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    Abstract 

 

 
Development of a sustainable method for the disposal of  

     chromated copper arsenate (CCA) treated wood 
 

 

 

Azita  H. Moghaddam, Ph.D. 

Concordia University, 2010     

 

 

Preserved wood is commonly found in solid waste. Among the different types of 

preserved wood, CCA wood has received much attention due to the scale of usage and its 

significant role in soil and water contamination after disposal. As the ash of CCA wood is 

hazardous, it cannot be burned, and the best available disposal method is thus landfilling. 

Leaching of the metals from disposed CCA wood in landfills pollutes the environment. 

To reduce the contamination of CCA,  treatment before landfilling is required. 

Nowadays, ethanol is seen as a promising source of energy. Lignocellulosic materials 

such as wood are resources for ethanol production. This research focuses on the 

possibility of producing ethanol from CCA wood. It suggests that production of ethanol  

will not only be a solution to the disposal  but will also  generate a clean fuel.  

 

 

The results showed the existence of copper, chromium and arsenic did not have a 

negative effect on the fermentation, and producing ethanol from CCA wood is feasible. 

The copper removed by sulfuric acid completely precipitated during the hydrolysis and 
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neutralization. In addition about 50% of the chromium (VI) and also 60% of the arsenic 

(V) were removed from the leachate by yeast during fermentation. 

  

TCLP tests of the hydrolyzed wood leached less than 4 ppm of arsenic while minimal 

amounts of chromium and copper remained in the hydrolyzed wood which makes 

landfilling of hydrolyzed wood acceptable. 

 

Baker's yeast behaves selectively by uptaking arsenic (V) and chromium (VI) but not 

arsenic (III) and chromium (III). There is competition between copper and chromium 

sorption  by yeast. The kinetic model for removal of copper and chromium is a zero order 

model while the appropriate model for uptaking arsenic by yeast is a first order model. 

The kinetic models confirm that there are different mechanisms of uptaking metals by 

yeast, a diffusion mechanism for removal arsenic and a surface adsorption mechanism for 

copper and chromium.  

 

As an overall conclusion of this study, using discarded CCA wood as the feed for ethanol 

production is a sustainable method for disposal of CCA treated wood. 
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CHAPTER ONE 

     INTRODUCTION 
 

1.1  BACKGROUND INFORMATION 

 

Wood is one of the most commonly used building materials in North America. Modern 

commercial forestry and sawmills mainly are providers of material for the building 

industry (Sloot et al., 1997). The Environmental Protection Agency (EPA) estimated that 

5.8% of 236,000 million kg of generated waste in 2003 was wood (U.S. EPA, Office of 

Solid Waste, 2006).  

 

Following wood removal from the forests, several types of deterioration by fungi and 

insects threaten the untreated wood and reduce the lifetime of the wood and the wood 

building materials. Chemicals are utilized to treat the wood to protect wood against 

bacterial, fungal, and insect attack. Chemical treatment has been practiced for centuries 

and is intended to enhance wood durability, and thereby increasing the life expectancy of 

wood in service. As an example, railroad cross ties that are used in North America would 

have an average life time of five years without treatment (Konasewich and Henning, 

1998), whereas the lifetime of most creosote-preserved wood is estimated to be 30 years 

(Webb, 1990).  In Florida, it has been found that up to 30% of the construction and 
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demolition (C&D) wood can be CCA-treated wood (Solo-Gabriele et al., 2003). The 

most utilized method of disposal used for treated wood is landfilling in U.S., Canada and 

Australia without any pretreatment. Countries such as Germany ban landfill disposal but 

the ash of treated incinerated wood can be hazardous since CCA concentrates in the ash 

(Solo-Gabriele et al., 2002) and in addition, proper air pollution equipment is required as 

toxic gases are produced during incineration (Iida et al., 2004). Some methods for the 

treatment of CCA treated wood are being developed such as thermochemical means as 

reviewed by Helsen and Van den Bulck (2005) and by biological treatment. 

 

One of the most problematic types of preserved wood in the United States as well as in 

Canada is CCA treated wood which is used in outdoor decks, playgrounds, and fences. 

CCA was favored for lumber treatment because it is inexpensive, leaves a dry, paintable 

surface, and binds to become relatively leach-resistant. However, there is increasing 

concern about potential environmental contamination from leaching of Cu, Cr and As 

from treated wood in service and from wood removed from service and placed in landfills 

in North America (Shalat et al., 2006). The life cycle of treated wood is estimated to be 

about 25 years and then the wood is discarded as waste (Illman and Highley, 1996). By 

1995, more than 90% of 67 million kg of utilized waterborne preservatives was CCA 

(Solo-Gabriele and Townsend, 1999). Despite this, the quantity of removed treated wood 

from service is estimated to increase to 16 million cubic meters by the year 2020 in the 

U.S. (Cooper, 1993). 
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Preserved wood is a common part of the solid waste (Tom, 2001). Today, municipal solid 

waste management has become an important part of environmental protection activities. 

In 2003 U.S. produced more than 236,000 million kg of municipal solid waste of which 

30% was recycled and the rest was disposed of by landfilling or composting (U.S. EPA, 

Office of Solid Waste 2006). In Canada, even though the population is less, the same 

problem exists. As there are some limitations for the types of wastes that can be recycled 

or combusted, landfilling is an important method for municipal and construction debris 

waste management (Ress et al., 1998). 

 

Since the ash of treated wood is hazardous, the best existing disposal method for used 

treated wood is landfilling. During rain, water penetrates into landfills and causes 

leaching of wood preservatives (copper, chromium and arsenic) from the disposed 

Chromated Copper Arsenate (CCA) treated wood. The leached metals can pollute ground 

and drinking water. As the leachate of treated wood in landfills is genotoxic and 

carcinogenic, the contaminated water is dangerous for human beings and animals. 

According to Moghaddam (2002) there is the risk of soil, water and environmental 

contamination by chromium, copper and arsenic, wherever the chromated copper arsenate 

treated wood is buried. Therefore, another method of disposal of treated wood other than 

landfilling and incineration could help to decrease its damage to the environment.  

 

Nowadays, ethanol is seen as a promising new source of energy and valuable substitute 

for gas, oil and gasoline. Lignocellulosic materials such as wood are resources for ethanol 

production. 
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This research will focus on the possibility of producing ethanol from CCA treated wood. 

It suggests that production of ethanol from CCA treated wood will not only be a solution 

to the disposal of CCA treated wood but also will generate a clean fuel as a source of 

energy. Uptake of chromium, copper and arsenic by yeast during ethanol production is 

another advantage of the proposed method. 

 

1.2  OBJECTIVES 

 

In the past decade most of the research about CCA wood was focused on proving that 

hazardous materials (especially arsenic) would be leached from CCA treated wood more 

than acceptable levels to force authorities to make regulations to limit the usage of this 

kind of wood and there is less research about the disposal of CCA treated wood. 

Landfilling is the general disposal method of CCA wood and in many places CCA treated 

wood is disposed along with the other demolished building materials in municipal 

landfills without any lining which causes the contamination of soil and ground water by 

arsenic, copper and chromium. The main goal of this study is to develop a sustainable 

method for the disposal of CCA treated wood by using the ethanol production process 

(including concentrated sulfuric acid hydrolysis and fermentation steps) prior to 

landfilling of CCA treated wood.   The objectives can be specified as to determine: 

 

� The effect of weathered wood and size of wood particles on leaching of metal 

during hydrolysis. 
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� The effect of metal type and concentration on yeast and the amount and the 

duration of ethanol production. 

� The leachability and management of the solid remains of wood  

� The mechanism of arsenic, copper and chromium sorption by yeast. 

 

1.3  THESIS ORGANIZATION 

 

Thesis includes 8 chapters: 

• Chapter One is the introduction to the problem and includes the problem 

definition, research objectives and the organization of the thesis 

• Chapter Two or 'Literature review' contains background information and most 

related previous studies are discussed in this chapter 

• Chapter Three includes the description of the materials, laboratory instruments 

and experimental procedures 

• Chapter Four is devoted to the results and discussion  

• Chapter Five includes  metal uptake and yeast growth models based on  the results 

• Chapter Six is a brief economical evaluation of ethanol production from CCA 

treated wood 

• Chapter Seven summarizes the conclusions of this study and states the 

contribution to knowledge  

• Chapter Eight suggests the directions for  future work  

• References are listed at the end followed by appendices   
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       CHAPTER TWO 

LITERATURE REVIEW 
 

 

2.1 WOOD 

 

2.1.1 WOOD STRUCTURE 

 

The three main structural components of trees are: 

(http://forestry.about.com/od/treephysiology/ss/part_of_tree.htm) 

 

� Roots, which gather water and mineral nutrients and provide a firm anchor for all 

the structure. 

� Crown including the leaves and small branches. 

� Bole or trunk. 

Wood is primarily composed of hollow, elongate, spindle-shaped cells that are arranged 

parallel to each other along the trunk of a tree. Wood cells are formed in the very thin 

cambium, between the bark and wood. Cells on the outside of the cambium form the 

phloem, or inner bark. Cells on the inside form the xylem, or wood. Many more xylem 

cells than phloem cells are formed (Miller, 1999). 
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A cross section of a tree (Figure 2.1) shows (from the outside to the center):  

• Bark, which may be divided into dead and living parts. The inner living part (B), 

which is thin, carries food from the leaves to the growing parts of the tree. And 

the outer dead part (A), whose thickness varies greatly with species and age of 

trees. 

• Cambium(C), which forms bark and wood cells. 

• Sapwood (D), which contains both living and dead tissue and carries sap from the 

roots to the leaves. 

• Heartwood (E), which usually consists of inactive cells. 

• Pith (F) at the center of tree stem, which is a small core of tissue. 

• Branches and twigs. 

• Wood rays (G), which are horizontally oriented tissues from pith toward bark, and 

connect the various layers for storage and transfer of food.  

    

         Figure 2.1: Cross section of white oak tree trunk 

(A) outer bark (B) inner bark (C) cambium (D) sapwood 

(E) heartwood (F) pith and(G) wood rays (Miller, 1999) 

 



 8 

 

In softwood (Figure 2.2), there are two main types of cells, tracheids and parenchyma. 

Tracheids are the main part of wood cells, oriented longitudinally with a length of 3-8 

mm. The parenchyma are the cells for storage of food (Miller, 1999).  

 

 

 

Figure 2.2: Typical softwood structure 

          (Howard and Manwiller, 1969. From Siau, Transport Process in Wood, 1984) 
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Hardwood is more complex than softwood. It consists of inactive cells that do not 

function in either water conduction or food storage. The main difference is that in 

hardwood the liquid transport through the vessels but in softwood, through the tracheids. 

The vessels are composed of short large diameter cells, one on top of another to make a 

longitudinal channel. Hardwood fibers function only as a support and do not conduct 

water (Miller, 1999). 

 

The wood cell wall is composed of two walls (Figure 2.3), the primary (P layer) and the 

secondary layer. The secondary layer made of three layers, S1, S2 and S3 (Butterfield 

and Meylan, 1980). As the S2 layer is the thickest layer with the highest percentage of 

lignin, and with respect to physical properties, the S2 layer is the most important layer 

(Tsoumis, 1992). 

                     

       Figure 2.3: Wood cell wall structure 

ML=middle lamella (mainly lignin); P= primary wall; 

S1=secondary wall; S2= secondary wall (main body); 

S3= tertiary wall. (Krassig, 1993) 
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2.1.2 CHEMICAL COMPOSITION OF THE WOOD CELL 

 

Dry wood consists of cellulose, lignin, hemi-celluloses and minor amounts (5% to 10%) 

of extractives (Miller, 1999). 

 

• Cellulose (Figure 2.4), the major component, is a linear crystalline polymer of 

glucose, which constitutes approximately 50% of wood substance by weight. It is 

present as microfibrils of extended cellulose chains. 

 

               

      

           Figure 2.4: Cellulose structure 

              

Lignin is a three-dimensional phenylpropanol polymer, which is often called the 

cementing agent that binds individual cells together. About 23% to 33% of the wood 

substance in softwoods and 16% to 25% in hardwoods is lignin. It is concentrated 

towards the outside of the cells and between cells.  
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The hemicelluloses are branched; low-molecular-weight polymers composed of several 

different kinds of pentose and hexose sugar monomers. The relative amounts of these 

sugars are related to the species. Extractives are a wide variety of small molecules in 

wood, which are soluble in organic solvents (Miller, 1999). 

 

2.1.3 CCA TREATED WOOD 

 

Chromated copper arsenate (CCA) is the major wood preservative, which is used in 

United States as well as in Canada. CCA is favored for lumber treatment because it is 

inexpensive, leaves a dry, paintable surface, and binds to become relatively leach-

resistant. However, there is increasing concern about potential environmental 

contamination from leaching of Cu, Cr and As from treated wood in service and from 

wood removed from service and placed in landfills.  

 

To preserve the wood, it is necessary for the chemicals to penetrate into wood deeply 

(several centimeters). A pressure treatment plant (Figure 2.5) is used to achieve such 

penetration followed by preservative fixation within wood. There are several factors that 

affect the penetration of preservatives into wood such as (Morris, 1996): 

• The applied treatment process 

• Wood permeability  

• Heartwood /sapwood ratio 

• Wood moisture content 

• Wood quality 
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Depending on the above-mentioned factors, the preservative can either penetrate evenly 

into the heartwood such as Scots pine or can only be restricted to the surface like Norway 

spruce (Morris, 1996). 

 

The chemical, chromated copper arsenate, is normally purchased as a premixed 

concentrate of 50% to 65% then stored in tanks and diluted with water to a 1.5 % to 4 % 

strength working solution. Diluted solution is then applied to the wood in pressure 

cylinders (Konasewich and Henning, 1998). The distribution of chemicals in the cell wall 

matrix, which affects the effectiveness of preservation, depends on wood species, cation 

exchange reactions and treating solution pH (Cooper, 1988). 

 

The American Wood Preservers’ Association (AWPA) specifies three formulations for 

CCA (Table 2.1). The differences of the A, B and C types are in the relative proportions 

(oxide basis) of chromium, copper, and arsenic. As CCA-C offers the best combination of 

performance and leach resistance, most of the produced CCA wood is treated with type C 

of CCA (Tom, 2001). The use of CCA–B is currently confined to field and remedial 

treatments, and relatively few treaters use CCA-A. 

 

All the components of CCA have important roles in preservative properties. Fixation of 

CCA is a part of the complex reduction reactions of chromium from the hexavalent to  
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Figure 2.5: Potential chemical releases from CCA pressure treating plants 

Ref. (Konasewich and Henning, 1998) 
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Figure 2.5: Potential chemical release from CCA pressure treating plants 

(Konasewich and Henning, 1998) 
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 trivalent valence state. These reactions cause the insolubility of CCA in the wood, which 

resists leaching and provides lengthy service, even when the wood is in contact with 

ground. 

 

Table 2.1: Composition of three CCA formulations as specified by AWPA 

Standards 

 
Type A (%) Type B (%) Type C (%) 

Component 

Minimum Maximum Minimum Maximum Minimum Maximum 

Cr as CrO 3 59.4 69.3 33 38 44.5 50.5 

Cu as CuO 16 20.9 18 22 17 21 

As as As2O5 14.7 19.7 42 48 30 38 

 

From AWPA (1994) 

 

 

Copper is a very strong fungicide and because of its fungicidal properties and low 

mammalian toxicity, other waterborne preservatives include copper. Arsenic is an 

insecticide and helps to protect wood against some copper – tolerant fungi. 

 

 Since the preservative composition can affect fixation and thus the leachability of 

chemicals, the amount of added chemicals to the wood is very important. The retention 

level and required amount of chemicals vary with the intended use of the product and the 

place of usage. AWPA standards list seven amounts of CCA for different usages (Table 

2.2). 
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2.1.3.1 LEACHING     

                                                     

Leachate is the liquid that is produced when rain falls on a landfill or buildings, sinks into 

the wastes, and picks up chemicals as it seeps downward. In respect to environmental 

aspects, the leaching of compounds is an important issue for construction materials and 

their leaching behavior should be checked during their overall life cycle, from the 

production time until reuse or disposal. 

 

Table 2.2: Retention levels of CCA active ingredients 
 

 

 

 

 

 

 

 

 

 

 

 
From AWPA (1994) 

 

 

In the late 1980s the treated wood became one of the environmental concerns and 

because of chemical leaching from disposed or in service preserved wood, the concerns 

have increased. After treatment there are three stages in the treated wood lifecycle that 

can be identified (Sloot et al., 1997): 

 

� Storage at the treatment facility 

Above ground 4

Ground contact 6.4

Poles and foundations 9.6

Land and freshwater piling 12.8 and 16

Sea water application 24 and 40

Exposure Retention level (kg/m³)
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� Actual service (Table 2.3)  

� Decommissioning and waste phase. 

 

Table 2.3: Leaching hazards for preservative treated wood 

 
Degree of wetting Risk of leaching Typical application 

Interior, fully protected from             No leaching Framing lumber, joists, flooring 

liquid water   

Interior, occasional wetting No or slight leaching Sillplates 

   

Exterior, intermittent wetting Periodic moderate 

leaching 

 

Windows, fascia boards, decks,          

fence boards 

   

Exterior, permanent wetting Severe leaching Wood foundations, utility poles, marine 

  piling, piers, cribs, cooling towers 

Ref. (Morris, 1996) 

 

There are several factors that affect leaching of preservatives from wood. According to 

Sloot et al. (1997), they are classified into three main groups, which are shown in Table 

2.4.  

