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ABSTRACT
Kineto-dynamic Analyses of Vehicle Suspension for Optimal Synthesis

Krishna Prasad Balike, Ph. D.
Concordia University, 2010.

Design and synthesis of a vehicle suspension is a complex task due to constraints
imposed by multiple widely conflicting kinematic and dynamic performance measures,
which are further influenced by the suspension damper nonlinearity. In addition,
synthesis of suspension for hybrid vehicles may involve additional design compromises
among different measures in view of the limited lateral packaging space due to larger
sub-frame requirements for placing the batteries. In this dissertation research, a coupled
kineto-dynamic analysis method is proposed for synthesis of vehicle suspension system,
including its geometry and joint coordinates, and asymmetric damping properties.
Quarter-car and two-dimensional roll plane kineto-dynamic models of linkage
suspensions are proposed for coupled kinematic and dynamic analyses, and optimal
suspension geometry and damper syntheses.

The kinematic responses of quadra-link and double wishbone types of suspensions
are evaluated using the single-wheel kinematic models. Laboratory measurements were
performed and the data were applied to demonstrate validity of the 3- dimensional
kinematic model. A sensitivity analysis method is proposed to study influences of various
joint coordinates on kinematic responses and to identify a desirable synthesis. A kineto-
dynamic quarter car model comprising linkage kinematics of a double wishbone type of
suspension together with a linear, and single- and two-stage asymmetric damper is
subsequently proposed for coupled kinematic and dynamic analyses. The coupling
between the various kinematic and dynamic responses, and their significance are
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discussed for suspension synthesis. The effects of damping asymmetry on coupled
responses are thoroughly evaluated under idealized bump/pothole and random road
excitations, which revealed conflicting design requirements under different excitations. A
constrained optimization problem is formulated and solved to seek design guidance for
synthesis of a two-stage asymmetric damper that would yield an acceptable compromise
among the kinematic and dynamic performance measures under selected excitations and
range of forward speeds.

The coupled kinematic and dynamic responses in the roll plane are further analyzed
through development and analysis of a kineto-dynamic roll-plane vehicle model
comprising double wishbone type of suspensions, asymmetric damping and an antiroll
bar. The results are discussed to illustrate conflicting kinematic responses such as
bump/roll camber and wheel track variations, and an optimal geometry synthesis is
derived considering the conflicting kinematic measures together with the lateral space
constraint. A full-vehicle model comprising double wishbone type of suspensions is also
developed in the ADAMS/car platform to study influences of faults in suspension
bushings and linkages on the dynamic responses. The results of the study suggest that an
optimal vehicle suspension synthesis necessitates considerations of the coupled kinematic

and dynamic response analyses.
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CHAPTER 1
INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

The design and synthesis of a vehicle suspension is known to be a highly complex task
due to widely conflicting design constraints imposed by the various performance
measures, namely the ride, handling and directional control. The design compromises
between the ride comfort, road holding and the working space have been widely studied
considering the dynamic responses of the vehicle models. Syntheses of suspension
systems considering various vehicle performance measures have been extensively
reported in the literature. These studies could be grouped in two different categories on
the basis of the performance measures, (i) synthesis of suspension geometry focusing on
selected kinematic performance criteria; and (ii) synthesis of forcing elements such as
springs, dampers, and the antiroll bar (passive, semi-active or active), which consider
various dynamic performance measures. These studies have considered suspension and
vehicle models of varying complexities, although linear or nonlinear quarter-car models
have been most widely used to evaluate the ride, rattle space and the dynamic tire force
responses of suspension design concepts, and synthesis of semi-active and active
suspension control strategies. The dynamic performance measures are also strongly
coupled with the kinematic response measures, while such coupling effects are rarely
considered in vast majority of the reported vehicle models with the exception of
comprehensive models formulated in multibody dynamics simulation softwares. For
instance, the road holding and handling dynamic performance of vehicles are strongly

related to wheel orientation which is a complex function of various kinematic measures



such as wheel camber, toe and caster angles. It has been suggested that minimizing the
variation in these angles through consideration of coupled effects could help achieve
improved road holding performance [1, 2].

Dynamic analyses of one-, two-, and three- dimensional models have substantially
contributed to suspension design for enhancement of ride, pitch, lateral and roll dynamic
performances of the vehicles. The contributions due to non-linear kinematic motions of
the linkages and bushings, however, could not be identified. Furthermore, conventional
dynamic vehicle models assume constrained motions of the unsprung masses along the
vertical direction. In an independent suspension system, the wheel carrier or the spindle is
generally connected to the chassis through the suspension linkages, which induce
rotational motion of the wheel about the vehicle longitudinal axis apart from the vertical
motion. Suspension kinematics thus contributes considerably to the vertical and roll
dynamic responses. Furthermore, both the dynamic and kinematic responses of a road
vehicle are strongly dependent upon the suspension damper properties in a highly
complex manner.

Automotive suspension dampers invariably exhibit asymmetric damping
characteristics in compression and rebound, with considerably greater damping during
rebound than in compression, while the contributions due to damping asymmetry have
not been adequately addressed in the reported studies. The damping asymmetry coupled
with the nonlinear kinematic responses of the suspension could significantly alter the
dynamic responses, particularly the drift in the vehicle equilibrium position. Although the
asymmetric suspension damping is widely implemented and is highly desirable in view of

the road holding performance, the reasons for such asymmetry have not been explicitly



defined, which in-part can be attributed to limited understanding of influences of damper
asymmetry on the kinematic and dynamic responses of the vehicle. The design guidance
for such asymmetry have been limited to a general rule of thumb suggesting that a
rebound to compression damping ratio in the order of 2 or 3 would reduce the force
transmitted to the sprung mass while negotiating a bump [1, 2].

Systematic study of asymmetric damping together with coupled kinematic and
dynamic effects would thus be desirable to establish design guidelines. Such a study
would also be beneficial in realizing suspension synthesis for emerging hybrid vehicles
that impose greater challenges related to sprung mass and sub-frame space requirements,
and thus the chassis design [3]. The larger space requirements of the hybrid vehicles also
necessitate considerations of the suspension synthesis with limited lateral space, which
would most likely involve complex compromises among the different performance
measures. Furthermore, such a study would enable the considerations of flexibility due to
joint bushings, which influence the dynamic responses of the vehicle considerably.
Inclusion of the bushing properties in the vehicle dynamic model, however is challenging
due to highly nonlinear properties of the flexible bushings. Moreover, the bushing wear
and joint clearances can affect not only the dynamics of the vehicle, but also the
operational safety. A timely detection of the bushing clearance or the onset of probable
failure would thus help prevent potential vehicle break down. Apart from the suspension
kinematics and joints flexibility, the tire lateral compliance can also influence the
dynamic responses of the vehicle. The synthesis of automotive suspension thus

necessitates a thorough understanding and considerations of the couplings between the



suspension linkage kinematics with the dynamic responses of the vehicle, together with
the tire and joint compliances, and the asymmetric damping.

The primary objective of this dissertation research is thus formulated towards
synthesis of a vehicle suspension system including its geometry and joint coordinates,
and asymmetric damping properties through coupled kinematic and dynamic analysis.
This dissertation research involves developments in kinematic, and one- and two-
dimensional kineto-dynamic models of the vehicle suspension system incorporating the
coupled kinematic and dynamic responses and the lateral tire compliance. The influences
of joint coordinates on the kinematic and dynamic response characteristics are
investigated and discussed in view of the track variation and lateral space requirements in
hybrid vehicles. The study is further concerned with the selection of optimal joint
coordinates and asymmetric parameters of a two-stage damper considering the design
conflicts among the different kinematic and dynamic responses. Influences of suspension
faults including those in joint bushings, damper and linkages on the dynamic responses of

the suspension are also presented.

1.2 Literature Review

The suspension synthesis process involves considerations of influences of suspension
components on the various dynamic responses of the vehicle including ride, roll, handling
dynamics and directional stability. The analyses and syntheses of independent suspension
systems thus require an essential fundamental knowledge of the component properties,
the ride and handling dynamics of the vehicle, suspension kinematics, tire-road
interactions, modeling methods, characterization of joint bushings, and more. The

reported relevant studies are thus thoroughly reviewed and briefly discussed in the
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following sections to gain fundamental knowledge and to formulate the scope of the
dissertation research.

1.2.1 Synthesis of Independent Suspensions for Road Vehicles

The independent suspension designs offer considerable advantages over the dependent
type of suspension such as smaller space requirement, easier steerability, lower weight
and absence of mutual wheel influence. It has been identified that the absence of mutual
wheel influence is beneficial in good road holding, particularly during cornering on a
bumpy road surface [4]. MacPherson strut and double wishbone type of suspension
constitute the majority of the independent suspensions in the road vehicles [1, 2], while
multi-link suspensions, including the quadra-link and five-link types, are increasingly
being employed in the passenger cars [5, 6]. The study of suspension kinematics or
suspension geometry involves the analyses of coupling between the unsprung mass and
the sprung mass [1]. The kinematic design of an independent suspension is considered to
be a complex task due to couplings between various kinematic responses of the
suspension including the wheel center trajectories in the pitch and roll planes, and
variations in camber, toe and caster angles. These kinematic properties of the suspension
are strongly coupled with the vertical and roll motions of the vehicle. For instance, a
suspension designed for minimal camber variation during wheel vertical travel yields a
large camber variation during vehicle roll [4, 7-9].

Earlier stages of the conventional suspension design process involve kinematic
analysis of the suspension mechanisms, particularly, the wheel centre trajectory and
changes in the wheel aligning parameters with the wheel vertical travel [4,10]. The

changes in the track width, roll centre height and motion ratios are other parameters of



interest in the kinematic analysis [10]. In such analyses, the chassis, suspension links and
the wheel-tire assembly are generally assumed as rigid bodies, while the contributions
due to joints flexibility are considered negligible [5, 6, 10-12].

The suspension kinematic responses have been studied using graphical, analytical or
experimental means. Graphical methods were widely used in the earlier studies to
estimate the suspension kinematic parameter changes, before the wide spread use of
computers [4, 13]. The graphical method poses considerable complexities for predicting
the trajectories of spatial suspension mechanisms and may yield considerable errors.
Numerous analytical models of varying complexities have been developed to study the
kinematic responses of various types of commonly used suspensions including the
MacPherson strut, double wishbone and multilink suspensions [6, 11, 12, 14-17]. The
planar kinematic properties of a suspension can be effectively analyzed considering the
suspension system as a planar mechanism. The position analyses of planar mechanism
can generally be carried out by solving the mechanism loop closure equations [11, 18] or
by displacement matrix methods [19, 20]. While the planar representation of the
suspension makes it possible to analyze some of the kinematic properties, such as camber
variation with roll or bump in the roll-plane, such models ignore the existence of steering
mechanisms and kinematic effects of steer or caster angles. It would be possible to
represent the mechanism in the pitch or yaw-plane to estimate such kinematics effects.

Three-dimensional or spatial kinematic analyses are considered instrumental for
determination of variations in the steer, camber or caster angles simultaneously, taking
into account the coupled kinematic effects of suspension linkages. The reported spatial

kinematic models use loop closure equations, displacement and transformation matrices



for the displacement analysis, while the orientations of the wheel are derived from the
geometrical relations [6, 11, 12, 14, 16, 17, 21]. Cronin [11] proposed a kinematic model
of a MacPherson suspension based upon vector algebra. The mechanism was assumed to
have two- degrees of freedom (DOF) including the jounce motion of the wheel carrier
and rotation of the knuckle about the strut axis to represent the steering motion. Position
loop equations were written for displacement of each of the two mechanism loops
(chassis-wheel knuckle-strut-chassis and chassis-knuckle-tie rod-rack-chassis). Further,
nonlinear scalar expressions in terms of the suspension geometry were obtained for the
displacement of each link. A similar kinematic models of the MacPherson suspension
have also been proposed by Suh [14] employing the displacement matrix method, and
using Euler transformation [21].

Suh [14, 19, 20] proposed the use of displacement matrices for analysis and synthesis
of the spatial suspension mechanisms, defined by multi loop spatial guidance
mechanisms with single-DOF assigned to each loop. The motions of the mechanisms
were described by using displacement, velocity and acceleration matrices together with
the constraint equations for each of the suspension link. The application of displacement
matrix method was demonstrated for a double wishbone suspension. Rae et al. [15]
demonstrated that Euler angles and Euler parameters can be effectively used to describe
the motion of the wheel carrier of the double A-arm suspension.

A vast number of studies have also reported spatial kinematic analysis of complex
five-link rear suspension mechanisms [5, 6, 12, 17, 22, 23]. The five-link rear suspension
is considered as the basic multi-link suspension configuration with five distinct links

connecting the wheel carrier to the chassis. Unlike the MacPherson or double wishbone



suspensions the kingpin axis is not clearly defined in the multi-link suspension, which
makes the kinematic modeling a challenging task [6, 12]. Lee et al. [6] proposed a
method to estimate the wheel centre and linkage joint trajectories as a function of wheel
vertical movement using rigid body velocity vector relations. The instantaneous
velocities of different joint centers in the wheel carrier were expressed by vector sum of
wheel center velocity and cross product of angular velocity and position vector from
wheel center to the joints. Another set of equation was obtained from the condition that
the dot product of velocity of each joint at wheel carrier and their position vectors from
the chassis would be zero. These equations could be solved to yield velocities of each
joint for a given wheel vertical velocity. The study concluded that the solutions of the
equations were sensitive to the wheel vertical velocity.

Knapczyk et al. [12, 26] performed kinematic analysis of a five-link suspension
considering a transformed mechanism with upper two links removed. The joint positions
of the transformed mechanism were described by the spring length and two orientation
angles formed by the control arms. An optimization problem was formulated describing
the condition that the distances between the coupling joints remain equal to the lengths of
the disconnected members. The optimal solutions for the joint positions were applied to
determine the camber and toe angles, and coordinates of the wheel-road contact point
through the vector relations. Simionescu [5] formed a motion generation synthesis
problem for the synthesis and later for the kinematic analysis of a five-link suspension.
The study formulated an optimization problem that allowed the wheel carrier, released
from its joints, to move in successive positions along an ideal trajectory (vertically

upwards in the case of suspension), while the distance between the joints of individual



links vary as little as possible. The solution of the minimization problem resulted in
wheel carrier displacement and orientation. All of the reported analyses of five-link
suspension have shown similar kinematic responses.

The kinematic analyses of suspension mechanisms have employed various multi-body
dynamic tools, such as ADAMS [10, 27, 28]. The ADAMS/car and ADAMS/chassis
modules provide platforms to build suspension models and permit the kinematic analysis
with or without considering the joints compliance [27, 28]. The parallel wheel analyses of
suspensions in ADAMS/car module provide various kinematic responses, including
variations in the camber, caster and toe angles, and roll center height as a function of
wheel vertical motion. Shim et al. [27] developed front MacPherson and rear multilink
suspension mechanisms models in ADAMS/car platform to perform the parallel wheel
analyses, which were subsequently integrated to the full vehicle model. The validity of
the MacPherson and rear multilink suspension models was demonstrated using the
measured kinematic properties.

Although, the kinematic analyses of different suspension mechanism have been widely
reported, only a few studies have investigated the suspension linkage kinematics through
laboratory experiments [21, 26, 27, 29]. The measured data reported in these studies have
been widely used for model verifications. The reported studies have shown reasonably
good agreements between the model responses and the measured data in terms of camber
change and contact-point trajectory, while considerable differences in the toe angle
response were observed. Mantaras [21] demonstrated the validity of the MacPherson
suspension mechanism model by using the measured kinematic responses. Ozdalyan et

al. [29] in a similar manner used measured data acquired from a McPherson front



suspension set-up to validate the model developed in the ADAMS platform. Knapczyk et
al. [26] used a half-car five-link suspension set-up to experimentally investigate the
kinematics and elasto-kinematics of the suspension with the goal of evaluating the
influence of deflections of the elastic bushings on spatial displacements of the wheels.
The model validity was demonstrated using the measured camber, toe and steer angles. It
was shown that the wheel contact-point and the wheel center trajectory, and camber and
caster angles, predicted by the model were reasonably close to the measured data with
peak difference being below 10%, while the toe angle response showed larger deviation.

The reported studies have suggested that kinematic responses of an independent
suspension are highly influenced by the joint coordinates and linkage lengths in a
complex manner, while identification of most influential joint coordinates continues to be
one of the most challenging tasks in the synthesis process [30]. Raghavan [7, 13]
specified the requirements of the suspension mechanisms for limiting the wheel motion in
the vertical plane, irrespective of the vehicle attitude. The wheel motion, however, was
strongly coupled with vertical and roll motion of the vehicles. A suspension designed for
minimal camber variation during wheel vertical travel would thus yield a large camber
variation during vehicle roll [4, 7-9]. It has thus been recognized that changes in the
camber angle and the wheel track cannot be avoided under roll motions and that
compromises in various performance measures are inevitable with the existing
suspension configurations.

A number of studies have attempted to synthesize optimal suspension geometry that
could achieve better compromise between the conflicting kinematic response

characteristics of various suspension mechanisms, including the MacPherson’s, double
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wishbone and multilink types of suspensions [5, 24, 30-34]. Majority of these studies
have employed, predefined kinematic target measures, in the form of desired wheel path,
and variations in camber and toe angles with the wheel vertical travel considering only a
single suspension [5, 30, 31]. Li et al. [34] considered minimal track-width, camber and
toe angles variations with the wheel vertical travel, as the objective functions for
optimizing the geometry of a multilink suspension developed in the ADAMS/car
platform. While the model assumed fixed chassis, the optimal suspension geometry
showed reduced camber angle and track width variations, with increased variations in the
toe angle when compared to the responses of the original suspension.

Relatively fewer studies have considered the suspension systems on both sides of axle
to incorporate the contributions of the chassis roll. Habibi [24] employed genetic
algorithm to identify optimal joint coordinates of a MacPherson’s suspension mechanism
in order to yield design compromise among the roll steer and bump steer responses. Fijita
et al. [32] proposed an optimization methodology for the synthesis of front and rear
wheels multilink suspensions by minimizing an objective function comprising the
deviations from the desired toe and camber angle variations, roll centre height, and
sprung mass responses e.g. roll angle, lateral acceleration and vertical vibration
amplitude. The methodology involved identification of 92 design parameters that
included the coordinates of the suspension joints and suspension rates. Significant
improvements in the vehicle ride and handling dynamic responses were claimed to be
achieved by the study, although related results were not presented by the study.

Numerous studies have proposed alternate suspension configurations, or modification

to the existing kinematic designs in order to reduce the couplings effects [7, 9, 35, 36].
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Raghavan [7] proposed addition of an intermediate linkage between the independent
suspension and the sprung mass to achieve zero camber angles during vehicle roll. The
additional linkage with revolute joint was expected to provide an additional DOF to the
system. The physical implementation of the concept, however, was considered to be
complex due to additional link. Deo et al. [35] proposed a novel six bar suspension
mechanism to reduce couplings between the different kinematic parameters. The
axiomatic design method, employed in the study, identified that the wheel aligning
parameters and the suspension vertical travel are coupled in the existing four-bar type of
suspension mechanisms. The study suggested that the identified couplings can be
decoupled by increasing the number of links in the mechanism. However, the camber
angle variations due to sprung mass roll could not be incorporated into the design
problem. Furthermore, the proposed mechanism had limitations due to the increased
number of links and joints and associated higher cost and unsprung weight [35].

Heuze et al. [9] proposed an optimal contact patch (OCP) suspension mechanism to
prevent the wheel camber during vehicle roll by providing an additional degree of
mobility to the mechanism. The aim of the proposed mechanism was to obtain a negative
camber while cornering, only by the application of the ground lateral loads. The study
was limited to the roll-plane of the vehicle, which did not thus permit the analyses of the
influences of the new configuration on other kinematic parameters. Sharp et al. [36]
presented a kinematic cross-linked suspension system with two diagonal interconnections
between two independent suspensions of an axle. The cross linked suspension allowed
the camber angle of right hand side wheel to be influenced by the left wheel bounce. The

study showed that such cross-linking reduced the sprung mass roll motion considerably,
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and yielded minimal camber variations during wheel bounce and sprung mass roll.
However, the suspension design was relatively more sensitive to geometric changes.
Apart from the above mentioned conflicting kinematic measures; namely, bump/roll
camber, bump/roll steer (toe angle), caster angle and wheel track variations, the
packaging space limitations pose additional challenges during design of the suspension
geometry. Raghavan [13] proposed synthesis of a planar suspension configuration
considering the lateral packaging space and wheel camber variations as the performance
measures. Lateral packaging space limitation becomes a predominant design constraint in
the design of suspension systems for hybrid vehicles, which require a large subframe or

chassis space for placing the batteries or fuel cells [3, 37].

1.2.2 Suspension Joint Bushings

The vehicle suspension joints bushings are typically composed of a hollow elastomer
cylinder contained between inner and outer steel sleeves. The flexible bushings help
isolate road induced vibration, reduce noise transmission, accommodate oscillatory
motions and accept misalignments of axes. The flexibility of the joint bushings of
suspension mechanisms contributes to wheel compliance particularly in the lateral
direction, which influences the handling dynamics of the vehicle in a significant manner
[4, 38, 39]. The bushing design requirements are thus conflicting in that the vehicle
handling performance requires stiff bushings, while the ride comfort demands highly
compliant joint bushings [40]. Furthermore, the bushing properties are highly nonlinear
in translational and rotational directions due to the nature of the elastomeric material [38,

41-43].
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Various studies have reported compliance properties of suspension joint bushings in
terms of linear or nonlinear force-displacement or force-velocity relations [22, 26, 38, 43-
45]. These have generally suggested two different approaches to obtain force-
displacement relations for the elastomeric bushings: (i) through solutions of the analytical
boundary value problem of classical mechanics; and (ii) through experiments on sample
specimens [38]. Within the classical mechanics approach, a three-dimensional equation
relating the stresses and strains under a range of deformation and time conditions were
formulated. The approach, however, was considered highly cumbersome [38, 41].
Consequently the experimental approach of determining the force-displacement
properties has been widely used. This approach, however, does not permit identification
of a general relationship and requires repeated measurements for bushings at different
stages of wear and for new bushing designs [38, 43]. Further, the response of the flexible
material at local levels cannot be determined.

Experiments conducted on the joint bushings materials have shown that the
displacement reaches within 2% of the fully relaxed value 20 seconds after the
application of the force, which is attributable to the visco-elastic properties of the
bushings [41, 43]. Further studies have shown that the force-displacement or moment-
rotation relations of bushing materials are influenced by the type of loading. For instance,
under coupled mode (radial and torsional) of deformation, the radial force decreases with
an increase in the torsion to reach a minimum value, while a further increase in torsion
causes increase in the radial force [41]. The dynamic characteristics of the bushings have
been captured through identifications of the model components properties, which may

include a simple spring or a spring with a viscous damping element with or without
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consideration of the friction damping [44, 45, 46]. Dzierzek [46] proposed a bushing
model comprising springs, viscous and friction damping in conjunction with two sets of
in-series springs and viscous damping elements, all assumed to be in parallel. Pu et al.
[44, 45] considered nonlinear bushing model to include in-parallel spring and damper that
are connected in series to another spring element. The parameters were identified by
comparing the frequency responses of the proposed model with the experimental data.
The proposed model with the identified parameters was shown to yield comparable force
force-displacement and force-velocity characteristics to those of the measured data.

The compliance in the suspension joint bushings can shift the joint centers when the
mechanism is assembled, which can thus alter the kinematic and dynamic responses [47,
48]. Messonnier et al. [47] proposed an identification method for the bushing model to
study the influences of geometric shifts in the bushing centers. The proposed model
comprised springs in three orthogonal directions, and the identification procedure
involved measurements of the suspension geometry and use of a multiplication algorithm
in conjunction with the force-deflection relations. The force-deflection relations were
obtained by simulating the suspension model developed in a multibody dynamic
platform. Such identification process, however, required precise measurements of the
reference coordinates on the suspension assembly in addition to the multibody dynamic
simulation tool for estimating the bushing forces [48].

Suspension joint bushing properties in static or quasi-static conditions have been
analyzed by a few studies employing either analytical models [22, 26, 49], or multi-body
dynamic tools [42]. Such analysis, also known as elasto-kinematic analysis, provides

useful information on the influences of bushing compliance on variations in the kinematic
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responses such as wheel camber, caster and toe angles during the wheel relative motion
with respect to the sprung mass. Knapczyk et al. [26, 49] investigated the influences of
five-link suspension joints and subframe bushings properties on the wheel compliance by
comparing the suspension kinematic responses under three conditions, namely: (i) non-
compliant joints; (ii) bushing compliance represented by radial spring alone; and (iii)
bushing compliance represented by three linear orthogonal springs. The wheel center
displacement, and toe and camber angle responses were evaluated as a function of the
wheel vertical travel and compared with the experimental data. The responses of the
model with bushings characterized by three orthogonal springs showed a closer
resemblance to the experimental data. It was shown that the suspension subframe
bushings compliance influence the toe angle and wheel longitudinal displacement, while
a negligible influence were observed on the toe angle under a braking force input.
Blundell [42] investigated the influences of joint bushings on the suspension kinematic
responses including variations in camber, caster and steer angles, wheel track and roll
centre height using a trailing arm rear suspension model in the ADAMS platform. The
study compared the responses of the model with non-flexible joints, bushing joints with
linear stiffness and bushing joints with nonlinear stiffness. It was revealed that the
variations in the camber and caster angles and wheel track increase marginally by
including the bushings in the analysis, while the toe angle variation reduced considerably.
The suspension with nonlinear bushing model showed comparable responses to those of
the model with linear bushing model. Caputo ef al. [50] performed similar analyses for a
five-link suspension and concluded that the bushings of the camber link influence the

camber angle and track properties.
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Flexible bushings invariably used in suspension joints have also been modeled by
translational and rotational springs along three axes, particularly in the model analyzed
using multibody dynamic formulations [51] or available software tools [42, 52] for the
dynamic analyses. For example, ADAMS software permits bushings models with three
translational and three rotational spring and damping elements [28, 42]. Yang et al. [52]
conducted a sensitivity analysis in order to study the influences of the front suspension
bushing rates on the vehicle impact harshness under bump excitation using a full-vehicle
model with linear translational bushing compliance developed in ADAMS/car. The study
showed that the impact harshness performance was dominantly affected by the fore-aft
bushing stiffness of the lower control arm and vertical stiffness of the upper shock mount.
It was further shown that the impact response was significantly affected by the vehicle
forward velocity significantly. The joint bushing flexibility can also influence the fatigue
life of the suspension arm apart from the ride and handling dynamics of the vehicle [53].
The effect on the fatigue life was illustrated through the stress analysis of the
MacPherson suspension control arm, and it was shown that the life cycle (S/N ratio) of
the suspension components can be increased significantly through careful synthesis of the

bushing properties.

1.2.3 Joint Clearances and Fault Diagnostics

Majority of the studies related to the kinematic and dynamic responses of the vehicle
suspension have assumed idealized suspension joints with negligible clearances [5, 6,
17]. Although a few studies have shown considerable influences of suspension joints
bushing on the dynamic responses, even fewer studies have been reported on the effects

of suspension bushing clearances [54, 55]. The effects of bushing clearances on the
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kinematic and dynamic responses of various mechanisms, however, have been
extensively reported [56-60]. These studies have invariably shown that the clearances in
the joints of any mechanism yield most significant repeated impacts between the mating

members, apart from the undesirable kinematic responses.

The forces in the clearance joints are generally estimated either by continuous contact
models, where the forces arising from the collisions are assumed as continuous function
of deformation or by discontinuous contact models that assume instantaneous impacts.
Flores et al. [56, 57, 60] studied the clearances in revolute joints of a four bar mechanism
using continuous contact model with radial spring elements. The study showed abrupt
variations in the responses of a rigid four bar mechanism, while the responses were
evaluated in terms of velocity and acceleration of the slider, the moment acting on the
crank, and the relative motion between the journal and the bearings. Further, a small
change in the magnitude of the clearance, in the order of 10 pm showed considerable
variation in the responses. The consideration of link elasticity in the model, however, can
reduce the peak contact force [58]. The models proposed in the analyses of general
mechanisms could be effectively applied to study the effects of bushing clearance on the

kinematic and dynamic responses of various suspension mechanisms.

The influence of faulty damper and upper strut bushings on the dynamic responses has
been studied by Azadi et al. [54, 55]. The study employed a full vehicle model with
front- and rear- rigid type of suspension, developed in the ADAMS/car platform. Faulty
damper in the study, was modeled by reduced damping coefficient, while the faulty
bushing at the upper strut mount was modeled by a discontinuity in the force-

displacement characteristic of the bushing. The study showed higher wavelet signal
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energy of the sprung mass pitch acceleration of the model with faulty bushings than that
with the nominal bushing and the vertical acceleration response of the wheel connected
with the faulty damper and bushings was higher than those of other wheels. The observed
response trends could be applied for developing a bushing fault detection algorithm,
although the study was limited to the clearance in the upper strut bushing only.
Suspension fault detection has been attempted in only a few other studies employing
simple lumped-parameter vehicle models [61] or finite element full vehicle models [62].
These studies, however, were concerned with the fault detection in the suspension spring
or damper, while an optimal number of sensors and their locations were also discussed.
The detection of faults in the joint bushings due to clearances, however, was not

considered in these studies.

1.2.4 Handling Dynamics of Road Vehicles

The handling dynamic analyses of road vehicles consider forces and moments caused
during directional maneuvers. The vehicle ride and handling dynamics in practical
vehicle designs have been thoroughly discussed by Crolla [63], while the handling
dynamics of vehicles are generally studied under transient and steady-state maneuvers
[64, 65]. The transient handling dynamics relates to time-varying directional responses to
a given maneuver, which are generally evaluated in terms of lateral acceleration, yaw
rate, roll angle, roll rate, understeer coefficient, etc. Such responses have been evaluated
under different maneuvers, such as steady state cornering, cornering with braking,
straight line braking and path change type of maneuvers [65]. Steady-state handling
performance, on the other hand, is concerned with the directional behavior during a

steady turn under non-time varying conditions [65, 66].
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An understeer vehicle is known to be unconditionally directionally stable, while an
oversteer vehicle could lead to directional instability at speeds near or above the critical
speed [1, 65, 66]. Some studies have also suggested that the understeer coefficient of a
vehicle should be maintained relatively constant during both the linear and nonlinear slip
angle ranges in order to retain consistent drivers’ control [67, 68]. Other studies have
proposed contradictory handling requirements suggesting that a higher understeer
coefficient with increasing lateral acceleration would be desirable, so as to improve
vehicle yaw or directional stability [64, 66]. Vehicles tend to understeer while
accelerating during cornering, but could lead to oversteering tendency during braking-in-
cornering maneuver [69]. The suspension damping together with the kinematic response
of the suspension can influence the understeer coefficient of the vehicle in a considerable
manner. For example, a higher front suspension damping coupled with a lower rear
suspension damping can result in greater understeering tendency [68, 69].

The steering and braking maneuvers cause lateral and longitudinal load transfers,
which may result in significant changes in the handling and stability limits of the vehicle
[1, 67]. 1t is well known that the lateral forces and moments developed at the tires
strongly determine the lateral or handling dynamics of the vehicle, and the cornering
forces are strong nonlinear function of the coefficient of adhesion, normal load, slip angle
and the slip ratio [67, 68, 70]. A large number of studies on handling dynamics have
employed simple vehicle models with linear or non-linear tire models [71-73], while the
contributions due to suspension kinematics and asymmetric damping were ignored in

these studies.
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The handling dynamics of road vehicles have been extensively studied through linear
and nonlinear analytical models of varying DOF. The linear 2- DOF bicycle model that
considers vehicle lateral velocity and yaw rate as the degrees-of-freedom had been used
in earlier studies on steady-state and transient handling analyses [65, 66, 68, 74, 75]. In
the linear bicycle model, the effects of suspension kinematics, vehicle roll and lateral
load transfer are ignored and constant forward speed with linear tire characteristics is
assumed. Such assumptions would be reasonably valid at lateral accelerations below 0.3
or 0.4g [74, 75, 76]. Although the lateral and longitudinal load transfers have been
incorporated in the simple models through suspension roll rates or with an additional roll
DOF, the effects of suspension kinematics were still ignored in such models [65, 74].
Further studies have shown that a yaw-plane model with reduced roll DOF could yield
considerable deviations from the measured data by as much as 15% at lateral
accelerations exceeding 6 m/s”.

The suspension kinematics can significantly alter the wheel camber, caster and toe,
and the roll center heights, and thereby handling properties of vehicles. Numerous have
investigated the handling dynamics of vehicles using models comprising the suspension
kinematics. The majority of these employed multi-body dynamic models to study the
handling responses of vehicles to steering and braking inputs [74, 76-81]. Janson and
Oosten [74] employed a 36- DOF multibody dynamic model that included suspension
kinematics and joint compliance, which revealed deviations from the measured data in
the order of 5%. The reported three- DOF yaw-plane models with reduced roll-DOF and

elaborate multibody models had incorporated Magic Formula tire models for calculating
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the tire forces, while the yaw-plane models ignored the suspension kinematics and
considered a stationary roll axis passing through the suspension roll centers.

Hegazy et al. [76] proposed a 34 mass, 94- DOF vehicle model including the
suspension nonlinearities for transient handling dynamics analysis under a double lane
change type of maneuver at a constant forward speed of 90 km/h, as described in the
international standard, ISO-3888 [82]. The model included suspension kinematics and
joint compliances, while the tire forces were estimated using the Magic Formula. The
study concluded that the model can be effectively used for handling dynamic analysis
even though the model validation was not discussed. Further studies by the same authors
have shown that the multibody dynamic vehicle model, developed in ADAMS platform,
is useful in correlating various forces developed at the tire road interface, such as high
magnitude abrupt peaks in the vertical tire forces may be related to suspension bump stop
forces in the opposite direction [81]. A simplified 18- DOF multibody dynamic vehicle
model was proposed by Sayers et al. [80] to study the handling and braking response of a
road vehicle. The model considered 6- DOF for the sprung mass and a vertical DOF for
each of the four unsprung masses, while auxiliary DOF were considered for the spin rate
and tangent of delayed lateral slip angle contributing to the relaxation length of the tires.

Multibody dynamic analysis tools, such as ADAMS, could provide considerable
flexibility in modeling the dynamic vehicle system, although very little interpretations
could be made from the equations generated within the software [77-79]. Furthermore,
such models require considerable data which suggests that the complexity of computer-
based modeling is dependent upon the particular application and the objective. For

instance, inclusion of bushings while modeling a double wishbone suspension is
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considered to have only a minimal influence on the camber change during wheel vertical
travel [77]. The transient response analyses under a double lane change maneuver at a
speed of 100 km/h could thus be performed using a simple yaw-plane vehicle model with
equivalent roll stiffness as opposed to the full suspension linkage model [76, 79, 81]. It
was further shown that such a vehicle model would overestimate the lateral acceleration
and roll angle responses in the absence of camber effects, while similar yaw rate
responses could be obtained without consideration of the camber [79].

The levels of required modeling complexity have long been debated in developing
vehicle models for dynamic analyses [83]. The engineers and analysts in the industry
often generate quite complex models to achieve greater accuracy. The academic
researchers, however, have put forward the view that typical industry-used vehicle
models are too complex and inefficient as design tools [10, 70, 84]. Sharp [84] suggested
that an ideal model should possess minimum complexity and be capable of solving the

concerned problems with an acceptable accuracy.

1.2.5 Ride Dynamics of Vehicles

Ride comfort performance of a passenger vehicle has been the key design goal during
the synthesis of the automotive suspension system. The ride performance of road vehicles
is generally assessed in terms of two measures: (i) objective vibration performance of the
vehicle expressed by the acceleration responses of the chassis evaluated either from field
measurements or through simulation; and (ii) subjective evaluations of occupant comfort
[1, 66, 85]. The objective evaluations of occupant comfort performance have also been
reported on the basis of frequency-weighted acceleration as defined in ISO 2631 [86].

Considering that the road induced vibration is directly associated with the occupant
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comfort, extensive efforts have been made to realize suspension designs for attenuating
the road induced vibration. These studies generally employed acceleration responses of
the sprung mass as measure of the ride quality.

Interactions of the tires with the road roughness serve as the primary excitations when
evaluating the ride performance of the suspension, although the rattle space requirement
and road holding properties are also incorporated in the analyses [66, 87]. The ride
properties of vehicles have been evaluated under varying excitations at the tire-road
interface, including harmonic [1, 66, 88, 89], idealized bump and pothole inputs [90, 91]
and randomly distributed road roughness inputs. The assessments of the vehicle
responses under road roughness excitation, however, are considered vital for suspension
designs and evaluations [92, 93, 94]. While time histories of road profiles are generally
used as the inputs to the nonlinear analytical vehicle models, the road roughness is
generally characterized by its power spectral density (PSD) [93, 95].

The dynamic properties of the tire, road profile and their interactions are critical for
suspension development. The most widely used and simplest model of tires representing
their fundamental mode of vibration is the linear point-contact spring in parallel with a
viscous damping element [2, 66, 87, 96]. Captain et al. [96] proposed and compared the
responses of four different tire models in a single DOF vertical dynamic model of the
vehicles, namely: (1) a point contact tire model; (i1) a rigid tread band tire model, which is
the modified form of the point contact tire model with a roller type contact between the
tire and the road; (ii1) a fixed foot print tire model, which interacts with the ground
through a foot print of constant size independent of the tire deflection; and (iv) an

adaptive foot print model which consists of flexible tread band inflated by internal
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pressure, linked to the wheel center by radially distributed stiffness and damping
elements. The study concluded that all the four models yield comparable results under
low frequency excitation, while the point contact model can overestimate the transmitted
tire force significantly at higher frequencies. An adaptive foot print tire model was shown
to yield good results over a wide range of frequencies, while it involves demanding
parameter identification and computations.

The analytical studies on ride dynamics involve modeling of essential suspension
components with varying degrees of complexities. The reported ride dynamic models
include one, two or three dimensional models with varying DOF. One dimensional
single- or two- DOF quarter-car models have been widely used to study different
concepts in suspension and the vertical dynamics of the vehicles. These models include
either linear or nonlinear spring or dampers [2, 66, 97], and tire vertical properties [92,
98]. Two-dimensional half-car, 2- to 4- DOF models with linear or nonlinear suspension
and tire models have been used to study the pitch and roll ride response coupled with the
vertical dynamics [2, 66, 99, 100]. The vertical ride, roll and pitch dynamic responses of
vehicles have been investigated more comprehensively using the three-dimensional full-
car models [101, 102]. These include 7-DOF full-car models comprising heave, roll and
pitch motions of the sprung mass, and the vertical motions of the independent unsprung
masses. Influence of suspension properties including those of the spring rate, damping
(passive, semi-active or active), and antiroll bars on vertical, roll and pitch responses
have been widely explored by such ride models [101, 102]. Such models, however,
ignore longitudinal, lateral and yaw motions of the vehicle, and cannot be employed to

analyze handling and directional dynamic responses of the vehicle. A few studies have
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employed three-dimensional full car models to study the ride and handling properties of
vehicles and role of suspension design [103-105]. These models consider the yaw and
lateral motions of the sprung mass in addition to the heave, pitch and roll motions. Such
models were proved to be instrumental in studying the influences of road induced
vibrations on the handling dynamics of the vehicles.

The ride performances of road vehicles strongly depend on the suspension properties,
namely the stiffness and damping parameters. A damper in an automotive suspension
system plays a vital role in the ride and handling dynamics of a vehicle, while modeling
of damper properties is considered as a challenging task due to its highly nonlinear
behavior. The nonlinearity in the damper is attributed to its dependency on the damping
valves, gas spring, end bushings, temperature sensitivity and the hysteresis. The damper
characteristics are typically represented by force-velocity curves. The suspension
damping properties and their effects on various vehicle performance measures have been
extensively investigated under different inputs, including the contributions due to gas

spring, bushings compliance, and temperature and hysteresis effects [89, 106-111].

Hardware-in-the-loop (HiL) test and analysis techniques have been developed in a few
studies to investigate the contributions due to suspension damping. These studies, in
general, integrate the measured damping force of the damper hardware in response to
suspension deflections that is derived from a quarter-vehicle simulation models [112-
114]. The HiL method thus permits consideration of contributions due to nonlinearities
effects that are difficult to model, such as the effects of bushings, temperature variations
and damping valves. Misselhorn ef al. [112] investigated the suitability of HiL method of

analysis for suspension development using a quarter-car model of a vehicle. It was shown
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that the displacement response predicted by the quarter-vehicle model simulation was
lower than that derived from the HiL simulation under a step input, while it was higher
for a bump input. A delay between the two responses was also observed, which was
attributed to the phase lag of the servo-hydraulic actuation system. The study further
compared the results attained from HiL simulation with those measured from a quarter-
car experimental setup. The study observed the phenomenon of stick-slip within the
quarter-car setup, which was in-part attributed to the bushing properties causing large
resistive force at low speeds and small resistive force at high speeds. The HiL simulation
techniques have also been applied for synthesis of controllers for various semi-active and
magneto-rheological fluid dampers [114-116]. Although a HiL technique can provide
efficient simulations of suspension nonlinearities, the contributions due to suspension
kinematics, particularly the rotation of the damper strut, are entirely ignored.

Automotive suspensions invariably employ asymmetric dampers, which exhibit higher
damping coefficient in rebound than in compression. The precise reasons for such
asymmetry, however, have not been explicitly quantified [117], which is most likely
attributed to highly complex dependence of different performance measures on the
damping asymmetry. Furthermore, the effects of damping asymmetry greatly depend
upon the nature of excitation and suspension responses. The reported results thus do not
permit the design guidance for damping asymmetry, which has been limited to a general
rule of thumb suggesting that a rebound to compression damping ratio in the order of 2 or
3 would reduce the magnitude of the force transmitted to the sprung mass, while

negotiating a bump [1,2]. Only a few studies, however, have attempted to quantify the
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effects of asymmetric damping on the vehicle responses to transient excitations idealizing

bumps or potholes [94, 117, 118].

Fukushima et al. [119] investigated the influence of asymmetric damping on ride
comfort and concluded that a lower damping in compression than in rebound would yield
significant reduction in the initial sprung mass acceleration peak response to a bump
excitation. The study, however, did not present the effect of damping asymmetry on the
subsequent response peaks or the responses to a pothole type of excitation. Verros et al.
[91] investigated the transient response of a single-degree-of-freedom (DOF) quarter-car
model with single stage asymmetric dampers with rebound to compression damping
ratios of 3 and 1/3 under pothole excitations. The study showed considerable influences

of the damping asymmetry on the sprung mass acceleration and rattle space responses.

A few studies have also suggested that damping asymmetry causes suspension
‘packing’ or ‘jacking down’ [88, 89], while no efforts have been made to quantify such
phenomenon in relation to the suspension kinematics. Using a quarter-car model
employing a nonlinear damper model with asymmetric damping rates, Warner et al. [88]
showed that the damper asymmetry causes change in the ride height or ‘dynamic drift’,
which is dependent upon the low-speed compression and rebound damping coefficients.
Rajalingham and Rakheja [89] presented variations in the vehicle ride height in terms of
alternating and mean components of the suspension deflection, where the mean
component represented the magnitude of packing down of the asymmetric suspension. In
a similar manner, Eslaminasab [120] decomposed the damping force due to a single stage
asymmetric damper under harmonic excitations into a symmetric component and a

discontinuous component attributed to the damping asymmetry. Simms et al. [118] also
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showed the presence of drift under random road excitations using a quarter-car model
incorporating hysteresis model of a damper. The simulation results obtained with an
asymmetric damper with relatively higher rebound damping revealed offset in the

suspension rattle space response, which was not evident with the linear damping.

The reported studies generally describe nonlinear asymmetric damping by piecewise
linear functions in compression and rebound considering either single-stage or two-stage
(low- and high-speed) damping coefficients. Ahmed et al. [121] described the nonlinear
asymmetric damping by an array of locally linear damping constants using the principle
of energy similarity to study the frequency response of a quarter-car model employing a
two-stage asymmetric damper. Calvo et al. [122] showed that a piecewise linear damper
model, which takes into account the differences between the compression and rebound
behaviors, and incorporates the low- and high-speed damping, can yield acceptable
results in all the driving maneuvers.

