSILSP with bounded inventory and backlogging or outsourcing.   

2.2.2.2    Lot sizing models incorporating setup times and/or overtime 

In most practical situations, a setup is incurred whenever the manufacturing 

process switches between two different products. This setup consumes partial 

capacity and hence it needs to be explicitly accounted for in the mathematical model. 

The Silver-Meal lot sizing heuristic for single item problems was extended to the case 

of regular and overtime production capacities by Dixon et al. (1983). Also, Özdamar 

and Bozyel (2000) extended the latter work to the case of CMILSP with overtime 

decisions, and presented several meta-heuristics to solve the problem. Starting from 
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an initial lot-for-lot approach, Trigeiro (1989) developed a heuristic algorithm for the 

CLSP with setup times that is also based on the Silver-Meal heuristic. Trigeiro et al. 

(1989) and Hindi et al. (2003) considered the CMILSP with setup times and obtained 

a lower bound on the value of the objective function by Lagrangian relaxation with 

subgradient optimization. The polyhedral structure and valid inequalities of the single 

period relaxation for the CMILSP with setup times are also presented in Miller 

(2003a,b). Jans and Degraeve (2004) start with the network formulation to come up 

with improved lower bounds for the problem. In a recent paper, Absi and Kedad-

Sidhoum (2008) addressed a more generalized version of the CMILSP with setup 

times in which the demand can be totally or partially lost.  

2.2.2.3   Lot sizing models with product substitution 

Some products, such as integrated circuits and steel bars, are produced in different 

grades with varying performance characteristics. In such a situation, the manufacturer 

may occasionally choose to downgrade a product instead of backordering the demand 

for a similar product with the lower grade. The term “downgrading” has been 

previously established in the literature, and it refers to instances where class j  

product is used to satisfy the excess demand for that of class i , where i j≥  (i.e., 

product j has a better quality). For example, Bitran and Dasu (1992) presented the 

case of Semiconductor industry and called the demand substitution structure where a 

higher quality chip satisfies the demand for the lower one “downgrading”. For the 

same industry, Bassok et al. (1999) addressed this type of substitution structure and 

called it “downward substitution”. In general, the issue of demand substitution has 
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been considered in a variety of contexts for traditional production planning and the 

available literature could be broadly classified into three streams of work, as pointed 

out by Rajaram and Tang (2001).  

However, most papers concentrate on the substitution problem in the context of 

single period models (Li et al. 2007). Balakrishnan and Geunes (2000) considered the 

material requirement planning problem with substitutions in a multi-period horizon 

and derived a DP algorithm that obtains the production and substitution quantities in 

each period. Li et al. (2006, 2007) dealt with the DLSP in the context of a hybrid 

manufacturing/remanufacturing system with product substitution. In their analysis, a 

new product is offered in place of a remanufactured one when there is a 

remanufactured product shortage. They developed a DP algorithm for the 

uncapaciatetd case, and a genetic algorithm for the capacitated one.  

 

2.2.2.4    Fuzzy Lot-Sizing models  

Most of the studies on Lot-sizing models assume that all problem parameters are 

known with a high level of confidence. However, this is not always the case in reality 

since many uncertainties are involved. Although accounting for such uncertainties 

poses as an important issue, few publications have dealt with the DLSP in a fuzzy 

sense. Lee et al. (1990) incorporated fuzzy demand into the part-period balancing 

heuristic. They also (1991) compared the performance of three lot sizing algorithms 

when demand is fuzzy. Fung et al. (2003) solved the more general aggregate 

production planning problem with fuzzy demand and fuzzy capacity. At last, Pai 

(2003) made use of the fuzzy set theory to solve the CLSP with fuzzy capacity.  
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2.3   General production planning literature in steel plants  

In spite of the significance of steel industry, planning and scheduling problems in 

iron and steel production have not drawn as wide attention of the production and 

operations management researchers as many other industries such as metal cutting 

and electronics industry (Tang et al. 2001). As pointed out by Dutta and Fourer 

(2004), very little work has been done in the area of inventory control, manufacturing 

control and multi-period linear programming modeling in the steel industry. Since 

this thesis deals with optimizing the product mix in a steel mill as explained in more 

details in Chapter 3, the review focuses on the related work with a glimpse of other 

issues discussed in the literature.    

The first attempt towards formulating the production process at a steel plant as a 

linear program was made by Fabian (1958) where he developed an integrated linear 

programming model for iron making, steel making and rolling operations. This work 

was later extended by Lawrence and Flowerdew (1963) where an economic model for 

production planning was developed. The authors stressed on the system approach 

through proposing a qualitative framework for the whole steel plant rather than 

individual processes. For the blending problem, Fabian (1967) proposed a cost 

minimization model that can simultaneously determine: optimal raw material 

purchasing policies, optimal raw materials inventory levels, least cost blend of raw 

materials, optimal furnace scheduling, long-range production plan and optimal 

maintenance plan. Westerberg et al. (1977) presented the case of a Swedish steel mill 

that uses up to 15 different types of scrap and alloys which are melted together to 

produce stainless steel finished products. The problem was formulated as a traditional 
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blending model with the objective of minimizing cost subject to weight and 

metallurgical composition restrictions.  

The steel industry has also been investigated from an investment planning point of 

view. Kendrick et al. (1984) presented three mathematical models for investments 

analysis in the steel industry, two of which are static models formulated as linear 

programs and the third is a dynamic one formulated as a mixed-integer program. 

Anandaligam (1987) made use of stochastic programming to plan for investments in 

environments where demand projections and technological coefficients are not known 

with certainty.  

The Development of a database for generic mathematical programs was achieved 

by Fourer (1997). The model could be utilized by any steel plant to fit its operations 

simply by supplying its own data. Based on Fourer’s work, Hung (1991) studied the 

importance of inventories and the linkage between the time periods in a plate mill. 

The complicated steel production process was represented by a network composed of 

facility nodes, material nodes and material flow arcs, and a profit maximization linear 

program was formulated based on the network representation.  

With the increasing steel products variety, it becomes increasingly important for 

steel manufacturers to adopt new strategies towards improving the service level and 

reducing the service time. Sharma and Sinha (1991) discussed the various issues 

affecting the choice of an optimum product mix in a steel plant, and described an 

optimization model for determining such mix. The network approach was used by 

Sashidhar and Achray (1991) to deal with the problem of production planning at a 

steel mill with the objective of maximizing capacity utilization. In their work, 
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production is planned according to customers’ priorities, where different customers 

are assigned different priorities. Denton et al. (2003) developed a decision support 

system that allows inventory planners to analyze various scenarios, and identify 

which slabs shall be produced for make-to-stock (MTS). In a recent paper, Kerkkanen 

(2007) established a new inventory policy in order to enable a comparison between a 

make-to-order (MTO) system and a hybrid MTO/MTS system. He presented the case 

of a small MTO steel mill that is considering whether it would be profitable and 

feasible to make some semi-finished products to stock. Based on the input-output 

concept, Li and Shang (2001) developed a production planning model for a large steel 

corporation in China. The hierarchical production planning problem in a make-to-

order (MTO) steel fabrication plant was addressed by Neureuther et al. (2004). They 

presented linear programming models towards obtaining the aggregate production 

plan and then disaggregating it into MPS for the end-items. 

 Unlike general production scheduling in other industries, iron and steel 

production scheduling problems have to meet specific requirements related to 

material continuity, processing times at various production stages, transportation and 

waiting times between operations. Scheduling production at different stages of steel 

manufacturing has been studied in the literature. Examples include Vonderembse and 

Haessler (1982), Jacobs et al. (1988), Boukas et al. (1990), Diaz et al. (1991), Assaf 

et al. (1997), Box and Herbe (1988) and Tang and Liu (2007). As pointed out by 

Cowling and Rezig (2000), Scheduling of the continuous caster is governed by the 

production push of liquid steel, which must be cast as it arrives, whereas hot strip mill 

scheduling is governed principally by the production pull of customer orders for coils 
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of steel. The short term scheduling problem for each process considered in isolation is 

itself difficult, containing a wealth of NP-hard packing, sequencing and scheduling 

problems (Garey and Johnson 1979).    

Several attempts have been made towards scheduling operations at steel mills and 

continuous casting machines (CCM) separately. The steel mill case was investigated 

by Redwine and Wismer (1974), Arizono et al. (1991) and Lopez et al. (1998). On 

the other hand, optimizing the operations at a CCM is of great importance as a CCM 

can be used to eliminate a number of processing steps associated with the traditional 

ingot/bloom based production process. Vasko and Friedel (1982) proposed a DP 

formulation which maximizes the case bloom tonnage that can be processed through a 

finishing mill. Lally et al. (1987) constructed a mixed-integer linear programming 

model to the problem of caster scheduling, where steel is being cast on a continuous 

basis. However, the model did not incorporate all the complexities of a real 

continuous caster. Tang et al. (2000) presented a more sophisticated nonlinear model 

based on actual production situations considering both punctual delivery and 

continuity of the production operation. The model is in line with the idea of just-in-

time (JIT) production and provides a way to overcome machine conflicts. Zanoni and 

Zavanella (2005) established a linear programming model which gives the optimal 

production sequence of the billets, ordered by the customers, while taking into 

account the limitations in warehouse space availability. The study focuses on the 

optimization of the production schedule of a CCM, through determining the quality 

and dimensions of the billets to be produced such that the total cost of holding, 

production, and penalty (due to late deliveries) is minimized.        
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Strategic planning in the steel industry plays an important role in determining a 

company’s ability to survive in today’s competitive market. As noted by Denton et al. 

(2003), the steel industry has received a great deal of attention in the field of strategy 

and operations research, because of the heavy pressure from worldwide competition. 

The earliest work along this line of research was conducted by Bielefeld et al. (1986) 

and Sinha et al. (1995). Chen and Wang (1997) developed a strategic linear 

programming model for a steel plant from a supply chain perspective. Thus, the 

model seeks the optimal production plan, raw material supply and finished product 

distribution. However, the optimal solution of the problem is found with a reduced 

number of variables and heuristics are not presented for a more realistic solution 

(Zanoni and Zavanella 2005). Singer and Donoso (2006) showed how a mathematical 

programming model that can assist in strategic decision-making by forecasting the 

results of possible actions. The model relies on Activity Based Costing (ABC) for 

calculating unit product cost, and on dynamic Activity Based Management (ABM) 

for assessing the feasibility of production plans. A decision support system for 

strategic and operational planning for process industries was developed by Dutta and 

Fourer (2004).  

 However, except for the work of Fourer (1997), Hung (1991), Dutta and Fourer 

(2004) and Singer and Donoso (2006), most other articles presented a one shot model 

(single period) ignoring the dynamicity nature of the problem in the real life context. 

The time varying demand, purchasing and selling prices necessitate treating the 

production planning problem in a steel plant as a multi-period model. Depending on 

the specific problem context, the use of the model and the planning horizon, a period 



 38

could be an hour, a day, a month or even a year. This research presents multi-period, 

multi-input and multi-output production planning models in which the dynamic 

nature of the operating environment is taken into account. This represents one of the 

potential areas for future research explicitly stated in Dutta and Fourer (2004): 

“Simultaneous optimization of product-mix, inventory, and transportation problems 

over multiple periods”.   

In the next chapter, we provide a detailed discussion of the manufacturing process 

at the steel mill under consideration along with the distinguishing features of this 

industry. The production planning problem of interest is then stated and the 

mathematical model for deterministic demand conditions is also developed.   
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Chapter 3 

PART-I: Problem Definition and Mathematical Modeling 

under Deterministic Conditions  

 

3.1    Introduction  

 In reality, the high cost figures associated with the construction and operation of 

steel plants necessitate a periodic revision of the production technologies employed as 

well as continuously seeking the best managerial practices to handle the rapid 

increase in product variety. The steel industry is considered to be crucial for many 

countries’ economic competitiveness especially in today’s environment which is 

characterized by lowered barriers to market entry and constantly changing customers’ 

preferences. Despite the great significance of the steel rolling industry in particular 

and the ample uses of its end products in every nation’s daily life, it seems that 

researchers have generally overlooked the importance of developing optimized 

production plans that take into account the practical aspects distinguishing this 

industry from all other industries.  

This chapter starts by introducing the manufacturing process at a typical medium-

sized steel mill producing round shaped steel bars, which stands as an essential raw 

material for various construction projects. Since a well defined problem represents a 

key milestone towards obtaining its solution, the distinguishing features and the 
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technological constraints associated with manufacturing process are clearly identified. 

The production planning problem under deterministic demand conditions is then 

formulated using the well-established mathematical programming techniques. The 

objective of the model is to study the combined effect of several interrelated factors 

that jointly affect the operations and the production related decisions at the steel mill 

under consideration. The properties of the presented mathematical model are 

discussed along with the complicating aspects pertaining to the necessity of 

developing efficient solution algorithms for such model.  

3.2   The manufacturing process 

 The problem at hand concerns the production of reinforced round steel bars 

(rebars) from an externally supplied raw material, which is steel billets having a 

square cross-sectional area. The steel billets (bars) are purchased (produced) in two 

different steel grades (grade 40 and 60) and have several dimensions that are the same 

for both grades (Tables 3.1 and 3.2). Due to technical considerations regarding yield 

and scrap rate, there exist some restrictions on the possible billet-rebar combinations. 

For instance, a billet of dimensions 100mm 100mm× 6m×   (index 6i =  in Table 3.1) 

is not to be used as an input material in the manufacturing of a 32mm  diameter steel 

bar. The two grades differ mainly in the chemical composition, metallurgical 

structure and carbon content, which eventually lead to varying mechanical properties 

and performance. In particular, grade 60 has higher values for yield strength and 

ultimate tensile strength ( 2421 /YS  N mm= , 2621 /UTS  N mm= ) as compared to 

those for grade 40 ( 2300 /YS  N mm= , 2500 /UTS  N mm= ). As such, grade 60 steel is 
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considered to be of better quality and is thus sold (or procured) at a higher price. 

Clearly, a steel bar of a certain grade can only be produced from a billet of that 

particular grade.  

     Table 3.1: Raw material dimensions    
Index 
( i ) 

Width 
(mm) 

Height 
(mm) 

Length 
(m) 

1 130 130 12 
2 130 130 8 
3 130 130 6 
4 125 125 8 
5 125 125 6 
6 100 010 6 

 

 
 

Figure 3.1: The manufacturing process in the steel bar rolling industry 
   

Figure 3.1 above shows a graphical display of the different manufacturing 

operations involved in the production of the steel bars. The production process starts 

by placing a batch of billets, with uniform dimensions, into the furnace where they 

are heated up to 1200°C. The furnace has a fixed capacity of 60 tons/hour and the 

number of billets placed at once in the furnace depends on the size (dimension) of 

those billets. Clearly, the smaller the size, the more billets can be accommodated 

within the furnace. The heated billets are then taken out of the furnace to the rolling 
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Table 3.2: Finished product dimensions  
Index 
( j ) 

Diameter 
(mm) 

Index 
( j ) 

Diameter 
(mm) 

1 32 6 18 
2 28 7 16 
3 25 8 14 
4 22 9 12 
5 20 10 10 
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mill where the hot rolling operation takes place followed by the bar rolling operation. 

After rolling the billets into long bars of the desired cross-sectional area and a 

standard length, the bars are pushed on the cooling bed to allow the product to cool 

down. The next step is to bind the bundle of products and label the bundle. At last, the 

bars are either stored in the warehouse or shipped directly to the customer. In fact, 

since the various products follow the same routing (i.e., same sequence of 

operations), the bar rolling industry resembles a flowshop production environment.  

The processing times depend on which rebar is being produced from which billet 

(i.e. on the dimensions of both). This is because a billet may be required to pass 

through several rolling stands depending on the desired diameter of the rebar to be 

produced. For instance, it takes longer rolling time to produce a steel bar of diameter 

10 mm from a certain billet, than to produce a bar of diameter 32 mm using the same 

billet. In addition, the higher the number of rolling passes that a billet has to go 

through, the more return scrap is expected. In any case, the rolling capacity is clearly 

bounded by the capacity of the furnace (60 tons/hour) which feeds the rolling 

operation. However, billets of bigger dimensions are cheaper to buy, and bars of 

smaller diameters are sold to the customer at a more expensive price. This may justify 

the production of a small diameter rebar from a bigger dimension billet in spite of 

excess processing time and higher chances of scrap produced. The operations at the 

steel mill are characterized by the following features:  

(1) Setup time: One of the most distinguishing and complicating features of steel 

mills operation is the setup time structure. The setup activities include those 

associated with the furnace, such as placing the new batch of billets inside and 
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adjusting the settings, as well as those activities carried out on the rest of the 

production line, such as rolls and stands changing, guides and grooves changing, 

runner way and time billet changing, and speed reference adjustments. Hence, when 

the setup is carried out between batches, the setup time depends on the raw material 

(as the number of billets placed in the furnace depends on the size) and on the 

finished product (as the rollers, grooves and speed have to be adjusted according to 

the rebar to be produced). Whenever the term “minor setup” is quoted in this thesis, it 

refers to this type of setup (i.e., the between batches setup).   

On the other hand, when the setup is carried out at the beginning of the day, it is 

time dependent rather than product dependent. To achieve a longer service life for the 

refractory, which is an insulation material on the inside of the furnace, an upper limit 

on the rate of furnace temperature increase per hour is imposed. Moreover, the 

refractory also sets a minimum allowable value for the furnace temperature at all 

times indicating that some burners have to be left functioning even after production is 

complete. Hence, at the beginning of each business day, the furnace temperature has 

to be elevated gradually to 1200°C before starting production. This temperature 

elevation time depends mainly on the idle time since the production of the last batch 

in the previous day. For example, if the production line runs for 20 hours per day, this 

means the furnace is stopped for 4 hours, and hence it will take almost 2 hours to heat 

it back to 1200°C at the beginning of the next day. On the other hand, a 10 working 

hours per day means longer stoppage time for the furnace, which would take 5 hours 

to heat the furnace back to the same temperature. Clearly, a solid mathematical 

relationship between the idle time at the end of period t  and the setup time at the 
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beginning of period 1t +  needs to be established prior to developing a mathematical 

model for the production planning problem at hand. In the remainder of this thesis, a 

setup conducted at the beginning of the day is referred to as “major setup”. It should 

be noted that such setup time structure is frequently encountered in other industries 

such as metal rolling (other than steel) and plastics manufacturing in which the 

product undergoes a heat treatment phase during the production process.  

(2) Product substitution: In practice, the steel mill has the option to: 

(a) Fulfill the unmet portion of the demand for an out-of-stock lower grade rebar (i.e., 

grade 40) with a same sized rebar of the higher grade (i.e., grade 60) in the same time 

period as to meet the promised delivery schedule. This substitution scenario yields: 

- Increased customer expectation for future shipments.  

- Lost profit (due to selling a higher quality product at the price of the lower quality 

one).  

(b) Backlog and match the order with the delivery at a later period in time. In this 

case,    

- A backlogging cost is incurred.  

- Might eventually lead to the loss of customer goodwill (once this option is 

adopted repeatedly with the same customer).       

(3) Overtime: As the major setup time depends on the working hours, it would make 

sense for the company to consider the option of working overtime hours especially in 

periods of excess demand. Although it costs more to produce on overtime basis, it 
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might be economical to do so as this avoids the backlogging cost and reduces the 

furnace setup time at the beginning of the next business day. 

(4) Yield: The number of steel bars produced from the same billet is a function of the 

dimensions of both the billet and the rebar to be produced. For instance, a billet of 

dimension index ( 1i = ) would give 17 round bars of 16 mm diameter and 60 m long 

each. Alternatively, a billet that is 8 m long and of the same cross sectional area 

( 2i = ) would give 11 bars of 16 mm diameter and 60 m long each. Moreover, the 

manufacturing process in the steel industry, like all other industries, is not a perfect 

one in the sense that it produces a portion of defective items. However, the resulting 

nonconforming items can be sold as scrap steel to other manufacturers. The 

percentage of scrap produced depends on the billet-rebar combination.  

(5) Time dependent raw material purchasing cost and finished product selling 

prices: In reality, the market prices of the reinforced steel bars as well as the billets 

have been subjected to drastic variations in the last decade or so. Hence, such 

variation in prices has to be taken into consideration to better reflect the reality. In 

fact, to serve a broader range of planning purposes, the proposed mathematical 

formulation (Section 3.4) assumes that all cost parameters are time dependent.   

3.3   Problem description  

 In this section, a realistic, multi-input, multi-output and multi-time period 

production planning problem encountered at a medium-sized steel mill is considered 

for analysis. For an industry characterized by significant operating costs and high 

energy consumption, the optimization of production and inventory related decisions is 
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of paramount importance. Typically, product differentiation in the rolling operation 

increases as the steel billets proceed on their journey through the rolling stands 

towards the finished steel bars. As such, the billet-rebar combination not only 

determines to a great extent the number of rolling passes that the product has to go 

through, and hence the energy consumption, but also the quantity of both types of 

materials to be kept in stock, hence the procurement, inventory holding and 

opportunity costs. 

The problem at hand is a short term planning problem in which production is 

planned at the master production schedule (MPS) level. The goal is to determine the 

daily/weekly production lot sizes for the various end items (rebars) such that 

customers’ demands over the planning horizon are fulfilled at a minimal total cost. In 

particular, there are four types of decisions that the decision maker seeks to optimize: 

(1) which products to produce in each period; (2) how much of each product shall be 

produced; (3) the allocation of the products to satisfy the customers’ demand (since 

demand substitution is allowed); and (4) the raw-material finished-product 

combination (i.e. which raw material shall be used to produce which product). Having 

established the problem statement, we next stipulate the assumptions under which the 

mathematical model in the next section is developed:    

(1) Batch production: In accordance with the economies of scale and to utilize the 

available capacity to its fullest, the production takes place in batches of size 60 tons 

each (i.e., the furnace capacity).  
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(2) Batch uniformity: This applies to both the billets placed at once in the furnace 

and to the steel bars produced from the same batch. The usage of mixed sized billets 

or the production of mixed sized bars is not allowed from within the same batch.   

(3) Deterministic demand: The steel industry is characterized by having customers 

that are in most cases long term loyal customers (Chen and Wang 1997, Kerkkänen 

2007). Although, the model developed in this chapter addresses the problem under 

deterministic demand conditions, this assumption is to be relaxed in subsequent 

chapters to take into account situations involving highly volatile demand.       

(4) One way substitutability: This term was coined by Rajaram and Tang (2001) 

which, in the context of our problem, refers to the case where a grade 60 steel bar of a 

certain diameter could be used to fulfil a portion of the unmet demand for a similar 

steel bar of grade 40, given that such substitution is suitable for the intended 

engineering application, but not the other way around. This "downgrading" is 

motivated by a variety of reasons, for example, to prevent customer dissatisfaction, to 

reduce setup costs, or to reduce inventory costs (Bitran and Dasu 1992).    

3.4   Mathematical formulation of the problem  

For many decades, the tools of operations research have been successfully 

employed towards the modeling and solution of real world systems leading to a 

significant increase in the productivity of various countries’ economies. This section 

employs the techniques of mathematical programming in order to optimize the 

operations at the steel mill under the previously stipulated assumptions. We first start 

by establishing the relationship between the idle time at the end of period 1t −  and 
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the major setup time in period t  since such a relation is used as input to the 

mathematical model. As a matter of fact, the dependent variable ( y ), which denotes 

the major setup time in this case, is directly proportional to the independent variable 

( x ) denoting the idle time, as can be seen in Figure 3.2.  

The plot suggests that the relation is approximately linear where the general 

equation for the best fitted line using simple regression analysis is given by:  

                                                            y a x b= +         (3.1) 

 

 
   Figure 3.2: The linear relation as obtained from regression analysis 

 

 Clearly, a  is the slop of the fitted line and b  is the y − intercept. Since the 

unlikely event of a continuous production in period 1t −  (i.e., a zero idle time) 

indicates a zero major setup time in period t , the value of b  is set to zero. Regression 

analysis utilizes the method of least squared errors (LSE) in order to obtain the 
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optimized value of the slope, which yields a value for 0.403a =  using the MINITAB 

software after setting 0b = .   

 We next present the mathematical formulation for the production planning 

problem at hand. This operational model establishes the raw material purchasing 

quantities, regular time and overtime based production quantities, inventory levels, 

backorder and substitution quantities for each product in each time period such that 

the total cost over the planning horizon is minimized. In developing the mathematical 

model, quantities of materials, whether billets or rebars, are measured in tons and the 

production rate is measured in tons per hour. An index, whether i  for raw material 

(RM) or j  for finished product (FP), refers to the same dimension in both steel 

grades (SG). This notation greatly assists in formulating the problem as a 

mathematical model.  

 The model seeks to minimize the total costs incurred in addition to the penalties 

resulting from downward substitution. The total cost is composed of RM ordering, 

RM purchasing, RM inventory holding, setup, regular time production, overtime 

production, FP holding and backorder costs. The last term in the objective function is 

an additional penalty term which ensures that demand substitution is further 

discouraged since in this case the higher grade steel is sold at the price of the lower 

quality one entailing a lost profit to the company. The objective function along with 

the set of constraints involved is set out as follows:     
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• Constraint set (3.3) ensures that the quantity of each RM i purchased in time 

period t, if any, is limited by the supplier capacity in that period. This ‘fixed 

charge’ constraint establishes the relation between the binary and continuous 

purchasing-related variables.  

• Only one major setup for a certain RM, FP and SG combination can take place 

during a time period, which is stated in constraint set (3.4).  

• Equation (3.5) specifies the total setup time for a certain ( , ,i j k ) combination in 

any period, which is simply the sum of both major and minor setup times. The 

total production and setup times are subtracted from the available 24 hours a day 

to give the idle time. The result is then multiplied by 0.4, which is the coefficient 

obtained earlier using regression analysis, and by the binary major setup variable 

to indicate that only the chosen ( , ,i j k ) combination shall contribute to the total 

setup time.   

• Constraint set (3.6) states that the total production and setup times for all products 

should not exceed the available uptime, whether regular production time or 

overtime, in any time period.  

• Naturally, the maximum number of overtime hours worked per day is bounded by 

a certain allowable value, as specified by constraint (3.7). 

• Since the steel bars rolling industry is a batch process, the production quantity of 

a certain FP from a particular RM, k
ijtX , is a function of the number of batches 

produced, batch size and the yield, which is stated in constraint (3.8). In fact, 

Constraint set (3.8) coupled with equation (3.5) ensure the overlap of the longest 

minor setup with the major setup. That is, the first batch produced at the 
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beginning of the day is for that RM-FP combination that requires the longest 

minor setup time.  

• Constraint set (3.9) defines the inventory balance equation for a particular RM i at 

the end of time period t as the sum of the previous period’s stock balance and the 

quantity procured in the current period minus the quantity consumed in the 

production of the various end items in the current period.  

• Constraint sets (3.10) and (3.11) provide the finished products inventory balance 

equations for both steel grades. Depending on its economic feasibility, these 

constraints allow for the demand of a grade 40 steel bar to be partially fulfilled by 

a similar sized grade 60 rebar. The inventory balance equations for both grades 

are better understood using Figure 3.3 below.  

 

               Figure 3.3: Inventory balance for both grades in a particular time period  
 

 

• Without loss of generality, the initial inventory and backorder levels are set to 

zero as shown in constraint (3.12) which also ensures that the demand for all the 

finished products throughout the planning horizon is met through setting the 

ending backorder levels to zero.     
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• Constraints (3.13) – (3.15) represent the non-negativity, binary and integrality 

restrictions on the respective decision variables.  

 
It should also be noted that, in any time period, the consumption rate of a specific raw 

material to produce the various finished products should not exceed the purchased 

quantity of that raw material in that same period in addition to the previously 

available stock. That is 

 , 1
1

J
k k k k

t ijt ijt it i t
j

b Sb Sd Q I −
=

⎡ ⎤× + ≤ +⎣ ⎦∑           , ,i t k∀      (3.16) 

However, constraint set (3.16) is implied by constraint set (3.9) along with the non-

negativity restriction on the variables k
itI .   

3.5   Properties of the Mathematical Model  

 The model developed above is, in a sense, a typical dynamic capacitated multi-

item lot-sizing problem (CMILSP) formulation with various practical extensions 

incorporated into the model. A much simpler version, which is the capacitated single-

item lot-sizing problem (CSILSP), is NP-hard in general. It is even NP-hard for very 

special cases (Bitran and Yanasse 1982). As pointed out by Maes and Van 

Wassenhove (1986), capacitated lot-sizing models are powerful and very flexible but 

slow (or impossible) to solve if the problem instance is very large. Prior to 

establishing the solution methodology for the mathematical model, the properties of 

the model have to be explored in order to gain more insights towards solving the 

model. These properties are:    
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• Non-separable: Although the two steel grades share the same combination of 

dimensions for both RM and FP, the problem is not separable into two smaller 

sub-problems each dealing with one steel grade at a time. This is the case since it 

is not known in advance how much capacity should be allocated to each steel 

grade, and this would also eliminate the possibility for demand substitution. 

• Bilinear program: Clearly, the model at hand is a mixed integer nonlinear 

program (MINLP) as it involves a mixture of continuous and integer variables, 

and the non-linearity arises due to the existence of a nonlinear constraint 

(Equation 3.5) that also appears in the objective function (once the variable k
ijtS  is 

substituted for by its expression). In particular, the model falls under a special 

category of nonlinear programs called mixed integer bilinear programs (MIBLP) 

in which the binary variable k
ijtSb  is multiplied by the continuous variables '

' , 1
k
i j tX ′ −  

and '
' , 1
k
i j tS ′ − , one at a time, as can be seen in equation (3.5). The bilinearity 

property these models possess is due to the fact that, for fixed k
ijtSb  values, the 

original model reduces to a mixed integer linear program (MILP), and for fixed 

'
' , 1
k
i j tX ′ −  and '

' , 1
k
i j tS ′ −  values, it again reduces to a MILP in the space of the other 

decision variables. Such models have also been addressed in the literature under 

the title “mixed 0-1 quadratic programs” (e.g., Adams et al. 2004, Adams and 

Forrester 2007).  