    Table 2.4: Factors affecting the leaching of preserved components from wood 

 

Other relevant                       

factors 

 

Physical    

factors 

 

Chemical      

Factors 

   

The natural properties of wood 

 

(e.g. permeability) 

 

Preservative treatment 

 

Fixation 

Absorption 

 

Diffusion 

 

Dissolution 

 

Temperature 

Ionic strength 

 

 

pH 

 

 

(Organic )Acids 

   

          Ref.  (Sloot et al.  1997) 
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An important factor in both the mobility and toxicity of leached preservatives is the form 

in which the chemicals leave the wood. Although chromium and arsenic may exist in 

either of two stable valence states (Cr
+3

, Cr
+6

, As
+3

, As
+5

), their properties like solubility, 

mobility, formation of complex, which are mentioned later, are completely different. 

Copper remains less stable in the environment in any other form than the +2 valence. 

 

2.1.3.2 SPECIATION 

 

 CHROMIUM 

 

Chromium is the least mobile of the CCA chemicals and its mobility depends on its 

valency. Trivalent chromium is very reactive with organics and fixes to soil and 

sediments quickly. Hexavalent chromium is more soluble but less absorbed and the rate 

of its movement through soil and groundwater is the same (Rouse and Pyrih, 1990). The 

valence state of chromium is a function of the oxygen content and redox potential, pH, 

the presence and type of suspended inorganics and dissolved organics, when it is 

introduced into water and soil (Lebow, 1996). 

 

Hexavalent chromium is the most stable form in equilibrium with atmospheric oxygen 

when there are no organic compounds in the media (McGrath and Smith, 1990). 

However, in the presence of organic compounds, Cr (VI) may be reduced to Cr (III) as 

the same reactions take place within treated wood. The laboratory tests have shown that 
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humic acids can reduce Cr
+6

 but the reaction does not proceed rapidly under most 

conditions (Lebow, 1996). 

 

Iron reduces chromium and the reaction depends on the presence of the excess iron 

(Lebow, 1996). Sulfides can also reduce chromium and this can be an important process 

near the sediments and where sulfides are produced by decomposition of organic 

compounds (Lebow, 1996). 

 

In soil when there are electron-donating compounds, the chromium is reduced to trivalent 

state and this reaction is faster in acid soils (McGrath and Smith, 1990). In water, for 

example in a rapidly moving stream especially when it is alkaline or hard water, the 

oxidation process can occur and chromium (+3) oxidize to chromium (+6). The resistance 

of trivalent chromium to leaching or immobility depends on its ability to form inert 

complexes with organic and inorganic ligands (Lebow, 1996).  

 

As mentioned, both hexavalent and trivalent chromium are stable in the environment. 

According to Lebow (1996), if chromium leaches from treated wood in the trivalent 

form, inert complexes with organic and inorganic ligands might be formed and then 

chromium mobility under these conditions would be associated with the water soluble 

complexes or events that move through soil and sediments. If the leached chromium is in 

the hexavalent form, it can remain in this more soluble, mobile, biologically available 

state especially in alkaline water (Lebow, 1996). 
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According to Solo-Gabriel et al. (2004), the results of pH stat tests for new CCA wood 

showed the highest chromium concentrations were at the lowest and highest pH values. 

All of the chromium in the acidic and neutral regions was Cr(III) only at pH >9 was 

Cr(VI).Unlike new, for weathered wood both As(III) and As(IV) were observed. 

 

COPPER 

 

Unlike chromium, neither the movement and solubility of copper is highly dependent on 

changing the oxidation state, nor are the toxicity and solubility of Cu (I) and Cu (II) 

widely different from each other. Although Cu (II) is much more stable in most aerated 

conditions, Cu (I) can exist in saturated soils with water when there is a low 

concentration of copper. In the absence of organic and inorganic adsorption agents, water 

soluble copper is in the forms of [Cu(H2O)6]
+2

 ,  [Cu(H2O)5]
+2

 , CuOH
+
 below pH 7 and 

species Cu(OH)2, and CuCO3 at pH greater than 7. Reactions with organic and inorganic 

compounds affect solubility and the form of copper (Baker, 1990; Parker, 1981; 

McBride, 1981). For example, copper deposited in sediments from pollution sources is 

usually complexed with organics or precipitated with inorganic oxides (Messure et al., 

1991). Copper solubility is greatest at the acid and alkaline extremes and minimum at 

around pH 7, in most environmental exposures (Baker, 1990; Parker, 1981; McBride, 

1981). 

 

Adsorption of copper is a very important factor in determining its mobility and is 

influenced by pH, amount and type of adsorbents. At low pH, because of proton 

adsorption, the charge of adsorbents tends to be positive and at high pH they become 
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more negative (Lebow, 1996). Adsorption increases with increasing pH and this increases 

copper precipitation as copper oxides, hydroxides and carbonates at neutral and alkaline 

pH (Baker, 1990; McBride, 1981; James and Barrow, 1981).   

 

To be noted that the accumulation of copper in fine sediments can be important when 

there is CCA treated wood in seawater (Weis and Weis, 1992; Weis et al., 1993). Copper 

in sediments is not bonded as strongly as chromium (Lebow, 1996) and some deposited 

copper in sediments may be solubilized under oxidizing conditions, possibly because of 

the formation of soluble hydroxides and carbonates (Lebow, 1996). But in a reducing 

environment, the solubility of copper in sediments decreases, possibly through the 

formation of sulfides (Lebow, 1996).  

 

ARSENIC                                             

 

Arsenic is more soluble in water than copper and chromium and is less likely to be 

adsorbed. Its mobility in the environment can thus be considerable. Like chromium, it 

exists significantly in two valence states, As (III) and As (V). It almost always forms 

oxyanions. The trivalent arsenic is much more toxic than pentavalent arsenic and methyl 

arsenic forms are usually less toxic than the inorganic forms (O’Neill, 1990). According 

to Solo-Gabriel et al. (2004), arsenic in CCA is predominantly in the +5 valence form, 

but As  leached from CCA is primarily either As(III) or As(V).  

 

There are many types of microorganisms that change inorganic arsenic to more soluble 

species. However, their capability in the presence of chromium and copper, has not been 
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confirmed but there is no doubt they affect the mobility and fate of arsenic when arsenic 

enters the environment. For example, there are some kinds of soil fungi and bacteria that 

convert arsenate to arsenite (Lebow, 1996) or they can methylate the oxyanions to 

monomethylarsonic acid, dimethylarsinic acid, trimethylarsenic oxide, trimethylarsine, 

and dimethylarsine. The methyl-arsines are generally volatilized (O’Neill, 1990; Braman, 

1975).  

 

In water, arsenic enters as arsenic acid (As (V)) and by aluminum, mineral clay or iron, 

precipitate into sediments where it is reduced to trivalent form and methylated by 

microorganisms. The soluble methylates then move to the water surface, react with 

oxygen and the produced oxyanions precipitate again by reactions with inorganic 

constituents (Lebow, 1996). The microorganisms and the involved arsenic species are 

two factors that affect the biomethylation reactions (O’Neill, 1990; Cheng and Focht, 

1979). Some microorganisms can methylate arsenic compounds completely and over a 

wide range of pH, but some can only methylate specific species and to a lesser degree 

(O’Neill, 1990). In very wet soils, As (III) may be the most stable form, although 

complexing species and methylating organisms in soil will alter the As (V)/As(III) 

equilibria (Lebow, 1996). A study of soils in England showed that As (V) made up 90% 

of soluble arsenic in aerobic soils but only 15-45% of the soluble arsenic in anaerobic, 

waterlogged soils and in mineralized areas. A small amount of monomethylarsenic acid 

was found (O’Neill, 1990). 
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In oxygenated water, inorganic arsenates are the dominant species and arsenites are 

usually formed in sediments or deep waters (Lebow, 1996). A study on deep waters 

below the photic zone showed the existence of a small amount of organic arsenic. It is 

suggested that the organic form was produced by plankton in the photic zone. The studies 

noted that phytoplankton could reduce and methylate up to 50% of As (V) in the media 

(Lebow, 1996). The inert organic arsenics may be more toxic than inorganic forms 

(Riedel et al., 1989). As treated wood is usually placed in shallow water, there is the 

probability of reactions by photic zone microorganisms for arsenic leachate of treated 

wood (Lebow, 1996).  

 

In anaerobic conditions, like seawater sediments, it is favorable for arsenic (V) to be 

reduced to arsenic (III) (Riedel, et al., 1989). Brannon and Patrick (1987) found that 

although there were organic forms of As (III) in the sediments of several harbors, which 

they collected, arsenite was the predominant form and even added arsenate to sediments 

was reduced to trivalent form. Hence the solubility and release of arsenic from sediments 

is related to oxygen content of water. In anaerobic conditions, more arsenic is released. 

Arsenic can be adsorbed and removed from solution by organic compounds as well as 

inorganic compounds such as iron, aluminum, calcium and clay which prevent arsenic 

leaching (Lebow, 1996). The studies show that the released arsenic to environment can 

be mobile because of the movement of sediments in high water flow, solubility of arsenic 

species and changing of the species type by microorganisms. 
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2.2  ETHANOL 

 

Ethanol (ethyl alcohol, grain alcohol, EtOH) is a clear, colorless liquid. Alcohol 

molecules contain a hydroxyl group, -OH, bonded to a carbon atom (CH3CH2OH). 

Ethanol can be produced synthetically, by direct fermentation of sugars, from other 

biological feedstocks that contain appreciable amounts of sugar or other carbohydrates 

that can be converted into sugar such as starch or cellulose. Sugar beets and sugar cane 

are examples of feedstocks that contain sugar. Corn contains starch that can relatively 

easily be converted into sugar. A significant percentage of trees and grass is made up of 

cellulose, which can also be converted to sugar, although with more difficulty than 

required to convert starch. 

 

Indirect hydration of ethylene is the oldest process between the two major ethanol 

production methods from ethylene, which was invented more than one hundred years 

ago. Ethanol is prepared from ethylene in a three-step process using sulfuric acid (John, 

1969). In the first step, the hydrocarbon feedstock containing 35-95% ethylene is exposed 

to 95-98% sulfuric acid in a column reactor to form mono-sulfate: 

 

CH 2 = CH 2  + H 2 SO 4 → CH 3 CH 2 OSO 3 H    
               (Monoethyl Sulfate) 

 

2 (CH 2 = CH 2) + H 2 SO 4→ (CH3 CH2 O)2 SO 2  

 (Diethyl Sulfate) 

 

It is subsequently hydrolyzed with enough water to give a 50-60% aqueous sulfuric acid 

solution: 
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  CH 3 CH 2 OSO 3 H  + H 2 O → CH 3 CH 2 OH + H 2 SO 4  

  

 (CH3 CH2 O)2 SO2      + H 2 O → 2 CH 3 CH 2 OH + H 2 SO 4 

 

 

The ethanol is then separated from the dilute sulfuric acid in a stripper column. The last 

step of this process is to concentrate the sulfuric acid and repeat the process. 

 

In the direct hydration process, an ethylene-rich gas is combined with water and passes 

through a fixed-bed catalyst reactor, in which ethanol is formed according to the 

following reaction (Nelson and Courter, 1954) and ethanol is then recovered in a 

distillation system. 

CH 2 = CH 2  + H 2 O → CH 3 CH 2 OH     

According to John (1969), other processes to make ethanol synthetically are not 

commercially important. 

 

The ethanol production from fermentation of sugars, starch or lignocellulosic feedstocks 

starts by grinding up the feedstock so it is more easily and quickly processed in the 

following steps. Once ground up, the sugar is either dissolved out of the material or the 

starch or cellulose is converted into sugar. The sugar is then fed to microbes that use it for 

food, producing ethanol and carbon dioxide in the process. A final step purifies the 

ethanol to the desired concentration (U.S. Department of Energy, 2006). 
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Figure 2.6. Production of ethanol from lignocellulosic materials (Galbe and Zacchi, 

2002).  

 

The United Nations Development Program "UNDP" report (2000) mentioned that world 

production of ethanol was estimated at 18 billion litres (equivalent to 420 petajoules) in 

1998 and that also ethanol produced by the hydrolysis of lignocellulosic biomass, is a 

potentially low-cost and efficient option among the renewable energy technologies. 

According to the report, hydrolysis techniques are gaining attention, particularly in 

Sweden and the United States, but some fundamental issues need to be resolved. If these 

barriers are lowered and ethanol production is combined with efficient electricity 

production from unconverted wood fractions (such as lignin), ethanol costs could come 

close to current gasoline prices—as low as $0.12 a litre at biomass costs of about $2 per 

gigajoule (Lynd, 1996). Overall system conversion efficiency could increase to about 70 

percent of the lower heating value (LHV) of a fuel. LHV is defined as the amount of heat 

released by combusting a specific quantity (initially at 25 °C or another reference state) 

and returning the temperature of the combustion products to 150 °C).  
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In the U.S. the total capacity of ethanol production was estimated 6.5 billion litres in 

1994 and 88% of which was produced by fermentation. 17% of the demand was for 

industrial purposes and 5% was in beverage market. Therefore fuel is about 78% of 

ethanol market in U.S. (Taherzadeh, 1999). Hamelinck et al. (2005) stated that ethanol 

was produced on a fair scale of 14-26 Mtonne worldwide. Taherzadeh (1999) believed 

the desire to decrease U.S. dependence on foreign oil supplies, increasing the octane 

number of unleaded gasoline, surplus production of corn and air pollution concerns were 

the main reasons for the growing market of fuel-grade ethanol. Pimentel and Patzek 

(2005) also mentioned the desperate needs to replace liquid gasoline fuel in the future. 

They predicted that the use of oil supply would be extremely limited in 40-50 years. 

 

2.3 ETHANOL PRODUCTION FROM LIGNOCELLULOSIC BIOMASS  

 

2.3.1 CELLULOSIC CROPS 

 

Lignocellulosic biomass contains a mixture of cellulose, hemicellulose, lignin and a small 

amount of other compounds (extractives). Analyses of different kinds of woods 

including, alder, aspen, birch, pine, and spruce are presented in Table 2.5. If we exclude 

the bark of the trees, the analysis shows an average of 42% cellulose, 20% hemicellulose, 

21% lignin and 6% extractives in pine, spruce, alder, aspen and birch.  
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The efficient conversion of cellulosic biomass to ethanol requires knowledge of the 

chemical and physical properties of the biomass feedstock (NREL 1992). All processes 

comprise the same main components: hydrolysis of the hemicellulose and the cellulose to 

monomer sugars, fermentation of sugars to ethanol and product recovery and 

concentration by distillation. The hydrolysis is usually catalyzed by cellulase enzymes 

and the fermentation is carried out by yeast or bacteria (Figure 2.6). The main difference 

between the process alternatives is the hydrolysis steps, which can be performed by dilute 

acid, concentrated acid or enzymatically (Galbe and Zacchi, 2002). 

 

 

Table 2.5:Dehydrated sugar analysis of wood samples 

(Based on percentage of wood, dry weight) 

 

 

Material Glucan Mannan Galactan Xylan Lignin Extracts Ash 

Hard woods 

Alder 

 

40.5 

 

1.5 

 

0.8 

 

16.1 

 

20.8 

 

8.8 

 

0.6 

Aspen 43.2 2.2 0.5 15.1 16.0 4.7 1.3 

Birch 40.7 1.7 0.7 20.0 19.1 4.1 0.3 

Willow 33.1 1.6 1.4 10.3 23.3 7.7 2.0 

Soft woods 

Pine 

 

42.4 

 

11.8 

 

1.9 

 

4.7 

 

24.7 

 

4.6 

 

0.3 

Spruce 41.6 11.5 2.0 4.7 25.7 5.4 0.3 

    

   Source: Taherzadeh et al.(1997) 

 



 28 

The microorganisms traditionally used to produce ethanol cannot simultaneously convert 

both hexoses and pentoses to ethanol, while the lignin within the lignocellulosic matrix 

interferes with the hydrolysis of the carbohydrate components (Saddler 1993). Therefore, 

the pretreatment step must provide a high yield of both hexoses and pentoses, prevent 

breakdown of the carbohydrates into inhibitory components and alter the nature of the 

complex by reducing cellulose crystallinity, and increase the porosity of the materials 

(Sun and Cheng 2002), to provide effective removal of the lignin to enhance access of the 

hydrolytic enzymes to the carbohydrate components. Fractionation then separates the 

various streams to provide more effective processing of the cellulose, hemicellulose and 

lignin streams (Mulligan, 1994).  

 

Lignocellulosic feedstocks provide more of a process design and operating challenge than 

sugar or starch feedstocks, as there is a wider variation in the type and nature of the 

processes and equipment needed to convert lignocellulosic feedstocks to ethanol (Hayn et 

al., 1993). This is primarily a consequence of the relatively early stage of development of 

lignocellulosic conversion to ethanol processes and the greater feedstock variability. 

Even sugar and starch crops can have compositional variability due to variations such as 

the species of feedstock used, growing site, climate, age and part of the plant that was 

used. However, lignocellulosic feedstocks can also have proportional variability within 

the mixture of its three major components, differences in the types and amounts of 

extractives, and natural variability in the monomeric sugars that make up the 

hemicellulose component. 
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Wood conversion to fermentable sugars and ethanol was evaluated at the pilot plant level 

by NREL(1992). Agricultural residues were converted to ethanol on a pilot plant scale 

with yields of 350-400 L / ton of feedstock. 

 

2.3.2 HYDROLYSIS 

 

The factors that have been identified to affect the hydrolysis of cellulose include porosity 

(accessible surface area) of the waste materials, cellulose fiber crystallinity, and lignin 

and hemicellulose content (McMillan, 1994). The presence of lignin and hemicellulose 

makes the access of cellulase enzymes to cellulose difficult and reduces the efficiency of 

the hydrolysis. Removal of lignin and hemicellulose, reduction of cellulose 

crystallinity, and increasing the porosity in pretreatment processes can significantly 

improve the hydrolysis (McMillan, 1994). 