Synthesis of optimal damper characteristics in compression and rebound has been a
challenging task, which is mostly attributed to couplings among the different
performance measures together with complex dependence on various parameters of an
asymmetric multi-stage damper. A number of studies have attempted to identify optimal
suspension parameters including dampers with linear or piecewise linear force-velocity
characteristics in order to achieve better compromises among the ride, suspension
deflection and road holding measures. He and McPhee [123] critically reviewed reported
automated design synthesis approaches for ground vehicle suspension developments.

Dahlberg [94] optimized the natural frequency of the sprung mass and the damping

ratio considering a linear suspension damper to achieve an improved compromise
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between the ride comfort and road holding measures under random road excitations. A
few other studies [124, 125] suggested the use of genetic algorithm (GA) based multi-
objective programming technique for attaining optimal values of linear stiffness and
damping coefficients using either simple quarter-car or full-vehicle models.

A few studies have also attempted to identify optimal asymmetric damping using
different vehicle models and excitations. Verros ef al. [92] derived optimal values of the
asymmetry ratio using a 2-DOF quarter-car model under random road excitations, and
concluded that the optimum values are dependent upon a number of operating factors
such as the forward speed, the road roughness and the target performance measure.
Georgiou et al. [126, 127] employed multi-objective evolutionary methods to derive
optimal damping coefficients for the single- and two-stage aymmetric dampers using a
conventional quarter-car and a multibody dynamic full vehicle models. These studies
considered the deterministic pothole type or random road excitations, and concluded that
the optimal damping coefficients depend upon the forward speed of the vehicle and
design criteria selected, as suggeted in [92]. Optimal damping characteristics suggested
by these studies were thus a complex function of the forward velocity of the vehicle with
significant differences in the identified optimal damping coefficients corresponding to
lower and higher vehicle velocities. This in-part could be attributed to limited
understanding of influences of damper asymmetric properties in relation to the vehicle

forward velocities, particulalry under random road excitations.

1.2.6 Influences of Suspension Kinematics on Dynamics of the Vehicle

Influences of suspension kinematics on the handling dynamics have been reported in

many studies. These generally suggested that the suspension kinematics strongly
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influence the lateral load transfer, wheel camber and toe angles and thereby significantly
alters the forces developed at the tire-road interface [4, 5, 18, 75, 76, 79]. The chassis roll
is also known to cause changes in the camber and steer angles and thus the handling
performance. The roll camber influences both transient and steady handling responses,
while the roll steer does not have significant influence on the transient response of the
vehicle since it increases gradually with the chassis roll [5, 18, 81]. It is, however,
suggested that inclusion of roll steer in the handling analysis is crucial owing to its
considerable influence on the steady state responses [67]. The changes in the camber and
toe angles during a wheel bump also causes lateral forces to develop at the tires. These
forces influence the sensation of poor handling and require additional efforts from the
driver in terms of corrective steering to overcome the change in direction due to tire slip
angles [7]. The suspension kinematics in many of these studies is characterized by
equivalent roll stiffness.

Nalecz et al. [18, 67] proposed a three-mass (sprung, front and rear unsprung masses)
3- DOF nonlinear model to study the influence of suspension linkage kinematics on
vehicle stability. The model considered lateral, yaw and roll motions with vehicle roll
motion about the roll axis, while the cornering stiffness was determined as a nonlinear
function of instantaneous normal load, comprising the static as well as the dynamic
lateral weight transfer. The tire forces were determined using ‘friction ellipse concept’,
with lateral forces as nonlinear function of normal load, slip angle and tire skid number.
The stability analysis was based upon lateral acceleration, yaw rate and roll angle
responses to various handling maneuvers, including combined braking and steering. The

study concluded that representation of roll stiffness in lieu of suspension kinematics is
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not adequate since 20-70% of the total lateral load transfer can be attributed to the body
roll and the roll center movement. Furthermore, 6-8% of the total lateral load transfer can
be due to the unsprung masses depending upon the type of suspension used. Further
studies by the same authors considered the tire forces due to wheel camber and toe
obtained through spatial kinematic analysis [18]. The handling responses to ramp-steer
input showed that the lateral forces developed at the tires due to camber and steer angles
can have negative influence on the stability of the vehicle. Minimal variations in these
angles were thus considered as desirable. The findings, however, were based on
responses to ramp steer inputs alone, while the variations in the effective spring rate due
to suspension kinematics were ignored.

A simplified 18- DOF multibody dynamic vehicle model was proposed by Sayers et
al. [80] to study the handling and braking response of a road vehicle. The model
considered 6- DOF for the sprung mass and vertical DOF for each of the four unsprung
masses, while auxiliary DOF were considered for the spin rate and tangent of delayed
lateral slip angle contributing to the relaxation length of tires. Furthermore, the model
incorporated suspension kinematic effects of toe-change and camber change via look-up
tables. Lateral acceleration and yaw rate responses to a step-steer input showed similar
trends as those of the detailed (suspension kinematics) model while the simple model
underestimated the roll angle response at speeds greater than 20 m/s. Further studies on
the multibody dynamic full vehicle model with suspension linkages have shown that such
a vehicle model overestimates the lateral acceleration and roll angle responses in the
absence of camber effects, while similar yaw rate responses could be obtained without

consideration of the camber [79].
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Influence of suspension kinematic properties on vehicle roll response was studied by
Shim et al. [8]. The roll angle response of the vehicle model with front MacPherson and
rear multi-link suspension, developed in ADAMS/car, was investigated under a fishhook
maneuver. The study showed that an increase in toe-in reduces the sprung mass roll angle
with an increase in the understeer gradient. A decrease in the camber-change reduces the
sprung mass roll angle response, while the understeer gradient increases. The study
further showed that increases in the roll-center height and caster angle cause the roll
response to decrease.

Although influences of suspension kinematics on handling and roll dynamic
responses under steering input have been reported in many studies, the vast majority of
the vertical ride dynamic models ignore the contributions of suspension kinematics.
Conventional ride models serve as effective tools for assessing different concepts in
suspension components, the complex contributions due to linkages and bushing
properties cannot be evaluated [63, 87]. In an independent suspension system, the wheel
carrier or the spindle is generally connected to the chassis through the suspension
linkages, which induce rotational motion of the wheel apart from the vertical motion. The
center of rotation of the wheel greatly relies on the suspension geometry and tends to
influence the dynamic responses of the vehicle. Furthermore, the suspension strut is
generally mounted away from the unsprung mass center (cg) and thus the point of
application of spring and damping forces and the unsprung mass are not colinear.
Furthermore, the vast majority of the suspension yield asymmetric kinematic responses
during bump and rebound, which would add to the asymmetry in the dynamic responses

attributed to asymmetric damping properties.
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Only a few studies have attempted to incorporate the suspension kinematic
nonlinearities into the vertical dynamic model [90, 128-133], using different approaches,
particularly for the quarter-car models. Kim et al. [90] identified equivalent suspension
parameters namely, the sprung and unsprung masses, suspension spring rate, and
damping rates in compression and rebound, of a simple quarter car model using the
responses of a 3-D model developed in ADAMS software. The study showed that the
identified parameters of a double wishbone suspension vary considerably with changes in
the control arms lengths or the strut inclination angle. The parameters of a MacPherson
suspension, however, were less sensitive to geometric variations. Similarly, the responses
of a nonlinar multibody dynamic MacPherson suspension model were obsereved to be
comparable to those of a linear quarter-car model with identified parameters [129]. The
identification of equivalent parameters of a linkage suspension may require
measurements of repsonses of the physical suspension system which would be
cumbersome. Considering the strong effects of variations in the suspension geometry and
joint coordinates, such variations in a physical suspension, however, would be extremely
demanding.

Other studies have proposed models of the linkage suspensions, although the vast
majority have focussed on the MacPherson suspension. Stenson et al. [131] proposed a
planar non-linear dynamic model of a MacPherson suspension using the kinematic
relations derived from the suspension geometry. The dynamic analyses were conducted
asuming the chassis as fixed, while the tire dynamics was neglected. Hong et al. [128]
developed a two-DOF quarter-car model, as illustrated in Fig. 1.1 (a), considering sprung

mass vertical displacement and the control arm rotation as the generalized coordinates.
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The model included the kinematics of the control arm and the strut, while the strut was
assumed to be mounted on the control arm. Fallah et al. [132] extended the MacPherson
suspension model, proposed in [128], by locating the strut on the wheel spindle, as shown
in Fig. 1.1 (b). The dynamics of the system were derived considering the camber rotation
and lateral displacement of the wheel. The study also investigated the variations in the
wheel track, and camber, caster and kingpin angles during dynamic events. The above-
cited studies on MacPherson suspension quarter-car models [128, 132] considered the
tire as a vertical spring, while the contribution due to its lateral compliance was ignored.
Moreover, these studies compared the responses of the kineto-dynamic models with those
of a conventional quarter-car model assuming that the strut positioned on the wheel
center provides equivalency between the two models, therby ignoring the kinematics of

the strut.
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Figure 1.1: Schematics of the quarter-car model comprising linkage kinematics of the
MacPherson suspension configuration: (a) strut on the control arm [128]; and (b) strut on
the wheel knuckle [132].
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Kim et al. [90] concluded that the contribution of the MacPherson suspension
kinematics on the equivalent parameters and the dynamic responses are considerably
small. The strut location away from the wheel center, however, yields some effects of the
kinematics. The kinematics of a double wishbone suspension may yield considerably
stronger effects on the dynamic responses compared to the MacPherson suspension. This
1s attributable to kinematics associated with the additional control arm, strut location on
the lower control arm and additional kinematic constraints. The identification of coupling
between the linkage kinematics of a double wishbone suspension and the dynamics has
been attempted in a single study, although such a suspension has been most widely used.
Joo [133] proposed a kineto-dynamic quarter-car model of a double wishbone suspension
considering the control arm lengths and angles as the geometric parameters for
developing an active control strategy, while, the tire lateral compliance was ignored.
Furthermore, vertical spring and damping elements were considered, and thus the effects
of strut inclinations were ignored, as shown in Fig. 1.2. The study had concluded that the
model responses were sensitive to the joint coordinate variations, while a synthesis of the
suspension geometry considering such influences was not considered in the study.

The conventional roll-plane vehicle ride models with vertical- and roll- DOF of the
sprung mass have generally ignored the contributions due to suspension kinematics and
considered the vehicle roll axis passing through the sprung mass center or sprung mass
roll motion about a roll center [83, 134-136]. A few studies have used extended models
with incorporating the lateral degree-of-freedom of the sprung mass [83, 134]. Majority
of these studies, however, consider a dependent type of suspension, used in heavy

vehicles, where suspension kinematics would be of negligible importance.
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Figure 1.2: Quarter-car model comprising linkage kinematics of double wishbone type of
suspension configuration [133]

Stone and Cebon [135] considered five- DOF roll-plane model of a vehicle with
independent type trailing arm suspension. The influence of linkage kinematics of
independent type of suspensions has been reported in another study on the synthesis of an
active suspension for minimizing the body roll [136]. The study considered a simple
suspension model comprising a single suspension arm between the chassis and the wheel
assembly. The unsprung mass in both the models, however, was permitted only a vertical

DOF with no consideration of its rotation about the vehicle longitudinal axis.

Consideration of joint bushing properties in the dynamic analyses requires a more
comprehensive vehicle model with suspension linkages and the types of joints and their
coordinates. Multibody dynamic tool, ADAMS/car, was used by Azadi et al. [56] in order
to study the influences of faulty damper and upper damper bushings on the dynamic

responses of the vehicle. The full vehicle model in this study comprised of rigid type
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suspension (both front and rear) with A-arms connecting the chassis and the axle with

joints bushings.

1.3 Scope of the Proposed Dissertation Research

From the review of literature it is evident that vehicle suspension design involves
considerable challenges in order to realize acceptable compromises in ride, handling,
directional control and road holding performances with reasonable durability. It involves
a thorough analysis of the suspension kinematics, and its contributions to the dynamic
responses of the vehicle, such as the ride, handling and directional control performances.
Moreover, the dynamic responses are highly influenced by the vertical and lateral
properties of the tire. Conventional studies on the suspension synthesis and related
concepts consider kinematics of the suspension in the initial stages of suspension design,
which are generally performed to achieve a compromise among variations in roll and
bump camber, toe angles, and wheel track and wheelbase. These kinematic measures are
mostly selected considering the handling dynamics and the road holding performances
only, while the influences of these responses on the vertical dynamics of the vehicle are
completely ignored. On the other hand, the conventional suspension synthesis process
also involves design of suspension components including spring, damper or anti-roll bars
considering the dynamic responses only, and ignoring the influences of these elements
properties on the kinematic responses, which would further influence the dynamic
responses. Furthermore, possible influences of tire lateral compliance properties on the
vertical dynamics is ignored in the conventional suspension design studies. Suspension

synthesis involving the couplings between the suspension linkage kinematics and tire
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lateral compliances with the vertical dynamics responses would thus be highly desirable,
while the majority of the existing vehicle models do not permit such coupled analyses.
The literature further reveals that the suspension kinematic and dynamic responses are
strongly affected by the joint coordinates in a complex manner. The current trends in
hybrid vehicles developments impose considerable challenges related to the sprung mass
and the sub-frame space requirements and thus the chassis design. The larger space
requirements of the hybrid vehicles also necessitate considerations of the suspension
synthesis with limited lateral space, which would most likely involve complex
compromises among performance measures related to vehicle ride and handling. The
synthesis of a suspension with constrained lateral space thus necessitates investigations of
the influences of joint coordinates on the kinematic and dynamic responses, and the

related measures including the variations in the wheel load.

The kinematic and dynamic responses are further influenced by the asymmetric force-
velocity properties of the dampers in compression and rebound. The design guidelines for
such asymmetry has thus far been limited to a general rule of thumb suggesting that a
rebound to compression damping ratio in the order of 2 or 3 would reduce the magnitude
of the force transmitted to the sprung mass. Further, the asymmetry in the dampers causes
mean shift in the sprung mass position relative to that of the unsprung mass, which is also
known as ‘damper jacking’. The influence of the damper jacking on the suspension
kinematic responses, particularly variations in the camber angle, which are directly
related to the suspension deflection, are generally ignored while synthesizing a
suspension damper. An optimal synthesis of suspension damper would thus involve

consideration of the kinematic measures (camber change etc.) apart from the widely
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known complexities involving design compromises to satisfy the conflicting ride
comfort, rattle space and road-holding measures. Furthermore, the synthesis of
suspension damper with asymmetric properties in rebound and compression necessiates
study of influences of the damper asymmetry on the dynamic and kinematic responses as
a function of the vehicle forward speed under various inputs including bump, pothole and
random road excitations. A systematic kineto-dynamic analysis of the suspension with
asymmetric damper could thus yield design guidance for the damping asymmetry.

The majority of the studies on suspension kinematics have assumed idealized
mechanisms and joints, neglecting the contributions due to joints clearances, attributed to
joint bushing aging and wear. Clearances in different joints may cause deteriorated
kinematic and dynamic performances of the mechanism; the effects, however, have been
investigated in a very few studies using particular suspensions syntheses. The influences
of magnitudes of joint clearances on the kinematic and dynamic performance
characteristics of general mechanisms, however, have shown increased joint reaction
forces due to clearances. These methodologies can be applied for systematic studies on
qualitative and quantitative effects of nonlinearities due to joint clearances in the
suspension mechanisms, which are highly desirable for developing a suspension fault

diagnostic system.

1.4 Objectives of the Dissertation Research

The proposed dissertation research is formulated with an overall objective of
synthesis of an optimal independent suspension system comprising asymmetric damper,

linkage kinematics, tire lateral compliances, and joints clearances in order to enhance the
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dynamic performance of the suspension. The specific objectives of the proposed
dissertation research are summarized as follows:

a. Develop a kinematic model of a candidate suspension mechanism, and investigate
the influences of joint coordinates on the kinematic performance measures
through sensitivity analyses;

b. Develop laboratory experimental setup comprising essential suspension links and
measure kinematic response parameters, and examine the validity of the kinematic
modeling methodology;

c. Develop a kineto-dynamic quarter-car model of a road vehicle incorporating the
suspension linkage kinematic effects and tire lateral compliances, and investigate
the coupling between the suspension kinematics, tire lateral compliance and
torsional compliance of joint bushings with the vertical dynamic performance
measures;

d. Investigate the influences of damping asymmetry on the coupled dynamic and
kinematic responses of the suspension under different road excitations over a wide
range of vehicle speeds;

e. Synthesize an optimal two-stage asymmetric damper so as to yield compromise
among the kinematic and dynamic performance measures;

f. Develop a kineto-dynamic half-car roll-plane model of the road vehicle
incorporating the suspension linkage kinematic effects and tire lateral
compliances, and investigate the coupling between the suspension kinematics, tire

lateral compliance and the vertical and roll dynamic performance measures;
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g. Select optimal joint coordinates considering the kinematic performance measures,
and investigate the effects of the change in coordinates on the dynamic and
kinematic performance measures;

h. Investigate the influences of damping asymmetry on the coupled dynamic and
kinematic responses of the roll-plane half-car model under different road and
lateral excitations;

i.  Extend the kineto-dynamic model to incorporate suspension faults including joint
clearances, linkage deformation and leaked damper, and investigate the effects on

the dynamic performance measures of the suspension systems

1.5 Organization of the Dissertation

This dissertation is organized into seven chapters with the first chapter focusing on the
review of relevant literature and the scope and objectives of the dissertation research.
Chapter 2 presents the study of influences of suspension joints coordinates on the
kinematic responses of the suspension, and synthesis of suspension geometry considering
the kinematic performances of the suspension. Kinematic models and their analytical
formulations of quadra-link and double wishbone type of suspensions are presented
together with the design of experiment and validations of the proposed analytical models.
The influences of the joint coordinates on the suspension kinematic responses under
wheel vertical displacement excitations are further investigated through sensitivity
analyses. The kinematic model of the double wishbone suspension is formulated in such a

manner that the linkage kinematics can be easily integrated into the dynamic model.

Chapter 3 of this dissertation is concerned with the kineto-dynamic analyses of a

quarter-vehicle model comprising double wishbone supension. A quarter-car model is
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formulated integrating the kinematic relations of the suspension linkages described in
Chapter 2 using the Lagrange’s energy method. Transient dynamic responses of the
model are analyzed under different road excitations, and simulation results are presented
so as to illustrate the contributions of suspension kinematics on the dynamic responses.
Synthesis of suspension linkage joints coordinates considering the lateral space
constraints, with an application to the hybrid vehicles is discussed in the chapter. This
chapter further presents the kineto-dynamic analyses of model with flexible joint
bushings. The influences of suspension joints flexibility on the kinematic and dynamic
responses are investigated, and influences of the variations in the flexibility are also

presented so as to yield design guidelines for the synthesis of joint bushings.

In Chapter 4, an optimal synthesis of two-stage asymmetric damper is presented
giving due considerations to the different conflicting demands related to the kinematic
and dynamic performance measures. Initially, influences of damper asymmetry is
analyzed on the kinematic and dynamic performance measures under harmonic, bump
and pothole excitations. An optimal synthesis of two-stage asymmetric damper is
presented considering design conflicts under bump and pothole type of excitations. The
influences of the damping asymmetry on the kinematic and dynamic performance
measures under random rough road excitations are further analyzed to indentfy the
conflicting requirements on the damper synthesis. Finally, this chapter presents the
optimal synthesis of two-stage asymmetric damper parameters considering the design
compromises related to kinematic and dynamic performance measures corresponding to

ride, rattle space, roadholding and camber angle variations.
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Roll-plane kineto-dynamic analyses of the vehicle are presented in Chapter 5. A
kinematic roll-plane vehicle model comprising double wishbone suspension is deveoped,
and the formulations of kinematic responses such as bump camber, roll camber and wheel
track variation are derived. The responses are analyzed under wheel vertical motions,
chassis roll motions and simultaneous motions of wheel and the chassis. Influences of the
joints coordinates on the kinematic performance measures under these excitations are
discussed and conflicting design criteria are identified. Selection of optimal joint
coordinates considering only the kinematic performance measures is presented. This
chapter further presents development of kineto-dynamic roll-plane vehicle model
including double wishbone suspension linkages kinematics. The roll and vertical dynamic
responses of the model under vertical and lateral centrifugal force excitations are
analyzed. A methodology of suspension geometry synthesis considering both kinematic

and dynamic response characteristics of the model is further presented in this chapter.

Chapter 6 presents the study of influences of suspension faults on the dynamic
performance of the vehicle. Modeling of bushing clearances in ADAMS platform is
discussed in this chapter. A preliminary study on the fault diagnostic system has also
been presented briefly in this chapter. In Chapter 7, the major conclusions drawn from the

dissertation research are described followed by the potential future studies in this field.
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CHAPTER 2

KINEMATIC ANALYSIS AND SYNTHESIS OF SUSPENSION
GEOMETRY USING A QUARTER CAR MODEL

2.1 Introduction

Synthesis of suspension is a complex task due to many conflicting kinematic and
dynamic performance measures. Various studies have suggested that kinematic responses
of independent suspension systems such as variations in camber, caster and toe angles,
and wheel track and base could significantly influence the handling dynamics of the
vehicle and the tire wear characteristics [2, 4, 7, 137]. It has been further suggested that
the kinematic responses are highly influenced by the joint coordinates and the lengths of
suspension linkages in a complex manner. Synthesis of a suspension geometry (locations
of joint coordinates and lengths of linkages) thus poses considerable challenges as
evident from the large number of reported studies [5, 7, 8, 14, 13], although the vast
majority focus on achieving minimal kinematic response variations under suspension
vertical travel. Current trends in hybrid vehicles developments impose additional design
challenges related to the sub-frame space requirements and thus the chassis design [3],
which necessitate considerations of the suspension synthesis with limited lateral space.
Synthesis of suspension geometry with constrained lateral space has been addressed only
in a few studies [13, 31, 32], which would most likely involve additional design
compromises among performance measures related to the kinematic as well as dynamic
responses.

Synthesis of suspension geometry involves the study of kinematic responses of the

suspension under wheel and chassis excitations, and influences of joint coordinates on the
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kinematic responses. Identification of most influential joint coordinates has been
considered as an essential and most challenging process during suspension geometry
synthesis [30]. In this chapter, a kinematic model of a suspension mechanism is
formulated together with the essential excitations and the performance measures. The
influences of the joint coordinates on the suspension kinematic responses are
systematically evaluated under wheel vertical displacement excitations, for two different
widely used suspension mechanisms: a quadra-link and a double wishbone type of
suspension. The validity of the proposed kinematic model of the quadra-link suspension
is examined by comparing the responses of the model with those attained from the

laboratory measurement.

2.2 Features of Kinematic Analysis

Early stages of the suspension synthesis process involve kinematic analysis of the
suspension mechanisms, particularly, the variations in the camber, toe and caster angles
and the wheel track under wheel vertical travel. It has been suggested that a kinematic
model of a single wheel station comprising the suspension linkages, chassis and the
wheel spindle can be conveniently used to study the essential kinematic responses of a
suspension [10]. Such simplified models could also incorporate contributions due to the
roll motion of the chassis through analysis of the roll center. Numerous analytical models
of varying complexities have been developed to study the kinematic responses of various
types of commonly used suspension configurations such as MacPherson strut [11, 20,
21], double wishbone [14, 15] and multi-link (five-link) [5, 6, 14, 17]. The kinematic
responses are analyzed considering the suspension system either as planar or spatial

mechanisms. Planar analyses permit analyses of a few of the kinematic responses in a
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highly efficient manner, such as variation in camber angle and half wheel track during
wheel jounce and rebound motions, although the contributions due to steering mechanism
and kinematic effects of steer and caster angles are ignored. Kinematic analysis of three-
dimensional suspension mechanism is thus essential for determination of variations in the
steer, camber or caster angles simultaneously, while taking into account the coupled
kinematic effects of suspension linkages.

The kinematic analysis of a mechanism, in general, involves determination of
position, velocity and acceleration of a body relative to another body without considering
the force that causes the motions. The relative position, velocity and acceleration
responses are dependent upon the geometry of the mechanism, type of links, and the
associated mobility and the constraints. Development of a kinematic model of an
automotive suspension thus necessitates knowledge of various kinematic constraints and
corresponding equations. Various kinematic joint constraints and types of links employed
in vehicle suspension mechanisms are briefly reviewed and discussed in the following

section.

2.2.1 Kinematic Constraints in a Suspension Mechanism

The motions of a mechanism are strongly dependent upon the kinematic constraints
that describe the joints in a multi-body system, types of links and joints. The types of
links employed in a suspension mechanism are often classified on the basis of the type of
joints supporting a link such as spherical-spherical, revolute-revolute and revolute-
spherical. A brief description of these types of links and the respective constraint

equations are given below.
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A Spherical-Spherical (S-S) link comprises spherical joints at each ends [138]. These
types of links are generally found in multi-link type of suspensions with one of the
spherical joints located at the chassis and the other at the wheel spindle. The constraint
equation of a Spherical-Spherical link can be derived from the constant length between
the two spherical joints before and after a displacement. Considering two points J and K
as the centers of the spherical joints at two ends of a S-S link with (Jxg, Jy0, J-0) and (K.,
K0, K-9) as the initial x- y- and z- coordinates, the constraint equations for the S-S link JK
can be related to the coordinates of the joint centers (Jy, J,, J-) and (K, K,, K-) following
a finite displacement, as illustrated in Fig. 2.1 (a), such that:

(oK) UK+ (2 =KoY =(Jeo-Ko) H(Jy0-Kyo) ™+ (Jzo -Kz0) 2.1
A Revolute-Spherical (R-S) link, as the name suggests, consists of a revolute joint at one
end and a spherical joint at the other end. The control arms of MacPherson strut, double
wishbone and quadra-link suspension configurations are generally R-S type. The control
arms in such suspensions forms a revolute joint with the chassis and a spherical joint with
the wheel spindle. The motions of these links are governed by the condition that the link
must rotate about a revolute axis at the revolute joint. Two specific conditions define the
motion of R-S types of link, namely: (i) the distance between the revolute axis and the
spherical joint remains constant during any motion; and (ii) the vector from the revolute
axis to the spherical joint is normal to the revolute axis during the motion.
Mathematically, the dot product of the unit vector representing the revolute axis and the

vector from the revolute axis to spherical joint is zero.
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Considering the point J as the intersection of a unit  along the revolute axis and a
normal vector from the spherical joint K to the revolute axis (Fig. 2.1 (b)), the constraint

equations for a R-S type of link can be written as:

(2.2)
l z
o
K (Kx Ky, K2) (%= —— K (K0, Ky0, K=0) K0 (K0, Kyo K=()
K (Kx Ky, Kz)
| / J (J:.rﬂ, Jv0, J20)
I U Ty, S (Y T (Jx0: T30, J20)
iV P
z L
T - L
o N x y
X Y
(a) (b)
Figure 2.1: Schematics of: (a) spherical-spherical link; and (b) revolute and spherical link

[138]

Revolute-Revolute (R-R) type of link with revolute joints each at both the ends is
seldom found in vehicle suspension mechanisms since such a link permits rotational
motion about the two parallel revolute axes only. In planar suspension models, both the
S-S and R-S types of links act as R-R type of link due to the possible rotational motion of
the rigid bodies about axes normal to the plane. The constraint equation of a R-R type of
link can be derived from the constant length between the two revolute joints before and
after a displacement. Considering two points J and K as the centers of the revolute joints
at the two ends of a R-R link in the y-z plane with (J,, J-9) and (K, K-9) as the initial
coordinates, the constraint equations are to be obtained by relating to the coordinates of
the joint centers (J,, J.) and (X, K-) following a finite displacement of the link, such that:

49



(K ) H(-K) =(Jy0-Ko o) (oK) (2.3)

2.2.2 Kinematic Responses of Automotive Suspensions

The suspension kinematics are widely known to influence handling dynamics of a
vehicle under lateral excitations arising from a steering input or wind gusts [1, 4, 7]. The
kinematic responses, particularly, the variations in the wheel orientation angles (camber,
toe and caster angles), the wheel-track and wheel-base during suspension travel may
yield additional undesirable lateral forces at the tires. Furthermore, the variations in the
wheel orientation angles, and the lateral and longitudinal motions of the spindle could
yield accelerated tire wear. Various studies have suggested that minimal variations in
these responses during wheel vertical motion are desirable for good handling
performance of a vehicle [4, 5, 137]. Kinematic responses of a suspension mechanism are
thus evaluated in terms of variations in the wheel track and wheel base, and the camber,
caster and toe angles during the wheel vertical travel with respect to those corresponding
to static conditions. The kinematic performance measures of a suspension system are thus

often defined in terms of variations in these responses under a given suspension travel.

2.3 Kinematic Analysis of a Quadra-link Suspension

A quadra-link suspension configuration, as the name suggests, comprises four links
connecting the chassis and the wheel spindle. The structure of a quadra-link suspension
lies in between those of double wishbone and a five-link type of suspensions [1, 2, 5].
While a double wishbone suspension comprises two control arms only, the five-link
suspension consists of five distinct links connecting the wheel spindle with the chassis.

The quadra-link type of suspension considered in this study, comprises an upper control
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arm, two lower links and a trailing arm, as illustrated in Fig. 2.2. This suspension
configuration is widely used in rear suspensions of passenger cars including the Chrysler-
Breeze and Sebring [139]. The strut in quadra-link type of suspension is located on the
wheel spindle. The spatial stucture of the quadra-link suspension, as seen in the figure,
suggests that the kinematic response analyses and subsequent synthesis of the suspension

necessitate a three-dimensional analysis.

Lower controla

Whee] kuckle

Trailing arm

Figure 2.2: Schematic image of a quadra-link suspension

Although a number of spatial kinematic models of different suspension mechanisms have
been suggested for kinematic analysis and subsequent synthesis such as MacPherson,
double wishbone and five-link suspension mechanisms, such analyses of a quadra-link
type of suspension could be found in a single study only [140]. The reported study on the
quadra-link suspension was conducted using the multi-body dynamic tool,

ADAMS/chassis, with an objective to yield optimal joint bushing stiffness. The study of
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the kinematic responses such as variations in the camber and toe angle, and wheel track
and base, and the influences of the joint coordinates on the kinematic responses however
were not considered. In this study, an analytical model of the quadra-link suspension is
formulated for the kinematic analysis and synthesis in order to evaluate variations in the
orientations of the wheel at different positions of the wheel center with respect to the

chassis.

2.3.1 Kinematic Model of the Quadra-link Suspension

A spatial model of the quadra-link suspension incorporating all the linkages,
subframe (chassis) and the wheel spindle is formulated as illustrated in Fig. 2.3. The
upper control arm (M1-N1-M?2) of the quadra-link suspension forms a revolute joint with
the chassis, and permits rotational motion of the control arm about the revolute axis M-
M?2. The upper control arm is connected to the wheel spindle through a spherical joint,
thereby forming a R-S link . The lower links O7-PI and O2-P2, and the trailing link O3-
P3 form spherical joints with both the chassis and the wheel spindle, which can be
identified as S-S type of links. The point C in the Fig. 2.3 (b) represents the wheel center.
The chassis, the control arms and links, and the wheel spindle are assumed to be rigid
bodies, while the tire is assumed to be integral part of the wheel spindle. The suspension

kinematic relations are derived with an assumption that all the joints are frictionless.

2.3.2 Mobility Analysis

In a quadra-link suspension mechansim, the chassis, the upper control arm, the lower
links, the trailing arm and the wheel spindle are components of the closed kinematic

chain, while coupling with the fixed chassis forms the mechanism. The mobility of the
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quadra-link suspension mechansim, as shown in the Fig. 2.3 (b), can be estimated from

Grubler’s criteria for mobility of spatial mechanisms [19], such that:
DOF=6(N~1)-5R-3Sn (2.4)

where N,, is the the number of links, and R,, and S,, are the number of revolute and

spherical joints, respectively.

[Revolute
Axig

(b)

Figure 2.3: (a) Schematic illustration; and (b) kinematic model of a quadra-link
suspension
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The mechanism comprises 6 rigid bodies (chassis, wheel spindle and four rigid links
connecting the chassis and the wheel spindle), one revolute joint (between upper control
arm and the chassis) and 7 spherical joints (3 between the chassis and the lower and
trailing links, 3 between wheel spindle and the lower and trailing links, and one between
the upper control arm and the wheel spindle). The quadra link suspension mechanism
coupled with a fixed chassis thus possess four degrees-of-freedom (DOF). An
examination of the mechanism, however, suggests that three of the DOF are associated
with the rotations of the trailing arm and the lower links about their respective
longitudinal axes. Such rotational motions, however, do not influence articulation of the
suspension, and are generally referred to as idle DOF [12]. The active degree of freedom
of the mechanism is thus estimated as one, which is the vertical motion of the wheel
spindle with respect to the chassis. The motion of the chassis with respect to the ground
coordinate system can facilitate kinematic analysis of the suspension with simultaneous
motions of the chassis and the wheel spindle. The generalized coordinates of the
kinematic quadra-link suspension model are thus chosen as the vertical displacements of

the sprung mass and the wheel spindle.

2.3.3 Kinematic Formulations

For the wheel spindle of the quadra-link suspension, the positions of joint centers, N/,
PI, P2 and P3, and the wheel center C are identified as the parameters of particular
interest, where (N1g, N1,9, N1.9), (P10, Plyo, Pl-9), (P20, P2y9, P2-9), (P30, P30, P30),
and (Cyy, Cy9, C-9) define the initial coordinates of N1, PI, P2, P3 and C, respectively.
The first subscript of the variable represents the coordinate (x, y or z), while the second

subscript (‘0°) designates the initial position. For a finite displacement of the wheel
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spindle in the given coordinate frame, the displacement matrix can be formulated as [19,

132]:
a, a, a; C —(qC,+ alZCyO +a;,C,)
[D] o ayp Gy Ay Cy —(a,Cp + aZZCyO +a,,C.)
whectpindle a3, a3 ay, C,—(a;C + a32cy0 +a;,C,)
0 0 0 1 (2.5)
where

aj1=cosy cosf ; a;p;= -siny cosgtcosy sinf sing; a;3= siny singt+cosy sind cosd;

ax1=siny cosl; a;= cosy cosgtsiny sinf sing; a3= -cosy singt siny sind cosg;

as1= -sinf ; asy= cosf sing; and ass=cos 6 cos ¢
Also, ¢, 6, and y are the roll (about x- axis), pitch (about y- axis) and yaw (about z- axis)
rotations, respectively, and C, C, and C; are the instantaneous coordinates of the wheel
center C.

The instantaneous coordinates of (N1, NI,, N1.), (Pl,, P1,, Pl.), (P2., P2,, P2.), (P3,,

P3,, P3.) of joint centers NI, PI, P2, P3 and the wheel center C under a given wheel
spindle vertical displacement z, are derived from the displacement matrix as:

N1, Pl P2, P3, Nl, Pl, P2, P3,
N1, P, P2, P3, Nl, Pl, P2, P3

y ~[p]l »0 .70 2.6
N1, Pl. P2. P3, [Phctgna Nl, P, P2, P3, 2-6)

1 1 1 1 1 1 1 1
The above formulation exhibits 17 unknown parameters corresponding to a given wheel
center vertical displacement (z,), namely, the x, y and z coordinates of N/, P1, P2 and P3,
the x- and y- coordinates of C and the wheel rotation angles¢@, 8, and y. Equation (2.6) is
solved in conjunction with the constraint conditions imposed by the suspension

mechanism to obtain kinematic responses. For the quadra-link suspension, the constraint
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equations may be formulated considering the R-S (upper control arm M[-NI1-M?2) and S-S

links (lower links O/-P1, O2-P2, and trailing link O3-P3), such that:

(le _Mx)2 +(N1y _My)2 +(le _Mz)z = (leo _Mx0)2 +(N1y0 _My0)2 +(N120 _MZO)2
(PL,—O1,)* +(P1, —O01,)* + (P, = O1,)* = (Pl , —O1,,)* +(Pl,, — Ol ,)* +(Pl,, — Ol , )}
(P2,-02,) +(P2,-02,) +(P2, —02,)* = (P2, — 02 ,)* +(P2,, — 02,))* +(P2,, — 02, ,)*
(P3,-03,)" + (P3, - 03},)2 +(P3,-03.)"=(P3,-03,,) + (P3,,— O3y0)2 +(P3,,-03_,)°
Uy, (N1, =M ) +u, (N1, =M ) +u, (N1,-M_)=0 2.7
In the above, (M, M,, M.) and (M9, M,y M.¢) refer to the coordinates of M, the point of
intersection of a unit vector along the revolute axis (#y) and a normal vector from the
point NI. Moreover, M,=M,g, O1,=01y, 02,=02,y, 03,=03y, M,=M,y, O1,=01,y,
02,=02y9, 03,=03,), M.=M.ptz,, O1.=0l,ptz,, 02.=02,%z,, 03.=03.+z, and
C~=C.ytz,, while z, is vertical displacement of the sprung mass from its static equilibrium

position.

The unit vector u, along the revolute axis is obtained as:

_ (Mlxo_szo)x+(M1vo_szo))H'(Mlzo_Mzzo)z (2.8)
U, = - :
' \/(MIXO_MZXO)Z+(M1y0_M2y0)2+(M120_M220)2

The coordinates of M can be obtained from equation of the position vector M , written as:
M=M2+u,(N1-M2)i, (2.9)
The solution of Eq. (2.6) yields a system of nonlinear equations, as:

N1, =a,,(Nl,, —C ) +a,(N1,, —C ) +a;(NlL,—C,)+C,
N1, =ay (N1, = Cy) + (N1, = C) +ay (N, = C) +C,
N1, =a; (N1, = C,p) +a, (N1, = Cy) + a5 (N1, —C,) + C,
Pl =a,,(Pl,—Cy)+a,(Pl,,—C)+a;(Pl,—C,)+C,
Pl =a, (Pl,—C)+a,(Pl,—C)+ay(Pl,-Cy)+C,
Pl =ay(Pl,, - Cy) +a5,(Pl,, —C ) +a5(Pl, —C )+ C,
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P2 =a,(Pl,-C,)+ alz(szo - CyO) +a,(P2,,—-C)+C,
sz =a,,(Pl,,—C,)+ azz(szo - CyO) +ay, (P2, —Cy)+ Cy
P2 =ay(Pl,—C, )+ a32(P2y0 - CyO) +a,(P2,,-C,y)+C,
P3 . =a,(P3,-C,)+ alZ(P3y0 - CyO) +a,(P3,,-C,)+C,
P3y =a,(P3,,—C,)+ a22(P3y0 - CyO) +ay,(P3,,—C)+ Cy
P3. =ay(P3,) = Cy) +ay,(P3,, —C,) +a(P3,, - C,)+C. (2.10)
The nonlinear equations can be numerically solved to obtain unknown parameters
under given vertical displacements of the chassis and/or the wheel center. The rotational
motions of the wheel about x- and z- axes, ¢ and y, yield the wheel camber and toe angle
response of the suspension, respectively. The wheel center lateral displacement y, can be
further obtained as y,=C,-C,y. The lateral displacement of the wheel-ground contact point
T, with respect to the static position is considered as the variation in the wheel track,
which has been directly related to the tire wear characteristics [4]. With the rigid body
assumption of the wheel assembly, the lateral motion of the wheel-ground contact point

T,, 1s obtained as:

T, = ay(Tg = Cyp) +ayy (T, = Cp) +ay(T,, = Cy) +C, (2.11)

where (Tyo, Tyo, T-0) are the initial coordinates of the contact point 7. In a similar manner,
the wheel base variation response of the suspension, which is directly related to the
displacement of the contact point along x- axis during the wheel vertical travel T, can be

obtained as:

T, =a, (T = Cp) +a,(T), = Cy) +a5(T, = C,o) +C, (2.12)

The velocities of various points in the wheel spindle are obtained by differentiating the
expressions for the displacements. Alternately, velocity matrix written in terms of

rotation of the wheel spindle about its instantaneous screw axis can be employed to yield
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the velocity responses of the wheel spindle [19]. For a finite displacement of the wheel

spindle in the given coordinate frame, the general velocity matrix, [D]W

heelspindle is
formulated as:
O - (bz ¢y Cx - (_¢2Cy0 + ¢yCZO)
[D] _ gbz O - gbx Cy - ((szxO - gbxcz())
jwheelspindle — . . . . .
- ¢y (Dx 0 Cz - (_¢ycx0 + (DnyO)
0O 0 0 0 2.13)

where ¢ represents the rotation of the wheel spindle about the screw axis, and the dot
over the variable denotes the time derivative. The screw axis can be obtained from the
joint coordinates, as explained in [19]. The method, however, is not presented since it is
not necessary for obtaining considered kinematic responses. The velocity matrix in Eq

(2.13) can be employed to compute velocities of joints N/, P1, P2, and P3, as:

N1, Pl, P2, P3, N1, Pl P2, P3,
NI, Pl P2, P3, Bl N1, P1, P2, P3
N1, Pl. P2, P3, et N1, P1, P2, P3,
| D W | 11 11

(2.14)

The solutions of the Eq (2.14) together with the time derivatives of the constraint

equations in Eq (2.7) yield a system of equation in velocities of the suspension joints and

the wheel center, such that:

(N1, =M N1, +(N1, =M )N1, + (N1, =M N1, =0
o, N1, +14, N1, +uy N1, =0

(P1, - O1,))P1, +(P1, =01 )Pl +(P1, -0l )P, =0
(P2,-02,,)P2, +(P2,-02,))P2 +(P2,-02_,)P2, =0
(P3,-03,,)P3,+(P3,-03,,)P3, +(P3,-03,)P3,=0
N1, +¢.(N1,-C,0)=¢,(N1,-C,))-C, =0

N1, =¢.(N1,=C)+¢, (N1, -C,)-C, =0
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NL +¢,(N1,—C,)—¢.(N1,-C,,)=C,

Plx +¢2(P1y _CyO)_¢))(Plz _CZO)_CX = O

Pl —¢. (P, —C)+¢.(Pl, —czo)—Cy =0

Plz +¢y(P1x _Cx())_¢x(Ply _CyO) = Cz

sz +¢z(P2y _CyO)_¢y(P22 _CZO)_CX :O

P2, -9 (P2, -C)+¢.(P2,-C)-C, =0

Pzz +¢y(P2x _CXO)_(bx(PQ'y _CyO) = CZ
P3.+¢.(P3,-C,)-¢,(P3,-C)-C, =0

P3 —¢.(P3,—-C)+¢.(P3,-C)-C, =0
P3z+§by(P3x_CXO)_¢x(P3y_Cy0)=CZ (215)

where C'Z =z, . The above equations are obtained with an assumption that the chassis is

fixed (z;=0). The velocities along x-, y- and z- axes of joints N/, PI, P2 and P3 together
with the velocity of wheel center C along x- and y- axes, and the wheel rotation velocities
for known values of wheel spindle vertical velocities can be obtained though solution of
Eq (2.15). It can be observed that unlike the displacement equations given in Eqs (2.7)

and (2.10), the velocity equations are linear.

2.4 Measurements of Kinematic Responses

Laboratory experiments were performed to measure the kinematic responses of a quadra-
link suspension. For this purpose, designs of test apparatus described in the reported
studies were reviewed in terms of their complexities and limitations. Kinematic and
Compliance (K&C) test rigs have been widely used in the industry for measuring
kinematic responses of vehicle suspensions, including camber, caster and toe angle
variations, and variations in wheel track and base during wheel vertical travel [141-143].
The K&C test rig supports the vehicle on its four posts, which can be actuated

independently, while the responses are attained through 6-DOF sensors mounted on each
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wheel. Although such test rigs are considered to yield measurements with high accuracy,
the test rigs are quite complex and very expensive. Alternately, single wheel experimental
setups have been used in a few studies for measuring the kinematic responses of
prototype suspensions which could provide reasonably accurate kinematic responses [29].
In this study, an experimental set-up of single wheel station prototype quadra-link
suspension was realized in the laboratory in order to measure the wheel spindle rotational
motions during its vertical travel.