• Non-convexity: In the context of nonlinear programming, the simplest 

mathematical models to obtain a solution for are the convex programs, which 

involve the minimization of a convex function subject to a convex set. In such a 
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case, classical optimization techniques can be used to obtain the optimal solution, 

where the local optimum coincides with the global one. Unfortunately, the 

bilinearity existent in the model above causes it to be non-convex as we shall 

prove in what follows. In order to prove non-convexity of the model, it suffices to 

show that either the objective function is non-convex or that the feasible region, 

as defined by the set of constraints, is not a convex set. Since a linear function is 

both convex and concave, we target constraint (3.5) and show that it is not convex 

which entails that the feasible region is not a convex set. For a function to be non-

convex, its Hessian matrix must not be positive definite or positive semidefinite.  

First, let us rearrange the terms in constraint (3.5) and rewrite it as follows: 
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Let the left hand side (LHS) above be denoted as , 1 , 1( , , , , )k k k k k
ijt ijt ij t ij t ijtg S Sb X S Sd− −  

and assume, for the time being, that this function is twice differentiable (i.e., relax 

the integrality and binary restriction on the respective decision variables). Then, 

the vector of the first order partial derivatives (i.e., the gradient) is given by:  
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The symmetric Hessian matrix, which is comprised of the second order partial 

derivatives, is obtained from Equation (3.18) as follows:  
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  (3.19) 

 

The following theorem is needed in order to draw conclusions concerning 

function convexity based on the obtained Hessian matrix.  

 

†  Theorem 3.1: (Bazaraa et al. 1993, page 96)  

Let H  be a symmetric n n×  matrix with elements ijh , if 0iih =  for any 

{1,..., }i n∈ , then we must have 0ij jih h= =  for all 1, ...,j n=  as well, or else H  

is not positive semidefinite. †  

 

By looking back at the Hessian matrix, notice that although 22 0h =  for example,  

23 32 0.4 / 0ijh h α= = ≠  and 24 42 0.4 0h h= = ≠ . As such, the conditions of the 

theorem do not hold and the above Hessian matrix is not positive semidefinite. In 

fact, upon coding the above model in AMPL programming language (Fourer et al. 

2003) and attempting to solve it using CPLEX 11.0 solver, the obtained output 

message has reaffirmed the non-convexity of the model. 
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 In brief, the presented mathematical model is a non-separable, non-convex, mixed 

integer bilinear program. These complicating features of the mathematical model 

explain the incapability of the commercial off-the-shelf optimization packages (e.g., 

AMPL/CPLEX and LINGO) to directly obtain the solution to this class of models 

even for small problem instances. Hence, there is a need for a specifically tailored 

solution algorithm that can efficiently handle such class of mathematical models as 

shall be presented in the next chapter.  

3.6     Summary   

 This chapter has discussed the production planning problem encountered on a 

frequent basis at the maser production scheduling level in steel rolling mills. The 

problem was formulated as a MIBLP in which the technological constraints 

associated with the manufacturing process have been taken into account. The model 

studies the combined effects of several interrelated factors characterizing this type of 

industry such as complex setup time structure, batch production, scrap rate, overtime, 

backlogging and product substitution, on the planning decisions. The objective is to 

establish the daily/weekly production lot sizes such that the assumed static customer 

demand is fulfilled at a minimal total cost. Upon studying the properties of the 

presented mathematical model, it turned out that such model is not readily solvable 

using the commercial optimization packages. Our efforts in the next chapter are 

directed towards developing efficient solution algorithms that have the ability to solve 

similar models within a reasonable amount of computational time.  
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Chapter 4 

 

Application of the Solution Methodologies to the Proposed 

Mathematical Model  

 

4.1   Introduction  

This chapter seeks to attain the solution to the production planning model through 

the implementation and/or customization of the solution techniques discussed in the 

appendix. In general, solving the equivalent MILP resulting from the linearization 

approaches directly using the MIP solver or obtaining the solution to the bilinear 

model via branch-and-bound (B&B) algorithms yield an optimal solution unless the 

solver is stopped after a pre-specified length of run time where the solution is 

considered satisfactory in this case. Benders decomposition (BD) approach, on the 

other hand, does not necessarily render an optimal solution depending on the value set 

for the accepted tolerance. We start by presenting how a generic linearization 

approach applies to the model at hand followed by the development of a modified 

B&B algorithm and lastly a hybrid linearization-BD approach. In this chapter, the 

solutions obtained to the model at hand via these solution techniques are the optimal 



 59

ones. The performance of three solution algorithms is tested under the same set of 

input parameters for several problem instances of varying complexities.        

4.2    Linearization techniques   

Since the mathematical background for the linearization approaches has 

previously been established, we directly employ the technique of Glover (1975) to the 

MIBLP model presented in Chapter 3. Note that the RLT of Adams and Sherali 

(1990) is not applicable to the current model as it deals with constraints that are either 

a function of the binary variable or the continuous one, but not both, which is not the 

case here. Recall that in this model, the bilinearity appears due to multiplying the 

binary variable k
ijtSb  by the continuous variables '

' , 1
k
i j tX ′ −  and '

' , 1
k
i j tS ′ −  as can be seen in 

equation (3.5) and in the objective function (in the variable k
ijtS ). Following Glover’s 

linearization scheme, Equation (3.5) is replaced by the following sets of constraints in 

the linearized version of the model:       

 9.6 0.4k k k k
ijt ijt ijt ij ijtS Sb y ST Sd= × − × + ×         , , ,i j t k∀                          (4.1) 

k k k k k
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where k
ijtL  and k

ijtU  represent the lower and upper bounds on the term 

'
' , 1 '

' , 1
' ' '

k
i j t k

i j t
i j k i j

X
S

α
′ −

′ −
′ ′

⎛ ⎞
+⎜ ⎟⎜ ⎟
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∑  respectively. Since this term physically denotes the total 
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production and setup time in period 1t − , the value of the lower bound, k
ijtL , is simply 

set to zero and that for the upper bound is k
ijt t otU A A= + , which is the total available 

regular and overtime hours of production capacity.        

Constraints (4.1) – (4.3) are necessary in order to establish the equivalence 

'
' , 1 '

' , 1
' ' '

k
i j tk k k

ijt ijt i j t
i j k i j

X
y Sb S

α
′ −

′ −
′ ′

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
∑  for all , ,i j t  and k . Once the binary variables 

k
ijtSb  assume a value of zero, constraint set (4.2) is binding while constraint set (4.3) is 

the binding one whenever k
ijtSb  assume a value of one. Since the newly added 

variables, k
ijty , appear in the objective function with a negative sign, the model will 

seek the maximum possible value for this variable. This indicates that the left hand 

side inequalities of constraints (4.2) and (4.3) are redundant and can be dropped out 

of the model.       

Clearly, the linearization approaches, in general, suffer from a common drawback 

that affects their performance. They involve a radical increase in the number of 

problem variables and constraints and, as such, the gains to be derived from dealing 

with linear functions are quite likely to be nullified by the increased problem size 

(Glover 1975). This increase in the problem size has a major impact on the CPU 

computation time especially for large scale models since the added variables and 

constraints are accounted for at all branching nodes in the MIP solver. In particular, 

the linearized version of the model at hand involves the addition of I J T K× × ×  

variables and 2 I J T K× × × ×  constraints. The performance of the linearization 

approach for several problem instances of different sizes is reported in Section 4.5.  



 61

4.3    Modified Branch-and-Bound algorithm   

The production planning problem at hand, like many other real world problems, is 

a combinatorial optimization problem that has a very large, but finite, number of 

feasible solutions. However, solving such discrete optimization problems to 

optimality through explicit enumeration is normally impossible or is an immense job 

requiring substantial amount of computational time. For the linearization approach 

discussed earlier, the shortcomings associated with this approach contribute to a much 

needed alternative and a more efficient solution procedure.  

In this section, a modified version of the long established B&B algorithm is 

developed in which different branching, bounding and fathoming strategies are 

employed. The basic idea here is to get rid of bilinearity through proper substitution 

of the complicating binary variables, k
ijtSb , while simultaneously obtaining the bound 

at each node via such substitution. Once the values of these variables are set to either 

zero or one, the resulting reduced size MILP becomes a lot easier to solve. 

Fortunately, constraint set (3.4) states that among all possible RM, FP and SG 

combinations, there exists only one possible combination for which a major setup 

could take place in period t . Hence, setting '
' ' 1k

i j tSb =  for a certain value of 'i , 'j  and 

'k  entails that 0k
ijtSb =  for either one of 'i i≠ , 'j j≠ , 'k k≠  and for the same t . 

This reduces the number of possibilities (i.e. branches to be explored) to I J K× ×  for 

each t . Moreover, the possible number of 1k
ijtSb =  combinations at optimality is now 

( )TIJK  as a direct result of constraint (3.4). However, fully exploring this many 

possibilities is a tedious and a time consuming task especially for large scale models. 
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Therefore, a clever enumeration algorithm for such possibilities is much needed. The 

proposed B&B based solution algorithm is stated formally as follows:  

Step 1: Set 0k
ijtSb =  for , , ,i j k t∀  throughout the model, ignore Equation (3.4) and 

then solve.  

The resulting MILP problem is a relaxed version of the original problem and its 

solution provides a lower bound on the optimal value for the original problem since 

the major setup cost is set to zero. However, its solution is not feasible to the original 

problem as it violates equation (3.4).   

Step 2: Set 1t =  and substitute 1 1k
ijSb =  for each branch emanating from the original 

node, with I J K× ×  possible branches, while keeping the substitution 0k
ijtSb =   for 

, ,i j k∀  and 1t > .  

The resulting solution to each of these subproblems gives a lower bound on the 

optimal objective function value of the original problem. Among the resulting 

I J K× ×  subproblems, branch from the one with the lowest value of the objective 

function, as this is the most promising node (ties are broken arbitrarily).   

Step 3: Repeat step 2 for 2,3,...,t T=  with each value of t  corresponding to one level 

in the tree. Again, there would be I J K× ×  possible branches from each node.  

Clearly, the lower bound on the optimal objective function value increases as we go 

down the tree since larger portions of the major setup cost are being accounted for.  

Step 4: The solution with the minimum objective function value obtained at the 

lowest level of the tree (corresponding to t T= ) is called the incumbent, which is 

used as an upper bound during the search of the unexplored branches of the tree. The 

search continues with other branches and the value of this incumbent is compared 
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with the bounds obtained at each node in order to make the fathoming decisions. If 

the value of the objective function calculated at a particular node is larger than the 

incumbent, that branch is fathomed. Otherwise, the value of the incumbent is updated 

whenever a lower value incumbent is attained, and then the new incumbent is used to 

make the fathoming decisions.   

It should be noted that at each node of the tree, the MILP model is solved without 

equation (3.4) but it is this constraint that drove the branching scheme in the first 

place. The tree exploring strategy is depth-first since this allows a faster recovery of 

an incumbent, which can be used to make the fathoming decisions. The width of the 

tree depends on the values of I , J and K , and the number of different levels is equal 

to 1T + . The obtained MILP models at each node are directly solved using 

AMPL/CPLEX 11.0 solver.  

To serve illustrative purposes, Figure 4.1 depicts a graphical representation for the 

progress of the proposed algorithm as applied to a small problem instance ( 2I K= = , 

3J =  and 4T = ). Implementing the algorithm yields a tree with 5 levels (since 

1 5T + = ) and 12 nodes (since 12I J K× × = ) at each level starting from level 2. The 

nodes shown with a solid line are the ones yielding the minimum objective function 

value (i.e. most promising) among all other nodes in the same level. The branches in 

the solid line represent the path connecting these nodes which leads to the incumbent 

at the bottom of the tree. Hence, the values of the major setup variables corresponding 

to the incumbent in Figure 4.1 are 2 1 2 2
221 232 113 224 1Sb Sb Sb Sb= = = = .  The incumbent 

value can now be used to make the fathoming decisions for the unexplored branches 
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of the tree, which could eventually result in an optimal solution different from the 

current incumbent (indicating that a lower value incumbent has been found).    

 

 

Figure 4.1: Partial tree resulting from applying the proposed B&B algorithm for a 
small problem instance 

 

At this juncture, a clear distinction has to be made between the classical B&B 

algorithm and the one proposed in this work. The classical B&B algorithm utilizes 

LP-relaxation of the binary variables k
ijtSb  in order to obtain the bound at the initial 

node. Such a relaxation does not resolve either bilinearity or non-convexity embedded 

in the model and hence the resulting model is still not directly solvable using 

optimization software. As a matter of fact, the relaxed version of the model is now 

“pure bilinear” (two continuous variables are multiplied by one another) instead of 
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being “mixed-integer bilinear”, and there exists a reformulation-linearization 

technique established in the literature for this class of bilinear models (Sherali and 

Alameddine 1992). Table 4.1 provides more insights into the differences between the 

classical B&B algorithm and the modified one.  

Table 4.1: A comparison between the classical B&B algorithm and the modified 
B&B algorithm proposed in this thesis 
 

  Classical B&B  Modified B&B 

Branching 

- Two branches emanate from 
each node corresponding to one 
of the binary variables being 
assigned a value of either zero 
or one (Except at an incumbent 
or at an integer solution where 
no more branching takes place). 

 
- Hence, the number of nodes at 

any level of the tree is twice that 
of the higher level.  

- Utilizes Constraint (3.4) to 
obtain I J K× ×  branches 
from each node, where each 
branch corresponds to one of 
the binary variables being 
equal to one.  

- Each level in the tree 
corresponds to a single t 
value.  

  
- This branching scheme results 

in a tree with I J K× × nodes 
at each level of the tree.   

Bounding 

Relaxes the binarity restriction on 
all binary variables (except the 
branching variable) and allows 
those variables to assume any 
value between zero and one (i.e. 
LP relaxation).    

Assumes the values of all binary 
variables (other than the 
branching variable) are set to 
zero (those in the same level are 
set to zero due to constraint 
(3.4) and others to obtain the 
bound and reduce the original 
problem to a MILP).   

Incumbent 
Corresponds to an integer solution 
obtained at any node (this might 

occur at any level of the tree)  

Obtained only at the lowest 
level of the tree, since that is 

when Constraint (3.4) is 
satisfied 

 
 

It is important to point out that there exist several practical problems to which the 

proposed B&B based algorithm is applicable. Examples include, but not limited to: 

(1) Small-bucket dynamic lot-sizing problems where a single product may be 
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produced in each time period, (2) Portfolio management problems where a new 

investment opportunity is decided upon at the beginning of each year, and (3) Vendor 

selection problem where a product may be solely supplied by a single source for a 

specific time period. Section 4.5 presents a numerical example for a small problem 

instance as well as the computational experiments for various problem sizes.   

4.4    Hybrid Linearization-Benders decomposition approach  

The solution algorithm presented in this section is a two phase methodology that 

first applies the linearization approach in order to obtain the linearized model and 

then applies Benders decomposition (BD) to this MILP model instead of solving it 

directly via the MIP solver. The motivation to use BD is its ability to handle the 

complicating variables separately which is likely to save in the computational time 

needed. More importantly, we seek to provide an application of BD to the solution of 

mathematical models involving complicating constraints as well (constraint 3.5 in this 

case). On page 244 of their book, Conejo et al. (2006) point out that considering 

nonlinear constraints as complicating constraints and treating them through 

linearization procedures do not lead generally to a decomposed problem. Therefore, 

we present an instance of a mathematical model to which linearization techniques are 

applied first and then the linearized model is handled with Benders decomposition 

approach.   

Following the BD methodology, the complicating variables in the model at hand 

are the binary variables k
ijtSb  and k

itG , as well as the integer variables k
ijtSd . Since the 

continuous variables k
ijtS  and k

ijtX  are functions of the k
ijtSb  and k

ijtSd  variables as can 
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be seen in equations (3.5) and (3.8) respectively, their values are optimized via 

solving the master problem which is given by:  

Master problem:  
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 (4.4)
Min 
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Notice that the variable α  assumes only non-negative values (Constraint 4.13) 

since it represents an underestimate for the sub-problem’s cost function. Once the 

values of the complicating variable are established, they are substituted into the sub-

problem in order to optimize the production capacity, finished product inventory and 

backlogging, and the substitution related decisions. The sub-problem at iteration v  is 

formulated below:    

 

Sub-problem:  
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The nonnegative variables k
jtR  are added to the inventory balance constraints 

(4.19) and (4.21) to avoid the infeasibility of the sub-problem through balancing out 

the shortages in the finished products. The penalty factor k
jtM  associated with these 

variables should be large enough in order to ensure no shortages at final solution (i.e., 

0k
jtR =  for all , ,j t k ). The flowchart in Figure 4.2 illustrates how the BD algorithm 

works. 

   

Figure 4.2: A flowchart for the decomposition structure 
 

Start

Solve the Master 
problem 

Update the RM purchasing, 
RM inventory, setup times and 
production quantities related 

decisions  

Solve the sub-problem for 
the updated master problem 

decisions

Formulate new benders cut 
and append it to the master 

problem  

Is the cost 
tolerance met? Stop 

No

Yes
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The solution to the sub-problem provides marginal information on the goodness 

of the decisions made at the master problem which is reflected in the obtained values 

for the associated dual variables. After each iteration v , those dual variables are fed 

back into the master problem, through the optimality cut (constraint 4.5), which helps 

refine the decisions made at the previous iteration. Note that only the variables k
ijtS  

and k
ijtX  need to be included in the optimality cut since they are the only variables 

from the master problem that appear in the sub-problem and can affect the sub-

problem’s objective function value. The addition of any other variable (e.g., k
ijtSb  and 

k
ijtSd ) to the optimality cut will result in a zero value for their associated dual 

variables in all the iterations, and consequently, this would not have any impact on 

the solution or the convergence rate. As mentioned in the appendix, the algorithm 

terminates when the cost tolerance  ( ) ( )v v
SPZ α ε− <  is met.     

4.5    Computational analysis     

The purpose of this section is to provide more insights into the mechanism of the 

proposed B&B algorithm through a simple numerical example. Also, the performance 

of the three solution algorithms is benchmarked against one another for several 

problem instances of varying complexities.    

4.5.1    A numerical example      

To serve for illustrative purposes, a relatively small problem instance where 

2I K= = , 3J =  and 4T =  is solved in this subsection through applying the B&B 

algorithm. Table 4.2 shows problem parameters involving only the time index, which 
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are available regular time and overtime capacity, batch size, the per hour overtime 

cost and setup cost. Since higher values for the index j indicate smaller rebar 

diameters (see Table 3.2), the per unit production cost from the same billet (i.e. same 

i) increases for increasing values of j as seen in Table 4.3. The finished product 

related parameters, including inventory holding cost, backordering cost, selling prices 

and demand are shown in Tables 4.4 and 4.5. On the other hand, Table 4.6 provides 

the values for the raw material related parameters, including procurement cost, 

ordering cost, inventory holding cost and maximum supply capacity. Finally, Table 

4.7 gives the yields, production rates and minor setup times for each raw material-

finished product combination.          
 

             Table 4.2: Problem parameters involving only time index 
   

 Time 
period tA  otA  tb  tPO  tSC  

t = 1 16 4 60 300 400 
t = 2 16 4 60 300 400 
t = 3 16 4 60 300 400 
t = 4 16 4 60 300 400 

 
      Table 4.3: Production cost  
 

i = 1 i = 2 
ijtPC   

j = 1 j = 2 j = 3 j = 1 j = 2 j = 3 
t = 1 25 30 35 20 26 30 
t = 2 25 30 35 20 26 30 
t = 3 25 30 35 20 26 30 
t = 4 25 30 35 20 26 30 

 
      Table 4.4: Inventory holding and backordering costs  
 

k
jtIF  k

jtBC  

j = 1 j = 2 j = 3 j = 1 j = 2 j = 3 

 
Time 

Period  
  k = 1 k = 2 k = 1 k = 2 k = 1 k = 2 k = 1 k = 2 k = 1 k = 2 k = 1 k = 2

t = 1 32 30 35 33 39 37 25 25 28 28 34 34 
t = 2 33 31 36 34 41 39 26 26 30 30 35 35 
t = 3 30 28 33 31 40 38 27 27 32 32 37 37 
t = 4 32 30 35 33 41 39 30 30 34 34 38 38 
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      Table 4.5: Demand and selling prices for end items 
    

k
jtSP  

k
jtD  

j = 1 j = 2 j = 3 j = 1 j = 2 j = 3 

 
Time 

Period  
 k = 1 k = 2 k = 1 k = 2 k = 1 k = 2 k = 1 k = 2 k = 1 k = 2 k = 1 k = 2

t = 1 1800 1600 1830 1630 1900 1700 60 130 100 90 60 100 
t = 2 1800 1600 1830 1630 1900 1700 70 100 120 55 110 75 
t = 3 1840 1640 1860 1660 1940 1740 90 85 80 110 95 40 
t = 4 1820 1620 1860 1660 1930 1730 140 70 90 150 65 50 

 
Table 4.6: Raw material related costs and supplying limits 
 

k
itCR  k

itOR  k
itIR  k

itM  
i = 1 i = 2 i = 1 i = 2 i = 1 i =2 i = 1 i = 2 

 
Time 

Period 
 k = 1 k = 2 k = 1 k = 2 k = 1 k = 2 k = 1 k = 2 k = 1 k = 2 k = 1 k = 2 k = 1 k = 2 K = 1 k = 2

t = 1 650 550 700 600 2000 2000 2200 2200 22 20 25 23 300 300 300 300
t = 2 660 560 710 610 2050 2050 2250 2250 23 21 26 24 300 300 300 300
t = 3 640 540 700 600 2100 2100 2300 2300 22 20 25 23 300 300 300 300
t = 4 670 570 720 620 2100 2100 2300 2300 23 21 26 24 300 300 300 300

 
         Table 4.7: Yields, production rates and minor setup times  
 

ijρ
 ijα

 ijST  
  

Raw 
material 

  j = 1 j = 2 j = 3 j = 1 j = 2 j = 3 j = 1 j = 2 j = 3 
i = 1 0.94 0.90 0.87 56 54 52 0.25 0.40 0.50 
i = 2 0.96 0.93 0.91 58 56 54 0.40 0.50 0.75 

 
Implementing the proposed solution algorithm yields a tree with 5 levels (since 

1 5T + = ) and 12 nodes (since 12I J K× × = ) at each level starting from level 2 (a 

partial tree is seen in Figure 4.3). At this stage of tree exploration, several branches 

can already be fathomed as they yield an objective function value that is higher than 

the current incumbent. In particular, starting from level 2 in the tree, the branches 

emanating from the three nodes where 1 1 2
211 221 221 1Sb Sb Sb= = =  can be fathomed. 

Several other nodes at the lower levels of the tree shall be fathomed as well. The 

remaining branches (i.e., those emanating from nodes with lower objective function 

value than that of the incumbent) need to be explored, and the current incumbent is to  
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2
111 1Sb =  

1,601,940 

1
121 1Sb =  

1,601,570 

2
121 1Sb =

1,601,710

1
131 1Sb =

1,601,660

2
131 1Sb =

1,602,030

2
211 1Sb =

1,601,710

1
221 1Sb =

1,605,670

2
221 1Sb =

1,603,920

1
211 1Sb =  

1,603,540 

1
231 1Sb =

1,603,350

1
111 1Sb =  

1,601,780 

2
231 1Sb =  

1,601,530 

2
112 1Sb =  

1,602,070 

1
122 1Sb =  

1,601,830 

2
122 1Sb =

1,602,640

1
132 1Sb =

1,601,870

2
132 1Sb =

1,603,740

2
212 1Sb =

1,601,980

1
222 1Sb =

1,604,730

2
222 1Sb =

1,605,540

1
212 1Sb =  

1,601,830 

1
232 1Sb =

1,601,960

1
112 1Sb =  

1,601,860 

2
232 1Sb =  

1,601,970 

2
113 1Sb =  

1,603,610 

1
123 1Sb =  

1,603,690 

2
123 1Sb =

1,603,340

1
133 1Sb =

1,603,290

2
133 1Sb =

1,605,410

2
213 1Sb =

1,603,340

1
223 1Sb =

1,606,040

2
223 1Sb =

1,605,960

1
213 1Sb =  

1,603,340 

1
233 1Sb =

1,603,100

1
113 1Sb =  

1,603,610 

2
233 1Sb =  

1,603,100 

2
114 1Sb =  

1,605,230 

1
124 1Sb =  

1,603,600 

2
124 1Sb =

1,603,600

1
134 1Sb =

1,603,580

2
134 1Sb =

1,605,390

2
214 1Sb =

1,603,600

1
224 1Sb =

1,606,550

2
224 1Sb =

1,606,360

1
214 1Sb =  

1,603,600 

1
234 1Sb =

1,603,560

1
114 1Sb =  

1,603,630 

2
234 1Sb =  

1,603,510 

1
111 1Sb =

1,598,910

Figure 4.3: Partial tree resulting from applying the proposed B&B 
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be updated accordingly whenever a lower value is obtained (step 4 of the algorithm). 

As it turns out, the current incumbent value dominates all other branches, with the 

exception of only one branch resulting in the same objective function value (i.e., 

alternative optima). Since the planning horizon is 4 days, we would have four major 

setups corresponding to one at the beginning of each day. The optimal values of these 

major setup variables are 2 1 1 2
231 232 233 234 1Sb Sb Sb Sb= = = = , which correspond to the first 

incumbent obtained (or alternatively, 2 1 2 2
231 232 233 234 1Sb Sb Sb Sb= = = = ).  

         Table 4.8: Finished product inventory, backorder and substitution quantities 
 

j = 1 j = 2 j = 3  

k
jtI   k = 1 k = 2 k = 1 k = 2 k = 1 k = 2 

t = 1 0 0 0 26 0 9.2 
t = 2 1 0 23 0 0 0 
t = 3 26.2 12.4 0 0 13.6 0 
t = 4 0.2 0 15 0 0.8 0 

j = 1 j = 2 j = 3  

k
jtB   

k = 1 k = 2 k = 1 k = 2 k = 1 k = 2 
t = 1 3.6 14.8 0 0 7.8 0 
t = 2 0 17.8 0 10 0.6 19.2 
t = 3 0 0 3 12 0 4.6 
t = 4 0 0 0 0 0 0 

j = 1 j = 2 j = 3 
 

k
jtW   k = 1 k = 2 k = 1 k = 2 k = 1 k = 2 

t = 1 0 130 8 82 0 100 
t = 2 39.4 60.6 19 36 46.6 28.4 
t = 3 0 85 0 110 0 40 
t = 4 0 70 0 150 0 50 

 
      Table 4.9: Optimal raw material purchasing and inventory policy   
 

k
itQ  k

itG  k
itI  

i = 1 i = 2 i = 1 i = 2 i = 1 i = 2 

  
 Time 
period 

 k = 1 k = 2 k = 1 k = 2 k = 1 k = 2 k = 1 k = 2 k = 1 k = 2 k = 1 k = 2 
t = 1 240 120 0 300 1 1 0 1 0 0 0 60 
t = 2 240 0 240 0 1 0 1 0 0 0 0 0 
t = 3 300 300 300 300 1 1 1 1 240 180 60 120 
t = 4 0 0 0 0 0 0 0 0 0 0 0 0 
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The resulting values for the rest of the decision variables are shown in Tables 4.8-

4.10 and the optimal objective function value is * 1,603,510.Z =  The resulting values 

of the demand substitution variables for grade 60 steel ( 1
jtW ) shown in Table 4.8 

indicate that, under the given parameters’ values, it is economically advantageous for 

the company to consider the demand substitution option, since 1
12 39.4W = , 1

21 8W = ,   

1
22 19W =  and 1

32 46.6W = .  

 

       Table 4.10: Optimal setup and production related decisions 
  

i = 1 i = 2 k
ijtSd  

j = 1 j = 2 j = 3 j = 1 j = 2 j = 3 
  k = 1 k = 2 k = 1 k = 2 k = 1k = 2 k = 1 k = 2 k = 1k = 2 k = 1 k = 2

t = 1 1 0 2 2 1 0 0 2 0 0 0 1 
t = 2 1 0 3 0 0 0 1 1 0 0 2 0 
t = 3 0 0 1 2 0 0 2 2 0 0 1 1 
t = 4 1 0 2 3 1 0 1 1 0 0 0 0 

i = 1 i = 2 k
ijtS  

j = 1 j = 2 j = 3 j = 1 j = 2 j = 3 
  k = 1 k = 2 k = 1 k = 2 k = 1k = 2 k = 1 k = 2 k = 1k = 2 k = 1 k = 2

t = 1 0.25 0 0.8 0.8 0.5 0 0 0.8 0 0 0 4.75
t = 2 0.25 0 1.2 0 0 0 0.4 0.4 0 0 3.932 0 
t = 3 0 0 0.4 0.8 0 0 0.8 0.8 0 0 4.266 0.75
t = 4 0.25 0 0.8 1.2 0.5 0 0.4 0.4 0 0 0 2.471

i = 1 i = 2 k
ijtX  

j = 1 j = 2 j = 3 j = 1 j = 2 j = 3 
  k = 1 k = 2 k = 1 k = 2 k = 1k = 2 k = 1 k = 2 k = 1k = 2 k = 1 k = 2

t = 1 56.4 0 108 108 52.2 0 0 115.2 0 0 0 109.2
t = 2 56.4 0 162 0 0 0 57.6 57.6 0 0 163.8 0 
t = 3 0 0 54 108 0 0 115.2115.2 0 0 109.2 54.6
t = 4 56.4 0 108 162 52.2 0 57.6 57.6 0 0 0 54.6

         

4.5.2    Further computational experiments       

At this juncture, a comparison between the performance of the classical 

linearization approach (Glover 1975), the proposed B&B algorithm and the hybrid 

linearization-BD (L-BD) algorithm is due. For a realistic problem size ( 5I T= = , 
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7J = and 2K = ), the linearization approach adds 350 variables and 700 constraints to 

the original model. On the other hand, the B&B based algorithm involves the solution 

of a reduced size MILP at each node (350 less binary variables and 355 less 

constraints as compared to the original problem). Regardless of the problem size, the 

L-BD algorithm adds one additional constraint to the master problem representing the 

optimality cut after each iteration.  