 

ACID HYDROLYSIS 

 

Several types of acids, including sulphurous, sulphuric, hydrochloric, hydrofluoric, 

phosphoric, nitric and formic acids can be used for hydrolysis and they may be either 

concentrated or diluted. Processes involving concentrated acids are operated at low 

temperatures and give high yields (e.g. 90% of theoretical glucose yield), but the large 

amount of these concentrated acids are powerful agents for cellulose hydrolysis, and they 

are toxic, corrosive and hazardous and require reactors that are resistant to corrosion. In 

addition, the concentrated acid must be recovered after hydrolysis to make the process 
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economically feasible (Sivers and Zacchi, 1995). Furthermore, when sulphuric acid is 

used, the neutralization process produces large amounts of gypsum (Keller, 1996). 

 

The main advantage of dilute acid hydrolysis is the relatively low acid consumption. 

However, high temperatures are required to achieve acceptable rates of conversion of 

cellulose to glucose, and high temperatures also increase the rates of hemicellulose sugar 

decomposition and equipment corrosion (Jones and Semrau, 1984). Sugar degradation 

products can also cause inhibition in the subsequent fermentation stage (Larsson et al., 

1999). The maximum yield of glucose is obtained at high temperature and a short 

residence time, but even under these conditions the glucose yield is only between 50% 

and 60% of the theoretical value (Wyman 1996). A two-stage process has been developed 

to decrease sugar degradation. In the United States, BCI (Wyman, 1999), the first 

hydrolysis stage, the relatively easily hydrolyzed hemicellulose was released under rather 

mild conditions (170–190°C). This enabled the second acid hydrolysis step to proceed 

under harsher conditions (200–230°C) without degrading the hemicellulose sugars to 

furfural, hydroxymethylfurfural and other degradation products. Using a two-stage dilute 

acid hydrolysis process, recovery yields of as much as 70–98% of the xylose, galactose, 

mannose and arabinose from softwood have been reported (Nguyen et al., 1999). 

However, the yield of glucose was still low at 50%.  

 

According to Ogier et al. (1999), Ackerson et al. (1981) suggested a prehydrolysis of 

lignocellulosic biomass by 4.4% dilute sulfuric acid (H2SO4) at 100 °C for 60 minutes 



 31 

followed by hydrolysis of cellulose by 85% concentrated sulfuric acid (H2SO4) at 100°C 

for 10 minutes. They predicted 95% sugar recovery from cellulose and hemicellulose. 

 

 

ENZYMATIC HYDROLYSIS 

 

Enzymatic hydrolysis of cellulose is carried out by specific cellulase enzymes (Beguin 

and Aubert, 1994). The products of the hydrolysis are usually reducing sugars including 

glucose. Utility cost of enzymatic hydrolysis is low compared to acid or alkaline 

hydrolysis because enzyme hydrolysis is usually conducted at mild conditions (pH 4.8 

and temperature 45– 50 ºC) and does not have a corrosion problem (Duff and Murray, 

1996). Both bacteria and fungi can produce cellulases for the hydrolysis of 

lignocellulosic materials. These microorganisms can be aerobic or anaerobic, mesophilic 

or thermophilic. Bacteria belonging to Clostridium, Cellulomonas, Bacillus, 

Thermomonospora, Ruminococcus, Bacteriodes, Erwinia, Acetovibrio, Microbispora, 

and Streptomyces can produce cellulases (Bisaria, 1991). Although many cellulolytic 

bacteria, particularly the cellulolytic anaerobes such as Clostridium thermocellum and 

Bacteroides cellulosolvens produce cellulases with high specific activity, they do not 

produce high enzyme titres (Duff and Murray, 1996). Because the anaerobes have a very 

low growth rate and require anaerobic growth conditions, most research for commercial 

cellulase production has focused on fungi (Duff and Murray, 1996). Fungi that have been 

reported to produce cellulases include Sclerotium rolfsii, P. chrysosporium and species of 

Trichoderma, Aspergillus, Schizophyllum and Penicillium (Sternberg, 1976; Fan et al., 

1987; Duff and Murray, 1996). Of all these fungal genera, Trichoderma has been most 
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extensively studied for cellulase production (Sternberg, 1976).  Cellulases are usually a 

mixture of several enzymes. At least three major groups of cellulases are involved in the 

hydrolysis process: (1) endoglucanase (EG, endo- 1,4-D-glucanohydrolase, or EC 

3.2.1.4.) which attacks regions of low crystallinity in the cellulose fiber, creating free 

chain-ends; (2) exoglucanase or cellobiohydrolase (CBH, 1,4-B-D-glucan 

cellobiohydrolase, or EC 3.2.1.91.) which degrades the molecule further by removing 

cellobiose units from the free chain-ends; (3) ß-glucosidase (EC 3.2.1.21) which 

hydrolyzes cellobiose to produce glucose (Coughlan and Ljungdahl, 1988). In addition, to 

the three major groups of cellulase enzymes, there are also a number of ancillary 

enzymes that attack lignocellulose, such as glucuronidase, acetylesterase, xylanase, ß -

xylosidase, galactomannanase and glucomannanase (Duff and Murray, 1996). During the 

enzymatic hydrolysis, cellulose is degraded by the cellulases to reducing sugars that can 

be fermented by yeasts or bacteria to ethanol. The factors that affect the enzymatic 

hydrolysis of cellulose include substrates, cellulase activity, and reaction conditions 

(temperature, pH, as well as other parameters). There are three essential types of 

enzymatic hydrolysis fermentation processes, separate hydrolysis and fermentation 

(SHF), simultaneous saccharification and fermentation (SSF) and direct microbial 

conversion (DMC) (Mulligan, 1994). 

 

 2.3.3 PRETREATMENT 

 

As the cellulose and hemicellulose, which are the aims of enzymatic hydrolysis, cannot 

be directly accessible by enzymes then pretreatment of lignocellulosic material before 
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enzymatic hydrolysis is necessary. Pretreatment methods refer to solubilization and 

separation of one or more of the four major components of biomass (hemicellulose, 

cellulose, lignin and extractives) to make the remaining solid biomass more accessible to 

further chemical or biological treatment. This can be accomplished through the removal 

of the lignin sheath, reduction of cellulose crystallinity or by increasing the surface area 

that is accessible to enzymes.  

 

Pretreatment must meet the following requirements: (1) improve the formation of sugars 

or the ability to subsequently form sugars by enzymatic hydrolysis; (2) avoid the 

degradation or loss of carbohydrate; (3) avoid the formation of byproducts inhibitory to 

the subsequent hydrolysis and fermentation processes; and (4) be cost effective (Sun and 

Cheng, 2002). The pretreatment methods can be physical, chemical, biological or a 

combination of these methods.  

 

2.3.3.1 PHYSICAL PRETREATMENT  

 

The applied physical pretreatment processes include mechanical milling, steam 

explosion, irradiation and pyrolysis.  However the mechanical milling methods improve 

enzymatic digestibility of cellulose, but the high energy requirement and capital cost 

make this method uneconomical. (These methods improve enzymatic digestibility of 

cellulose by reduction of crystallinity index and increasing specific surface area for 

enzyme action with ability to produce higher slurry concentrations which reduce the 

reactor volume). Being ineffective on pure cellulose and high cost of energy, irradiation 
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fails as a pretreatment method (Mulligan, 1994). As steam explosion could be applied 

using sulphuric acid or SO2, it is discussed in physico-chemical methods.  

 

PYROLYSIS 
 

Pyrolysis has been used for pretreatment of lignocellulosic materials. When the materials 

are treated at temperatures greater than 300 ºC, cellulose rapidly decomposes to produce 

gaseous products and residual char (Kilzer and Broido, 1965; Shafizadeh and Bradbury, 

1979). The decomposition is much slower and less volatile products are formed at lower 

temperatures. Mild acid hydrolysis (1 N H2SO4, 97ºC, 2.5 h) of the residues from 

pyrolysis pretreatment has resulted in 80– 85% conversion of cellulose to reducing sugars 

with more than 50% glucose (Fan et al., 1987). The process can be enhanced with the 

presence of oxygen (Shafizadeh and Bradbury, 1979). When zinc chloride or sodium 

carbonate is added as a catalyst, the decomposition of pure cellulose can occur at a lower 

temperature (Shafizadeh and Lai, 1975). 

 

2.3.3.2 PHYSICO-CHEMICAL PRETREATMENT 

 

As a combination pretreatment method, acid prehydrolysis (dilute acid with steam) using 

sulfur dioxide (SO2) has been the best of the three common dilute acids (HCl, H2SO4, 

sulfurous), and has been used in a number of pilot scale tests (Hayan et al., 1993). During 

the process, deciduous hemicelluloses are readily hydrolyzed into monomeric sugars, 

acetic acid and other components by steam at 150-200 ºC or at lower temperatures when 

mild acids are incorporated into the feedstock. 
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STEAM EXPLOSION (AUTOHYDROLYSIS) 

 

Steam explosion is the most commonly used method for pretreatment of lignocellulosic 

materials (McMillan, 1994) with and without addition of an acid catalyst. According to 

Hayan et al. (1993) and Brownwell and Saddler (1987), it has been the most cost-

effective means of pretreating agricultural and forestry residues. Of the acids, H2SO4 has 

been the most extensively investigated (Torget et al., 1990, 1991, 1996; Nguyen et al. 

1998, 1999, 2000; Tengborg et al., 1998) because it is inexpensive and effective. SO2 

catalysed steam pretreatment has also been studied (Clark and Mackie, 1987; Clark et al., 

1989; Schwald et al., 1989; Fein et al., 1991; Ramos et al., 1992; Stenberg et al., 1998). 

Pretreatment using gaseous SO2 is not corrosive as a pretreatment with H2SO4 (Galbe and 

Zacchi, 2002), and it is also easier and faster to introduce into the material. The main 

problem of SO2 is its high toxicity, which may pose safety and health risks. 

 

Initiating at a temperature of 160-260ºC, chipped biomass is treated with high-pressure 

saturated steam (corresponding pressure 0.69–4.83 MPa) for several seconds to a few 

minutes before the material is exposed to atmospheric pressure and then the pressure is 

swiftly reduced, which makes the materials undergo an explosive decompression. High 

temperatures cause hemicellulose degradation and lignin transformation and therefore 

increasing the potential of cellulose hydrolysis (Sun and Cheng, 2002). Ninety percent 

efficiency of enzymatic hydrolysis has been achieved in 24 h for poplar chips pretreated 

by steam explosion, compared to only 15% hydrolysis of untreated chips (Grous et al., 

1986). Residence time, temperature, chip size and moisture content are the factors that 

affect steam explosion pretreatment (Duff and Murray, 1996). Either a high temperature 
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and short residence time (270 ºC, 1 min) or lower temperature and longer residence time 

(190 ºC, 10 min) gives optimal hemicellulose solubilization and hydrolysis (Duff and 

Murray, 1996). However, according to Wright (1998), studies indicate that lower 

temperatures and longer residence times are more favorable. 

 

Addition of H2SO4 (or SO2) or CO2 in steam explosion can effectively improve 

enzymatic hydrolysis, decrease the production of inhibitory compounds, and lead to more 

complete removal of hemicellulose (Morjanoff and Gray, 1987). Compared to 

mechanical communition, the low energy requirement and no recycling or environmental 

costs are the advantages of steam explosion pretreatment. The conventional mechanical 

methods require 70% more energy than steam explosion to achieve the same size 

reduction (Holtzapple et al., 1989). Steam explosion is recognized as one of the most cost 

effective pretreatment processes for hardwoods and agricultural residues, but it is less 

effective for softwoods (Clark and Mackie, 1987). Limitations of steam explosion include 

destruction of a portion of the xylan fraction, incomplete disruption of the lignin-

carbohydrate matrix, and generation of compounds that may be inhibitory to 

microorganisms used in downstream processes (Mackie et al., 1985). Because of the 

formation of degradation products that are inhibitory to microbial growth, enzymatic 

hydrolysis, and fermentation, pretreated biomass needs to be washed by water to remove 

the inhibitory materials along with water-soluble hemicelluloses (McMillan, 1994). The 

water wash decreases the overall saccharification yields due to the removal of soluble 

sugars, such as those generated by hydrolysis of hemicelluloses. Typically, 20-25% of the 

initial dry matter is removed by water wash (Mes-Hartree et al., 1988). According to 
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Galbe and Zacchi (2002), two-step steam pretreatment of softwood has a high ethanol 

yield, better utilization of the raw material and lower consumption of enzymes. 

 

2.3.3.3 CHEMICAL PRETREATMENT 

 

Chemical pretreatments have been used to remove lignin and modify the structure of 

lignocellulosics. Some of the different chemical pretreatment methods are as follows:   

 

ALKALINE AND SOLVENT PRETREATMENT 

 

Sodium hydroxide and ammonia which, are used for cellulose alkali pretreatment on 

some feedstocks such as straw, could successfully break the lignocellulosic bond, 

partially solubilize the lignin and decrystallize the cellulose (NREL 1992). Alkaline 

pretreatment is more effective on agricultural residues than on wood materials (Galbe and 

Zacchi, 2002). 

 

ACID  

 

 

Concentrated acid hydrolysis has been used for pretreatment of lignocellulosic materials, 

but dilute acids have been successfully developed. Acids, such as dilute HCl, dilute 

H2SO4 and dilute sulfurous acid, have been used to break the ligno-cellulose bond and 

partially hydrolyse the hemicellulose, but pose a gypsum disposal problem (Mulligan 

1994). The dilute sulfuric acid pretreatment can achieve high reaction rates and 

significantly improve cellulose hydrolysis (Esteghlalian et al., 1997). At moderate 

temperature, direct saccharification suffers from low yields because of sugar 
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decomposition. High temperature in dilute acid treatment is favorable for cellulose 

hydrolysis (McMillan, 1994). Recently developed dilute acid hydrolysis processes use 

less severe conditions and achieve high xylan to xylose conversion yields. Achieving 

high xylan to xylose conversion yields is necessary to achieve favorable overall process 

economics because xylan accounts for up to a third of the total carbohydrate in many 

lignocellulosic materials (Hinman et al., 1992). There are primarily two types of dilute 

acid pretreatment processes: high temperature (greater than 160 ºC), continuous-flow 

process for low solids loading (5– 10% [weight of substrate/weight of reaction mixture]) 

(Brennan et al., 1986; Converse et al., 1989), and low temperature (less than 160 ºC), 

batch process for high solids loading (10–40%) (Cahela et al., 1983; Esteghlalian et al., 

1997). According to Ogier et al. (1999) it takes less than 10 seconds to treat the biomass 

at 200 ºC in a piston reactor or 30 minutes for treatment at 120-130ºC in a percolation 

reactor. Although dilute acid pretreatment can significantly improve the cellulose 

hydrolysis, its cost is usually higher than some physico-chemical pretreatment processes 

such as steam explosion or the Ammonia Freeze Explosion (AFEX) process. 

Neutralization of pH is necessary for the downstream enzymatic hydrolysis or 

fermentation processes (Schell et al., 1991). 

 

AFEX 

 

The Ammonia Freeze Explosion (AFEX) process is a treatment of lignocellulosic 

materials with high- pressure liquid ammonia under 1.5 MPa pressure at moderate 

temperature of 50-90ºC. In a typical AFEX process, the dosage of liquid ammonia is 1–2 
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kg ammonia/kg dry biomass, the temperature is 90 ºC, and the residence time is 30 min 

(Sun and Cheng, 2002). 

 

The AFEX process is not very effective for the biomass with high lignin content such as 

newspaper (18–30% lignin) and aspen chips (25% lignin). It is favorable for agricultural 

residues (Ogier et al., 1999). The AFEX pretreatment does not significantly solubilize 

hemicellulose compared to acid pretreatment and acid-catalyzed steam explosion (Sun 

and Cheng, 2002). 

 

ORGANOSOLV PROCESS 

 

In the organosolv process, an organic or aqueous organic solvent mixture with inorganic 

acid catalysts (HCl or H2SO4) is used to break the internal lignin and hemicellulose 

bonds. The organic solvents used in the process include methanol, ethanol, acetone, 

ethylene glycol, triethylene glycol, and tetrahydrofurfuryl alcohol (Chum et al., 1988; 

Thring et al., 1990). Organic acids such as oxalic, acetylsalicylic and salicylic acids can 

also be used as catalysts in the organosolv process (Sarkanen, 1980). At high 

temperatures (above 185 ºC), the addition of catalyst was unnecessary for satisfactory 

delignification (Sarkanen, 1980; Aziz and Sarkanen, 1989). Usually, a high yield of 

xylose can be obtained with the addition of acid. Solvents used in the process need to be 

drained from the reactor, evaporated, condensed and recycled to reduce the cost. 

Removal of solvents from the system is necessary because the solvents may be inhibitory 

to the growth of organisms, enzymatic hydrolysis, and fermentation. 
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2.3.3.4 BIOLOGICAL PRETREATMENT 

 

In biological pretreatment processes, microorganisms such as brown, white and soft-rot 

fungi are used to degrade lignin and hemicellulose in waste materials (Schurz, 1978). 

Brown rots mainly attack cellulose, while white and soft rots attack both cellulose and 

lignin. The white-rot fungus P. chrysosporium produces lignin-degrading enzymes, lignin 

peroxidases and manganese- dependent peroxidases, during secondary metabolism in 

response to carbon or nitrogen limitation (Boominathan and Reddy, 1992). Both enzymes 

have been found in the extracellular filtrates of many white-rot fungi for the degradation 

of wood cell walls (Kirk and Farrell, 1987; Waldner et al., 1988). Other enzymes 

including polyphenol oxidases, laccases, H2O2 producing enzymes and quinone-reducing 

enzymes can also degrade lignin (Blanchette, 1991). The advantages of biological 

pretreatment include low energy requirement and mild environmental conditions. 

However, the rate of hydrolysis in most biological pretreatment processes is very low.  