Figure 2.4 illustrates the experimental set-up employed for measuring the kinematic
responses, which comprises: a hydraulic actuator to generate the desired excitation; servo
controller to operate the actuator in displacement feedback control; a feedback
displacement sensor (LVDT); an inertia frame representing the fixed chassis; and a two-
axis inclinometer to measure the camber (rotation about x- axis) and caster (rotation
about y- axis) angles of the wheel. The suspension components included in the
experiment set-up are: the cross-member, the strut, the upper control arm, the lower and
trailing links, and the wheel spindle. The upper control arm and lower links are connected
to the cross-member, while the cross-member is fixed to the frame through a custom
made fixture, as seen the figure. The trailing link is attached to the frame through another
fixture. In order to realize the actuator motion at the wheel center, as in the case of
kinematic model, a rigid link comprising spherical joints at each ends was introduced
between the wheel spindle and the actuator. The two- axes digital inclinometer was

installed on a plate fixed to wheel spindle, as shown in the figure.
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2.4.1 Measurements and Data Analysis

The wheel displacement was progressively varied in the upward and downward
directions, and the resulting rotational motions of the wheel spindle about x- and y- axes
(camber and caster angles) were measured using the LVDT and the inclinometers,
respectively. The wheel spindle was displaced vertically through the link connected to the
servo-hydraulic actuator. The wheel displacement and the camber and caster angles were
measured at each interval of 5 mm change in the wheel spindle vertical travel. The
inclinometer signals were recorded only when the actuator approached its steady position
in order to minimize the contribution due to inertia effect. The suspension strut was also
removed from the setup in order to eliminate possible influences of the strut on the wheel

spindle kinematics. The measurements were performed over a 50 mm wheel travel.

o S Digital
1P & =
“ I:f' Inclinometer
~.-
'

Figure 2.4: Laboratory setup for measurements of kinematic properties of a quadra-link
suspension

The measured variations in the camber and caster angles of the wheel spindle are
illustrated in Fig. 2.5 over the £50 mm spindle travel. The results suggest that the quadra-
link suspension considered in this study exhibits asymmetric variations in wheel camber

and caster during jounce and rebound motions of the wheel. The suspension exhibits
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greater camber variation during jounce than in rebound, while an opposite trend is

observed in the caster angle response exhibited by the suspension.
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Figure 2.5: Variations in camber and caster angle responses of the quadra-link suspension
under 50 mm jounce and rebound motion of wheel spindle: (a) Camber; and (b) Caster.

2.5 Kinematic Model Validation

The laboratory measured data are used to examine the validity of the kinematic model
formulations presented in Eqs (2.4) and (2.6). For this purpose, coordinates of the joints,
M1, Ol, 02, O3, N1, P1, P2 and P3, and the wheel center C of the candidate suspension
were measured with respect to the fixed frame using a vernier scale. The measured
coordinates of the linkage joints were subsequently transformed to a coordinate system
fixed in the chassis. Table 2.1 summarizes the coordinates of the joints in the fixed

chassis coordinates system.

The kinematic responses of quadra-link suspension model, particularly, the rotation of
the wheel spindle about x- and y- axes were evaluated under a harmonic excitation at the
wheel center, z,(1)=50sin(0.2zf) mm. The model responses are compared with the

measured data in Figs. 2.6 (a) and (b) to examine the validity of the kinematic model. The
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Table 2. 1: Coordinates of various suspension link joints in the fixed chassis coordinates
system.

Joint Coordinates (x, y, z) in mm Joint Coordinates (x, y, z) in mm
Ml (120, 243, 443) C (0, 630, 313)

M2 (-154, 229, 446) NI (-40, 530, 390)

o) (-105, 143, 268) Pl (-132, 516, 193)

02 (99, 229, 332) P2 (106, 493, 239)

03 (446, 380, 243) P3 (9, 541, 178)

comparisons suggest considerable differences between the model and measured
responses near extremities of the wheel travel. The model response exhibits relatively
smaller asymmetry in the camber angle but greater asymmetry in the caster during jounce
and rebound travel of the wheel, compared to those observed from the experimental data.
The model responses suggest that a 50 mm wheel jounce yields camber variation of
-1.25°, while a 50 mm rebound causes camber variation of nearly 1°. The measured data
on the other hand, exhibits camber variations of 1.05° and -0.57° in jounce and rebound,
respectively. The model responses, however, are quite comparable with the measured
data in the 40 mm to -20 mm wheel travel range.

The caster angle response of the model exhibits greater asymmetry compared to the
measured data. The peak caster variations of the model approach 0.08° at 50 mm jounce
and 0.8° at 50 mm rebound, while the measured data revealed approximately 0.28° and
0.72° peak caster in jounce and rebound, respectively. The caster responses of the model
are quite comparable with the measured data under wheel rebound motion. The model
response, however, shows larger deviation from the measured data during upward motion
of the wheel. It is thus observed from the figures that the model responses in camber
angle during jounce and in caster angle during rebound motion of the wheel deviate

considerably from the experimental data. Such deviations are most likely caused by
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errors in the coordinates of various joints that were measured using a simple vernier

scale.
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Figure 2.6: Comparisons of the camber and caster angle responses of the quadra-link
suspension kinematic model under wheel center vertical excitation,
z,(H)=50sin(0.2zt) mm with the measured data: (a) camber; and (b) caster.

The influence of possible inaccuracy in measurement of coordinates of the joints was
investigated through simulations of the model responses under slight variations in the
coordinates. The results revealed that only slight variations in the coordinates could alter
the camber and caster responses substantially. A tuning of the coordinates was thus
performed to achieve model response close to the measured data. Table 2.2 illustrates the
tuned coordinates of the linkage joints attained after a few iterations, while the numbers
in bold face denote the changed coordinates. The table also illustrates the variations in the
coordinates with respect to the measured coordinates. It can be seen that variations in the
range of 1 to 5 mm only were needed to achieve responses closer to the measured data.
Figure 2.7 shows comparisons of the camber and caster angle responses of the kinematic

model with tuned joint coordinates with the measured data. The kinematic model with the

modified coordinates exhibits comparable camber angle response until 40 mm of rebound
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travel, while it also exhibits comparable caster angle response from 30 mm jounce to 25
mm rebound motion of the wheel spindle.

Table 2.2: Coordinates of the links joints of the quadra-link suspension attained after
tuning and their deviations from the measured coordinates.

. Coordinates Deviations . Coordinates Deviations
Joint . . Joint . .
(x,y,z) in mm (x,y,z) in mm (x,,z) in mm (x, 5, z) in mm

Ml (120, 243, 446) (0,0,3) C (0, 630, 313) (0,0,0)
M2 (-154, 229, 447) (0,0,1) NI (-40, 530, 388) (0,0,2)

0l  (-105, 145, 264) (0,2,4) Pl (-132,521, 191) (0,5,2)

02 (99, 229, 332) (0,0,0) P2 (106, 493, 242) (0,0,3)

03 (446, 380, 239) (0,0,4) P3  (9,541,173) (0.0.5)
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Figure 2.7: Comparisons of the camber and caster angle responses of the quadra-link
suspension tuned model under wheel center vertical excitation, z,(¢)=50sin(0.27f) mm
with the measured data: (a) camber; and (b) caster.

An accurate measurement of the coordinates using a coordinate mapping system or
parameter identification though minimizing an error function could yield more precise
joint coordinates and thus comparable responses with the experimental values. However,
the deviations between the kinematic model response and the measured angles cannot be
entirely eliminated, partly due to lack of consideration of contributions due to compliance

of joints/bushings. Furthermore, the actuator motion applied to the wheel center through

the rigid link tends to impose a horizontal force on the wheel center. The magnitude of
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the horizontal force would increase the vertical displacement. The responses of the
proposed kinematic model with the refined coordinates, however, are considered

adequate for study of various design factors affecting the suspension kinematic responses.

2.6 Kinematic Response Analysis of the Quadra-Link Suspension

The kinematic responses of the candidate quadra-link suspension are evaluated in terms
of variations in the camber and toe angles, and wheel center and tire-ground contact point
longitudinal and lateral displacements under wheel jounce and rebound motions. The
wheel vertical motion is synthesized by a very low frequency harmonic displacement,
z,(£)=100sin(0.27¢f) mm. The kinematic responses of the tuned quadra-link suspension
model, evaluated under £100 mm wheel travel, are presented in Figs. 2.8 (a) to (e) as a
function of wheel vertical travel. The camber angle variation response exhibits similar
degree of asymmetry with wheel jounce and rebound as observed in Fig. 2.6(a). The
suspension under consideration, exhibits a large toe angle variation with peak magnitude
of -2.4° at 100mm wheel upward motion and 4.5° at 100mm rebound motion, as also seen
in Fig. 2.8 (b). The wheel center longitudinal and lateral displacement responses with
wheel vertical travel are also highly asymmetric about the static position, with very larger
displacements in rebound than those in jounce travel, as seen in Figs. 2.8 (c) and 2.5 (d),
respectively. The peak longitudinal and lateral displacements in rebound and jounce are
nearby 12 and -44 mm, and -3.5 and 9 mm, respectively. The variations in the
longitudinal and lateral displacement responses of the tire ground contact point (wheel
base and track variation) also follow similar trend to those in the wheel center
displacements. These results suggest that the wheel track and wheel base vary

considerably and asymmetrically under wheel vertical motions.
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Figure 2.8: Variations in the kinematic responses of the tuned quadra-link suspension
model under wheel center vertical excitation, z,(#)=100sin(0.2z¢) mm: (a) camber angle;
(b) caster angle; (c¢) wheel center longitudinal displacement; (d) wheel center lateral
displacement; (e) wheel base; and (f) wheel track.

The wheel track variation, which is the net result of camber and wheel center lateral

displacement, exhibits a peak magnitude of -50 mm at 100 mm rebound position of the
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wheel. The results thus suggest that the positive camber together with the negative wheel

center displacement cause large wheel track variations.

2.6.1 Sensitivity of Kinematic Responses to Variations in the Joint Coordinates

The kinematic responses illustrated in Fig. 2.8 exhibit asymmetric and considerably
large variations in the camber and toe angles, wheel base and track responses under
wheel vertical motions. The degree of asymmetry in the responses would be strongly
dependent on the suspension geometry and joint coordinates. With an increasing demand
for larger subframe space, particularly for hybrid vehicles for placing the batteries [3], a
suspension synthesis that can provide greater lateral subframe space without
compromising the kinematic performances would be desirable, although it may involve
difficult design compromises. The suspension lateral space availability is directly related
to the links geometry, which may be characterized by the coordinates of joints M1, M2,
01, 02, 03, NI, PI, P2 and P3. A sensitivity analysis is thus performed to idenfy the
most important joint coordinates that affect the kinematic responses of the suspension in

a significant manner.

Conventional sensitivity analyses methods generally involve a trend anlyses in
selected responses under systematic variations in each coordinate. Considering that a
quadra-link suspension comprises a total of 27 coordinates corresponding to 9 joints, the
conventional method of sensitivity analysis would be highly cumbersome. Moreover,
identification of relative degree of influences of a coordinate variation on the kinematic
responses would be quite complex. Nalecz [144] suggested a matrix method of sensitivity
analysis for evaluating the sensitivity of dynamic responses of linear systems to the
parameter variations. The matrix method, however, can not be applied to nonlinear
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systems, as in the case of displacement responses of the quadra-link suspension model.
This approach could be applied to linear system of equations describing the velocities of
the joint coordinates given in Eq (2.12). The displacement responses could subsequently
be estimated from the velocity responses. Lee et al. [6] showed that the wheel spindle
velocity equations of a five-link suspension mechanism could yield approximate
displacement responses of the suspension by defining unity velocity excitations at the
wheel center. In this section, the velocity equations, derived in Eq (2.12) are used to
formulate the displacement and wheel rotation analyses. The linear equations are
subsequently used to identify sensitivity of kinematic responses to variations in the joint
coordinates. The linear system of equations in velocity responses, presented in Eq (2.15),

can be expressed in the matrix form, as:

[ Hgt =1y} (2.16)

where [Jy] is a matrix with elements composed of nominal joint coordinates, and {q}
and {/j/} are the joints velocity vector and input vectors, respectively, given by:
lgh={N1. N1, N1_P1_P1, P1 P2 P2 P2 P3, P3, P3.C.C o ¢, &,

{r,}=0 0o o o000z 00z 003z 00 2z}

Equation (2.16) is solved to determine various joint velocities for known initial joint
coordinates and matrix, [Jy], and wheel vertical velocity {/)}. The displacement
responses at a point in the wheel knuckle within a finite time are estimated from the
velocity. The solutions can be conveniently used to study the sensitivity of kinematic
responses to variations in the joint coordinates. The parameter sensitivity index is defined
as the change in the response with change in a parameter value [143]. Assuming [Jy]

being continuous, the parameter vector {s} is defined considering the initial coordinates
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of the suspension joints as the variables. The sensitivity index of the kinematic responses

{q} to a change in any element s; of the parameter vector {s} is expressed as:

s,
0s

oq oy, I

iy v
5 o [V, 140,}; i=1..n (2.17)

U=

where 7 is the number of parameters considered.

The sensitivity of the kinematic responses to different parameters is obtained for a
finite vertical displacement at the wheel center. Table 2.3 illustrates the sensitivity indices
of the wheel center longitudinal (C,) and lateral (C,) displacements, and camber, caster
and toe angles, respectively, to variations in the coordinates of different joints. The
positive numbers indicate an increase in the response caused by a positive change in the
coordinate, while the negative numbers indicate decrease in the responses. Furthermore,
the sensitivity values presented in the table have been multiplied by 10°. For instance, a
positive change in the z- coordinate of joint M/ would yield a negative change in the
wheel center lateral displacement, camber and caster angle responses, and positive
change in the wheel center longitudinal displacement and toe angle responses. The results
in Table 2.3 suggest that the kinematic responses are complex functions of variations in
the joint coordinates. The table shows that the x- coordinates of the joints located at the
chassis (M1, M2, OI, O2 and O3) do not influence any of the kinematic responses,
considered in the analyses, while the x- coordinates of the joints located at the wheel
spindle (N1, P1, P2 and P3) cause only small variations in the kinematic responses. The
variations in the y- and z- coordinates of the upper control arm joints (M1, M2 and N1)
show significant influences on each of the kinematic responses, although the majority of
these influences are conflicting. For instance, a positive change in z- coordinate of joint

M? yields a negative change in camber and toe angle, and C; and C,, but positive change
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in the caster angle response. Positive changes in the z- coordinates of both the M/ and
M? joints cause decrease in C,, but in opposing influences on C,. The results of the
sensitivity analysis further suggest that the coordinates of upper control arm joints plays
most significant role in articulation of the suspension.

Table 2.3: Sensitivity of kinematic responses of quadra-link suspension to variations in
the linkage joint coordinates (sensitivity values x 10°)

Toint Cp- Wheel center displacement Wheel angle
ordinate | Longitudinal Lateral Camber Caster Toe
x 0 0 0 0 0
M1 y 5 -2 -1 -2 0
z 28 -10 -4 -9 2
x 0 0 0 0 0
M2 ¥ -5 -2 -1 2 -1
z -27 -12 -6 10 -3
X 0 0 0 0 0
0l ¥ 4 -4 1 -1 3
z 12 -11 4 -2 9
X 0 0 0 0 0
02 y -2 0 1 0 -1
z -11 -1 5 -2 -6
x 0 0 0 0 0
03 y 2 0 0 2 0
z 6 0 0 6 -1
x 0 4 2 0 0
NI ¥ -5 4 2 2 0
z 1 20 9 -1 1
x -2 2 -1 0 -2
Pl ¥ -4 3 -1 1 -3
z -11 10 -4 2 -9
x 2 0 -1 0 1
p2 y 2 0 -1 0 1
z 10 1 -4 1 5
x 1 0 0 1 0
P3 ¥ -3 0 0 -3 1
z -5 0 0 -5 1
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The results further show that variations in z- coordinates of joints O/ and P/ yield
greatest influence on the toe angle response, although in the opposing direction. The
joints of the lower link (O7-PI) could thus be tuned to yield lower toe angle response. It
is interesting to note that the link O/-P/ is also known as toe control link [145], which is
used for setting the static toe angle of the wheel. The table further shows that the lower
link also influences other kinematic responses considerably, including the wheel track
and base, and camber angle variations. The results thus suggest that toe angle setting
using the link O7-P1I would also yield variations in other kinematic responses during the
wheel travel. Apart from the joints of the lower control arm, the coordinates of joints O2
and P2 (particularly z- coordinates) influence the camber angle variations considerably.
The link O2-P2 also known as the camber control link [145] could also influence toe
angle response of the suspension.

The variations in coordinates of joints O3 and P3 yield notable influences on the
wheel center longitudinal displacement and the caster angle responses, with only slight
changes in the toe angle response. The results thus suggest that the trailing link joints can
be tuned to yield improved wheel base and caster angle responses. The validity of the
proposed sensitivity analysis method is examined by evaluating the responses of the
kinematic model of the quadra-link suspension by changing the z- coordinates of joints
M1, M2 and O3 in the positive direction by 10 mm. Variations in the wheel center
longitudinal displacement, and caster, camber and toe angle responses are evaluated
under wheel center displacement of 100 mm peak jounce and rebound, and compared
with those of the model with nominal coordinates, and the comparisons are illustrated in

Fig. 2.9. The sensitivity indices of M1, M2 and O3 corresponding to wheel center
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longitudinal displacement are 28, -27 and -6 (Table 2.3), respectively. Figure 2.9 (a)
shows that the wheel center longitudinal displacement response decreases considerably
when z-coordinate of M2 is increased, while an opposing trend is observed with change
in the z-coordinate of M. The change in z-coordinate of O3 also results in increase in Cy,
while the change is relatively lower than that observed with the change in z-coordinate of
MIl.

The sensitivity index values of M1, M2 and O3 corresponding to camber, caster and
toe angle response were obtained as: -4, -6, 0; -9, 10, 6; and 2, 3, -1, respectively (Table
2.3). Figures 2.9 (b) to (d) show variations in camber, caster and toe angle responses of
the kinematic response characteristics of the quadra-link suspension model with changes
in z- coordinates of these joints. Variations in z-coordinates of M/ and M2, with relatively
larger sensitivity index values, show significant changes in the camber, caster and toe
angle responses. Variations in z-coordinate of O3, with sensitivity index values 6 and -1
for the caster and toe angle responses, yield notable change in the caster and toe angles,
while the effect on camber angle is negligible, particularly during the jounce motion. This
confirms with the results summarized in Table 2.3, which show a sensitivity index of 0
corresponding to the camber angle, although a slight decrease in camber angle is
observed during rebound motion of the wheel. This was attributed to rounding-off of the
magnitudes of the sensitivity indices.

The results in Table 2.3 suggest that the kinematic responses are highly influenced by
the joint coordinates of the quadra-link suspension. The proposed sensitivity analysis
method could thus help identify relative influences of various joint coordinates on the

suspension responses, and thereby facilitate an optimal suspension geometry synthesis.
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Figure 2.9: Comparisons of kinematic responses of the suspension with +10 mm change
in the z- coordinate of M/, M2 and O3 joints with those of the model with nominal
coordinates: (a) wheel center longitudinal displacement; (b) camber and (c) caster and
(d) toe angle.

2.7 Kinematic Analysis of a Double Wishbone Suspension

A double wishbone suspension, illustrated in Fig. 2.10, is one of the most widely used
independent suspension in passenger and racing cars. In its basic form, it consists of two
control arms connecting the chassis with the wheel spindle, which also determine the
mechanism articulation [2, 137]. The double wishbone suspension is considered to offer
specific advantages over other types of suspension owing to its simplicity and minimal

toe angle variations during wheel vertical motions [1, 4]. The strut in a double wishbone
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suspension is located on either the upper or the lower control arm, while it exhibits

minimal influence on the articulation of the suspension mechanism.

Figure 2.10: A schematic image of double wishbone suspension

2.7.1 Kinematic Model of the Double Wishbone Suspension

The roll-plane kinematic properties of a double wishbone suspension can be
effectively evaluated using a planar model [1, 4]. Consequently, a planar model of the
suspension is formulated, as shown in the Fig. 2.11, which comprises of upper (MN) and
lower (OP) control arms, and the strut (48) including spring and damper mounted on the
lower control arm. The points M and O represent the revolute joints of the upper and
lower control arms with the chassis, while points N and P represent the upper and lower
ball joints (between wheel spindle, and upper and lower control arms), respectively. The
upper and lower control arms connecting the chassis with the wheel spindle form R-R
links considering that the ball joints in a plane are similar to the revolute joints. The point
C in Fig. 2.11 represents the wheel center. The chassis, control arms and the wheel

spindle are assumed to be rigid bodies, while the tire is assumed to be integral part of the
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wheel spindle. The suspension kinematic relations are derived with an assumption that
the revolute joints between the chassis and control arms and between the control arms

and wheel spindle are frictionless.

e

Y

Figure 2.11: Planar kinematic model of a double wishbone suspension

In the planar suspension mechansim, the chassis, control arms and the wheel spindle
form the components of the kinematic chain, while consideration of the fixed chassis
forms the mechanism. The double wishbone suspension with the chassis, two control
arms and the wheel spindle thus forms a four bar mechanism. The mobility of the four
bar planar suspension system can be estimated from the Grubler’s criteria for mobility
[19], such that:

DOF=3(N,~-1)-2R,, (2.18)
where N, and R, denote the number of links and revolute joints, respectively.

Considering each of the four links and the revolute joints, a double wishbone suspension

76



with the fixed chassis has only one degree of freedom. This DOF of the mechanism is the
vertical motion of the wheel assembly with respect to the fixed chassis. The translational

and rotational motions of the wheel spindle are dependent on its vertical motion.

The kinematic analysis of a suspension is generally performed under prescribed wheel
vertical displacement considering fixed chassis. This approach, however, does not permit
analysis of wheel motions with a simultaneous chassis movement. In this study, a vertical
degree of freedom of the chassis is introduced in addition to that of the wheel spindle in
order to study the kinematic responses under vertical motions of both the chassis and the
wheel spindle. The generalised coordinates are thus chosen as the vertical displacements
of the chassis (z;) and wheel spindle (z,). A coordinate system fixed at the ground is
assumed, while motion of the chassis is also considered to occur with respect to a ground

coordinate system. Initially, the origins of both the coordinates are assumed to coincide.

The orientation of a planar rigid body, in general, can be determined by the positions
of any three points in the plane. For the wheel spindle, the two joint centers N and P, and
the wheel center C are conveniently chosen, where (N,9, N-9), (Pyo, P-9) and (C,p, C-9)
define the initial coordinates of N, P and C, respectively. The first subscript of the
variable represents the coordinate (y or z), while the second subscript (‘0°) designates the
initial position, when present. For a finite displacement of the wheel spindle in the given

plane, a general displacement matrix can be formulated as [19, 132]:

Ay, dy Cy - (a22Cy0 +a,,C.)

[D]whee/spmde =lay, a; C, - (a32Cy0 +a;,C)

0 0 ! (2.18)
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where a,=az;=cos¢, -as;=asz,;=sing, and ¢ is the wheel spindle rotation about x-axis. In
the above expression, C, and C: are the instantaneous coordinates of the wheel center C.
The instantaneous coordinates (V,, N;) and (P,, P:) of N and P, respectively, following

application of a wheel spindle vertical displacement z,, are derived from the displacement

matrix, as:
Ny P} NyO PyO
Nz f)z = [D]wheelspinlle NzO [)20 (2 1 9)
1 1 1 1

The above formulation exhibits 6 unknown parameters corresponding to a given z,,
namely, the y and z coordinates of N and P, the y- coordinate of C and the wheel rotation,
¢. Equation (2.19) is solved in conjunction with two constraint conditions imposed by the
suspension mechanism, which are formulated considering constant lengths of the upper
(lyn) and lower (lpp) control arms, such that:

(N, =M, +(N.=M.)* =3,y3 and (P, = 0,)* +(P. = 0.)" =15, (2.20)

The solutions of Eq. (2.19) yield following nonlinear system of equation in displacements
of the joints:

Ny = aZZ(NyO _CyO)+a23(NZO _C20)+Cy; Nz =a32(Ny0 _Cy0)+a33(NZO _CZO)+CZ
Py :aZZ(PyO _Cyo)+a23(on _CZO)+Cy; and P, :a32(Py0 _Cyo)+a33(on -C)+C.
(2.21)

where M,=M,, O,=0,9, M.=Mp+z,, O.=0-g+z; and C~C.5tz,.

The nonlinear system of equations can be numerically solved to obtain the
instantaneous coordinates of the joints and the wheel center following vertical
displacements of the chassis and the wheel center. The rotational motion of the wheel, ¢,

directly yields the wheel camber angle response, while the wheel center lateral
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displacement y, can be derived from y,=C,-C,y. The lateral displacement 7, of the wheel-
ground contact point 7 with respect to the static position is considered as the variation in
the wheel track, which can be directly related to the tire wear characteristics. With the
rigid body assumption of the wheel assembly, the lateral motion of the wheel-ground
contact point is obtained as:

T, =a,(T,, —Cy)+ay(T,, —C,)+C, (2.22)
where (7,9, T-9) define the initial coordinates of the contact point 7. Alternatively, the
lateral displacement of the contact point can also be obtained from the wheel camber and
wheel center lateral displacement, such that:

Ti=yu- ¢ (Czo-T0) (2.23)
The above formulation in 7, assumes small rotation of the wheel, such that (a2, =1; a3
=4).

The translational velocities of points M, N and C, and the angular velocity of the
wheel spindle about the x- axis can be further obtained from time derivatives of the Eqs

(2.20) and (2.21), as:

Ny :d22(Ny0 _Cy0)+d23(NzO _CZO)+Cy; Nz = d32(Ny0 _Cy())+d33(NZO _Czo)+214
Py = dZZ(PyO _Cy0)+d23(f)20 _C20)+Cy; P = dSZ(PyO _Cy0)+d33(PzO _C20)+Z.u

(N, =M, )N, +(N, =M _,—z )N, —z)=0;and (P, —0,)P, +(P,—=0,, —z )(P. —=£,) =0
(2.24)
where @, =—¢sing, d,,=-pcos¢, d,,=dcos¢ and d,,=—@sing. In the above

system of equations, a dot over a coordinate or variable denotes the time derivative.
Unlike displacement expressions in Eqs (2.20) and (2.21), the velocity expressions are
linear (for known chassis and wheel spindle vertical velocities, joint coordinate

displacements and wheel rotation).
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2.7.2 Kinematic Response Analysis of a Double Wishbone Suspension

The kinematic responses, particularly, the variations in the camber angle (¢), wheel
center lateral displacement (C,) and half wheel-track (7}) are evaluated by considering
fixed chassis (z;= 0), while the wheel center is subjected to a very low frequency (0.1Hz)
harmonic displacement of 100 mm amplitude, such that z,(#)=100sin(0.2z¢). The y- and z-
coordinates of various joints were selected on the basis of a three-dimensional SLA
(Short Long Arm) suspension configuration reported in [146], such that: M = (0.430,
0.818); N = (0.644, 0.852); O = (0.365, 0.360); P = (0.743, 0.347); C = (0.787, 0.452); A
= (0.660, 0.350) and B = (0.615, 0.920).

The validity of the model and the solution method was examined by comparing the
kinematic responses of the kineto-dynamic model with those derived from a 2-
dimensional multi-body kinematic model of the same suspension developed in
ADAMS/view and illustrated in Fig. 2.12. The upper and lower control arms of the
planar multi-body (ADAMS/view) kinematic model are connected to the chassis and the
wheel spindle through revolute joints. The chassis was constrained to travel in vertical
direction only by defining a translational joint in the vertical direction. A harmonic
chassis motion is considered along the vertical direction. Furthermore, a general point
motion was defined at the wheel center in vertical direction, which permits the wheel
spindle to have translation motion in lateral and vertical directions apart from the
rotational (camber) motion. The comparisons of the kinematic responses revealed

excellent agreements between the responses of both the models.
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Wheel knuckle

Translational joint

Figure 2.12: Planar multi-body kinematic model of the suspension developed in
ADAMS/view

Figure 2.13 illustrates variations in the camber angle, wheel center lateral
displacement and half wheel-track variation with the wheel vertical travel. The results
show highly asymmetric camber angle variations during compression and rebound, which
ranges from -3.18° at 100 mm jounce position vs. 1.14° at 100 mm rebound position of
the wheel. The lateral displacement of the wheel center, however, is only slightly
asymmetric about the corresponding static equilibrium position. Moreover, the wheel
center moves laterally closer to the chassis during both jounce and rebound motion of the
suspension. The half wheel track variation which is the combined result of the camber
rotation and the wheel center lateral motion, as evident in Eq (2.23), exhibit considerably
large asymmetry in the response during compression and rebound. The 100 mm jounce
and rebound motions cause peak variations in the half wheel track of 6 mm and -22 mm,
respectively. Variations in the camber angle are either positive or negative depending on

the jounce or rebound position of the suspension. The results suggest that both the

81



camber angle and wheel center lateral motion add up to increase the lateral displacement

of the tire-ground contact point during the rebound motion.
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Figure 2.13: Variations in Camber angle, wheel center lateral displacement and half
wheel track responses under wheel vertical displacement, z,= 100 sin (0.277) mm

The kinematic responses of the suspension model with differential motion across the
suspension is further evaluated by subjecting the model to vertical motions of the chassis
and the wheel center such that z; = 100 sin(2at) mm and z, = 50 sin(2zf) mm. The
responses of the proposed model were observed to be identical to those of the ADAMS
models. Figure 2.14 illustrates variation in camber angle ¢ wheel center lateral
displacement C,, and half wheel-track 7), of the double wishbone suspension model. The
results suggest that the variations in C, occur at twice the excitation frequency of 1Hz.
The results also show asymmetric variations in each of the responses during jounce and

rebound, as observed in Fig. 2.13. It can also be seen that the suspension configuration
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considered in the study would yield lower effective wheel track under wheel rebound

motions, and a higher effective wheel track under the wheel jounce motions.
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Figure 2.14: Variations in camber angle, wheel center lateral displacement and half
wheel-track responses of the suspension under differential excitation,
zy = 100sin (2xt) mm and z, = 50sin (2zt) mm.

2.7.3 Sensitivity of Kinematic Responses to Joint Coordinates

Results in Figs. 2.13 and 2.14 show asymmetric and considerably large variations in
the camber angle and wheel track responses under wheel vertical motions. The degree of
asymmetry in the responses is expected to strongly depend on the suspension geometry
and joint coordinates. With an increasing demand for larger subframe space, particularly
for hybrid vehicles for placing the batteries [3], a suspension synthesis that can provide
greater lateral subframe space without compromising the kinematic performances would

be desirable. The suspension lateral space availability is directly related to the links

geometry, which may be characterized by the coordinates of joints M, N, O and P. A
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sensitivity analysis is thus performed to identify the influences of joint coordinates on the

kinematic responses of the suspension.

The y- and z- coordinates of each joint is varied by £50 mm about the nominal values,
while the variation in the y- coordinates of P is limited only to -50 mm due to limited
clearance between the wheel and joint P. The effects of variations in the joint coordinates
are evaluated under 100 mm positive and negative wheel vertical motion, in terms of
peak variations in camber angle and the wheel track during jounce and rebound motion of
the wheel, denoted as peak-jounce camber, peak-rebound camber, peak-jounce track and
peak-rebound track, respectively. It needs to be emphasized that the responses are
evaluated with change in one coordinate and maintaining other coordinates at their
respective nominal values. The sensitivity of the kinematic responses to changes in the
joint coordinates are presented in Table 2.4, while the table also presents these responses
of the suspension with nominal coordiantes. Moreover, the table illustrates (within the
parenthesis) percentage change in the responses with respect to those of the nominal
suspension geometry per millimeter (mm) change in the joint coordinates. For example, a
+50 mm change in the y- coordinate of joint M, increases the peak jounce camber to
-4.52° as compared to -3.19° of peak camber variation with the nominal suspension. A 50
mm positive change in the y- coordinate of joint M thus results in 42% increment in the
peak jounce camber angle. With an assumption that this increment is linear with change
in the joint coordinate, a 1 mm positive change in the y- coordinate of joint M would
increase the peak jounce camber by 0.84%, as illustrated in Table 2.4.

The results suggest that the camber angle and wheel track variation responses of the

suspension are a complex function of the joint coordinates. Positve changes in z-
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coordinates of joints M and P, and negative changes in z- coordinates of joints N and O
help reduce the peak changes in the camber cangle and the wheel track during both
jounce and rebound travel of the wheel. It is also evident from the table that opposite
changes in these coordinates cause opposite effects. The results suggest that the changes
in the z- coordinates show significantly large influences on the kinematic responses
considered in this study. The changes in the z- coordinates of the joints M and P in
positive sense, and of the joints N and O in a negative sense either increase the distance
between the upper and lower control arm joint with the chassis or decrease the distance
between the upper and lower ball joints. A double wishbone suspension with closer upper
and lower ball joints may thus yield lower variations in the camber angle and wheel track
responses of the suspension under the wheel jounce and rebound motions.

The results in Table 2.4 further suggest that changes in the y- coordinate of any joint
yield conflicting influences on the peak jounce and rebound camber angle and the wheel
track responses of the model. For instance, a positive change in y- coordinate of the joint
M yields higher peak jounce camber angle (-4.52°) and peak jounce track variation (12.4
mm) but lower peak rebound camber angle (1.02°) and peak rebound track (-21.0 mm)
responses. It is further seen that negative changes in y- coordinates of joints M and O or a
positve change in y- coordinate of the joint N yield lower jounce camber angle and wheel
track responses, while the opposite changes in the coordinates yield opposite effects.
These suggest that increase in the control arms lengths would decrease variations in the
camber angle and wheel track responses during wheel jounce motions, while reducing the
control arms lengths would yield lower peak variations in camber angle and wheel track

during rebound motion of the wheel.
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Table 2.4: Sensitivity of peak variations in camber angle and wheel track responses under
100 mm jounce and rebound motion of the wheel to changes in the joint coordinates

Peak-jounce Peak-rebound Peak-jounce  Peak-rebound
Coordinate | camber —deg (% camber-deg (% | track-mm (% track-mm (%
variation variation/mm variation/mm variation/mm  variation/mm
change) change) change) change)
Nominal -3.19  (0) 1.14 (0) 59 (0 =222 (0)
M, + -4.52 (0.84) 1.02 (-0.21) 12.4(2.21) -21.0(-0.11)
M, - -2.39 (-0.50) 1.29 (0.27) 3.5(-0.81) -22.9 (0.06)
M, + -2.26 (-0.58) 0.05 (-1.92) 0.0 (-1.98) -6.8 (-1.39)
M, - -5.55 (1.48) 3.60 (4.34) 17.3(3.91) -33.5 (1.01)
Ny + -2.50 (-0.43) 1.26 (0.22) 3.7(-0.74)  -22.8 (0.05)
Ny - -4.21 (0.64) 1.04 (-0.17) 10.8 (1.69) -21.2(-0.09)
N, + -5.15 (1.23) 3.28 (3.79) 15.4 (3.25) -32.0 (0.88)
N, - -2.58 (-0.38) 0.05 (-1.91) 0.0 (-1.99) -6.2 (-1.44)
Oy + -3.05 (-0.09) 1.46 (0.57) 4.7 -0.41) -26.4 (0.37)
Oy - -3.29 (0.07) 0.92 (-0.38) 7.5 (0.55) -19.1(-0.28)
O, + -4.41 (0.77) 2.76 (2.87) 24.7(6.43) -43.4 (1.91)
0, - -1.90 (-0.81) 0.10 (-1.82) 1.4 (-1.54) -14.1(-0.73)
P - -3.11 (-0.05) 1.41 (0.48) 5.1(-0.27) -25.7 (0.32)
P, + -2.07 (-0.70) 0.11 (-1.80) 1.2(-1.58) -11.4(-0.97)
P, - -4.07 (0.56) 2.51 (2.42) 19.5 (4.67) -40.1 (1.61)

The results in Table 2.4 suggest that the kinematic responses of a double wishbone
suspension including the variations in the camber angle and wheel track are strongly
influenced by the joint coordinates. The synthesis of the suspension geometry is thus a
complex task particularly with additional constraint on the lateral space. Suspension
lateral space is directly related to the y- coordinates of the joints, and an additional
subframe space requirement would necessiate consideration of positive changes in the y-

coordinates of joints M and O (chassis-control arm joints). Such variation in the joint
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coordinates would also influence the roll camber response of the suspension, which

necessitates consideration of an extended half-car model in the roll-plane of the vehicle.

2.8 Summary

Single-wheel station kinematic models of two types of suspension are formulated to
study the kinematic responses of the suspension, which could also be employed for
synthesis of suspension geometry. The validity of the three-dimensional kinematic model
of a quadra-link suspension is demonstrated by comparing the camber and caster angle
variations of the model with the laboratory-measured data. The kinematic responses of
the quadra-link suspension including wheel center displacements, variations in the wheel
base and track, and camber, caster and toe angles as a function of wheel vertical travel are
analyzed. Based on the matrix equations, a sensitivity analysis method is proposed to
investigate the influences of variation in the suspension joint coordinates on the
kinematic responses. Planar model of a double wishbone suspension is also proposed for
anaysis of roll-plane kinematic responses, such as variations in the camber angle, wheel
track and wheel center lateral displacement. Validity of the proposed model was
examined by comparing the kinematic responses with those of a planar model developed
in ADAMS/view platform. The kinematic responses of the double wishbone suspension
are studied under wheel vertical motions, and simultaneous vertical motions of the wheel
and the chassis. The influences of the joint coordinates on the kinematic responses are
investigated through a sensitivity analysis. The results of the sensitivity analyses of both
the suspensions are interpreted so as to attain design guidelines for suspension geometry
synthesis. The proposed models are further enhanced in the subsequent chapters to

investigate kineto-dynamic response characteristics of the suspension system.
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CHAPTER 3

KINETO-DYNAMIC ANALYSIS OF A DOUBLE WISHBONE
SUSPENSION

3.1 Introduction

Dynamic performances of a vehicle are strongly influenced by its suspension design in
a highly complex manner. The synthesis of a vehicle suspension thus involves complex
compromises among the various conflicting performance measures through judicious
selection of the suspension elements. Linear or nonlinear quarter-car models have been
widely used to evaluate the ride, rattle space and the dynamic tire force responses of
suspension design concepts, and synthesis of semi-active and active suspension control
strategies, assuming negligible contributions due to suspension kinematics [63, 85, 90,
97, 121]. The conventional quarter-car model as illustrated in Fig. 3.1 employs equivalent
stiffness and damping properties of the suspension coupling the chassis and the wheel
masses, while the suspension is permitted to undergo pure vertical deflections. In an
independent suspension system, the wheel carrier or the spindle is generally connected to
the chassis through the suspension linkages, which induce rotational motion of the wheel
apart from the vertical motion. The center of rotational motion of the wheel relies on the
suspension geometry and tends to influence the dynamic responses of the vehicle.
Furthermore, the suspension strut is generally mounted away from the unsprung mass
center (cg) and thus the point of application of spring and damping forces and the
unsprung mass are not colinear. It has been suggested that the suspension kinematics can

lead to nonlinear responses and significantly affect the vertical dynamics [90,128].
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The identification of a vehicle model that incorporates the contributions due to
linkage kinematics, and flexible bushing in the joints may thus be desirable for dynamic
analyses of alternate concepts in an effective manner, and could serve as an effective tool
to study the influences of the linkage geometry and joint flexibilty on the dynamic
responses. Such a model is identified as ‘kineto-dynamic’ model, and could also be used
for the synthesis of the suspension of a ground vehicle. A kineto-dynamic model would
represent physical suspension mechanism by including the suspension kinematics, and
can be employed to synthesize a vehicle supension considering both kinematic and

dynamic responses.

Zs

Zu

M-
Ké %j c.
M.
K Cu
J 2
7

Figure 3.1: Conventional quarter car model

A few studies have been reported with inclusion of the suspension linkage kinematics
either by parameter identification of the simple quarter car model [90] or by employing
kineto-dynamic models [128-133]. The majority of these reported studies on the
influences of suspension linkages on the dynamic responses of the vehicle considered
MacPherson type of suspension [128,131, 132], while kineto-dynamic model of a double
wishbone suspension has been attempted in a single study [133], although such a

suspension has been widely used. Kim et al. [90] concluded that the contribution of the
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MacPherson suspension kinematics on the equivalent parameter and the dynamic
responses are considerably small. The strut location away from the wheel center,
however, yields some effects of the kinematics. The kinematics of a double wishbone
suspension may yield considerably stronger effects on the dynamic responses compared
to the MacPherson suspension. This is attributable to kinematics associated with the
additional control arm, strut location on the lower control arm, and additional kinematic
constraints.

This chapter presents the study of influences of the linkage kinematics, tire lateral
compliance and the flexible joint bushings on the dynamic and kinematic responses of a
vehicle comprising a double wishbone type of suspension. The study involves developing
a quarter-car kineto-dynamic model incorporating double wishbone linkage kinematics
and tire lateral compliance, and identification of equivalent spring and damping rates to
be employed in a conventional quarter car model. The responses of the kineto-dynamic
model are compared with those of a conventional quarter-car model employing
equivalent suspension and damping rates corresponding to static equilibrium under
harmonic and idealized bump inputs. It needs to be emphasized here that only the
dynamic responses of the proposed model can be compared with the conventional model,
while the proposed model can be effectively used to generate responses that cannot be
obtained from the conventional model. Suspension joints bushing compliance is further
included in the kineto-dynamic model to investigate the influences of flexible bushings
on the kinematic and dynamic responses of the model. The proposed kineto-dynamic
model is employed to realize synthesis of suspension linkage joint coordinates

considering lateral space limitations.
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3.2 Model Development

Figure 3.2 illustrates the proposed kineto-dynamic quarter-car model comprising a
double wishbone type of suspension system. The proposed planar model includes upper
(MN) and lower (OP) control arms, and a strut (48) mounted on the lower control arm.
The strut is modeled assuming linear stiffness and damping properties. The control arms
are connected to the chassis and the wheel spindle through revolute joints. The control
arms are considered to be massless and the total unsprung mass is assumed to be lumped
at the center of gravity (cg) of the wheel assembly. The tire is modeled as a combination
of a vertical spring and a damper, while the lateral compliance is represented by lateral
linear stiffness. The model is formulated considering vertical displacements of the sprung
mass and the wheel as the degrees-of-freedom (DOF) as in the case of a conventional
quarter-car model, shown in Fig. 3.2. A coordinate system with its origin fixed at the

chassis corresponding to its static equilibrium position is considered.

Y

Figure 3.2: Proposed kineto-dynamic quarter car model of a vehicle with double
wishbone suspension
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3.2.1 Kinematic Analysis

The kinematic relations describing the motions of the wheel knuckle can be produced
using displacement matrix and the constraint equations corresponding to the control arm
joints as discussed in Section 2.7.1. The nonlinear kinematic relations as obtained in Eqs
(2.20) and (2.21) can be written as:

N, =a,(N,,—C ) +ayu(N,—C)+C,

N. = a32(Ny0 —Cyo)-i-am(Nz0 -C,)+C,

P, =a,(P,,—C,)+ay(P,—C,)+C,

P = a3z(F;;0 _Cyo) +a;,(P,—C)+C.