All three algorithms were coded using AMPL programming language (Fourer et 

al. 2003) and solved using CPLEX 11.0 solver, where the solver option is set to solve 

integer problems using the built-in branch and cut algorithm. For the sake of 

comparison, ten different problem instances are tested, and each problem instance is 

solved to optimality, under the same set of input parameters for all algorithms. The 

numerical experiments, in this chapter and throughout this thesis, are implemented on 

a single CPU with 4-2.2 GHz AMD Opteron 64-bit processors and 16 GB RAM. The 

values for the different input parameters are generated within certain range of 

intervals, as shown in Table 4.11.       

 
            Table 4.11: Selected range of values for input parameters in the test problems 
 

Input parameter Range of values Input parameter Range of Values 
k
itCR  (550 , 850) k

jtBC  (25 , 40) 
k
itOR  (2000, 2800) k

jtSP  (1500 , 2000) 
k
itIR  (15 , 30) k

itM  (150 , 300) 

ijtPC  (10 , 45) ijρ  (0.82 , 0.98) 

tPO  (150 , 450) ijα  (49 , 58) 

tSC  (300 , 1000) k
jtD  (0 , 100) 

k
jtIF  (30 , 50) ijST  (0.25 , 1.0) 
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The obtained results for the ten problem instances are reported in Table 4.12. It 

should be noted that the generation of the input parameters within different ranges of 

intervals will have an influence on the time it takes all algorithms to render an 

optimal solution. As can be seen in Table 4.12, the linearization approach and the L-

BD attain the optimal solution in less time as compared to the B&B algorithm for 

small problem instances (P1 and P2). However, as the problem size increases, the 

B&B algorithm tends to outperform both of these approaches, although a larger 

problem size yields a bigger tree with, most likely, more nodes to be explored. While 

the B&B algorithm performs complete enumeration for small problem instances, tight 

bound and fathoming work effectively in larger problems. The time reduction 

resulting from the implementation of the B&B algorithm for larger problem instances 

may be attributed to two reasons. First, the binary variables k
ijtSb  are considered as 

parameters at each node of the B&B algorithm while they remain as decisions 

variables in the other two approaches. Second, the constraints added through the 

linearization approach (4.1-4.3) are more involved as they all contain either the binary 

variable k
ijtSb  or the integer variable k

ijtSd  or even both, which requires longer solution 

time from the IP solver.  

Although the L-BD algorithm separates the complicating variables before solving 

the resulting problems in the MIP solver, no savings in solution time were obtained as 

compared to the linearization approach which directly solves the MILP model using 

the MIP solver. This clearly indicates that it is not necessary for the BD algorithm to 

yield savings in computational time once applied to problems involving complicating 

constraints. The last column in Table 4.12 shows the savings in the solution time 
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obtained from the use of the B&B algorithm as compared to the classical linearization 

approach, which could amount to 48% as seen in P4.   

 
Table 4.12: Numerical comparison for the performance of the three solution 
approaches  

Linearization Modified Branch & 
Bound 

Linearization - 
Benders 

Decomposition 
PR.  

CODE 

 Problem 
size   

(I×J×T×K) 
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S
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ut
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n 
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e 
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ec
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% 
solution 

time 
savings

P1 1×2×2×2 74 140 0.42 58 106 8.59 83 149 3.55 -- 

P2 1×3×3×2 159 297 0.71 123 222 106.32 178 316 84.14 -- 

P3 2×3×3×2 267 507 1,836 195 360 1,501 286 526 2,709 18 

P4 2×3×4×2 358 678 17,961 262 482 9,305 383 703 31,186 48 

P5 3×4×4×2 644 1,232 94,027 452 844 68,113 677 1265 128,763 28 

P6 4×4×4×2 828 1,592 125,691 572 1,076 88,476 861 1625 153,631 30 

P7 4×5×4×2 1,010 1,946 169,829 690 1,302 106,177 1051 1987 * 37 

P8 5×5×4×2 1,234 2,386 * 834 1,582 121,830 1275 2427 * N/A 

P9 5×6×4×2 1,456 2,820 * 976 1,856 134,252 1505 2869 * N/A 

P10 5×7×5×2 2,101 4,071 * 1,401 2,666 174,514 2172 4142 * N/A 
 

          1Number of variables in the MILP solved at each node.  
 2Number of constraints in the MILP solved at each node.  
 *Code execution was interrupted after 50 hours of run time with no results obtained. 
 N/A: The basis for carrying out the comparison is not available    
 

4.6    Summary     

This chapter has presented three exact solution algorithms for the production 

planning MIBLP model presented in Chapter 3. The first solution methodology is 

based on the classical linearization approach adopted for obtaining an equivalent 

larger sized MILP through the addition of auxiliary variables and constraints and then 

solving the resulting model directly using the MIP solver. The second solution 

methodology, however, modifies the long-established B&B algorithm and utilizes the 
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special problem structure to minimize the number of branches and obtain the bound at 

each node. The third algorithm utilizes the Benders decomposition technique to 

decompose the MILP model resulting from the linearization approach into two easier 

problems and then solving these problems using the MIP solver.     

The computational experiments have illustrated the ability of the B&B algorithm 

to solve realistic problem sizes involving 5 different billets, 7 different rebars, 2 steel 

grades with a planning horizon of one week (5 working days). In essence, this 

algorithm provides a more efficient alternative for solving bilinear models in which 

the number of possible combinations for the values of the complicating binary 

variables is limited. It stands as a first implementation of a B&B based algorithm 

towards solving MIBLP models since a review of the literature reveals no such 

implementation except for the pure bilinear case.   
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Chapter 5 

PART-II: Rolling Horizon Approximations for Production 

Planning with Demand Volatility   

 
 

5.1   Introduction  

 The analysis presented so far has dealt with the production planning problem at 

steel mills considering static or deterministic demand conditions. Although steel 

manufacturers mostly deal with long term loyal customers (Chen and Wang 1997, 

Kerkkänen 2007), the end customers’ demand may differ from a predetermined 

forecasted value especially in periods of high demand. Needless to say, such demand 

variations have a major impact on the production and inventory related decisions and 

the incorporation of these uncertainties into the planning process is of paramount 

importance. As pointed out by Mula et al. (2006), models for production planning 

which do not recognize the uncertainty can be expected to generate inferior planning 

decisions as compared to models that explicitly account for uncertainty.  

 This chapter addresses the dynamic nature of the operating environment through 

implementing the developed production plan on a rolling horizon basis. As such, the 

model developed in Chapter 3 is adjusted in order to allow for the incorporation of 
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demand forecasts and confirmed customers’ orders, where both quantities are updated 

every period as new information becomes available. For reasons of efficiency and 

practicality, rolling horizon decision making is a common business practice in a 

dynamic environment (Chand et al. 2002). However, rolling horizon schedules 

suggest solving the mathematical model at hand repeatedly at the beginning of each 

period, a practice that requires substantial amount of computational efforts especially 

for large size problems. Hence, it is the objective of this chapter to introduce 

approximate models that, once implemented on a rolling horizon basis, yield reduced 

problem dimensionality with significant savings in computational time while still 

providing practical proxies for the exact model.    

5.2    Decision making under uncertainty   

 In reality, industrial firms operate in a constantly changing environment that 

causes production planning related problems, such as the one at hand, to be dynamic 

in nature. Essentially, the instability associated with such problems is caused by 

external factors (e.g. supplier’s late delivery and customer’s demand volatility) as 

well as internal ones (e.g. changing capacity and higher scrap ratio produced). Hence, 

in most practical situations, the underlying assumptions of standard mathematical 

programming concerning certainty is often unsatisfied as the estimation of model 

parameters is usually reached at through anticipating future events. The exact value of 

such parameters will become known only after the solution has been chosen and 

implemented (Hillier and Lieberman 2005).       
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 Generally speaking, when it comes to mathematical modeling, there are several 

ways to account for the uncertainties associated with the problem parameters of 

interest, as seen in Figure 5.1. The first and customary practice is to assume that all 

parameters are known a priori and seek the solution to the mathematical model under 

the assumed values. Having the optimal solution at hand, a post optimality analysis is 

carried out in order to generate a series of improving approximations to the ideal 

course of action as well as identify the sensitive parameters, those whose values 

cannot be altered without changing the optimal solution. However, Hillier and 

Lieberman (2005) note that if some of the problem parameters have large variance, 

this approach of dealing with uncertainty is insufficient. 

  

 

Figure 5.1: Approaches to incorporate uncertainty in mathematical models 

 For multi-period planning models, the dynamic implementation of the 

mathematical model on a rolling horizon basis is a more viable alternative especially 

when there is a high degree of uncertainty involved. This approach calls for 

periodically updating the model parameters as the horizon rolls forward and new 

information becomes available, and then re-solving the model with the updated 

values. For complex and large scale models, decision makers would likely prefer a 
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procedure that facilitates the attainment of quick solutions rather than the repetitive 

solution of the model which might require extensive computational efforts.   

 The last two approaches, namely stochastic programming and fuzzy mathematical 

programming are more appropriate for situations involving a high degree of 

uncertainty. The former approach accounts explicitly for the uncertainty through 

treating some or all problem parameters as random variables that are modeled by 

discrete or continuous probability distributions. The underlying assumption here is 

the existence of reliable past data that can be used to derive the probability 

distributions based on some statistical techniques.       

 On the other hand, fuzzy mathematical programming stands out as the most 

convenient alternative in the absence of historical data or when these data is no longer 

reliable. This approach allows the decision makers to incorporate their intuition and 

subjective managerial judgments into the mathematical model through the use of 

fuzzy set theory (FST). In addition, qualitative expressions can now be modeled using 

the concept of possibility distribution (e.g. Dubois and Prade 1994). Broadly 

speaking, fuzzy mathematical programming encompasses flexible mathematical 

programming and possibilistic programming, where the decision of which technique 

to adopt depends on the nature of the existent fuzziness in the model.    

 This chapter tackles the uncertainties associated mainly with end customers’ 

demand through rolling horizon schedules but with an added twist. We leave out the 

application of the alternative fuzzy approach to subsequent chapters.  
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5.3     The general rolling horizon practice   

 The implementation of production plans on a rolling horizon basis is a widely 

accepted practice as it allows for the dynamic nature associated with practical 

problems to be accounted for. According to Clark (2005), a schedule that is optimal 

for forecast demand over a given horizon will almost certainly be sub-optimal when 

implemented for the actually occurring demand. Essentially, for any rolling horizon 

schedule, there is a number of design factors that are particularly important. These 

are: forecast error, lot-sizing rule, length of replanning interval or frequency of 

replanning, and the choice of forecast window length. However, it is not our focus in 

this research to analyze these factors since their impact, both solely and combined, on 

the planning process has been amply investigated in the literature (e.g. Sethi and 

Sorger 1991, Lin and Krajewski 1992, Venkataraman 1996, Venkataraman and 

Nathan 1999, and Venkataraman and D’itri 2001). For instance, Lin and Krajewski 

(1992) concluded that the choice of lot-size rule under condition of demand 

uncertainty may not be as important as other aspects of MPS system design. Baker 

(1977) carried out an early experimental study concerning the effectiveness of rolling 

horizon decisions and suggested, with exceptions however, that such schedules are 

quite efficient. The rolling horizon outcomes can be very different from the static 

ones (Clark and Clark 2000). Drexel and Kimms (1997) note that little research has 

been carried out into the capacitated lot-sizing problem on a rolling horizon basis. 

Sahin et al. (2008) pointed out that although rolling schedules are commonly applied 

in the industry, they still yield heuristic long-term solutions even if optimal 

production schedules are determined at every replanning iteration.  
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 In general, At the beginning of the first period, the typical practice under a rolling 

horizon policy calls for establishing the MPS for a certain number of future time 

periods, known as the planning horizon, based on the currently available relevant 

information (e.g. demand forecasts, available capacity, inventory and backlog 

records, etc.). However, only the current period’s decisions actually become firm and 

are implemented. At the beginning of the second period, the horizon is rolled forward 

and the MPS is updated as more reliable data about the future becomes available. 

Again, only the second period’s decisions are actually implemented and the process 

continues. In principle, rolling schedules provide the decisions to be carried out over 

a number of time periods where only the most immediate decisions are implemented 

before the multi-period model is re-run. It should be noted, however, that the update 

process (i.e. model re-running) does not necessarily take place every time period, in 

which case the number of periods for which the decisions are actually implemented is 

referred to as the replanning frequency. As pointed out by Venkataraman and D’itri 

(2001), rolling horizon schedules are considered to be more efficient as the 

methodology restricts implementation to the immediate period for which demand 

information is least subject to error. 

5.4    Exact mathematical modeling    

 This section modifies the original mathematical model presented in Chapter 3 to 

consider demand volatility through the incorporation of demand forecasts as well as 

confirmed customers’ orders in the planning decisions. Clearly, steel bars represent a 

fundamental and a much needed merchandise that constitute an essential material for 
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mega and micro construction projects alike. This gives rise to a common phenomenon 

encountered frequently in the steel rolling industry, which is the so called “rush 

orders”. In particular, the steel mill under consideration constantly faces high levels 

of demand volatility in the form of last minute changes in confirmed customers’ 

orders. Such demand instability is mainly attributed to (1) An alteration in the 

previously agreed upon delivery dates as requested by the long-term loyal customers 

due to a construction project being ahead or behind schedule, and/or (2) Newly 

arriving orders usually placed by customers requiring smaller amounts in which case, 

from a customer’s perspective, such orders need not be placed early ahead of time. 

Hence, this dynamic nature of the master production scheduling problem at hand is 

better captured via the use of rolling horizon schedules.  

     To develop an implementable MPS, the production quantities have to be adjusted 

for inventory, customer orders, demand forecasts, and production capacity. Let k
jtFD   

denote the forecasted demand for FP j  of steel grade k  in time period t , and k
jtCO    

denote confirmed customers’ orders for FP j  of steel grade k  to be delivered in 

period t . The modified MIBLP is then given as follows:  
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 The inventory balance constraints in the model are adjusted for the maximum 

value of customers’ orders and demand forecasts as seen in Equations (5.9) and 

(5.10).  In the remainder of this chapter, the above model is referred to as the exact 

model, or the full scale model. The next section presents approximate models which 

provide a quick remedy to the challenging and time consuming task associated with 
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the repetitive solution of the exact model to optimality as new values for problem 

parameters become available.   

 

5.5    Approximate rolling horizon models     

 Due to the uncertainties involved, solving the exact model at the beginning of the 

first period and freezing the resulting MPS for the entire planning horizon (i.e., 

implementing the MPS all the way) will most certainly produce poor quality 

solutions. Alternatively, the decision maker is better off implementing only the first 

period’s decisions and then rolling the horizon forward before implementing the 

second period’s decisions in light of the newly available data, and so on. Under the 

proposed scenario, the decisions associated with the most immediate time period are 

made based on the confirmed customers’ orders. On the other hand, for the 

unimplemented portion of the cycle, production is planned according to the maximum 

of forecasted demand and confirmed orders, where both of these quantities are 

updated periodically as the horizon rolls forward. Such decision making criterion for 

a planning horizon of 4T =  is depicted in Figure 5.2, where ( 1)k
jtFD t −  and 

( 1)k
jtCO t −  denote demand forecasts and confirmed orders at the end of period 1t − , 

respectively. The dashed line box in the figure indicates the implemented master 

production schedule. In this policy, changes in the actual rolled bars selling prices and 

billets purchasing prices are also accounted for as the horizon rolls forward.   

 Following the proposed rolling horizon scheme, the exact model is re-solved at 

the beginning of each period and the production decisions are updated accordingly. 

However, due to complexities associated with solving the exact model to optimality, 
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the process of frequently re-solving such model consumes an impractical amount of 

computational time. As such, three families of approximate models, which only 

generate exact schedules for the immediate time periods, are developed. The basic 

idea behind such approximation is that the key complicating aspects of the exact 

model, which prevent the attainment of quick solutions such as major setup time and 

minimum batch size restriction, are relaxed only for future time periods.  

 
 

         Figure 5.2: The employed rolling horizon strategy 
 

 As pointed out by Clark and Clark (2000), plant schedulers far prefer models that 

make decisions quickly since many scenarios, usually concerning demand forecast 

and machine availability, often have to be evaluated with what-if analysis before a 

final decision is made. In addition, it is difficult to obtain precise estimates for the 
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backlogging cost since it is highly dependent on the market conditions and the 

importance of the customer. As such, the values used for such cost are usually based 

on subjective judgment and vague information. Hence, instead of solving the exact 

model optimally which often requires substantial computational efforts and achieves 

only limited added value, the decision maker would rather make use of smaller 

alternative models that can provide faster responses without big losses in the quality 

of the decisions made.       

 In this section, we seek to resolve the excess computational time, associated with 

obtaining the optimal solution to the exact model, via proper relaxation of the 

complicating variables and/or constraints, resulting in a reduced problem size 

dimensionality and great savings in computational efforts. Only those approximate 

models that generate exact schedules for the most immediate time period are 

considered. Hence, the relaxations are only applied to the unimplemented time 

periods of the planning horizon. Three varieties of alternative models are considered, 

where each model targets a certain complicating aspect of the exact model. The 

quality of the schedules obtained from applying these models is benchmarked against 

one another and against those of the exact model, where the last comparison is only 

possible for small problems that are optimally solvable in feasible computing time. 

Since the analysis is carried out on a rolling schedule basis which requires the 

repetitive solution of the model, our work shall provide the decision maker with 

practical and more efficient alternatives towards the quick attainment of good quality 

solutions (i.e. within the proximity of those obtained through solving the exact 
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model). Although the generated solutions might be sub-optimal, they still provide 

substantial improvement on intuitive or indeed rule-generated production schedules.  

 In general, for a rolling horizon policy that calls for implementing the decisions 

concerning, say, the first τ  periods, Clark and Clark (2000) were the first to address 

questions like: Is it necessary to have 0/1 solution values for the binary setup 

variables in the last T τ−  periods (i.e., the unimplemented portion of the planning 

horizon)? Why not reduce the number of 0/1 variables by representing the setups for 

the last T τ−  periods as relaxed continuous variables between 0 and 1? They also 

argue that even more computing time is economized by eliminating the binary setup 

variables from the last T τ−  periods. This removal is compensated for by increasing 

the values of the unit production times to take the setup times into account. Their 

argument is backed up by an established fact in the literature (e.g., Trigeiro et al. 

1989) which demonstrates the noticeable increase in models complexity once the 

setup times are explicitly accounted for.   

   Looking back at the exact model at hand, it is observed that the binary variables 

concerning the major setup time, k
ijtSb , induce bilinearity and hence prevent the direct 

attainment of quick solutions except via classical linearization approaches that have 

doubtable efficiency. This fact motivates the relaxation of the binary restriction 

(constraint 5.13) on these k
ijtSb  variables only for the unimplemented periods in which 

those variables may now assume a continuous value between 0 and 1. In our case, 

such a relaxation would greatly reduce the number of 0/1 k
ijtSb  variables (from 

I J T K× × ×  to I J K× × ) and is expected to save on the solution time. This 
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relaxation scheme was employed by Clark and Clark (2000) and was proven to 

provide quick and good quality solutions. 

 However, for our model, this approach converts the “mixed integer bilinear” 

program into a “pure bilinear” one since now two continuous variables are multiplied 

by one another. The resulting model is still non-convex and bilinear but it is solvable 

using a specific reformulation-linearization approach established in the literature for 

this class of bilinear models (Sherali and Alameddine 1992). Alternatively, assuming 

the most immediate period is t τ= , we retain the binary variables k
ijtSb  for t τ=  and 

drop them out of the model for periods 1,..., 1t Tτ τ= + + − . The removal of such 

variables is compensated for by a reduction in the regular time available capacity, tA , 

in periods 1,..., 1t Tτ τ= + + −  that is equal to half the major setup time in the most 

immediate period t τ= . That is, the adjusted capacity a
tA is now given by: 
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∑∑∑   for   1,..., 1t Tτ τ= + + −   (5.15) 

The elimination of the major setup time in future time periods contributes to an extra 

production capacity that is actually not available, and hence, a capacity adjustment 

like the one proposed above is needed for these periods. Although the choice of he 

multiplicative term (0.5) might seem subjective, the justification behind it comes 

from a practical perspective. In reality, the production quantities are established on a 

weekly basis at the beginning of each week and, typically, the major setup time for 

the first period (i.e., 1τ =  in this case) is longer than that in subsequent periods due to 

shorter working hours in the weekend. Rolling the horizon one period ahead, the 
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ending inventory levels for RM and FP, the demand forecasts and confirmed orders, 

the selling and purchasing prices are updated after each period. The resulting model is 

a MILP that is directly solvable using off-the-shelf optimization packages such as 

AMPL/CPLEX. This model will be referred to as model ARH in the remainder of this 

chapter.            

 The second approximate model, called BRH, addresses another source of 

complexity in the exact model arising from the integrality restriction on the variables 

k
ijtSd  (constraint 5.14). Recall that these variables denote the number of minor setups, 

or equivalently the number of batches produced after the initial batch, where the 

furnace capacity restricts the size of each batch to 60 tons each, which better complies 

with the economies of scale principles. As established earlier, lot-sizing rules are one 

of the design factors when it comes to developing MPS on a rolling horizon basis. As 

such, this model eliminates the restriction of minimum batch size production through 

relaxing the integrality restriction on the k
ijtSd  variables (i.e., allowing the production 

of partial batches) for the unimplemented time periods only (i.e. 

1,...., 1t Tτ τ= + + − ). This allows for a better understanding of how lot-sizing rules 

impact the total cost in rolling horizon schedules. For the k
ijtSd  variables to assume 

continuous values, they need to be redefined as follows:  

k
ijtSd  : Quantity of batches of FP j produced from RM i both having steel grade k

conducted during period t (i.e. after producing the first batch).  

 

 To serve for better approximation purposes, the setup time expression (Equation 

5.4) for periods 1,...., 1t Tτ τ= + + −  would still be calculated based on integral 
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number of batches. In reality, a minor setup takes place between each batch produced 

and the time for this setup is independent of the batch size. Therefore, the updated 

expression for the setup time in this case is given by: 

'
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where k
ijtSd⎡ ⎤⎢ ⎥  denotes the smallest integer greater than or equal to k

ijtSd . Note that the 

resulting model is still a MIBLP since the binary variables k
ijtSb  were retained for all 

time periods in this model. As such, adopting the classical linearization scheme of 

Glover (1975), the following sets of constraints overcome the existent bilinearity and 

replace the above constraints of (5.16) and (5.17): 
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Clearly, the resulting linearized version of the model is now readily solvable using 

AMPL/CPLEX 11.0. 



 95

 In the above analysis, model ARH tackles the binary restriction on the k
ijtSb  

variables while model BRH tackles the integrality restriction on the k
ijtSd  variables 

without touching the k
ijtSb  variables. This quantifies the quality of the solutions as 

well as the savings in computational time obtained using each approximation criterion 

separately. Towards achieving even further savings in the computational time, the 

approximation schemes adopted in models ARH and BRH are combined. Hence, this 

hybrid model, called CRH, contains no k
ijtSb  variables in the periods 

1,...., 1t Tτ τ= + + −  and assumes that the k
ijtSd  variables are continuous during those 

periods as well. However, for the most immediate period t τ= , all of the full scale 

model constraints are retained so that only exact schedules are generated. 

 

5.6    Computational experiments      

 The purpose of this section is to provide insights into the performance of the 

proposed models in terms of the quality of solutions obtained (i.e., closeness of the 

objective function value obtained via approximations to that of the exact model), 

savings in computational time and reduction in problem dimensionality. To ensure a 

fair comparison, ten problem instances of different sizes are tested and each model is 

solved under the same set of input parameters. All models were coded using AMPL 

programming language (Fourer et al. 2003) and solved using CPLEX 11.0 solver, 

where the solver option is set to solve integer problems using the built-in branch and 

cut algorithm. The values for the different input parameters are generated within 

certain range of intervals, as shown in Table 5.1. 
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           Table 5.1: Selected range of values for input parameters in the test problems 
 

Input parameter Range of values Input parameter Range of values 
k
itCR  (500 , 800) k

jtBC  (20 , 35) 
k
itOR  (2000 , 2200) k

jtSP  (1300 , 1700) 
k
itIR  (10 , 20) k

itM  (150 , 300) 

ijtPC  (15 , 35) ijρ  (0.80 , 0.95) 

tPO  (300 , 500) ijα  (50 , 58) 

tSC  (600 , 800) k
jtFD , k

jtCO   (0 , 100) 
k
jtIF  (15 , 30) ijST  (0.25 , 1.0) 

   

 It should be noted that all models are applied dynamically on a rolling horizon 

basis in which only the first period’s outcome contributes to the total cost function. In 

other words, the reported results are for the implemented plans and, as such, the 

comparison is only made between exact schedules generated through the different 

models. The objective is to study the effect of the relaxations made to future (i.e., 

unimplemented) time periods on the current period’s decisions. Under such a rolling 

horizon policy, the results of the current period establish the next periods’ major setup 

time (if any), and the initial levels of RM inventory, FP inventory and backlog record 

for the next run. In addition, before rerunning the model, any encountered changes in 

the values of the problem parameters, mainly demand forecasts and customers’ orders 

are updated in the model. The obtained results for the exact model, for those instances 

solvable within feasible computational time, along with the three approximate ones 

are reported in Tables 5.2-5.5 below. Note that the solution time indicates the total 

time it takes to solve the model T times, and the total cost is the one resulting from 

the implemented plans. The reported number of variables and constraints for the exact 
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model as well as model BRH are for the linearized version of those models, while 

these numbers are for the reduced size MILP in case of models ARH and CRH.  

 

      Table 5.2: Obtained numerical results for the exact model 
 

Values of 
Indices Problem 

Instance I J T K 

No. of 
Variables 

No. of 
Constraints 

Solution time 
(sec) Total Cost

1 1 2 2 2 74 140 0.95 778,368 

2 1 3 3 2 159 297 2.48 1,112,105

3 2 3 3 2 267 507 8,289 1,151,720

4 2 3 4 2 358 678 33,694 1,542,301

5 3 4 4 2 644 1,232 * * 

6 4 4 4 2 828 1,592 * * 

7 4 5 4 2 1,010 1,946 * * 

8 5 5 4 2 1,234 2,386 * * 

9 5 6 4 2 1,456 2,820 * * 

10 5 7 5 2 2,101 4,071 * * 
          

          *Code execution was interrupted after 12 hours of run time with no results obtained.    
 
 
 Table 5.3: Obtained numerical results for model ARH 
 

Values of 
Indices Problem 

Instance I J T K 

No. of 
Variables 

No. of 
Constraints 

Solution time 
(sec) Total Cost

1 1 2 2 2 62 111 0.94 778,368 

2 1 3 3 2 129 229 3.73 1,077,312

3 2 3 3 2 207 373 9.04 1,127,154

4 2 3 4 2 274 495 57.27 1,520,070

5 3 4 4 2 476 869 600.41 1,588,562

6 4 4 4 2 604 1,109 7,855 1,445,971

7 4 5 4 2 730 1,343 9,249 1,723,936

8 5 5 4 2 884 1,633 16,154 1,687,157

9 5 6 4 2 1,036 1,917 29,373 1,721,446

10 5 7 5 2 1,471 2,737 41,069 2,279,638



 98

Out of the four solvable test problems for the exact model, better proxies are achieved 

via model ARH (instances 1, 3 and 4) while models BRH and CRH provide for a 

better approximation as for the second problem instance. In particular, the worst 

deviation, in terms of objective function value, among all models is not more than 

3.65% under tight capacity conditions. 