 

2.3.4 FERMENTATION 

 

Following hydrolysis, the next steps are fermentation and then ethanol recovery. During 

fermentation, a biological organism, generally yeast, consumes the sugar as a carbon/ 

energy source and produces ethanol and carbon dioxide. The produced sugars by wood 

hydrolysis are the pentoses (mainly xylose) and the hexoses (mannose, galactose and 

mainly glucose). Glucose is easily fermented to ethanol by S. cerevisiae. According to 

Beck (1993), the ease of pentose recovery from biomass sources by such means as dilute 

acid hydrolysis or SO2-steam explosion and water washing, is one of the driving forces to 
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enhance fermentation of pentoses. Yeasts, bacteria and fungi are three xylose-fermenting 

organisms but both the most promising hexose-fermenting organisms; Saccharomyces 

cerevisiae (yeast) and Zymomonas mobilis (bacterium) are not capable of fermenting 

pentose sugars (Mulligan, 1994).  Based on the organisms (bacteria, fungi, yeast) and 

process flow patterns (batch, batch recycle, continuous, continuous recycle, etc.), there 

are different fermentation methods. 

 

YEAST: There are several important or at least desirable characteristics of the 

microorganism in an industrial “hydrolyzate-to-ethanol” process. Ideally, the 

microorganism should give a high ethanol yield, have a high ethanol tolerance, be 

resistant to hydrolysates, have no oxygen requirement, and a broad substrate utilization 

range. It is also desirable to have a strain with high sugar consumption rate and 

productivity, minimal nutrient requirement, high salt tolerance, high shear tolerance, 

thermotolerance, safety for humans and no spore formation (Picataggio and Zhang, 

1996). 

 

Saccharomyces cerevisiae has several essential and desirable characteristics for 

fermentation of hydrolyzates especially from softwoods, where glucose and mannose 

constitute the largest part of the sugars. It gives a high ethanol yield, has a high ethanol 

productivity and tolerance, and has no oxygen requirement (Schulze, 1995; Olsson and 

Hahn-Hägerdal, 1996). They also have the ability of fermenting a wide spectrum of 

substrates, which is species dependent. The main disadvantage of S. cerevisiae in the 

fermentation of the hydrolysates is its limited substrate utilization range. Yeasts can 

metabolize in both aerobic (via respiration) and anaerobic (fermentation) conditions. 
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Aerobic conditions are used to produce the biomass required for commercial 

fermentation. During respiration organic substrates are completely oxidized by organisms 

and converted to cell mass. There are two sets of requirements for the fermentation step, 

one for cell growth and the other for the production of ethanol (Mulligan, 1994). Fungi 

generally have lower fermentation rates and ethanol yields (Mulligan, 1994). 

 

BACTERIA: Bacteria such as Zymomonas mobilis which has a higher fermentation rate, 

higher specific ethanol productivity, higher specific glucose uptake rate and is also 

reasonably tolerant to ethanol (7%), glucose and high temperatures, offer more 

advantages in comparison to yeasts. In general, the bacteria have higher yields of 

byproducts and lower ethanol tolerance than yeasts (Mulligan, 1994). 

 

2.4 METAL UPTAKE 

 

However some heavy metals are essential elements but most of them at high 

concentrations can be toxic to all living organisms, including microorganisms, by 

forming complex compounds within the cell. According to Spain (2003), heavy metals 

are increasingly found in natural and industrial processes and as some heavy metals are 

necessary for enzymatic functions and cell growth, they can be uptaken and enter the 

cells. There are two general uptake systems: one is quick and unspecific, driven by a 

chemiosmotic gradient across the cell membrane and does not need ATP, and the other is 

slower and more substrate-specific, which needs energy from ATP hydrolysis. The first 

mechanism is more energy efficient according to Nies and Silver (1995), and a variety of 
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heavy metals can  influx into the cell and then there is a greater possibility of toxic effects 

in the cells. Microorganisms have evolved several mechanisms to tolerate the presence of 

heavy metals by efflux of metal ions out of the cells, complexation and accumulation of 

metal inside the cell, reduction of metal ions to a less toxic state or to use them as 

terminal electron acceptors in anaerobic respiration (Nies, 1999). Usually a redox 

reaction occurs during the uptake and efflux of metal ions by microorganisms, which can 

even be used for energy and growth. This resistance and growth in the presence of metals 

and redox reactions is an important implication of microbial heavy metal tolerance 

because the oxidation state of a heavy metal relates to the solubility and toxicity of the 

metal itself according to Spain (2003). Many scientists have been trying to use microbes 

that are able to oxidize or reduce heavy metals in order to remediate metal-contaminated 

sites. 

 

The ability of biological materials to accumulate heavy metals from liquid through 

metabolically mediated or physico-chemical pathways of uptake is defined as biosorption 

by Ahalya et al. (2003). Algae, bacteria fungi and yeasts have proven to be potential 

metal biosorbents (Volesky, 1986). Kratochvil and Volesky (1998) indicated the 

following 6 factors as the main advantages of biosorption over conventional treatment 

methods.  

� Low cost  

� High efficiency  

� Minimisation of chemical or biological sludge  

� No additional nutrient requirement  
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� Regeneration of biosorbent  

� Possibility of metal recovery  

The biosorption process involves a solid biosorbent and a liquid media which contains 

the dissolved contaminants. There are different mechanisms for biosorption of heavy 

metals by microorganisms. Ahalia et al. (2003) classified mechanisms into two different 

categories: 

 A: According to dependence on cell's metabolism.  

� Metabolism dependent  

� Non -metabolism dependent 

 B: According to the location that the metal will be found in microorganism 

� Extra cellular accumulation/ precipitation  

� Cell surface sorption/ precipitation   

� Intracellular accumulation. 

The intracellular accumulation which is uptaking the metal into the cell membrane is a 

metabolism dependent and will take place with viable cells. However, the cell surface 

biosorption is a physico-chemical interaction between the metal and the functional groups 

of cell wall surface, according to Alhalia et al. (2003), and is not metabolism dependent. 

Cell walls of microbial biomass, mainly composed of polysaccharides, proteins and lipids 

have abundant metal binding groups such as carboxyl, sulphate, phosphate and amino 

groups and can bind with metals. The surface sorption can take place with non viable 
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microorganisms compared to the intercellular accumulation which is related to the active 

defense reaction of the viable microorganism in the presence of toxic, material. 

According to Kuyucak and Volesky (1988), the surface biosorption is relatively rapid and 

can be reversible, thus allowing metal recovery. While the surface biosorption is very 

rapid, the intracellular accumulation is slower and takes a longer time (Volesky and 

Holan, 1995).  

 

The extracellular accumulation can be metabolism dependent or metabolism independent 

(Ercole et al. 1994). If the microorganism produces compounds that cause precipitation, it 

is dependent on metabolism but if the metal precipitates after chemical reaction between 

the metal and cell surface then it is not dependent on metabolism. 

Some other researchers such as Brady and Duncan (1994) add oxidation-reduction 

reactions as another metal uptake process for microorganism tolerance mechanism 

against metals. 

 

As mentioned before, yeast cells are among the microorganisms which can uptake 

various heavy metals, preferentially accumulating those of potential toxicity and also 

those of value. Gupta et al. (2000) noted yeast have shown an excellent potential of metal 

biosorption and mentioned Saccharomyces specifically. Brady and Duncan (1994) found 

that yeast biomass could provide an effective bioaccumulation for removal and/or 

recovery of the metal cations from aqueous solutions with the mechanisms of 

accumulation in wastewaters of pH 5-9 and for copper, the quantities of accumulated 
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copper depended on the ratio of ambient metal concentration to biomass quantity. Copper 

accumulation was only slightly affected by the variations in temperature. 

 

 

 Table 2.6: Some biomasses tested for uptaking chromium and copper  

    by different sources. 

Metal Biomass Biomass class Metal uptake (mg/g) 

Cr Bacillus sp.  Bacteria        118 (Cr3+) 

             60 (Cr6+) 

  Rhizopus arrhizus Fungus 31 

  Candida tropicalis yeast 4.6 

  Streptomyces nouresei bacteria 1.8 

  Penicillium chrysogenum fungus 0.33 

Cu  (Bacillus subtilis) bacteria 152 

  (Bacillus subtillis) bacteria 146 

  Candida tropicalis yeast 80 

  (fungal biomass bacteria 76 

  manganese-oxidizing bacteria bacteria 50 

  (Bacillus licheniformis) bacteria.  32 

  Cladosporium resinae fungus 18 

  Rhizopus arrhizus fungus 16 

  Saccharomyces cerevisiae yeast 17-40 

    10 

    6.3 

  Pichia guilliermondii yeast 11 

  Scenedesmus obliquus freshwater algae 10 

  Rhizopus arrhizus fungus 10 

  Penicillium chrysogenum fungus 9 

  Streptomyces noursei bacteria 5 

  Bacillus sp. bacteria 5 

  Penicillium spinulosum fungus 0.4-2 

  Aspergillus niger fungus 1.7 

  Trichoderma viride fungus 1.2 

  Penicillium chrysogenum fungus 0.75 

Adapted from Volesky and Holan (1995)  
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Volesky and Holan (1995) collected a list of metals and the microorganisms which 

adsorb them (Table 2.6) based on different references. They named Saccharomyces 

cerevisiae (bakers' yeast) among the microorganisms which can be used for copper 

biosorption. 

 

 

 

Arsenic tolerance  
 
 

 

 

  Figure 2.7: Schematic arsenic detoxification method in yeast 

     (Tripathi et al., 2007) 
 

Arsenic is an extremely toxic element to living organisms specially the inorganic forms 

of As (V) and As (III). While the toxicity of arsenate is due to its action on an analogue 

of phosphate and then interference with essential cellular processes such as ATP 
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(Adenosine Triphosphate, which supplies the energy used by an organism in its daily 

operations) synthesis, the toxicity of arsenite is because of its tendency to bind to 

sulfhydryl groups and causing damaging effects on general protein functioning (Tripathi 

et al., 2007). Arsenic (III) is more toxic than arsenic (V). 

 

 

According to Rosen (2002), all living organisms have a detoxification system for arsenic. 

They uptake As (V) via phosphate transporters and As(III) by aguaglyceroporins, reduce 

As(V) to As(III) by arsenate reductases enzymes and then remove As(III) from the 

cytosol to the external medium or sequester it in interacellular compartments (Figure 2.7) 

as free arsenite or conjugates with GSH or other thiols in the vacuole. (Rosen, 2002; 

Tripathi et al., 2007). 

 

 

Copper tolerance 

 

 

As shown in Table 2.6, Volesky and Holan (1995) suggested S. cerevisiae as a 

microorganism capable of uptaking copper. Bakers' yeast is an inexpensive available 

source of biomass for removal of metals from wastewater. Cu
+2

 and Cr
+2

 are among the 

metals which Goksungur et al. (2003) believe the yeast which are capable of 

accumulating these chemicals. Crist et al. (1990) demonstrated that copper was adsorbed 

not only by ion exchange but also by additional covalent bonding with the carboxyl 

groups. Biosorbed copper was also found to bind by chelation between the cis-oriented 

hydroxyls yeast α-mannans, which form an insoluble complex and help in their isolation 

(Peat et al., 1961).  
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Goksungur et al. (2003) investigated the effects of different pretreatments on metal 

uptake of S. cerevisiae by treating with ethanol, heat and caustic soda. The highest metal 

uptake (21.1mg/g) was obtained by caustic treated yeast and 7.9 mg/g of metal uptake 

was obtained with ethanol treated yeast. They suggested that the short contact time of 

biosorbent with metal solution for biosorption showed the main mechanism of uptake 

was adsorption onto the biosorbent surface. Copper cations begin to be bound at 

approximately pH 4, reaching maximum sorption at the pH around 6. At lower 

concentrations of Cu
+2

 (10-50 mg/l), biosorption was complete in about 5 min but at 

higher concentrations it took 30-60 min (Goksungur et al., 2003). 

 

Yeast cells are selective in their uptake of metal cations and more than 70% of the Cu
+2 

was removed over the total volume of 800 ml effluent passed through the immobilized 

yeast column used by Brady and Duncan (1994). S. cerevisiae is capable of accumulating 

considerable quantities of Cu
+2

 in the presence of excess monovalent Na
+ 

(5000 µmol/L) 

and the level of copper accumulation is dependent on the ambient metal concentration 

and is inhibited by extremes of ambient pH and not inhibited by an elevated ionic 

strength (Brady and Duncan, 1994). 

 

 

Chromium tolerance  
 

 

Extremely toxic hexavalent chromium is an anion with properties that are 

correspondingly different from those of the usual metal cations (Volesky and Holan, 

1995). It can easily be chemically or even biochemically (Paknikar and Bhide, 1993; 
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Reischl et al., 1993), reduced to its trivalent state, making it more removable (Siegel et 

al., 1986).  

 
 

Immobilization 
 

 

According to many researchers such as Brady and Duncan (1993) or Gupta et al. (2000) 

the microorganisms used for biosorption of heavy metals must be immobilized or 

contained and during the continuous industrial process, it is important to utilize an 

appropriate immobilization technique. 

 

The free cells may provide valuable information in laboratory experimentation but 

immobilized biomass offers many advantages including better reusability, high biomass 

loading and minimal clogging in continuous flow system. The free cells generally have 

low mechanical strength and small particle size and excessive hydrostatic pressures are 

required to generate suitable flow rates. High pressures can cause disintegration of free 

biomass. These problems can be solved by using immobilized cell systems (Gupta et al., 

2000). 

 

Gupta et al. (2000) specifies some matrices which have been employed for 

immobilization of cells. One of them is the entrapment in the matrix of insoluble Ca-

alginate which has been used in metal recovery by both viable and non-viable cells. 

Another important matrix being used for immobilization for metal removal is silica. They 

indicate that polyurethane and polysulfone are better than polyacrylamide and alginate 

matrices as immobilization supports. 
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Metal Recovery from Biomass  
 

 

One of the important industrial applications of biosorption is recovering the metal ions 

from the biosorbent and regenerating the biosorbents for reuse. Effective biosorption 

technology needs efficient and economical regeneration of biosorbent after metal 

desorption, without any damage to the biomass. Physical sorption to cell wall structures 

should be reversible and allow for metal recovery (Kuyunak and Volesky, 1988). 

 

Some metal ions show marked pH dependence for binding to biomass. Such metal can be 

desorbed easily from the biosorbent altering the pH. Dilute HCl, H
2
SO

4 
and HNO

3 
have 

been successfully used for desorption of metals from the biomass. Increasing the acidity 

generally leads to an effective removal of metal(s) from the biomass, but it may cause 

permanent damage to the biomass surface structure resulting in a great reduction in metal 

sorption in the next cycle. Also the physico-chemically sequestered metal to the cell 

surface can be easily desorbed by EDTA (ethylenediamine tetraacetic acid) (Gupta et al., 

2000). 

 

For recovering bioaccumulated (Cu, Zn, Co, Cd, Ni, Cr) chlorides from immobilized 

S.cerevisiae, Wilhelmi and Duncan (1995) used 0.1M HCl. The desorption protocol 

utilized a minimum quantity of acid to yield concentrated, low volume metal eluents. The 

initial recovery of copper, cobalt and cadmium was 100%. The optimum pH for 

chromium adsorption was below 2. Increasing the concentration of HCl (1M) gave a 34% 

chromium recovery. 
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Other applications 
 

 

Table 2.7.: Commercial Cellulosic Ethanol Plants in the U.S.  

(Operational or under construction) 
 

Company   Location   Feedstock   

Abengoa Bioenergy Hugoton, KS Wheat straw 

BlueFire Ethanol Irvine, CA Multiple sources 

Colusa Biomass Energy Corporation Sacramento, CA Waste rice straw 

DuPont Danisco Vonore, TN Corn cobs 

Fulcrum BioEnergy Reno, NV Municipal solid waste 

Gulf Coast Energy Mossy Head, FL Wood waste 

KL Energy Corp. Upton, WY Wood 

Mascoma Lansing, MI Wood 

POET LLC Emmetsburg, IA Corn cobs 

Range Fuels Treutlen County, GA Wood waste 

SunOpta Little Falls, MN Wood chips 

US Envirofuels Highlands County, FL Sweet sorghum 

Xethanol Auburndale, FL Citrus peels 

   

(Decker, 2009) and (http://www.grainnet.com/pdf/cellulosemap.pdf) 

 

 

The selective adsorption of As(V) over As(III) by S.cerevisiae yeast is the fundamental 

basis of Koh et al. (2005) and Koh and Pak (2005) research for separation and sensitive 

determination of arsenic species. By using an immobilized yeast column, S.cerevisiae 

was covalently bonded onto a controlled pore glass which showed selective 

preconcentration of As(V) over As(III), the inorganic arsenic was separated and the 

effluent was directly connected to hydride generation to increase sensitivity. The 

optimum pH and flow rate were 7 and 1.5 ml/min, respectively. The most important 

factor for controlling sorption of ions unto the column was pH, which was controlled 
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using NaHCO3/ Na2CO3, strong acid, and acetic acid/ acetate buffer. The sorption was 

the most efficient at pH 7 and slowly decreased thereafter. By proper pH selection, 

As(V) is retained longer in the column and eluted out by nitric acid. Koh et al. (2005) 

claim the technique shows accurate results for determination of arsenic species. 

 

Ethanol economics 

 

On February 28, 2007, the U.S. Dept. of Energy announced $385 million in grant funding 

to six cellulosic ethanol plants for 40% of the investment costs 

(http://www.energy.gov/news/4827.htm). The promoters of those facilities were 

supposed to pay for the remaining 60%. They estimated a total of $1 billion would be 

invested for an approximately 530 million liter capacity which meant $1.8/annual liter 

production capacity in capital investment costs for pilot plants (this would work out to 

$.09/L over the 20-year life of a facility) and future capital costs were expected to be 

lower. The Department of Energy estimated that it cost about $0.58 per liter to produce 

cellulosic ethanol, which is twice as much as ethanol from corn. 