(N, =M,)* + (N, =M.)" =Ly

(P,-0,) +(P.-0.)* =1, (3.1)

where M,=M,y, O,=0y9, M.=M.o+z,, O.=O,9+z, and C.=C.4tz,, while z; is the vertical
displacements of the sprung mass from the static equilibrium position. In Eq (3.1), /iw
and lop are the lengths of upper and lower control arms, respectively. Moreover,
az;=azz=cos¢@ and —ay;=asz;=sing. In order to correlate the kinematic relations to the
dynamic responses, closed form solutions of the unknowns in terms of generalized
coordinates are desirable, which may be quite complex. A linear system of kinematic
relations, however, could be achieved using small angle assumptions, such that a,,=az;=1
and —a,s=az,=¢, and first-order Taylor series approximation of the constraint equations,
which yield:

N, =N, =C.)=C, =(N ), =Cy)

N.+¢(N,,—C,)=N_,+z,

P, =p(Py=C)=C, =(F,—Cyp)

PA+@(Py—Cp) =Py +2,

(Nyg =M )N, =Nyo) + (N = (Mg +2 )N, =N, ) =(N. =M_y)z, =0

(B =0, )(B, = By) + (P = (O + 2 NP, = Py) = (F. = 0,9)z, =0 (3.2)
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Solutions of the above linear system of equations yield following expressions in the

generalized coordinates z; and z,, as;

$=—[leth-22)-g(/ - 22 ks, ~(eh-g)z]
1 [(eb—a(f =22 hz, —(h—2z))z,)+(c(h—2z,) - gd ) fz, - (f —22,)z,)
’ ZD_enL C,o(ce(h—2z,)—ag(f —2z,))+C,,ge(b—d) }
1 [(cth=22)~g(d =)\ fz, +eN,, ~(f —22,)z,)
" Den {— a(f —2z,)(hz, +gN,y —(h—22)z,) }
1 {[ec(h 2z )+eg(b—d)(N., +z,)—ea(h—2z, )zu}
* " Den|—agfN.,+[ag(N.,+M_,)+eahl,

1 {c(h —2z)(fz, + Py —(f —22,)z,)
)

"~ Den| —(a(f —22,)—e(b—d))hz, + gPy —(h—22,)z,
1 [leg0~d)~ga(f —22))Py+2,)~cg(f 22z,
P = (3.3)
* Den|+echP, —|ec(P,+0.,)+gcf ]z,

where Den=ge(b-d)+ec(h-2z,)+ga(f-2zs); a=N,o-Cyo, b=N-9-C.9, c=Py9-Cy9, d=P-p-Cg,
e=N,9 -M,, f=N-p -M.9, g=P9 -O,p and h=P.y -O.y. Furthermore, the lateral displacement
of the wheel center y, can be expressed as, ,=C,, -Cyy. The coordinates of the lower strut
mount 4 can be obtained from the kinematics of link OP, such that:
ZOA ZOA lOA ZOA
A =[1-410,+-4P ;and 4, =|1-"2 (O, +z,)+-P (3.4)
g [ ol : / R S
OP OP OP OoP
where /o4 is the distance of strut mount location 4 with respect to joint O.
The velocities of different joints are derived through time derivatives of linear system of

equations in Eq (2.21), such that:

N, =§(N,~C)~C, =05 N, +¢(N,,—C,,) =2,

B=p(Py—C)=C,=0; P +¢P,-C,)=2,

(N,y =M, )N, +(No =M =2z )N +(M_+N,,—2N )z =0

(Py() - OyO)Py + (on - OzO - 22,;)]1 + (on + Ozo - 21;;)2; =0 (35)
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Alternatively, the velocity responses can also be obtained through time derivative of the
displacement expressions in Eq (3.2). The wheel angular velocity and lateral velocity of

the wheel center are derived in a similar manner, as:

_ 1 [Den[[e(h—2zs)—g<f—2zs>]z',,+2<g—e>zl,zg.—<eh—gf)zg]}
Den’ | +2(ec—ga)le(h—22,)—g(f —22,)]z, —(eh—g/)z, [,

2az (hzs —(h-2z)z, )— 2cz, (fzS —(f—-2z))z, )

Den +(eb—a(f —2z,)\hz, —(h—2z,)z, +2z,z,)
| +(c(h—22,)— gd )z, - (f —22,), +22,2,) - 2C,,(ce— ag)z,
v, = 7 3.6
¥ ™ Den (eb—a(f —2z)Nhz, - (h-2z,)z,) G0

+2(ec—ga)|  +(c(h—-2z)-gd)fz,—(f-22)z,) |3
+C(ce(h—2z,)—ag(f —2z,))+ C,,ge(b—d)

The wheel spindle angular and lateral acceleration can be obtained from the time

derivative of Eq (3.6) as:

1 [Den[em ~2z))-g(f -22,)E, + Den[2(g o)z, —(eh—gf)]ﬂ

" Den? | +2f(e(h—22,)~ g(f ~22,))z, ~ (eh—gf)z ec— ga)Z,
Den[-(eb—a(f —2z,)\h—2z,)—(c(h—2z,) - gd\h-2z,)]z,
| Za(hz‘), —(h —22_5_)zu)+(eb—a(f—sz))(h+22M) . (3.7)
Y= Dent | T < 2el(fz, —(f ~22.)2,)+ (elh—22,) ~ gd )\ +22,) - 2C, (ce—ag) |
(eb—a(f —2z,)\hz, - (h—2z,)z,)+ C,,ge(b—d)
+2(ec—ga) . Z
I +Cyoleeh=22,)~ag(f =22)+(c(h~2z2,) - gd N fz, = (f = 22))z,) |

3.2.2 Kineto-dynamic Analysis

The equations of dynamic motion of the kineto-dynamic quarter-vehicle system are
derived using Lagrange’s method. The kinetic (7) and potential (U) energies of the
system are formulated as:
1 o1 ) 1 72
T=—mz +—m +z +—=1 and
2 s 2 u(yu u) 2 ux¢
1 1

2 1 2 2
U—EKS(N) +5Kt(AZ,) +5Kt1(yu—¢R) (3.8)
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where m, and m, are the masses of the vehicle body and the wheel, respectively, /,, is the
mass moment of inertia of the wheel about x- axis, Kj is the suspension spring rate, R is
the effective wheel radius, and K; and K, are the tire vertical and lateral spring rates,
respectively. In the above expression, Al and Az, are the strut and tire deflections, given
by:

Al =1,—[(4, =B,y +(4 — (B, +2,)°] *and Az, =z, 2, (3.9)
where [ 1s the initial strut length, B, and B are the initial coordinates of the upper strut
mount B, and z, is the vertical road input, as shown in Fig. 3.2.

The dissipative energy contributing to the generalized forces in the system is derived as:

= lQ(Al')2 +1C,(Az,)2 (3.10)

2 2

where C; and C; are the viscous damping coefficients of the strut and the tire,
respectively. Az and A/are the time derivatives of the tire and strut deflections,
respectively, given by:

. . . . /

N =[4,04, =B+ (A = B)(A - (B +2 )4, - B0 + (4 - B, + 2] B.AD)

The equations of motion are derived from the energy equations (3.8) and (3.10) together
with the kinematic relations defined in Eqs (3.3) to (3.7). Upon neglecting the
contributions due to products of derivative terms, the equations of motion of the kineto-

dynamic model are derived as:

mz +m yu(gy] Iuv¢( ¢J +K Al (g Z) K,(y, ¢R)a(y” ¢R) a(Al) 0

s S ZS
LI ll + m yll a‘)-}u + I ¢ ¢ K AZ a(AZ)
oz Oz
u M u (3 . 12)
+K,(p, - ¢R)a(y” ") . la—)”mz +eAz =0
zZ

ll u
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In the above equations, y,,¢, 7., (zﬁ Y, ,&O ,Aland A/ are defined by the kinematic relations

in Egs (3.3), (3.5), (3.6) and (3.7). Moreover, each term in Eq (3.12) is a function of

Z.,z, zs, and z,, with the exception of m z and m z, .

3.3 Equivalent Spring and Damping Rates

The equations of motion of a conventional quarter-car model, shown in Fig. 3.1, can
be written as:

mz + Ceq(z's -z,) +Keq(zs -z,)=0
m,z, —Ceq(z's —z'u)—Keq(zS -z )+C/(z,—-2))+K,(z,—2,)=0 (3.13)

where K., and C,, are equivalent vertical stiffness and damping rates of the suspension,
respectively. The effectiveness of this simple model could be considerably enhanced by
employing equivalent spring and damping rates that can account for the kinematic
effects. In this study, the kinematic relations, formulated in Section 3.2.1 are used to
identify; (i) equivalent suspension rate, defined as the vertical suspension force acting at
the wheel center per unit vertical displacement of the wheel center; and (ii) equivalent
damping rate, defined as vertical suspension force at the wheel center per unit vertical

velocity of the wheel center [1,16].

3.3.1 Formulations of Equivalent Spring- and Damping Rates

The equivalent spring and damping rates are derived considering the chassis fixed,
while a vertical displacement input is imparted at the wheel centre. The effective strut
force acting at the wheel center is subsequently derived by considering the suspension
kinematics, particularly the wheel camber and the lateral displacement responses during

the vertical wheel motion, as illustrated in Fig.3.3. For a given wheel center
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displacement, the restoring force developed by the strut (K Al), along its axis can be
related to the equivalent force at joint P of the lower control arm and the wheel spindle,

as:

F,y =K Alcosb, §O—A (3.14)

op
where 6 is the strut inclination angle with a normal to the control arm, as shown Fig. 3.3.
The equivalent suspension force F,, acting at the wheel center can be related to Fpy by
considering the instantaneous center of rotation P’ of the double wishbone suspension

(Fig. 3.3).

Figure 3.3: Effective force at the wheel center

Since P and C lie on the same rigid body (wheel spindle), the normal component of the

equivalent force at the wheel center Fyyis related to Fpy, as:

I,
Fyu =" Fpy (3.15)
PC

where Fyy acts at the wheel center along the normal to a line joining instantaneous center

P"and the wheel center C. In the above equation, /pp and /p.c are the distances of points P
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and C from the instantaneous center, which are related to the angular rotation 6, of the

lower control arm in the following manner:

Lop _ _lor0o (3.16)
lpe z,c080,

where 6,,1s the angle between the force Fyy and the fixed vertical axis. The lower control
arm rotation 0o, can be further related to 6, such that /,,6, = Alcos 6, .

The equivalent vertical force at the wheel center, Fy is then derived from the normal

force as,
F, = Cf;vz (3.17)

Equations (3.14) to (3.17) yield the following expression for the equivalent vertical force,

2
F, -k [u] G.18)
z, | cosd,

In the above expression, the spring deflection A/ is only a function of wheel vertical
deflection z,, when z=0. The angles 6, and 6,, are also functions of z, considering that
these angles can be written in terms of the joint coordinates, N,, N., P,, P., C,, C., 4, and

A.. The small angles 6, and 6,, are related to the joint coordinates, as:

A —B _ _ _p
g, =0 Pm04  Pa=Ou g -G~ (3.19)
4.-B,, Py—OyO PyO_OyO Cy—Py

where Pand P, are the coordinates of the instantaneous point P'which can be obtained

by solving the equations of lines MN and OP as:

_ (Nz _MZO)(MzoNy _MyONz) _(Pz _020)(020Py _OyOPz)

!

’ (Ny_MyO)(PZ_OzO)_(Nz_MZO)(Py_OyO)
P! — (Ny _MyO)(MZONy _MyONz) - (})} - OyO)(OzO})y - OyO})z) (3 .20)
) (N, =M, )(P. = O0.) = (N, =M )(P, = O,)
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Although the angles 6; and 6,, are functions of z,, the variations in these angles with
respect to z, are very small. Assuming small variations in these angles, the suspension
rate K, is obtained by differentiating the wheel force in Eq (3.18) with respect to z,. The
resulting suspension rate can be related to the suspension stiffness, as:

_OFy

“ o,

—K¥ (3.21)

2

Al Al) Al

where ¥ = — 2M—— cost, is the geometry factor that yields the equivalent
z oz z, \ cos®

suspension rate incorporating the suspension kinematics, while the rate of change of strut

length with respect to z, can be obtained from:

oAl oA oA
L[4, =B,y + (A4 =B (4, = B, ) 2+ (4. — By ) 2= (3.22)
aZu aZ aZu

u

The equivalent damping force Fyy, at the wheel center is derived in a similar manner as:

. 2

C.{ Alcos@.

FW=.—S(—SJ (3.23)
z, \ cos@,

This leads to an expression for the equivalent damping rate as:

. . -\ 2 2
¢, =%ra_c| 20000 _[A) ] costh (3.24)
oz, z, 0z, z, cosé,

u

The above equation can be further simplified in terms of another geometry factor ¥, in a
similar manner to that of the equivalent spring rate. The equivalent damping thus is

directly related to the strut damping coefficient, as:

. . . 2

Al( ol A 0

C,=C¥,; where¥,= ALl oAl Al cosd, (3.25)
b4 oz, z, \cos@,

u
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Equations (3.21) and (3.25) derive the equivalent spring and damping rates of a double
wishbone suspension as a function of the wheel spindle vertical displacement and
velocity relative to the chassis.

The geometry factor ¥ is a function of z, for a given joint coordinates and may be
considered as analogous to the square of the ‘installation ratio’ [1]. A further examination
of the geometry factor ¥ in conjunction with Eqs (3.9) and (3.22) suggests that it is
dependent on the ratio of the distance of the strut mounting point lower control arm (4)
from the pivot (O) to the control arm length (/p4//op), and on the coordinates of the strut
mounts (4 and B). The coordinates of the strut mounts are related to those of joints O and
P, as it is evident from Eq (3.9). The geometry factor thus accounts for the total
suspension kinematic effects. This further suggests that variations in the joint
coordinates, which are generally carried out during suspension tuning, can alter the

equivalent suspension rates, and thus, influence the dynamic responses of the suspension.

3.3.2 Variations in Equivalent Spring and Damping Rates

The effective spring and damping rates of the suspension, however, tend to vary
during vertical motions of the chassis and the wheel, which may alter the vehicle ride and
handling properties. The variations in the effective spring and damping rates are
analyzed considering the coordinates of various suspension joints (Fig. 3.2) as given in
Section 2.4.4, such that: M=(0.430, 0.818); N=(0.644, 0.852); O—=(0.365, 0.360);
P=(0.743, 0.347); C=(0.787, 0.452); A=(0.660, 0.350) and B=(0.615, 0.920), while these
coordinates are taken in meters. The variations in the effective spring and damping rates,
evaluated from Egs (3.21) and (3.25), respectively, by considering the chassis fixed (z, =

0), while the wheel center is subjected to a very low frequency (0.1 Hz) harmonic
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displacement of 0.12 m amplitude, while, the variations in the rates are illustrated in Fig.
3.4 (a) and (b), respectively. The figures show the variations in the suspension spring
rate with the wheel vertical travel, and the damping rates as a function of wheel vertical
velocity. The results in the figures suggest that the effective spring and damping rates
decrease under upward wheel motion (jounce) and increase during rebound, while the
variations are asymmetric in jounce and rebound. The results also show nearly symmetric
variations in the wheel rate under small wheel displacements, and relatively lower

changes in the suspension rate and damping rate in rebound compared to jounce.
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Figure 3.4: Variations in (a) wheel rate; and (b) damping rate of the suspension under
z,~0.12 sin 2zt) m and z; =0

3.4 Dynamic Response Analyses

The kineto-dynamic formulations presented in sections 3.2 and 3.3 are solved to
determine the kinematic and dynamic responses to harmonic and transient excitations.
The model parameters used in simulation are summarized in Table 3.1 [97, 147]. The

results attained are discussed in the following sections.
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Table 3. 1: Vehicle and suspension data [97, 147]

Parameter Value
Sprung mass () 439.38 kg
Unsprung mass (m,,) 42.27 kg
Unsprung mass moment of inertia about x axis (/,;) 1.86 kg-m*
Suspension spring stiffness (K) 38404 N/m
Suspension damping rate (Cy) 3593.4 Ns/m
Tire vertical stiffness (K) 200 kN/m
Tire damping rate (C;) 352.27 Ns/m
Tire lateral stiffness (Kj) 100 kN/m
Tire effective radius (R) 0.35m

3.4.1 Responses to Harmonic Inputs

Apart from variations in the spring and damping rates, the tire lateral compliance can
also influence the vertical dynamics of the system, particularly when the wheel track and
the camber angle add up to increase the lateral displacement of the tire-ground contact
point. Furthermore, the sprung and unsprung masses are constrained by the suspension
linkages, which can also alter the dynamic properties. The combined effects of variations
in the suspension and damping rates, tire lateral forces and the constraints imposed by the
suspension linkages are illustrated by comparing the dynamic responses of the kineto-
dynamic model with those of a conventional quarter-car model under harmonic and
idealized bump excitations. The conventional model employs equivalent suspension and
damping rates in the vicinity of the static equilibrium operating point (Figs. 3.4 (a) and
(b)).

The dynamic responses of the kineto-dynamic and the linear quarter-car model are
evaluated under sinusoidal displacement at the tire ground interface with zy,,, as the
displacement amplitude. The responses are evaluated in terms of sprung-mass

displacement ratio, zy/Zomax, and the rattle space ratio, (zs-z,)/zomax. Figures 3.5 (a) and (b)
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illustrate the steady-state sprung mass displacement ratio responses of the two models
under two different displacement amplitudes (zomax= 0.05 and 0.08 m) at a frequency of
1 Hz. It can be observed that the conventional model shows symmetric variations in the
responses about the static equilibrium, irrespective of the excitation amplitude with peak
displacement ratio near 2.1. Moreover, the displacement ratio response is independent of
the excitation amplitude due to the assumed linearity. The proposed kineto-dynamic
model, however, exhibits a small asymmetry in the responses in jounce and rebound. The
peak responses of the kineto-dynamic model are lower compared to those of the
conventional model. The peak ratio under zym,= 0.05 m is observed to be near 1.96
during the upward motion of the sprung mass and nearly 1.95 during the downward
displacement. The peak displacement ratio increases slightly when the input amplitude is
increased to 0.08 m. The asymmetry in the response can be attributed to kinematics of the
suspension giving rise to asymmetric variation in the camber angle, suspension rate and
damping rate, as shown in Figs. 3.4 and 3.5, respectively. During the jounce (sprung mass
upward displacement), total lateral displacement of tire-ground contact point is larger
compared to that of rebound owing to variations in the camber angle and the wheel track.
Figures 3.6 (a) and (b) compare the rattle space ratio responses of the kineto-dynamic
and the conventional model under the two displacement excitation amplitudes. The
results show considerable deviations between the responses of the two models for both
excitation amplitudes. The kineto-dynamic model yields considerably lower peak rattle
space compared to the linear model, particularly under the lower excitation. This is partly
attributed to slight difference in the sprung mass natural frequency of the kineto-dynamic

model from that of the linear model. It can also be observed that the rattle space response
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of the kineto-dynamic model lags that of the conventional model slightly during upward
displacement, and it leads the conventional model peak response during the downward
motion, which can be attributed to non-linearity due to kinematic constraints imposed by

the suspension linkages in the kineto-dynamic model.
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Figure 3.5: Sprung mass displacement ratio response to harmonic excitations at 1 Hz:
(2) Zomax=0.05 m; and (b) zpmax=0.08 m.
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Figure 3.6: Rattle space ratio response to harmonic excitations at 1Hz: (a) zomax=0.05 m;
and (b) zomax=0.08 m.

3.4.2 Responses to Idealized Bump Excitations

The transient responses of the kineto-dynamic and linear quarter-vehicle models are
evaluated under an idealized bump excitation with positive and negative vertical

displacements to study the effects of suspension kinematics causing variations in the
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suspension and damping rates, camber angle and wheel track. The bump excitation is

idealized by a rounded pulse displacement, given by [148]:

2
CTIEB) ey (2.71828) 7 (3.26)

ZO(t) = Z()max

where zomax 1S the maximum amplitude, wy=2n and y is the pulse severity parameter,
which directly relates to rate of change of the displacement. The above formulation is
also applied to synthesize a negative displacement, idealizing a pothole input, by letting
Zomax<0, in order to study the asymmetry in the transient responses. Figure 3.7 illustrates
the positive and negative normalized rounded pulse displacement excitations to the model

for different severity parameters (y =1, 3 and 5).
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Figure 3.7: The rounded pulse displacement input corresponding to different severity
factors: (a) idealized bump excitation; and (b) idealized pothole excitation.

The dynamic responses are evaluated for two different amplitudes of excitations,

namely zguq,=+0.05m and +0.1m, in terms of sprung mass acceleration ratio (%, /@]z,,,. )
the rattle space ratio ((z,—z,)/z,,, ) and the dynamic tire force ratio (dynamic tire

force/static tire force), considered to provide measures of passenger comfort, vertical

packaging space availability and the road holding ability of the suspension, respectively.
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The dynamic and kinematic responses are further evaluated by the peak responses,

defined by: sprung-mass shock acceleration ratio, SSAR=

. 2
Z) o/ P Zom, and peak

relative displacement ratio, SRDR =

Z, = Z,| / Zomy ;> and peak tire dynamic force ratio,

TDFR.

Figure 3.8 illustrates the sprung mass acceleration ratio responses of the conventional
and the kineto-dynamic models subject to positive and negative rounded pulse excitations
with a severity factor, y=1. The conventionl model, as expected, responds symetrically to
the positive and negative pulse inputs, while the peak response is near 0.8 under both
excitation amplitudes. The results also suggest that the free oscillation response occurs at
1.04 Hz. The kineto-dynamic model, however, shows asymmetric responses to bump and
pothole inputs. Moreover, the peak acceleration ratio is slightly larger than that of the
conventional model under positive pulse excitation. A larger deviation in the peak
response, however, can be observed under the negative excitation. The peak acceleration
ratios under 0.05 and 0.1 m excitations are 0.95 and 1.05. These asymmetric variations in
the response are attributable to suspension kinematics leading to asymmetric suspension
and damping rates, and tire lateral force, which tend to show greatest influences during
suspension compression. The results in Fig. 3.8 also demonstrate that the free oscillation
of the kineto-dynamic model occurs at 1.12 Hz, while rate of decay of oscillation is
higher than that of the conventional model.

The rattle space ratio responses of both the models under the two rounded pulse
inputs with y=1, are presented in Fig. 3.9. Although the peak reponses of both the models
under the positive displacement occur at about the same instant, the kineto-dynamic

model response tends to lead that of the linear model under the negative excitation, which
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is attributed to the higher sprung mass frequency of the kineto-dynamic model and

variations in the damping rate.
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Figure 3.8: Sprung mass acceleration ratio ( %,/ @] z,,,, ) response to: (a) idealized bump
excitation (Zomax=0.05 and 0.1 m); and (b) idealized pothole excitation (zpmax=0.05 and
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Figure 3.9: Rattle space ratio ((z, —z,)/ z,,.,, ) response to: (a) idealized bump excitation
(Zomax=0.05 and 0.1 m); and (b) idealized pothole excitation (Zom.x=0.05 and 0.1 m)
Figure 3.10 presents the tire dynamic force ratio responses of both the models to

rounded pulse inputs. The conventional model responds symmetrically to positive and

negative inputs, as expected, with peak dynamic force ratio being 0.31 under 0.1m

excitation. The tire dynamic force ratio response of the kineto-dynamic model, however,

deviates considerably from that of the conventional model. The peak force ratio is
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significantly higher for the bump input, particularly near the peak input displacement.
The kineto-dynamic model, however, exhibits lower peak response under the negative
input compared to the linear model. The asymmetric tire force response is attributed to
suspension kinematics leading to large camber variations, particulary under large
displacement inputs.
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Figure 3.10: Tire dynamic force ratio response to: (a) idealized bump excitation
(Zomax=0.05 and 0.1 m); and (b) idealized pothole excitation (Zym.x=0.05 and 0.1 m)

The peak responses of both the models to rounded pulse displacement excitations are
further summarized in Table 3.2 in terms of SSAR, SRDR and TDFR. The results are
presented for £0.05m and #+0.1m inputs with severity factors of y=1 and 5. The peak
sprung mass acceleration and relative displacement responses of the linear model, as
expected, are identical under negative and positive inputs, irrespective of the peak
displacement, while the 7DFR under 0.1 m excitation is twice that under 0.05 m input.
The kineto-dynamic model, however, shows different peak responses under positive and
negative excitations, while the differences are more significant for y=1 compared to y=5.
The peak responses of the kineto-dynamic model to more severe pulse input (y=5) are

quite comparable to those of the linear model except for SSAR, which is higher for the
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kineto-dynamic model. These suggest that the non-linearity and asymmetry in the
responses due to suspension kinematics are more pronounced under the lower frequency
excitation. Under the higher frequency excitation, the responses are predominantly
influenced by the unsprung mass properties.

Table 3.2: Comparisons of dynamic responses of the kineto-dynamic and linear models to

positive (bump) and negative (pothole) rounded pulse displacement inputs of different
peak magnitude (zpu,,=0.05 and 0.1m) and severity factors (y=1 and 5).

Pulse Linear Model Kineto-dynamic Model
Performance . Bump/pothole | Bump | Pothole [ Bump | Pothole
severity
Measure factor v Z0max = Z0max = Z0max — 0.05m Z0max = 0.Im
Y1 005m  0.Im
1 085 085 | 087 097 | 08  1.01
SSAR 5 351 351 | 403 402 | 400  4.02
1 054 054 | 047 049 | 048 051
SRDR 5 091 091 | 08 088 | 08 088
1 016 032 | 0.4 015 | 038 030
TDFR 5 085 170 | 085 085 | 170  1.70

3.5 Suspension Synthesis With Constrained Lateral Space

With an increasing demand for larger subframe space, particularly for hybrid vehicles
for placing the batteries [3], a suspension synthesis that can provide greater lateral
subframe space without compromising the dynamic performances would be desirable,
although it may involve difficult design compromises. The suspension lateral space
availability is directly related to the links geometry, which may be characterized by the
coordinates of joints M, N, O and P. The proposed kineto-dynamic model could be
effectively applied to identify optimal or near optimal joint coordinates with
consideration of both the dynamic and kinematic suspension properties. This feature of

the model is illustrated through a parametric sensitivity analysis.
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3.5.1 Sensitivity Analysis

The influence of variation in the lateral space on the selected kinematic and dynamic
measures are evaluated under variations in the coordinates of joints M, N, O and P. The
variations in the y- coordinates are limited to £5 ¢cm about the nominal values, while the
variation in the coordinates of P is limited only to -5 cm due to limited clearance between
the wheel and joint P. The effects of variations in the joint coordinates are evaluated
under 0.05 m positive and negative rounded pulse excitation (y=1). The influences of the
joint coordinates on dynamic and kinematic responses are evaluated considering the

lateral space as the constraint. In addition to the SSAR, SRDR and TDFR, the responses

are also evaluated to determine the camber displacement ratio, (CDR=|g| _ /z,,,, ) and

the wheel-center lateral displacement ratio, (WLDR =|y,

-/ Zgmay ), known to influence

the directional behavior of a vehicle and the tire wear characteristics.

Tables 3.3 and 3.4 show the sensitivity of the selected performance measures to the
variation in the lateral coordinates of the joints under positive and negative pulse
displacement inputs, respectively. The tables present the responses normalized by those
of the nominal geometry suspension. The tables also include the sensitivity of the
geometry factor ¥ to the variations in the joint coordinates normalized to that of the
nominal geometry (¥=0.59). It can be observed that most of the responses are strongly
influenced by the considered variations in the joint coordinates. Moreover, the effects are
highly coupled. The results show conflicting effects of variations in the measures under
the bump and pothole excitations, while the TDFR response appears to be least sensitive
to such variations since it is mostly affected by the unsprung mass responses. For

example, a positive change in the y- coordinate of point M yields slightly lower peak
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sprung mass acceleration ratio under a pothole input, and slightly higher under the bump
excitation. A similar conflicting effect of a positive change in the coordinate of N can be
observed in WLDR, and that in the coordinate of O on the CDR and WLDR. A negative
change in joint M can decrease the camber angle variation significantly without
compromising other dynamic responses. The negative change in the joint M coordinate,
however, increases the lateral space requirement of the suspension, while a positive
change in the y- coordinate of joint O can reduce the suspension lateral space
requirement. The geometry factor ¥ is predominantly influenced by the coordinates of
lower control arm joints, particulary the joint P. Moreover, an increase in SSAR response
is not always associated with an increase in the suspension rate. For example, a negative
change in the y- coordinate of joint N results in a 1% decrease in the effective rates, while
the SSAR increases by 6%. The corresponding CDR and WLDR increases substantially,
by 18% and 14%, respectively. These suggest that tire lateral compliance also contributes
to higher vertical acceleration response.

The results in Tables 3.3 and 3.4 suggest that a positive change in the y- coordinate of
joint O yields beneficial effects in SSAR under both inputs, and CDR and WLDR under
the negative input. Similarly, a positive change in the coordinate of N also yields
beneficial effects in SSAR and CDR under both inputs and WLDR under the negative
input. The combined effect of positive changes in the coordinates of both the N and O
joints are thus further evaluated in order to reduce the suspension lateral space
requirements. The results obtained under pulse excitations along positive and negative

directions, are also summarized in Tables 3.3 and 3.4.
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Table 3.3: Influence of variations of the suspension joint coordinates on the normalized
dynamic and kinematic responses of the kineto-dynamic model subject to positive
rounded pulse displacement input (y = 1; and Zypax = 0.05 m).

Coordinate Variation ¥  SSAR TDFR SRDR CDR WLDR

Nominal .00 100 100 100 1.00 1.00

M, (-5 cm) 100 098 1.00 102 088 121

M, (+5 cm) 099 101 100 098 124 121

N, (-5 cm) 099 1.06 094 094 1.18  1.14

N, (+5 cm) .00 095 106 104 091 1.9

O, (-5 cm) 107 105 100 096 096  0.86

O, (+5 cm) 092 093 1.00 106 1.08 143

P, (-5 cm) 128 116 112 083 088  0.79

N, (+5 cm), O, (+5 cm) 092 08 106 1.02 100 171
N, (+5cm), O, (+10cm) | 081 0.80 112 111 120 243

Table 3.4: Influence of variations of the suspension joint coordinates on the normalized
dynamic and kinematic responses of the kineto-dynamic model subject to negative
rounded pulse displacement input (y = 1; and zgmax = -0.05 m).

Coordinate Variation 14 SSAR TDFR SRDR CDR  WLDR

Nominal 1.00 1.00 1.00 1.00 1.00 1.00

M, (-5 cm) 1.00 1.00 1.00 1.00 0.84 0.89

M, (+5 cm) 0.99 0.99 1.00 0.96 1.24 1.26

N, (-5 cm) 099 1.01 1.00 0.92 1.17 1.16

N, (+5 cm) 1.00  0.98 1.07 1.02 0.88 0.89

Oy (-5 cm) 1.07 1.01 1.07 0.94 0.95 0.95

O, (+5 cm) 0.92 0.98 0.93 1.04 1.07 1.11

P, (-5 cm) 1.28 1.10 1.13 0.82 0.81 0.68

N, (+5 cm), O, (+5 cm) 0.92 0.96 1.00 1.10 0.94 1.05
N, (+5 cm), O, (+10 cm) 0.81 0.94 0.93 1.12 1.04 1.32

The results suggest that positive variations in lateral coordinates of both the joints
yield considerable reduction in SSAR under both inputs and CDR under the negative
inputs, with only slight increase in the SRDR and WLDR. Owing to the benificial effects
of these changes, the y- coordinate of joint O was increased by 10 cm in an attempt to

further reduce the suspension lateral space requirement. The results show further
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reduction in SSAR but significantly higher CDR and WLDR responses. The results thus
suggest that a +5 cm change in the coordinate of N and O would offer a reasonably good
design compromise leading to total decrease of 12% in the lateral packaging.

Figure 3.11 shows the variations in the camber angle and half wheel-track responses
of the modified suspension geometry (5 cm change in the y-coordinates of joints O and
N) together with those of the nominal suspension geometry to 0.05 m bump input.
Although, the modified geometry yields only minimal changes in the camber angle
variation, the peak wheel-track variation of the modified suspension is significantly
higher than the nominal suspension.
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Figure 3.11: Comparison of (a) camber angle; and (b) half wheel-track variations of the
nominal and modified suspension geometry (joints O and N displaced by +5 cm) under

+0.05 m pulse excitation.
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The sensitivity analysis results suggest that variations in the joint coordinates would
lead to compromises in both the kinematic and dynamic performance measures.
Consequently, a suspension synthesis objective may be formulated to achieve minimal
SSAR, SRDR, CDR and WLDR responses with a practical limit constraint on the lateral
packaging space with joints coordinates being the design variables. The limit constraint

on the lateral packaging space can be specified as (C,p —0,;)<61(Cyo-Oy) and (Cyg —
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M, )< 02(Cyp-M,p), where the subscripts ‘0’ and ‘I’ refer to the nominal and the
identified design variables or the coordinates, and ¢; and o, would serve as constants
defining the target reduction factor. The nominal wheel track, however, must be

maintained in identification of most desirable joint coordinates.

3.6 Influences of Joint Bushing Compliance

The suspension joint bushings, which are generally made flexible, can influence the
kinematic and dynamic responses of the vehicle in a significant manner. Conventional
studies related to the synthesis of vehicle suspension, in general, ignore influences of the
joint bushing compliance on the dynamic responses. Swayze et al. [149] studied the
influence of joint bushings vertical compliance on the vertical dynamic responses of a
vehicle employing a 5-DOF quarter car model. Studies related to the torsional stiffness of
the flexible bushings in conjunction with vehicle models have been reported in a limited
number of studies [52-54], while the majority of them employed multibody dynamic full
vehicle models for the studies. Such vehicle models, however, require a large number of
data related to vehicle which are generally available only at the final stages of vehicle
design. This part of the study investigates the influences of nonlinearity due to joint
bushing compliance on the kineto-dynamic responses of the quarter-car model
comprising double wishbone type of suspension with compliant bushing joints between
upper- and lower control arms and the chassis.

The kineto-dynamic quarter-car model shown in Fig. 3.2 is modified to include
flexible bushings at the joints between the upper- and lower control arms and the chassis
(points M and O, repsectively) as illustrated in Fig. 3.12. The flexible bushings at the

chassis joints are modeled as linear torsional springs which cause restoring forces due to
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any rotation of the upper- or lower control arms about the joints M or O, respectively.
Unlike the model considered in Fig. 3.2, this modified model also considers the

nonlinearity due to wheel hop.
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Figure 3.12: Kineto-dynamic model comprising flexible bushings at the linkage-chassis

joints

3.6.1 Dynamic Formulations with Flexible Bushing
In addition to the kinetic and dissipative energies considered in section 3.3 through
Eqgs (3.8) and (3.10), the total potential energy of the system are formulated considering

the contributions due to the linear torsional springs representing the joint bushings as:
1 2 1 2.1 2,1 2,1 2 3.27
U= K (M) + K (A2) + 0 Ky (, = gR)" + 2 Ky (0,)7 + Ko (65) (3.27)
where Kjs and Ko are the torsional spring rates (linear) of compliant bushings at joints M

and O, respectively, while 6y, and 6y denote upper- and lower control arm rotations,

which upon small angle approximations can be obtained as:

_ “:0and g = P -0. _PzO_OzO ; (328)
P
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The equations of motion derived from the potential energy equation given in Eq (3.27) in
conjunction with the kinetic (7)) and dissipative (D) energy equations given in Eqs (3.8)

and (3.10) are written as:

mZ +muyu(gy J qu¢[ ¢J+f;"s+f;ls+fds=_9'81ms
ZS
m Z +m yu gyu +[ux¢ a¢ +f;'u +f;lu +fdu +ftsu +thdu = _9'81mu (329)

where fs, fsu, fas and fy, represent the suspension spring and damper forces acting on the

sprung and the unsprung masses, respectively, such that:

f.=KAl ( )fm K Al ( )qu CAl'%é—l);andfdu:CAl'gé—l) (3.30)
Z

In Eq (3.29) fis and f, represent the wheel forces on sprung and unsprung masses due to
the tire lateral compliance, while the f,, and f;, represent the wheel forces due to vertical
stiffness and damping properties of the tire, acting on the unsprung mass. Considering the
wheel hops (potential tire loss of contact with the ground), the forces f; (j = s, u), fiu and

frau are obtained as:

oly —dR
fﬂj:Kﬂ(yu _¢R)% Az <&

J

.ft.m = KtAZt ;ftdu = CtAZt
L5 =05 £ =0 1, =0} Az,>68,,  j=su (3.31)
where o0z, 1s the tire deflection obtained as z;-zy and J, 1s the static tire deflection

corresponding to static equilibrium, can be expressed as:

5St _ 981(1’1’1A +mu) (332)
K

t

In the above equation (3.31), Az is the time derivative of the vertical tire deflection Az,
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3.6.2 Influences of Joint Bushings under Harmonic Inputs

The combined effects of spring and damping rate variations, tire lateral compliance,
suspension linkage constraints and the joints compliance are studied by comparing the
dynamic responses of the kineto-dynamic quarter-car model with those of a conventional
quarter-car model under harmonic and idealized bump excitations. In order to illustrate
the influence of bushing compliance, the responses of the model are also compared with
the responses of the same model assuming the joints are free (non-flexible) with no
resistance to relative motion between the connecting links. The influences of the joints
bushing flexibility on the kinematic responses are investigated by comparing the
responses of the kineto-dynamic model with free and flexible joints. In addition to the
model parameters considered in section 3.4, the torsional stiffness of bushings at both
upper- and lower control arm joints (Kj, and Ky) were taken as 80 Nm/rad [150] for the
simulation.

The dynamic responses of the kineto-dynamic model with free joints and flexible
joints, and the conventional quarter-car model are evaluated under sinusoidal
displacement at the tire ground interface. The dynamic responses are evaluated in terms

of sprung-mass acceleration ratio, (Zz, /mozzOmax) and the rattle space ratio, (zs-z,)/Zomax

under 1.1 Hz harmonic excitation of 0.06 m peak amplitude (zZomax=0.06 m).

Figure 3.13 (a) and (b) illustrate the steady-state sprung mass acceleration ratio and
rattle space ratio responses of the three models (conventional, kineto-dynamic with free
and flexible joints) under the harmonic excitation. It can be observed from the figures
that the conventional model shows symmetric variations in the acceleration and rattle

space responses about the static equilibrium, as was discussed in section 2.4.1. The
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kineto-dynamic model, however, exhibits asymmetric variations in the responses in
jounce and rebound irrespective of type of joint considered, while, the magnitude of the
asymmetry seems to be slightly larger when bushing flexibility is considered. It can be
seen from the Fig. 3.13(a) that the peak acceleration ratio responses attained from kineto-
dynamic model in the upward direction are near 2.06 and 2.18 with free joint and flexible
joint models, respectively. The result suggests that the bushing torsional compliance
could increase the sprung mass acceleration by approximately 5%, attributed to the
bushing spring torque being transmitted to the sprung mass together with the suspension
spring force. The Fig. 3.13(a) also shows that kineto-dynamic model attains considerably
smaller peak downward acceleration as compared to that in upward direction. The

asymmetry in the sprung mass acceleration response is attributed to suspension

kinematics.
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Figure 3.13: Comparisons of (a) sprung mass acceleration ratio ( %,/ @]z, ); and

(b) rattle space ratio response of the kineto-dynamic model with free and flexible joints,
and conventional model to harmonic excitations at 1.1 Hz and zo,,x=0.06 m.

The rattle space ratio responses of the kineto-dynamic and the conventional model as
illustrated in Fig. 3.13(b) show considerable deviation between the responses of the

kineto-dynamic model and those of the conventional model, while flexibility of the joints
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causes less significant influence on the rattle space ratio responses. The kineto-dynamic
model with free and flexible joints yields considerably lower peak rattle space response
as compared to that of the conventional model.

The rotation angles of the suspension control arms are evaluated under the harmonic
input since the bushing torque generated at the linkage joints is proportional to the
magnitude of control arm rotations (Eq (3.27)). Figures 3.14 (a) and (b) show the
rotations of upper control arm (UCA) and lower control arm (LCA) of the kineto-
dynamic model with free and flexible joints in steady state condition under harmonic
excitations. It can be seen that the upper control arm, in general, rotates more than the
lower control arm, attributable to smaller length of the UCA compared to that of LCA.
The figure further demonstrates that the kineto-dynamic model with flexible joints yield
5% lower rotation of the UCA and LCA as compared to that of the model with free joints.
The reduction in the control arm rotation response of the kineto-dynamic model with
flexible joints bushing can be attributed to the torsional stiffness of joint bushings that
offer resistance to the control arm rotation.

The kinematic responses of the kineto-dynamic model with free and flexible joints are
further evaluated in terms of variations in the camber angle and wheel track under the
harmonic inputs, as illustrated Fig. 3.15. The results show asymmetric variations in both
the responses during jounce and rebound. The peak responses of the model with free
joints are 5% more than that of the model with flexible joints. For example, peak camber
angle when free joints are considered is -2.42°, while the peak camber angle response
with flexible joints is -2.29°. The results thus suggest that suspension joints with torsional

compliance would decrease the variations in the camber angle and the wheel track. The
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results in the Figs. 3.15 further suggest that peak magnitudes of camber angle and wheel

track response occur at different time.
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Figure 3.14: Comparisons of (a) upper and (b) lower control arm rotations of the kineto-

dynamic model with free and flexible joints under harmonic excitations at 1.1 Hz and

Zomax=0.06m
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Figure 3.15: Comparisons of (a) camber angle and (b) half- wheel track variation
responses of the kineto-dynamic model with free and flexible joints under harmonic
excitations at 1.1Hz and zyn.x=0.06m

3.6.3 Influences of Bushing Compliance under Idealized Bump Excitations

The transient responses of the conventional and kineto-dynamic quarter-vehicle model
with free and flexible bushings are evaluated under idealized bump excitations as given
in Eq (3.26) with positive and negative vertical displacements to study the coupled effects

of suspension kinematics and flexible bushing joints. The pulse severity parameter y in
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Eq (3.26) is written in terms of vehicle forward velocity V" considering the peak of the
displacement input occurs at a distance of 0.4 m from the beginning of the bump or
pothole, such that:

_
040, o,

y (3.33)

Figure 3.16 illustrates the positive and negative normalized rounded pulse displacement
excitations for different forward velocities (1.5, 4 and 8 m/s). The dynamic responses are
evaluated for two different forward velocities (1.5 and 8 m/s) with amplitude of
excitations Zomax—==0.1 m. The responses are evaluated in terms of sprung mass

acceleration ratio, ( Z, /®o Zomax) and tire force ratio (tire force/static force) responses.

Bump input

Pothole input

0 02 0.4 0.6 0.8 1
t(s)
Figure 3.16: The rounded pulse displacement input corresponding to different forward
velocities: (a) idealized bump excitation; and (b) idealized pothole excitation
The sprung mass acceleration ratio responses of the kineto-dynamic model with free
and flexible joints are compared with that of the conventional model with equivalent
spring rates under positive and negative rounded pulse excitations at forward velocity of

1.5 m/s are shown in Figs. 3.17 (a) and (b). As discussed in section 3.4.2, the conventionl

model responds symetrically to positive and negative pulse inputs with peak acceleration
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ratio response at 0.95, and the free oscillation response occurs at 1.05 Hz. The peak
acceleration ratio responses of the kineto-dynamic model are slightly larger than that of
the conventional model under positive displacement pulse excitation (Fig. 3.17 (a)),
irrespective of the joint conditions considered in this study. Under the pothole input, the
second peak acceleration responses of the kineto-dynamic model exhibit a larger
deviation from that of the conventional quarter car model with equivalent rates. The peak
response of the kineto-dynamic model with flexible joints under the positive and negative
displacement inputs are 1.1 and 1.18, respectively, while the model with free joints
exhibits peak acceleration ratio responses as 1.05 and 1.1, respectively. The results thus
suggest that the flexible joints increase the acceleration responses of the sprung mass by
nearly 5%. The results in the Figs. 3.17 (a) and (b) also show that the free oscillation of
the proposed kineto-dynamic model occurs at 1.11 and 1.18 Hz, respectively, when free
and flexible joint conditions are considered in the model.