 

 Table 5.4: Obtained numerical results for model BRH 
 

Values of 
Indices Problem 

Instance 
I J T K 

No. of 
Variables 

No. of 
Constraints 

Solution time 
(sec) Total Cost

1 1 2 2 2 78 143 0.82 776,051 

2 1 3 3 2 165 295 1.40 1,095,979

3 2 3 3 2 279 505 2.73 1,109,694

4 2 3 4 2 370 663 11.83 1,504,809

5 3 4 4 2 668 1,205 108.33 1,567,408

6 4 4 4 2 860 1,557 2,915 1,419,194

7 4 5 4 2 1,050 1,903 2,602 1,723,807

8 5 5 4 2 1,284 2,333 6,274 1,687,766

9 5 6 4 2 1,516 2,757 15,007 1,706,723

10 5 7 5 2 2,171 3,927 27,838 2,279,037

 
 If we are to benchmark the values of the approximate models’ total cost against 

one another for all test problems, there exists a maximum of 3.44% deviation for 

problem instance number 6. However, for situations where there is abundant capacity 

available (i.e. total demand << capacity), one would expect all models to produce 

very similar, if not exactly the same, production schedules. This is due to the fact that, 

under low demand scenario, the model actually has less number of non-zero decision 

variables to optimize since backlogged quantities, overtime hours and substitution 

quantities are all set to zero.       
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 Table 5.5: Obtained numerical results for model CRH 
 

Values of 
Indices Problem 

Instance I J T K 

No. of 
Variables 

No. of 
Constraints 

Solution time 
(sec) Total Cost

1 1 2 2 2 66 115 0.80 764,689 

2 1 3 3 2 135 229 1.22 1,095,979

3 2 3 3 2 219 373 1.26 1,116,810

4 2 3 4 2 286 483 1.77 1,514,967

5 3 4 4 2 500 845 1.81 1,549,973

6 4 4 4 2 636 1,077 1.81 1,396,213

7 4 5 4 2 770 1,303 1.83 1,723,856

8 5 5 4 2 934 1,583 2.08 1,686,208

9 5 6 4 2 1,096 1,857 2.30 1,674,332

10 5 7 5 2 1,541 2,597 4.09 2,278,262

 
    

 From a solution time perspective, major benefits are obtained through making use 

of the approximate models instead of the exact one without, as just illustrated, 

compromising the quality of such solutions. By comparing the times for models ARH 

and BRH, we notice that more computational time savings are attained from applying 

model BRH (up to 81.96% reduction for instance No. 7). This shows that the 

minimum batch size restriction associated with the k
ijtSd  variables (i.e., integrality 

restriction) contributes a lot more to the complexity of the exact model, hence greatly 

limiting its applicability, as compared to the binary restriction on the variables k
ijtSb . It 

is obvious that since model CRH combines the relaxations employed in the other two 

approximate models, it would result in substantial savings in computational time. For 

example, it took the exact model 33,694 seconds (9.36 hours) to solve problem 

instance No. 4 while model CRH solved it in less than two seconds with a difference 



 100

in the total cost of only 1.77%. For a larger problem size ( 5I T= = , 7J =  and 2K = ) 

the solutions to the exact model are not attainable within 12 hours of computational 

time, while such problem is solved via model CRH within 4 seconds only.    

 If the models were to be implemented on a static horizon basis, one knows that 

model CRH provides a lower bound for both models ARH and BRH which in turn 

would yield a lower bound on the objective function value of the exact model. 

However, rolling horizon outcomes are usually different from static horizon ones and, 

as such, relaxing some of the constraints for the unimplemented time periods does not 

necessarily guarantee a lower objective function value for the more restricted model 

once both models are applied on a rolling horizon basis and the implemented plans 

are compared. As a matter of fact, model ARH results in a lower total cost for 

problem instance No. 2 as compared to that obtained from model CRH. In addition, in 

4 out of the 10 test problems, model BRH yield a total cost that is lower than that of 

model CRH.  

5.7    Summary       

     This chapter has dealt with the master production scheduling problem in steel 

rolling mills operating in an environment of dynamic demand. The problem was 

formulated as a mixed integer bilinear program, in which both forecasted demand and 

confirmed customers’ orders are incorporated. To better capture the existent volatility 

in demand, the developed model was implemented on a rolling horizon basis where 

the values for the forecasts and orders, among other problem parameters, were 

updated every period in light of the newly available information obtained form the 
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market. As the developed production schedule is only implemented for the most 

immediate time period, production and inventory related decisions for this period 

were based on the actual orders received.  

  Since solving the exact model to optimality turns out to be a challenging task, the 

alternative approach of dealing with approximate models is adopted. Three variants of 

such models were developed where each of these models tackles the sources of 

complexity associated with the exact model, either one at a time or both at once, 

resulting in smaller models with a tractable number of binary and/or integer variables. 

Based on numerical experiments for several test problems, it is observed that such 

approximate models are particularly efficient and thus have a great potential in 

production planning problems where optimal solutions to full scale mathematical 

models are not quickly attainable. Hence, a fair compromise between the quality of 

the solutions and substantial computational time savings is achieved via the 

employment of these approximate models.   
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Chapter 6 

 

Modeling Demand Uncertainty in Production Planning 

through Fuzzy Set Theory Approach    

 
 

6.1   Introduction  

Fuzzy set theory (FST) is a theory of graded concepts (a matter of degree), but not 

a theory of chance (Lai and Hwang 1992a). It allows for the development of more 

robust and flexible models that better capture the human aspects involved in real 

world complex systems. In general, FST represents an attractive tool to aid research 

in production management when the dynamics of the production environment limit 

the specification of model objectives, constraints and the precise measurement of 

model parameters (Guiffrida and Nagi 1998). Unlike the rolling horizon approach 

adopted in the previous chapter, the utilization of FST alleviates the necessity for 

repeatedly solving the model at the beginning of each time period. In general, there 

exist several advantages to the utilization of FST to handle such type of uncertainties:  

(1) It generally allows for the transformation of qualitative estimates that are 

expressed linguistically based on human perception into exact quantitative values, 

expressed in terms of fuzzy sets.  
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(2)   It provides for a broader alternative to account for uncertainty as compared to the 

classical approach that utilizes probability distributions. When there is a lack of 

evidence or lack of certainty in evidence, the standard probabilistic reasoning 

methods are not appropriate (Petrovic and Petrovic 1999).   

(3)   From a mathematical programming perspective, fuzzy models overcome the 

rigid requirements characterizing standard deterministic models. This greatly 

facilitates the decision making process in most real life applications where the 

determination of the exact model parameters poses a crucial practical challenge. 

(4)  Obtaining an initial compromise solution from the fuzzy model allows the 

decision maker to specify which further information should be obtained to improve 

the solution. This procedure obviously offers the possibility to limit the acquisition 

and processing of information to the relevant components and therefore information 

costs will be distinctly reduced (Rommelfanger 1996).   

(5)  The fuzzy models provide decision makers with some flexibility to incorporate 

their own priority into the model through the selection of aspiration levels (in the case 

of a fuzzy objective function) and the tolerance interval. As such, alternative decision 

plans corresponding to different degrees of satisfaction are easily attainable.  

In this chapter, the vagueness and impreciseness associated with the estimation of 

future demand figures is captured through the use of FST, originally introduced in the 

seminal work of Zadeh (1965). In addition, we clearly establish the difference 

between the two approaches used to handle fuzzy quantities in mathematical models, 

namely flexible mathematical programming (FMP) and possibilistic programming 

(PP), since such distinction has never been made solid in the literature. We then adopt 
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the FMP approach to handle uncertainties in demand through expressing the demand 

constraint as a flexible one. Our objective is to emphasize on the superiority of this 

approach for modeling production planning problems and illustrate the economic 

benefits obtained through the use of fuzzy models as compared to traditional 

deterministic models. To facilitate understanding the analysis presented in this 

chapter, some basic FST related background needs to be established first.   

 6.2   A brief introduction to fuzzy set theory  

In classical set theory, the relation between an object x  and the ordinary set of 

objects A  is defined by the characteristic function or the indicator function as follows: 

1
( )

0A

if x A
x

if x A
∈⎧

ϒ = ⎨ ∉⎩
          (6.1) 

Hence, a member either belongs or does not belong to a particular set. Fuzzy set 

theory, however, simulates the actual practice and allows for a member to belong to 

different sets with various degrees of membership. The following formal definitions 

are based on the work of Rommelfanger (1996) and Demirli (2005).  

Definition 6.1: Let X  denote the universal set (also referred to as the universe of 

discourse), then the set of ordered pairs:  

  ( ){ }, ( ) | ,AA x x x Xμ= ∈    where  [ ]: 0,1A Xμ →        (6.2) 

is called a fuzzy set in X . The function ( )A xμ  is called the membership function 

which establishes the grade of membership of element x  in A .   

Definition 6.2: Let A  be a fuzzy set in X . The support of A , denoted by supp(A), is 

the crisp set of X  whose elements have nonzero membership grades in A : 
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 supp(A) = { }| ( ) 0Ax X xμ∈ >          (6.3) 

The core of A , denoted by core(A), is the crisp set of X  whose elements have a 

membership grade in A  equals to one: 

              core(A) = { }| ( ) 1.0Ax X xμ∈ =  

The height of A , denoted by h(A), is the largest membership grade obtained by any 

element in that set:  

              h(A) = sup ( )A
x X

xμ
∈

           (6.4) 

Definition 6.3: A fuzzy set A  is called normal when ( ) 1h A = ; it is called subnormal 

when ( ) 1h A < .  

Definition 6.4: A fuzzy set A  in a convex set X  is called convex if: 

 ( ) ( )1 2 1 2(1 ) ( ), ( ) ,A A Ax x Min x xμ λ λ μ μ+ − ≥    1 2, ,x x X∈    [ ]0,1λ ∈         (6.5) 

Definition 6.5: A convex normalized fuzzy set ( ){ }, ( ) |AA x x x Rμ= ∈  on the real 

line R  such that: 

(I) there exist exactly one 0x R∈  with the membership degree 0( ) 1,A xμ =  and  

(II) ( )A xμ  is piecewise continuous in ,R      

is called a fuzzy number.  

Definition 6.6: (Fuzzy Decision making of Bellman and Zadeh (1970)    

Let X  be the set of alternatives, which defines the set to all possible solutions to a 

decision problem. The fuzzy goal G  and a fuzzy constraint C  are fuzzy sets on 

X and characterized by their respective membership functions [ ]: 0,1G Xμ →  and 

[ ]: 0,1C Xμ → . Then, G  and C  combine to form a decision, D , which is a fuzzy set 
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resulting from the intersection of G  and C  (i.e., D G C= ∩ ). The fuzzy decision set 

is characterized by its membership function:  

( ) ( ) ( ) ( ( ), ( ))D G C G Cx x x Min x xμ μ μ μ μ= ∧ =                      (6.6)   

and the corresponding maximizing decisions can then be defined as: 

 ( ) ( ( ), ( ))D G CMax x MaxMin x xμ μ μ=         (6.7) 

It should be noted that definition 7.6 requires the assumption of symmetry to be 

satisfied in order to reach decisions that satisfy both the goal “and” the constraint.   

6.3 Flexible mathematical programming (FMP) vs. possibilistic 

programming (PP)    

 There are two approaches that researchers use in order to deal with fuzzy 

mathematical models where the suitability of the chosen approach depends on the 

nature of the existent fuzziness in the model. The two approaches are flexible 

mathematical programming (FMP), in which the rigidity restriction on the 

comparison operator (i.e., equality or inequality operators) is relaxed resulting in a 

soft or flexible set of constraints, and possibilistic programming (PP), in which the 

imprecise coefficients are expressed as fuzzy numbers having a specified possibility 

distribution. We distinguish between these two approaches in the general context of 

fuzzy mathematical programming before applying such distinction to the model at 

hand. It is of great importance to understand this distinction while modeling 

fuzziness/imprecision in mathematical programming problems.   

 Flexibility is modeled by fuzzy sets and may reflect the fact that constraints or 

goals are linguistically formulated; their satisfaction is a matter of tolerance and 
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degrees or fuzziness (Mula et al. 2006). FMP utilizes subjective preference-based 

membership functions where these functions are constructed by eliciting the 

preference information from the decision makers. In this scenario, the membership 

function is equivalent to the utility function when the membership functions of FMP 

are based on a preference concept like the utility theory (Lai and Hwang 1992a).  

Hence, the grade of a membership function indicates a subjective degree of the 

decisions maker’s satisfaction within given tolerances. Clearly, the characteristic 

function in FMP is a membership function. Applications of FMP approach can be 

found in Pendharkar (1997), Miller et al. (1997), Itoh et al. (2003) and Mula et al. 

(2006).     

 On the other hand, possibility theory is adopted in situations where the model 

parameters are imprecise due to uncertainty in the data or lack of knowledge (i.e. 

epistemic uncertainty). It is noted that the possibility measure of an event might be 

interpreted as the possibility degree of its occurrence under a possibility distribution; 

an analogous to - yet different from - probability distribution (Lai and Hwang 1992a). 

In essence, an important difference between the probability theory and the possibility 

theory is that the sum of probabilities for all possible outcomes should be equal to 

one, while the sum of possibilities for all possible events under possibility theory 

need not be equal to one. Hence, the possibility distribution is constructed by 

considering the possible occurrence of events where the grade of possibility indicates 

the subjective or objective degree of a particular event occurring. Clearly, the 

characteristic function in PP is a possibility distribution. PP has also been widely 
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applied to various problems as can be seen in Liang (2007), Demirli and Yimer 

(2008), Liang (2008), and Yimer and Demirli (2009).  

In general, possibility theory would be adapted to uncertain situations in which 

the demand is fuzzy due to lack of information, and is represented by a fuzzy number, 

but the demand constraint still holds as a strict (in)equality. As such, once the demand 

has been defuzzified, the resulting crisp constraint holds as a rigid requirement and 

the decision maker has no choice but to seek a solution that fully satisfies such 

constraint. On the other hand, flexible mathematical programming deals with 

situations involving either fuzzy or crisp demand but the corresponding constraint is 

rather flexible. Therefore, the existent flexibility within the model allows for 

“approximate” fulfillment of the demand, chosen subjectively according to the 

decision maker’s preference, which indicates that the comparison operator is being 

treated as a fuzzy relationship.   

Turning back to the problem at hand, the model developed in this chapter 

determines the daily/weekly production lot sizes and serves for short-term planning 

purposes. However, the fuzzy nature of the demand in the form of last minute orders, 

called “rush orders”, still raises a major concern to the decision maker. For an 

essential material such as steel bars, the realized demand in a particular time period 

could be greater or less than the confirmed orders established at the beginning of the 

planning horizon. While the former case is mainly attributed to a collection of small 

magnitude orders usually placed by short term customers, the latter is due to an 

alteration on a short notice of a previous order typically placed by long term 

customers. Depending on the magnitude of such orders, they could cause major 
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disruptions to the production system which induces a high associated cost. Hence, it 

seems only logical to allow some degree of flexibility into the mathematical model so 

that it possesses the ability to whether satisfy all orders or only some orders while 

completely ignoring some other ones, whichever option deems more profitable. By 

treating the demand constraint as flexible rather than a rigid one, the emphasis now is 

on to which extent the demand shall be met instead of enforcing a strict policy of 

being 100% responsive to a fluctuating customer demand. This resembles the actual 

situation where the decision maker has the choice to accept, reject or partially fulfill 

an order as soon as it arrives. A good practical example is the famous Japanese 

automaker Company “Nissan” which faces a highly fluctuating demand and deals 

with it through ignoring some of the orders since such fluctuations are costly to meet. 

In the fuzzy model presented in Section 6.5, we mimic the decision maker’s ability to 

reject or accept rush orders, whether partially or fully, through representing the 

flexible demand constraints by fuzzy sets having triangular membership functions 

(TMFs). The allowable deviations from the most likely value are expressed as 

percentages of the confirmed orders.    

6.4    Fuzzy mathematical programming     

The uncertainties associated with the operating environment of the steel mill 

under consideration necessitate the use of FST to explicitly account for the dynamic 

nature of the problem. In general, whenever FST is employed in the context of 

mathematical programming, the decision maker is faced with important factors that 

need to be carefully addressed towards a better representation of the problem at hand:    
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(1) Sources of uncertainty: Depending on the problem, it might be difficult to obtain 

precise estimates for certain problem parameters such as cost coefficients, supply and 

demand quantities, machine capacities and supplier lead time. In essence, one has to 

establish what exactly is fuzzy about the problem at hand before anything else.   

(2) Representation of fuzziness: As discussed earlier, accommodating for fuzzy 

quantities in the context of mathematical programming is accomplished through the 

use of flexible programming or possibilistic programming depending on the nature of 

the existent fuzziness associated with the parameters of concern.       

(3) Form of membership functions: This involves defining the support of the 

membership function as well as the form of the function over the identified interval. 

There exist several propositions for modeling the membership function including 

monotonic linearly increasing or decreasing, piecewise linear, triangular or 

trapezoidal, concave shape or s-shape (Rommelfanger 1996).       

(4) Aggregation operators (aggregators): In analogy to the deterministic 

mathematical programming case, a fuzzy decision set is reached at through 

aggregating the membership functions of the fuzzy objective function and constraints. 

Such aggregation is achieved through several operators that have been well 

established in the literature (e.g., Bellman and Zadeh 1970, Werners 1988 and 

Zimmerman and Zysno 1980).    

While the approach of flexible mathematical programming (FMP), which seems 

to be more efficient computationally (Zimmermann 2001), has been successfully 

applied by several authors, the vast majority have adopted linear membership 

functions throughout their work since such form is computationally efficient and 
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entails a reduced dimensionality for the resulting equivalent crisp model (e.g., 

Pendharkar 1997, Miller et al. 1997, Itoh et al. 2003). However, for a better 

resemblance of reality, we believe that the flexible demand constraint is better 

represented by a fuzzy set having a triangular membership function (TMF).  

In the context of FMP, there are two classes of models: symmetric and non-

symmetric models. The symmetric models are based on the definition of a fuzzy 

decision originally proposed by Bellman and Zadeh (1970) in which they assume that 

objective(s) and constraint(s) are an ill-structured situation and can be represented by 

fuzzy sets. These models involve less computational effort and are thus easier to 

handle since a decision can be readily stated as the confluence of the fuzzy 

objective(s) and fuzzy constraint(s). However, they suffer from two shortcomings. 

First, the interval of allowance (i.e., support) of the fuzzy set representing the 

objective function should be given initially. As such, this interval is usually decided 

upon blindly based on a purely subjective judgment obtained from the decision 

maker. Secondly, requiring the initial determination of such interval pays little or no 

attention to the decision maker’s preference on the degree of flexibility of the 

respective fuzzy constraints. As pointed out by Lai and Hwang (1992a), in real world 

problems, it is unrealistic to initially ask the decisions maker to give this interval 

without providing any information about it. For these models, Zimmerman (1976) 

was the first to confirm the existence of an equivalent ordinary linear program 

through the application of the “min” operator and linear membership functions.    

 The other class, which deals with non-symmetric models, is more involved 

computationally since the problem now involves the determination of an extremum of 
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a crisp function over a fuzzy domain. Based on the concept of a maximizing set, two 

approaches can be used to handle non-symmetric models (Zimmermann 1985):  

(1) The determination of the fuzzy set decision.  

(2) The determination of a crisp maximizing decision by aggregating the objective 

function, after appropriate transformations, with the constraints.   

In what follows, we adopt the notation of Zimmermann (1985, 2001) in the 

derivation of a generic fuzzy model using the second approach for the case of TMFs 

for the fuzzy demand constraints.  

Consider the linear system: 
 

          Minimize      Tz c x=  

    Subject to    Ax b′≤  

                        Dx b≅     R                                                                                       (6.8) 

                         0x ≥  

          with  ,c x n∈ℜ , 1mb′∈ℜ , 2mb∈ℜ , 1m nA ×∈ℜ , 2m nD ×∈ℜ      

                     
Model (6.8) is non-symmetric and includes a single crisp objective that the 

decision maker seeks to minimize subject to a combination of 1m  crisp constraints 

(some of which might assume a “≥ ” or “= ” form) and 2m  fuzzy constraints, where 

the notion “≅ ” represents the fuzzified version of “=” and reads “essentially equal 

to”. Both sets of constraints define the fuzzy feasible region R . A realistic example of 

model (6.8) is a production planning problem involving a set of resources (modeled 

above as crisp constraints) and an uncertain demand value (modeled as fuzzy material 

balance constraints). Typically, a low demand value yields lower production, setup 

and inventory holding and backorder costs than a higher value for the demand.  



 113

Let the membership functions of the triangular fuzzy sets representing the 2m  

fuzzy constraints be defined as follows:  

(1 )

( ) 1
( 1)

0

i i
i i i

i

i i
i i i i

i

D x b if b D x b
b

D x bx if b D x b
b

otherwise

β β
β

μ α
α

−⎧ ≤ <⎪ −⎪
⎪ −

= − ≤ <⎨ −⎪
⎪
⎪
⎩

                                     (6.9) 

Where iD x  and ib  denote the left and right hand sides of the ith fuzzy constraint 

respectively, 21,....,i m= , and 1β α< < . The constants α  and β  may assume a 

subscript i  each indicating different levels of allowable deviations from the most 

likely value ib  for the ith fuzzy constraint.  

To achieve symmetry between the objective function and the constraints, we 

represent the objective function by a fuzzy set having a monotonically decreasing 

linear membership function (Figure 6.1b), where the tolerance interval for such set is 

determined via solving the following two mathematical programs:  

          Minimize      Tz c x=  
    Subject to    Ax b′≤  
                        Dx bβ=                                                                                          (6.10) 
                         0x ≥  
 

 yielding a value ( )T
l optz c x= , and 

 

          Minimize      Tz c x=  
    Subject to    Ax b′≤  
                        Dx bα=                                                                                          (6.11) 
                         0x ≥  
 

 yielding a value ( )T
u optz c x=    
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Hence, the membership function of the objective function is given by:  
 

1

( )

0

T
l

T
Tu

z l u
u l

T
u

if c x z

z c xx if z c x z
z z

if z c x

μ

⎧ <
⎪

−⎪= ≤ <⎨ −⎪
⎪ ≤⎩

                                   (6.12) 

 
Plots of the membership functions for the fuzzy sets representing the constraints as 

well as the objective function are shown in Figure 6.1. The next step is to define the 

two different aggregators used to obtain the maximizing decision set from the fuzzy 

sets of the constraints and the objective function.  

 
Figure 6.1: Fuzzy sets for the constraints (a) and the objective function (b) 

 
 

6.4.1   The logical “min” operator 
 

Introduced by Bellman and Zadeh (1970) as a fuzzy conjunction operator, the 

“min” operator forms the fuzzy decision set D  through taking the intersection of the 

fuzzy goal and fuzzy constraints (see Definition 6.6). Following this approach, the 

aggregating “min” operator characterizes the membership function of D  as follows:  

{ }
2

1
( ) min ( ), ( )

m

i zD i
x x xμ μ μ

=
=         (6.13) 

ibβ  ibαib  iD x

( )μi x  

1 

0 lz uz Tc x

( )μz x

1

0

(a) (b) 
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Since the decision maker is interested in a crisp solution rather than a fuzzy set, the 

maximizing optimal decision is obtained via solving the following problem: 

            { }
2

10 0
max ( ) max min ( ), ( )

m

i zD ix x
x x xμ μ μ

=≥ ≥
=                                        (6.14) 

 

Introducing one new variable [0,1]λ∈ , which essentially corresponds to ( )D xμ  in 

(6.13), and carrying out some manipulations, the approximate auxiliary formulation 

for model (6.8) is given by:   

   
          Maximize      λ  

    Subject to    Ax b′≤  

                        ( ) T
u l uz z c x zλ − + ≤                 

        ( 1)i i ib D x bλ β β− + ≥         21,....,i m=                                      (6.15) 

                        ( 1)i i ib D x bλ α α− + ≤         21,....,i m=                              

                         , 0x λ ≥  

                         1λ ≤  
   

Hence, the maximizing crisp solution is obtained through solving model (6.15), 

which has one more variable and 2 1m +  additional constraints. It should be noted that 

although the logical “min” operator has proven to be computationally efficient, it is 

not compensatory in the sense that it provides no tradeoff between the degrees of 

membership of the fuzzy sets at hand. As explained by Miller et al. (1997), there may 

not be any change in the degree of membership of the resulting aggregated fuzzy set 

even if the degree of membership in some of the fuzzy sets intersected is increased. 

To overcome such limitation, an alternative approach is presented below.   
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6.4.2   The “convex combination of min/max operators” 

  
To allow for a certain amount of compensation between the degrees of 

membership of the fuzzy sets involved, Werners (1988) proposed the “convex 

combination of min operator and max operator”. Having established the lowed and 

upper values for the objective function tolerance interval ( lz  and uz ) as illustrated 

earlier, the fuzzy decision set is then defined as: 

              { } { }
2 2

1 1
( ) min ( ), ( ) (1 ) max ( ), ( )

m m

i z i zD i i
x x x x xμ γ μ μ γ μ μ

= =
= + −                     (6.16) 

 
A value of 0.6 for the parameter γ , which stands for the degree of compensation, has 

proven to be an effective one in most circumstances (Zimmermann 2001). 

Introducing two new auxiliary variables 1 2, [0,1]λ λ ∈  where: 

                { }
2

1 1
min ( ), ( )

m

i zi
x xλ μ μ

=
=       and      { }

2

2 1
max ( ), ( )

m

i zi
x xλ μ μ

=
=     (6.17) 

 
The variables 1λ  and 2λ  essentially represent the degree of satisfaction of the least 

satisfied and the most satisfied constraint, respectively. Hence, the approximate 

auxiliary formulation for model (6.8) using the “convex combination of min/max” 

operator is given by:       

          Maximize      1 2(1 )γλ γ λ+ −  

    Subject to     Ax b′≤  

                         1 ( ) T
u l uz z c x zλ − + ≤   

                         2 0( ) T
u l uz z c x z Mλ π− + ≤ +  

        1 ( 1)i i ib D x bλ β β− + ≥                       21,....,i m=                          

               2 ( 1)i i i ib D x b Mλ β β π− + ≥ −           21,....,i m=                 

        1 ( 1)i i ib D x bλ α α− + ≤                        21,....,i m=                      (6.18)                         
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                        2 ( 1)i i i ib D x b Mλ α α π− + ≤ +           21,....,i m=                                 

                        
2

2
0

m

i
i

mπ
=

≤∑  

        1 2, , 0x λ λ ≥  

        { }0,1iπ ∈  

                        1 2, 1λ λ ≤   
 

Where M  is a very large positive number. The constraint 
2

2
0

m

i
i

mπ
=

≤∑  ensures that at 

least one iπ  is set to a zero value indicating that the corresponding constraint on 2λ  is 

satisfied. Notice the increase in model (6.18) dimensionality as compared to that of 

models (6.8) and (6.15) above, due to the introduction of auxiliary variables and 

constraints.   

6.5    The fuzzy production planning model      

  The fuzzy model presented in this section is similar to the original model initially 

introduced in Chapter 3 except that the MPS is now constructed based on confirmed 

customers orders which appear in the flexible demand balance constraints. The 

mathematical model is presented below. 

  

          

( ) ( )

( ) ( )

2 2

1 1 1 1 1 1 1 1

2
1 1 2

1 1 1 1 1

I J T J T T
k k k k k k

t ijt ijt ijt jt jt jt jt t t
i j k t j k t t

I T J T
k k k k k k
it it it it it it jt jt jt

i k t j t

Z SC S PC X IF I BC B POO

OR G CR Q IR I W SP SP

= = = = = = = =

= = = = =

= + + + +

+ + + + −

∑∑∑∑ ∑∑∑ ∑

∑∑∑ ∑∑
          

           
 Sibject to  
 
    k k k

it it itQ M G≤                  , ,i t k∀                                       (6.20)  
          

  (6.19)

Min 
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2

1 1 1

1
I J

k
ijt

i j k

Sb
= = =

=∑∑∑                 t∀                                                    (6.21) 
 

       
'2

' , 1 '
' , 1

' 1 1 ' 1 '

0.4 24
kI J
i j tk k k k

ijt ijt i j t ij ijt
i j k i j

X
S Sb S ST Sd

α
′ −

′ −
′= = = ′

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟= × − + + ×⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

∑∑∑    , , ,i j t k∀   (6.22) 

 

 
2

1 1 1

kI J
ijt k

ijt t t
i j k ij

X
S A O

α= = =

⎛ ⎞
+ ≤ +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑           t∀                                    (6.23)  

 

 t otO A≤          t∀                  (6.24) 
 

 ( )k k k
ijt t ijt ijt ijX b Sb Sd ρ= × + ×             , , ,i j t k∀                                 (6.25) 

 

 , 1
1

J
k k k k k
it i t it t ijt ijt

j
I I Q b Sb Sd−

=

⎡ ⎤= + − × +⎣ ⎦∑           , ,i t k∀                              (6.26) 
 

 
1 1 1 1 1 1 1

, 1 , 1 , ,
1

I

j t j t j t j t ijt jt jt
i

I B I B X W CO− −
=

− − + + − ≅∑           ,j t∀         (6.27) 
 

2 2 2 2 2 2
, , , 1 , 1

1

I

j t j t j t j t ijt jt
i

I B I B X W− −
=

− = − + −∑                        ,j t∀            (6.28) 
 

 1 2 2
jt jt jtW W CO+ ≅                 ,j t∀                                                    (6.29)  

   

0 0 0k k k
j j jTI B B= = =                    ,j k∀                    (6.30) 

 

, , , , , , , 0k k k k k k k
ijt it ijt t jt it jt jtSd Q X O W I I B ≥     , , ,i j t k∀                              (6.31)  

 

{ }, 0,1k k
it ijtG Sb ∈                 , , ,i j t k∀                                   (6.32) 

 

k
ijtSd N∈                  , , ,i j t k∀                               (6.33) 

 
The above mathematical model is fuzzy mixed integer bilinear program 

(FMIBLP), where the fuzziness existent in the model arises due to constraints (6.27) 

and (6.29) which are treated as flexible constraints and are represented by fuzzy sets 

having triangular membership functions. Clearly, conventional mathematical 

approaches lack the ability to directly handle such class of models due to the fuzzy 

nature of these models. As such, a quick remedy to the existent fuzziness is to adopt 
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the procedure outlined in Section 6.4 with a minor modification that incorporates 

bilinear rather than linear programs. The upper and lower tolerance limits on the 

objective function value (i.e., uz  and lz ) are obtained via fixing the customers orders 

at their three possible values, “ * k
jtCOβ , k

jtCO , * k
jtCOα ” for all , ,j t k  and then solving 

the corresponding three crisp models (the solution algorithm is outlined in the next 

section). Let 1z , 2z  and 3z  be the obtained values for the objective function of the three 

models, then lz min= 1 2 3( , , )z z z  and uz max= 1 2 3( , , )z z z , which define the 

membership function for the objective function as shown in Equation (6.12).  