 

According to the Renewables Global Status Report ,2009 

(http://www.unep.fr/shared/docs/publications/RE_GSR_2009_Update.pdf), some new 

commercial-scale cellulosic ethanol plants were developed in 2008 (Table 2.7). In the 

United States, plants of capacity totaling 12 million liters (3.17 million gal) per year were 

operational, and an additional 80 million liters (21.13 million gal.) per year of capacity in 

26 new plants were under construction. In Canada, capacity of 6 million liters per year 
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was operational. In Europe, several plants were operational in Germany, Spain, and 

Sweden and a capacity of 10 million liters per year were under construction. 

 

2.5 CONCLUDING REMARKS 

 

In brief, disposal of CCA treated wood is an environmental increasing concern in U.S. 

and Canada. Because of the leaching of chromium, copper and arsenic, landfilling cannot 

be a safe method for disposal of CCA treated wood. Then pretreatment to remove metals 

from CCA treated wood before landfilling could decrease the risk of environmental 

contamination after landfilling. On the other hand wood is one of the lignocellulosic 

sources of production of ethanol. Producing ethanol from CCA treated wood cannot only 

solve the disposal problem but may also make it profitable.  

 

In this research, removal of chromium, copper and arsenic and the feasibility of 

producing ethanol from CCA treated wood, as a solution for disposal of CCA treated 

wood and the capability of Baker's yeast to uptake chromium, arsenic and copper from 

hydrolysate, which contains leached metal from CCA wood, are studied.  
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CHAPTER THREE 

MATERIALS AND METHODS 

 
To investigate the possibility of producing ethanol from CCA treated wood and the fate 

of existing heavy metals several experiments were performed. This chapter is devoted to 

the description of the materials and the methods used in this study. 

 

3.1 TESTING PLAN 

 

 

To prove the feasibility of ethanol production, fermentation tests  of sugar solutions in the 

presence of chromium, arsenic and copper compounds were performed,  followed by 

hydrolysis and fermentation of untreated and treated wood. In the next step, the growth of 

yeast and the removal of metals were monitored by applying appropriate tests and 

measurements (Visible absorbance and metal concentration measurements during 

fermentation) on fermentation of treated and untreated wood hydrolysate. At the end,  

TCLP and SPLP tests were performed and the amounts of metals in hydrolysed, treated, 

weathered and ground wood were measured. Figure 3.1 shows the protocol and testing 

plan used during this research.                                                                                                                                                                                                                                                                           
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      Figure 3.1: Protocol and testing plan 
 

3.2 MATERIALS 

 

 

� Treated Wood 

CCA treated wood is the most frequently used wood, for exterior applications, in Canada. 

This greenish wood was sold in different renovation stores in different sizes. According 

to Forintek Canada Corp., the most frequently used Canadian softwood species for 

exterior applications are:  
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• Western Red Cedar 

• Eastern White Cedar 

• Pine (white, Murray, red) 

• Douglas fir 

• Spruce 

 

The wood samples for these experiments were 2 pieces of 2.5 cm x 15 cm x 12.5 cm 

treated wood (were bought in 2002). According to the seller’s information (RONA), for 

this size of wood, they usually used Gray Pine species. Most disposed wood is old 

preserved wood and the amounts of their remaining preservatives are less than new wood. 

Thus by experimenting on new treated wood the maximum content of metals and the 

worst condition is tested. An experiment for hydrolysis and fermentation of weathered 

wood was also performed. 

 

� Wood (not treated): 

Chips of gray pine wood, produced during cutting and rasping, were prepared by RONA.  

 

� Yeast: 

Active dry Fleischmann’s Baker’s yeast (Saccharomyces cerevisiae) was purchased from 

a local supermarket. 

 

Other chemicals include:  
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� Acids: 

Nitric acid: provided by Fisher Scientific, trace metal grade, 67-71% purified. 

Sulfuric acid: provided by Fisher Scientific, reagent A.C.S, 95-98% purified. 

Hydrochloric acid: provided by Fisher Scientific, trace metal grade, 67-71% purified. 

Glacial acetic acid :provided by Fisher Scientific, reagent A.C.S. 

 

 

� Nutrients:  

Sodium phosphate monobasic (NaH2PO4), magnesium sulfate (MgSO4), ammonium 

phosphate dibasic (NH4)2HPO4, yeast extract. 

 

� Sugars: 

Dextrose certified anhydrous, D-galactose, D- (+)xylose, D(+)-mannose(99%). 

 

� Heavy Metals: 

Sodium arsenate dibasic (Na2HAsO4 .7H2O), chromium chloride (CrCl3. 6H2O), cupric 

chloride (CuCl2. 2H2O), arsenic standard for atomic adsorption (1000 ppm), chromium 

standard for atomic adsorption (1000ppm), copper standard for atomic adsorption (1000 

ppm). 

 

� pH adjustment chemicals : 

KOH(1N), Sulfuric acid (85%, 4.4% and 1N), NaOH(50% and 0.2N).  

 



 59 

3.3 ANALYTICAL PROCEDURES 

 

HPLC 

A Beckman  Coulter HPLC (High Performance Liquid Chromatography), System Gold 

with Model 508 Auto sampler was used to measure the amount of produced ethanol, 

consumed sugars and metal species in liquid phase. Supelco C-610H and Shodex SP0810 

columns, which are ideal for separating the fermentation products according to company 

recommendation and a Shodex KC811  column for arsenic speciation and a Hamilton 

PRPX100 column for chromium speciation and copper concentration, were used. A Jasco 

Refractive Index (RI) detector, model RI1530 was employed. 

 

Table 3.1 shows the specifications of the HPLC columns used for this research and the 

retention times of sugars and ethanol according to the Supelco Bulletin 887B, and 

Showdenko Company information. Table 3.2 gives the same information for arsenic (III 

and V) based on Shodex Company recommendations and copper based on the Hamilton  

 

website which was modified by not adding EDTA and using 192 nm wavelength instead 

of 254 nm. The conditions for chromium (VI and III) were obtained based on  

experiments. 
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Table 3.1: Retention times on HPLC column 

Cat.No. 

Supelco C-610H 

59320-U 

Shodexª 

SP0810 

Dimension (mm) 

Temperature 

Mobile phase 

 

Flow rate (ml/min) 

Detector 

300 x 7.8 

30° C 

         0.1% H3PO4 in 

HPLC grade water 

 

0.5 

RI
b
 

300 x 8 

50° C 

 HPLC grade water 

 

1 

RI
b
 

Compound Retention time (min) Retention time (min) 

Glucose 

Galactose 

Mannose 

Xylose 

Ethanol 

          12.1 

          12.9 

          12.8 

          12.8 

           25.6 

              7.2 

               8.8 

             10.5 

             11.8 

               10.4 

ª http://www.sdk.co.jp 

b
RI: Refractive index detector 

 

Inductively Coupled Plasma Mass Spectrometry 

 

Copper, chromium and arsenic in the liquid were measured by an Agilent 7500 

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) which is based on coupling  

an inductively coupled plasma as a method of producing ions (ionization) with a mass 

spectrometer as a method of separating and detecting the ions.  
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  Table 3.2. Retention times on HPLC column for metals. 

Cat.No. 

Hamilton 

PRPX100 

Shodexª 

KC811 

Dimension (mm) 

Temperature 

Mobile phase 

 

Flow rate (ml/min) 

Detector 

150 x 4.6 

25° C 

3mM sulfuric acid 

 

 

2 

UV (192nm) 

300 x 8 

40° C 

12mM phosphoric acid 

 

 

1 

UV (192 nm) 

300 x 8 

50° C 

 HPLC grade water 

 

1 

UV (192 nm) 

Compound Retention time 

(min) 

Retention time (min) Retention time 

(min) 

Copper 

Chromium(VI) 

Chromium(III) 

Arsenic(V) 

Arsenic (III) 

Acetic acid 

 

 12.1 

1 

2.5 

 

 

 

 

 

 

 

6.5 

8.2 

 

 

 

 

 

5 

ª http://www.sdk.co.jp 

 

Digestion 

 

To measure the amount of heavy metals by ICP or AA, in sulfuric acid solutions during 

the first and the second steps of hydrolysis and also in the solution after fermentation, the 
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solutions were digested. According to the Acid digestion method, EPA 3005A 2 ml of 

concentrated nitric acid (70%) and 5 ml of concentrated HCl (67%)                                                     

were added to the 100 ml of sample leachates in flasks. The solutions were heated on hot 

plates at 90-95 °C until the volume was reduced to 15-20 ml. Then they were left to cool 

and adjusted to 100 ml by distilled water, before measuring by ICP or AA.  

 

UV/VIS spectrophotometer 

 

Microorganism cell density was determined based on optical absorbance. Measurements 

were made using a Perkin Elmer Model Lambda 40 spectrometer at a 600 nm 

wavelength. The samples were diluted to an absorbance of less than 1.  For the samples 

after a few minutes of yeast addition, the dilution of 1/20 was acceptable while for 

samples after 6 hours a dilution of 1/100 was necessary. 

 

XRF 

  

The amount of arsenic, chromium and copper in the solid CCA treated wood was 

measured with the X-ray fluorescence (XRF) analyzer (Niton XLp 700 series 

Environmental Analyzer) according to the EPA Method 6200 (Field Portable XRF 

Spectrometry for the Determination of Elemental Concentrations in Soils and Sediments). 

The in situ mode was used and  ground, air dried treated, untreated, weathered, and 

hydrolyzed wood were analyzed to determine the amount of heavy metals.  
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3.4 EXPERIMENTAL PROCEDURES 

 

Procedure of fermentation of sugars to ethanol as preliminary tests  

   

To investigate the possibility of the fermentation of sugar by Baker’s yeast in the 

presence of chromium, copper and arsenic, some experiments were carried out. The 

fermentation was performed using 250 ml flasks placed on a Thermolyne adjustable 

reciprocating orbital shaker adjusted on 100 rpm with a Fisher Scientific incubator model 

304, at 30 ºC under aerobic conditions. The amount of nutrients were calculated for 200 

ml hydrolysate, according to the Palmqvist et al. (1996) fermentation procedure 

including: 2.39g NaH2PO4, 0.005g MgSO4, 0.05g (NH4)2HPO4, 0.5g yeast extract, 3.5g 

glucose, 0.95g mannose, 0.15g galactose and 0.39g xylose which were added to every 

flask in all experiments  (unsterilized). For controls, nothing else was added. In flasks to 

evaluate the presence of heavy metals, 11 g (CrCl3 . 6H2O) or equivalent liquid 

chromium standard, 4.74 g  (Na2HAsO4 .7H2O) or equivalent liquid arsenic standard, 

3.69 g (CuCl2 . 2H2O or equivalent  liquid copper standard) and a mixture of all was 

added (Appendix A). By adding 170 ml distilled water and adjusting pH to 5.5 using 

sulfuric acid and NaOH, the volumes of all flasks were brought to 200 ml. Finally, 1 g of 

active dry Fleischmann’s Baker’s yeast (purchased from a local super market) was added 

to all flasks except for the controls.  

 

Using 3.5 g of glucose and assuming that all the glucan converts to glucose and that 

according to Table 2.5, 42.4% of pine wood is glucan, then the amount of wood 

fermented to 3.5 g glucose could be a maximum of 8.25 g. Using 50.5% chromium, 21% 
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copper and 38% arsenic according to the Table 2.1, 11 g of CrCl3, 4.74 g of Na2HAsO4 

and 3.69 g of CuCl2 were measured and added to the relevant flasks (A.2, A.3, A.4, A.5). 

 

 

 

Figure 3.2:Experimental set up for sugar fermentation in presence of Cr, Cu and As  

 

To investigate the required time for the fermentation, the experiments using the samples 

without the presence of metals were performed. Several samples (including controls) 

were left in the incubator for 1 hour and 1 to 5 days. The experiments were set in 

triplicate. Results of the first set of experiments showed that no more than 32 hours were 

needed for fermentation. 
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To investigate the effect of heavy metals, the samples contained copper, chromium, 

arsenic separately and a mixture of all together (according to above-mentioned 

calculations) in addition to controls and samples without heavy metals were left in the 

incubator for 24 hours. The amounts of produced ethanol and consumed sugars were 

measured by HPLC. By using equation 3.1 and calculating the theoretical amount of 

produced ethanol and then the ratio of measured ethanol to the theoretical ethanol, the 

yields of ethanol were calculated (Appendix A). 

 

C6H12O6   → 2 C2H5OH  + 2 CO2                                            3.1 

 

Concentrated acid hydrolysis 

 

To produce the sugars for the fermentation, the untreated and treated wood samples were 

chopped and hydrolyzed using the sulfuric acid hydrolysis method suggested by 

Ackerson et al. (1981) which is a prehydrolysis of lignocellulosic biomass by 4.4% dilute 

sulfuric acid (H2SO4) at 100°C for 60 minutes (Figure 3.3). The subsequent liquid acid 

and sugar stream was separated from the solids by using a buchner funnel, neutralized by 

sodium hydroxide and fermented. The solids, mostly cellulose and lignin, entered the 

second stage hydrolyzer and were mixed with 85% concentrated sulfuric acid (H2SO4) at 

100 °C for 10 minutes. Cellulose was converted into C6 glucose sugars. Again the 

subsequent liquid acid and sugar stream was separated from the solids by Buchner funnel, 

neutralized by sodium hydroxide and were fermented. Samples of liquids from both 

hydrolysis stages were taken for digestion and heavy metal measurements.  
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No filter was used because the wood pieces were bigger than the funnel’s holes. 

   

 
 

 

 

 

   

 

 

 

 

 

 
 

Figure 3.3: Acid hydrolysis flow sheet 

 

 

Procedure of fermentation of the hydrolysate 

 

Following the acid hydrolysis, hydrolysates were fermented using 250 ml flasks placed 

on a Thermolyne adjustable reciprocating orbital shaker adjusted on 170 rpm with a 

Fisher Scientific incubator model 304, at 30 ºC under aerobic conditions. The amount of 

nutrients was calculated for 100 ml hydrolysate, according to the Palmqvist et al. (1996) 

fermentation procedure including: 2.39 g of NaH2PO4, 0.005 g of MgSO4, 0.05 g of 

(NH4)2HPO4, and 0.5 g of yeast extract were added to every flask in all experiments 

(unsterilized). By adding distilled water and adjusting the pH to 5.5 using sulfuric acid 

Liquid acid + sugar  

pH 4-6 

4.4% H2SO4 

100°C,  60 min 

nutrients  

Neutralization 

Fermentation 

wood  

NaOH 

85% H2SO4 

100°C,  10 min 

Na OH 

pH 4-6 

Neutralization 

nutrients  

Fermentation 

Liquid acid + sugar  
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(85%, 4.4%) and NaOH (50% and 0.2N), the volume of all flasks were brought to 100 

ml. Finally, 2g active dry Fleischmann’s Baker’s yeast (purchased from a local super 

market) were added to all flasks except for the controls. To compare the effects of 

different amounts of yeast, the samples containing 4 g of yeast were prepared also. 

Before starting the fermentation, after 4 hours of fermentation and at the end of 

fermentation (24 hours), samples were centrifuged (3500 rpm, 10 min), filtered (using a 

0.45 µm syringe filter) and analyzed by HPLC for ethanol production and sugar 

consumption. For measuring the total amount of heavy metals, the centrifuged samples of 

hydrolysates before and after fermentation were digested, filtered (using Whatman No.41 

filter papers) and analyzed by ICP. To measure the amounts of chromium and arsenic 

species and also copper, different samples were analyzed by HPLC, using appropriate 

columns. 

 

Toxicity characteristic leaching procedure (TCLP) 

 

The TCLP test (EPA Method 1311) was performed for the remaining solids  of wood 

(Figure 4.13) after the hydrolysis to determine if the values were less than 5 ppm (the 

maximum acceptable limit) for chromium and arsenic. A volume of 5.7 ml of glacial 

acetic acid, followed by 64.3 ml of 1N sodium hydroxide was added to 500 ml of distilled 

water and then was diluted to a volume of 1 liter (pH of 4.93 + 0.05) as the TCLP 

extraction fluid. The wood remains were extracted with an amount of extraction fluid 

equal to 20 times the weight of solid phase for 18 hours on a Thermolyne adjustable 

reciprocating orbital shaker adjusted on 30 rpm. Leached chromium and arsenic were 

measured by HPLC. 
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Synthetic precipitation leaching procedure (SPLP) 

 

The SPLP leaching fluid is a simulated acid rain, which was prepared by adding 0.4 ml of 

a dilute sulfuric acid and nitric acid solution (60/40 mix) to a 2L volumetric flask and 

bringing the volume with reagent water to achieve a final pH of 4.20+0.05. The ratio of 

solid to liquid was 1:20 (US EPA method 1312). The SPLP procedure was used to 

simulate weathered wood from new CCA treated wood. 

 

Biomass concentration and growth rate 

 

The dry cell weight method was used to calibrate the measured Visible adsorption of the 

growth of biomass during fermentations using CCA treated and untreated wood and also 

for glucose fermentation in the absence and presence of copper, arsenic and chromium 

(each one separately). In this method, 5 ml samples of the fermentation broth were 

centrifuged (3800 rpm) at room temperature for 10 min. The biomass yeasts were 

harvested by filtration through a pre-weighed membrane filter (cellulose nitrate filter, 1.2 

µm pore size, Millipore), dried at 105°C for 24 hours to a constant weight. The difference 

of membrane weight and the final weight (after filtration and drying) divided by the 

volume gives the concentration. The growth rate was determined from the graph of 

concentration (UV/Visible absorbance) versus time. The growth rate is L = 

log(concentration) of phase B(log phase) versus time (Figure 3.4).  
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    Figure 3.4: Yeast growth as a function of time 
 

 

dL

dT
kL=  

 

The biomass weight was plotted versus time, for the yeasts which were grown without 

metals, harvested and exposed to the metals to compare their uptake with the yeasts that 

have not been previously exposed to metals and also the production of ethanol versus 

time were compared to the metal uptake graphs versus time to determine the mechanism 

of metal uptake of the yeasts.   
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                               CHAPTER FOUR 

    RESULTS AND DISCUSSION 

 
As mentioned earlier, there are three main steps to produce ethanol from wood including 

hydrolysis, fermentation and ethanol recovery by distillation. Among them fermentation 

is the only step in which living organisms (baker’s yeast in our case) are used. Therefore 

the existence of heavy metals along with wood could have negative effects on 

fermentation process and prevent the whole process. To investigate the feasibility of the 

process, fermentation of sugars in the presence of arsenic, copper and chromium was 

tested as the first preliminary step. Then several experiments using CCA treated wood 

and untreated wood were performed to investigate the effect of heavy metals on ethanol 

production as well as the effect of the process on heavy metal removal. 