Figures 3.18 (a) and (b) presents the tire force ratio response of the conventional and
the kineto-dynamic model with free and flexible joints under rounded pulse positive and
negative inputs at forward velocity of 1.5 m/s. The conventional model responds
symmetrically to bump and pothole inputs with minimum force ratio at -0.36 and -0.35
under bump and pothole excitations, respectively. The tire force ratio response of the
kineto-dynamic model, however, deviates from that of the conventional model, which
under the bump input are at -0.38 and -0.43 with free and flexible joints, respectively.
The results suggest that the suspension joint bushing compliance could increase the tire

force variations under input. Under the pothole input, the first negative peak tire force is
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insensitive to the type of joints, while the first positive, and second negative peak

responses are different with free or flexible joints.
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Figure 3.17: Comparisons of sprung mass acceleration ratio ( %, / @] ) responses of
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Figure 3.18: Comparisons of tire force ratio responses of the kineto-dynamic model with
free and flexible joints, and conventional model to idealized: (a) bump; and (b) pothole
excitation (forward velocity=1.5 m/s and Zymax=0.1 m)

The tire force responses of the kineto-dynamic model, in general, tend to lead that of
conventional model irrespective of the type of joints considered. The responses of the
kineto-dynamic model with flexible joints lead that of the model with free joints under

both bump and pothole excitations as seen in the Figs. 3.18 (a) and (b), although the
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magnitude of the lead is very small. It can also be seen in the figure that the tire does not
lose contact (tire force ratio yields magnitude greater than -1) with the ground under this
excitation.

The tire force ratio responses of the kineto-dynamic model with free and flexible joints
were also evaluated under idealised rounded pulse inputs at higher forward velocity of
8 m/s and zg. =£0.1 m (results not shown). It was observed that the tire loses contact
with the ground under both positive and negative displacement inputs irrespective of the
type of joints considered. At higher forward velocity, however, the responses were less
influenced by the suspension kinematics or by the torsinal stiffness of the joint bushings.
The tire force response seemed to be predominantly influenced by the unsprung mass

properties under such excitations.

3.6.4 Bushing Stiffness Sensitivity Analysis

The results in section 3.6.2 and 3.6.3 suggest that the suspension joints torsional
compliance considered in this study exhibit considerable (to the order of 5%) influences
on the kinematic and dynamic responses of the kineto-dynamic model. It was thus
considered desirable to study the infuence of variation in the bushing stiffness from the
nominal value on the dynamic responses. The study would be instrumental either in the
synthesis of bushing stiffness or in the analysis of vehicle responses under joint bushings
with deteorated conditions. It needs to be emphasized that elastomeric bushings tend to
change the stiffness properties with time or when exposed to different working
conditions. A sensitivity analysis is carried out by investigating the dynamic responses

after varying the bushing stiffness individually by 50% from its nominal value in both
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positive and negative senses. The sprung mass acceleration ratio responses are
investigated under bump excitation at a forward velocity of 1.5 m/s.

Figures 3.19 (a) and (b) show the sprung mass acceleration ratio response of the
kineto-dynamic quarter-car model with 50% variations in the stiffness of the UCA and
LCA joint bushings under bump input. It can be seen that increase in the UCA bushing
stiffness results in increase in the peak acceleration response. The peaks of the
acceleration ratio response are near 1.24 and 1.15 when the UCA bushing stiffness
values are varied by 50% in positive and negative sense, respectively, from the nominal
value. The results suggest that the peak acceleration responses vary nearly 5% and 2.5%,
respectively from that with the model with nominal bushing stiffness. The figure further
shows that the variation in the LCA bushing does not influence the acceleration ratio
response under this excitation. This negligible influence of bushing stiffness of the LCA

joint is attributable to the lower rotation angles of LCA.

:
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Figure 3.19: Comparison of sprung mass acceleration ratio response of the kineto-
dynamic model with variation in bushing stiffness of (a) joint M; and (b) joint O under

idealized bump excitation (forward velocity=1.5 m/s and Zpya.x=0.1 m)

The sensitivity analysis results thus suggest that decreasing the torsional stiffness of
the upper control arm has benificial influence on the sprung mass acceleration. The
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results also show that increment in the bushing stiffness of UCA joint could increase the

sprung mass acceleration repsonses.

3.7 Summary

This chapter presented the study of couplings between the suspension kinematics, tire
lateral compliance and joints flexibility with the vertical dynamics of the vehicle. A
kineto-dynamic quarter car model is proposed in order to account for contributions due to
kinematics of a double wishbone suspension to the dynamic responses, which may also
facilitate suspension synthesis. The formulations for the in-plane 2-DOF kineto-dynamic
model are used to obtain equivalent suspension and damping rates that may be employed
in a conventional quarter car model for analysis of responses in an efficient manner. The
consideration of the kineto-dynamics of the suspension revealed coupling between the
vertical, lateral and camber responses, which was attributed to lateral compliance of the
tire and suspension kinematics, and could not be obtained using the equivalent model.
The dynamic responses to harmonic and idealized rounded pulse excitations, evaluated in
terms of sprung mass vertical acceleration, suspension rattle-space and dynamic tire
force, also showed asymmetric variations, while the degree of asymmetry was dependent
on the amplitude and frequency of the inputs, and suspension joint coordinates.

Both the kinematic and dynamic responses are strongly dependent upon the suspension
joint coordinates. The variations in the joint coordinates however would involve difficult
compromise between the kinematic and dynamic response measures. The proposed
model enable suspenson synthesis and analysis of couplings between the selected
kinematic and dynamic responses, and lateral packaging space, which may be vital for

future vehicle suspensions that must carry large volumes of fuel cells or batteries. This

126



study has revealed 5% variations in the kinematic and dynamic responses of the
suspension system due to the joint bushing flexibility. Torsional stiffness of the joint
bushings were observed to be additive to the suspension spring stiffness causing an
increased sprung mass acceleration. The sensitivity analysis results have shown that
decreasing the torsional stiffness of the upper control arm has beneficial influence on the
sprung mass acceleration, while, the influence of variation in the lower control arm joint
bushing was negligible.

The asymmetric responses of vehicle model due to suspension kinematics and tire
lateral compliance may have to be taken into consideration in design of suspension
dampers, which invariably exhibit asymmtric properties in compression and rebound. The
coupled effects of damper asymmetry and the asymmetry in suspension kinematics on the
dynamic and kinematic responses of the suspension needs to be studied in order to
synthesize a good asymmetric suspension damper. Kineto-dynamic model, as proposed in
this chapter, is necessary for such studies and for optimal synthesis of automotive

dampers.
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CHAPTER 4

KINETO-DYNAMIC ANALYSIS WITH AN ASYMMETRIC
DAMPER, AND OPTIMAL DAMPER SYNTHESIS

4.1. Introduction

Automotive suspensions invariably employ asymmetric dampers, which exhibit higher
damping coefficient in rebound than in compression. It has been however pointed that the
reasons for such asymmetry have not been explicitly quantified [117], which is most
likely attributed to highly complex dependence of different performance measures on the
damping asymmetry. Furthermore, the effects of damping asymmetry greatly depend
upon the nature of excitation and suspension responses. The suspension damping
properties and their effects on various vehicle performance measures have been
extensively investigated [107-111]. The reported studies have invariably ignored the
asymmetry in damping, and the results thus do not permit the design guidance for
damping asymmetry, which has been limited to a general rule of thumb suggesting that a
rebound to compression damping asymmetry ratio in the order of 2 or 3 would reduce the
magnitude of the force transmitted to the sprung mass while negotiating a bump [1, 2].
Only a few studies, however, have attempted to quantify the effects of asymmetric
damping on the vehicle responses to transient excitations idealizing bumps or potholes
[91, 117, 118].

Apart from the asymmetry in suspension damping, the suspension kinematics and tire
lateral compliance also contribute to the asymmetry in the responses as shown in Chapter
3. The ride dynamic response of a vehicle would thus be expected to depend upon the
coupled effects of damper, suspension and tire compliance asymmetry. On the other

hand, the suspension kinematic responses are affected by the joint coordinates in a
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complex manner, which are generally selected to achieve a compromise among variations
in roll and bump camber, toe angles, and wheel track and wheelbase [4]. The asymmetry
in the kinematic responses during upward and downward wheel motions, particularly in
wheel camber and track variations can be seen in the Figs. 2.5, 2.6 and 2.11. The
damping asymmetry, which affects the dynamic responses of the vehicle in a significant
manner, may also affect the kinematics of the suspension.

Synthesis of optimal damper characteristics in compression and rebound has been a
challenging task, which is mostly attributed to couplings among the different
performance measures together with complex dependence on various parameters of an
asymmetric multi-stage damper. Many studies have attempted to identify optimal damper
parameters in order to achieve enhanced compromises among the ride, suspension
deflection and road holding measures [92, 126, 127]. Although these studies have yielded
important guidelines for the suspension damper synthesis, the findings were generally
based on considerations of limited performance measures, while the damping asymmetry
had been ignored in most of the studies. The synthesis of a suspension damper may
involve consideration of the kinematic responses apart from the widely known
complexities involving design compromises to satisfy the conflicting ride comfort, rattle
space and road-holding measures. Furthermore, the study of influences of the damper
asymmetry on the dynamic and kinematic responses as a function of the vehicle forward
speed under different road excitations is necessary.

In this chapter of the dissertation, the influences of damper asymmetry coupled with
kinematics of a double wishbone suspension on the kinematic and dynamic responses are

investigated using a kineto-dynamic quarter-car model of the vehicle. The effects of
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damping asymmetry on the dynamic and kinematic responses are evaluated under
harmonic and idealized bump and pothole excitations. The conflicting design
requirements under bump and pothole type of excitations are initially analyzed. An
optimization problem is formulated comprising peak sprung mass acceleration with
constraint on the suspension travel space, and solved to seek design guidance on damper
asymmetry that would yield an acceptable compromise among the performance measures
under the idealized bump and pothole excitations considered in the study. The dynamic
and kinematic responses of the model with single- and two-stage asymmetric dampers are
further evaluated under random road excitations over a range of forward velocities.
Finally, an optimal synthesis of a two-stage asymmetric damper to yield compromise
between the conflicting performance measures under random road inputs are presented in

this chapter.

4.2 Kineto-dynamic Quarter-car Model with Asymmetric Damper

The equations of motion of the kineto-dynamic quarter-car model, as shown in the Fig.
3.2, in the generalized coordinates, z, and z,, are written considering the forces developed
by the suspension spring, damping and the tire, as given in Eq (3.29). Among the various
force components of Eq (3.29), the spring forces f;s and f;,, and the tire forces fi, fuu. fisu
and f,z, are obtained as explained in Eqs (3.30) to (3.32) of Section 3.6.1, while the

damper forces, fy; (j=s, u) are obtained as explained in the following section.

4.2.1 Asymmetric Damper Models

Suspension damper with asymmetric damping properties in compression and rebound

is considered in the kineto-dynamic vehicle model. The force-velocity characteristics of
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the damper are characterized by piecewise linear functions in both compression and
rebound. Two different types of piecewise linear force-velocity functions are considered
for the relative analyses; namely, single-stage (bilinear) and two-stage asymmetric
damper as shown in Fig. 4.1. The figure also shows the linear equivalent characteristics

of the bilinear damper (Fig. 4.1 (a)).
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Figure 4.1: Piecewise linear force-velocity characteristics of: (a) single-stage asymmetric
(bilinear) and the linear equivalent damper; and (b) two-stage asymmetric damper

Bilinear Damper

The force-velocity characteristics of the bilinear damper model as shown in Fig. 4.1(a)
is expressed in terms of compression damping coefficient, C. and rebound damping
coefficient, C,, while, the rebound damping coefficient is related to the compression
damping coefficient by a damper asymmetry ratio p, such that: C,=pC,. The compression
damping coefficient, C. of the bilinear damper can also be expressed in terms of the
compression mode damping ratio (. and the critical damping coefficient C,.; as

C~L.Ceri. The compression and rebound damping forces acting on the sprung and
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unsprung masses due to the bilinear damper, denoted by f4.. and fy. (j=s, u), respectively,

can be obtained as:

Z;

fd,_,=pccAi%j—l) A20  j=su (4.1)

J

fdi—c = CCAl'dA—I) Ai <0

where A/ is the time-derivative of the strut deflection as given in Eq (3.11), which is a
complex function of the suspension joint coordinates and linkage lengths. The linear
equivalent damping coefficient C,,, is realized assuming dissipated energy similarity

between the linear and bilinear asymmetric dampers, such that [88, 117]:

Cogv=C.. (1+p)12 (4.2)

The damping force due to the equivalent linear damper on sprung and unsprung masses,

Jaj are estimated by the relation, 7, G = CeqvAi

Two-Stage Asymmetric Damper:

For the two-stage damper model shown in Fig. 4.1(b), the low-speed rebound damping
coefficient C, is related to the low-speed compression damping coefficient C, as in the
case of the bilinear damper. The high-speed rebound and compression damping
coefficients are related to the respective low speed damping coefficients through the
reduction factors, 4, and 4., respectively. The transition from low- to high-speed damping
in compression and rebound is assumed to occur at velocities, a. and a,, respectively,
which are also referred to as the damper saturation limits in compression and rebound,
beyond which the damping forces are determined by the respective high velocity

damping coefficients. Such a piecewise linear damper model incorporating low- and
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high-speed behaviors in both the compression and rebound has been proven to yield
sufficiently accurate estimation of the dynamic responses of the vehicle under all driving
manoeuvres [122]. The compression and rebound forces, f.. and fz.,, due to the two-

stage asymmetric damper can be obtained as:

CCAiiA—j) a, <Ai<0
Z . .
fd'—c = ! . ‘]: S’ u
j (o, + 2. (Al -a))C, M Al <a,
62/,
pC(,,AiM 0<Al<a,
fy = % ofs]) =5, u (4.3)
o crpei-aok )
Zj

According to Eqs (4.1) and (4.3), the damping force acting on the sprung and unsprung
masses is asymmetric about the equilibrium position of the system, when the asymmetry
factor p is non-unity. Moreover, these equations show that the damping forces acting on
the sprung and unsprung masses are complex functions of kinematics of suspension apart
from the damper asymmetry and reduction factors. It should also be noted that the low-
speed compression and rebound damping coefficients of the two-stage damper are equal
to that of bilinear damper, while, consideration of high-speed reduction factors and
saturation limits in compression and in rebound reduces the effective damping of the two-
stage damper. Figure 4.2 compares the force velocity characteristics of bilinear, linear

equivalent and two-stage damper models considered in this study.

4.2.2 Analysis of Damping Force Asymmetry

The nonlinear damping force due to a single-stage asymmetric damper has been

expressed as a combination of a symmetric force component, arising from p=I, and a
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discontinuous force component attributed to deviation of the asymmetry ratio from the

unity value, such that [120]:

Bilinear 7
,r ’Y /— Two-stage
F I/,)\.rpCc
/ 7
’I //C;Eq
Ve LLinear Equivalent
pCc l/
4
<—Compression a 4 | Rebound —
IC. a. .
7 Al —
ACc -7/
P4
- Ve
//// /
- e
Ve
7/

Figure 4.2: Comparisons of force velocity characteristics of the two-stage and bilinear
asymmetric and equivalent linear damper

fds—r _fds—c AZZO_

. - fds—c + fdis (44)
0 Al <0

fds :fds—c +{

where f4.. 1s the compression force, considered as the symmetric component and fy; is the
discontinuous force component that is considered to be acting during rebound only. The
nonlinear damping force of a two-stage asymmetric damper considered in this study can
also be expressed in terms of a symmetric force component arising during strut
compression, and a discontinuous force component, which is related to the asymmetry
ratio and the saturation limits of the damper. The magnitude of the discontinuous force
component fz;, is thus defined for four different operating conditions related to the strut
velocity: (i) the strut velocity is within the low-speed range in both compression ( A/ >a.)
and rebound ( Al <a,); (ii) low-speed in compression (Al >a.) with high-speed in rebound
(Al>a,); (iii) high-speed in compression ( Al <a.) with low-speed in rebound ( A/ <a,); and
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(iv) high-speed in both compression (A/<a.) and rebound (A/>a,). The discontinuous

force components corresponding to these four strut velocity ranges can be expressed as:

C.(p—1)AI %?‘—l) a, <A<a,
ZS
Cc(pa,. +/1rp(67.—ar)—Al')%.A—l) Ai>ac &Al>a,
zZ
Jais = - (4.5)

C. (pAi —a, — A (Al - ac))aaél Al<oa, &N <a,

s

olAl
oz

N

Al <o, &Al > a,

Cl(pat, —a)+ A p(Ai-a,) - 4 (A -a,))

A simplified expression for the discontinuous force due to asymmetric damping can be

achieved by considering the compression and rebound reduction factors, 4. and 4, as unity
(A=4,=1), such that:
-olal
fuw=Cp=DAI la—) (46)

Equation (4.6) represents a simple single-stage asymmetric (bilinear) damping property.
The magnitude of the discontinuous force due to damper asymmetry may be directly
related to the deviations in the steady-state mean position of the sprung mass from its
static equilibrium, which has been demonstrated in a few studies [88, 89] in terms of
mean shift or dynamic drift. An estimate of this mean shift 4, in the sprung mass
position under a harmonic excitation may be obtained directly from the discontinuous

force magnitude and the suspension spring stiffness as [112]:

f‘d‘
5 LS 4.7
mean 2 Kr ( )

)
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From Egs (4.5) and (4.6), it is observed that the magnitude of f;; is dependent upon the
damping asymmetry ratio p, the reduction factors 4, and 4., and the saturation limits, a.

and a,..

4.3 Responses of Kineto-dynamic Model with Asymmetric Damper to
Harmonic Inputs

The kineto-dynamic model comprising asymmetric damper is analyzed under
harmonic excitations to study the influence of damping asymmetry on the kinematic and
dynamic responses. In addition to the kineto-dynamic quarter-car model parameters
considered in Table 3.1 of Chapter 3, the nominal damping properties assumed for
simulation are C,=2386 Ns/m and p=2 for a bilinear damper, and 1= 4,=0.5, and
-a.~a,=0.2 m/s for a two-stage asymmetric damper. The nominal coordinates of the
suspension linkage joints M, N, O, P, C, A and B, as shown in Fig. 3.2, are taken in
meters as: M(0.430, 0.818), N(0.644, 0.852), O(0.365, 0.360), P(0.743, 0.347), C(0.787,
0.452), A(0.660, 0.349) and B(0.615, 0.920), respectively. It can be recalled that the
kinematic response characteristics of the chosen suspension under wheel vertical
excitation with respect to chassis are such that the wheel exhibits a negative camber

during jounce travel and a positive wheel camber during the rebound motion (Fig. 2.11).

The kineto-dynamic models with equivalent linear and bilinear dampers are initially
analyzed under a 0.05 m amplitude harmonic excitation at a frequency of 1.2 Hz. The
responses are evaluated in terms of the sprung mass displacement z,, the unsprung mass
displacement relative to the sprung mass z,-z,, and variations in the camber angle and the
wheel track. The influence of damping asymmetry on the kinematic and dynamic

responses is evaluated by comparing the responses of the kineto-dynamic model with
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asymmetric and equivalent linear damping. The simulations are performed for two types
of asymmetry: (i) C,=2C, (p=2); and (ii)) C,=0.5C, (p=0.5). The compression damping
coefficients corresponding to the selected asymmetry ratios were chosen to achieve
constant value of the equivalent linear damping rate, using Eq (4.2). For the latter case,

p=0.5, C, was thus chosen twice that for the first case, p=2.

The sprung mass displacement and relative displacement responses of the kineto-
dynamic model with linear (Eq 4.2) and bilinear (Eq 4.1) dampers (p=2 and 0.5) under
the harmonic excitation are demonstrated in Fig. 4.3. The linear damper model yields
peak sprung mass displacements of 0.096 and -0.097 m. The slight asymmetry in the
response is attributable to the suspension kinematics and coupling between the tire lateral
compliance and the vertical dynamics. The positive and negative peak displacements of
the sprung mass with the bilinear damper (0.082 and -0.108 m for p=2, and 0.11 and -
0.084 m for p=0.5), however, differ considerably. These cause the mean position of the
sprung mass to shift from the equilibrium position by -13 mm for p=2, and by +13 mm
for p=0.5. Thus, a larger rebound to compression ratio in damping causes a negative
(downward) shift in the sprung mass mean position, while a larger compression to
rebound ratio results in an upward shift in the mean position.

The relative displacement response peaks of the kineto-dynamic model with linear
damper approach 0.076 and -0.075 m, in the positive and negative directions,
respectively, while those of bilinear dampers are 0.088 and -0.062 m for p=2, and 0.064
and -0.089 m for p=0.5. The total suspension stroke of the model with linear and bilinear
dampers is quite comparable, which suggests negligible effect of damper asymmetry on

the steady-state suspension travel response. The bilinear damper, however, yields a shift
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in the mean relative position of the unsprung mass with respect to the sprung mass in the
order of 13 mm for p=2, and -12.5 mm for p=0.5, as seen in Fig. 4.3 (b). The magnitudes
of shifts are also quite comparable with those observed in the sprung mass displacement
response in Fig. 4.3 (a), which suggests relatively small effect of damper asymmetry on

the unsprung mass displacement response.
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Figure 4.3: Comparisons of steady state (a) sprung mass displacement and (b) relative
displacement responses of the model with equivalent linear and bilinear asymmetric
dampers under a harmonic excitation, zy(#)=0.05 sin (2.4x¢t)

The asymmetry in the suspension deflection response (z,-z;) of the bilinear damper,
shown in Fig. 4.3 (b), also causes greater asymmetric variations in the kinematic
responses such as the camber angle and the wheel track that are related to the suspension
stroke. Figure 4.4 illustrates the camber angle and wheel track variation responses of the
model with linear and bilinear damper models under the given harmonic excitation.
Although total suspension strokes of the kineto-dynamic model is not influenced by the
damper asymmetry, the peak camber angle response seems to be greatly affected by the

damping asymmetry.
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The wheel camber of the model with equivalent linear damper varies from -2.2° in
compression to 1.04° during rebound, while the bilinear damper with higher rebound to
compression ratio (p=2) yields camber variations from -2.68° in compression to 0.94° in
rebound, as seen in Fig. 5(a). The damper model with p=0.5 causes the camber angle to
vary from -1.76° in compression to 1.11° in rebound. While the model with linear
damping exhibits considerable asymmetry in camber variation attributed to the
suspension kinematics, a higher rebound damping (p=2) increases the peak wheel camber
variation by 0.48° and a lower rebound damping (p=0.5) reduces camber by 0.46°. This
additional asymmetric variation in the wheel camber is attributed to the mean shift in the
unsprung mass relative position with respect to that of the chassis. Studies have shown
that a camber angle of 1° could cause a vehicle tire to generate 80 N lateral force [4]. A
variation in the camber angle in the order of 0.48° may thus lead to change in the lateral
force of each tire in the order of 40 N, which may influence the handling dynamics of the

vehicle, in addition to causing accelerated tire wear.

The wheel camber variations together with the wheel lateral displacement also
instigate asymmetric variations in the vehicle track, as seen in Fig. 4.4 (b). It can be seen
that the peak wheel track variation during rebound approaches -11 mm for the equivalent
linear damper, and -14 and -18 mm, respectively, for the bilinear dampers with
asymmetry ratios of 2 and 0.5, during rebound. The peak wheel track variation during the
compression is nearly 4.5 mm irrespective of the type of damper employed. Although a
higher rebound to compression asymmetry ratio yields greater camber angle variation, the
wheel track variation is found to decrease due to the inward motion of the wheel centre

during wheel vertical travel.
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track responses to a harmonic excitation at 1.2 Hz

The symmetric and discontinuous components of the damping force developed by the
bilinear damper model, computed from Eq (4.6), are illustrated in Fig. 4.5 considering
p=2, together with the equivalent linear damper force. The symmetric force component of
the bilinear damper is considerably smaller than the linear damper force, while the peak
magnitude of the discontinuous force (938.4 N) is identical to that of the peak symmetric
force of the bilinear damper. For the nominal suspension spring rate, this would yield a

0.0125 m shift in the sprung mass mean position.

The results in Figs. 4.3 to 4.5 and the corresponding observations could not be
generalized since these have been evaluated under a harmonic excitation in the vicinity of
the sprung mass natural frequency. The results, however, provide important insight to the
relation between the kinematic responses and the damper asymmetry under steady state
conditions. The changes in axle lateral force attributed to the camber angle variations,
presented in the Fig. 4.4 (a), may diminish when both wheels of the axle undergo similar

camber angle variation. The presence of a bump excitation to only one wheel of the axle,
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however, could induce a large bump camber change, leading to considerable variation in
the tire lateral force, and slip angles. Furthermore, the damper asymmetry could also
influence other suspension kinematic responses including the bump steer and wheel base
variation. An investigation of the influences of damping asymmetry on such responses,

however, would necessitate formulations and analyses of a three-dimensional model.
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comparison of the symmetric force due to bilinear damper with the equivalent linear
damping force under a harmonic excitation, zy(¢)=0.05 sin (2.4xt).

4.4 Responses of Asymmetric Damper to Idealized Bump and Pothole
Inputs

Transient responses of the kineto-dynamic model with asymmetric damper are
evaluated under rounded pulse displacement inputs, defined in Eq (3.26) with the pulse
severity parameter as given in Eq (3.33). The peak displacement input is assumed to
occur at a distance of 0.4 m from the beginning of the bump or pothole input of peak
magnitude, zy,.,=30 mm. This bump and pothole profiles are selected to ensure that the

total circumference of the wheel under consideration maintains contact with the ground
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during the forward motion, although a loss of tire-road contact may occur at higher
speeds. The responses to pothole inputs described by a negative rectangular pulse input
considered in a few studies [92, 118] may result in greater loss of tire-road contact due to

abrupt changes of the profile.

4.4.1 Influences of Bilinear Damper Asymmetry

The responses of the kineto-dynamic model with bilinear damper are evaluated in
terms of the sprung mass acceleration; the ratio of unsprung mass relative displacement
to the maximum displacement input (rattle space ratio), (z,-z;)/Zomax; and the dynamic tire
force ratio, the ratio of tire force variation to the static tire force. The influences of the
damper asymmetry on the dynamic responses are investigated by comparing the
responses of the kineto-dynamic model comprising bilinear dampers (p=2 and 0.5) with
those of the linear damper model. Figure 4.6 (a) compares the sprung mass acceleration
response of the models with equivalent linear and bilinear asymmetric dampers under the
idealized bump and pothole inputs. The results suggest that the suspension with greater
rebound to compression damping asymmetry ratio (lower compression damping) yields a
significant reduction in the first response peak under a bump excitation. This result is in
agreement with that reported in [119], although the corresponding negative acceleration
peak can also be observed, which was not reported in the same study.

Under the idealized pothole input, the results show an increase in the first peak
response and a decrease in the subsequent peaks in the acceleration response. Lower
rebound to compression asymmetry ratio (p=0.5), on the other hand, yields lower
acceleration peak to a pothole input and higher peak under the bump input. Considering

that the human ride comfort is directly related to the sprung mass vertical acceleration,
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the results show that the choice of p=2 would not be appropriate under a pothole
excitation. This contradicts the earlier studies which suggest the use of dampers with

rebound to compression ratio in the order of 2 [1] or 3 [2].
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Figure 4.6: Comparisons of: (a) sprung mass acceleration; and (b) relative displacement
ratio responses of the model with linear and bilinear dampers under idealized bump and
pothole inputs

The figures also show that the magnitudes of the peak acceleration responses of the
model with equivalent linear damper to bump and pothole excitations are slightly
different due to contributions of the suspension kinematics and coupling of the tire lateral
compliance with the vertical dynamics. Furthermore, the peak-to-peak accelerations due
to the linear and bilinear damping rates are approximately the same. The damper with
higher rebound to compression ratio (p=2) exhibits larger peak rattle space ratio response
(near 1.1) compared to that of the damper with p=0.5 (near 0.8) under the bump
excitation, while an opposite effect can be observed under the pothole excitation, as seen
in Fig. 4.6 (b). The linear damper, on the other hand, yields a peak response ratio of 0.95.
The larger peak suspension travel response of the model with the asymmetric damper

also indicates occurrence of a larger bump camber response. Although the increment in
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the camber angle under this excitation (not shown) was only 0.1°, a larger bump camber

would be expected under a larger displacement input.

The variations in the dynamic tire force ratio responses of the model with linear and
bilinear dampers are compared in Fig. 4.7 (a) corresponding to a forward speed of
10 m/s. At this speed, the displacement input approaches its peak value at 0.04 s. The
dynamic tire force ratio approaches its peak value prior to the displacement input peak.
The peak tire force ratio responses of the model with different dampers, however, are
quite comparable. The minimum tire force ratio responses approach -0.45, -0.52 and
-0.41 under the bump input, and -0.71, -0.73 and -0.69 under the pothole input,
respectively, with linear, bilinear p=2 and bilinear p=0.5 damper models. The damper
with higher rebound to compression ratio thus shows greater variations in the tire force
under bump excitation, which could be related to relatively lower road holding property
and greater wheel hop tendency. This is quite evident from the responses attained under
the 50 mm excitation at a speed of 12 m/s, as seen in Fig. 4.7 (b). The results show that
the bilinear damper with p=2 results in loss of tire-road contact under the bump input,
which is not evident with the linear and bilinear (p=0.5) dampers. The pothole excitation,
however, yields loss of tire contact, irrespective of the damper model employed. This is

attributed to substantial extension of the tire spring prior to peak input displacement.

A further analysis of the tire and suspension deflection responses revealed that both
the tire and suspension springs initially undergo compression under the bump input, and
the tire spring goes into extension prior to the suspension spring. The peak compression
of the suspension spring and peak extension of the tire spring occur simultaneously which

is also evident from the rattle space and tire force responses shown in Figs. 4.6 (b) and
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4.7 (a). The bilinear damper with larger rebound to compression asymmetry ratio yields
greater peak suspension compression and larger tire spring extension. Higher rebound to
compression ratio in damping causes larger extension of the tire spring as compared to
that with the linear damper, thus causing reduction in the tire force. Similarly, higher
compression to rebound ratio in damping causes increment in the minimum tire force

ratio response under the bump input.
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Figure 4.7: Comparisons of the dynamic tire force ratio responses of the model with
linear and bilinear dampers under idealized bump and pothole inputs: () Zoma=30 mm,
V=10 m/s; and (b) zZomax=50 mm, V=12 m/s

The wheel hop tendency of the kineto-dynamic model with the bilinear and equivalent
linear models are further investigated under 50 mm peak displacement excitations and
various forward speeds in the 4 to 16 m/s range. The response is evaluated in terms of the
normalized wheel lift-off, defined as the ratio of the wheel lift-off duration to a reference
time taken as 5 times the time corresponding to the peak input displacement. The results,
presented in Fig. 4.8, clearly show that a higher rebound to compression damping
asymmetry ratio yields higher normalized tire lift-off duration compared to the linear or
the bilinear damper (p=0.5), particularly under the bump input. Under the bump input, the

kineto-dynamic model with bilinear damper (p=2) exhibits loss of tire-road contact at
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speeds above 10 m/s, while the linear damper exhibits loss of tire-road contact at speeds
above 12 m/s. The lower rebound to compression damping asymmetry ratio (p=0.5),

however, retains the tire contact with the road in the entire selected speed range.
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Figure 4.8: Comparison of normalized wheel lift-off responses of the model with linear
and bilinear dampers under idealized bump and pothole input at different vehicle forward
velocities

The wheel lift-off under a pothole input occurs at a significantly lower velocity,
irrespective of the damper used. This is attributed to nearly in-phase suspension spring
and tire extension. The bilinear damper with p=2 and linear damper exhibits wheel lift-off
at speeds as low as 6 m/s. Under both the bump and pothole excitations, in general, the
wheel lift-off duration is larger with a bilinear damper with higher rebound to
compression asymmetry ratio than that with a linear damper or with a bilinear damper
with p=0.5. The results in the Figs. 4.7 and 4.8 suggest that the suspension with an

equivalent linear damping would yield better road holding performance under both the

bump and pothole excitations as compared to the bilinear asymmetric dampers.
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4.4.2 Influences of Two-stage Asymmetric Damper

The results presented in Figs. 4.6 to 4.8 are attained for single-stage asymmetric
dampers, where the compression and rebound damping coefficients remain constant,
irrespective of the damper velocity (4, and A.~=1). A sensitivity analysis is conducted to
further investigate the influences of the two-stage asymmetric damper parameters,
namely, the asymmetry ratio, p, reduction factors, 4, and A., and damper saturation limits,
o, and a. on the dynamic responses. The responses to idealized bump and pothole
excitations with zpmax=30 mm (such that the tires do not lose contact with the ground) are
evaluated in terms of: i) first and second peaks in the sprung mass acceleration, denoted
as (Z,),,and (%))

p25 i) Toot mean square (rms) sprung mass acceleration, denoted as

Z rus » 1D) the first peak in suspension travel ratio (the ratio of the unsprung mass relative

displecement with respect to the sprung mass and the peak displacement input), denoted
as RDR;; iv) the peak-to-peak suspension travel ratio, denoted as RDR,p; and v) the tire
dynamic force ratio defined as ratio of rms tire dynamic load to the static tire load, and
denoted as TFR. The rms values of the acceleration and tire force fluctuation are
evaluated over a time duration of five times the time corresponding to the peak input
displacement. This time duration is considered to be sufficient for the transients to settle

down or to reduce to a very small magnitude.

Sensitivity analysis is performed by considering variations in the asymmetric damper
parameters, namely: 50, 150 and 200% of the nominal asymmetry ratio of 2 (p=1, 3 and
4), and 50 and 200% of the nominal reduction factors of 0.5 (4,, 4=0.25 and 1) and the
nominal saturation limits of 0.2 m/s («=0.1 and 0.4; a~=-0.1 and -0.4 m/s). The

sensitivity studies are conducted considering variations in only one of the parameters,
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while all the other parameters are held at their respective nominal values. Tables 1 and 2
illustrate the results of the sensitivity analysis attained under the bump and pothole
inputs, respectively. The tables also present the responses of the model with nominal
damper parameters (p=2; 4, =4, =0.5; @,=0.2 m/s; and a.=-0.2 m/s). It should be noted
that the low speed damping coefficient was selected as identical to that considered for the

bilinear damper (C.=2386 Ns/m).

A comparison of the nominal parameter model results with those attained with the
bilinear damper in Fig. 4.6 (a) suggests that reduction or saturation in the damping force
yields relatively lower first and second peaks in sprung mass acceleration responses
under both the bump and pothole excitations. The magnitudes of the first and second
peaks in the sprung mass acceleration response of the model with bilinear damper (p=2
and 4,=A~1) under a bump input were obtained as 4.95 and -4.79 m/s%, respectively,
which reduced to 3.99 and -3.88 m/s> with the two- stage nominal damper. The saturation
limits in the damping force (4,=4.=0.5) resulted in even greater reductions in the peak
acceleration under the pothole excitation (from -6.69 and 3.08 m/s* with the bilinear
damper to -5.51 and 2.32 m/s> with the two- stage asymmetric damper), as seen in Fig.
4.3 (a) and Tables 4.1 and 4.2. The results suggest that lower high-speed damping or
damping force saturation would be preferable for enhancement of ride comfort while
negotiating a bump or a pothole. Fukushima et al. [119] suggested lighter damping on the
basis of results attained with a bilinear asymmetric damper, although the damping force
saturation could not be considered in their study. A lower value of the high-strut velocity
damping (1.=0.25), however, yields slightly higher first peak rattle space ratio response

(RDR,, from 1.1 to 1.17) under the bump input, while its effect on the 7/'R was negligible.
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The results in Table 4.1 suggest that an increment in p or in /, yields higher negative
peak acceleration responses under both the positive (bump) and negative (pothole)
displacement inputs. This is attributable to higher rebound damping force compared to
the compression damping. The effect on RDR,, during compression under the bump input
is thus very small, while the RDR,, during rebound decreases considerably resulting in
lower RDR,,, value (Table 4.1). Higher rebound damping also yields lower RDR,, (during
extension) under the pothole excitation, while the effects on RDR,, are very small (Table
4.2). Increments in both p and /, also cause larger 7FR under both the inputs due to

greater tire deflection as it was observed from Fig. 4.7.

Relaxing the damping force saturation in the compression mode (4.=1) reduces the
first peak in suspension travel (RDR;) considerably under the bump excitation, while the
effect on the RDR,, under the negative input is not observed. This is attributable to higher
compression mode damping at higher strut velocity, which results in relatively lower

negative peak in sprung mass peak acceleration, (%), ,, and the 7FR under the bump
input, while an opposite trend in (%), , is observed under the negative displacement

input. The higher high- speed compression damping, however, yields considerable

increase in the magnitude of the (%)), under the bump input, while the effect is

negligible under the pothole input. The rms acceleration also tends to be higher under
both inputs, which confirms that a lower high- speed compression damping is desirable in
view of ride comfort performance. A lower high- speed rebound damping (4,=0.25) is
also beneficial in view of the rms acceleration responses to both inputs. The lower high-
speed damping coefficients (4,=4,~0.25), however, would yield reduced road holding

performance, as observed from the resulting increments in the 7FR.
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Table 4.1: Comparisons of the kineto-dynamic quarter car model responses to idealized
bump excitation with variations in the asymmetric damper parameters.

Paramerer | ©v1 G2 Zwws ppr  ppR, TFR
(m/s”)  (m/s°) (m/s?)

Nominal | 3.99 -3.88 215 117 1.32 0.301

p=1 399 234 183 1.18 1.60 0.313
p=3 399 506 259 118 1.21 0315
p=4 399 596 3.03 1.18 1.19 0.339

=1 399 510 253 1.18 1.24 0311
4,=0.25 399 301 197 1.18 145 0.305

=1 496 -3.72 239 106 132 0.290
A=0.25 347 -401 203 125 134 0312
a,=0.4 399 -444 235 118 1.24 0305
a,=0.1 399 -359 206 1.18 138 0.300
a~-0.4 432 381 226 1.13 123 0.296
a.=-0.1 382 -391 2,10 120 130 0.303

Table 4.2: Comparisons of the kineto-dynamic quarter car model responses to idealized
pothole excitation with variations in the asymmetric damper parameters

(ZA )p-l (Zs )p-2 ZSRMS
(m/s®)  (m/s?) (m/s%)
Nominal | -5.51 232 240 -0.97 163 0.295

Parameter RDR, RDR,, TFR

p=1 -4.01 233 1.84 -1.17 1.61 0312
p=3 -6.67 244 287 -0.82 1.64 0.304
p=4 -7.55 261 326 -0.70 1.66 0.322
A=1 -6.69 241 277 -0.84 1.62 0.298
24,=0.25 -4.67 233 214 -1.07 1.64 0.303
A=1 551 3.07 249 -097 150 0.289

4=0.25 551 198 238 -097 1.71 0.303
a,=0.4 -6.06 236 2.63 -0.89 1.63 0.296
a,=0.1 -5.23 231 226 -1.01 1.62 0.295
a~-0.4 551 266 244 -097 156 0.292
a~=-0.1 -5.51 215 238 -097 1.64 0.297

Lower saturation limits (a,, a.) also yield lower rms acceleration of the sprung mass
under both the inputs. A lower value of o, tends to limit low- speed compression damping

to a lower value, which yields lower magnitudes of (%)) ,under the bump input and

(£,),., under the pothole inputs, respectively, with only a slight increase in RDR;, under
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the bump input. A lower value of a,, on the other hand, yields lower magnitude of the

(£,),., under the bump input and (Z),,under the pothole input, respectively. The

reductions in a, and a., however, yield only negligible effect on 7FR, which is mostly
attributable to relatively higher compression mode damping, while it must be noted that
the compression mode damping is considered constant in this study. The results, in
general, show minimal effects of variation in any one of the asymmetric damping
properties on the TFR, except for high damping asymmetry (p=4), which causes

considerably higher TFR.

4.5 Optimal Synthesis of Asymmetric Damper under Bump and Pothole
Inputs

The results in Tables 4.1 and 4.2 clearly show that the kineto-dynamic model
responses to bump and pothole excitations vary considerably with changes in the
asymmetric damper parameters, while the responses to bump and pothole excitations are
generally contradictory. The variations in these responses may also depend upon the
vehicle forward speed, and may involve different performance compromises at different
speeds. It is thus desirable to seek optimal damper parameters that could yield improved
vehicle performances or an improved design compromise under both the excitations at

different forward speeds.

4.5.1 Formulation of Performance Index and Optimization Methodology

An optimization problem is formulated to seek damper design parameters for
enhanced ride and road holding performance under the bump and pothole types of
excitations. The vibration ride comfort performance of a vehicle has been directly related

to sprung mass acceleration [1,117], while the ride and road holding dynamic
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performance, and camber variation can be related to suspension deflection and tire force
responses [2, 92,117]. The optimization problem may thus be formulated to minimize the
peak absolute acceleration of the sprung mass under both the bump and pothole inputs,

while imposing a limit constraint on the peak suspension deflection, such that:

Y
Minimize F(v) = Z

14

5

Slpeak 2

‘zs -z,

L Ulpeak RDR__ (4.8)

ZOmax

Subject to

where v = {p, 4,, ., o, a.} 1s the vector of design parameters, V| and V, are the lower and
upper bounds of the vehicle speed, and RDR,,,, is the maximum allowable rattle space
ratio. In this study, V; and ¥, are chosen as 2.5 and 10 m/s, while RDR,,,, is taken as 1.3
(maximum RDR attained with the asymmetric damper of compression mode damping

ratio 0.1).

The above optimization problem was solved using a gradient-based, sequential
quadratic programming (SQP) algorithm available in the Matlab optimization toolbox
[151], while considering different vehicle speeds in the range considered with an
incremental step of 2.5 m/s. The solutions of the optimization problem were sought for
two different values of low- speed compression-damping coefficients, which were chosen
to achieve low-speed compression damping ratio {. of an equivalent linear system of 0.1
and 0.2. Limit constraints were defined so as to achieve the solutions in the feasible
ranges, namely: 1<p<6; 0.25<A.<1; 0.25<4<1; 0.1<0,<0.4; and -0.4<0,<-0.1. The
solutions of the minimization problem were attained by considering the positive,

negative, and both the positive and negative displacement inputs (zp;u,=50 mm).
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4.5.2 Optimization Results and Discussion

The optimization problem generally converged to multiple solutions for different
initial design vectors, which were mostly attributed to strong coupling among the various
design variables. For instance, identical magnitudes of peak acceleration could be
achieved with different combinations of low speed compression damping, damper
asymmetry ratio, saturation velocities and high speed damping coefficients. An optimal
solution was subsequently chosen so as to achieve minimal 7FR response under the given
excitation, apart from the minimal sprung mass acceleration. Table 4.3 presents the
optimal parameters corresponding to the idealized bump and pothole excitations and
chosen compression damping ratios, {;=0.1 and 0.2. The solutions are denoted as Opt-1,,
Opt-2p, Opt-1, and Opt-2,, where ‘I’ and ‘2’ represent the compression damping ratio of
0.1 and 0.2, respectively, and subscripts ‘b’ and ‘p’ represent bump and pothole types of
inputs, respectively. Tables 4.4 and 4.5 present the responses of the kineto-dynamic
model under bump and pothole inputs, respectively, at forward velocities of 2.5, 5, 7.5
and 10 m/s, together with those the model with nominal damper parameters. The

responses are illustrated in terms of(Z) ,,(Z)),,,Z RDR,, RDR;,, TFR and

p-2 > “sRMS ?

normalized wheel lift-off, denoted as NWL.

Table 4.3: Optimal solutions corresponding to the bump and pothole types of excitations.

Excitation Solution set Design Parameters
Type p Ar Ae 0, (m/s) a.(m/s)
Bump Opt-1, ({=0.1) |3.00 0.50 0.80 0.20 -0.10
Opt-2, ((=0.2) | 1.94 0.31 025 0.12 -0.10
Pothole | Opt-1,({=0.1) | 1.00 0.73 1.00 0.10 -0.40

Opt-2,(6=0.2) | 1.00 026 078 0.0  -0.40
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Table 4.4: Comparisons of responses of the kineto-dynamic model with nominal and
optimal damper parameters (Opt-1, and Opt-2;) under the bump input.