In most situations and for realistic cost figures, solving the model with the 

smallest possible value for the demand, * k
jtCOβ , and the highest possible value, 

* k
jtCOα , yields the values for lz  and uz  respectively. This is the case since a high 

demand value in period t  is likely to reduce the major setup cost in period 1t +  but it 

also entails an increase in most other cost components such as RM purchasing, RM 

and FP inventory holding, production and minor setup costs. Having the membership 

functions for the objective function and the constraints at hand, the above production 

planning fuzzy model is transformed into an equivalent and larger sized crisp model, 

depending on the aggregation operator being used as detailed below.  

6.6   Auxiliary models description       

We present the approximate auxiliary models resulting from the application of the 

two different aggregation operators described in Section 6.4. The adoption of these 

two particular operators stems from the fact that most other operators, especially 

those that are compensatory in nature, produce crisp models that are no longer linear. 
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Following the procedure outlined in Section 6.4.1, the application of the “logical 

min” operator results in the following approximate auxiliary model:   

(Crisp model with “min” operator – “Crisp-Min”)  
 

Maximize      λ  
     

 S.t  
  
Constraints (6.20 – 6.26) & (6.28) & (6.30-6.33) 
 

( )u l uz z Z zλ − + ≤                 

1 1 1 1 1 1 1 1
, 1 , 1 , ,

1

* ( 1) *
I

jt j t j t j t j t ijt jt jt
i

CO I B I B X W COλ β β− −
=

− + − − + + − ≥∑         ,j t∀  

1 1 1 1 1 1 1 1
, 1 , 1 , ,

1

* ( 1) *
I

jt j t j t j t j t ijt jt jt
i

CO I B I B X W COλ α α− −
=

− + − − + + − ≤∑         ,j t∀  

2 1 2 2* ( 1) *jt jt jt jtCO W W COλ β β− + + ≥       ,j t∀                            

2 1 2 2* ( 1) *jt jt jt jtCO W W COλ α α− + + ≤          ,j t∀        

0 1λ≤ ≤  

 
Where Z  is the objective function of the original fuzzy model given by Equation 

(6.19). Contrary to the fuzzy model, the objective of Model “Crisp-Min” is to 

maximize the aspiration level of the decision maker. The original objective (6.19) is 

now represented by a constraint in the fuzzy model and each of the fuzzy material 

balance constraints (6.27 and 6.29) is now represented by two sets of constraints. 

However, the non-fuzzy sets of constraints remain unaltered. Applying the “convex 

combination of the min/max” operator as explained in sub-section 6.4.2, the resulting 

approximate auxiliary model is as follows:           
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(Crisp model with “convex combination of Min/Max” operator – “Crisp-Comb”)   
 
Maximize      1 2(1 )γλ γ λ+ −  
 
S.t  
  
Constraints (6.20 – 6.26) & (6.28) & (6.30-6.33) 
 

1 ( )u l uz z Z zλ − + ≤   

2 1( )u l uz z Z z Mλ π− + ≤ +  

1 1 1 1 1 1 1 1
1 , 1 , 1 , ,

1

* ( 1) *
I

jt j t j t j t j t ijt jt jt
i

CO I B I B X W COλ β β− −
=

− + − − + + − ≥∑             ,j t∀         

1 1 1 1 1 1 1 1
2 , 1 , 1 , , 2

1

* ( 1) *
I

jt j t j t j t j t ijt jt jt
i

CO I B I B X W CO Mλ β β π− −
=

− + − − + + − ≥ −∑       ,j t∀  

1 1 1 1 1 1 1 1
1 , 1 , 1 , ,

1

* ( 1) *
I

jt j t j t j t j t ijt jt jt
i

CO I B I B X W COλ α α− −
=

− + − − + + − ≤∑             ,j t∀            

1 1 1 1 1 1 1 1
2 , 1 , 1 , , 2

1

* ( 1) *
I

jt j t j t j t j t ijt jt jt
i

CO I B I B X W CO Mλ α α π− −
=

− + − − + + − ≤ +∑       ,j t∀                                

2 1 2 2
1 * ( 1) *jt jt jt jtCO W W COλ β β− + + ≥                   ,j t∀                 

2 1 2 2
2 3* ( 1) *jt jt jt jtCO W W CO Mλ β β π− + + ≥ −       ,j t∀                                    

2 1 2 2
1 * ( 1) *jt jt jt jtCO W W COλ α α− + + ≤                           ,j t∀   

2 1 2 2
2 3* ( 1) *jt jt jt jtCO W W CO Mλ α α π− + + ≤ +             ,j t∀    

1 2 3 2π π π+ + ≤  

{ }1 2 3, , 0,1π π π ∈  

1 20 , 1λ λ≤ ≤   

 
It is the objective of model “Crisp-Comb” to achieve a balance between the “max” 

operator (i.e., degree of satisfaction of the most satisfied constraint) and the “min” 

operator (i.e., degree of satisfaction of the least satisfied constraint). While the 
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original objective function (6.19) is now represented by two constraints, each of the 

fuzzy constraints (6.27 and 6.29) is represented by four sets of constraints: two for the 

“min” operator and the other two for the “max” operator. Moreover, three binary 

variables have been added to the model: one for the objective function and the other 

two correspond to each set of the fuzzy constraints.            

6.7   Solution Algorithm        

The three variants of the original fuzzy model, which are obtained via fixing the 

demand at its three respective values (pessimistic, most likely, optimistic), as well as 

the auxiliary models resulting from the application of the two different aggregation 

operators (i.e., “Crisp-Min” and “Crisp-Comb”) are all mixed integer bilinear 

programs (MIBLP). In Chapter 4, we discussed three different “exact” solution 

algorithms that generate the optimal solution for this class of models, with varying 

computational efficiency. In this section, however, we propose a “non-exact” solution 

methodology that is comprised of two phases. In phase 1, the linearization scheme of 

Glover (1975) is employed (once more) in order to yield an equivalent linear model. 

In phase 2, an exterior penalty function based approach that targets the complicating 

constraints is applied to the linearized model resulting from phase 1. The justification 

behind the use of an algorithm that is likely to generate “near optimal” production 

plans under the dynamic operating conditions is provided later.      

Recall that the generic linearization approach of Glover (1975) results in the 

following sets of constraints to replace constraint (6.22):   

9.6 0.4k k k k
ijt ijt ijt ij ijtS Sb y ST Sd= × − × + ×      , , ,i j t k∀                   (6.34) 
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k k k k k
ijt ijt ijt ijt ijtL Sb y U Sb≤ ≤                                 , , ,i j t k∀                 (6.35)  

    

( ) ( )
' '

' , 1 ' , 1' '
' , 1 ' , 1

' ' ' '' '

1 1
k k
i j t i j tk k k k k k k

i j t ijt ijt ijt i j t ijt ijt
i j k i j ki j i j

X X
S U Sb y S L Sb

α α
′ ′− −

′ ′− −
′ ′′ ′

⎛ ⎞ ⎛ ⎞
+ − − ≤ ≤ + − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑     

                  , , ,i j t k∀                    (6.36)  
 

 Although the linearized model resolves the bilinearity issue, such solution might 

not be attainable within acceptable time limit especially as the problem size increases. 

This is mainly due to the complicating constraint (6.33) which limits the production 

to full batches only (i.e., number of batches produced assume only integer values). 

The impact of this constraint on the computational complexity was quantified in the 

approximate rolling horizon models of Chapter 5. In general, Steel mills would 

typically prefer to produce full batches as this implies a more efficient utilization of 

the available capacity and better complies with the economies of scale. However, in 

reality, production does not always take place in full batches particularly when the 

Company is facing low demand or when there is a limited storage space available or a 

shortage in the raw material supplies. Moreover, since it is difficult in practice to 

obtain a precise estimate for the cost figures, especially when it comes to backlogging 

cost for instance, the use of a model that provides valid and efficient proxies for the 

total cost function is highly desirable in these situations. The classical approach 

within the context of flexible mathematical programming to deal with impreciseness 

in cost parameters (e.g. Zimmerman 1976) is to represent the objective function with 

a monotonically decreasing linear fuzzy set where the interval of allowance for such 

set (i.e., lz  and uz ) is decided upon based on a purely subjective judgment obtained 

from the decision maker. Our approach, however, provides viable estimates, if not the 

exact value, for the case where production takes place in integral batches. More 
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importantly, it also takes into account the flexibility in customers’ orders that the 

decision maker is willing to undertake during the planning process which naturally 

contributes to the total cost to be incurred. Hence, restricting the production to full 

batches achieves only limited added value at the expense of substantial computational 

efforts. Wang (1997) points out that, in general, the data are imprecise in a fuzzy 

environment, thus, it is meaningless to calculate an exact solution. According to 

Hoffman and Padberg (2007), in today’s changing and competitive industrial 

environment the difference between using a “quickly derived solution” and using 

sophisticated mathematical models to find an “optimal solution” can determine 

whether or not a company survives.      

 It should be noted, however, that relaxing the integrality restriction on the number 

of batches produced implies an additional cost that shall be augmented into the 

objective function. The augmentation of the deviations from integer batches, we refer 

to the sum of such deviations as “integrality gap”, is accounted for through a 

penalizing factor that is increased iteratively in an attempt to reduce these deviations 

and eventually reach a solution that assumes integer values or within some allowable 

gap ε . This procedure falls under the category of exterior penalty function methods 

(EPFM) which represent an indirect optimization approach. We provide below a 

glimpse of these well-established methods where more details can be usually found in 

integer and nonlinear optimization textbooks such as Bazaraa et al. (1993) and Griva 

et al. (2009).  

 In its original context, EPFM augments all the constraints into the objective 

function to transform the original problem into an unconstrained optimization 
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problem. A sequential unconstrained minimization technique (SUMT) is then 

employed in order to approach the feasible region of the original problem from the 

outside, hence the term exterior, until the solution of the unconstrained problem is 

made (nearly) equivalent to that of the original one through increasing the value of 

the penalty factor in each iteration. This sequential increase in the penalty parameter 

avoids the ill-conditioning difficulties associated with the Hessian matrix as the value 

of such parameter approaches infinity (more on ill-defining condition can be found in 

Sherali et al. (2001), Griva et al. (2009) and Bazaraa et al. (1993). In general, penalty 

function methods are usually more convenient than barrier methods for problems with 

equality constraints (Griva et al. 2009).  

 Prior to augmenting the integrality restriction to the objective function, it has to be 

first reformulated as an equality constraint. Hence, constraint (6.33) can be 

equivalently expressed using either one of the following two forms: 

             0k k
ijt ijtSd Sd⎡ ⎤ − =⎢ ⎥    or         0k k

ijt ijtSd Sd⎢ ⎥− =⎣ ⎦                                                       
 

where k
ijtSd⎡ ⎤⎢ ⎥  and k

ijtSd⎢ ⎥⎣ ⎦  represent the smallest integer greater than or equal to k
ijtSd  

and the largest integer less than or equal to k
ijtSd , respectively. Although both 

equations serve the same purpose mathematically, the first is more appropriate in our 

analysis as it shows by how much the production is short of a complete batch. In 

reality, this difference has the physical interpretation of “capacity underutilization” as 

it shows the amount that could have been produced using the same setup. Hence, the 

capacity underutilization cost (CUUC) is given by:  
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 ( )
1 1 1 1

I J K T
k k

l ijt ijt
i j k t

CUUC Sd Sdμ
= = = =

⎡ ⎤= −⎢ ⎥∑∑∑∑                    (6.37) 

The penalty parameter, lμ , bares the meaning of an underutilization cost per batch 

and l is the iteration counter. Deviations from integrality for any RM-FP-SG 

combination have the same relative importance and are therefore penalized equally at 

a particular iteration. Otherwise, subscripts ,i j  and k  can be included in the 

parameter lμ  in order to assign different weights to deviations from integrality for 

different combinations. The auxiliary function involving the penalty term is thus 

given by pZ Z CUUC= + . Clearly, if the deviations in equation (6.37) add up to 

zero, an optimal solution has been found where all the k
ijtSd  variables assume integer 

values. 

 On another note, the setup time calculation is still based on an integral number of 

batches since in reality a setup takes place regardless of the batch size produced. As 

such, the setup time constraint (6.34) is now reformulated as: 
  

  9.6 0.4k k k k
ijt ijt ijt ij ijtS Sb y ST Sd⎡ ⎤= × − × + × ⎢ ⎥      , , ,i j t k∀          (6.38) 

 

 Hence, the three crisp variants of the original fuzzy model, obtained through 

fixing the demand at its three respective values, as well as the approximate auxiliary 

crisp models obtained after aggregation are now solved using the penalized objective 

function pZ  instead of Z  while dropping the integrality restriction (6.33) out of the 

model. Clearly, such changes are also made to the linearized version of these models. 

At each iteration, the resulting MILP model is solved directly using AMPL/CPLEX 

11.0 solver. The iterative increase in the penalty parameter coupled with a setup time, 
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and accordingly a setup cost, that is calculated based on integral batches, shall force 

the model to seek the production of full batches as much as possible. We point out 

here that the above application of EPFM to the models at hand is similar in principle 

to the idea of Lagrangian relaxation except that in the latter case the penalty terms 

(denoted as Lagrange multipliers) are optimized, rather than decided upon 

subjectively and increased iteratively, via sub-gradient optimization techniques for 

example. The solution algorithm can now be formally stated as follows:  

Initialization step: 

- Obtain the linearized version of the model, replace Z  with pZ  and k
ijtSd  with 

k
ijtSd⎡ ⎤⎢ ⎥  in constraint (6.34), drop constraint (6.33) out of the model.   

- Define a small tolerance value 0ε ≥  as the deviations related termination scalar, 

and 0τ ≥  as the time related termination criterion. 

- Choose an initial solution (not necessarily feasible), say 1η , a penalty parameter 

1 0μ >  and a scalar 1δ > .     

- Let the iteration counter 1v =  and go to step 1.     

Step 1: 

- Starting with vη , solve the minimization problem at hand directly using 

AMPL/CPLEX 11.0 solver.   

- Let 1vη +  be the optimal solution and go to step 2.   
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Step 2:  

If ( )k k
ijt ijt

ijkt
Sd Sd ε⎡ ⎤ − ≤⎢ ⎥∑ or if solution time τ= , stop; otherwise, let 

1v vμ δμ+ =  and 1v v= + and go back to step 1.  

  
The value of the allowable computational time to attain a solution is decided upon by 

the decision maker. This time related termination criterion is added to the algorithm 

since for very high values of the penalty parameterμ , the capacity underutilization 

cost now bares more weight than the rest of the cost components and the model will 

continuously seek the minimum possible value for it. As the value of μ  approaches 

infinity, no savings in computational time is achieved as compared to the original 

model which assumes integer values for the variables k
ijtSd . Hence, the objective is to 

find a penalty value that provides for a good compromise between the deviation from 

integral batches and the required solution time. 

6.8   Computational Experiments         

To provide more insights into the performance of the developed mathematical 

models as well as that of the above solution methodology, ten problem instances of 

different sizes are tested. For each of these ten problems, the two auxiliary models 

(i.e., “Crisp-Min” and “Crisp-Comb”) are solved for the same set of input parameters 

in order to ensure a fair comparison. While those values for the rest of input 

parameters are retained once solving the three variants of the fuzzy model, demand 

changes its value corresponding to either one of the three possible values (pessimistic, 

most likely, optimistic). As before, the numerical experiments are implemented on a 
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single CPU with 4-2.2 GHz AMD Opteron 64-bit processors and 16 GB RAM. All 

models were coded using AMPL programming language and solved using CPLEX 

11.0 solver, where the solver option is set to solve integer problems using the built-in 

branch and cut algorithm. The values for the different input parameters are generated 

within certain range of intervals, as shown in Table 6.1.        

 
     Table 6.1: Selected range of values for input parameters in the test problems 
 

Input parameter Range of values Input parameter Range of Values 
k
itCR  (500 , 700) k

jtBC  (20 , 30) 
k
itOR  (2000 , 2200) k

jtSP  (1300 , 1700) 
k
itIR  (10 , 20) k

itM  (150 , 300) 

ijtPC  (15 , 25) ijρ  (0.80 , 0.95) 

tPO  (300 , 400) ijα  (50 , 58) 

tSC  (600 , 800) k
jtCO  (0 , 100) 

k
jtIF  (15 , 30) ijST  (0.25 , 1.0) 

 

The iterative procedure of the solution algorithm is illustrated in Table 6.2 for a 

small problem instance ( 1,I = 2J T K= = = ) where the demand is set to its most 

likely value. It took the algorithm five iterations to achieve a zero integrality gap, at 

which point the augmented cost matches the original one. As expected, this gap gets 

smaller as more weight is assigned to such deviations through increasing the value of 

the penalty parameter, where 10δ = . The complete results for all problem instances 

are shown in Table 6.3, where the three columns under the various demand scenarios 

show the pZ values obtained for the penalty parameter value indicated. Upon solving 

the three variants of the fuzzy model corresponding to the three demand values, the 

maximum value for the integrality gap among these models for each problem instance 

is reported in the “max gap” column. Although the value of 1α −  is set equal to that 
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of 1 β−  indicating a symmetric triangular membership functions for the various 

products demands, the obtained values for the augmented objective function are not 

symmetric which can be attributed in part to the bilinearity existent in the model. 

While the first six problems meet the first stoppage criterion in which the integrality 

gap is less than a small tolerance value ( 1ε = ), a running time of 12 hours for the last 

four problems is the deciding factor. In all test problems, fixing the demand at its 

most pessimistic and optimistic values yield the values for lz  and uz , respectively.  

Table 6.2: Summary of the results for a small problem instance 
 

Iteration 
counter 

(v) 

Penalty  
(µv) 

Integrality  
Gap 

Capacity 
underutilization 

cost (CUUT) 
Z Zp 

1 10 3.3077 33 457,306 457,339 

2 100 2.3077 231 457,360 457,591 

3 1,000 1.3077 1,308 457,662 458,969 

4 10,000 1.3077 13,077 457,662 470,739 

5 100,000 0 0 509,187 509,187 

 
Table 6.3: The obtained results for the ten problem instances  
 

Problem 
instance 

Problem size 
(I×J×T×K) 

Pessimistic 
demand 

Most likely 
demand 

Optimistic 
demand 

Penalty 
(µ) 

Max.  
gap α β 

1 (1×2×2×2) 395,534 509,187 594,937 100,000 0 1.2 0.8 

2 (1×3×3×2) 792,958 912,498 1,086,102 100,000 0 1.2 0.8 

3 (2×3×3×2) 747,795 877,137 1,021,215 100,000 0 1.2 0.8 

4 (2×3×4×2) 1,191,695 1,360,073 1,534,557 100,000 0 1.2 0.8 

5 (3×4×4×2) 1,370,708 1,546,901 1,711,847 100,000 0.0823 1.2 0.8 

6 (4×4×4×2) 1,256,410 1,425,603 1,606,243 10,000 0.9075 1.15 0.85

7 (4×5×4×2) 1,412,311 1,562,135 1,750,538 10,000 1.5659*1.15 0.85

8 (5×5×4×2) 1,440,165 1,602,495 1,791,857 10,000 1.8368*1.15 0.85

9 (5×6×4×2) 1,483,096 1,637,422 1,808,136 10,000 2.6960*1.15 0.85

10 (5×7×5×2) 2,079,562 2,255,339 2,417,524 10,000 4.7902*1.15 0.85
* Time related stoppage criterion (Code execution was interrupted after 12 hours of run time)    
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Having obtained the lower and upper limits on the decision maker’s aspiration 

level, the two approximate auxiliary models to the original fuzzy model can now be 

constructed. The results of these crisp models, for the same values of the penalty 

parameter used earlier, are shown in Table 6.4.  

Table 6.4: Results of the two crisp models 
  

“Crisp-Min”  
Model “Crisp-Comb” Model  Problem 

instance 
Penalty 

(µ) 
λ Zpc1 λ1 λ2 γλ1+(1-γ)λ2 Zpc2 (π1, π2, π3)

1 100,000 0.7135 452,663 0.7079 1.0 0.8247 453,780 (1,0,1) 

2 100,000 0.5898 913,206 0.5539 1.0 0.7323 923,729 (1,0,1) 

3 100,000 0.4702 892,653 0.4361 1.0 0.6617 901,976 (1,1,0) 

4 100,000 0.5162 1,357,572 0.4711 1.0 0.6827 1,373,035 (1,1,0) 

5 100,000 0.6667 1,484,410 0.5920 1.0 0.7552 1,509,893 (1,1,0) 

6 10,000 0.7053 1,359,506 0.6423 1.0 0.7854 1,381,545 (1,1,0) 

7 10,000 0.7567 1,494,602 0.6989 1.0 0.8193 1,514,151 (1,1,0) 

8 10,000 0.6483 1,563,855 0.6005 1.0 0.7603 1,580,666 (1,1,0) 

9 10,000 0.6336 1,602,191 0.5896 1.0 0.7538 1,616,492 (1,1,0) 

10 10,000 0.6024 2,213,936 0.5612 1.0 0.7367 2,227,859 (1,1,0) 

 

From an aspiration level perspective, a comparison between both models reveals 

that Model “Crisp-Comb”, which uses the “convex combination of min/max” 

operator, achieves a higher value than that achieved by Model “Crisp-Min”, which 

uses the “min” operator. Although the value of 1λ  in Model “Crisp-Comb” is always 

slightly less than that of λ  in Model “Crisp-Min”, it is actually 2λ  that pushes the 

overall objective function of Model “Crisp-Comb” to outperform that of Model 

“Crisp-Min”. In all problem instances, 2λ  assumes a value of one indicating a 100% 
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satisfaction for the most satisfied constraint. However, this constraint is not always 

the same as indicated by the values of the binary variables 1 2 3, ,π π π  shown in the 

right most column of Table 6.4. However, in terms of the augmented objective 

function values ( 1pcZ  and 2pcZ ), the total cost of Model “Crisp-Min” is slightly less 

than that of Model “Crisp-Comb”.      

The advantage of using the fuzzy set theory approach to represent uncertainties in 

demand becomes obvious once the resulting auxiliary models are compared with the 

crisp counterpart of the original fuzzy model. That is, an initial non-fuzzy formulation 

of the problem would treat the fuzzy constraints as strict equalities with the demand 

being set to its most likely value. Comparing Models’ “Crisp-Min” and “Crisp-

Comb” total cost with that resulting from the most likely demand given in Table 6.3 

shows cost savings in most of the problem instances. In particular, Model “Crisp-

Min” has outperformed the original non-fuzzy model in 8 out of the 10 problem 

instances with a slight cost increase for the remaining two problems. Model “Crisp-

Comb”, on the other hand, results in cost savings in 7 out of the 10 problem 

instances. A notable increase in the cost savings, as a result of using the fuzzy 

approach, is attained as the problem size increases.  

6.9   Summary          

This chapter has addressed the problem of developing master production schedule 

taken into account the uncertainties associated with the end customer demand through 

the use of fuzzy set theory (FST). In reality, the decision maker has the ability to 

accept or reject orders; a fact that is better accounted for in a mathematical model 
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through flexible demand constraints having triangular membership functions. 

Depending on the degree of flexibility that the planner is willing to incorporate, the 

limits for the aspiration level are determined and a linear membership function is 

formed to represent such level. Due to the difficulty of precisely estimating some of 

the cost parameters, “near optimal” solutions were obtained through applying the 

classical approach of exterior penalty function methods to a linearized version of the 

original model. Such approach results in substantial computational time savings while 

still providing valid proxies for the original objective function value.     

Besides its major benefit of avoiding the rigid requirements associated with crisp 

mathematical programming, the adopted fuzzy approach has proved to result in cost 

savings in most situations as compared to the classical deterministic approach. In 

general, the performance of the fuzzy models is affected by the choice of the 

membership functions and the aggregation operators in the sense that different forms 

of functions and operators produce different outcomes. In an attempt to provide a 

comparative study between different aggregation operators, we employed the long 

established classical “min” operator and the “convex combination of the min/max” 

operator in order to obtain the fuzzy decision set. 
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Chapter 7 

PART-III: Accounting for Uncertain Demand and Capacity 

Using Fuzzy Set Theory Approach   

 
 

7.1   Introduction  

The previous chapter has illustrated the usefulness of the fuzzy set theory (FST) 

approach to handle external sources of uncertainties associated with the end customer 

demand. In this chapter, we take the previous analysis one step further and 

demonstrate the capability of FST to simultaneously handle internal as well as 

external sources of uncertainty into the production planning process. In particular, 

situations involving imprecise production capacity, such as steel rolling mills, are 

tackled through fuzzy mathematical programming techniques. With the latest 

advances in technology and the sophisticated manufacturing processes used in several 

industries, planning production quantities based on a crisply defined future 

production capacity has become unrealistic as many unforeseen events that directly 

affect such capacity might occur.  

It is the objective of this chapter to illustrate how uncertainty in demand and 

imprecise available production capacity and production time per unit can be handled 

together through combining the techniques of flexible mathematical programming 
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(FMP) with that of possibilistic programming (PP) within the same mathematical 

model. Under the PP approach, we provide a clear distinction between the appropriate 

techniques adopted to handle constraints involving fuzzy coefficients only on one 

side or on both sides of the constraints. In addition, the effect of the decision maker’s 

minimum acceptable possibility level on the final aspiration levels attained is 

quantified in the numerical analysis section.   

7.2 Possibilistic programming with imprecise technological 

coefficients   

Possibilistic programming (PP) is concerned with mathematical programs 

involving imprecise coefficients that are restricted by possibilistic distributions. In 

this section, we consider linear programming problems with imprecise technological 

coefficients which can be stated as (Lai and Hwang 1992b): 

Min    Z c x=  

S.t.     { }| , 0x X x Ax b x∈ = ≤ ≥            (7.1) 

      

In the model above, c  and b  are assumed to be defined crisply while A  is assumed 

imprecise. This study adopts the form of triangualr possibility distribution to 

represnet the imprecise coefficients. Generally speaking, a triangular fuzzy number 

A  is fully characterized using three prominent data values: 

(1) The most likely value, mA , that highlights the most belonging memebr to the set of 

possible values (possibility degree = 1 once normailized).   

(2) The smallest possible value, sA ,  that least belongs to the set of possible values on 

the lower end of the possibility distribution (possibility degree = 0 once normailized). 
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(3) The highest possible value, hA ,  that least belongs to the set of possible values on 

the upper end of the possibility distribution (possibility degree = 0 once normailized). 

In the litarature, the “smallest possible” and “highest possible” values are usually 

referred to as the “most pessimistic” and the “most optimistic” values, respectively. 

Since the “most optimistic” and “most pessimistic” values may switch locations 

depending on the physical meaning of the quantity being represnted by a triangular 

fuzzy number, we prefer the more generic expressions for these prominent points as 

illustrated above.      

The problem that arises when attempting to solve model (7.1) is how to conduct 

the comparison between the fuzzy consumed resources ( Ax ) and the available crisp 

resources (b ). To resolve such fuzzy constraints, we present two approaches that seek 

to obtain crisp representative numbers for the fuzzy consumed resources Ax . Tanaka 

et al. (1984) suggested using the weighted average of the upper and lower limits and 

then substituting this average back into the original model. Following this approach, 

the constraint Ax b≤  is now replaced by the auxiliary constraint:  

( )1s hwA x w A x b+ − ≤                (7.2)  

where 0 1w< < . The alternative approach, proposed by Lai and Hwang (1992b), 

incorporates the three prominent values to obtain the following auxiliary constraint 

instead:  

  1 2 3
s m hw A x w A x w A x b+ + ≤               (7.3)  

where 1 2 3 1w w w+ + = . Although the decision maker would typically assign the 

weights to the three possible values, Lai and Hwang (1992b) obtain the most likely 
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solution via the substitution 1
1
6

w = , 2
4
6

w =  and 3
1
6

w = . According to them, the 

most likely values are often the most important ones and accordingly should have 

more weights. The two boundary values, however, provide boundary solutions and 

should bare less weight. If the minimal acceptable possibility θ  is given, the auxiliary 

crisp constraint now becomes:  

1 4
6

s m hA x A x A x bθ θ θ⎡ ⎤+ + ≤⎣ ⎦               (7.4)  

The inclusion of the most likely value in the second approach entails that different 

solutions will be obtained for different possibilistic distributions, as shown in Figure 

7.1 (Lai and Hwang 1992a). Considering the minimal acceptable possibility is θ , 

equation (7.2) will give the same answer while equation (7.3) would give a higher 

crisp value for Ax  than for A x′ .      