 

4.1  FERMENTATION  

 

 

4.1.1 PRELIMINARY EXPERIMENTS 

 

In order to find the duration of fermentation process, different batches for 1 hour, 1 day, 2 

days, 4 days and 5 days were set up. The results are as shown in the Figure 4.1. It took 

approximately 32 hours to produce 8.3g/l of ethanol (the maximum amount obtained). 
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When the experiment was conducted over a longer duration, no more ethanol was 

produced.  

 

 

 

 

 

 
 

 

 

Figure 4.1: Ethanol production from sugars (3.5% glucose solution containing 

mannose, xylose and galactose according to AppendixA) without the presence of 

heavy metals over a period of  5 days  
 

 

The theoretical amount of ethanol production was calculated using the formula 

A.1(Appendix A) and a maximum yield of 93% was obtained for the entire process. The 

yield as a function of time is shown in Figure 4.2. 
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Figure 4.2: Ethanol production yield from sugars (3.5% glucose solution containing 

mannose, xylose and galactose according to AppendixA) without the presence of 

heavy metals over the period of 5 days   
  

 

According to Taherzadeh et al. (1997), some by-products of hydrolysis process such as 

furfural (HMF) act as inhibitors for the fermentation process and then the yield of the 

fermentation process will be less than 100%.  Lower yields require less time (Figure 4.2) 

and then the fermentation time can be decreased to less than one day.  
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Figure 4.3: Ethanol production after 44 hours of fermentation of sugars (3.5% 

glucose solution containing mannose, xylose and galactose)  in the presence of metals 

according to Appendix A  
 

Experiments that were performed to investigate the effect of chromium, copper and 

arsenic on the fermentation of sugar and the results are shown in Figure 4.3. The amounts 

of chromium and arsenic added to the flasks were calculated according to Tables 2.1 and 

2.5 and based on 3.5 g glucose per every flask. For copper, the liquid standard copper 

was used. In Figures 4.3 and 4.4, chromium and arsenic and copper did not have any 

negative effect on fermentation and almost the same amount of ethanol was produced in 

flasks with no metals and flasks containing chromium, copper and arsenic.  
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Figure 4.4: Ethanol yield after 44 hours of fermentation of sugars (3.5% glucose 

solution containing mannose, xylose and galactose)  in the presence of metals 

according to Appendix A  

 

   

    

 

Figure 4.5: Monitoring of the amounts of mannose, xylose and galactose by HPLC 

during fermentation without the presence of heavy metals  (3.5% glucose solution 

containing mannose, xylose and galactose according to AppendixA) 
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According to the SUPELCO bulletin 887B, the retention times of mannose, xylose and 

galactose are almost the same for the column used and therefore there was one common 

peak for all these sugars. As seen in  Figure 4.5, during the fermentation the peak height 

reduced to the minimum of 0.04 volts after about 30 hours and then there was no 

noticeable reduction. It seems that some of these sugars were not consumed during 

fermentation. According to Ogier et al. (1999), Baker’s yeast can only consume hexoses 

and not pentoses and then xylose, which is a pentose, would not be consumed during 

fermentation. More tests were performed to investigate the effect of xylose  on yeast and 

the results will be discussed later in this chapter. Because the amount of mannose added 

to the flasks is almost 2.5 times of xylose and 6 times of galactose, the related peak to 

mannose covers the other peaks but later when the mannose and galactose were 

consumed by yeasts the remaining is probably xylose (Olsson and Hahn-Hagerdal, 1996). 

As seen in Figure 4.5 the minimum height of peak occurred around 32 hours, which was 

also the maximum ethanol production (Figure 4.1). According to Figure 4.6, all glucose 

was consumed by the yeast during fermentation and it seems that glucose was consumed 

and finished more quickly than the other sugars. 

 

To have a better understanding of the behavior of the yeast and the mechanism of metal 

uptake by the baker’s yeast, the growth rate of the microorganisms was monitored during 

the fermentation in all the experiments by measuring the absorption of samples, using a 

Visible spectrophotometer at a 600 nm wavelength.  
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Figure 4.6: Glucose consumption during fermentation of sugars without the 

presence of heavy metals (3.5% glucose solution containing mannose, xylose and 

galactose according to AppendixA)  

 

There is a linear relationship between absorbance and concentration of yeast (Appendix 

B). Therefore in all of the experiments the absorbance of samples during the fermentation 

was measured and the concentrations were calculated based on the linearity and the 

measurement of concentration and absorbance of 2 points in every sample. Monitoring of 

cell densities indirectly by optical methods has been mentioned by many researchers such 

as Taherzadeh (1999).  
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                  Figure 4.7: Yeast cell density during fermentation of 2% glucose solution 

 

       

                   Figure 4.8: Yeast cell density during fermentation of 2% xylose solution 
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Figures 4.7 and 4.8 show the cell density of the yeast during the 30 hour period of 

fermentation using glucose and xylose as sources of carbon, respectively. During the 

fermentation of a glucose solution, yeast can grow almost 30 % more than fermentation 

of a xylose solution. Also there is no ethanol production in the flasks containing xylose. 

These results show that baker’s yeast cannot consume xylose (which is a pentose) as 

easily as glucose or it may be yeast extract which is consumed as the only source of 

carbon during fermentation of xylose solution. As there was no sterilization in all tests 

then there is also the possibility of bacterial growth in the solutions. 

 

The acclimation time for yeast when there are nutrients and glucose, pH 5.5 and 

temperature of 30˚C is very short and in less than 4 hours, the cell concentration reaches 

a maximum (Figure 4.7). Comparison of Figures 4.7 and 4.9 shows that when the 

maximum cell density is reached after 4 hours of fermentation, ethanol production 

continues and after almost 6 hours, the maximum amount of ethanol is produced. 

 

To investigate the effect of heavy metals, existing in the CCA, on the ethanol production 

and the whole process, 10 g of small pieces of CCA treated wood (1.6 cm x 0.6 cm x 

1cm) were hydrolyzed using 4.4% sulfuric acid followed by 85% sulfuric acid and then 

fermentation for 24 hours under a temperature of 30ºC and volume of 100 ml per flask. 

Following the first fermentation, the same amounts of yeast were added to the samples 

and were left in the incubator on the shaker for another 24 hours. Figures 4.10 and 4.11 

show the production of ethanol and consumption of glucose, galactose and xylose in 

hydrolysates of 4.4% and 85% during the 1
st
 and 2

nd
 fermentations. Both figures show 
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that at some point the fermentation process  stopped. However the pH was around 5 and 

the new amounts of yeast were added for the second fermentation but there was not much 

ethanol production. This may be because of the by- products during fermentation, which 

are toxic to the yeast. Calculating about 58.9% ethanol production yield (according to the 

maximum production of 6 g/l ethanol and 20 g/l glucose in the system (Figure 4.10) and 

comparing with the amount of 93% ethanol production yield when there is no hydrolysate 

in system (Figure 4.2) confirms the inhibitory effects of hydrolysis by- products. Azhar et 

al. (1982), Taherzadeh et al. (1997) and many other researchers confirm the inhibitory 

effects of by products on the fermentation process.   

        

     

      Figure 4.9: Ethanol production during fermentation of a 2% glucose solution 
 

The most important by products are furans (furfural and 5-hydroxymethyl furfural), 

carboxylic acids (e.g., acetic acid) and phenolic compounds (e.g. phenol) (Taherzadeh,  
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       Figure 4.10: Sugar consumption and ethanol production during  

          the fermentation of CCA treated wood hydrolysate (4.4% sulfuric acid) 

 

1999). It seems that the acclimation time for fermentation of treated wood hydrolysate 

(Figure 4.12) is about 2 hours which is a little bit longer than the glucose fermentation 

(Figure 4.7). One of the probable reasons is because the conditions in wood hydrolysate 

are not as favorable as glucose media and some materials such as furans are produced 

during wood hydrolysis which can be inhibitory to the microorganisms. Also the 

maximum cell density is less than when there was a glucose solution. However, in both 

fermentations, after almost 4 hours, the cell density reaches its maximum. 
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               Figure 4.11: Sugar consumption and ethanol production during  

         the fermentation of CCA treated wood hydrolysate (85% sulfuric acid) 
 

4.1.2 COMPLEMENTARY AND CONTROL EXPERIMENTS 

 

Figure 4.13 is the amount of ethanol production during the fermentation of CCA treated 

wood hydrolysate. Yeast starts to produce ethanol 4 hours after starting fermentation, 

which is almost at the end of log phase or start of the stationary phase (Figure 4.12). But 

for the glucose sample, there is no delay in the start of the ethanol production (Figure 

4.9), as there is no acclimation phase (Figure 4.8). Thus, the shorter acclimation time 

leads to a faster ethanol production. 
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           Figure 4.12: Yeast cell density during fermentation of  

                CCA treated wood hydrolysate (4.4%)  
 

              

      Figure 4.13: Ethanol production during fermentation of  

        CCA treated wood hydrolysate (4.4%) 
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  Figure 4.14: Yeast cell density during fermentation of  

              untreated wood hydrolysate (4.4%) 

 

 

               Figure 4.15: Yeast cell density during fermentation of  

   untreated wood hydrolysate (4.4%) 

    (2% sugar was added) 

 

To compare the fermentation of treated and untreated wood, 10 g of untreated wood were 

hydrolysed and fermented by the same procedure as treated wood. At the same time to 
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make more comparisons, 2% sugar was added to some samples and the results of cell 

density and ethanol production are shown in Figures 4.14- 4.16. 

 

 

      

     Figure 4.16:Ethanol production during fermentation of  

       untreated wood hydrolysate (4.4%) 
 

As shown in Figures 4.14 and 4.15, the maximum cell density is not affected by adding 

more glucose. However there may be a little more ethanol production when glucose was 

added (Figure 4.16).  

 

As almost the same amount of ethanol was produced by treated and untreated wood thus 

the amount of arsenic, chromium and copper doesn’t affect ethanol production (Figures 
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4.13 and 4.16). However there are differences between the maximum cell densities 

(Figures 4.12 and 4.14). 

 

 

 

 

 

           
 

               Figure 4.17:Yeast density during 1
st
 and 2

nd
 cycle fermentation  

    of CCA wood hydrolysate (4.4%).  

The 2nd fermentation cycle refers to fermentation of hydrolysate by adding 2g yeast 

at the beginning and then 2g more after 6 hours of fermentation  

 

To understand the yeast activity better, other tests were performed and after 8 hours of 

fermentation of hydrolysates, the pH was measured.  The pH values were about 4.5 to 5 

which are still tolerable for the yeast. Again 2g of yeast were added to the samples which 

were left for fermentation. These samples are referred to as the 2
nd

 cycle containing the 

amount of (2g + 2g) of yeast (Figure 4.17). The cell density of samples containing 4g 

yeast are shown in Figure 4.18. 

0

5

10

15

20

25

30

35

0 20 40 60

C
e

ll
 d

e
n

s
it

y
 (

g
/L

)

Time (h)

1st cycle

2nd cycle



86 

 

 

   Figure 4.18:Yeast density using 4 g yeast per 100 ml  

    CCA wood hydrolysate (4.4%) 

 

Cell density for different samples, were summarized in Figure 4.19. However the 

maximum cell density in the second cycle is much higher than samples containing 2 g 

yeast but it is not as high as the samples containing 4g yeast.   It means adding yeast in 

two steps (6 hour delay between yeast addition times) leads to less yeast growth, 

compared to adding all yeast at once. The reason could be the production of by products 

and inhibitors before the second yeast addition and less acclimation of newly added yeast 

to the media. 
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Figure 4.19:Yeast density per 100ml CCA wood hydrolysate (4.4%) 

                     using different amounts of yeast for fermentation 

 

 

Figure 4.20 shows the results of production of ethanol during fermentation of 

hydrolysates (4.4%) using different amounts of yeast per 100 ml of hydrolysate. The 

experiments were performed to have a basic idea on how the increase of yeast could 

affect the ethanol production and when is the starting time of ethanol production. The 

figures show that even a higher amount of yeast does not increase the amount of total 

ethanol production but changes the pathway of ethanol production and the yeast start to 

produce ethanol faster. Comparison of Figures 4.19 and 4.20, the maximum ethanol 

production is almost 6 hours after the start of the fermentation when the stationary phase 

of the yeast starts or the growth stops and it could mean that there is a toleration limit for 

yeast and higher amount of ethanol could inhibit or kill them. 

0

10

20

30

40

50

60

0 10 20 30

C
e

ll
 d

e
n

s
it

y
 (

g
/L

)

Time(h)

4 g yeast

2g + 2g yeast

2g yeast



88 

 

 

 

   

 

 

Figure 4.20: Ethanol production from CCA treated wood hydrolysate (4.4%)  

                        using different amounts of yeast 
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4.2  HYDROLYSATE METAL REMOVAL 

 

 

Figures 4.21 to 4.23 are the results of monitoring the amount of chromium (VI), (III), and 

arsenic (V) and(III) in the hydrolysate liquid phase (using sulfuric acid, 4.4%) during 

fermentation by 2 g, 4g and (2g+2g) yeast. The solutions were filtered to be measured by 

HPLC using appropriate columns. During wood treatment, CrO3, As2O5 and CuO are 

used to treat wood. Although the Cr(VI), As(V) and Cu(II) are the main species of metals 

which are used, the different steps of treatment could change the speciation. In particular, 

during the fixation step chromium (VI) will change to chromium (III) to fix the 

preservative on wood (Lebow, 1996).  As chromium (VI) and arsenic (V) are the more 

soluble forms then the high levels of chromium (VI) and arsenic (V) in comparison to 

chromium (III) and arsenic (III) in the leached hydrolysate is logical (Figures 4.21 to 

4.23). In all samples the amounts of arsenic (III) and also chromium (III) does not change 

which means that yeast do not uptake arsenic (III) and chromium (III) but uptake 

chromium (VI) and arsenic (V).  

 

Adding yeast in 2 steps (Figures 4.21 and 4.23) contributes for maximum removal of 

almost 50% chromium (VI) and 60% arsenic (V) in comparison with using 2g yeast and 

4g yeast. Comparing Figures 4.21 and 4.23 with Figure 4.19, chromium (VI) and 

arsenic(V) are taken up when the yeast are in their log phase or during their growth phase 

and by stopping the growth there is no uptake. Figure 4.19 shows that adding yeast in two 

steps requires a longer growth time which enables more chromium (VI) and arsenic(V) to 

be taken up.       
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Figure 4.21: Metal concentrations during fermentation of CCA wood hydrolysate  

         (4.4%) with 2g yeast per 100ml  

 

     

      
     

Figure 4.22: Metal concentration during fermentation of CCA wood hydrolysate                    

                             (4.4%) with 4g yeast per 100ml 
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Figure 4.23: Metal concentration during fermentation of CCA wood hydrolysate   

                                              (4.4%) , 2
nd

 cycle 

 

Copper was not detected by HPLC probably because of precipitation of copper 

compounds resulted from reactions of sulfuric acid and sodium hydroxide with copper 

during hydrolysis and pH adjustments, then separate experiments for investigation of 

copper removal were performed.  

 

Figures 4.24 to 4.27 are the results of separate experiments on the removal of metals by 

yeast during the fermentation of 2% glucose solution containing mixture of chromium, 

arsenic and copper. Except for arsenic (V), there was not any significant removal for the 

others in Figure 4.24. For arsenic(III) and chromium (III), it was predictable but low 

levels of removal of chromium (VI) and copper could not be explained.  Other 
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experiments were then performed to test copper and chromium removal separately and 

the results are shown in Figures 4.26 and 4.27 respectively. 

 

            

Figure 4.24: Metal concentration during fermentation of 2% glucose solution  

    (containing metal mixture) 
 

 

 Figure 4.26 shows that the concentration of copper could decrease about 50% during the 

first 2 hours of fermentation and then increase during the next 4 hours and finally 

decreases after 7-8 hours of fermentation. Figure 4.25 which is the magnification of the 

same results of copper concentration from Figure 4.24 shows the same behavior for 

removal of copper however the removal was not more than 2%. Comparison of these 

figures  shows that the yeast will adsorb copper during the acclimation time and later 

yeast will take copper when it is not active. Then for copper, yeast acts as an adsorbent 

and the maximum removal will be less than 2 hours after the start of the fermentation. 
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 Figure 4.25: Copper concentration during fermentation of the metal mixture 

 

More fermentation experiments were performed using a mixture of copper and 

chromium(III,VI)  but no removal was found. As there was chromium (VI) removal in 

samples containing CCA wood hydrolysate which did not contain copper, it seems there 

is a competition between these metals to be removed by yeast. More experiments using 

different concentrations of chromium and copper are essential as future work.   
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        Figure 4.26: Copper concentration during fermentation of 

        2% sugar solution containing only copper  

 

The behavior of yeast for removal of arsenic is completely different (Figures 4.21 and 

4.24). There was no arsenic removal during the first 2 hours. All removal occurs when 

the yeast are active, then it seems that yeast do not adsorb arsenic but accumulate it 

inside. This is bioaccumulation and not biosorption. Thripathi et al.(2007) also suggests 

that the yeast acts as a pump to take As(V) inside the cell and to reduce to As(III) as a 

part of its detoxification mechanism. 