Velocity (m/s)

25 5 75 10
@) Nom | 286 480 592 652

e Opt-I, | 231 400 494 540
(m/s7) Opt-2, | 251 411 497 539
) Nom | 240 243 405 -6.17

2 Opt-I, | 229 191 279  -4.67
(m/s7) Opt-2, | 247 202 280 -4.6l
Nom | 148 193 264  3.44

SRV Opt-I, | 152 164 208 275
/) ope2, | 149 169 213 277
Nom | 065 099 115 120
RDR, Opt-I, | 069 106 123 129
Opt-2, | 067 105 123 129
Nom | 111 131 137 137
RDRy, | Opt-1, | 131 148 152 154
Opt-2, | 125 146 152 155
Nom | 0.126 0.194 0337 0.502

Response Design

3

TFR Opt-1; 0.131 0.190 0.352  0.547
Opt-2,, 0.130 0.194 0357 0.550
Nom 0 0 0 0

NWL Opt-1, 0 0 0 0.071
Opt-2,, 0 0 0 0.071

The results attained under the bump input (Opt-1, and Opt-2;) clearly show strong
coupling between p, 4. and (.. The solutions converge toward a higher value of p and A,
(p=3,; 4.=0.8), and a lower value of a., when a lower value of (; is chosen (0.1). The

optimal values of both p and /4. decrease considerably to their lower limits when (; is

relaxed to 0.2 (Table 4.3). In this case, the saturation limit and reduction factor in
rebound mode also decrease significantly, since a higher rebound damping yields higher
second peak in sprung mass acceleration, particularly at higher forward speeds. The

results in Table 4.4 suggest that lower compression damping ({.=0.1; Opt-1;) yields
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Table 4.5: Comparisons of responses of the kineto-dynamic model with nominal and
optimal dampers (Opt-1, and Opt-2,) under pothole input.

. Velocity(m/s)
Response | Design 75 5 75 10
Nom -3.85  -6.41 -7.98 -8.67

Ehi | oper, | 258 -405  -499  -541
(/S| opro) | 254 <416 503 -5.40
@) Nom | 3.04 299 296 3.6l

Je2opel, | 289 229 202 310
(M/s) | op2 | 249 190 3.08  5.13
p Nom | 1.88 271 332 3.8

sws | oprg, | 187 193 206 248
M) | opr2, | 163 170 212 2.80
Nom | 059 085 097 -0.99
RDR, | Opt-1, | 086 -1.06 -124  -129
Opt-2, | 067 -1.06 -124  -1.29
Nom | 147 169 167 163
RDR,, | Opt-1, | 180 178 178 178
Op-2, | 138 153 531 152
Nom | 0.155 0238 0352 0476

TFR Opt-1, 0.154 0.212  0.381 0.588
Opt-2, 0.135 0.191 0350  0.536
Nom 0 0 0 0.071
NWL Opt-1, 0 0 0 0.051
Opt-2, 0 0 0 0.051

lowest first and second peaks in acceleration response in most of the speed range, except
at 10 m/s, where the peak magnitudes for both values of (. are similar. Both the
solutions, Opt-1, and Opt-2;,, however, yield considerably lower values of RMS, and first
and second peak acceleration magnitudes in the entire velocity range considered in the
study, when compared to those attained with the nominal damper. Furthermore, both the
solutions yield lower magnitudes of negative peaks in the sprung mass acceleration,

(2,),, at 5 m/s velocity compared to those at 2.5 m/s, unlike in the case of nominal

damper. This may be attributable to the fact that the excitation frequency corresponding

to 2.5 m/s velocity is closer to the first natural frequency of the system.
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The responses of the optimal damper to bump excitation further reveal that both the
solutions, Opt-1;, and Opt-2, yield comparable magnitudes of RDR,, and RDR,,, which
are only slightly higher than those of the model with the nominal damper. Interestingly,
the tire dynamic force ratio (7FR) responses of the model with optimal dampers, Opt-1,
and Opt-2), tend to be quite comparable in the entire velocity range, but slightly higher
than those of the nominal damper. Furthermore, the nominal damper does not cause any
wheel lift-off under the bump excitation even at the vehicle velocity 10 m/s, while the
optimal dampers cause wheel lift-off (VWL=0.071) at this speed as seen in the Table 4.4.
These results suggest that the tire road holding, under the bump input, depends upon the

effective rebound damping coefficient.

From the results presented in Tables 4.3 and 4.4, it may be deduced that the peak and
rms sprung mass acceleration response to a bump input is minimized through lower
compression damping, while rebound damping asymmetry should be determined on the
basis of suspension travel and road holding requirements. The damper asymmetry ratio is
thus strongly dependent upon the compression damping coefficient. A damper
asymmetry ratio in the order of 3 or 2 (depending upon (;) would be beneficial in
achieving improved road holding. These values of damper asymmetry ratio are in good
agreement with those suggested by Milliken [1] and Gillespie [2]. Lower rebound
damping, however, would be desirable for a damper design with higher compression

damping in order to reduce the second peak in sprung mass acceleration.

Unlike the bump input, the solutions attained under the pothole input, Opt-1, and Opt-
2,, converge to unity value of the asymmetry factor, irrespective of the compression

damping ratio {; (Table 4.5). This is attributable to the fact that a lower rebound damping
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helps reduce the magnitude of the first peak in sprung mass acceleration, as it was
observed in Table 4.2. Under the pothole input, the solutions also converged to higher
values of high-speed compression damping compared to that in rebound (4. >4,). The 4. is
significantly larger than A, for the higher value of {., which is opposite to the solutions
attained under the bump input. Furthermore, unlike the solutions attained under the bump
input, the optimal values of saturation limits in compression under the pothole input tend
to be considerably higher than those in rebound (|a.[>a;). The a. in both Opt-1, and Opt-
2, 1s at its upper limit of 0.4 m/s, while o, is at its lower limit of 0.1 m/s. The solution
corresponding to a pothole type of input suggest that a symmetric low-speed damping in
compression and rebound with considerably lower high- speed damping in rebound
would be beneficial in reducing the peak acceleration response. The compression mode
damping, however, is determined by the maximum allowable suspension travel, second
peak in acceleration and the tire dynamic force ratio. These are further evident from the

responses presented in table 4.5.

The solutions Opt-1, and Opt-2, yield considerably lower RMS and peak

accelerations, (%) , and (z, )pi2 , compared to those of the nominal damper in majority of

the velocity range considered. The Opt-2, solution, however, yields relatively higher

magnitudes of (ES )p_z at 7.5 and 10 m/s velocity than the Opt-1, solution. This is

attributable to higher compression mode damping associated with Opt-2,, which was
essential for limiting the peak suspension travel, which are considerably higher than those
of the nominal damper, as seen in Table 4.5. Considering the first and second peak
acceleration responses alone, the Opt-1, solution seems to offer beneficial effects under a

pothole type of input. The Opt-2, solution however yields lowest RDR,,, and TFR values
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in most of the velocity range. The TFR responses of the optimal solutions at the extreme
velocity of 10 m/s, however, tend to be considerably higher than that of the nominal
damper, which is most likely caused by the wheel lift-off. The results in general suggest
that the Opt-2,, solution offers a better design compromise in limiting the RDR,, and TFR

responses.

The solutions attained under the bump and pothole types of excitation appear to be
conflicting as seen in Table 4.3. An optimal damper design for realizing lower peak
sprung mass acceleration to both the bump and pothole excitations would thus involve a
complex design compromise. The solutions of the minimization problem were
subsequently attempted by considering the responses to both the bump and pothole inputs
(Izomax/=50 mm) in order to seek a design compromise. From the previous results, it is
evident that such optimization would yield a linear damping in compression and rebound
as a design compromise, which would cause higher 7FR response. Considering the strong
coupling between (. and p, the optimal solutions were attempted by considering two
different constant values of {; (0.1 and 0.2) together with p of either 3 or 2, as determined
from the Opt-1, and Opt-2, solutions, respectively. The design parameters were thus
reduced to 4 (4, A, @ and a.). The resulting optimal parameters denoted as Opt-1p,
((=0.1; p =3) and Opt-2y, ((=0.2; p=2) were obtained as: 4,=0.25; 1.~0.74; a,=0.1;
a.=-0.39, and 4,=0.25; 4=0.5; o,=0.1; a.=-0.2, respectively. Table 4.6 compares the
responses attained with solutions Opt#-1,, and Opt-2;, under bump and pothole inputs in

the 2.5 to 10 m/s range.

The results in Table 4.6 suggest that the Op#-1p, solution yields lower (Z)) , responses
to both bump and pothole inputs compared to those of the model with the nominal
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damper (Tables 4.4 and 4.5). The solution Opt-2,, on the other hand, yields (%)),

responses comparable to those of the nominal damper under the bump input, but

considerably lower responses under the pothole input. The Opt-2;, solution also yields
lower value of Z s and (2, ),,,2 at lower speeds, while an opposite trend is observed at

higher speeds. The Opt-2;, solution, however, yields considerably lower values of RDR,,
RDR,, and TFR responses compared to the Opt-1;, solution under both types of

excitations.

Table 4. 6: Comparisons of responses of the kineto-dynamic model with Opt#-1,, and Opt-
2y, dampers under bump and pothole inputs.

Bump input ‘ Pothole input
Response | Design Velocity(m/s)

2.5 5 7.5 10 2.5 5 7.5 10
(Z)pa Opt-1p, | 239 405 495 539 | -2.68 -438 -531 -572
(m/s?) | Opt-2pp | 286 480 591 652 | 310 -504 -6.15 -6.67
(Z,), Opt-1y, | -2.72 =235 220 -295 | 298 247 225 271
(m/s?) Opt-2pp | -2.65 -231 242 -389 | 281 240 248 3.70
Z Opt-1,, | 1.68 185 208 250 | 1.87 206 223 259

SRMS

(m/s?) | Opt-2pp | 159 202 247 3.02 | 1.73 216 259  3.06
Opt-1y, | 073  1.06 123 129 | -0.67 -1.03 -121 -1.26

RDRy Opt-2p, | 065 099 1.14 120 | -0.63 -097 -1.12 -1.17
RDR Opt-1p, | 1.52  1.67 1.72  1.78 | 1.64 1.81 1.83 1.83
P Opt-2y, | 1.31 1.53 1.58 159 | 144 1.65 165 1.64
TFR Opt-1p, | 0.148 0.213 0.386 0.598 | 0.153 0.217 0.384 0.585
Opt-2p, | 0.138 0.206 0.350 0.528 | 0.143 0.210 0.351 0.514

NWL Opt-1p, 0 0 0 0.071 0 0 0 0.051
Opt-2y, 0 0 0 0 0 0 0 0.061

The influence of optimal damper designs on the wheel camber variations are further
investigated and compared with those of the model with the nominal damper, as
illustrated in Figs. 4.9 (a) and (b), respectively, under the bump and pothole types of

excitations. The figures present the magnitudes of first and second peaks in camber angle
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variation of the model with nominal, Opt-1,, and Opt-2;, dampers. It can be seen that the
Opt-1, solution yields larger positive and negative peak camber angle variations
compared to those of the nominal and Opz#-2;, dampers under the bump input in the entire
velocity range considered in this study. The negative camber variation response of Opt-
2y design, however, is comparable to that of the Opt-1,, design. Under the pothole input,
both the optimal designs, however, yield lower peak positive and negative camber
variations compared to the nominal responses in most of the velocity range, while Opt-1,
tends to show large positive but lower negative camber variations than Opt-2,. The
camber response to the pothole input at the low velocity of 2.5 m/s forms an exception to
the above, where the negative peak of the model with Opt-1,, tends to be greater, which

is attributable to higher second peak in relative displacement response of the unsrpung

mass.
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Figure 4.9: Comparisons of the peak camber angle variation responses of the model with
nominal and optimal dampers under idealized: (a) bump; and (b) pothole excitations.

The results in Table 4.6 and Fig. 4.9 suggest that Opt-2;, solution forms a better
design compromise considering ride comfort, rattle space, road holding and peak camber
angle performances under both the bump and pothole inputs. A low-speed compression

damping ratio in the order of 0.2, damper asymmetry ratio of 2 coupled with very low
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rebound saturation limit and reduction factor, and compression saturation limit in the
order of -0.2 m/s with reduction factor around 0.5 can yield an optimal design

compromise between the bump and pothole responses.

4.6 Responses of Kineto-dynamic Model with Asymmetric Damper to
Random Road Inputs

The results presented in sections 4.4 to 4.5 suggested that synthesis of asymmetric
damper is complex due to the various conflicting design requirements under deterministic
bump and pothole type of excitations. It has been however suggested in the literature that
suspension synthesis is more realistic only if it considers the random road excitations [2,
92]. Different studies have reported optimal damper synthesis under random road
excitations [92, 127] employing vehicle models of varying complexities. Optimal
damping characteristics suggested by these studies were thus expressed as complex
functions of the forward velocity of the vehicle with significant differences in the
identified optimal damping coefficients corresponding to lower and higher vehicle
velocities. This can be attributed to limited understanding of influences of damper
asymmetric properties in relation to the vehicle forward velocity, particularly under
random road excitation. The optimal synthesis of suspension damper with asymmetric
properties in rebound and compression thus necessiates study of influences of the damper
asymmetry on the dynamic and kinematic responses as a function of the vehicle forward
speed under random road excitations. The kineto-dynamic responses of the model under

varying forward speed are investigated in this section.
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4.6.1 Random Road Characteristics

Many studies have reported roughness properties of highways, secondary roads and
dirt roads as real valued, zero mean, stationary and Gaussian random fields [66, 92]. In
this study, the urban roads roughness, characterized on the basis of measured road
elevations reported in a previous study [152], are used for evaluating the dynamic
responses of the kineto-dynamic model and the performance measures. Figure 4.10 (a)
illustrates the filtered roughness profile of the road over a span of 500 m, while, Fig. 4.10
(b) shows the spatial power spectral density (PSD) of the road. The displacement PSD of
the road is also compared with those of different roads classified as ‘poor’, ‘average’ and
‘good’, denoted by roads D, C and B, respectively, in an ISO document [66, 86]. The
comparison suggests that the measured road profile corresponds to a poor quality road at

low frequencies, and lies between the average and a good road at higher frequencies.
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Figure 4.10: Roughness profile of an urban road: (a) elevation vs. distance; (b) spatial

PSD of the elevation.
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4.6.2 Influences of Bilinear Asymmetric Damper under Random Excitations

Kinematic and dynamic responses of the kineto-dynamic model with bilinear damper
are evaluated under the urban road excitation described in Fig. 4.10. The responses are
evaluated with three different damper models, including two bilinear dampers with
compression mode damping ratios {=0.2, p=2 and {.=0.1, p=5, and an equivalent linear
damper ((=0.3; C,;,=3037.5Ns/m). The dynamic responses of the kineto-dynamic model

are evaluated in terms of: rms of sprung mass vertical acceleration and suspension
deflection, denoted as Zyyy,s and (RD)rus, respectively; ratio of rms tire load fluctuation

to the static tire load, denoted as dynamic load coefficient (DLC); and percentage time
duration of the wheel losing contact with the ground (over the entire road span) or %
wheel lift-off. The kinematic responses of the suspension are evaluated in terms of rms of
the camber angle variations, denoted as (@)rms. The responses are evaluated under
random road excitation at different constant forward speeds in the 30 to 120 km/h range.
Figures 4.11 to 4.14 illustrate the dynamic and kinematic responses of the kineto-
dynamic model with the two bilinear dampers ({=0.2, p=2; and {.=0.1, p=5) and the

linear damper ({=0.3) in the speed range considered.

Figures 4.11 (a) and (b) compare the sprung mass rms acceleration and DLC
responses of the model with the three different dampers subjected to rough road input in
the 30 to 120 km/h speed range. Although all the dampers yield equal effective damping
coefficients, the acceleration and DLC responses are influenced by the damper
asymmetry and the vehicle forward speed. At speeds below 90 km/h, the kineto-dynamic
model with bilinear dampers yields lower rms acceleration compared to the model with

linear damper ({=0.3). At speeds below 60 km/h, both the bilinear dampers ({;=0.1 and
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0.2) yield comparable rms acceleration response, while the model with {=0.2 yields
lower sprung mass acceleration above 60 km/h. The higher compression damping also
yields lower DLC due to the tire force in the entire speed range, when compared to the
bilinear damper with {,=0.1, which is attributable to its higher rebound damping (o=5).
At speeds above 90 km/h, the model with linear damper yields lower acceleration and
DLC response compared to the bilinear damper with {=0.1, but the responses are quite
comparable with that of the bilinear damper with (=0.2. These results suggest that
dampers with different asymmetry but identical equivalent damping can yield very
different rms acceleration and DLC responses, which further depend upon the vehicle

velocity.

The percent wheel lift-off and rms relative displacement responses of the model with
the three dampers under random road inputs over the velocity range 30 to 120 km/h are
presented in Fig. 4.12. The asymmetric bilinear dampers yield considerably higher wheel
lift-off and relative displacements compared to the equivalent damper, which contribute
to higher DLC as seen in Fig. 4.11 (b). This bilinear damper with lower compression
damping ({=0.1) yields significantly higher wheel lift-off duration and relative
displacement responses, particularly at speeds above 50 km/h, which is attributable to
greater compression mode deflection. Higher compression damping ({.=0.2) tends to
reduce both the responses but yields higher wheel lift-off at speeds above 70 km/h

compared to the equivalent linear damper.

The results in Fig. 4.12 also show that the (RD)rms responses reach their peak values
near 100 km/h velocity (near 120 km/h for {,=0.1), and the (RD)rms magnitudes decrease

at higher speeds. The results suggest that linear damping would be desirable considering

164



the road holding performance, particularly at higher velocities. Although a point contact
tire model tends to emphasize the loss of tire-road contact and thus the variations in the
tire forces [96], the results in Figs. 4.11 and 4.12 show relative dynamic responses of

bilinear asymmetric and linear equivalent dampers considered in the study.
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Figure 4.11: Comparisons of (a) rms acceleration and (b) DLC responses of the kineto-
dynamic model with bilinear dampers ({.=0.2, p=2; {,=0.1, p=5) and an equivalent
linear damper ({=0.3) to random road excitations as a function of forward speed.
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forward speed.

165



The suspension damping properties also affect the kinematic response of the vehicle.
Figure 4.13 (a) compares the rms camber angle variation responses of the model with
different dampers. The lowest camber variation, (#)rms is achieved with the linear
equivalent damper in the entire speed range considered, while the bilinear damper with
(~=0.1 yields largest camber variation. The (@)rms responses of the kineto-dynamic model
approach peak values in the 100-120 km/h range, for all the dampers considered, as
observed in the (RD)rums responses. The results in Figs. 4.12 (b) and 4.13 (a) show similar
trends in (RD)rms responses and camber variations, as it would be expected. The relative
differences in the two measures depend upon the type of damping considered and the
forward speed. This difference is evaluated by considering ratio of (@)rms to (RD)rwvs at a

forward speed, normalized with the ratio at 30 km/h, termed as the camber increment

ratio (CIR), such that:

() ass)y /(D) s o
((RD)RMS)V /((RD)RMS)3O

Camber increment ratio (CIR) = 4.9)

where the subscript ‘V’ refers to the velocity considered, and ((@)rms)zo and ((RD)rwms )30
are the normalizing values at 30 km/h. Figure 4.13 (b) compares the CIR response of the
model with different dampers in the velocity range 30 to 120 km/h. At lower velocities
(<50 km/h), the CIR varies only about 1% for all the dampers considered, suggesting that
the camber variation is directly related to the suspension deflection. The CIR response,
however, is greatly influenced by the damping at speeds above 50 km/h. While the linear
damper yields lowest CIR, the bilinear damper with (=0.1 yields largest camber
increment ratio. The results suggest that the camber angle variation is disproportional to

the suspension deflection, particularly for asymmetric damper with {.=0.1.
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Figure 4.13: Comparisons of (a) rms camber angle variation and (b) camber increment
ratio responses of the kineto-dynamic model with bilinear dampers ({=0.2, p=2; {=0.1,
p=5) and an equivalent linear damper ({(=0.3) to random road excitations as a function of

forward speed.

Figure 4.14 (a) compares the time-histories of camber variations of the model with
linear and bilinear damping ({=0.1) under the random road excitation at 100 km/h. The
bilinear damper yields significantly larger negative peaks, while the linear damper
consistently exhibits higher positive camber angle. The magnitudes of positive camber
variations of the asymmetric damper, however, are considerably smaller than those in the
negative camber. This is attributable to the suspension geometry, which is generally
synthesized to achieve a compromise between variations in the roll and bump camber
angles [4]. The asymmetric camber variation during upward and downward wheel
motions has been shown in Fig. 2.11, and also been widely reported in different
kinematic responses [4, 5]. This is also evident in the cumulative probability distribution
of the absolute camber angle responses of the model with the three selected dampers in
Fig. 4.14 (b). The comparisons show that the linear, and bilinear ({,=0.2 and 0.1) dampers

exhibit camber angles of 0.77°, 1.01° and 1.39°, respectively, corresponding to the 95%

probability.
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Figure 4.14: Comparison of: (a) time histories of camber variations; and (b) cumulative
probability disribution of absolute camber angle of the model with linear and asymmetric
bilinear dampers under random road input (speed =100 km/h).

The results clearly show that the damper with {= 0.1 and greater asymmetry (p=5)
would yield significantly higher camber angle response, which would also vary with
vehicle speed. Although conventional ride dynamic studies ignore possible contributions
due to camber variations, it has been suggested that a camber variation in the order of 1°
would yield a lateral force variation of 80 N for an automobile tire [1, 4]. The suspension
damper synthesis thus needs to consider the kinematic responses of the suspension.

The results in Figs. 4.11 to 4.13 suggest that the measures of ride comfort, road

holding and suspension deflection performances of a vehicle are complex functions of the
vehicle speed. The variations in ride comfort, rattle space and camber measures ((Z,) 4,55
(RD)rms and (@)rms) With speed could be classified in three different zones. All the three
measures increase nearly linearly with the vehicle speed up to 50-60 km/h, irrespective of

the type of damping considered (Figs. 4 to 6). Further increase in vehicle speed causes

nonlinear increases in the responses, which tend to either saturate or decrease at speeds
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above 90-100 km/h. These trends, however, could not be generalized to the road holding

measures (DLC and wheel lift-off).

4.6.3 Influences of Two-stage Asymmetric Damper under Random Excitations

The kinematic and dynamic responses of the kineto-dynamic model are also dependent
upon the high speed damping reduction factors and the saturation velocities, apart from
the damping asymmetry. The influences of these parameters are evaluated by considering
a two-stage asymmetric damper ({.=0.2, p=2, 1,=0.25, 1.=0.5, o= 0.1 m/s and a.= -0.2
m/s) that has shown to yield a good compromise among the ride, road holding and
suspension deflection performance measures under bump and pothole inputs in section
4.5. The low-speed damping coefficients of the selected two-stage damper ({;=0.2 and
p=2) are identical to those of one of the bilinear damper considered in the section 4.5.2,
while the selected damper would yield lower effective damping due to the lower high
speed damping (4;, 4.<1). The kinematic and dynamic responses of the model evaluated
under the random road excitation in the 30 to 120 km/h forward speed range are

summarized in Table 4.7.

The two-stage damper yields considerably lower magnitudes of (Z,);,,; compared to
the single-stage bilinear damper in the entire speed range, which is attributable to its
lower high speed damping and damping force saturation. The (Z,),,,; value approaches a
peak of 1.94 m/s* at 100 km/h and decreases with further increase in the vehicle speed.
This trend was not observed in case of the linear or bilinear damper, although the rate of
increase diminished above 100 km/h. (Fig. 4.11). The reduced high-speed damping,

however, causes relatively higher magnitudes of DLC, wheel lift-off (WLO), (RD)rms and
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(@)rms responses. Both the DLC and WLO measures increase with the speed, while the
rate increases in WLO is higher at higher speeds, as observed for the bilinear damper
(Fig. 4.12). The (RD)rms and (@)rms responses of the model with two-stage asymmetric
damper reach their respective peak values near 100 km/h similar to that observed in the
case of acceleration. The variations in DLC and (RD)rms show similar tendency at lower
speeds, but differ at higher speeds. The camber increment ratio of the two-stage damper
was estimated to be 1.02 at 100 km/h, which is nearly same as that of the bilinear damper
(Fig. 4.13). This result further suggests nonlinear relation between the camber variation
and the suspension deflection. Moreover, the absolute camber angle corresponding to
0.95 cumulative probability at 100 km/h was computed as 1.14°, which is considerably
greater than that of the bilinear damper with (.=0.2 (Fig. 4.14).

Table 4. 7: Kinematic and dynamic responses of the kineto-dynamic model with two-
stage asymmetric damping.

Velocity | Ziys (RD)rus )RMS

kmh) | @y PEC O RO T ((ﬁeg)
30 0.97 0.138 0.03 0.012 0.26
40 1.09 0.168 0.04 0.013 0.30
50 1.23 0.194 0.14 0.015 0.34
60 1.42 0.226 0.28 0.018 0.40
70 1.62 0.253 0.33 0.021 0.47
80 1.72 0.268 0.44 0.023 0.51
90 1.83 0.287 0.65 0.025 0.54
100 1.94 0.309 0.85 0.026 0.57
110 1.88 0.323 1.08 0.024 0.53
120 1.80 0.333 1.30 0.022 0.48
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4.7 Optimal Synthesis of Two-stage Asymmetric Damper under
Random Inputs

The ride dynamic responses of the vehicle model are strongly influenced by various
suspension kinematic and dynamic properties, and damper asymmetry, apart from the
road roughness and the speed, in a complex manner. Synthesis of an optimal damper is
thus a formidable task, particularly when multi-stage asymmetric damping properties are
considered. The few studies that have attempted to identify optimal damping parameters
have generally concluded that the optimal parameters would depend upon the forward
velocity, design criteria or the target performance chosen and the type and magnitude of
excitation such as the road roughness and profiles of the bump/pothole inputs [91, 92, 94,
126]. Although various studies have included combinations of sprung mass acceleration,
suspension deflection or working space and tire force response measures in identification
of optimal parameters, the kinematic responses have invariably been ignored. This is
partly attributable to the use of ride dynamic models that do not permit the analyses of
kinematic response, and in-part due to the assumption that suspension kinematics play
only limited role in ride dynamics. The results presented in Figs. 4.11 to 4.13, and Table
4.7, however, suggest strong coupling between the kinematic and dynamic responses, and

important contributions of the suspension kinematics.

4.7.1 Formulation of Performance Index and Optimization Methodology

Optimal asymmetric damper parameters are sought to achieve acceptable compromise
in ride, road holding and camber variation characteristics through minimization of an

objective function, F(v), of sprung mass acceleration and tire force as:
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F(z))zwfly+(l—w)§:M (4.10)

4 l-nom f 2-nom

where F;(v) and F»(v) are rms acceleration and tire force or road holding measure,

respectively, given by:

_ 1 T . . _ 1 1 (7 2
Fl(u)_,/ﬂ0 zsdt,ansz(U)—KJ?.fO F?,dt (4.11)

where F,, and F,, are the static and dynamic tire forces and v is the design vector,

v={C, P, Ars Aes Oy 0} In Eq (4.10), w 1s the weighting factor, and F_, , and F,,, are the

magnitudes of F;(v) and F>(v) evaluated with nominal damper parameters corresponding
to each speed. Owing to the strong dependence of optimal damper parameters on the
vehicle forward velocity, as concluded in the reported studies, the weighted optimization
function in Eq (4.10) is formulated considering the performance measures at different
speeds, where V; and V; define the lower and upper bounds. In the optimization problem,
the camber variation is limited by imposing a limit constraint such that: ¢<f, where f is
the maximum allowable absolute camber angle corresponding to cumulative probability
of 0.95, which is computed during each iteration in the solution of the minimization
problem at the higher speed of 100 km/h only. Furthermore, the limiting value f was
varied in the 1 to 1.2° of camber range (1.14° attained with the nominal damper at

100km/h) so as to study the influence of f on the attained solutions.

The above optimization problem was solved using a gradient-based sequential
quadratic programming (SQP) algorithm available in the Matlab optimization toolbox
[151], while velocity bounds V; and V', were taken as 50 and 100 km/h, respectively, with

an increment of 25 km/h. These velocity bounds are selected considering that they
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represent the three zones of the sprung mass acceleration and camber angle relations with
vehicle velocity (Figs. 4.11 to 4.13) identified in the section 4.6. Limit constraints were
defined so as to achieve the solutions in the feasible ranges, namely: 0.05< . <0.35;

1<p <6;0.25< 4, <1;0.25< 1. <1; 0.1< @, <0.4; and 0.1 <|ar.| < 0.4.

4.7.2 Results and Discussion

Considering the strong coupling among the design variables of the asymmetric
damper, the optimal solutions were initially examined to identify an acceptable value of
low-speed compression mode damping ratio ¢, in view of the ride comfort alone. For this
purpose, the initial solutions were obtained by letting w=1, and relaxing the upper limit
on the camber variation (f) to a very high value of 5° in order to emphasize the sprung
mass acceleration alone. Multiple solutions, as would be expected, were obtained with
different initial design vectors, particularly for different values of p. The solutions,
however, generally converged near {=0.20 for the rough road and range of speed
considered, while the high- speed reduction factors in both compression and rebound
approached the respective lower bounds. The other design parameters (p, a, and o)
converged closer to their nominal values. The optimal parameters resulted in rms sprung
mass acceleration magnitudes of 1.18, 1.62 and 1.85 m/s” corresponding to 50, 75 and
100 km/h forward speeds, which are lower than those attained with the nominal damper
(Table 4.7). The identified value of low-speed compression damping ratio was thus
considered acceptable for seeking optimal solutions to achieve design compromise
among the measures considered. An equality constraint, {=0.2, was thus subsequently

imposed that resulted in slightly reduced design vector, v={p, 4,, 4., &, a.}. Moreover, the
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more significant design variables (p, 4,, 4.), being directly related to the non-dimensional

(., would enhance the applicability of the optimal solutions for a wider range of vehicles.

The minimization problem in Eq (4.11) was subsequently solved using three different
weighting values (w=0.5, 0.6 and 0.7) and three different limiting values of camber
variation ($=1°, 1.1° and 1.2°). The solutions were obtained with nominal values as the
initial design vector, although several solutions were sought with different initial design
vectors so as to attain the solutions corresponding to minima of the objective function.
Moreover, the limit constraints on the design variables were defined as explained
previously. The solutions of the minimization problem attained are presented in Table

4.8, while the corresponding responses of the model including Z DLC, (¢)rms and

SRMS ?
(RD)rms are presented in Figs. 4.15 to 4.18 as a function of the camber limit 5. The
responses presented in these figures were attained under the random road excitation at

different forward speeds (30, 50, 80 and 100 km/h).

The results in Table 4.8 suggest that the solutions are highly influenced by the chosen
values of the weighting factor and camber variation limit, . For w=0.5, relaxing the
camber limit £ yields lower values of the asymmetry ratio p, and the high-speed reduction
factor 1. and saturation limit o, in compression but higher high-speed rebound reduction
ratio 4, and saturation limit ¢,. Limiting the absolute camber variation to 1°, converges to
higher damping forces in both compression and rebound modes. Relaxing £ to 1.2°,
however, converges to lower compression mode damping. This suggests that damper
synthesis for minimal camber variation involves compromise in the sprung mass vertical

acceleration.
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The solutions attained with slightly higher emphasis given to the ride comfort measure
(w=0.6 and 0.7) revealed somewhat, opposing trend in p with increasing values of 5. An

increase in f resulted in convergence towards lower 4, and 4., while a definite trend could

Table 4.8: Solutions of the minimization problem with different weighting factors (w)
and camber variation limits (5).

w ﬁ P Ar Ae a, (m/s) Oc (I’Il/S)
0.5 1 2.22 0.35 0.78 0.20 -0.40
’ 1.1 1.83 0.43 0.68 0.34 -0.35
1.2 1.70 0.51 0.63 0.35 -0.25
06 1 1.68 0.49 0.92 0.30 -0.10
’ 1.1 1.97 0.30 0.50 0.28 -0.20
1.2 1.93 0.25 0.45 0.31 -0.24
07 1 1.46 0.32 0.67 0.33 -0.37
) 1.1 2.00 0.25 0.36 0.21 -0.24
1.2 1.95 0.25 0.39 0.27 -0.22

not be observed in o, although the changes are quite small. A lower value of o, was
obtained with relatively higher value of 4. for w=0.6. The higher weighting on ride
comfort (w=0.7) resulted in lower 4. but higher a., most likely leading to comparable
effective damping in compression. Reducing the camber variation limit (f=1°) converged
towards higher compression mode effective damping, while relaxing the limit £ allows
the compression mode damping to be lower, which also places a greater demand on the
high-speed compression damping. The results thus suggest that a relatively smaller
emphasis on the ride comfort would converge to lower low-speed rebound damping as
the camber variation is relaxed. A slightly larger emphasis on the ride comfort, however,

would generally require higher low-speed rebound damping with increasing S value.

The results in Table 4.8 do not show definite relationships among the various
parameters particularly when different weightings and camber limits are considered. This

is mostly attributable to strong coupling among various factors in view of the effective
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damping. For instance, an effective rebound to compression damping asymmetry could
be achieved with different combinations of the low- and high- speed damping
characteristics. In this study, the solutions to the minimization problem were also
attempted for £<1° in order to investigate the possibility of attaining further reduction in
the camber angle variations. The solutions, however, failed to converge due to the
constraints posed on the compression mode damping ({,=0.2 and 0.25<4.<1). The camber
variations could be further reduced by increasing the compression damping (Fig. 4.13
(b)), which would also yield higher rebound damping considering the relations shown in

Fig. 4.11 (b).

The sprung mass acceleration response ( Z_,,.. ), in general, tends to decrease with

SRMS
increase in the weighting factor w at each speed, as seen in Fig. 4.15. Increase in f from 1
to 1.1° causes decrease in the sprung mass acceleration response, irrespective of the
weighting factor and the forward speeds, while a further increase in £ to 1.2° causes the
sprung mass acceleration to decrease only when w=0.5. A higher weighting on the ride
comfort (w=0.6 or 0.7) results in increase in the sprung mass acceleration response,
particularly at lower speeds of 30 and 50 km/h. The results suggest that increasing w can
yield lower sprung mass acceleration response, while relaxing the camber limit beyond a
certain value deteriorates the ride comfort measure. The results further suggest that for
each value of w there might exist a minimal value of sprung mass acceleration that can be
achieved with different f values. The value of S corresponding to this minimal
acceleration tends to become smaller as w increases. Such minimal values of acceleration

with different constraints on suspension deflection had also been identified by Dahlberg
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[94], while synthesizing optimal linear damper under random excitation at a single

forward velocity.
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Figure 4.15: Sprung mass rms acceleration responses of the model with optimal damper
parameters attained for different weighting factors (w) and camber variation limits (5)
under random road input at: (a) 30 km/h; (b) 50 km/h; (c) 80 km/h and (d) 100 km/h.

Unlike the sprung mass acceleration, the DLC due to tire force increases with an
increase in the weighting factor w and the camber limit § in the forward speed range
considered (Fig. 4.16). Lowering the value of w reduces the DLC response of the model,
as it would be expected, which suggests that solutions corresponding to w=0.5 would
yield better road holding properties. It can also be observed from the figure that the 0.5
weighting yields nearly identical DLC responses for camber limits of 1 and 1.1°,
irrespective of the speed. Furthermore, the weighting of 0.5 and 0.6 yield nearly identical
DLC values with f=1°, at each of the speeds considered. The results further suggest that
the DLC is relatively less sensitive to f when a lesser emphasis is placed on the ride

comfort measure (w=0.5). The limit imposed on the camber variation, however, plays a

significant role with greater emphasis on the ride comfort (w=0.6 and 0.7). Opposite to
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the sprung mass acceleration (Fig. 4.15), the DLC response tends to approach its

maximum at f=1.1° with w=0.7.
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Figure 4.16: The DLC responses of the model with optimal damper parameters attained
for different weighting factors (w) and camber variation limits (f) under random inputs
at: (a) 30 km/h; (b) 50 km/h; (c) 80 km/h and (d) 100 km/h.

The relative displacement (RD)rms responses of the kineto-dynamic model with
optimal damper parameters (Fig. 4.17) increase with an increase in the weighting factor w
and the camber limit f with a trend somewhat comparable to that observed in the DLC
responses (Fig. 4.16). The results show that the (RD)rms responses approach maximum
values with £ in the order of 1.1, for a higher weighting on the ride comfort (w=0.6 and
0.7). The optimal solutions with higher weighting yield lower (RD)rms with further
relaxation of the camber limit in the speed range considered. It can further be seen from
the figure that unlike the DLC responses, the (RD)rws is sensitive to the camber limit £.
The trends in the (RD)rms corresponding to f=1.1 and 1.2°, however, differ notably from

those in the (@)rms shown in Fig. 4.18 for w=0.6 and 0.7 irrespective of the vehicle speed.

The solutions attained with lower limiting values of f yield lower rms camber angle
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Figure 4.17: The RDgys responses of the model with optimal damper parameters attained
for different weighting factors (w) and camber variation limits (f) under random inputs
at: (a) 30 km/h; (b) 50 km/h; (c) 80 km/h and (d) 100 km/h.
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Figure 4.18: The rms camber angle responses of the model with optimal damper
parameters attained for different weighting factors (w) and camber variation limits (5)
under random inputs at: (a) 30 km/h; (b) 50 km/h; (c) 80 km/h and (d) 100 km/h.

variations, as expected, particularly for w=0.5. The (#)rms responses of the model with

p=1°¢ are considerably smaller than those attained with f=1.1°, while the differences in
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the (@d)rms responses corresponding to f=1.1° and 1.2° are mostly negligible for w=0.6
and 0.7. At vehicle speed exceeding 50 km/h, the rms camber response increases as f

increases from 1°to 1.1°, irrespective of the weighting factor.

4.8 Summary

This chapter presented coupled effects of damper asymmetry and the suspension
kinematics on the dynamic and kinematic responses of a kineto-dynamic quarter car
model comprising a double wishbone suspension coupled with single- and two-stage
asymmetric dampers. It has been shown that both the suspension linkages and
compression/rebound damping asymmetry contribute to asymmetry in kinematic as well
as dynamic responses of the road vehicle. Higher rebound to compression damping
asymmetry in general causes a downward shift in the sprung mass mean position, while
higher compression to rebound asymmetry ratio causes an upward shift. The mean shift
in the unsprung mass displacement relative to the sprung mass causes additional camber

angle variation during the wheel vertical motions.

The damping asymmetry of a bilinear damper yields conflicting effects on the sprung
mass acceleration response to bump and pothole excitations. A higher rebound to
compression damping asymmetry ratio in a bilinear damper helps reduce the magnitude
of the first peak in sprung mass acceleration response to bump excitation, but yields
higher acceleration under a pothole excitation. In case of two-stage damper with different
low and high-speed damping coefficients, lower values of the high-velocity damping
coefficients results in considerable reductions in the sprung mass acceleration response

under both the inputs. The results suggest that the damping asymmetry ratio is strongly
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dependent upon the low-speed compression damping. Under a bump input, asymmetry
ratio of 2 and 3 would result in a good compromise between the ride and road holding
performance for low- speed compression mode damping ratios of 0.2 and 0.1,
respectively. Under a pothole input, however, a linear (asymmetry ratio=1) or higher
compression to rebound ratio provide a better design compromise. The results attained
through minimization of the sprung mass acceleration with constrained rattle space
provided design guidance for the asymmetric dampers under both the bump and pothole

excitations.

The simulation results under random road excitation showed that the kinematic and
dynamic responses are strongly influenced by the compression/rebound damping
asymmetry and the forward speed of the vehicle. This study identified notable consistent
trends in the kinematic and dynamic responses of the model with asymmetric damper in
three speed ranges: the responses increasing nearly linearly with forward speed in the 30-
60 km/h range; increasing nonlinearly in the medium speed range (60-90 km/h); and
nonlinearly decreasing or saturating in the higher speed range (100-120 km/h). It is
shown that a synthesis of an optimal asymmetric damper is highly complex due to strong
coupling among the various damper parameters, namely, the rebound to compression
damping asymmetry, high speed damping reduction factors and saturation velocities. The
results attained through minimization of a weighted dynamic tire force and ride comfort
measure suggest that a compromise solution would strongly depend upon the limit
imposed on the camber variation. For minimal camber angle variations, a lower rebound

to compression asymmetry in damping would be desirable, while the camber variations
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correlate well with the tire force variations, when a greater emphasis is placed on the tire

force variations.

The results presented in this chapter are attained considering the vertical dynamic
responses of a quarter-car model, while, the consideration of dynamic responses of the
vehicle motions in other modes including roll and pitch can further increase the
complexity of the design compromises. The camber angle variation response of a
suspension during chassis roll is known to be significantly different than that during
wheel vertical motion excitations. Similarly, the asymmetry in the dynamic responses
could be different, particularly in roll motion mode of the chassis when asymmetric
dampers are considered on both sides of the suspension, where one of the strut
experiences compression when the other strut undergoes extension. A kineto-dynamic
roll-plane vehicle model is therefore necessary for the coupled analyses of kinematic and

dynamic responses of the suspension, and for the synthesis of suspension components.
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CHAPTER 5

ROLL-PLANE KINETO-DYNAMIC ANALYSES OF DOUBLE
WISHBONE SUSPENSION

5.1 Introduction

The ride and roll dynamic performance measures of a vehicle are known to impose
conflicting design requirements on the suspension components [2,105]. Soft suspensions
are most desirable for enhancing ride comfort, but yield reduced effective roll stiffness,
and greater load transfer and roll response of the chassis. Apart from the conflicting
dynamic measures, the suspension kinematic measures also impose conflicting demands
on suspension geometry synthesis under chassis roll and wheel vertical motions [4]. In
particular, minimal variations in the wheel camber under wheel vertical displacement
motion (bump camber) and under chassis roll (roll camber) involve conflicting
suspension synthesis. The variations in camber and toe angles, and wheel track width
responses have been widely investigated under wheel displacement, with fixed chassis or
under chassis roll motion in the absence of wheel vertical motion [5, 24]. The effects of
both inputs, applied simultaneously, have not been adequately addressed. An optimal
suspension synthesis that can yield acceptable compromise among various kinematic
performance measures has been recognized to be a challenging task [4, 24]. Furthermore,
the larger space requirements of hybrid vehicles necessitate considerations of the
suspension synthesis with limited lateral space, which would most likely involve

additional compromises among the kinematic and dynamic responses.

From the results attained from the two-DOF kineto-dynamic model in Chapter 4, it

was shown that kinematic and dynamic properties of the suspension are also coupled with
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the suspension damping asymmetry in a complex manner. The complex dependency of
damper asymmetry on the dynamic and kinematic responses would be expected to
increase many folds, when coupled vertical and roll motions of chassis are considered. In
this chapter, a roll-plane kineto-dynamic vehicle model is formulated to study coupled
vertical and roll dynamic responses together with the kinematic properties. The
displacement matrix method is employed to derive kinematic formulations, while the
Lagrange’s method is used to formulate the dynamic model. The conflicting kinematic
responses including bump/roll camber and wheel track variations under chassis roll and
wheel vertical motions are identified, and the roles of joint coordinates are evaluated. An
optimal joints coordinate synthesis considering these conflicting responses together with
the constraint on the lateral space is derived. The dynamic responses of the proposed
kineto-dynamic model are compared with those of a conventional roll-plane model under
idealized bump and pothole inputs. The dynamic and kinematic responses of the model
with nominal joint coordinates are further compared with those of model with optimal
joint coordinates to illustrate the effectiveness of the optimal synthesis. The influences of

damper asymmetry are further evaluated under both bump and pothole excitations.

5.2 Development of Roll-plane Kineto-dynamic Vehicle Model

The two-DOF kineto-dynamic model of double wishbone suspension formulated in
Chapter 3 could be extended to the roll-plane vehicle model, as shown in Fig. 5.1. The
four-DOF half-car kineto-dynamic model comprises planar representation of the double
wishbone type of suspension, as discussed in Chapter 3. The control arms are modeled as
mass less elements, and each unsprung mass is assumed to be lumped at the center of

gravity (cg) of the wheel assembly. For the kineto-dynamic analysis, the tire is modeled
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as a combination of a vertical linear spring and a viscous damper, while the lateral
compliance of the tire is represented by a lateral linear stiffness, as in the case of the two-
DOF model. The chassis and suspension kinematics are formulated considering the
chassis, suspension linkages and the wheel spindle as rigid bodies, while the rigid body
assumption was also applied to tire when kinematic analyses alone were concerned. The
model is formulated assuming vertical (z;) and roll (¢) displacements of the sprung mass,
and left and right wheels vertical displacements (z,, and z,z) as the generalized
coordinates. The rotation of the chassis is assumed to occur about the roll center, Rc [153,

1541, as shown in the Fig.5.1.