 

      Figure 7.1: Ax  is greater than A x′  for the accepted possibility level of θ  

sA x sA x′  

1 

θ  

(.)π  

mA x′ mA x hA x hA x′ /s sA x A x′

A x′ Ax

0 
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7.3 Possibilistic programming with imprecise resources and 

technological coefficients   

In the context of possibilistic programming (PP), another problem that frequently 

arises in practice is the existences of fuzzy numbers representing imprecise quantities 

on both sides of the constraints. For instance, the constraint Ax b≤  involves fuzzy 

parameters (i.e., fuzzy consumption rate of the resources) as well as fuzzy resources 

available (b ). Therefore, a comparison needs to be made between two fuzzy numbers 

which is achieved through the fuzzy ranking approaches. These approaches represent 

one of the important topics in PP and are used to solve models of the form:  

Min    Z cx=  

S.t.      Ax b≤              (7.5) 

            0x ≥  

In this section, we will discuss the fuzzy ranking approach proposed by Ramik and 

Rimanek (1985). Reconsider model (7.5) as follows: 

Min    Z cx=  

S.t.      1 1 2 2 ....i i in n ia x a x a x b+ + + ≤ ,  1,...,i m=         (7.6) 

           0x ≥  

where in this particular case, 1ia , 2ia , …, ina , ib , for all i  are trapezoidal fuzzy 

numbers. Consider the two fuzzy numbers ( ), , ,ij ij ij ij ija m n α β=  and ( ), , ,i i i i ib p q τ δ=  

as shown in Figure 7.2 (Lai and Hwang 1992a). For ija , the left most and right most 

values with possibility degree of 1 are ijm  and ijn  respectively, while ijα  and ijβ  
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represent the respective left and right spreads. A similar argument applies to the fuzzy 

number ib .  

 

Figure 7.2: The representation of fuzzy inequality of two fuzzy numbers 

 

Using the set-inclusion concept, Ramik and Rimanek (1985) asserted that: 

ij ia b≤  if and only if ij im p≤ , ij in q≤ , ij ij i im pα τ− ≤ −  and ij ij i in qβ δ+ ≤ +        (7.7)   

Excluding the case of 1 2 ... 0nx x x= = = = , we obtain the following equivalent crisp 

linear programming problem:  

Min        Z cx=  
 
S.t.       

   ij j i
j

m x p≤∑         i∀  
 

  ij j i
j

n x q≤∑           i∀  
 

  ( )ij ij j i i
j

m x pα τ− ≤ −∑         i∀             (7.8) 
 

(.)π  
1 

ij ijm α−  ijm ipi ip τ−

i ja ib

0 
ijn ij ijn β+iq i iq δ+  
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            ( )ij ij j i i
j

n x qβ δ+ ≤ +∑      i∀  

 0x ≥  
 

The solution to model (7.8) is also considered to be the solution to model (7.6). We 

also point out that other fuzzy ranking approaches exist such as that of Tanaka et al. 

(1984) for triangular fuzzy numbers.    

7.4    The fuzzy production planning model      

In the context of fuzzy mathematical programming, two very different issues can 

be addressed: fuzzy or flexible constraints for fuzziness, and fuzzy coefficients for 

lack of knowledge or epistemic uncertainty (Peidro et al. 2009). As illustrated in the 

previous chapter, several authors have addressed problems in which either type of 

fuzziness arises. In fact, it was not till recently when only few authors have 

simultaneously considered problems involving both types of fuzziness (e.g., Mula et 

al. 2007 and Peidro et al. 2009).    

Typically, steel mills, as well as other process industries, operate in an 

environment in which internal and external sources of uncertainty affect its mode of 

operation and consequently the production planning related decisions. Such 

uncertainties are associated with the available production capacity, which in most 

practical situations is hard to specify precisely, and the anticipated customers’ 

demand, which is frequently prone to errors due to changing customers’ preferences 

(as established earlier). The fuzzy mixed integer bilinear programming (FMIBLP) 

model presented in this section jointly contemplates the possible lack of knowledge 

associated with the production capacity and existing fuzziness in the anticipated 
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demand. Hence, the model involves flexible demand constraints as well as hard 

constraints comprising fuzzy quantities on either one side or both sides of the 

constraints. In fact, the presented fuzzy model deviates from those in the literature in 

combining the approaches of flexible mathematical programming (FMP) and 

possibilistic programming (PP) where also the weighted average method (Lai and 

Hwang 1992b) and the fuzzy ranking approach (Ramik and Rimanek 1985) are 

concurrently employed in order to handle fuzzy quantities within the mathematical 

model.  

In reality, it is difficult to establish a precise value for the production capacity, 

which is mainly comprised of available workforce level and machine uptime. There 

are a lot of unforeseen events that contribute to unstable production capacity 

including machine breakdowns, longer or shorter than expected repair time and/or 

setup time, variable scrap rate resulting from faulty production as well as worker 

injuries and/or absenteeism. Hence, the available production time is better represented 

by a fuzzy number having a triangular possibility distribution where the optimistic 

values of this distribution denote the possibility of working overtime hours. 

Moreover, the nature of the bar rolling process, the uniformity of raw material 

supplied and the quality of the production line setup might occasionally cause a steel 

bar to drift out of its intended path or get stuck on its way through the different rolling 

stands causing a complete stoppage to the whole production line in either case. Thus, 

it seems more practical to also assume the production rate (or equivalently, the 

production time per ton) to be rather a fuzzy number having a triangular possibility 

distribution.   
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From a demand perspective, the “rush orders” phenomenon that the steel mill 

suffers from is also taken into account during the planning process through flexible 

demand constraints. The fuzzy mathematical model presented here jointly considers 

both types of uncertainties. As done in Chapter 6, the flexible demand constraints are 

also represented by fuzzy sets having triangular membership functions. In addition, 

we assume that the available capacity and the production time per ton are fuzzy 

numbers having triangular possibility distribution. Such distribution allows for both 

positive and negative deviations from a “most likely” value which better reflects on 

reality. The fuzzy model is formally stated as follows:      
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     ( )k k k
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Min 
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       1 2 2
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       0 0 0k k k
j j jTI B B= = =                   ,j k∀                                       (7.19) 

 

       , , , , , , 0k k k k k k k
ijt it ijt jt it jt jtSd Q X W I I B ≥        , , ,i j t k∀                                       (7.20)  

   

 { }, 0,1k k
it ijtG Sb ∈                 , , ,i j t k∀                                   (7.21) 

 

 
k
ijtSd N∈                  , , ,i j t k∀                               (7.22) 

 

Recall that the notion “≅ ” in constraints (7.16) and (7.18) represents the fuzzified 

version of “=” and reads “essentially equal to”. On the other hand, the notions “ ijτ ” 

and “ tA ” indicate traingular fuzzy numbers characterizing the imprecise production 

time per ton and total available production time.   

The fuzzy model at hand includes constraints (7.12), which have only imprecise 

technological coefficients (i.e., a fuzzy production time per ton) resulting in a fuzzy 

quantity only on one side of the constraint, and constraints (7.13) which involve both 

imprecise technological coefficients as well as imprecise availability of resources 

inducing a comparison between two fuzzy quantities existing on both sides of the 

constraint. As illustrated earlier, the first case can be handled using the weighted 

average method (WAM), originally proposed by Lai and Hwang (1992b) and 

successfully applied afterwards to several problems including aggregate production 

planning (e.g., Liang 2007) and supply chain management (Liang 2008). Following 

this method, the fuzzy number ijτ  is defuzzified and converted to an equivalent crisp 
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value given the decision’s maker minimum acceptable possibility level, and a 

subjectively chosen set of weights 1 2 3, ,w w w . Clearly, the resulting crisp value 

depends on the initial possibility distribution for fuzzy number, the minimum 

acceptable possibility level and the weights assigned, as can be seen in Figure 7.3. In 

general, based on the similarity of triangles, the three prominent values corresponding 

to the possibility level θ  are obtained as follows: 

( ),
s s m s
ij ij ij ijθτ τ θ τ τ= + −                   , ,i j θ∀       (7.23) 

,
m m
ij ijθτ τ=         , ,i j θ∀         (7.24) 

( )( ), 1h m h m
ij ij ij ijθτ τ θ τ τ= + − −     , ,i j θ∀                                             (7.25) 

Notice that the value ,
m
ij θτ  is always equal to the initial most likely value m

ijτ  and thus 

remains unchanged regardless of chosen acceptable possibility level θ .    

 

             Figure 7.3: Triangular possibility distribution for the production time per ton ijτ    
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Having these three values at hand, the auxiliary crisp equivalence of equation (7.12) 

is obtained as: 

2
' '

' ', ' ', ' ', ' , 1 ' , 1
' 1 1 ' 1

1 4 10.4 24
6 6 6

I J
k k s m h k k
ijt ijt i j i j i j i j t i j t
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ij ijt

S Sb X S
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⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞= × − + + +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠
+ ×

∑∑∑
     (7.26)   

In this study, we apply the concept of the most likely values proposed in the original 

paper (Lai and Hwang 1992b), where 1 3 1/ 6w w= =  and 2 4 / 6w = .  

The second scenario, which involves fuzzy quantities on both sides of constraint 

(7.13) calls for the employment of fuzzy ranking techniques (e.g. Ramik and 

Rimanek 1985). Following this approach, constraint set (7.13) is replaced by the 

following three sets of constraints:  

( )
2

, ,
1 1 1

I J
s k k s
ij ijt ijt t

i j k
X S Aθ θτ

= = =

+ ≤∑ ∑ ∑           t∀                                    (7.27)  
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2

, ,
1 1 1

I J
h k k h
ij ijt ijt t

i j k
X S Aθ θτ

= = =

+ ≤∑ ∑ ∑           t∀                                    (7.29)  

 

As the resulting auxiliary model still involves flexible constraints, this model is 

solved under the three possible demand values to establish the upper and lower limits 

for the linear fuzzy set representing the objective function as presented in Chapter 6. 

Also, the models are solved in a similar fashion where the exterior penalty function 

method (EPFM) is employed coupled with sequential minimization techniques (SMT) 

to minimize the deviations from integral batches. The classical “Min” operator and 
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the “convex combination of Min/Max” operator are both used to obtain the 

approximate auxiliary models.   

7.5   Computational Experiments         

In this section, the proposed fuzzy production planning model is solved for ten 

problem instances of various complexities. Since the obtained auxiliary models 

depend on the selected value for the minimal acceptable possibility level θ , our 

objective is to first establish or quantify the effect of varying the subjectively chosen 

parameter θ  on the total cost obtained for the same set of input parameters in all the 

ten problems. Indeed, Lai and Hwang (1992b) suggest providing the decision maker 

with solution tables for different values of θ . Hence, after generating the problem 

instances from the ranges shown in Table 7.1, the three variants of the auxiliary 

flexible mathematical model (obtained from fixing the demand at its three possible 

values) are solved for 0.25θ = , 0.5θ =  and 0.75θ = . As before, the model is coded 

in AMPL and solved using CPLEX 11.0 solver where the experiments are run on a 

single CPU with 4-2.2 GHz AMD Opteron 64-bit processors and 16 GB RAM.    

 
  Table 7.1: Selected range of values for input parameters in the test problems 
 

Input parameter Range of values Input parameter Range of Values 
k
itCR  (500 to 700) k

jtBC  (20 to 30) 
k
itOR  (2000 to 2200) k

jtSP  (1300 to 1700) 
k
itIR  (10 to 20) k

itM  (150 to 300) 

ijtPC  (15 to 25) ijρ  (0.80 to 0.95) 

tA  (14, 16, 18) to 
 (16, 18 ,20) ijτ  (1/58, 1/54, 1/49) to 

(1/54, 1/48, 1/43) 
tSC  (600 , 800) k

jtCO  (0 to 80) 
k
jtIF  (15 to 30) ijST  (0.25 to 1.0) 
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 The results for the three values for the acceptable possibility level are shown in 

Tables 7.2-7.4 below. To help visualize the obtained results, Figures 7.4-7.6 illustrate 

the change in the value of the total cost for each of the problems under the three 

demand scenarios. As can be seen, there is no significant difference in the cost 

obtained as a result of changing the acceptable possibility level. This minor difference 

is seen in the figures showing a “seemingly like” one curve which is actually three 

curves that plot “more or less” on top of each other. More importantly, there is no 

consistent pattern to the behavior of the cost figures due to changing θ  values. For 

instance, in problem 9, the minimum cost figures for the pessimistic, most likely and 

optimistic demand are obtained when 0.5θ = , 0.25θ =  and 0.75θ = , respectively. 

In problem 10, setting 0.25θ =  results in the highest cost under all demand scenarios 

although this last consistency seems to be just a coincidence as suggested by the 

results obtained for the rest of the problems. This analysis suggests that changing the 

value of θ  does not significantly affect the solutions obtained. Hence, we carry out 

the remaining tests on the resulting equivalent crisp models (after using the 

aggregation operators) for only one θ  value, 0.5θ = .  

 Since the linear fuzzy set characterizing the decision maker’s aspiration level is 

now established, the next step is to aggregate this set with the feasible solutions set 

defined by the constraints in order to obtain the fuzzy decision set using the 

previously established “Min” operator, and “Convex Combination of Min/Max” 

operator. We denote the first crisp model as “Crisp-Min2” and the second crisp model 

“Crisp-Comb2” to distinguish them from those obtained in the previous chapter. The 

results for the ten problem instances for both models are shown in Table 7.5.    
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 Table 7.2: The obtained results for the ten problem instances for 0.25θ =  
 

Problem 
instance 

Problem size 
(I×J×T×K) 

pessimistic 
demand 

Most likely 
demand 

Optimistic 
demand 

Penalty 
(µ)  Max. gap  α β 

1 (1×2×2×2) 380,383 489,386 577,717 100,000 0 1.2 0.8 

2 (1×3×3×2) 769,570 853,446 1,013,994 100,000 0 1.15 0.85

3 (2×3×3×2) 738,739 841,402 965,628 100,000 0 1.15 0.85

4 (2×3×4×2) 1,053,541 1,184,086 1,306,895 100,000 0.0081 1.15 0.85

5 (3×4×4×2) 1,184,422 1,268,363 1,356,954 100,000 0.3024 1.1 0.9 

6 (4×4×4×2) 1,125,123 1,239,076 1,334,282 10,000 0.7962 1.1 0.9 

7 (4×5×4×2) 1,290,874 1,402,208 1,500,961 10,000 1.9028* 1.1 0.9 

8 (5×5×4×2) 1,326,954 1,431,513 1,550,492 10,000 2.3878* 1.1 0.9 

9 (5×6×4×2) 1,461,830 1,588,559 1,708,474 10,000 2.6863* 1.1 0.9 

10 (5×7×5×2) 2,017,305 2,115,941 2,237,036 10,000 4.3577* 1.1 0.9 

* Time related stoppage criterion (Code execution was interrupted after 12 hours of run time)    
 
 
Table 7.3: The obtained results for the ten problem instances for 0.5θ =  
 

Problem 
instance 

Problem size 
(I×J×T×K) 

pessimistic 
demand 

Most likely 
demand 

Optimistic 
demand 

Penalty 
(µ)  Max. gap  α β 

1 (1×2×2×2) 380,383 489,386 572,107 100,000 0 1.2 0.8 

2 (1×3×3×2) 769,570 846,952 1,013,920 100,000 0 1.15 0.85

3 (2×3×3×2) 738,225 840,976 965,306 100,000 0 1.15 0.85

4 (2×3×4×2) 1,053,541 1,184,655 1,305,361 100,000 0 1.15 0.85

5 (3×4×4×2) 1,182,391 1,268,363 1,356,954 100,000 0.2280 1.1 0.9 

6 (4×4×4×2) 1,125,181 1,239,003 1,334,557 10,000 0.7435 1.1 0.9 

7 (4×5×4×2) 1,295,916 1,411,518 1,501,294 10,000 1.9382* 1.1 0.9 

8 (5×5×4×2) 1,317,144 1,432,356 1,557,540 10,000 2.5520* 1.1 0.9 

9 (5×6×4×2) 1,460,381 1,590,823 1,707,538 10,000 2.8467* 1.1 0.9 

10 (5×7×5×2) 2,009,941 2,111,660 2,229,487 10,000 4.0779* 1.1 0.9 

* Time related stoppage criterion (Code execution was interrupted after 12 hours of run time)    
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Table 7.4: The obtained results for the ten problem instances for 0.75θ =  
 

Problem 
instance 

Problem size 
(I×J×T×K) 

pessimistic 
demand 

Most likely 
demand 

Optimistic 
demand 

Penalty 
(µ)  Max. gap  α β 

1 (1×2×2×2) 380,383 489,386 572,107 100,000 0 1.2 0.8 

2 (1×3×3×2) 769,570 846,731 1,013,994 100,000 0 1.15 0.85

3 (2×3×3×2) 738,872 841,655 965,717 100,000 0 1.15 0.85

4 (2×3×4×2) 1,053,541 1,183,541 1,303,976 100,000 0 1.15 0.85

5 (3×4×4×2) 1,180,617 1,268,547 1,356,954 100,000 0.1907 1.1 0.9 

6 (4×4×4×2) 1,125,928 1,239,421 1,334,285 10,000 0.6013 1.1 0.9 

7 (4×5×4×2) 1,292,386 1,409,180 1,509,396 10,000 1.8559* 1.1 0.9 

8 (5×5×4×2) 1,317,728 1,430,793 1,555,141 10,000 2.5121* 1.1 0.9 

9 (5×6×4×2) 1,468,541 1,595,085 1,698,357 10,000 2.7642* 1.1 0.9 

10 (5×7×5×2) 2,010,782 2,106,754 2,221,203 10,000 4.6310* 1.1 0.9 

* Time related stoppage criterion (Code execution was interrupted after 12 hours of run time)    
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             Figure 7.4: Total cost for various θ  values under pessimistic demand scenario  
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Figure 7.5: Total cost for various θ  values under the most likely demand scenario 
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Figure 7.6: Total cost for various θ  values under optimistic demand scenario 
 

 
Comparing the values for the aspiration level obtained using both operators, we 

notice that Model “Crisp-Min2” yields a lower value than that of Model “Crisp-

Comb2”.  The resulting 2λ  value, which expresses the degree of satisfaction of the 
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most satisfied constraints, is responsible for increasing the aspiration level once the 

combination of 1λ  and 2λ  is calculated. However, it should be noted that 2λ  achieves 

unity in 9 out of the 10 test problems indicating that, in the remaining problem, 100% 

satisfaction for the most satisfied constraint could not be achieved. Note that this 

constraint is not always the same as indicated by the values of the binary variables 

1 2 3, ,π π π  shown in the right most column of Table 7.5. However, in terms of the 

augmented objective function values ( 1pcZ  and 2pcZ ), the total cost of Model “Crisp-

Min2” is always slightly less than that of Model “Crisp-Comb2”.  
     

Table 7.5: Results of the two crisp models 
 

“Crisp-Min2”  
Model “Crisp-Comb2” Model Problem 

instance 
Penalty 

(µ) 
λ Zpc1 λ1 λ2 γλ1+(1-γ)λ2 Zpc2 (π1, π2, π3)

1 100,000 0.6138 454,426 0.6098 1 0.7659 455,194 (1,0,1) 

2 100,000 0.5399 881,995 0.5354 1 0.7213 883,095 (1,0,1) 

3 100,000 0.5501 840,389 0.5391 1 0.7235 842,886 (1,1,0) 

4 100,000 0.6369 1,144,976 0.6343 1 0.7806 1,145,632 (1,1,0) 

5 100,000 0.6067 1,251,047 0.5785 1 0.7471 1,255,969 (1,0,1) 

6 10,000 0.6239 1,203,927 0.6046 1 0.7628 1,207,968 (1,1,0) 

7 10,000 0.6803 1,361,575 0.6727 0.9747 0.7935 1,363,136 (1,1,0) 

8 10,000 0.7441 1,378,661 0.7187 1 0.8312 1,384,767 (1,1,0) 

9 10,000 0.7572 1,520,390 0.7254 1 0.8352 1,528,250 (1,1,0) 

10 10,000 0.7680 2,060,876 0.7403 1 0.8441 2,066,957 (1,1,0) 

 
 

At this juncture, a comparison between the performances of the resulting auxiliary 

models using both operators with the crisp counterpart of the original fuzzy model is 

due. As defined in the previous chapter, the crisp counterpart refers to initial 
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deterministic formulation of the production planning problem with rigid demand 

constraint where the value of the demand is set at the most likely value. Upon 

comparing Models’ “Crisp-Min2” and “Crisp-Comb2” total cost with that resulting 

from the most likely demand given in Table 7.3 shows a cost savings in most of the 

problem instances. Except for the second problem instance, Model “Crisp-Min2” has 

outperformed the original non-fuzzy model for all other test problems. On the other 

hand, Model “Crisp-Comb2” results in cost savings in 8 out of the 10 problem 

instances. This illustrates the economical benefits obtained from adopting the FST to 

explicitly account for uncertainties in the context of mathematical models.  

7.6   Summary         

This chapter has simultaneously addressed both external uncertainties associated 

with customers’ demand as well as internal uncertainties characterizing the 

availability of the manufacturing process. A fuzzy mathematical model that jointly 

accounts for both uncertainties is presented in which the techniques of flexible 

mathematical programming (FMP) and possibilistic programming (PP) were adopted. 

To handle fuzzy coefficients existent in the model, average weighted method with the 

most likely solutions and fuzzy ranking approach were utilized. The results obtained 

illustrate the benefits obtained from utilizing FST to model uncertainties as compared 

to the deterministic approach. The combination of FMP and PP principles to treat 

production planning related problems has not received much attention from 

researchers and shall thus be a valuable addition to the available literature. This 

allows for handling fuzzy quantities of various natures within the same mathematical 

model.      
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Chapter 8 

Conclusions and Future Research Directions  

 

8.1   Summary and Conclusions  

The problem of developing production plans that efficiently utilize the available 

resources in process industries, such as steel rolling industry, is of particular interest 

to researchers as well as industrial practitioners. Steel manufacturers nowadays face a 

stiff competition which brings out the need for consistent efforts towards reducing 

costs and improving the customer service level. In particular, production and 

inventory related decisions in steel rolling mills, which are characterized by being 

both capital and energy intensive, bare a great importance as they have a direct 

impact on the financial health of the organization. In this research, the master 

production scheduling (MPS) problem in steel rolling mills under static and dynamic 

operating conditions has been investigated. As this industry has some distinguishing 

characteristics associated mainly with the manufacturing process, an implementable 

production schedule has been developed where these features were taken into 

account. At first, the MPS was developed under static demand conditions where the 

effect of several interrelated factors on the planning decisions was evaluated. 

Mathematical programming techniques have been employed in order to determine the 
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optimized production schedules and raw material purchasing quantities while 

satisfying the end customer demand.  

Since uncertainty is an inherent part of the production environment in which steel 

mills operate, two different approaches were adopted to incorporate the uncertainty in 

demand into the planning decisions. The first approach to consider demand 

uncertainty involved establishing approximate models that are implemented on a 

rolling horizon basis where the problem parameters are updated at the beginning of 

each period. These approximate models generate only exact schedules and comprise a 

tractable number of binary and/or integer variables resulting in substantial savings in 

the computational time needed to solve them. The second approach to address 

demand uncertainty involved the use of FST in order to express the demand 

constraints as flexible constraints in the mathematical model. The utilization of this 

approach has resulted in economical benefits as compared to the use of the 

deterministic models.  

Towards developing a production schedule that considers uncertainties in demand 

as well as production capacity, the approaches of flexible mathematical programming 

(FMP) and possibilistic programming (PP) have been utilized. The combined use of 

these approaches allows uncertainties of different nature to be incorporated into the 

same mathematical model. To handle fuzzy quantities involved in the model, we 

utilized both the weighted average method and the fuzzy ranking approach. 

Throughout this thesis, the (near) optimal solutions to the developed mathematical 

models were obtained via various solution algorithms that have different 

computational capabilities.  
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8.2   Thesis contributions  

The research presented in this thesis has been classified in three parts where each 

part tackles a certain aspect of the production planning problem. The first part, which 

treats the problem under static demand conditions, has made the following 

contributions: 

• Literature classification: The production planning problem at hand represents 

an instance of the well known dynamic lot-sizing problem (DLSP). Hence, before 

attempting to tackle the problem, the related literature concerning the general 

DLSP has been classified based on their distinguishing characteristics. In 

particular, the contributions made by researchers to the capacitated multi-item 

DLSP from a modeling and solution algorithms perspectives have been 

highlighted. We also pointed out the equivalence between the MPS problem, as 

coined in the production planning literature, and a special class of the DLS 

problem, as coined in the inventory management literature. 

• Mathematical modeling: The optimized master production schedule is obtained 

through the development of a mixed integer bilinear program (MIBLP) that 

addresses the problem under static demand conditions. The novelty to this model 

is that it jointly accounts for the distinguishing features and technological 

constraints associated with the manufacturing process of the bar rolling industry 

including complex setup time structure, raw-material finished-product dependent 

scrap and production rates, batch manufacturing, overtime, backlogging and 

product substitution. The objective of the model is to provide insights into the 

combined effect of these interrelated factors. Since this deterministic model 
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establishes the production and inventory related decisions based solely on 

customer demand, it is most useful in periods where the company faces low 

demand volatility.  

• Solution Algorithms: The main contribution in this perspective is a modified-

branch-and-bound (B&B) algorithm that exploits the special structure of the 

mathematical model in order to minimize the number of branches to be explored. 

Instead of relaxing the binary restriction and obtaining the bound through 

continuous relaxations, our algorithm makes proper substitutions of the binary 

variables which resolves the existent bilinearity in the model and allows for the 

attainment of the bound at each node. An alternative algorithm is the hybrid 

linearization-Benders decomposition (BD) approach where the bilinear model is 

linearized first and then the resulting MILP is solved using BD. Although 

numerical experiments have illustrated that it is more efficient to directly solve 

the linearized model using MIP solver such as CPLEX 11.0, the hybrid algorithm 

provides an alternative solution methodology to models involving complicating 

constraints. The typical approaches to handle these models in the literature are 

Dantzig-Wolfe decomposition and Lagrange decomposition. The modified B&B 

algorithm have shown better performance capabilities than the linearization 

approach for larger problem sizes with a savings in computational time of up to 

48%.  

In the second part of this research, demand volatility, which takes the form of 

“rush orders” due to changing customers’ preferences and heightened expectations of 

shortened delivery lead time, is addressed. Two different approaches are employed in 
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order to account for demand uncertainties in the planning decisions which results in 

the following contributions: 

• Viable rolling horizon approximations: Developing the production schedule on 

a rolling horizon basis, where the schedule is updated periodically as new 

information becomes available, requires rerunning the exact model at the 

beginning of each time period, and hence consumes a great deal of computational 

time. As a remedy to this issue, we proposed several viable approximations that 

generate exact schedules and relax the complicating constraints only during the 

unimplemented periods of the planning horizon. These complicating constraints, 

such as integrality restriction on the number of batches produced, prevent the 

attainment of quick solutions, hence the approximations allow for quantifying the 

effect of the complicating constraints on the computational time needed and on 

the total cost obtained. Computational experiments have shown that the 

developed approximate models provide valid proxies to the exact model and 

result in substantial savings in computational time.  

• Flexible mathematical model: Most previous applications of the flexible 

mathematical programming (FMP) approach have assumed that the fuzzy set 

representing the objective function is known a priori and is represented by a 

linear function and the fuzzy set representing the flexible constraint is also linear. 

Our analysis departs from these assumptions and deals with non-symmetric 

models in which the fuzzy set representing the flexible constraints is represented 

by a triangular membership function. As such, instead of establishing the interval 

of allowance on the decision maker’s aspiration level (i.e., objective function) 
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based solely on hunches and pure subjective judgment, the amount of flexibility 

determined by the fuzzy set of the flexible constraints is used to estimate this 

interval. Since such an estimate need not be accurate, a non-exact solution 

algorithm based on the exterior penalty function method (EPFM) was 

implemented.  

The last part of this research is directed towards simultaneously treating the existing 

uncertainties in customer demand and available production capacity, resulting in the 

following contribution:      

• Integration of FMP and PP: In practice, accounting for uncertainties through 

the use of fuzzy set theory (FST) into mathematical models might take several 

forms depending on the nature of the existent fuzziness in the problem at hand. 

Not only we have combined the approaches of FMP and PP into the same 

mathematical model, but we also presented a situation that calls for the joint 

implementation of the weighted average method and fuzzy ranking approaches in 

order to handle fuzzy coefficients appearing on one side or both sides of some 

constraints. This contribution opens the door to promising research avenues since 

it allows for handling situations involving various sources of uncertainties. Using 

these techniques, all uncertainties can now be incorporated into one fuzzy model 

and then defuzzified into an equivalent auxiliary crisp model whose solution can 

be found using classical optimization tools.            
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8.3    Recommendations for future research   

Modeling and optimization of process industries in general has been and 

continues to be one of the active research topics requiring further investigation. The 

work that has been conducted along this line of research besides the work presented 

in this thesis suggest the following future research directions:  

• Developing mathematical models that jointly optimize production and 

transportation related decisions. In the steel industry for instance, most of the raw 

material is bulky which greatly limits the choices for the appropriate 

transportation modes. This in turn might have an effect on the availability of raw 

materials in the timings and amounts needed.  

• Developing multi-objective production-inventory models where, in addition to 

cost minimization, other performance measures such as machine utilization and 

scrap percentage are also optimized. This allows for the attainment of a 

compromise solution that satisfies all of the performance measures to the best 

possible extent.    

• Implementing heuristic search algorithms to solve mixed integer bilinear 

programs (MIBLP) similar to the ones presented in this research. These meta-

heuristics, such as Genetic algorithms, simulated annealing, and tabu search, 

have proven successful in obtaining “good quality” solutions to various 

combinatorial optimization problems within reasonable amount of computational 

time. Hence, the implementation of these heuristics search methods is an area to 

be tested furthermore.  



 160

• Typically, the existing approaches adopted to handle fuzzy models involve first 

“defuzzifying” the model and then solving the resulting auxiliary crisp model 

without directly attempting to handle the fuzzy model in a more efficient way. As 

noted by Lai and Hwang (1992a), research on developing fuzzy algorithms and 

coding existing fuzzy approaches in computer packages is urgently needed.  