 

The results obtained for chromium (Figure 4.21 and 4.27) were similar to the results 

obtained for arsenic removal, which was mostly during the 2 to 6 hours of the  

fermentation or during the yeast growing period (growth or log phase) (Figures 4.21 and 

4.24). This was in spite of the copper (Figure 4.26) adsorbed before starting the log 
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chromium, as there is almost no chromium uptake when copper exist in solution. Then it 

can be another process in addition to surface adsorption of chromium, such as reduction 

which needs electron exchange during cell activity. 

 

            

           Figure 4.27: Chromium (VI) concentration during fermentation of   

         2% sugar solution containing only chromium  
 

Figures 4.28 and 4.29 are the pictures of yeast cells during the fermentation of glucose 

solution without and with metals respectively. The photos were taken using a microscope 

and a digital camera with a total magnification of 2000 times (yeast cell diameter is about 

5-10 micrometer). Some black dots can be seen inside the yeast which was fermenting 

the solution containing heavy metals. The black dots could be metals which are up taken 

by yeast and stored inside the cell, but no similar photos from other references were 

found to confirm the idea.  

0

10

20

30

40

50

60

0 2 4 6 8 10

C
h

ro
m

iu
m

 c
o

n
c

e
n

tr
a

ti
o

n
 (

m
g

/L
)

Time (h)



96 

 

      

 

 

Figure 4.28: Microscopic picture of yeast in glucose solution (contains no metal)  

 

 

Figure 4.29: Microscopic picture of yeast in glucose solution (contains metal) 
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4.3 HYDROLYSED WOOD METAL REMOVAL 

 

 

Figure 4.30 is the photo of hydrolyzed and non- hydrolyzed treated wood and Figure 4.31 

shows their metal contents. 

 

              

Figure 4.30: CCA treated wood particle samples  

         A) before hydrolysis   B)after hydrolysis    

 

        

 

        Figure 4.31: Metal contents of treated and hydrolyzed treated wood  
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During the 1-hour hydrolysis of treated wood by sulfuric acid (4.4%),  almost all the 

chromium and 80% of copper and arsenic were removed from wood. The rest of the 

copper and more than 75% of the remaining arsenic were removed in the second step of 

hydrolysis by sulfuric acid (85%) after 10 minutes.  

 

       

   Figure 4.32: Metal contents of 4.4% hydrolyzed CCA wood leached by TCLP  

 

The strong ability of sulfuric acid to leach almost all the chromium from the CCA wood 

(Figures 4.31,4.32) was also observed  during the leaching tests using different types of 

acids by Moghaddam and Mulligan (2008). 
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drinking water is allowed. Then two-step hydrolysis of CCA wood is an effective 

pretreatment method prior to landfilling and the CCA treated wood is not hazardous.    

 

             

  Figure 4.33: Metal contents of 85% hydrolyzed CCA wood leached by TCLP  
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and more resistant to leaching in comparison with unweathered CCA wood even  during 

hydrolysis by sulfuric acid (Figures 4.35 and 4.31), which means hydrolyzed weathered 

wood can be landfilled. 

 

              

                 Figure 4.34: Metal contents of weathered CCA wood  

 

Figure 4.36 gives a comparison between the leachability of weathered, unweathered and 

ground (passes through sieve no.10 and not passing through sieve no.60) CCA wood 

during the hydrolysis. The smaller size of the wood leads to  more metal removal during 

hydrolysis. 
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 Figure 4.35: Metal contents of weathered and hydrolyzed weathered CCA wood 

 

        

Figure 4.36: Metal contents of hydrolyzed weathered and ground CCA wood 
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4.4 BY PRODUCTS 

 

 

During ethanol production some by-products are generated. According to Taherzadeh et 

al. (1997), the most important by-products are carboxylic acids, furans and phenolic 

compounds. These compounds could act as inhibitors for continuation of yeast activity. 

Among several byproducts, acetic acid has taken some attentions. Almost 0.9 g/L acetic 

acid produced during fermentation of CCA treated wood. According to Taherzadeh et al. 

(1997), acetic acid can be a friend or a foe in the process of conversion glucose to ethanol 

and "the permissible region of growth of Saccharomyces cerevisiae on glucose was 

determined as a function of both pH and the concentration". They believed the addition of 

acetic acid would affect growth energetics and then ethanol yield. 

 

4.5 ETHANOL PRODUCTION 

 

The maximum yield of ethanol was almost 0.2 g of ethanol per g of wood in these 

experiments. According to Taherzadeh (1999), the maximum theoretical yield of ethanol 

production is 0.32 g of ethanol per g wood based on an average of 42% cellulose and 

21% hemicellulose in wood. The yield could be higher if a better and more economical 

hydrolysis was applied. Hydrolysis under high temperature and pressure for a very short 

time will give a higher sugar production and less harmful by-products such as furfural 

and 5-hydroxymetyl furfural (HMF), which are produced from sugar decomposition. 

Also ethanol itself is toxic for the microorganisms, and then removing the produced 
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ethanol from the fermentor will help to increase the yield of ethanol production.  

Mulligan (1994) mentioned there had been research directed towards enhancing the 

conditions for the ethanol tolerance of the yeast. 

 

4.6 MECHANISM AND FATE OF METALS 

 

The results show that there are different pathways for copper, chromium and arsenic in 

the whole process. Copper was removed before adding yeast, as no copper was detected 

by HPLC in the liquid. During acid and then later sodium hydroxide addition, copper 

precipitated and was removed from the liquid phase. In the next step chromium (VI) and 

arsenic (V) were taken up by the yeast when the yeast starts to produce ethanol. Scientists 

such as Rosen (2002) believe that yeast uptake and accumulate arsenate and convert it to 

arsenite as a method of detoxification. Our results also are consistent with this 

mechanism for arsenic because there is no removal during the first 2 hours when the 

yeast is acclimating. If there was adsorption on to the cell wall similar to the mechanism 

suggested by Wilhelmi and Duncan (1995) for copper then the removal and concentration 

changes would have occurred very fast and at the first moments of yeast addition.  

 

 Copper competes with chromium to be sorbed by yeast and also the chromium uptake 

model (Chapter 5) is similar to the copper model, but despite the presence of copper and 

arsenic, chromium is uptaken during the log growth period and when cell is active, then it 

may be a surface sorption (same as copper) followed by a reduction process (same as 
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arsenic) for chromium. The suggested mechanisms for chromium, copper and arsenic are 

summarized in Table 4.1.  

 

In brief almost all of the chromium and copper were removed from CCA wood and less 

than 4 ppm of arsenic would leach out of 50 ppm arsenic remained in hydrolyzed wood 

during the TCLP test which makes landfilling of the residue acceptable and safe as the 

maximum acceptable arsenic leaching for TCLP is 5 ppm.  

 

All the removed copper by sulfuric acid is precipitated during the hydrolysis and 

neutralization and before the fermentation step. However if copper wasn't precipitated it 

would be adsorbed by yeast. 

                       

 Table 4.1: Proposed metal removal mechanisms during neutralization and  

   fermentation of CCA treated wood hydrolysate 

 

Metal Removal  mechanism 

Copper Precipitation 

Chromium Sorption on the cell wall + Reduction 

Arsenic Diffusion inside the cell + Reduction 

 

About 50% of chromium VI (the more soluble form) and 60% of arsenic were removed 

by yeast from the hydrolysate. The change of speciation (inside the yeast) from more 

soluble forms to less soluble forms is one of the good aspects of the process. By adding 
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some fresh yeast (like what was done as second fermentation), the removal yield by yeast 

can be developed. As ethanol is one of the toxic materials for yeast, removing ethanol 

during fermentation and making it a semi-batch process could also improve the removal 

process as the yeast would live for a longer time. 

 

4.7 DISPOSAL 

 

The metals remaining in the effluent from the fermentation reactor can be treated by 

“Osmose water purification system to remove CCA contaminants from water” 

manufactured by Zenon Environmental Systems, which is suggested by EPA for CCA 

treatment industry. The typical system would be composed of three components: 1-

prefilter 2-primary method of membrane separation 3- ion exchanger polishing unit 

(EPA, 1992). In general a prefilter and an ion exchanger can be used to remove 

chromium and arsenic from the fermentation reactor effluent.  According to Wilhelmi 

and Duncan (1995), the accumulated metals (including chromium and copper) can be 

recovered from the yeast by up to 100%. Figure 4.37 shows an overall scheme of the 

proposed CCA wood waste management process. 
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CHAPTER FIVE  

        MODELING AND KINETICS 
 

 

 

In this chapter, the kinetics of uptake of arsenic, chromium and copper and also the 

growth of microorganism (baker's yeast) are discussed to simulate the removal of metals 

by yeast. 

 

    Table 5.1: Reaction kinetic models  

Reaction Kinetic model Order 
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Three different kinetic models (zero, first and second order reaction)  are usually applied 

to the experimental data (Table 5.1). A and B represent reactants while CA and CB are the 

concentrations of A and B at time t of reaction, P represents the product and k is the 

reaction rate. 

5.1  ARSENIC UPTAKE 

 

The kinetic model that provided the best fit for As(V) was the first-order depletion 

kinetics, which is described as: 

kC
t

−=

∂

∂C
 

∫∫ ∂−=
∂

t

t

C

C

tk
C

00

C
 

ln C - ln C0 = -kt +  const. 

constkt
C

C
+−=

0

ln  

Where, C is the concentration at time t, Co is the initial concentration, k is the kinetics 

rate constant and t is time. The data fit to the first-order depletion model is presented in 

Figure 5.1. The calculated process kinetic rate and regression are 0.0843 h
-1

 and 0.85, 

respectively. The regression of R
2
= 0.04 for a zero-order model makes the first order 

model the best model for arsenic (V) removal by yeast.  

 

The experimental data used for this modeling were the results of fermentation of CCA 

treated wood hydrolysates and fermentation of glucose solution containing a mixture of 



 109 

chromium, copper and arsenic compounds. Having a regression of R
2
= 0.85 for a 

suggested model which fit on the experimental data despite different initial 

concentrations and different initial solutions, could make the model more general for 

uptaking arsenic(V) by baker's yeast. Also as the existence of chromium and copper 

doesn't change the model for arsenic, it seems that uptake of arsenic(V) by baker's yeast 

is a unique independent process, not affected by the existence of other metals (chromium 

and copper). 

 

 

        Figure 5.1: First-order kinetics model for arsenic(V)uptake by baker's yeast  

5.2  CHROMIUM  UPTAKE 

 

The kinetic model that provided the best fit for Cr(VI) was the zero-order kinetics, which 

is described as: 



 110 

0

C
k

t
−=

∂

∂

 

∫∫ ∂−=∂

t

t

C

C

tk

00

0C  

C - C0 = -k0t +  const. 
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Where, C is the concentration at time t, Co is the initial concentrations, k is the kinetics 

rate constant and t is time. The data fit to the zero-order depletion model is presented in 

Figure 5.2. The calculated process kinetic rate and regression are 0.0811 h
-1

 and 0.73, 

respectively. The regression of R
2
=0.0002 for a first order model eliminates it as a kinetic 

model for chromium uptake process. 

 

  

   Figure 5.2: Zero-order kinetics model for chromium(VI) uptake by baker's yeast  
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The experimental data used for this modeling were the results of fermentation of CCA 

treated wood hydrolysates and fermentation of glucose solution containing chromium 

compound. The results of glucose solution containing a mixture of chromium, copper and 

arsenic compounds did not fit on zero and first order models. The difference of fitting and 

not fitting data on the model is the existence of copper in the mixture solution. It seems 

uptake of chromium and copper are not independent processes and the model should 

contain both processes at the same time and probably it is a second order kinetic model. 

Because of neutralization of wood hydrolysate and precipitation of copper before 

commencing fermentation process, there is no copper in liquid phase and the zero-order 

kinetic model with regression of R
2
= 0.73 can be suggested for chromium removal 

process by baker's yeast during fermentation of wood hydrolysate.  

 

5.3  COPPER  UPTAKE 

 

Some experiments of fermentation of solutions containing mixture of chromium and 

copper and fermentation of copper solution were performed separately. The results of 

mixture of chromium and copper did not fit to any zero and first order kinetic models (as 

was explained before) but a zero order model was fit on the solution containing only 

copper.  

 

The data fit to the first-order depletion model is presented in Figure 5.3. The calculated 

process kinetic rate and regression are 0.159 h
-1

 and 0.7, respectively. The model for 

copper is similar to chromium uptake but the difference is the start and end time of 

removal. Removal of copper starts when yeast is added to the prepared solution and ends 
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earlier than 2 hours but for chromium it starts 2 hours after adding the yeast and ends in 6 

to 8 hours. It means copper is absorbed by yeast when it is not active but chromium is 

absorbed when yeast starts to grow and is active similar to arsenic. 

 

     

        Figure 5.3: Zero-order kinetics model for copper uptake by baker's yeast 

 

5.4  YEAST GROWTH 

 

The growth of microorganisms (including yeasts) is presented by 4 phases (Figure 5.4). 

There is usually a lag phase, then the exponential growth commences. As essential 

nutrients are depleted or toxic products build up, growth ceases, and the population enters 

the stationary phase. If incubation continues, cells may begin to die (the death phase). 
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Microbial populations show a characteristic type of growth pattern called exponential 

growth, which is best seen by plotting the number or concentration of cells over time on a 

semi-logarithmic graph (numbers of cells is plotted on a logarithmic scale and time is 

plotted arithmetically). 

        

        Figure 5.4:Typical microorganism growth curve 

 

Figures 5.5, 5.6 and 5.7 present the growth curves of yeast which were used for 

fermentation of  CCA treated and untreated wood hydrolysates.  

 

The results presented by Figures 5.5-5.7 show a first order kinetic model or an 

exponential growth of yeast for both treated and untreated wood hydrolysates, using 2g or 

4g initial values of yeast. For growth of yeast in different conditions, the rates of growth 

(k) are different. 

akt
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kt
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       Figure 5.5: Log growth density versus time for treated wood hydrolysate 

           

 

                

Figure 5.5 shows the logarithmic growth curves for fermentation of treated wood 

hydrolysate by two different inocula of 2g and 4g yeast per 100 ml of hydrolysate. It 

shows a much higher growth rate when using less yeast (k2g=0.097>>k4g=0.011) and also 

a much greater regression factor of 0.93 which means a better fit to the model. 

 

Figure 5.6 shows that a lack of glucose is not the limiting factor for yeast growth as the 

growth rates are the same with almost the same regression factors.   
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         Figure 5.6: Logarithm of growth density versus time  

    for untreated wood hydrolysate 

                 

  

 

        
 

   Figure 5.7: Log growth density versus time  

   for untreated and treated wood hydrolysates 
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It seems that the growth of yeast in treated wood hydrolysate is much faster and the result 

fits on kinetic model a little better than untreated wood. 

5.5  CONCLUDING REMARKS 

 

The suggested models and regression factors for arsenic, chromium and copper uptake by 

yeast are summarized on table 5.2. Table 5.3 contains the yeast growth rates for 

fermentation of untreated and treated wood hydrolysates using different amounts of yeast.   

 

 

                Table 5.2: Proposed kinetic models for metal uptake by Bakers' yeast 

Uptaken metal Model Order R
2
 

Arsenic ln C/C0 = -0.0843 t+ 0.0821 First 0.85 

Chromium (VI) C/C0 = -0.0811 t + 1.0751 Zero 0.73 

Copper C/C0 = -0.1595 t + 0.9202 Zero 0.7 
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  Table 5.3: Yeast growth rates for different conditions 

Feed 
Yeast per 

100 cm
3
 hydrolysate 

Growth rate R
2
 

Untreated wood + 

2% glucose 
2g 0.074 h

-1
 0.88 

Untreated wood 2g 0.0779 h
-1

 0.87 

Treated wood 2g 0.096 h
-1

 0.93 

Treated wood 4g 0.011 h
-1

 0.73 
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CHAPTER SIX 

         ETHANOL ECONOMICS 

 

Global warming and the role of greenhouse gases, the oil crises and fossil sources 

depletion make countries to find other replacements for energy sources. Ethanol from 

biomass as one of the new sources of energy has attracted significant  attention especially 

ethanol from cellulosic sources. Ethanol production economics have been evaluated 

around the world. This chapter will compare some cost evaluations using different 

references and also estimates the cost of the proposed system . 

 

6.1 Different economical evaluations 

 

In an assessment of alcohol process technologies, Mulligan (1994) reported that Arkenol 

which produced ethanol from cellulosic feedstocks (specifically wood) and used 

concentrated sulfuric acid hydrolysis, could generate 0.43 kWh electricity per liter of 

ethanol. The steam (150 psi) was required to give a total energy input to output ratio of 

1.2-2.0. She reported a cost of $US 0.4-0.85 / US gal ($Cdn 0.14-0.3 / L) depending on 

feedstock cost and capital requirements of $US 2.25-3.50 / US gal ($Cdn 0.8-1.24 / L). 

However the report was prepared 15 years ago and the system was not proven at large 
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scale at that time, but as the feedstock was wood and the hydrolysis method was the same 

as the hydrolysis used in this research,  it was included in this chapter. 