Zul

ZL

Figure 5.1: Roll-plane kineto-dynamic model of a vehicle with double wishbone type of
suspension

5.2.1 Kinematics of the Chassis

A chassis kinematic model is formulated in order to evaluate instantaneous positions
of suspension joints on the chassis under chassis rotation and/or vertical motions. The
suspension kinematic responses are subsequently determined from coordinates of the
linkage joints. A fixed coordinate system is considered with its origin located in the
ground, while the sprung mass vertical and rotational displacements are considered about
the roll center, Rc, of the vehicle body. The initial (Rc,y, Rc.9) and instantaneous (Rc,,
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Rc;) coordinates of the roll center are related through the displacement matrix, D pgssis,
under a finite displacement of the chassis, given by [138]:

), dy Rcy - (a23RCyO +ayRe,)
D

chassis —

a;, a;; Rc, — (a32Rcy0 +ayRe,)

0 0 1 5.0)

where a,,=a3;=cos¢@; and ar;=-az,=sing;, with ¢ being the vehicle body rotation about the
roll center. The y- and z- coordinates of chassis-suspension joints, Mg, O, M; and Oy,

shown in the Fig. 5.1, can be determined using the displacement matrix D45, Such that:

MRy ORy MLy OLy MRyO ORyO MLyO OLyO
MRZ ORZ MLZ OLZ = Dchussi MRZO ORZO MLzO OLZO
1 1 1 1 1 1 1 1

(5.2)
The leading subscripts ‘R’ and ‘L’ in Eq (5.2) refer to the right and left suspension joints,
respectively, while the second subscripts ‘y’ and ‘z’ represent the lateral and vertical

axes, respectively. The final subscript ‘0’ refers to the initial coordinate of the joint.

The expansion of the Eq (5.2) yields expressions for the instantaneous coordinates of

the suspension joints at the chassis, such that:

Mky = azz(Mky0 —Rcyo) +ay, (M, ,—Rc,) +Rcy
M, = a32(Mky0 —Rcy0)+a33(Mkzo —Rec_,)+Re,

Oky = azz(OkyO —Rcyo) +a,,(0,,, —Rc,) +Rcy (5.3)
Oy. = a3,)(O, —Re ) +a33(0,y — Rey) + Re., k=R,L
G,=G,; and G, =G, +z,

The above equation can be solved to obtain instantaneous coordinates of the chassis-
linkage joints for a given chassis rotation ¢ about the roll center and/or a vertical

displacement of the chassis, z;.
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The velocities of various chassis joints are obtained from the time derivatives of the
displacement equations, such that:
Mky = dZZ(MkyO - RcyO) +ay,(M,., — Re.)

Mkz = d32(Mky0 _RCyO) +ay;(M o —Re )+ Rcz
O, = dzz(Okyo _RCyO) +a,,(0y,p — Rey)

Okz = a3)(Opy = Re ) +55(Opg _RCZO)+RCZ k=R,L (5.4)

where Rc. =2 ,d,,=d,,=—@,sing, and a,,=—d,, =@ cosg. Differentiating the

velocity expressions with respect to time yields following acceleration expression in joint

coordinates:

Mky = —((55 sin ¢, + ész cos ¢, XMkyO - RcyO) + (¢3 cos g, — ¢32 sin ¢, XMkZO —Re,)
M, = —((,}55 cos @, — ¢’ sin g, XM,WO —Re,y) - (¢S sin @, + @7 cos g, )(Mkzo —Re.)) +Z,

O, = (¢ sin ¢, + 82 cos ¢, kO, — Re,o) +(, cos g, — ¢ sin 4, ) O, — Rey)

O =g, cos g, — § sin ¢ NO,,o — Re,o) (B, sin 6, + §2 cos ¢ NOo —Re.)+2, (5.5

5.2.2 Kinematics of the Suspension Linkages

The kinematic analysis of the suspension links is performed to determine variations in
the camber angles and wheel track width in terms of the generalized coordinates. For
finite displacements of the right and left wheel spindles in the given plane, the

displacement matrices, Dgpingier and Dypinarer, of the right and left suspension units,

respectively, are formulated as:

Ay Ay Cky - (aZZkayO +a,3,Cr)
Dspindlekz Ay Gy Cp— (a32kay0 +a;3,C) k=R,L
1
0 0 (5.6)
where asy=as;=cosd. and a,3=-azx=singy, k= R, L. In the above equation, ¢ and ¢, are

the right and left spindle rotations, respectively, about the x-axis. Cy, and Cj. refer to the
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lateral and vertical coordinates, respectively, of the K" (k=R, L) wheel center. The
instantaneous coordinates of the suspension-spindle joints (Ng, P, N and P;) following
the displacement can be expressed using the right and left wheel spindle displacement

matrices, Dypindier and Dypindier, as:

N, B, Nuo Pao
Nkz sz = Dspindle NkzO ])kzO 5 k = R’L
1 1 1

(5.7)

The expansion of Eq (5.7) yields eight joints coordinates of the left and right wheel
spindles. The above formulation, however, comprises a total of 12 unknown parameters
corresponding to the wheel center displacements z,z and z,;, namely: the y and z
coordinates of joints Ng, Pg, Ny and Pp; the y coordinates of the wheel centers Cy and Cy;
and the camber angles ¢z and ¢.. Equation (5.7) is thus solved in conjunction with the
constraint equations, which for a planar double wishbone suspension may be formulated
considering the constant control arm lengths. The expanded form of Eq (5.7) together

with the constraint equations thus yields a system of 12 non-linear equations, given by:

Nky = dyy; (NkyO _C@o) + 0,3 (Nieg = Croo) + Czw

N, =asy, (NkyO _CkyO) + 833 (N = Cro) + Gy + 2,

Pky =y (PkyO - CkyO) +ayy (B —Cpp) + Cky

F. = a32k(PkyO _CkyO) + a3 (B0 —Co) + Crp + 2,

(N =Myy)* +(N =M .)" =Ly,

(B, —0,) +(B, —0,) =ljp... k =R,L (5.8)

where e and lopr (k=R, L) are the lengths of upper and lower control arms,

respectively. Equations (5.3) and (5.8) can be simultaneously solved to obtain kinematic
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responses of the suspension for given vertical displacements of the left and/or right

wheels, and/or vertical and roll displacements of the chassis.

The camber angle variation responses of the left and right wheels (¢, and ¢x) for given
sprung mass and unsprung mass displacements either individually or simulataneously can
be obtained from the solutions of Eqs (5.3) and (5.8). The variations in the wheel track
with wheel vertical motion can be evaluated from the lateral displacement of the tire-
ground contact points, 7z and 77, as shown in Fig. 5.1. The rigid body assumption of the
tire leads to the expressions for the y- coordinate of the tire-road contact points, 7x and

T, as:

T, = a5 (Tjo = Chyo) + A3 (T = Ciog ) + G, (5.9

The y- coordinates of the tire-ground contact points, determined by Eq (5.9), determine
the wheel track width variations, while the roll center of the vehicle in the roll plane is
estimated using the instantaneous centers of rotations of the wheel spindles [5,6], as

illustrated in Fig. 5.1.

The velocities of the joint centers between the upper- and lower control arms and the

wheel spindle are obtained from time differentiation of Eq (5.8):

N,, =y (Nyyo = Coop) + oy (Ney = Co) +C,,

Ny =55 (Nyyo = Crpo) + 33 (Nog = Cg) + 20

B, =6, (B0 —Cyo)+yy (Boy = Cpy) + C,,

B = sy (g = Coyo) g (Pg = Cieg) + 2

(N, =M )Ny =M,,)+(N =M )N, M) =0

(B, =0y )(Fy =0)+(R.=0)(B.~0.)=0  k=RL (5.10)
where a,,, =dyy = —¢3k sm¢@; and a,y, =—a;, = @ cos g, .
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5.2.3 Linearization of Kinematic Equations

The nonlinear kinematic equations can be solved to yield the kinematic responses of
the model under known inputs at the wheel center and the chassis. The closed form
solutions of the unknowns in terms of generalized coordinates would be desirable, in
order to correlate the kinematic relations to the dynamic responses, which may be quite
complex. A linear system of kinematic relations for the chassis joints could be achieved

using small angles assumptions, such that a,,=a3; 1; and ay;=-az; ¢

M@ :MkyO +9, (M, —Rc.); M, :_¢S(Mkyo _Rcy0)+MkZO +z;
Oy =040 +9.(Opy —Re.); O ==0,(Oyg —Reyy)+ Oy + 2, (5.11)

Similarly, the small angle assumptions in the kinematic equations of the suspension
linkages yield ax=ass 1; and au=-aszx @& The small angle assumptions in
conjunction with the first-order Taylor series approximation of the constraint equations

yield the kinematic relations in the linear form as:

Nky _¢k(NkZO _Ckzo)_Cky = (NkyO _CkyO)
Ny, +¢k(Nkyo _CkyO) =Neo+ 24
Pky —¢,(Fo _CkZO)_Cky = (P _Cky())
F.+¢, (Pzwo - CkyO) =F.0tz,
(Nkyo JrM,(y0 — ZM@)N,W +(Nyoy+M, ,—2M, )N,

=Ny +Mp+Neg+ M7 —(Nyo+M, M, —(Npo+M_ )M,
(Byo + Ono —20,))B, + (B, + O,y —20,))F,.

= P2y + Oy + P2y + 02y~ (Byy + 040)0, — (Nyy + M0 )O,. (5.12)

It needs to be emphasized that the vertical displacement z; considered while deriving the

above equations is the vertical motion of the sprung mass at the roll center. The motions
of the mass center of the sprung mass, z, and )/, and their time derivatives, zand y., can

be obtained as:
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Gy = GyO + ¢s (GZO _RCZO); Gz = _¢s (GyO _Rcy
Z =z, andy, =(G,~Re)d,: Z =2 and ! = (G. ~Re.)g, (5.13)

Dt+Go+z, =G +z;

Since lateral motion of the sprung mass is ignored in this study, y'=0. Eq (5.12) is
solved to obtain expressions for the kinematic responses of the left- and right (k==L and R)
suspensions, which include the instantaneous coordinates of the joints and the wheel

camber angles, in terms of the generalized coordinates, such that:

. (e, — ZM_/y)[xzk - (gkoky +h.0,.)— (b =20, ) (P, + Zuk)]
¢ = ol (a, —c, (g, —20,)(e, —2M,)
L= (g 20l — (M, + fiM ) = (fy =2M )Ny +2,0)]
[Be (e, —2M,) ~ a, (f, ~2M D), =20 )(Py + 2,0+ (8,0 + 1,0,) — ]
1| +leth =200 - d, (g, - 20) [k =2M DNy + 2,0) + (M, + M) —x, ]
o7 Dy |+ (b, —ayd,)(g, —20, ), —2M,)
+a,c, (e, —2M ,)(h, —20,) (g, =20, )(f, —2M,.)]

(fi =2M ) (N o + 2,)
+eM,, +fiM, —x, }
(@, —c (g, — 20,)+x,, —(g,0,, + hkOkz):|
L —(h =20 )(Pep +2,4)

[, —b)(g, —20,)—c,(h, —20,) e, —2M, )N,y +2,1)

ta, [(hk =20 )(Fo +2,4) + (8,04, + 1,0, ) = X, :kek —2M,)
|~ % [ekMky +fiM . +(a, —c.)(e —2M,) - x;; :kgk -20,)

[(bk —-d, (g, _2Oky)+ck (A _201(2){

1
Nky :F
k

+a, (f, _ZM/(Z)[

(hy =20, )(Bo + Zuk):|_

b, —d —-2M -2M
[( nm i de o)+ 4l kZ){-" 8.0, + 1O, —xy,

(¢, —a e, —2M,)—e M, — f,{Mkz}
i +x, = (fy =2M ) (N o +2,0)

@, —boe, —2M)+a,(f, —2M ) g, —20,)(Pry +2.0)
—C [(fk —2M )Ny +2,)+ ekMky +fiM,. —x,; kgk - 20@) (5.14)
¢l 8,0, ~10. ~(c, ~a,)g, ~20,))e, ~2M,)

— ¢ (h, =20, ){
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where a1=Niy0-Ciy0; bimNizo-Ciz0; ck=Pioyo-Ciyo; dk=Piz0-Ciz0; ex=NigotMigo; i=NizotMico;
8=PiyotOno; hi=PieotOkc; Xu=Npg+ Mo+ Npg+ Mo X =B+ 04y + P2y +Opy s
and

D, =[a,(f, —2M ) —b, (e, —2M )I(g, —20,,) +[d, (g, —20,,) —c,(h, —20,.))(e, —2M )
The lateral displacements of the right and left wheel centers can be obtained from:

Yue = Cy = Choo (5.15)

5.2.4 Strut Deflection and Deflection Rate

The restoring force developed by each strut is related to the change in the strut length,
given by:

AL =1, |4, - B,y +(4.-B.)]" (5.16)
where /g is the initial strut length, assumed to be identical for the left and right struts. In
the above expression, (A, 4i:) and (By, Bi-) are the instantaneous coordinates of the

lower and upper strut mounts, which can obtained from the kinematics of the chassis and

suspension as:

/ /
Lo Lo

By, =B,y +4(Boy—Rey) ;s B.=—¢,(Byo—Re,)+Bey+2, (5.17)

where /o4 and [pp are the distances of the joints A4z and Py from point Oy (or A, and P,
from point Oy). The deflection rates of left- and right suspension struts are subsequently

estimated from the time derivatives of the displacement expression in Eq (5.16).
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5.2.5 Kinematics of Torsion Bar

Torsion bars or the antiroll bars are invariably employed in vehicle suspensions in
order to enhance roll stiffness and to reduce dynamic load transfers. An antiroll bar
couples vertical motions of the right and left wheels, and develops a resisting roll
moment under chassis roll or differential wheel motions. The kinematic motion of a

torsion bar thus involves spatial kinematic analysis, as illustrated in the Fig. 5.2.

Figure 5.2: Kinematics of the torsion bar

The torsion bar is assumed to be coupled to the chassis at points 7c; and Tcg, and to the
lower control arms at the points 7s; and Tsg, respectively. The instantaneous z-
coordinates of the chassis mounting points 7c; (k=L, R) are estimated from the kinematics
of the chassis as:

Te,. = —¢,(Tc,y — Rey) + Tep, + 2, (5.18)
The small angular deformation of the torsion bar 67 is determined from the changes in the

coordinates of the mounting points, as:

193



1
QT = L_[(TCLZ _TSLZ)_(TCLZO _TSL20)+(TCRZ _TSRZ)_(TCRZO _TSRZO)] (519)

T
where L7 is the effective length of the torsion bar between attachment points 7sz and 7cg.
The subscripts ‘z” and ‘0’ are used to represent the z- coordinates and the initial
coordinates, respectively.

Equation (5.19) can be further simplified to yield:

0, :LL[(TCLZ_TSLZ)+(TCRZ_TSRZ)]_29T0 (5.20)

T
where 67y is the initial deformation angle of the torsion bar arm with respect to the
horizontal axis of the reference coordinate system. The z- coordinates of the torsion bar
mounting points at the lower control arms Tsg, and Ts;,, are obtained from the linkage

kinematics, as:

Ts, =0, + llms (P.-0.)  k=RL (5.21)

oP
where /oz; 1s the length of the lower control arm between the torsion bar mounting point,

Tsg and the chassis joint Og.

5.3 Kineto-Dynamic Half-car Model

The equations of dynamic motion of the kineto-dynamic half-vehicle system, as
shown in Fig. 5.3 are derived using Lagrange’s method in a manner similar to that
described in Chapter 3 for the quarter-car kineto-dynamic model. The kinetic energy (7)

of the system is formulated as:

1 1 . 1 1 .
T=—m (2 +3)+ =L, +(Gy—Re Y m)ge += S my (32 +22 )+ = S 1o
2 2 2.5 2.5

(5.22)

194



o
\'
1@/&%

Fy

Figure 5.3: Kineto-dynamic half-car model with antiroll bar
where mg, m,z and m,; are sprung mass, and right- and left unsprung masses,
respectively. In the above expression, I, and 4 (k=R, L) are the mass moment of inertia
of the chassis and the right- and left wheel spindles about x- axis.
The potential energy of the system is expressed as:

1 1
U= Py Z(Ks (ALY +K,(Az,)" + K, (Vo _¢kRk)2)+5K¢beT2 (5.23)

k=R,L
where K; is the suspension spring rate, K, is the equivalent tire vertical rate, Ky is the
linear stiffness of torsion bar, K, is the tire lateral stiffness and R, are the effective radii
of the wheels. Moreover, Al; are the right- and left suspension spring deflections, as
described in Eq (5.16), and Az, are the right- and left tire deflections. The total energy

dissipated by the system, attributed to the linear strut and tire damping, can be derived as:

D :% > C.(al,) +% > C(Az,) (5.24)

k=R,L k=R,L

where C; and C; are the viscous damping coefficients of the strut and the tire,
respectively, and Aik denote the time derivatives of the right- and left strut deflections,

and Az, are the rates of right- and left tires deflection.

195



5.3.1 Equations of Motion:

The equations of motion for the kineto-dynamic model are formulated from the kinetic
(7), potential (U) and dissipative (D) energy functions described in Eqgs (5.22) to (5.24).
Assuming negligible contributions due to higher order derivative terms, the equations of

motion are obtained as:

msé‘v + z muk[j}uk

k=R.,L

N L0 - O
(Ix + (GZO _Rczo)zms )¢v + Z muk yuk yUk + Z quk ¢k ﬂ
k=R,L 5¢S k=R,L 0 ¢s
+ Z(T + T;isk + ]-;lsk) + 7;bs = (Gz - Rcz )(Fy + 981ms¢s)

ssk
k=R,L

. . Op, . Of
muRZuR+muR(yuR?.}Rj+1uxR(¢ ﬂj—i_ suR+ tluR+f;1uR+j;R+ tbuR=_9'81muR

R A-
ZuR aZuR

: .. 04
2/;]{}4_ Z quk[¢k a_fk]-i_ Z(ﬁsk_‘_fdsk_'_ tl.s‘k)+ tbs :_981mV

s k=R.L s k=R.L

. . Op, . O,
muLZuL+muL[yuL?.}LJ+quL(¢L ¢LJ+ et Sourt Sawr T S+ Sy =—9-81m,, (5.25)

ul aZuL

where fi and f;,x (=R, L) are the right- and left- suspension spring forces acting on the
sprung and unsprung masses, respectively, fzx and fz,x are the right- and left- damping
forces acting on the sprung and unsprung masses, respectively, and 7 and Ty are the
moments due to right- and left- suspension spring and damping forces, respectively. In
Eq (5.25), fus and fy, are the vertical tire forces acting on the sprung and unsprung
masses, respectively, and Ty are the moments imposed on the sprung mass due to the
right- and left- tire lateral compliance, respectively. Moreover, f; are the tire forces, and
fis and fip are the forces transmitted to the sprung and unsprung masses, and 7}, is the
torque transmitted to the sprung mass due to the torsion bar. Assuming linear spring rates,
the suspension spring forces f; and f;, are related to A/, as:

fo = KAl 8(%1,() ;and f, , = K.Al % k=R, L (5.26)
Zuk

S
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The torque imposed on the sprung mass due to the right- and left- suspension springs, T
1s related to Al; and chassis roll, as:

T, =KAl a%lk) k=R, L (5.27)

Similarly, f; and fu. the left- and right suspension damping forces acting on the sprung
and unsprung masses, respectively, and T,y, the torque due to the damper forces acting

on the sprung mass, are obtained from:

fdsk = CsAik M ;fduk = CvAjk M; and7}, = CsAjk M k=R,L (5.28)
A aZs l aZuk ‘ a¢s

The vertical forces due to the torsion bar exerted on the sprung mass, and left- and right

unsprung masses, fi»s and fiuk, and the torque on the sprung mass, 7y, are obtained from:

00 00 00
Jons = K0 aTT 5 oo = KiOr aZ_T; and T}, = K,0; a_¢T k=R, L (5.29)
S uk S

5.3.2 Wheel Hop Conditions

The nonlinearity associated with potential loss of contact between the ground and the
tire (wheel hop) can also be incorporated in the kineto-dynamic model. The forces due to
the tire viscous dampers, and the lateral and vertical compliance are formulated
considering four different possible conditions; namely: (i) both the tires are in contact
with the ground (z,.-z9.<0, and z,z-z9r<J,), where 0, is the static tire deflection; (ii) left
wheel in contact with the ground, while the right wheel loses the ground contact (z,.-
zor<0, and z,z-zpr>0,); (iii) right wheel is in contact with the ground, while the left wheel
loses the ground contact (z,;-zp;>d, and z,z-zpr<d,); and (iv) both wheels lose contact

with the ground (z,.-z9;>0, and z,z-zp;>0,,):
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0y~ R 8(y, —$ R
Jusi =Ky _¢kRk)(yuk—¢kk) s Sk =KWt _¢kRk)M ;

0z,

for z,;-z9; <0, and z,zr-zpr<0,

for z,;-z91 <0, and z,z-zpr>0,,

Oz,
T;lSk ) Ktl(yuk _¢kRk)a(y%¢¢k]ek); and -}ptk = KtAZ[k +C;A2tk 5 k:R, L
oy, — R
Jusz=05 fu =K,V —¢LRL)(yuLT¢LL)
oy, — R
I,x=0; T,,=K,(y, —¢LRL)M
09,
oy, —$ R
ﬁluR =0 ) f;lth = K,;(yuL - ¢LRL)(‘);“L8—¢LL)
ZuL
fx=0; fu =KAz, +CAz, k=R, L

0 -0, R
Juse =Ky (Vur — ¢RRR)(yuR—¢RR) 5 ftlsL =0

Oz,
0 —@.R
Tin =K, (Vur _¢RRR)(yuRa—¢¢RR) VIS 0
0 —d.R
Jinr =K (Vg _¢RRR)(yu%—¢RR) 5 ftluL =0
ZuR
Jsr=K Az +CAz s f,, =0 k=R, L

fui=0; T,,=0; f,.,=0; f, =0 k=R, L forz,.-zp;>0, and z,g-zor>J,,

for z,;-z9;>0, and z,z-2pr<0,

(5.30)

5.3.3 Kineto-Dynamic Suspension Model with Asymmetric Damping

Influences of suspension damping asymmetry on the kinematic and dynamic responses
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of the proposed half-car model is evaluated by considering asymmetric viscous damping
forces acting on the sprung and unsprung masses (fus, faux)- The damping forces are
described through bilinear and piece-wise linear force-velocity models as in the case of
quarter car model. The damping forces developed by two-stage asymmetric dampers in
compression and rebound, fyr-. and fyjr.-, and the corresponding moments imposed on the

forces on the sprung mass, Ty and Ty (k=R, L) are formulated as:



/. djkc =

/. djk—r —

Tdsk—c =

T dsk-r —

quggﬁj a, <Al <0

Z ik .
) j=su; k=RL
(ac +/10(Aik —ac))CcM Alk <a.;
0z
pC AL aa(é—lk) 0<AlL <a,
ij .
) j=su, k=RL
(o, + 4, (Al —a,))pC. 6(g§l J a <Al
Jk
C.Al a(aiﬁlk a, <Al <0
s _ k=RL
(ac + A, (Aik _%))Cc 8((3%1,() Aik <ag
qug%%Q 0<Al <a,
8 , k=RL
(e, + A,.(Al - at,))pC, %%) a <Al;

(5.31)

where C. is compression damping coefficient, p is damping asymmetry ratio, . and a,

are the transition velocities in compression and rebound, respectively, and 4. and 4, are

the respective damping reduction factors. The above equation, together with the equation

of motion, Eq (5.25), describe the kineto-dynamics of the half-car model with double

wishbone type of suspension and two-stage asymmetric damper.

5.4 Roll-plane Dynamic Model of a Vehicle

The dynamic motions of the vehicle in the roll-plane are generally described by a 4-

DOF model as shown in Fig. 5.4 [102, 135]. The responses of the proposed kineto-

dynamic half-car model can be conveniently compared with this conventional roll-plane

model to evaluate the influences of linkage kinematics. The equations of motion

describing the coupled vertical and roll motion are formulated as:
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msés +JFSL +f;R = _9'81ms
(Ix + (hcg - hrc)z ms )¢v + W]psL - I/Vf;R = 9817’}’1? (hcg - hrc)¢

m,Z,, — fy + fi, =—9.81m,
Mz p—fip+ fir =—9.81m, (5.32)

where W is the half suspension track width, which is generally considered to be identical
to half tire track width, A., and A,. are the mass center and roll center heights of the
sprung mass, respectively. The roll motion of the chassis is thus assumed to occur about
the roll center. In the above equation, f;; and fz represent the left- and right- strut forces,
and f;; and f;r are the left and right tire forces, respectively. Assuming linear suspension

properties, f;; and fsg, can be obtained as:

f.‘vL = Ceq(zs +W¢v _Z.ML)—'_Keq(ZS + W¢s _ZuL)
fix=C. (- W —z,)+K, (z, - W, —2,) (5.33)

where K., and C,, are the equivalent spring and damping rates, respectively, which are
obtained from the kinematic and force analysis of the double wishbone suspension as
illustrated in Chapter 3. The equivalent spring and damping rates are considered in order
to account for the kinematic effects of suspension struts mountings coordinates with

respect to the unsprung mass center (Fig. 5.2).

Ix | *ZS
ms |

R AL oy
ch

_* Zi _*ZBR he

fr

Mu Mur

K. C: hre K Ci

+ ZoL *ZOR

Figure 5.4: Conventional roll-plane half-car model
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Considering the wheel hop conditions, described in section 5.3, the left- and right tire

forces f;; and f;z are formulated as:

Jo=C =)+ K (2,,—2,);
Jir = CGup=Zop) + K, (2,5 =2z for z,;-29.<0, and z,r-2or<0.

J.=C(z,—2,,)+K,(z,,—2y); fir=0; forz,-zp1<0, and z,g-zgr>J,,
S =05 fip = CCup = Zop) + K, (2,2 = 2p) 5 fOr Zu1-201>61, and zur-20r<0u
f.=0; f.=0; for z,;-z9;>0, and z,z-z9;>0,) (5.34)

where K; and C; are the linear tire spring and damping rates, respectively. In the dynamic

model, the lateral motion of chassis is assumed to be caused by the chassis roll, .

5.5 Kinematic Response Analyses and Suspension Geometry Synthesis

The nonlinear kinematic formulations, presented in section 5.2.2, are solved using
Newton-Raphson method to obtain kinematic responses of the half-car model,
particularly the variations in the bump and roll camber angles and the wheel track under
either vertical motions of the wheels or roll motion of the chassis or a combination of
sprung and unsprung masses motions. The simulations are performed for joint
coordinates of a typical double wishbone suspension, presented in chapter 2 [146].
Considering the symmetry between left and right suspensions, the coordinates of linkage
suspension joints alone are defined: Mz(0.430, 0.818), Nz(0.644, 0.852), Or(0.365,
0.360), Pr(0.743, 0.347), Cr(0.787, 0.452), Ar(0.660, 0.349) and Bx(0.615, 0.920). The
left suspension is considered to be symmetric to the right suspension about a vertical line

through the mass center of the vehicle body. Initial camber angles of the wheels are

201



assumed to be zero, since the analyses are concerned with variations in the responses

alone.

5.5.1 Kinematic Response Analyses

The kinematic responses are evaluated in terms of: (i) the bump camber angles under
vertical displacement inputs at the wheel centers with fixed chassis; (ii) roll camber
response to chassis roll input; and (ii1) variations in the bump/roll camber angles under
simultaneously applied wheel centers displacements and chassis roll inputs. The wheel
centers with fixed chassis was subjected to 100 mm peak harmonic jounce and rebound
motion at a frequency of 1 Hz, such that z,z=z,,=100sin(2z¢f) mm and z;= 0. The analyses
were performed considering two different types of simultaneous harmonic inputs,
namely: (i) relatively large chassis roll coupled with smaller wheel bump motions
(@¢=5sin(27t)°; z,z= z,;=50sin(2zt) mm; and z,=0); and (ii) relatively large wheel bump
motions coupled with smaller chassis roll motion (#=3sin(27¢)°; z,z= z,,=100sin(2xt)
mm; and z= 0). The responses of the right- and left- wheels to simultaneous harmonic
inputs, thus defined, can be related to the outer and inner wheels of a vehicle negotiating
a corner. In the first half of the simultaneous harmonic inputs, both the wheels undergo
jounce, while the chassis undergoes a positive (clockwise) roll motion. This could be
related to the outer (right) and inner (left) wheels undergoing jounce while negotiating a
corner (left turn of the vehicle). In a similar manner, both the suspensions undergo
rebound motion during the second half of the harmonic inputs, while the chassis
undergoes a negative (counterclockwise) roll, which corresponds to the outer (left) and

inner (right) wheels undergoing rebound while negotiating the corner.
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Figure 5.5 compares the bump camber responses of the right and left wheels under
wheel vertical excitations alone (z,z=z,,=100sin(2zf) mm), and combined wheel
displacement and chassis roll (¢=3sin(2z¢)°). Under vertical wheel displacements alone,
both the wheels exhibit negative camber angle during jounce travel, which approach
approximately -3.4° at 100 mm jounce. During rebound, the wheels exhibit positive
camber with a maximum of 1.1°, suggesting asymmetric variations in jounce and
rebound. Under the simultaneous wheel vertical and chassis roll inputs, the camber angle
response of the right wheel in jounce reduces considerably, which is attributable to the
compensating effect of the positive roll camber due to chassis roll. The right wheel under
jounce displacement coupled with simultaneously applied positive chassis roll can be
considered as the outer wheel of a vehicle negotiating a corner and undergoing a jounce
motion. The camber angle of the right wheel in rebound in a similar manner would
represent the inner wheel of the vehicle. It can be further seen that the net camber angle

response of the right wheel in rebound tends to be negative with a peak value near -2°.

The left wheel in jounce under the combined wheel vertical and chassis roll input,
would represent the inner wheel of a vehicle negotiating a corner and undergoing jounce.
It can be observed from the figure that the net camber angle of the left wheel in jounce
goes further negative with a peak value near -4.5°. The left wheel under rebound travel
with simultaneously applied negative chassis roll input represents the outer wheel of a
vehicle negotiating a corner and undergoing rebound. The figure shows that the net
camber angle of the left wheel in rebound under simultaneous inputs increases
considerably as compared to the bump camber, and exhibits a peak response near 4°. It is

widely suggested to minimize the net wheel camber of the outer wheel of a vehicle

203



negotiating a corner due to the greater load transfer to these wheels to achieve reduction
in the camber thrust [5]. The lateral load transfer to the outer wheels would yield greater
lateral force developed at the tires due to camber angle (camber thrust). A suspension
synthesis thus needs to consider the net camber angle responses of the right- and left-
wheels undergoing jounce and rebound, respectively, under simultaneous inputs due to
wheel motion and chassis roll. The results in Fig. 5.5 suggest that the net camber angle

response of the left-wheel in jounce and rebound is considerably large.
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Figure 5.5: Variations in camber angles of: (a) the left; and (b) the right wheels under

wheel vertical displacement inputs alone (z,z, z,;=100sin(2z¢)) with fixed chassis, and
coupled with 3° chassis roll input (@¢=3°sin(2xt), z;= 0)

Figure 5.6 demonstrates the roll camber responses of the right and left wheels under
chassis roll input alone, and under simultaneously applied wheel vertical displacement
inputs (z,z, z,. =50sin(2zt) with z= 0 and ¢= 5°sin(2z¢)). Under a positive chassis roll,
the right wheel exhibits positive camber with peak value of nearly 3°, while the left wheel
exhibits a negative camber angle with peak value approaching nearly -4°. The camber

angle responses to chassis roll are thus asymmetric with respect to the chassis roll, with

peak roll camber under positive chassis roll (3°) being less than that under the negative
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chassis roll (-4°). The responses to simultaneous inputs, presented in Fig. 5.6, illustrate
similar significance of the chassis roll as that observed in Fig. 5.5. The right wheel
exhibits decrement in the net camber angle, while the left wheel exhibits increment in the

net camber angle under simultaneous inputs as compared to those under the chassis roll

alone.
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Figure 5.6: Variations in camber angles of: (a) the left; and (b) the right wheels under a
chassis roll input alone (¢ =5°sin(2x¢)) and chassis roll input coupled with wheels
vertical displacements, z,z, z,;, =50 sin(27xt).

5.5.2 Sensitivity Analysis

A reduction in lateral packaging space of the suspension could be realized through
variations in y- coordinates of joints Or and My in a positive direction, while a similar
change would be necessary for joints O; and M; to maintain a symmetry. A sensitivity
analysis is thus initially performed out to study the influences of changes in the
suspension joint coordinates on the kinematic responses, including the roll center height,
bump and roll camber angles, and the track width variations. The analyses are performed
by considering #40 mm variations in y- and z- coordinates of various joints, and

responses are evaluated in terms of: (i) variation in the roll center height with respect that
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of the nominal suspension geometry, A(RCH); (ii) peak bump camber angles under 100
mm of jounce and rebound, A(¢r)iou and A(¢r)web; (i77) peak variations in wheel track
width under 100 mm of wheel jounce and rebound, A(TW)jou, and A(TW).e; and (iv)
peak roll cambers of right- wheel under positive, and negative chassis roll of 5°. The peak
net camber angles of the right wheel in jounce, A(¢g)iou, and the left wheel in rebound,
A(@R)reb, are further evaluated under simultaneous 100 mm wheel displacements and 3°
chassis roll. The responses were evaluated with change in a single coordinate at a time,
while all other joint coordinates were held as nominal. The variation in the y-coordinate
of joint Pg, however, was limited to a negative change only, due to limited lateral space
between the lower control arm joint (Pg) and the wheel center (Cg). The variation in a
given coordinate, however, is considered symmetric for both the right- and left-side

suspension links.

The results of the sensitivity analysis are summarized in Table 5.1. The variation in a
joint coordinate along the y- or z- axis is indicated by the subscript of the joint, while the
superscript ‘+’ or ‘-’ refer to the increase or decrease in the coordinate. For instance,
notation O," in Table 5.1 denotes a 40 mm increase in y- coordinates of joints O and O;
with respect to the nominal values. It can be seen that a positive change in y- coordinates
of joints O causes reductions in the peak jounce camber and track width under wheel
vertical displacements, peak roll camber under negative chassis roll, and peak jounce
camber angle under simultaneous inputs, with marginal increases in the peak rebound
camber angle and track width responses under wheel vertical displacements. A positive

change in y- coordinate of joint M causes a marginal reduction in the peak rebound

camber angle and track width under wheel vertical displacements alone, and the peak roll
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Table 5.1: Sensitivity of the kinematic responses of the half-car model to changes in the y and z coordinates of the linkage joints under
vertical wheels displacement, chassis roll, and simultaneous wheels displacement and chassis roll inputs.

Excitation | Static Wheel vertical displacement Chassis roll Simultaneous
Parameter | 2RCH) [ A(duiou | At | ATW)jou | ATW)ieh | Aldur)ron | AC-@urdron | A(durdion | A fudren
(mm) | (deg) | (deg) (mm) (mm) | (deg) (deg) (deg) | (deg)
Nominal 0 -3.19 1.14 5.9 -22.2 3.08 -4.05 -2.32 3.91
o, 4.7 -3.07 1.38 4.9 -25.5 3.13 -3.94 -2.10 3.99
O, -3.9 -3.27 0.95 7.2 -19.6 3.04 -4.15 -2.55 3.82
0." 123.2 -4.16 2.44 2.1 -39.2 2.36 -3.22 -3.62 4.63
0., -125.4 -2.16 0.19 -4.2 -5.3 0.21 -2.16 -0.97 3.19
Py 4.1 -3.13 1.35 5.2 -24.9 3.11 -3.96 -2.21 3.98
P. -116.7 -2.32 0.21 -3.1 -5.1 3.72 -4.88 -3.24 4.51
P 98.5 -3.92 2.25 17.0 -36.8 2.53 -3.35 -1.23 3.21
M, 13.9 -4.19 1.03 10.7 -21.3 2.55 -4.04 -4.32 3.95
M, -9.7 -2.52 1.26 3.8 -22.8 3.44 -4.06 -1.06 3.88
M. -75.9 -1.19 -0.40 -0.5 -10.4 4.44 -5.56 -4.69 4.88
M; 68.6 -5.09 3.15 15.1 -31.4 1.81 -2.74 0.41 2.56
N, -9 -2.62 1.24 4.0 -22.7 34 -4.07 -1.28 3.88
Ny 12.6 -3.96 1.05 9.6 -21.5 2.65 -4.03 -3.78 3.96
N." 58.7 -4.79 2.92 13.6 -30.4 2.01 -2.9 -4.69 4.88
N, -102.7 -1.28 -0.44 -0.3 -9.7 4.40 -5.65 0.42 2.56
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camber of the right wheel under positive chassis roll, while all other responses tend to be
generally higher. The results suggest that suspension synthesis to achieve reduction in the

lateral space thus, necessitates compromises among the performance measures.

The results in Table 5.1 further show that changes in y coordinates of all the joints
yield relatively smaller influence on the A(RCH) response, while variations in the z-
coordinates yield substantial changes in A(RCH), irrespective of the direction of change,
as it would be expected. Positive changes in z- coordinates of lower control arm-chassis
joint O and upper control arm-spindle joint &, and negative changes in z-coordinates of
lower control arm-spindle joint P and upper control arm-chassis joint M yield
substantially higher roll center. Opposite changes in these coordinates yield an opposing
effect on the roll center height. The wheel track variation response to wheel vertical
displacements seems to be most sensitive to positive variations in z-coordinates of joints
O and N, and negative variations in z-coordinates of joints M and P. Negative changes in
z- coordinates of joints O and N, or a positive changes in z- coordinates of joints P and M
tend to reduce the wheel track variations in both jounce and rebound, while these changes
yield substantially lower roll center height. These results suggest the need for a design

compromise between the roll center height and wheel track variations.

The positive and negative changes in a coordinate, in general, yield an opposing
influence on the selected performance measures except for the peak wheel track
variations. For example, a positive change in z- coordinates of joints O yield higher peak
bump camber angles in both jounce and rebound, while a negative change causes

reduction in both the responses.
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It can be observed that the changes (positive or negative) in the y or z- coordinates that
cause reduction in peak bump camber angle also results in an increase in peak roll
camber response, except for the negative changes in the z- coordinates of the lower
control arm-chassis joints O. For example, a positive change in y- coordinates of joints O
yields lower peak jounce camber but higher rebound camber, while an opposing effect on
the roll camber is evident from Table 5.1. These results further suggest that the bump and
roll camber angle responses are conflicting with respect to a change in the coordinates of
the joints. A negative change in z- coordinates of joints O, however, could yield only
small variations in both the bump and roll camber angle responses, while the

corresponding roll center height decreases substantially.

The results further show an interesting coupling between the net camber angle, and
roll and bump camber responses. Notable reductions in the peak net camber angle during
rebound occur for negative changes in vertical coordinates of joints O, P, M and N.
Similar degrees of reductions also occur in peak roll camber under negative chassis roll,
and in peak rebound camber under wheel vertical displacements. While the results from
the sensitivity analysis could be interpreted to derive design guidelines in view of the
performance measures and the inputs considered, the need for deriving a design
compromise is also evident, particularly for realizing minimal variations in bump/roll

camber and wheel track responses over the entire range of the inputs.

5.5.3 Selection of Optimal Joint Coordinates

The results of the sensitivity analysis suggest that the joint coordinates influence the
kinematic performance measures significantly in a highly complex manner, while the
influences on different measures are generally conflicting. Synthesis of a suspension for
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achieving reduction in the lateral packaging space would thus involve compromises
among the bump/roll camber, roll center height and track width variations. It is thus
desirable to seek optimal joint geometry that could yield an acceptable design
compromise among the conflicting kinematic performance measures while achieving

reduction in the lateral packaging space.

A suspension synthesis objective is thus formulated to identify joint coordinates that
would yield minimal variations in the bump/roll camber angle and the track width under
wheel vertical displacement and chassis roll motions with constrained lateral space. A

weighted performance index is thus formulated as:

F@)=wFHE©)+w,F0)+wF () (5.36)

where F;(v) and F>(v) are the sum of squares of variations in the bump camber, and
wheel track over the entire range of wheel vertical travel, respectively, and F3(v) is the
sum of the squares of the roll camber response over the entire range of chassis roll, such

that:

¢J max
umax

F0)= [(Ag)dz, . Fy() = ZTEATW)zdzu cana ) = [(Ag)dg,

Z,

(5.37)

where the integration limits (Zumin, Zumax) and (Pumin, Pomax) refer to minimum and
maximum wheel displacements and chassis roll inputs, respectively. In the performance
index in Eq (5.36), w;, w, and w; are the weighting factors of individual measures, and v
is the vector of design variables comprising the y- and z- coordinates of the joints M, N, O
and P. The weighted performance index was minimized using the gradient based

sequential quadratic programming algorithm available in Matlab Optimization Toolbox
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[151] to seek optimal joint coordinates, while a reduction in the lateral packaging space
was sought by introducing inequality constraints. The lateral packaging space is
expressed in terms of lateral distance between the y- coordinates of the joints O and M,
and that of the wheel center C, while the reduction required in the lateral space of the
optimal synthesis is expressed by fractional factors ¢; and o, of the nominal suspension
geometry, such that:

(CyO_M)I/O) < q(CyO _MyO)

, (5.38)
(CyO_ OyO) < JZ(Cy() - OyO)

where M and O), are the y- coordinates of the joints M and O, respectively, identified

from solutions of the minimization problem. The difference between the roll center
heights of the optimal and nominal suspensions with respect to the corresponding static

positions was also limited through a limit constraint with f; and 5,, being the lower and

upper limits, respectively, such that: f <A(RCH )< f3,

The nominal coordinates were taken as the initial design vector, and y- and z-
coordinates were bounded within £80 mm and +30 mm of the nominal values with the
exception of y-coordinate of joint P, which was bounded within -80 and +20 mm. The
solutions of the minimization problem were observed to be strongly dependent upon the
weighting factors used in the performance index. The weighting factors were initially
chosen to obtain nearly equal contributions of each measure to the weighted performance
index. The subsequent solutions, however, were attained for different combinations of the
weighting factors. Considering the comparable magnitudes of the camber angle and track
width variations of the nominal geometry, identical weighting factors for each component

(w;/=w,) provided acceptable solutions for joint coordinates: M'(0.480, 0.838), N'(0.714,
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0.862), 0'(0.415, 0.392) and P'(0.750, 0.377). These coordinates resulted in
approximately 10% and 12% reductions in the lateral space for the lower and upper
control arms, respectively. The robustness of the optimal design, however, could be

achieved by considering variations in the weighting factors.

The kinematic responses of the identified suspension synthesis are compared with
those of the nominal geometry suspension to illustrate relative benefits of the synthesis.
Figure 5.7 compares wheel track variation responses of the optimal and nominal
suspension geometries under wheel vertical displacement inputs alone and simultaneous
chassis roll and wheels displacements. The results suggest that the optimal synthesis
yields lower wheel track variation during wheel jounce under wheels displacement input
with only slight increase during wheel rebound beyond 75 mm. Under the simultaneous
inputs, the optimal synthesis also yields lower track variations in jounce but higher in
rebound above 50 mm compared to that of the nominal geometry suspension. Figure 5.8
compares the camber angle variation response of the suspensions under wheel vertical
motion with and without the chassis roll. The results show that the optimal synthesis
yields considerably lower bump and net camber angle variation compared to those of the
nominal suspension over the entire jounce travel of the wheel under both types of
excitations. The bump and net camber responses of the optimal synthesis in the rebound

region are comparable with those of the nominal suspension.