• In practice, firms might face randomness in addition to imprecision/fuzziness 

where both phenomena need to be accounted for in the planning process. In the 

literature, very little research has been done in the area of probabilistic fuzzy 

models and their solution methodologies. This represents an interesting area 

which requires further investigation.    

• The presented analysis can also be extended to account for the more general 

situation where the rolling mill has more than a single production line and 

production rates and throughput differ from one production line to the other. In 

this scenario, a scheduling problem arises where the assignment of jobs to 

machines (i.e., production lines) is determined such that a performance measure, 

such as total flow time or makespan, is minimized.     
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Appendix 

Theoretical Background for Solution Algorithms to Mixed 

Integer Bilinear Programs     

 

A.1   Introduction  

 The material presented in this appendix is devoted to studying a special class of 

mathematical programs referred to as mixed-integer bilinear programming problems 

(MIBLP) or Mixed 0-1 Quadratic programs. This type of problems arises in various 

practical situations such as production-distribution planning (Vaish 1974), location-

allocation modeling (Sherali and Adams 1984), supply chain reconfiguration and 

supplier selection (Osman and Demirli 2010) among many others. For instance, while 

the continuous variables in these models may establish the quantities shipped between 

designated origin-destination points, the binary variables may signify the decisions 

whether or not to construct intermediate service or processing facilities on a 

transshipment network. In general, MIBLP problems may be viewed as a 

generalization of the fixed-charge location or flow problem (Salkin 1975).  

 The difficulties associated with directly solving MIBLP problems using 

optimization packages bring out the need for specifically tailored solution algorithms 

that can efficiently handle such models and exploit the special structure they possess. 

Fortunately, these models have been investigated in the literature and solution 
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algorithms have been proposed. Throughout this appendix, three solution algorithms 

that can be applied, either directly or after some modification, to the solution of 

MIBLPs are presented in their general context. The application, or the customization, 

of these algorithms to the model developed in Chapter 3 was detailed in Chapter 4 of 

this thesis.   

  

A.2    Linearization techniques  

  
The earliest work in this line of research is due to Peterson (1971) where he 

proposed a linearization mechanism that handles bilinear models involving the 

multiplication of a continuous variable by a binary one. Glover (1975) extended this 

work to the more general case where the binary variable is multiplied by a linear 

function in the binary and/or continuous variables. This class of linearization 

approaches is readily applicable to bilinear models like the one presented in Chapter 

3. As pointed out by Adams and Sherali (1993), one may attempt to solve MIBLP 

directly via the generalized Benders algorithm, or one may choose to linearize 

MIBLP using the techniques of Glover (1975) or Peterson (1971) and solve the 

resulting MILP problem. However, the success obtained via these methods is highly 

dependent on the specific problem (Adams and Sherali 1990).  

The other class of linearization strategies is the so called reformulation-

linearization technique (RLT) which requires manipulating the original model before 

linearizing it. The lead researchers in this class are Profs. Adams and Sherali as they 

were the first to initialize it and also provide for more efficient strategies later on, as 

can be seen in Adams and Sherali (1986, 1990) and Sherali and Adams (1990, 1994). 
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The difference is that RLT provides a hierarchy of formulations that promote tighter 

linear programming relaxations to the original model. Essentially, an integer linear 

formulation whose continuous, or linear programming, relaxation closely 

approximates the convex hull of feasible integer solutions in the vicinity of the 

optimum is computationally advantageous (Adams and Sherali 1990). The 

disadvantage of RLT is that those tighter approximations are obtained while paying 

little regard to problem size.  

The general form of a mixed 0-1 quadratic program, denoted as (P1) below, may 

be stated as follows (Adams and Forrester 2007, Adams et al. 2004):   

(P1):     Minimize   l ( , )x y +
1

n

j
j

g
=
∑ ( , )x y jx         (A.1) 

            Subject to    
1

k

j
j

h
=
∑ ( , )x y jx α≤                  (A.2)                               

                      ( , )∈x y X ≡  {( , )x y ∈ S : x ∈{ }0,1 , y }0≥       (A.3) 

Here, S  represents a polyhedral set in the n  binary variables x  and m  continuous 

variables y . Also, l ( , )x y , jg ( , )x y  and  jh ( , )x y  for all j  are linear functions in 

the x  and y  variables and α  is a scalar quantity. It is assumed, without loss of 

generality, for each j  that jg ( , )x y  and  jh ( , )x y  are not functions of the variable 

jx , since 2
j jx x=  and that it does not contain a term of degree 0.  

Typically, linearization approaches target the existent bilinearity in the model and 

seek to provide an equivalent MILP formulation to the original model. In order to 

achieve linearity, auxiliary variables and constraints are employed, with the newly 

defined variables replacing predesignated nonlinear expressions, and with the 
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additional constraints enforcing that the new variables equal their nonlinear 

counterparts at all binary realizations of the 0-1 variables (Adams et al. 2004). Note 

that although the bilinear model may be equivalently represented by two different 

linear programming formulations, their size and continuous relaxations may 

drastically differ depending on how the auxiliary variables and constraints are 

defined. What these linearization approaches strive to achieve is a tradeoff between 

the size of the resulting formulation and its strength (i.e., tightness of the bounds 

obtained). Generally speaking, formulations whose continuous relaxations provide 

tight approximations of the convex hull of solutions to the original nonlinear problem 

outperform the weaker representations (Adams et al. 2004). Hence, a linearization 

technique that provides a tight linear programming relaxation, while keeping the 

problem computationally tractable, is highly desirable (Adams and Sherali 1990).   

As pointed out earlier, the linearization scheme of Glover (1975) can be directly 

applied to the bilinear model of Chapter 3 with straightforward modifications. The 

justification for choosing this scheme in this work is that it promotes very concise 

mixed 0-1 linear representation of mixed 0-1 quadratic programs (Adams et al. 2004). 

For a problem involving n  binary variables, Glover’s technique achieves linearity 

through the introduction of n  unrestricted continuous variables and 4n  linear 

inequality constraints. Employing this technique to the above general problem (P1) 

gives the following model, denoted by (LP1):  

(LP1):   Minimize    l ( , )x y  +
1

n

j
j

z
=
∑          (A.4) 

         Subject to     
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  j j j j jL x z U x≤ ≤           1, ...,j n∀ =                    (A.5) 

       jg ( , )x y (1 )j j j jU x z g− − ≤ ≤ ( , )x y (1 )j jL x− −         1, ...,j n∀ =           (A.6) 

1

k

j
j

ξ α
=

≤∑                     (A.7) 

j j j j jL x U xξ≤ ≤           1, ...,j k∀ =                     (A.8) 

      jh ( , )x y (1 )j j j jU x hξ− − ≤ ≤ ( , )x y (1 )j jL x− −        1, ...,j k∀ =              (A.9)       

       ( , )∈x y X  

For each j , the four inequalities (A.5) and (A.6) associated with jz  enforce the 

equivalence jz = jg ( , )x y jx  for binary jx . Given any ( , )x y ∈ X , if some 0jx = , 

then (A.5) ensures that 0jz =  with (A.6) being redundant. If some 1jx = , then (A.6) 

ensures that jz = jg ( , )x y  with (A.5) being redundant. Also, jL  and jU  represent 

the respective lower and upper bounds on the linear functions jg ( , )x y  over 

( , )∈x y X , where these bounds are obtained as follows:   

jL =  min { jg ( , )x y : }( , )∈ Rx y X         (A.10)  

 jU =  max { jg ( , )x y : }( , )∈ Rx y X         (A.11)       

where RX  denotes any relaxation of X  in the variables ( , )x y . A similar argument 

applies to the newly added variables jξ  to establish the equivalence jξ = jh ( , )x y jx  

through inequalities (A.8) and (A.9) at both binary realizations of the variables jx , 

where the bounds are established in a similar fashion using (A.10) and (A.11) with 

jh ( , )x y  instead of jg ( , )x y .   
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We next present a proposition that helps reduce the size of the resulting linearizaed 

model. 

†  Proposition A.1: (Adams and Forrester 2007)  

Since the variables jz  have nonnegative objective coefficients in (LP1), the right 

inequalities of (A.5) and (A.6) can be omitted without changing the optimal objective 

values. These same inequalities can also be omitted in the presence of constraints of 

the form 
1

n

j j
j

a z κ
=

≤∑  with ja  and κ  nonnegative scalars. Similarly, if the variables 

jz  were to appear in the objective of (LP1) with non-positive coefficients, then the 

left inequalities of (A.5) and (A.6) could be omitted, even in the presence of 

constraints of the form 
1

n

j j
j

a z κ
=

≥∑  with ja  and κ  nonnegative scalars. †      

Since the jξ  variables do not appear in the objective, the proposition allows for the 

removal of the 2k  right inequalities in (A.8) and (A.9).   

A.3    Branch-and-Bound algorithms   

Branch-and-bound (B&B) algorithms are most widely used solution search 

methods for solving large scale NP-hard problems. In essence, The B&B approach 

can be thought of as a simple divide-and-conquer strategy that attains the solution to 

an optimization problem through an implicit enumerative scheme. The utility of the 

method drives from the fact that, in general, only a small fraction of the possible 

solutions need actually be enumerated, the remaining solutions being eliminated from 

consideration through the application of bounds that establish that such solutions 
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cannot be optimal (Mitten 1970). Glover and Magee (1996) point out that B&B 

method can often be tailored to exploit special problem structures, thereby allowing 

these structures to be handled with greater efficiency and reduced computer memory.            

From an application perspective, the first implementation of a B&B algorithm 

dates back to Land and Doig (1960) for the linear case and to Dakin (1965) for the 

nonlinear case. Since then, the algorithm has seen various improvements and was 

used to efficiently solve problems of different nature including mixed integer 

nonlinear programs (e.g., Gupta and Ravindran 1985, Brochers and Mitchell 1994, 

and Leyffer 2001). In particular, B&B methods have long been used to solve a wide 

range of the well known problems in the area of operations research including 

quadratic assignment problem (Bazaraa and Kirca 1983, Hahn et al. 1998), fixed 

charge transportation problem (Kennington and Unger 1976), knapsack problem 

(Kolesar 1967), and facility location problem (Akinc and Khumawala 1977) to name 

a few.   

To illustrate how the general algorithm works, consider the following generic 

mathematical program, denoted as (P2):   

(P2)    Min     ( ),Z f x y=         (A.12) 

  S.t.      ( ), 0jg x y ≤         j J∈        (A.13) 

             x X∈ , y Y∈         (A.14) 

Where x  and y  are vectors of the continuous and discrete variables, 

respectively, (.)f  and (.)g  are convex differentiable functions, J  is the index set of 

inequalities. Commonly, the set X  is defined as { }| , ,n L UX x x R Dx d x x x= ∈ ≤ ≤ ≤  
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and the set Y is defined as { }| ,mY y Z Ay a= ≤ , which in most cases is restricted to 

binary values, { }0,1 my∈ . As noted by Grossmann (2002), in most applications of 

interest the objective and constraint functions (.)f , (.)g  are linear in y (e.g., fixed 

cost charges and mixed logic constraints): ( , ) ( )Tf x y c y r x= + , 

( , ) ( )g x y By h x= + . If the functions ( )r x  and ( )h x are linear, then problem (P2) is 

a mixed integer linear program (MILP) while it is a mixed integer nonlinear program 

(MINLP) if either function is not linear. In the second scenario, the nonlinearity is 

caused by higher orders of x  and not due to a multiplicative term of the form xy . 

This emphasizes on the fact that B&B algorithms have been successfully used to 

solve MILP and MINLP but no track for a MIBLP application was found in the 

literature. However, Quesada and Grossmann (1995) developed a B&B algorithm for 

“pure” bilinear models in which both set of variables x  and y  assume continuous 

values, and as such, this method is not applicable to the model at hand.   

The classical B&B algorithms, or the simplex-based methods, start by solving the 

continuous relaxation of the original problem (P2) at the root node (Figure A.1) in the 

hope that the obtained solution will be feasible integer and, hence, solves (P2) as 

well. This relaxation yield a LP in case (P2) is a MILP and a NLP in case (P2) is 

originally a MINLP. The basic idea of a relaxation strategy is to identify a relaxed 

problem that is significantly easier to solve than the original but that is still strong 

enough to have a fair chance of providing an optimal solution to the original, or at 

least a good bound (Glover and Magee 1996). Once non-integer solutions are 

obtained, one of the integer variables assuming a fractional value at optimality is 



 191

picked, say jy , and two new subproblems (S1 and S2) are constructed through fixing 

the variable at either zero or one. The search process continues by branching from the 

nodes requiring further exploration with a new branching variable iy , where i j≠ , 

and so on until all subproblems have been eliminated from consideration. Along the 

search process, the integer solution yielding the best (i.e., lowest) bound on the 

objective function of the original problem is recorded and it is called the “incumbent” 

and denoted by *Z . Fathoming is a key part of the search method to reduce the search 

space, but it requires one to decide whether a better solution might exist further down 

the space tree (Yimer 2006). A subproblem can be fathomed in one of three cases:  

a. The subproblem has no feasible solution.  

b. The value of the objective function of the solution to the subproblem, say sZ , is 

higher than that of the incumbent, i.e., *
sZ Z> . 

c. The solution to the subproblem is an integer solution (if *
sZ Z<  in this case, then 

an improved value for the incumbent solution is at hand and *Z  is rest to sZ ).      

      Figure A.1: A portray of the branch-and-bound algorithm 
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Clearly, a bound obtained at a particular node is always better or at worse the 

same as that obtained at the descendent nodes of the lower level. Once there are no 

more nodes to explore, the incumbent solution found so far is recorded as the optimal 

solution to the original problem and the algorithm is terminated.    

A.4    Benders decomposition algorithm    

 This technique was originally proposed by Benders (1962) for the solution of 

MILP and was later extended by Geoffrion (1972) to handle MINLP through the use 

of nonlinear duality theory. Since its introduction, Benders decomposition has gained 

wide popularity among researchers and has been successfully applied to several 

problems such as supply chain network design and reconfiguration (Osman and 

Demirli 2010), multi-commodity distribution planning (Cakir 2009, Geoffrion and 

Graves 1974), power flow and transmission optimization problems (Binato et al. 

2001, Alguacil and Conejo 2000) among many others. A review of the applications of 

Benders decomposition to the fixed charge network design problem is given by Costa 

(2005).  

The applicability of Benders decomposition (BD) arises mainly in mathematical 

models involving complicating variables, where in most practical situations these 

variables assume either integer or binary values. Basically, the idea is to decompose 

the model through dealing with the complicating variables (CVs) separately into the 

“master problem” (MP) and the non-complicating variables (NCVs) into the “sub-

problem” (SP). The MP is composed of the objective function terms involving the 

CVs, the constraints on these variables as well as the added cuts obtained from the 

solution of the SP. The values of the NCVs are optimized via solving the SP which 
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fixes the values of the CVs to those obtained via solving the MP. The dual multipliers 

associated with fixed values for the CVs are obtained from the SP and are used to 

construct an optimality cut that is added iteratively to the MP. After each iteration, a 

convergence check is carried out on the upper and lower bounds obtained by solving 

the two problems. Let us consider the following MILP involving both types of 

variables (Conejo et al. 2006):  

(P3)    Min      
1 1

n m

i i j j
i j

Z c x d y
= =

= +∑ ∑        (A.15) 

           S.t.   

          
1 1

n m

li i lj j l
i j

a x e y b
= =

+ ≤∑ ∑                          1,...,l q=                         (A.16)  

          down up
i i ix x x≤ ≤ ,      ix N∈               1, ...,i n=                        (A.17) 

         down up
j j jy y y≤ ≤ ,      jy R∈              1,...,j m=                          (A.18) 

In the above model, ix  is considered to be the complicating variable, which can 

also be binary instead, and jy  is the non-complicating variable. Note that BD is also 

applicable to linear programs where the complicating variables in this case would be 

those preventing the solution to the problem by blocks. The BD algorithm calls for 

decomposing (P3) into the following two problems:  

Master problem (MP): 

Min   ( )

1

n
v

M P i i
i

Z c x α
=

= +∑                                                                               (A.19) 

 S.t.      

  ( )( ) ( ) ( )

1

m
k k k

j j i i i
j

d y x xα λ
=

≥ + −∑          1,..., 1k v= −                                   (A.20)           
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       down up
i i ix x x≤ ≤ ,      ix N∈               1, ...,i n=                                      (A.21)   

 downα α≥           (A.22)  

Sub-problem (SP): 

 Min   
1

m

SP j j
j

Z d y
=

= ∑          (A.23) 

 S.t.      

     
1 1

m n

lj j l li i
j i

e y b a x
= =

≤ −∑ ∑                          1,...,l q=                                 (A.24) 

        down up
j j jy y y≤ ≤ ,      jy R∈                  1,...,j m=                                  (A.25) 

        ( )v
i ix x=  :     iλ               1, ...,i n=                                 (A.26) 

      
At each iteration, a feasible solution to the SP implies an additional optimality cut 

of the form (A.20) that is appended to the MP. However, for the case of binary 

variables, Codato and Fischetti (2004) proposed the addition of a combinatorial 

feasibility cut to the master problem after each iteration where no feasible solution to 

the SP exists. The role of this cut is to force the MP to generate 0-1 values that differ 

from those causing infeasibility in the previous iteration by at least one. For binary ix  

variables, the feasibility cut has the general form:  

    ( )
( ) ( ): 0 : 1

1 1
k k

i i

n n

i i
i x i x

x x
= =

+ − ≥∑ ∑            1,..., 1k v= −      (A.27) 

  
As we proceed iteratively with the algorithm, the values of the variable α  keep 

on increasing, or possibly stay the same, due to the added optimality cuts after each 

feasible iteration. However, the objective function of the SP might increase or 

decrease depending on the values of the CVs obtained from the MP. The algorithm 
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generally seeks to close the gap between the upper and lower bounds obtained as 

follows:    

 

   ( ) ( ) ( )

1 1

n m
v v v

up i i j j
i j

z c x d y
= =

= +∑ ∑        (A.28) 
 

       ( ) ( ) ( )

1

n
v v v

dow n i i
i

z c x α
=

= +∑         (A.29) 

 
An optimal solution is found when ( ) ( )v v

up downz z ε− < , where ε  is a small tolerance 

value. As the variable α  provides an underestimate to the SP objective function 

value, the actual bounds given by equations (A.28) and (A.29) need not be computed 

and an optimal solution is at hand when the condition ( ) ( )

1

m
v v

j j
j

d y α ε
=

− <∑  is satisfied. 

Due to its iterative nature and similar cut generation format, sometimes Benders 

decomposition is considered as the dual procedure of the Dantzig-Wolfe 

decomposition (Cakir 2009).  

A.5    Summary     

This appendix has presented the theoretical background for three solution 

algorithms that can be used to solve the general class of MIBLP models. The first 

solution methodology is based on the classical linearization approach adopted for 

obtaining an equivalent larger sized MILP through the addition of auxiliary variables 

and constraints. The second solution methodology is the long-established B&B 

algorithm which exploits the special problem structure to attain the optimal solution 

through implicit enumeration of a small portion of the feasible solutions. The third 

approach is Benders decomposition, which is mostly used in the solution of 
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mathematical models involving complicating variables. The next chapter illustrates 

how such algorithms can be customized to solve the production planning problem at 

hand.   
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	On the other hand, the CMILSP has received remarkable attention as it is a more challenging problem to solve. Several exact solution methods have been proposed. Barany et al. (1984) and Pochet and Wolsey (1991) used valid inequalities (strong cutting planes) to solve the problem. Eppen and Martin (1987) established a shortest path formulation of the DP recursion presented in WW, where this network formulation sets a tighter lower bound for the problem. Constantino (1998) also derived families of strong valid inequalities and showed that they are sufficient to completely describe the convex hulls of the sets of feasible solutions. Belvaux and Wolsey (2000) developed an efficient branch-and-cut based software that includes preprocessing and cutting planes for a variety of lot sizing models. 
	Apart from the exact methods, there are some heuristics that have been specifically tailored for solving the CMILSP. Dixon and Silver (1981) extended the Silver-Meal heuristic to the capacitated multi item case. The criterion is to select that item for which a one period increase in the supply results in the largest decrease in average cost per unit time per unit of capacity absorbed (Jans and Degraeve 2007). Dogmaraci et al. (1981) developed a forward sweep algorithm along with a greedy search starting from the lot-for-lot solution. Karni and Roll (1982) use the WW schedules as a starting point and try to achieve feasibility while optimizing cost through shifting production. Maes and Van Wassenhove (1986c) implemented several cost criteria in their ABC heuristic to determine whether or not to include next period’s demand, and several other rules to determine the order of the items. Finally, Kirka and Kökten (1994) developed an efficient item-by-item heuristic where items are selected one at a time, and then a single item problem is solved with adapted capacities and extra bounds on production and inventory to ensure the feasibility of the overall problem. 
	Another approach towards solving the CMILSP is the use of Lagrangian relaxation, e.g., Thizy and Van Wasenhove (1985), Trigerio et al. (1989) and Diaby et al. (1992). The traditional practice in this approach is to get rid of the complicating capacity constraint through a dualized term in the objective function coupled with a specific set of positive multipliers. The resulting problem is a lot easier to solve and may be decomposed into separate single item uncapacitated subproblems for each item.     
	Polynomial approximation technique has also been applied towards solving the LSPs. Bitran and Matsuo (1986) proposed a pseudo-polynomial approximation algorithm for the CMILSP based on Manne’s (1958) formulation. Gavish and Johnson (1990) developed a fully polynomial approximation scheme for the capacitated single item lot scheduling problem. Furthermore, Van Hoesel and Wagelmans (2001) presented a fully polynomial algorithm for the CSILSP, which produces solutions with a relative deviation from the optimality that is bounded by a constant. 
	Meta-heuristics such as Tabu search (e.g. Hindi 1996) and Genetic algorithms (e.g. Gutierrez et al. 2001) have also been specifically developed to solve the CMILSP. It is interesting to note that no implementation of meta-heuristics for solving the CSILSP can be found, as concluded by Brahimi et al. (2006) in their review paper. On the other hand, Cattrysse et al. (1990) discussed the set-partitioning formulation of the CMILSP and used heuristics to convert the possibly fractional solution from the column generation step to a feasible integer one. In a different heuristic, Hindi (1995) implemented the branch and bound method as a solution strategy for the CMILSP. Chen and Thizy (1990) gave a comprehensive analysis of relaxation methods for the problem and showed it to be strongly NP-hard. A comparison of the performance of several solution heuristics can be found in Maes and Van Wassenhove (1986b). 
	2.2.2   Lot sizing models with Extensions 
	The numerous extensions of the basic lot sizing problem discussed in the literature demonstrate its flexibility to model a variety of industrial problems. Each of the following subsections presents the advances made towards modeling as well as solving an extended version of the basic LSP.      
	2.2.2.1    Lot sizing models with allowed stockouts 
	In practice, the capacity is typically finite and bounded by several factor such as machines, workers, availability of raw material and storage areas among many others. In such situations, a manufacturer might not be capable of completely fulfilling a certain period’s demand on time due to insufficient capacity. There are two strategies to deal with the remaining portion of demand or the “unmet demand”. First, it might be lost in the sense that a competitor will be the one satisfying this portion of demand. This explains the situation where we have “lost sales”, a phenomenon that usually takes place in the retailing industry. There is a certain attached cost resulting from revenue loss, or penalty cost due to loss of customer goodwill. Secondly, the unmet demand can be satisfied at a later period of time. If the whole demand is satisfied late, this is referred to as “complete backlogging” (the words backlogging and backordering can be used interchangeably). In the case of late fulfillment of only a portion of the demand, “partial backlogging” takes place. From a mathematical perspective, permitting backlogging means that inventory levels can be negative. In the steel industry, most customers are long term customers, and the manufacturer might make use of his power alongside customer’s loyalty to backlog a portion of the demand at a certain additional cost, called “backlogging cost”. 
	Both cases have been addressed in the literature, with the lost sales situation being dealt with to a lesser extent. Sandbothe and Thompson (1990) proposed a necessary condition for an optimal solution and obtained an   algorithm when production capacity is constant, and an   algorithm for the case of time-varying production capacity. In a 1993 paper, they extended their work through imposing restrictions on both production and inventory capacities, and obtained an algorithm with the   time complexity. Aksen et al. (2003) introduced a profit maximization model for the USILSP with lost sales, where costs and selling prices were assumed to be time-variant. They showed that losing demand in spite of a nonzero inventory at hand can sometimes be more profitable if costs or prices vary. Liu et al. (2004) developed a strongly polynomial algorithm for the lost sales case with bounded inventory, non-increasing setup cost, and time varying production, inventory holding and lost sales costs. Liu and Tu (2008) studied the CSILSP with limited inventory capacity and time-varying functions of demands and costs.  
	One of the earliest works to consider backlogging is due to Zangwill (1966a), where he proposed a deterministic single-item multi-period production and inventory model having concave production cost and piecewise concave inventory costs. The inventory can be backlogged to a maximum of   periods, where   is called the backlog limit. Zangwill (1966b) extended his previous work to the multi-product multi-facility case with facilities being in series or in parallel, under the same cost structure. Love (1973) was the first to present an   DP algorithm with constant inventory capacity, concave production and holding costs. Swoveland (1975) developed a solution algorithm for the case of a piecewise concave production and holding costs or backlogging costs. Moreover, Gupta and Brennan (1992) introduced an easy and robust alternative to the WW backorder algorithm, proposed by Webster (1989). Federgruen and Tzur (1993) proposed a simple  log  solution algorithm for the CSILSP with backlogging. Miller and Yang (1994) employed lagrangian decomposition and lagrangian relaxation to exploit the underlying network structure of the CMILSP with backlogging. The alternative plant location and shortest path reformulations for the ULSP with backlogging were presented by Pocuhet and Wolsey (1988). Recently, Chu and Chu (2007) developed a polynomial algorithm for the CSILSP with bounded inventory and backlogging or outsourcing.  
	2.2.2.2    Lot sizing models incorporating setup times and/or overtime
	In most practical situations, a setup is incurred whenever the manufacturing process switches between two different products. This setup consumes partial capacity and hence it needs to be explicitly accounted for in the mathematical model. The Silver-Meal lot sizing heuristic for single item problems was extended to the case of regular and overtime production capacities by Dixon et al. (1983). Also, Özdamar and Bozyel (2000) extended the latter work to the case of CMILSP with overtime decisions, and presented several meta-heuristics to solve the problem. Starting from an initial lot-for-lot approach, Trigeiro (1989) developed a heuristic algorithm for the CLSP with setup times that is also based on the Silver-Meal heuristic. Trigeiro et al. (1989) and Hindi et al. (2003) considered the CMILSP with setup times and obtained a lower bound on the value of the objective function by Lagrangian relaxation with subgradient optimization. The polyhedral structure and valid inequalities of the single period relaxation for the CMILSP with setup times are also presented in Miller (2003a,b). Jans and Degraeve (2004) start with the network formulation to come up with improved lower bounds for the problem. In a recent paper, Absi and Kedad-Sidhoum (2008) addressed a more generalized version of the CMILSP with setup times in which the demand can be totally or partially lost. 
	2.2.2.3   Lot sizing models with product substitution
	Some products, such as integrated circuits and steel bars, are produced in different grades with varying performance characteristics. In such a situation, the manufacturer may occasionally choose to downgrade a product instead of backordering the demand for a similar product with the lower grade. The term “downgrading” has been previously established in the literature, and it refers to instances where class   product is used to satisfy the excess demand for that of class  , where   (i.e., product j has a better quality). For example, Bitran and Dasu (1992) presented the case of Semiconductor industry and called the demand substitution structure where a higher quality chip satisfies the demand for the lower one “downgrading”. For the same industry, Bassok et al. (1999) addressed this type of substitution structure and called it “downward substitution”. In general, the issue of demand substitution has been considered in a variety of contexts for traditional production planning and the available literature could be broadly classified into three streams of work, as pointed out by Rajaram and Tang (2001). 
	However, most papers concentrate on the substitution problem in the context of single period models (Li et al. 2007). Balakrishnan and Geunes (2000) considered the material requirement planning problem with substitutions in a multi-period horizon and derived a DP algorithm that obtains the production and substitution quantities in each period. Li et al. (2006, 2007) dealt with the DLSP in the context of a hybrid manufacturing/remanufacturing system with product substitution. In their analysis, a new product is offered in place of a remanufactured one when there is a remanufactured product shortage. They developed a DP algorithm for the uncapaciatetd case, and a genetic algorithm for the capacitated one. 
	Most of the studies on Lot-sizing models assume that all problem parameters are known with a high level of confidence. However, this is not always the case in reality since many uncertainties are involved. Although accounting for such uncertainties poses as an important issue, few publications have dealt with the DLSP in a fuzzy sense. Lee et al. (1990) incorporated fuzzy demand into the part-period balancing heuristic. They also (1991) compared the performance of three lot sizing algorithms when demand is fuzzy. Fung et al. (2003) solved the more general aggregate production planning problem with fuzzy demand and fuzzy capacity. At last, Pai (2003) made use of the fuzzy set theory to solve the CLSP with fuzzy capacity. 
	2.3   General production planning literature in steel plants 
	In spite of the significance of steel industry, planning and scheduling problems in iron and steel production have not drawn as wide attention of the production and operations management researchers as many other industries such as metal cutting and electronics industry (Tang et al. 2001). As pointed out by Dutta and Fourer (2004), very little work has been done in the area of inventory control, manufacturing control and multi-period linear programming modeling in the steel industry. Since this thesis deals with optimizing the product mix in a steel mill as explained in more details in Chapter 3, the review focuses on the related work with a glimpse of other issues discussed in the literature.   
	The first attempt towards formulating the production process at a steel plant as a linear program was made by Fabian (1958) where he developed an integrated linear programming model for iron making, steel making and rolling operations. This work was later extended by Lawrence and Flowerdew (1963) where an economic model for production planning was developed. The authors stressed on the system approach through proposing a qualitative framework for the whole steel plant rather than individual processes. For the blending problem, Fabian (1967) proposed a cost minimization model that can simultaneously determine: optimal raw material purchasing policies, optimal raw materials inventory levels, least cost blend of raw materials, optimal furnace scheduling, long-range production plan and optimal maintenance plan. Westerberg et al. (1977) presented the case of a Swedish steel mill that uses up to 15 different types of scrap and alloys which are melted together to produce stainless steel finished products. The problem was formulated as a traditional blending model with the objective of minimizing cost subject to weight and metallurgical composition restrictions. 
	The steel industry has also been investigated from an investment planning point of view. Kendrick et al. (1984) presented three mathematical models for investments analysis in the steel industry, two of which are static models formulated as linear programs and the third is a dynamic one formulated as a mixed-integer program. Anandaligam (1987) made use of stochastic programming to plan for investments in environments where demand projections and technological coefficients are not known with certainty. 
	The Development of a database for generic mathematical programs was achieved by Fourer (1997). The model could be utilized by any steel plant to fit its operations simply by supplying its own data. Based on Fourer’s work, Hung (1991) studied the importance of inventories and the linkage between the time periods in a plate mill. The complicated steel production process was represented by a network composed of facility nodes, material nodes and material flow arcs, and a profit maximization linear program was formulated based on the network representation. 
	With the increasing steel products variety, it becomes increasingly important for steel manufacturers to adopt new strategies towards improving the service level and reducing the service time. Sharma and Sinha (1991) discussed the various issues affecting the choice of an optimum product mix in a steel plant, and described an optimization model for determining such mix. The network approach was used by Sashidhar and Achray (1991) to deal with the problem of production planning at a steel mill with the objective of maximizing capacity utilization. In their work, production is planned according to customers’ priorities, where different customers are assigned different priorities. Denton et al. (2003) developed a decision support system that allows inventory planners to analyze various scenarios, and identify which slabs shall be produced for make-to-stock (MTS). In a recent paper, Kerkkanen (2007) established a new inventory policy in order to enable a comparison between a make-to-order (MTO) system and a hybrid MTO/MTS system. He presented the case of a small MTO steel mill that is considering whether it would be profitable and feasible to make some semi-finished products to stock. Based on the input-output concept, Li and Shang (2001) developed a production planning model for a large steel corporation in China. The hierarchical production planning problem in a make-to-order (MTO) steel fabrication plant was addressed by Neureuther et al. (2004). They presented linear programming models towards obtaining the aggregate production plan and then disaggregating it into MPS for the end-items.
	 Unlike general production scheduling in other industries, iron and steel production scheduling problems have to meet specific requirements related to material continuity, processing times at various production stages, transportation and waiting times between operations. Scheduling production at different stages of steel manufacturing has been studied in the literature. Examples include Vonderembse and Haessler (1982), Jacobs et al. (1988), Boukas et al. (1990), Diaz et al. (1991), Assaf et al. (1997), Box and Herbe (1988) and Tang and Liu (2007). As pointed out by Cowling and Rezig (2000), Scheduling of the continuous caster is governed by the production push of liquid steel, which must be cast as it arrives, whereas hot strip mill scheduling is governed principally by the production pull of customer orders for coils of steel. The short term scheduling problem for each process considered in isolation is itself difficult, containing a wealth of NP-hard packing, sequencing and scheduling problems (Garey and Johnson 1979).   
	Several attempts have been made towards scheduling operations at steel mills and continuous casting machines (CCM) separately. The steel mill case was investigated by Redwine and Wismer (1974), Arizono et al. (1991) and Lopez et al. (1998). On the other hand, optimizing the operations at a CCM is of great importance as a CCM can be used to eliminate a number of processing steps associated with the traditional ingot/bloom based production process. Vasko and Friedel (1982) proposed a DP formulation which maximizes the case bloom tonnage that can be processed through a finishing mill. Lally et al. (1987) constructed a mixed-integer linear programming model to the problem of caster scheduling, where steel is being cast on a continuous basis. However, the model did not incorporate all the complexities of a real continuous caster. Tang et al. (2000) presented a more sophisticated nonlinear model based on actual production situations considering both punctual delivery and continuity of the production operation. The model is in line with the idea of just-in-time (JIT) production and provides a way to overcome machine conflicts. Zanoni and Zavanella (2005) established a linear programming model which gives the optimal production sequence of the billets, ordered by the customers, while taking into account the limitations in warehouse space availability. The study focuses on the optimization of the production schedule of a CCM, through determining the quality and dimensions of the billets to be produced such that the total cost of holding, production, and penalty (due to late deliveries) is minimized.       
	Strategic planning in the steel industry plays an important role in determining a company’s ability to survive in today’s competitive market. As noted by Denton et al. (2003), the steel industry has received a great deal of attention in the field of strategy and operations research, because of the heavy pressure from worldwide competition. The earliest work along this line of research was conducted by Bielefeld et al. (1986) and Sinha et al. (1995). Chen and Wang (1997) developed a strategic linear programming model for a steel plant from a supply chain perspective. Thus, the model seeks the optimal production plan, raw material supply and finished product distribution. However, the optimal solution of the problem is found with a reduced number of variables and heuristics are not presented for a more realistic solution (Zanoni and Zavanella 2005). Singer and Donoso (2006) showed how a mathematical programming model that can assist in strategic decision-making by forecasting the results of possible actions. The model relies on Activity Based Costing (ABC) for calculating unit product cost, and on dynamic Activity Based Management (ABM) for assessing the feasibility of production plans. A decision support system for strategic and operational planning for process industries was developed by Dutta and Fourer (2004). 
	 However, except for the work of Fourer (1997), Hung (1991), Dutta and Fourer (2004) and Singer and Donoso (2006), most other articles presented a one shot model (single period) ignoring the dynamicity nature of the problem in the real life context. The time varying demand, purchasing and selling prices necessitate treating the production planning problem in a steel plant as a multi-period model. Depending on the specific problem context, the use of the model and the planning horizon, a period could be an hour, a day, a month or even a year. This research presents multi-period, multi-input and multi-output production planning models in which the dynamic nature of the operating environment is taken into account. This represents one of the potential areas for future research explicitly stated in Dutta and Fourer (2004): “Simultaneous optimization of product-mix, inventory, and transportation problems over multiple periods”.  