 

Table 6.1: Inputs per 1000 l of 99.5% Ethanol Produced from U.S. wood cellulose 

    Pimentel and Patzek (2005) 

 Quantities KJ x 1000 Costs ($) 

Wood 2500 kg 1674 250 

Machinery 5 kg 418 10 

Replace nitrogen 50 kg 3347 28 

Transport wood 2500 kg 1255 15 

Water 125000 kg 293 20 

Stainless steel 3kg 188 11 

Steel 4kg 192 11 

Cement 8kg 63 11 

Grind wood 2500 kg 418 8 

Sulfuric acid 118 kg 0 83 

Steam production 8.1 kg 18426 36 

Electricity 666 kWh 7125 46 

Ethanol conversion to 99.5% 

 9 kcal/ L 38 40 

Sewage effluent  20 kg (BOD) 289 6 

Total  33727 575 

1000 l of ethanol = 5.13 million kcal 
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  Table 6.2: Parameters for the economic evaluation    

    (Hamelinck et al., 2005) 

 

 

Interest rate 

  

10% 

Economical lifetime  15 years 

Technical lifetime  25 years 

Investment path  20% in first year 

30% in second year 

50% in last year 

Operational costs   

Fixed variable   

 Maintenance  3% of TCI 

 Labour 0.5% of TCI at 400 MW 

 Insurance 0.1 % TCI 

Consumed materials   

 Dilute acid 22 €/ tone biomass 

 Lime 0.87 €/ tone biomass 

 Cellulase 0.13 €/ l ethanol 

Biomass  2-3  €2002/GJHHV 

Electricity  0.03 €/kWh 

Annual load  8000 h (91% of time) 

TCI: Total capital investment 
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According to Pimentel and Patzek (2005), the ethanol cost per liter for wood produced 

ethanol is about 0.58$ (Table 6.1).  Some European researchers (Hamelinck et al., 2005) 

estimated an investment cost of 2.1 k€ / kWHHV
1

 (at 400 MWHHV input, i.e a nominal 

2000 tonnedry/day input) which could have increased to 900 k€/ kWHHV  for a 5 times 

larger plant (2GWHHV). They said "A combined effect of higher hydrolysis-fermentation 

efficiency, lower specific capital investments, increase of the scale and cheaper biomass 

feedstock costs (from 3 to 2 €/GJHHV) could bring the ethanol production costs from 22 

€/GJHHV in the next 5 years, to 13 €/GJ over the 10-15 year time scale, and down to 8.7 

€/GJ in 20 or more years". 

 

Hamelinck et al. (2005)  calculated ethanol production costs by dividing the total annual 

costs of each system by the produced amount of ethanol. The total annual costs consist of 

annual capital requirements, operating and maintenance, feedstock and electricity which 

are given by Table 6.2. The total cost investment of each system component was 

calculated by multiplying the scaled base cost by an installation factor (Table 6.3 ). 

 

According to Hamelink et al.(2005): Ethanol from sugar cane in Brazil cost 10-12 €/GJ 

(Moreira, (2000) and Larson et al.(2001)) and projected cellulosic ethanol production in 

Europe would cost 34-45 €/GJ (Reith et al., (2002), de Boer and den Uil (1997)). Future 

costs were projected 4.5-10 €/GJ by Lynd (1996), 6-8 €/GJ by de Boer and den Uil  

 ---------------------- 

1
 Higher Heating Values for a fuel include the full energy content as defined by bringing 

all products of combustion to 77°F (25° C).  
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 Table 6.3:Costs of system components in M€2003(1€2003= 1 U.S$2003) 

Component Base 

cost  

Scale 

factor 

Base scale Installation 

factor 

Maximum 

size* 

Pretreatment 

      

Mechanical 4.44 0.67 83.3  tonne dry/h 2 83.3 

Mill 0.37 0.7 50  tonne wet /h 1   

Acid 14.1 0.78 83.3  tonne dry/h 2.36   

Steam explosion 1.41 0.78 83.3 tonne dry/h 2.36   

Ion exchange 2.39 0.33 83.3 tonne dry /h 1.88   

Overliming 0.77 0.46 83.3  tonne dry /h 2.04   

Hydrolysis+fermentation           

Cellulase production (SSF) 1.28 0.8 50 kg/h 2.03 50 

        

Seed fermentors (SSF+SSCF) 0.26 0.6 

3.53 tonne/h 

ethanol 2.2 3.53 

Hydrolyse-fermentation  

(SSF) 0.67 0.8 

1.04 tonne/h 

ethanol 1.88 1.04 

Distillation and purification 2.96 0.7 18466 kg/h ethanol 2.75 18466 

Molecular sieve 2.92 0.7 18466 kg/h ethanol   18466 

Residuals           

Solid separation 1.05 0.65 10.1 tonne dry/h 2.2 10.1 

Aerobic digestion 1.54 0.6 

43 tonne/h waste 

water 1.95 43 

Drier 7.98 0.8 33.5tonne wet/h 1.86 110 

Power       

Boiler 27.1 0.73 

173 MW steam 

raised 2.2   

Gasifier 40 0.7 68.8 tonne dry /h 1.69 75 

Gas turbine 16.9 0.7 26.3 MW 1.86   

Steam system +turbine 5.36 0.7 10.3 MW 1.86   

* all units are same as relevant base scale    

(Hamelinck et al., 2005) 
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(1997) and 10 to 11 €/GJ (within 10 years) by Wooley et al. (1999), approaching the 

costs of methanol production via biomass gasification  and fossil bulk fuels according to 

Lynd (1996), Novem (1999), Hamerlink and Faiij (2001). 

 

6.2 Cost estimation 

 

Our suggested ethanol production system is similar to the system evaluated in Table 6.1, 

which, contains acid hydrolysis of wood. The inflation ratios for the years  2005, 2006, 

2007, 2008, 2009 are 3.39%, 3.24%, 2.85%, 3.85% and -0.4% respectively 

(http://www.inflationdata.com/inflation/inflation_rate/historicalinflation.aspx). Based on 

Table 6.1 and the inflation ratio, the cost of production of 1000 L ethanol in the year 

2010 is estimated about  US$653 (C.1, Appendix C). 

 

Because of the existence of chromium, copper and arsenic in the effluent from the 

fermentation unit, additional  treatment (compared to the ethanol production unit) should 

be performed. The same treatment unit suggested by the EPA for CCA treatment plant or 

in brief a prefilter, and ion exchanger could be used. Hamelinck et al. (2005)  suggests 

prices for ion exchanger and solid separation units (Table 6.3) which can be used as basic 

estimations for calculation of our additional system prices. 

 

Based on Table 6.3, the total investment cost for a 83.3 tonne ion exchanger , 2.5 tonne 

ion exchanger and an ion exchanger for a plant of production of 1000 litre ethanol per 

hour  would be MU.S$20034.49, MU.S$20030.135 and U.S$2003 135000 respectively 
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(C.2,C.3,Appendix C).  The total investment cost for the ion exchanger for a plant of 

production of 1000 litre ethanol per hour  in the year 2010 can be U.S$153,296 

(C.4,Appendix C). 

 

Also the total investment cost for 83.3 tonne solid separation  and then for a 2.5 tonne 

solid separation would be U.S$2003 2.31 and U.S$2003 0.0693 respectively (C.5, C.6, 

Appendix C). Total investment cost for solid separation for a plant of production of 1000 

litre ethanol per hour  would be U.S$2003 69300   for the year 2003 and US$78,692 for the 

year 2010 ( C.7 Appendix C). 

   

The total investment costs for the main equipment which could be added to an ethanol 

production plant (ethanol from wood feedstock), to use CCA treated wood as their 

feedstock are summarized in Table 6.4. 

  

 Figure 6.4:  Basic equipment cost estimation  for year 2010  

   (1000 litre ethanol per hour) 

Investment cost  US$ 

 Ion exchanger  153,296 

 solid separation  78,693 

Total  231,989 

 

 

Nowadays with more ethanol production plants under construction, U.S$ 250,000 

additional investment for an ethanol production plant to be able to produce ethanol from 

wasted CCA wood will be more profitable and a cheaper way to dispose of CCA treated 



125 

 

wastes than building pretreatment plants containing acid treatment units (similar to 

hydrolysis units) to remove hazardous metals from wood before landfilling. The profit of 

ethanol production could somehow compensate the transportation expenses. Also special 

equipment for burning CCA treated wood will not be cheaper and better as the remaining 

ashes contain high concentration levels of metals which leads to another disposal and 

environmental problem. 
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CHAPTER SEVEN  

        CONCLUSIONS AND CONTRIBUTION 
 

7.1 CONCLUSIONS OF THE STUDY 

 

 

  Overall   the process conclusions include: 

 

• The existence of copper, chromium and arsenic did not have a negative effect on 

fermentation process and producing ethanol from CCA treated wood is feasible.  

 

• Using the disposed CCA wood as a source of ethanol production will be even 

more sustainable as the source is a troublesome waste.  

 

• The produced ethanol could be used as a fuel for transportation of wood to the 

factory. 

 

• Additional investment for an ethanol production plant to produce ethanol from 

waste CCA wood will be a more profitable and cheaper way to dispose of CCA 

treated wastes than building pretreatment plants containing acid treatment units 
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(similar to hydrolysis units) to remove hazardous metals from wood before 

landfilling. 

 

Conclusions concerning the solid wood phase: 

 

• TCLP tests of the hydrolyzed wood leached less than 4 ppm of arsenic while  

minimal amounts of chromium and copper remained in the hydrolyzed wood 

which makes landfilling of hydrolyzed wood acceptable and safe. 

 

• Weathering makes arsenic and copper, more fixed in the wood and more resistant 

to leaching in comparison with unweathered CCA wood even during hydrolysis 

by sulfuric acid. Hydrolyzed weathered wood can thus be landfilled. 

 

• The  smaller size  (ground) wood  leads to  more metal removal during hydrolysis. 

 

• Good leachability of sulfuric acid for removal of chromium, copper and arsenic 

from CCA treated wood makes it the main part of pretreatment method. As the 

hydrolysis of wood by sulfuric acid is the first step of ethanol production from 

wood, disposed wood could be the feed of ethanol production factory. During the 

two step hydrolysation most of the metals leach out of wood and as it was 

mentioned earlier the landfilling of residue would be acceptable according to 

environmental rules.  
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Conclusions regarding the liquid phase: 

 

• Bakers' yeast can remove metals from solution, especially copper, arsenic and 

chromium and using more fresh yeast increases the removal percentages. About 

50% chromium(VI) and 60% arsenic (VI) were removed by adding 4 g yeast in 

two steps. In separate tests, up to 50% of the copper was removed by yeast during 

the first 2 hours of yeast addition for initial value of 60 ppm, however in our 

wood hydrolysate, copper was removed by precipitation before yeast addition.  

 

• Baker's yeast behaves selectively by  uptaking arsenic (V) and chromium (VI) and 

not arsenic (III) and chromium (III). The selective behavior of yeast can be used 

as a method of speciation separation where it is needed.  

 

• The change of speciation (inside the yeast) from more soluble forms to less 

soluble forms is one of the positive aspects of the process.  

 

• Copper competes with chromium to be sorbed by yeast and the chromium uptake 

model is a zero order kinetic model similar to the copper kinetic model, while the 

kinetic model for arsenic removal by yeast is a first order model.  

 

• It seems that during glucose solution fermentation, yeast can grow almost 30 %  

more than when they are in  xylose solution. Also there is no ethanol production 

in the flasks containing xylose. These results can be consistent with previous 
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studies showing that baker’s yeast cannot consume xylose which is a pentose but  

can consume  hexoses like glucose. The low level of growth in xylose solution 

can be because of consumption of yeast extract as the only source of carbon. As 

there was no sterilization in all tests then there possibly was  also bacterial growth  

in solutions.  

Figure 7.1 shows a schematic  of the proposed process and metal mass balance. 

 

7.2 CONTRIBUTION 

 

Although, producing ethanol from wood is not a new research and has been researched 

for a long time, using this method as a pretreatment for disposal of CCA wood is a new 

proposal and the main goal of this study. Producing ethanol at the same time of removing 

chromium, arsenic and copper is a sustainable method for disposal of  hazardous waste 

wood to such an extent that makes landfilling of disposed wood acceptable and safe.  

 

The mechanism of metal removal and fate of chromium, copper and arsenic in the whole 

process was investigated and kinetic models for uptaking arsenic, chromium and copper  

by bakers' yeast were suggested. The models helped to explain the difference between 

uptaking arsenic and uptaking copper or chromium. 

 

A diffusion mechanism for removal of arsenic was determined and a different mechanism 

for copper and chromium removal was obtained (surface adsorption). 

 

This was the first determination of the  selective behavior of Baker's yeast for chromium.  
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It was shown that the yield of metal removal would increase by adding yeast in two 

continuous steps (6 hour interval).  

 

 

It was determined that arsenic removal by yeast is  an independent process and the 

existence of copper and chromium do not  affect the capacity of yeast for uptaking 

arsenic while chromium and copper  removal are dependent processes and each of them 

decreases the removal of the other one by yeast. 

 

During this study an HPLC method including the column, eluent and wavelength  for 

chromium speciation (Cr
+6

/Cr
+3

) was determined and used that has not been previously  

suggested. A Hamilton HPLC column model PRPX100 (150 x 4.6 mm) and UV detector 

was used to separate Cr
+6

 and Cr
+3

and to detect at 192 nm wavelength. 3mM sulfuric acid 

(flow rate 2 ml/min) was the mobile phase. The retention times of Cr
+6

 and Cr
+3 

were 1 

and 2.5 minutes respectively.  

 

 

 

 

  



  

 

    

   Figure 7.1: Schematic proposed process and metal mass balance 
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CHAPTER EIGHT  

        FUTURE WORK 

 
 

The hydrolysis method applied in this research was not an economical and optimal 

method. The industries usually used dilute acid hydrolysis or enzymatic method (which 

gets more attention these days). The effect of other applied hydrolysis methods on 

leaching of chromium, copper and arsenic should be investigated and tested. 

 

The detoxification and removal of the products which kill yeast will help to improve the 

yield of ethanol production and probably metal uptake. Ethanol itself will kill yeast, then 

removing ethanol and employing a semi-batch fermentation process will improve the 

yield. The effect of detoxification methods and removing ethanol from fermentation 

batches, on metal uptake yield should be tested to find the maximum capacity of metal 

uptake by yeast. 

 

Finding some alternative usage for hydrolyzed wood remains instead of landfilling can be 

another subject for research to lead to more economical methods.  Recycling and burning 

could be better methods compared to landfilling but more tests are necessary to make 
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sure that the air emissions of burning wood  is not hazardous and also the leachability of 

metals from ashes should be tested. 

 

The speciation of metals like arsenic and chromium is an important factor for their 

toxicity and mobility. It is suggested that yeast changes the speciation of arsenic and 

probably chromium and also it may store the uptaken metal inside the cell (arsenic) or 

only adsorb on the cell wall (copper). Performing some tests to identify the speciation of 

chromium and arsenic inside the yeast and also the adsorption points of chromium, 

copper and arsenic inside or on cell wall of the yeast will help us for recovery processes 

and even separation methods.  

 

There are some other microorganisms such as Zymomonas mobilis bacteria which may be 

used in the fermentation process in some ethanol industries, the same tests can be 

performed to determine if they also uptake metals or not. 

 

As it was mentioned earlier the metal can be stored inside the vacuole or be adsorbed on 

the cell wall, therefore depending on the point of adsorption, the type and the speciation 

of metal, different recovery methods might be considered. More investigation on 

recovery processes might enable the reuse of yeast and metals.  
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       APPENDICES 
 

 

 

APPENDIX A 
 

 

 

 

 

Calculations: 

 

 

 

C6H12O6   → 2 C2H5OH  + 2 CO2         A.1 

Glucose  Ethanol 

180 g   2 x 46 g 

17.5   ?=8.95 

 

(42.4/100) x (pine wood amount) = 3.5 g glucose        A.2 

wood amount =8.25 g 

 

 

8.25 g pine wood x (50.5/100) =4.16 g CrO3          A.3 

 

 

CrO3    CrCl3 + 6 H2O 

    

100    158.3 + 6 x 18 

 

4.16 x=11.1g 

 

 

 

8.25 g pine wood x (21/100) =1.73 g CuO            A.4 
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CuO    CuCl2 + 2 H2O 

    

80         170.48 

 

1.73         x=3.7g  

 

 

 

 

8.25 g pine wood x (38/100) =3.31 g As2O5            A.5 

 

 

As2O5    Na2HasO4 + 7 H2O 

    

230     312 

 

3.5     x=4.74 g 
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APPENDIX B 

 
 

There is a linear relationship between absorbance and concentration of yeast. Figure B.1 

is a typical graph which shows the linear relation  of concentration and absorbance for 

one of the fermentation batches. In all of the experiments the absorbance of all samples 

during the fermentation and the concentration of 2 samples were  measured. Based on 2 

measured concentrations and their relevant absorbances (for every fermentation batch), 

the line of cell density versus absorbance was sketched. Using the line formula and the 

measured absorbance , the concentration of the other samples were calculated.  

 

 

     

y = 326.51x - 61.785
R² = 0.7356
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     Figure B.1: A typical sample of yeast cell density versus optical absorbance 
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APPENDIX C 
 

 

 

US$575 x (1.0339 x 1.0324 x 1.0285 x 1.0385 x 0.996) = US$653         C.1 

 

Total investment for Ion exchanger (83.3 tonne) : 2.39 x 1.88 = MU.S$20034.49           C.2 

( Based on Table 6.3)  

 

Total investment for Ion exchanger (2.5 tonne) : 4.49 x 2.5 / 83.3 = MU.S$20030.135   C.3 

 

U$135000 x (1.0339 x 1.0324 x 1.0285 x 1.0385 x 0.996) = U.S$153,296          C.4 

 

Total investment for 83.3 tonne solid separation: 1.05 x 2.20 = M U.S$2003 2.31           C.5 

 

Total investment for 2.5 tonne solid separation  : 2.31 x 2.5 / 83.3 = U.S$2003 0.0693   C.6 

 

U$69300 x (1.0339 x 1.0324 x 1.0285 x 1.0385 x 0.996) = US$78,692                         C.7 
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