	PART-I: Problem Definition and Mathematical Modeling under Deterministic Conditions 
	3.1    Introduction 
	 In reality, the high cost figures associated with the construction and operation of steel plants necessitate a periodic revision of the production technologies employed as well as continuously seeking the best managerial practices to handle the rapid increase in product variety. The steel industry is considered to be crucial for many countries’ economic competitiveness especially in today’s environment which is characterized by lowered barriers to market entry and constantly changing customers’ preferences. Despite the great significance of the steel rolling industry in particular and the ample uses of its end products in every nation’s daily life, it seems that researchers have generally overlooked the importance of developing optimized production plans that take into account the practical aspects distinguishing this industry from all other industries. 
	This chapter starts by introducing the manufacturing process at a typical medium-sized steel mill producing round shaped steel bars, which stands as an essential raw material for various construction projects. Since a well defined problem represents a key milestone towards obtaining its solution, the distinguishing features and the technological constraints associated with manufacturing process are clearly identified. The production planning problem under deterministic demand conditions is then formulated using the well-established mathematical programming techniques. The objective of the model is to study the combined effect of several interrelated factors that jointly affect the operations and the production related decisions at the steel mill under consideration. The properties of the presented mathematical model are discussed along with the complicating aspects pertaining to the necessity of developing efficient solution algorithms for such model. 
	3.2   The manufacturing process
	 The problem at hand concerns the production of reinforced round steel bars (rebars) from an externally supplied raw material, which is steel billets having a square cross-sectional area. The steel billets (bars) are purchased (produced) in two different steel grades (grade 40 and 60) and have several dimensions that are the same for both grades (Tables 3.1 and 3.2). Due to technical considerations regarding yield and scrap rate, there exist some restrictions on the possible billet-rebar combinations. For instance, a billet of dimensions      (index   in Table 3.1) is not to be used as an input material in the manufacturing of a   diameter steel bar. The two grades differ mainly in the chemical composition, metallurgical structure and carbon content, which eventually lead to varying mechanical properties and performance. In particular, grade 60 has higher values for yield strength and ultimate tensile strength ( , ) as compared to those for grade 40 ( , ). As such, grade 60 steel is considered to be of better quality and is thus sold (or procured) at a higher price. Clearly, a steel bar of a certain grade can only be produced from a billet of that particular grade. 

	  
	Figure 3.1 above shows a graphical display of the different manufacturing operations involved in the production of the steel bars. The production process starts by placing a batch of billets, with uniform dimensions, into the furnace where they are heated up to 1200°C. The furnace has a fixed capacity of 60 tons/hour and the number of billets placed at once in the furnace depends on the size (dimension) of those billets. Clearly, the smaller the size, the more billets can be accommodated within the furnace. The heated billets are then taken out of the furnace to the rolling mill where the hot rolling operation takes place followed by the bar rolling operation. After rolling the billets into long bars of the desired cross-sectional area and a standard length, the bars are pushed on the cooling bed to allow the product to cool down. The next step is to bind the bundle of products and label the bundle. At last, the bars are either stored in the warehouse or shipped directly to the customer. In fact, since the various products follow the same routing (i.e., same sequence of operations), the bar rolling industry resembles a flowshop production environment. 
	The processing times depend on which rebar is being produced from which billet (i.e. on the dimensions of both). This is because a billet may be required to pass through several rolling stands depending on the desired diameter of the rebar to be produced. For instance, it takes longer rolling time to produce a steel bar of diameter 10 mm from a certain billet, than to produce a bar of diameter 32 mm using the same billet. In addition, the higher the number of rolling passes that a billet has to go through, the more return scrap is expected. In any case, the rolling capacity is clearly bounded by the capacity of the furnace (60 tons/hour) which feeds the rolling operation. However, billets of bigger dimensions are cheaper to buy, and bars of smaller diameters are sold to the customer at a more expensive price. This may justify the production of a small diameter rebar from a bigger dimension billet in spite of excess processing time and higher chances of scrap produced. The operations at the steel mill are characterized by the following features: 
	(1) Setup time: One of the most distinguishing and complicating features of steel mills operation is the setup time structure. The setup activities include those associated with the furnace, such as placing the new batch of billets inside and adjusting the settings, as well as those activities carried out on the rest of the production line, such as rolls and stands changing, guides and grooves changing, runner way and time billet changing, and speed reference adjustments. Hence, when the setup is carried out between batches, the setup time depends on the raw material (as the number of billets placed in the furnace depends on the size) and on the finished product (as the rollers, grooves and speed have to be adjusted according to the rebar to be produced). Whenever the term “minor setup” is quoted in this thesis, it refers to this type of setup (i.e., the between batches setup).  
	On the other hand, when the setup is carried out at the beginning of the day, it is time dependent rather than product dependent. To achieve a longer service life for the refractory, which is an insulation material on the inside of the furnace, an upper limit on the rate of furnace temperature increase per hour is imposed. Moreover, the refractory also sets a minimum allowable value for the furnace temperature at all times indicating that some burners have to be left functioning even after production is complete. Hence, at the beginning of each business day, the furnace temperature has to be elevated gradually to 1200°C before starting production. This temperature elevation time depends mainly on the idle time since the production of the last batch in the previous day. For example, if the production line runs for 20 hours per day, this means the furnace is stopped for 4 hours, and hence it will take almost 2 hours to heat it back to 1200°C at the beginning of the next day. On the other hand, a 10 working hours per day means longer stoppage time for the furnace, which would take 5 hours to heat the furnace back to the same temperature. Clearly, a solid mathematical relationship between the idle time at the end of period   and the setup time at the beginning of period   needs to be established prior to developing a mathematical model for the production planning problem at hand. In the remainder of this thesis, a setup conducted at the beginning of the day is referred to as “major setup”. It should be noted that such setup time structure is frequently encountered in other industries such as metal rolling (other than steel) and plastics manufacturing in which the product undergoes a heat treatment phase during the production process. 
	(2) Product substitution: In practice, the steel mill has the option to:
	(a) Fulfill the unmet portion of the demand for an out-of-stock lower grade rebar (i.e., grade 40) with a same sized rebar of the higher grade (i.e., grade 60) in the same time period as to meet the promised delivery schedule. This substitution scenario yields:
	- Increased customer expectation for future shipments. 
	- Lost profit (due to selling a higher quality product at the price of the lower quality one). 
	(b) Backlog and match the order with the delivery at a later period in time. In this case,   
	- A backlogging cost is incurred. 
	- Might eventually lead to the loss of customer goodwill (once this option is adopted repeatedly with the same customer).      
	(3) Overtime: As the major setup time depends on the working hours, it would make sense for the company to consider the option of working overtime hours especially in periods of excess demand. Although it costs more to produce on overtime basis, it might be economical to do so as this avoids the backlogging cost and reduces the furnace setup time at the beginning of the next business day.
	(4) Yield: The number of steel bars produced from the same billet is a function of the dimensions of both the billet and the rebar to be produced. For instance, a billet of dimension index ( ) would give 17 round bars of 16 mm diameter and 60 m long each. Alternatively, a billet that is 8 m long and of the same cross sectional area ( ) would give 11 bars of 16 mm diameter and 60 m long each. Moreover, the manufacturing process in the steel industry, like all other industries, is not a perfect one in the sense that it produces a portion of defective items. However, the resulting nonconforming items can be sold as scrap steel to other manufacturers. The percentage of scrap produced depends on the billet-rebar combination. 
	(5) Time dependent raw material purchasing cost and finished product selling prices: In reality, the market prices of the reinforced steel bars as well as the billets have been subjected to drastic variations in the last decade or so. Hence, such variation in prices has to be taken into consideration to better reflect the reality. In fact, to serve a broader range of planning purposes, the proposed mathematical formulation (Section 3.4) assumes that all cost parameters are time dependent.  
	3.3   Problem description 
	 In this section, a realistic, multi-input, multi-output and multi-time period production planning problem encountered at a medium-sized steel mill is considered for analysis. For an industry characterized by significant operating costs and high energy consumption, the optimization of production and inventory related decisions is of paramount importance. Typically, product differentiation in the rolling operation increases as the steel billets proceed on their journey through the rolling stands towards the finished steel bars. As such, the billet-rebar combination not only determines to a great extent the number of rolling passes that the product has to go through, and hence the energy consumption, but also the quantity of both types of materials to be kept in stock, hence the procurement, inventory holding and opportunity costs.
	The problem at hand is a short term planning problem in which production is planned at the master production schedule (MPS) level. The goal is to determine the daily/weekly production lot sizes for the various end items (rebars) such that customers’ demands over the planning horizon are fulfilled at a minimal total cost. In particular, there are four types of decisions that the decision maker seeks to optimize: (1) which products to produce in each period; (2) how much of each product shall be produced; (3) the allocation of the products to satisfy the customers’ demand (since demand substitution is allowed); and (4) the raw-material finished-product combination (i.e. which raw material shall be used to produce which product). Having established the problem statement, we next stipulate the assumptions under which the mathematical model in the next section is developed:   
	(1) Batch production: In accordance with the economies of scale and to utilize the available capacity to its fullest, the production takes place in batches of size 60 tons each (i.e., the furnace capacity). 
	(2) Batch uniformity: This applies to both the billets placed at once in the furnace and to the steel bars produced from the same batch. The usage of mixed sized billets or the production of mixed sized bars is not allowed from within the same batch.  
	(3) Deterministic demand: The steel industry is characterized by having customers that are in most cases long term loyal customers (Chen and Wang 1997, Kerkkänen 2007). Although, the model developed in this chapter addresses the problem under deterministic demand conditions, this assumption is to be relaxed in subsequent chapters to take into account situations involving highly volatile demand.      
	(4) One way substitutability: This term was coined by Rajaram and Tang (2001) which, in the context of our problem, refers to the case where a grade 60 steel bar of a certain diameter could be used to fulfil a portion of the unmet demand for a similar steel bar of grade 40, given that such substitution is suitable for the intended engineering application, but not the other way around. This "downgrading" is motivated by a variety of reasons, for example, to prevent customer dissatisfaction, to reduce setup costs, or to reduce inventory costs (Bitran and Dasu 1992).   
	3.4   Mathematical formulation of the problem 
	For many decades, the tools of operations research have been successfully employed towards the modeling and solution of real world systems leading to a significant increase in the productivity of various countries’ economies. This section employs the techniques of mathematical programming in order to optimize the operations at the steel mill under the previously stipulated assumptions. We first start by establishing the relationship between the idle time at the end of period   and the major setup time in period   since such a relation is used as input to the mathematical model. As a matter of fact, the dependent variable ( ), which denotes the major setup time in this case, is directly proportional to the independent variable ( ) denoting the idle time, as can be seen in Figure 3.2. 
	The plot suggests that the relation is approximately linear where the general equation for the best fitted line using simple regression analysis is given by: 
	                                                                     (3.1)
	 
	   Figure 3.2: The linear relation as obtained from regression analysis
	 Clearly,   is the slop of the fitted line and   is the  intercept. Since the unlikely event of a continuous production in period   (i.e., a zero idle time) indicates a zero major setup time in period  , the value of   is set to zero. Regression analysis utilizes the method of least squared errors (LSE) in order to obtain the optimized value of the slope, which yields a value for   using the MINITAB software after setting  .  
	 We next present the mathematical formulation for the production planning problem at hand. This operational model establishes the raw material purchasing quantities, regular time and overtime based production quantities, inventory levels, backorder and substitution quantities for each product in each time period such that the total cost over the planning horizon is minimized. In developing the mathematical model, quantities of materials, whether billets or rebars, are measured in tons and the production rate is measured in tons per hour. An index, whether   for raw material (RM) or   for finished product (FP), refers to the same dimension in both steel grades (SG). This notation greatly assists in formulating the problem as a mathematical model. 
	 The model seeks to minimize the total costs incurred in addition to the penalties resulting from downward substitution. The total cost is composed of RM ordering, RM purchasing, RM inventory holding, setup, regular time production, overtime production, FP holding and backorder costs. The last term in the objective function is an additional penalty term which ensures that demand substitution is further discouraged since in this case the higher grade steel is sold at the price of the lower quality one entailing a lost profit to the company. The objective function along with the set of constraints involved is set out as follows:    
	               Figure 3.3: Inventory balance for both grades in a particular time period 
	3.5   Properties of the Mathematical Model 

	Application of the Solution Methodologies to the Proposed Mathematical Model 
	4.1   Introduction 
	This chapter seeks to attain the solution to the production planning model through the implementation and/or customization of the solution techniques discussed in the appendix. In general, solving the equivalent MILP resulting from the linearization approaches directly using the MIP solver or obtaining the solution to the bilinear model via branch-and-bound (B&B) algorithms yield an optimal solution unless the solver is stopped after a pre-specified length of run time where the solution is considered satisfactory in this case. Benders decomposition (BD) approach, on the other hand, does not necessarily render an optimal solution depending on the value set for the accepted tolerance. We start by presenting how a generic linearization approach applies to the model at hand followed by the development of a modified B&B algorithm and lastly a hybrid linearization-BD approach. In this chapter, the solutions obtained to the model at hand via these solution techniques are the optimal ones. The performance of three solution algorithms is tested under the same set of input parameters for several problem instances of varying complexities.       
	4.2    Linearization techniques  
	4.3    Modified Branch-and-Bound algorithm  
	4.4    Hybrid Linearization-Benders decomposition approach 
	4.5    Computational analysis    
	4.5.1    A numerical example     
	4.5.2    Further computational experiments      
	4.6    Summary    

	PART-II: Rolling Horizon Approximations for Production Planning with Demand Volatility  
	5.1   Introduction 
	 The analysis presented so far has dealt with the production planning problem at steel mills considering static or deterministic demand conditions. Although steel manufacturers mostly deal with long term loyal customers (Chen and Wang 1997, Kerkkänen 2007), the end customers’ demand may differ from a predetermined forecasted value especially in periods of high demand. Needless to say, such demand variations have a major impact on the production and inventory related decisions and the incorporation of these uncertainties into the planning process is of paramount importance. As pointed out by Mula et al. (2006), models for production planning which do not recognize the uncertainty can be expected to generate inferior planning decisions as compared to models that explicitly account for uncertainty. 
	 This chapter addresses the dynamic nature of the operating environment through implementing the developed production plan on a rolling horizon basis. As such, the model developed in Chapter 3 is adjusted in order to allow for the incorporation of demand forecasts and confirmed customers’ orders, where both quantities are updated every period as new information becomes available. For reasons of efficiency and practicality, rolling horizon decision making is a common business practice in a dynamic environment (Chand et al. 2002). However, rolling horizon schedules suggest solving the mathematical model at hand repeatedly at the beginning of each period, a practice that requires substantial amount of computational efforts especially for large size problems. Hence, it is the objective of this chapter to introduce approximate models that, once implemented on a rolling horizon basis, yield reduced problem dimensionality with significant savings in computational time while still providing practical proxies for the exact model.   
	5.2    Decision making under uncertainty  
	 In reality, industrial firms operate in a constantly changing environment that causes production planning related problems, such as the one at hand, to be dynamic in nature. Essentially, the instability associated with such problems is caused by external factors (e.g. supplier’s late delivery and customer’s demand volatility) as well as internal ones (e.g. changing capacity and higher scrap ratio produced). Hence, in most practical situations, the underlying assumptions of standard mathematical programming concerning certainty is often unsatisfied as the estimation of model parameters is usually reached at through anticipating future events. The exact value of such parameters will become known only after the solution has been chosen and implemented (Hillier and Lieberman 2005).      
	 Generally speaking, when it comes to mathematical modeling, there are several ways to account for the uncertainties associated with the problem parameters of interest, as seen in Figure 5.1. The first and customary practice is to assume that all parameters are known a priori and seek the solution to the mathematical model under the assumed values. Having the optimal solution at hand, a post optimality analysis is carried out in order to generate a series of improving approximations to the ideal course of action as well as identify the sensitive parameters, those whose values cannot be altered without changing the optimal solution. However, Hillier and Lieberman (2005) note that if some of the problem parameters have large variance, this approach of dealing with uncertainty is insufficient.
	 
	  
	Figure 5.1: Approaches to incorporate uncertainty in mathematical models
	 For multi-period planning models, the dynamic implementation of the mathematical model on a rolling horizon basis is a more viable alternative especially when there is a high degree of uncertainty involved. This approach calls for periodically updating the model parameters as the horizon rolls forward and new information becomes available, and then re-solving the model with the updated values. For complex and large scale models, decision makers would likely prefer a procedure that facilitates the attainment of quick solutions rather than the repetitive solution of the model which might require extensive computational efforts.  
	 The last two approaches, namely stochastic programming and fuzzy mathematical programming are more appropriate for situations involving a high degree of uncertainty. The former approach accounts explicitly for the uncertainty through treating some or all problem parameters as random variables that are modeled by discrete or continuous probability distributions. The underlying assumption here is the existence of reliable past data that can be used to derive the probability distributions based on some statistical techniques.      
	 On the other hand, fuzzy mathematical programming stands out as the most convenient alternative in the absence of historical data or when these data is no longer reliable. This approach allows the decision makers to incorporate their intuition and subjective managerial judgments into the mathematical model through the use of fuzzy set theory (FST). In addition, qualitative expressions can now be modeled using the concept of possibility distribution (e.g. Dubois and Prade 1994). Broadly speaking, fuzzy mathematical programming encompasses flexible mathematical programming and possibilistic programming, where the decision of which technique to adopt depends on the nature of the existent fuzziness in the model.   
	 This chapter tackles the uncertainties associated mainly with end customers’ demand through rolling horizon schedules but with an added twist. We leave out the application of the alternative fuzzy approach to subsequent chapters. 
	5.3     The general rolling horizon practice  
	 The implementation of production plans on a rolling horizon basis is a widely accepted practice as it allows for the dynamic nature associated with practical problems to be accounted for. According to Clark (2005), a schedule that is optimal for forecast demand over a given horizon will almost certainly be sub-optimal when implemented for the actually occurring demand. Essentially, for any rolling horizon schedule, there is a number of design factors that are particularly important. These are: forecast error, lot-sizing rule, length of replanning interval or frequency of replanning, and the choice of forecast window length. However, it is not our focus in this research to analyze these factors since their impact, both solely and combined, on the planning process has been amply investigated in the literature (e.g. Sethi and Sorger 1991, Lin and Krajewski 1992, Venkataraman 1996, Venkataraman and Nathan 1999, and Venkataraman and D’itri 2001). For instance, Lin and Krajewski (1992) concluded that the choice of lot-size rule under condition of demand uncertainty may not be as important as other aspects of MPS system design. Baker (1977) carried out an early experimental study concerning the effectiveness of rolling horizon decisions and suggested, with exceptions however, that such schedules are quite efficient. The rolling horizon outcomes can be very different from the static ones (Clark and Clark 2000). Drexel and Kimms (1997) note that little research has been carried out into the capacitated lot-sizing problem on a rolling horizon basis. Sahin et al. (2008) pointed out that although rolling schedules are commonly applied in the industry, they still yield heuristic long-term solutions even if optimal production schedules are determined at every replanning iteration. 
	 In general, At the beginning of the first period, the typical practice under a rolling horizon policy calls for establishing the MPS for a certain number of future time periods, known as the planning horizon, based on the currently available relevant information (e.g. demand forecasts, available capacity, inventory and backlog records, etc.). However, only the current period’s decisions actually become firm and are implemented. At the beginning of the second period, the horizon is rolled forward and the MPS is updated as more reliable data about the future becomes available. Again, only the second period’s decisions are actually implemented and the process continues. In principle, rolling schedules provide the decisions to be carried out over a number of time periods where only the most immediate decisions are implemented before the multi-period model is re-run. It should be noted, however, that the update process (i.e. model re-running) does not necessarily take place every time period, in which case the number of periods for which the decisions are actually implemented is referred to as the replanning frequency. As pointed out by Venkataraman and D’itri (2001), rolling horizon schedules are considered to be more efficient as the methodology restricts implementation to the immediate period for which demand information is least subject to error.
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	 This section modifies the original mathematical model presented in Chapter 3 to consider demand volatility through the incorporation of demand forecasts as well as confirmed customers’ orders in the planning decisions. Clearly, steel bars represent a fundamental and a much needed merchandise that constitute an essential material for mega and micro construction projects alike. This gives rise to a common phenomenon encountered frequently in the steel rolling industry, which is the so called “rush orders”. In particular, the steel mill under consideration constantly faces high levels of demand volatility in the form of last minute changes in confirmed customers’ orders. Such demand instability is mainly attributed to (1) An alteration in the previously agreed upon delivery dates as requested by the long-term loyal customers due to a construction project being ahead or behind schedule, and/or (2) Newly arriving orders usually placed by customers requiring smaller amounts in which case, from a customer’s perspective, such orders need not be placed early ahead of time. Hence, this dynamic nature of the master production scheduling problem at hand is better captured via the use of rolling horizon schedules. 
	     To develop an implementable MPS, the production quantities have to be adjusted for inventory, customer orders, demand forecasts, and production capacity. Let    denote the forecasted demand for FP   of steel grade   in time period  , and     denote confirmed customers’ orders for FP   of steel grade   to be delivered in period  . The modified MIBLP is then given as follows: 
	 Due to the uncertainties involved, solving the exact model at the beginning of the first period and freezing the resulting MPS for the entire planning horizon (i.e., implementing the MPS all the way) will most certainly produce poor quality solutions. Alternatively, the decision maker is better off implementing only the first period’s decisions and then rolling the horizon forward before implementing the second period’s decisions in light of the newly available data, and so on. Under the proposed scenario, the decisions associated with the most immediate time period are made based on the confirmed customers’ orders. On the other hand, for the unimplemented portion of the cycle, production is planned according to the maximum of forecasted demand and confirmed orders, where both of these quantities are updated periodically as the horizon rolls forward. Such decision making criterion for a planning horizon of   is depicted in Figure 5.2, where   and   denote demand forecasts and confirmed orders at the end of period  , respectively. The dashed line box in the figure indicates the implemented master production schedule. In this policy, changes in the actual rolled bars selling prices and billets purchasing prices are also accounted for as the horizon rolls forward.  
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	 The material presented in this appendix is devoted to studying a special class of mathematical programs referred to as mixed-integer bilinear programming problems (MIBLP) or Mixed 0-1 Quadratic programs. This type of problems arises in various practical situations such as production-distribution planning (Vaish 1974), location-allocation modeling (Sherali and Adams 1984), supply chain reconfiguration and supplier selection (Osman and Demirli 2010) among many others. For instance, while the continuous variables in these models may establish the quantities shipped between designated origin-destination points, the binary variables may signify the decisions whether or not to construct intermediate service or processing facilities on a transshipment network. In general, MIBLP problems may be viewed as a generalization of the fixed-charge location or flow problem (Salkin 1975). 
	 The difficulties associated with directly solving MIBLP problems using optimization packages bring out the need for specifically tailored solution algorithms that can efficiently handle such models and exploit the special structure they possess. Fortunately, these models have been investigated in the literature and solution algorithms have been proposed. Throughout this appendix, three solution algorithms that can be applied, either directly or after some modification, to the solution of MIBLPs are presented in their general context. The application, or the customization, of these algorithms to the model developed in Chapter 3 was detailed in Chapter 4 of this thesis.  
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