The roll center height of the optimal synthesis in the static position was obtained as
106.5 mm, which represents only 1 mm deviation from that of the nominal geometry
suspension. Although, the optimization method proposed here resulted in a slight

increment in the roll camber responses, with beneficial effects in terms of reductions in
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the bump camber and wheel track variation in jounce coupled with 10% reduction in the
suspension lateral packaging space, the identified coordinates may be considered as an
acceptable design compromise. Further, the total roll response of vehicle under handling

maneuvers can be controlled by using anti-roll bars.

100 5, 100 R
. \ s
—Nominal \ — Nominal N
-=--Optimal 1 -=-Optimal \
50 ] 50 \
£ ) B "
é 1, é Il
§ o g 0
-50 / -50 o
/7" /"7
-10 -10Q=
%o -20 -10 0 10 1093 -20 -10 0 10
Wheel track variation (mm) Wheel track variation (mm)
(a) (b)

Figure 5.7: Comparisons of variations in wheel track responses of the optimal and
nominal geometry suspensions under wheel vertical travel inputs: (a) without chassis roll;
and (b) with chassis roll
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Figure 5.8: Comparisons of variations in camber angle of the right wheel of optimal and
nominal geometry suspensions under wheel vertical travel inputs: (a) without chassis roll;
and (b) with chassis roll input

Although 10 and 12% reductions in the lateral space was achieved in terms of change
in the y- coordinates of lower and upper control arms, reduction in the length was limited

to that of lower control arm. The length of lower control arm is seen to be decreased by
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12%, while that of the upper control arm is increased by 12%. This suggests that
minimizing the bump/roll camber angle may not be feasible with reduction in the control

arm lengths, and a compromise in the vertical space may be necessary.

5.6 Kineto-dynamic Responses of the Roll-Plane Vehicle Model

The kineto-dynamic formulations presented in Sections 5.3 are solved to determine the
kinematic and dynamic responses of the vehicle model to transient excitations
representing idealized ‘bump’ and ‘pothole’ excitations, as described in Section 3.6.3.
The model parameters used in simulation are summarized in Table 5.2. The results

attained are discussed in the following sections.

5.6.1 Influences of Suspension Linkage Kinematics

Dynamic responses of the proposed kineto-dynamic roll-plane vehicle model are
compared with those of the conventional model so as to illustrate the influences of
suspension kinematics on the dynamic responses. The transient responses of both the
models to idealized bump and pothole inputs of 50 mm amplitude at the right wheel
(obtained by numerical solutions of kineto-dynamic formulations) are evaluated at a
forward velocity of 3 m/s, in terms of: sprung mass acceleration at the mass center (cg);
sprung mass roll angle; and left- and right tire force ratios. The results presented in Figs.
5.9 and 5.10 suggest considerable contributions of the kinematics to the dynamic
responses.

The peak sprung mass acceleration responses of the conventional model (section 5.4)
with equivalent spring and damping rates are lower than those of the kineto-dynamic

model under both bump and pothole type excitations, as seen in Fig. 5.9 (a).
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Table 5.2: Vehicle and suspension data

Parameter Value
Sprung mass () 878.76 kg
Sprung mass moment of inertia about x- axis (/) 247.00 kg-m®
Unsprung mass (m,g and m,,r) 42.27 kg
Unsprung mass moment of inertia about x- axis (/) 1.86 kg-m’
Suspension spring stiffness (Kj) 38404 N/m
Suspension damping rate (Cy) 3593.4 Ns/m
Tire vertical stiffness (K;) 200 kN/m
Tire damping rate (C;) 352.27 Ns/m
Tire lateral stiffness (K}) 100 kN/m
Tire effective radius (R) 0.35m
Torsion bar stiffness (K) 560 Nm-rad
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Figure 5.9: Comparisons of sprung mass responses of kineto-dynamic and conventional
roll-plane models under idealized bump and pothole type excitations (Zgu,==50 mm): (a)
vertical acceleration; and (b) chassis roll angle.

The acceleration responses of the kineto-dynamic model to bump and pothole excitations

are asymmetric, as it was observed in the quarter-car model responses (Fig. 3.8).

Furthermore, the oscillations in the kineto-dynamic model responses occur at a slightly

higher frequency than that of the conventional model responses. The peak chassis roll

angle response of the kineto-dynamic model is also slightly higher than that of the

conventional model, while the conventional model exhibits higher second peak in the roll

angle response, as seen in Fig. 5.9 (b). The results also suggest a slightly higher roll
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frequency and roll damping of the kineto-dynamic model in comparison to the
conventional roll dynamic model. Slight increase in the vertical frequency (attributed to
an increase in the effective spring rate) was also observed in the kineto-dynamic quarter-
car model.

The tire force ratio responses of left- and right wheels of the conventional and the
kineto-dynamic model to bump and pothole inputs of =50 mm amplitude are compared in
Figs. 5.10 (a) and (b), respectively. The results suggest that inclusion of suspension
linkages in the dynamic model affects the left tire force ratio response significantly under
both bump and pothole inputs. The kineto-dynamic model response during the excitation
period appears to be more nonlinear than that of the conventional model, which can be
attributed to suspension linkages kinematics and tire lateral compliances. The peak left
tire force of the kineto-dynamic model under bump and pothole inputs are slightly greater
than that of the conventional model. The right-tire force response of the kineto-dynamic
model is comparable to that of the conventional model, while the oscillations in the

kineto-dynamic model response occur at a slightly higher frequency.
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Figure 5.10: Comparisons of tire force ratio responses of kineto-dynamic and
conventional roll-plane models under idealized bump and pothole type excitations
(Zomax=250 mm) of: (a) the left; and (b) the right tires.
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5.6.2 Effects of Optimal Suspension Geometry

The above results suggest notable contributions of the suspension kinematics on the
dynamic responses. Variations in suspension joint coordinates are thus expected to
influence the dynamic responses of the vehicle, as it was observed for the quarter vehicle
model. The optimal suspension synthesized in section 5.5.3 on the basis of kinematic
responses to wheel vertical displacement or chassis roll is employed in the kineto-
dynamic model to study the effects on the dynamic responses. The kinematic and
dynamic responses of the kineto-dynamic half car model with the optimal joint
coordinates are compared with those of the model with nominal joint coordinates in terms
of: sprung mass acceleration; chassis roll angle; normalized load transfer (load transfer
normalized by the total wheel load); and variations in the camber angle and wheel track
under idealized bump and pothole inputs (zpmu—+50 m; forward velocity=3 m/s) applied
at the right wheel. The results presented in the Figs. 5.11 to 5.13 are also discussed in
view of the optimization method used in the study.

The results in Fig. 5.11 (a) show that the kineto-dynamic model with the optimal joint
coordinates yields lower peak acceleration responses compared to the model with
nominal coordinates under bump and pothole excitation. The peak acceleration response
of the model with optimal coordinates is approximately 2.00 m/s*, which is 11% lower
than that of the model with nominal coordinates. The peak roll angle responses of the
kineto-dynamic model with optimal joint coordinates under idealized bump and pothole
excitations are also slightly lower than that those of the model with nominal suspension
geometry. The magnitudes of second peak in roll angle, however, tend to be slightly

higher for the optimal suspension geometry. The lower first peak is attributed to lower
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effective roll stiffness, while the higher second peak is due to lower roll damping of the
model with optimal coordinates. The results in Fig. 5.11 (a) and (b) suggest that the
optimal coordinates selected on the basis of kinematic response alone cause significant
change in the effective spring and damping rates, which could influence the ride and

handling dynamics of the vehicle considerably.
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Figure 5.11: Comparisons of sprung responses of kineto-dynamic model with nominal
and optimal joint coordinates under idealized bump and pothole type of excitations
(Zomax=%50 mm): (a) vertical acceleration; and (b) chassis roll angle.
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Figure 5.12: Comparisons of responses of kineto-dynamic model with nominal and
optimal joint coordinates under idealized bump and pothole type excitations
(Zomax=t50mm): (a) normalized load transfer; and (b) wheel track variation
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Figure 5.12 (a) shows the lateral load transfer response of the kineto-dynamic model
with nominal and optimal joint coordinates. The peak load transfer responses of both the
models are generally lower under a bump input than under the pothole input (the peak
magnitudes of 0.18 and 0.28 under bump and pothole inputs). This is mainly attributed to
the larger total tire force (sum of left- and right tire forces) under bump input than that
under the pothole input. Under the bump input, the tire spring undergoes compression
initially, while under the pothole input it experiences expansion. Both nominal and
optimal joint coordinates yield comparable responses during the period of input, while
the model with nominal coordinates yields slightly higher peak responses during the free
oscillations. Variations in wheel track responses of the model with nominal and optimal
joint coordinates follow the similar trend observed in the sprung mass roll angle, as seen
in Fig. 5.12 (b).

The peak camber angle variation responses of both the wheels with optimal joint
coordinates are considerably lower compared to those of the model with nominal
coordinates, particularly the first peaks, under both bump and pothole type inputs as
shown in Figs. 5.13. The second peak in camber variation response of the model with
optimal joint coordinates, however, is higher compared to that with the nominal
coordinates. Considering that the magnitudes of the second peaks in camber variation
responses are significantly lower, it may be deduced that the optimization method
adopted in this study also yields beneficial effects under transient excitations. The results
in Figs. 5.13 (a) and (b) suggest that the left wheel exhibits higher camber angle response
than the right wheel. It needs to be noted here that the right wheel undergoes a vertical

displacement relative to the chassis, while the vertical motion of the left wheel (due to
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tire spring compression) is very small. The net camber angle variation of the right wheel

is thus considerably lower.
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Figure 5.13: Com;gzzisons of camber angle variations of kineto-(cli)})fnamic model with
nominal and optimal joint coordinates under idealized bump and pothole type excitations
(Zomax=%50 mm): (a) the left; and (b) the right wheel.

The results in the Figs. 5.11 and 5.12 (a) suggest that the suspension kinematics
contributes considerably to the dynamic responses of the proposed half-car model,
particularly due to variations in the effective spring and damping rates. The suspension
geometry factor y that relates the effective spring rate to the actual spring rate of the
suspension with the optimal joint coordinates was estimated as 0.54 (Section 3.3), which
is lower than that of the nominal geometry (0.59). Apart from the linkage/joints
geometry, the variation in the wheel rate would also depend upon the strut mounting
locations. The influences of variations in the strut mounting locations are thus
investigated by varying the y- coordinates of the upper- (B,) and lower- (4,) strut mounts
in the positive and negative senses by 50 mm. The changes in the coordinates of the

optimal geometry suspension were realized individually, while maintaining the other

coordinates at their nominal positions (optimal joint coordinates selected in section 5.4).
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Furthermore, the optimal upper and lower control arms joints coordinates selected in the
previous section were considered for the study. Figures 5.14 and 5.15 illustrate effects of
variations in the lower and upper strut mounts location on the sprung mass acceleration
and roll angle responses of the kineto-dynamic model under an idealized bump input of
50 mm amplitude at the right wheel.

A negative change in y- coordinate of the lower strut mount (4,-) results in significant
increase (in the order of 30%) in the sprung mass vertical acceleration and roll angle
responses of the kineto-dynamic model as seen in Figs. 5.14 (a) and (b). The vertical and
the roll oscillation frequencies increase considerably, which suggests that reducing the
distance of the lower mount from the chassis joint increases the effective wheel rate. On
the other hand, a positive change in the strut lower mount location causes reduction in
these responses and the oscillation frequency. Variations in the y- coordinate of the strut
upper mount, however, cause relatively less significant influences on the sprung mass
acceleration response, as seen in Fig. 5.15 (a). The sprung roll angle response is almost
insensitive to variations in the upper strut mount location. The results thus suggest that
the dynamic response of the roll-plane vehicle model are highly sensitive to the lower
strut mount coordinates, which demands considerable attention during suspension
synthesis.

The influences of variations in the strut mounting locations on the camber and wheel
track variation responses were also evaluated, although the results are not presented. It is
evident from the results in Figs. 5.11 to 5.15 that the kinematic and dynamic responses
are strongly influenced by the suspension joint coordinates and strut mounts. The

selection of optimal coordinates thus involves study of both kinematic and dynamic
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responses rather than the kinematic responses alone, and the proposed kineto-dynamic

model would be instrumental in deriving such optimal joint coordinates. Defining an

objective function involving kinematic and dynamic responses such as camber angle and

wheel track variations, sprung mass acceleration and roll angle response and tire force

variations under transient or random excitations, with joint coordinates as the design

vector could yield optimal suspension joint coordinates of the double wishbone

suspension.
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5.6.3 Influences of Anti-roll Bar on the Kinematic Response Measures

Auxiliary roll stiffness such as antiroll bars help to reduce the sprung mass roll angle
and lateral load transfers under lateral excitation due to steering inputs, while the antiroll
bars are also known to increase the roll angle response of the sprung mass under
differential vertical road inputs [101]. The influences of antiroll bar on the suspension
kinematic responses, however, could not be found in the literature. The sprung mass roll
angle, wheel track variation, and the left- and right wheels camber angle variation
responses of the kineto-dynamic model with and without an antiroll bar are thus
evaluated under the bump and pothole inputs at the right wheel. The results presented in
Figs. 5.16 and 5.17 consider effects of the antiroll bar on both the kinematic and dynamic
responses.

The roll angle response of the model with antiroll bar is higher compared to that of the
model without the antiroll bar, under both the bump and pothole excitation, as seen in
Fig. 5.16 (a). The addition of an antiroll bar increases the effective roll stiffness and thus
the roll frequency, which is evident from the roll angle response. The peak roll-angle
responses of the model with and without antiroll bar are at 1.95" and 2.3, respectively,
under the bump and pothole inputs. The oscillations in the responses with and without
antiroll bar occur near 1.35 and 1.7 Hz frequency, respectively. The higher roll angle
response with the antiroll bar is most likely attributed to variations in suspension
kinematic responses, which are strongly affected by the relative motions between the
sprung and unsprung masses. The effect on the wheel track variation responses,

however, is negligible as seen in Fig. 5.16 (b), which is attributable to negligible lateral
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motion of the left wheel-ground contact point under bump excitation at one wheel,

particularly when the lateral DOF of the sprung mass is neglected.
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Figure 5.16: Effects of antiroll bar on the sprung mass roll angle and wheel track
variation responses of the kineto-dynamic model under idealized bump and pothole type
excitations (zgu=+50 mm): (a) sprung mass roll angle; and (b) wheel track variation.

The presence of an antiroll bar also causes significant changes in the camber angle
responses of both the left- and right wheels, as shown in the Figs. 5.17 (a) and (b),
respectively. The results show that peak left wheel camber is greater than that of the right
wheel, irrespective of the antiroll bar and the type of input. This is attributed to the
opposing bump and roll camber of the right wheel that undergoes a vertical motion
during the bump. The net camber angle variation, however, is predominantly determined
by the magnitude of the sprung mass roll angle. This can be observed from the
oscillations in the camber variation responses, which follow a trend similar to that
observed in the roll angle response (Fig. 5.16 (a)). The results in Figs. 5.16 and 5.17
clearly suggest that addition of an antiroll bar in the suspension could change the camber
angle response under differential road inputs at two wheels of an axle, which would

further depend upon the antiroll bar stiffness. Synthesis of antiroll bar, thus poses an
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additional design challenge in terms of kinematic responses, apart from the commonly
known design compromises between ride and roll angle under lateral inputs. Previous
studies have failed to identify this additional design compromise due to simpler vehicle

and suspension models considered in these studies.
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Figure 5.17: Comparisons of camber angle variation responses of the kineto-dynamic
model with and without antiroll bar under idealized bump and pothole type excitations
(Zomax=x50 mm): (a) the left wheel; and (b) the right wheel.

5.6.4 Influences of Suspension Damping Asymmetry

The influence of damper asymmetry on the kinematic and dynamic responses of the
kineto-dynamic roll-plane model of the vehicle is evaluated under bump and pothole type
of excitations at the right wheel. Two types of asymmetric dampers were selected for the
relative analyses similar to those described in section 4.6.2 for the quarter car model: (a)
(~0.1 and p=5; and (b) {=0.2 and p=2. Sprung mass vertical acceleration and roll angle,
and left- and right wheel camber angle variation responses of the kineto-dynamic roll-
plane model with asymmetric damper are compared with those of the model with the
linear equivalent damper in Figs. 5.18 to 5.19, under 50 mm bump and pothole inputs at a

forward velocity of 3 m/s.
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Figure 5.18: Comparisons of sprung mass responses of the kineto-dynamic model with
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Figure 5.19: Comparisons of camber angle variations of the kineto-dynamic model with
bilinear ({.=0.1; p=5 and {.=0.2; p=2) and linear equivalent dampers under idealized
bump and pothole type excitations (zpu—=+50 mm): of (a) the left wheel; and (b) the right
wheel.

The kineto-dynamic model with light compression damping ({=0.1, p=5) yields lower
peak sprung mass acceleration and roll angle response of the model with other dampers.
Both the peak acceleration and roll responses of the same damper, however, are relatively
higher under the pothole input, as seen in Fig. 5.18 (a) and (b). The peak sprung mass
response of the model with linear and bilinear damper with compression mode damping

ratios 0.2 and 0.1, respectively, are 2.2, 1.8 and 1.5 m/sz, under the bump input, and
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-2.25,-2.5 and -2.7 m/s* under the pothole input. The results show trends similar to those
obtained from the quarter car kineto-dynamic model (section 3.4.2). The responses were
also obtained under pure vertical motions at both the wheels, which were identical to
those obtained for the quarter-car model. The peak roll responses of the model with linear
and bilinear dampers with compression mode damping ratio 0.2 and 0.1, respectively, are
-2.2, -2 and -1.8° under the bump input, and 2.2, 2.55, and 3° under the pothole input.
The results in the figure thus suggest that the roll angle responses of the model with
bilinear dampers are opposite under the bump and pothole inputs. The model with lower
compression mode damping ({=0.1) yields significantly larger roll angle response
compared to those of the model with linear and bilinear damper ({.=0.2) under the
pothole type input. It is thus evident that the damper synthesis demands an additional
design compromise in terms of conflicting roll angle response under bump and pothole
excitations.

Damping asymmetry also yields important influence on the camber angle variation
responses of the suspension, particularly that of the left wheel (when excitation 1s given
to the right wheel), as shown in the Fig. 5.19 (a) and (b). The peak camber variations of
the unexcited wheel (left wheel) are 2.1, 1.9 and 1.5°, respectively, under the bump
excitation with the linear and bilinear damper with compression damping ratios of 0.2
and 0.1. Under the pothole input, the kineto-dynamic model with linear damper exhibits
considerably smaller left wheel camber variation response compared to those of the
model with bilinear damper. The influence of damper asymmetry on the camber variation
response of the right wheel (excited wheel), on the other hand, is less significant, as seen

in the Fig. 5.19 (b). It should be noted that the camber responses shown in the figures are
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the net results of bump and roll cambers, and the excited wheel experiences both the
bump and roll, while the unexcited wheel experiences only the roll camber. This clearly
suggests that the asymmetric damping could influence roll camber response of a
suspension apart from the bump camber, as observed in Chapter 4. Such a coupling
between the roll camber and the damper asymmetry has not been identified in the
reported studies.

The results in Figs. 5.18 and 5.19 show significant influences of asymmetric damping
on the kinematic and dynamic responses of the roll-plane vehicle model, while the results
are limited to a very low vehicle speed (3 m/s). The influences of damper asymmetry on
the responses are thus further investigated over a wide range of forward speeds (3 to 15
m/s). Figures 5.20 to 5.21 illustrate the peak magnitudes of kinematic and dynamic
responses of the model with three different dampers as a function of vehicle forward
velocity.

The peak sprung mass acceleration and roll angle responses of the model with linear
and bilinear dampers are compared in Figs. 5.20 (a) and (b), respectively, as a function of
the speed. Under the bump input, the bilinear damper with lower compression mode
damping ({=0.1; p=5) yields lowest peak acceleration response at speeds below 7 m/s
and lowest roll angle at speeds below 12 m/s. The increase in peak acceleration at higher
velocities is attributable to increase in the second peak rather than the first peak response,
which is in agreement with the results observed in Chapter 4. A similar trend was also
observed in the second peak in roll angle response of the model with {(=0.1 under bump
input at speeds above 12 m/s. The model with equivalent linear damper yields highest

acceleration at speeds below 10 m/s and highest roll angle in the entire speed range. The
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bilinear damper with {=0.2 yields lowest peak sprung mass acceleration and roll angle
response to bump inputs at speeds above 7 m/s. Under the pothole input, linear damper
yields lowest peak acceleration and roll angle responses in the entire speed range. The
results suggest conflicting design demands on the damper synthesis and that a bilinear
damper with =0.2 could yield good compromises in responses to bump and pothole
excitations.

The camber angle variation responses of the left- and right wheels of the kineto-
dynamic roll-plane model with linear and bilinear dampers under bump and pothole
inputs are presented in Figs. 5.21 (a) and (b), respectively. The peak left wheel camber
angle response, which is mainly due to contribution of the roll camber angle, exhibits
trend similar to the peak roll angle response, as shown in Fig. 5.20 (b). Under the bump
input, higher peak camber angle of the left wheel is observed for the model with linear
dampers until the speed of 12.5 m/s, while above this speed, the model with {.=0.1 yields
higher peak camber responses. The left wheel camber variation under the pothole input is
more uniform, with the linear damper yielding the lowest camber variation in the entire
velocity range, as seen in Fig. 5.21 (b). At speeds below 7 m/s, the kineto-dynamic model
with linear damper yields higher right wheel camber response, which is attributed to the
higher roll angle at lower velocities. The bump camber which is opposite in direction to
that of the roll camber reduces the net camber response (compared to the left wheel
camber responses). At high velocity bump and pothole inputs, however, the contribution
of roll camber is higher compared to that of bump camber in the net camber variation

response. The results thus suggest that at lower velocities (below 7 m/s), bilinear dampers
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with lower compression damping yield lower camber variation response, while above

7m/s, linear dampers yield lower camber variation.
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Figure 5.20: Comparisons of sprung mass responses of kineto-dynamic model with
bilinear ({.=0.1; p=5 and {.=0.2; p=2) and linear equivalent dampers under idealized
bump and pothole type excitations (zg,.,=+50 mm) in the forward velocity range
3-15 m/s: (a) vertical acceleration; and (b) roll angle.

Lower compression mode damping yields slight beneficial influences on the normalized
load transfer response of the model at low velocity (3-5 m/s) bump inputs, while the load
transfer response of the model with the same damper at velocities above 5 m/s is
considerably larger compared to those with the other dampers as seen in Fig. 5.22.
Furthermore, under bump excitations, the bilinear dampers with {=0.1 cause wheel lift-
off (normalized load transfer=1) at a relatively lower speed of 10 m/s, while the bilinear
dampers with {=0.2 and the linear dampers yield wheel lift-off at higher speed of 12.5
and 15 m/s, respectively. Wheel lift-off of the model under pothole input, in general,
occurs at much lower velocities than those observed under the bump inputs, irrespective
of the type of damper employed. The bilinear damper with {.=0.1 yields normalized load

transfer of 1 at 7.5 m/s, while the linear and higher compression damping bilinear

dampers yield wheel lift-off at only slightly higher speeds. Ironically, linear damper
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yields better (lower) load transfer response under both bump and pothole inputs in the

entire velocity range.
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Figure 5.21: Comparisons of camber angle variation responses of kineto-dynamic model
with bilinear ({=0.1; p=5 and {,=0.2; p=2) and linear equivalent dampers idealized bump
and pothole type excitations (zgu, =50 mm), in forward velocity range 3-15 m/s:

(a) the left wheel; and (b) the right wheel.
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Figure 5.22: Comparisons of normalized load transfer response of kineto-dynamic model
with bilinear ({.=0.1; p=5 and {,=0.2; p=2) and linear equivalent dampers under idealized
bump and pothole type excitations (zpm,—=50 mm), in the forward velocity range
3-15 m/s.
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The results in Figs. 5.18 to 5.22 thus suggest significant influences of asymmetric
dampers on the dynamic and kinematic responses, which are also complex functions of
the vehicle forward velocity and type of inputs. The responses of the model would further
depend upon the saturation limits and high-speed reduction ratios of the asymmetric
damper. Synthesis of an asymmetric damper would thus necessitate consideration of the
kinematic and dynamic responses of the kineto-dynamic half-car model under different
inputs including random road excitations. Further, the results have also suggested a
complex coupling between the vertical excitation and the dynamic load transfer which is
also a function of the lateral excitation. Consideration of simultaneous vertical wheel and
lateral excitation at the sprung mass cg could yield considerable information about further
couplings between the responses, which are instrumental and vital for the synthesis of the

suspension components including an asymmetric damper.

5.7 Summary

A kineto-dynamic roll-plane vehicle model comprising double wishbone suspension is
formulated and suspension geometry is synthesized considering the kinematic responses
and lateral space constraints. The results attained from a sensitivity analysis suggested
that changes in z- coordinates of any joint cause relatively more significant influence on
the kinematic performances compared to those in the y- coordinates, while the y-
coordinates of some of the joints are most critical in view of the lateral packaging space.
The joint coordinates that reduce the bump camber variation under wheel vertical motion,
generally caused higher roll camber under chassis roll. The optimal geometry synthesis
obtained through minimization of a composite performance index comprising the

kinematic responses and constrained lateral packaging space resulted in 10 and 12%
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reductions in the lateral space required for lower and upper control arms, together with
reductions in variations in bump camber and track width responses under wheels vertical
displacement, although the roll camber increased only slightly. The results thus suggest
that achieving minimal lateral packaging space would necessitate compromise in the

vertical packaging space.

Comparisons of dynamic responses of the kineto-dynamic model with those of a
conventional model showed significant contribution of the kinematic linkages. Higher
sprung mass vertical and roll frequencies were observed from the kineto-dynamic
responses compared to those of the conventional model. Furthermore, the camber angle
variation response is strongly influenced by the antiroll bar, which has not been reported
in previous studies. The kineto-dynamic responses also revealed complex dependency
upon damper asymmetry ratio, vehicle forward speed and type of input. An asymmetric
damper synthesis is thus a complex task involving a large number of design compromises
among the vertical and roll dynamic, and kinematic performance measures. Formulation
of a performance index comprising dynamic and kinematic responses of the model, and
subsequent minimization of the performance index would be instrumental in obtaining an

optimal asymmetric damper.
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CHAPTER 6

INFLUENCES OF SUSPENSION GEOMETRY, DAMPER AND
JOINT BUSHING FAULTS

6.1 Introduction

Dynamic responses of a road vehicle are influenced by properties of suspension
components, such as spring, damper and bushings in a significant manner. The responses
of the vehicle could vary with change in suspension component properties, which are
most likely to occur due to continued usage under varying operating conditions including
weather and changing ambient temperature. Faults in the suspension system could arise
from wear and tear, aging or as a result of past collisions, which could alter the dynamic
responses or might cause breakdown of vehicles. An early warning of such faults in the
suspension components, however, could eliminate unexpected vehicle breakdowns. A
few studies have proposed suspension fault diagnostics using vehicle models of varying
complexities [54, 55, 61, 62], while these have mostly focused on faults in suspension
dampers. Suspension fault, attributable to bushing clearances in upper bushing mount has
been reported in a single study [62]. The study has concluded notable difference in the
dynamic responses of the unsprung mass with bushing faults. Recent studies have
reported significant attention to the synthesis of control arm bushings during vehicle
design stage [53]. Furthermore, joint bushings are widely known to undergo wear and
stiffen with age [38, 42]. The influences of such faults in control arm joint bushings on
the dynamic responses, however, have not been reported in the literature.

Analytical quarter-car and half-car kineto-dynamic models presented in previous
chapters could be extended to full car model and to include more comprehensive bushing

characteristics. Such formulations, however, are very complex and demanding.
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Alternatively, commercially available multibody dynamic tool, ADAMS/car provides
suitable platform for suspension and vehicle dynamic model development and subsequent
analyses. This chapter presents study of influences of faulty suspension components on
the dynamic responses of a full vehicle model developed in ADAMS/car. Four different
types of suspension faults are considered in this study: (a) deformed suspension linkage;
(b) faulty damper; (c) joints bushings clearances; and (d) aged bushings. The responses of
the full-vehicle model with suspension faults, subjected to field measured random road
excitations are compared with those of the model with normal suspensions. The results
are discussed in connection with the development of an early warning based suspension

fault diagnostic system.

6.2 Full-vehicle Model Development in ADAMS/car

A 95- DOF full-vehicle model comprising essential components of a vehicle, such as
linkage suspension and steering systems, struts, power train, brake system, tires and
vehicle bodies, is developed in ADAMS/car platform to evaluate the influences of
suspension faults on the dynamic responses of a vehicle. The full-vehicle model, as
illustrated in Fig. 6.1 is developed employing vehicle component subsystems available in
ADAMS/car database library. The model comprises of double wishbone linkage
mechanisms in both front and rear suspension systems and rack and pinion steering
mechanism with two wheel steering system. The struts, comprising linear springs and
nonlinear dampers are mounted on the lower control arm of the suspensions. Linkages
between wheel knuckle and the chassis are joined to the chassis through revolute joints,

while each of the joints excepting the ball joints (between control arm and spindle)
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Figure 6.1: Multi-body dynamic full-vehicle model with four post test rig facility in
ADAMS/car platform.

__—-Upper strut mount

Flexible joint bushings

Lower strut mount

Figure 6.2: Double wishbone front suspension assembly
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comprises flexible bushings, as illustrated in the Fig. 6.2. The tires in the vehicle model
are considered as vertical spring and viscous dampers for evaluating vertical dynamic
responses, while the model also considers Pacjecka tire model for estimating lateral tire

forces, if required.

6.2.1 Bushing Model

Suspension bushings comprise flexible elastomeric material in between inner and
outer steel casings. The joint bushings properties, in general, are characterized by force-
displacement and moment-rotation relations, while ADAMS/car permits definition of
bushing properties in and about three axes (x- y- and z) [28]. Figure 6.3 illustrates force-
displacement and moment-rotation functions of upper and lower arm joint bushings along
and about three axes. Force-displacement relations are mostly nonlinear, while moment-
rotation relations are more or less linear, except that of UCA about z- axis. Furthermore,
torsional stiffness of UCA (upper control arm) bushings is greater than that of LCA
(lower control arm) joints, attributable to the larger influences of UCA bushings on the

ride quality, as observed in section 3.6.4.

6.2.2 Bushing Fault Modeling

Two types of bushing faults are considered in this study: (i) bushings with clearance;
and (i1) aged bushing. Bushing clearance is modeled as discontinuity in the force-
displacement relations, while it is assumed that the maximum discontinuity is limited to 1
mm in all the bushings, excepting that at strut upper mount, which is considered to
possess 2 mm clearance. The defective bushings are thus assumed to offer a very small
restoring force (in order to eliminate singularity) during initial 0.5 mm of deformation in

both compression and extension modes, as illustrated in Fig. 6.4.
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Figure 6.3: Characteristics of upper and lower control arm joint bushings in terms of: (a)
force-displacement function along x- axis (radial); (b) force-displacement relation along
y- axis (radial); (c) force-displacement relation along z- axis (axial); (d) moment-rotation
relation about x- axis (radial); (¢) moment-rotation relation about y- axis (radial); and (f)
moment-rotation relation about z axis (axial).
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The figures compare the characteristics of UCA and LCA bushings with clearance
along x- and z- directions with that of the nominal ones, while the figures also illustrate
the characteristics of aged bushings, which are modeled assuming an increase in the
bushing stiffness. In this study, an increment of 50% in the stiffness is considered for the
aged bushings, as illustrated in Fig. 6.4. It is further assumed that a bushing fault changes

the properties in one direction only at any time.
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Figure 6.4: Comparisons of force-displacement relations of LCA joint bushings in
clearance and aged conditions with the nominal bushings along: (a) x- and y- axes
(radial); and (b) z- axes (axial).

6.2.3 Modeling of Geometry and Damper Faults

A fault in suspension geometry is assumed to be due to an asymmetry in the
suspension linkage kinematics in two sides of an axle. Such asymmetry in suspension
mechanisms could easily occur following a collision of the vehicle. Suspension linkage
length could get altered due to linkage deformation which also would change joint
coordinates. In this study, geometry faults in the suspension are modeled by varying the
joint coordinates. Fault in an automotive damper is often modeled by its lower damping

coefficient as compared to the normal damper [54, 61]. Two levels of damper faults are
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analyzed in this study: (i) 25% decay; and (ii) 50% decay in dampers, represented by 25

and 50% reduction in the damping coefficients.

6.3 Four-post Test Rig Full-vehicle Analyses

ADAMS/ride is an extension plug-in provided in the ADAMS/car tool for ride
analysis of vehicle models. Assembled full-vehicle model is placed on a four post test rig,
as illustrated in Fig. 6.1, which permits analysis with different inputs at the wheel spindle
or beneath each of the tires. The input excitation can be defined in the form of
displacement, velocity, acceleration or forces, as swept sine wave or road profiles [28].
While ADAMS is enabled with a road profile generator to produce different road
profiles, including random roads as per ISO specifications, the road profile set up facility
of ADAMS/car also permits user definition of roads in tabular form. The time lag
between the front and rear excitations is calculated by the software automatically upon
providing the vehicle forward speed. In this study, the urban roads roughness,
characterized on the basis of measured road elevations reported in a previous study [152],
are used for evaluating the dynamic responses of the full vehicle model and the
performance measures. Figure 6.5 illustrates the filtered roughness profile of left and
right tracks of the road over a span of 500 m, while the right-track road profile has been
used for evaluating asymmetric damper performances in Chapter 4 (Fig. 4.10 (a) and (b)).
The differences in the displacement amplitudes of left and right track suggest that the

road profile could induce roll disturbances apart from the vertical irregularities.

240



0.06

=-==| eft wheel

— —Right wheel
0.04

h

Aqd ol |
A i\ “ J g
PLAG

-0.04

©
o
N

Displacement (m)
()

o
o
N

_0'060 100 200 300 400 500

Distance (m)

Figure 6.5: Roughness profile of left and right tracks in an urban road in terms of
elevation and distance

6.4 Influence of Deformed Suspension Linkage

Influences of suspension linkage asymmetric deformation are evaluated by
considering variations in the coordinates of lower control arm outer ball joint (between
control arm and spindle) of front-left suspension. The full-vehicle kineto-dynamic model
is subjected to random road excitations, as described in section 6.3 at 50 and 100 km/h
vehicle forward speed, and the simulations are performed for 20 seconds. The dynamic
responses are evaluated in terms of rms acceleration of vehicle chassis, wheel spindle and
the lower control arm of front-left suspension. The responses of the model with 10 mm
changes in x-, y- and z- coordinates of lower control arm outer joint of front left

suspension are compared with those of the model with nominal suspension, and are
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illustrated in Table 6.1. It may be noted that the variations to the joint coordinates are
realized by negative changes in the respective coordinates.

The results in the table show minimal influence of suspension joint coordinate
variations on the chassis vertical acceleration response, and small but notable influences
on the spindle and lower control arm responses. Change in y- coordinate of LCA outer
joint exhibits greater influence on the vertical acceleration responses as compared to that
of variations in x- and z directions at lower speed of 50 km/h. The change in y-
coordinates causes 0.011, 0.335 and  0.131 m/s* (1.5, 3.5, 2.6%) changes in chassis,
spindle and LCA vertical acceleration responses, respectively, at 50 km/h as compared to
those of the suspension without any faults. At higher speed of 100 km/h, however,
variation in z- coordinate shows greater influence on the acceleration responses. The
results of previous study of this work have clearly suggested that a change in joint
coordinate would change the wheel rate of suspension (Section 3.5.1), which is major
contributing factor for the changes in the acceleration responses.

Table 6.1: Influences of asymmetric linkages on the responses of full vehicle model
under random road excitations.

Chassis vertical | Wheel spindle vertical LCA vertical
Response = | rms acceleration rms acceleration rms acceleration
(m/s?) (m/s?) (m/s?)
Coordinate

variation | 50 km/h 100 km/h | 50km/h 100 km/h | 50 km/h 100 km/h

Nominal 0.901 1.429 10.998 18.346 | 3.851 6.204

X- 0.900 1.428 10.986 18.324 | 3.880 6.220

y- 0.912 1.430 10.663 18.003 | 3.759 6.104

z- 0.905 1.431 11.090 18.378 | 3.850 6.202

While this study is limited to the vertical acceleration responses alone, roll and pitch

angle response could also be influenced by the asymmetric suspension linkage geometry
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of an axle. Furthermore, the joint coordinates influence kinematic responses such as
camber and toe angle variations in a significant manner, which further influences ride and
handling dynamics of the vehicle. Coupling of the lateral compliance of the tire with the
vertical dynamics is not included in the ADAMS/ride default analyses, while its
inclusion, generally, requires extended tire models. Moreover, simultaneous variations in
two joint coordinates or larger variations than that considered in this study (>10 mm) in a
coordinate could exhibit more significant influences on the vehicle dynamic responses.
The results in Table 6.1 suggest identifiable variations in the rms acceleration
responses of wheel spindle and LCA. A frequency domain analysis is further considered,
which would also be necessary for diagnosis of faults in the suspension kinematics.
Power spectral density (PSD) of acceleration responses of LCA and wheel spindle of the
model under random road excitations at 50 km/h speed are generated using Matlab Signal
Processing Tool Box, as illustrated in the Figs. 6.5 (a) and (b). It is seen in the figure that
the LCA exhibits two peak responses, while the second peak would likely corresponds to
that of wheel spindle natural frequency. Variations in the joint coordinates considered in
this study show notable peak responses of the LCA and the spindle. The results in the
figure suggest that the changes in the joint coordinates exhibit negligible influences on
the wheel spindle peak frequency or the second peak frequency of LCA. A close
observation of the first peak responses of the spectrum of LCA vertical acceleration,
however, shows that there exist small variations (in the order of 0.06 Hz) in the
frequencies corresponding to the peak magnitudes. Similar variations in the frequencies
corresponding to the peak magnitudes of chassis acceleration spectrum have also been

observed (not shown). The results thus suggest that an asymmetry in suspension joint
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coordinates with respect to vehicle center would influence the suspension responses,
while this asymmetry could be identified from the frequency response of the lower
control arm accelerations. Furthermore, wavelet analysis of the acceleration signal is
shown to be effective in the fault identification [54, 55] which, however, is not
investigated in the present study. The wavelet analysis yields information that is localized

in both time and frequency whereas the standard Fourier analysis is only localized in

frequency.
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Figure 6.6: Comparisons of Power Spectral Density (PSD) of unsprung mass vertical
acceleration responses of full vehicle model with deformed and normal linkages: (a)
lower control arm (LCA); and (b) wheel spindle

6.5 Influence of Defective Damper

Defect in a suspension damper, perhaps due to leaking of hydraulic fluid could
influence the dynamic performances of a suspension. The influences of damper fault on
the dynamic responses are investigated by considering 25 and 50% reduction in the force-
velocity characteristics of the front left suspension damper. The responses of the full
vehicle model with defective dampers subjected to random road excitations at 50 and 100
km/h vehicle forward speeds are compared with those of the model with normal damper.

As in the case of kinematic deformation analysis, the simulations are performed for 20
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seconds. The dynamic responses, evaluated in terms of rms acceleration of vehicle
chassis, wheel spindle and the front-left suspension lower control arms are illustrated in

Table 6.2.

The results in the table suggest that a fault in one of the damper in a full vehicle model
could influence the vertical acceleration responses of the chassis, wheel spindle or LCA.
It is seen that the influence of the damper fault is dependent upon the vehicle forward
speed. At lower speed of 50 km/h, decrease in the damping coefficient of the damper
exhibit negligible influence on the sprung mass acceleration (<1%), while at 100 km/h,
near 2.5% increase in the sprung mass rms acceleration is observed. Wheel spindle and
LCA vertical acceleration responses on the other hand, exhibit increasing tendency with
decrease in the damping coefficient of the defective damper, and decreasing trend with
increase in the speed. Wheel spindle exhibits 7.2 and 15.8% increases at 50 km/h, and 6.5
and 12.3% increases at 100 km/h, respectively, in the rms acceleration response. LCA
vertical accelerations (rms) increase by 6.7 and 14.2% at 50 km/h and 6.1 and 11.7% at
100 km/h, respectively. The results clearly suggest significant influence of the defective

damper on the unsprung mass dynamic responses.

Table 6.2: Influences of defective damper in one of the suspensions on the responses of
full vehicle model under random road excitations.

Chassis vertical | Wheel spindle vertical LCA vertical
Response = | rms acceleration rms acceleration rms acceleration
(m/s?) (m/s?) (m/s?)
Damper
condition | 50km/h 100km/h | 50 km/h 100 km/h | 50 km/h 100 km/h
Nominal 0.901 1.429 10.998 18.346 3.851 6.204
25% decay | 0.895 1.446 11.794 19.542 4.110 6.582
50% decay | 0.902 1.461 12.743 20.609 4.400 6.931

245



The power spectral density (PSD) of the wheel spindle and the LCA vertical
acceleration responses of the model with defective dampers are compared with those of
the model with a normal damper in Fig. 6.6. The results suggest significantly large
deviations in the peak magnitudes in spectra of LCA (both first and second) and wheel
spindle accelerations. The second (dominant) peaks of LCA and the peaks of the wheel
spindle are seen to occur at nearly identical frequencies irrespective of the condition of
the damper. The LCA spectra, however, reach the first peak magnitudes at different
frequencies with damper condition (normal damper-3.18 Hz, 25% defective damper- 3.11
Hz and 50% defective damper- 3.05 Hz). The results in Fig. 6.7 clearly suggest decrease
in the LCA vertical vibration frequencies with decrease in the damping coefficient of the
suspension damper. As in the case of deformed suspension linkages, frequency response
of the measured LCA accelerations could be conveniently employed to detect the damper

faults in a vehicle suspension.
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6.6 Influence of Joint Bushings Faults

Influences of joint bushing faults on the dynamic responses of the full vehicle model
are evaluated by representing the bushing characteristics as illustrated in Fig. 6.4.
Clearances at strut upper and lower mounts, and lower and upper control arm front
bushings (Fig. 6.2) are considered in this study for the relative analysis. Effects of an
axial clearance of 2 mm in the upper strut mount and a radial clearance of 0.5 mm in the
lower strut mount are evaluated under random road excitations at 50 and 100 km/h
vehicle speed. Three different types of bushing faults are analyzed in the case of LCA
(lower control arm) and UCA (upper control arm) bushings: (i) 1 mm radial clearance;
(1) 3° angular clearance; and (iii) 50% increase in the bushing stiffness due to aging. The
bushing defects are considered in front left suspension alone, and each fault is considered
independently. Each of the bushing faults is analyzed at both lower and higher speeds (50
and 100 km/h), while the acceleration response of the control arm corresponding to faulty
bushing (LCA or UCA) is evaluated, in addition to the wheel spindle response.

The rms acceleration of chassis, wheel spindle and LCA of the model with defective
strut bushings are compared with those of the model with nominal bushings, as illustrated
in Table 6.3. The results in the table suggest that a clearance in the upper strut bushing
could influence the dynamic response of lower control arm and the wheel spindle
considerably with a minimal influence (<1%) on the sprung mass acceleration at both 50
and 100 km/h forward velocity. The upper strut mount clearance causes increase of 15
and 7% in the wheel spindle and 12.7 and 6% in the LCA vertical acceleration responses
at 50 and 100 km/h speeds, respectively. It is thus seen that the degree of influences of

upper strut bushing clearance is strongly dependent upon the vehicle forward speed. This
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can be attributable to the fact that at higher acceleration excitations (higher forward
velocities), the suspension properties exhibit lesser influences than the tire properties on
the dynamic responses. The results in the table further show that a radial clearance in
strut lower bushing (in the order of 0.5 mm) exhibits minimal influences on the sprung
and unsprung mass responses.

Table 6.3: Influences of strut bushings clearance in one of the suspensions on the
responses of full vehicle model under random road excitations.

Chassis vertical Wheel spindle vertical LCA vertical

Response 2> rms acceleration rms acceleration rms acceleration
(m/s?) (m/s?) (m/s?)
Bushings fault | 50 km/h 100 km/h | 50 km/h 100 km/h | 50 km/h 100 km/h
Nominal 0.901 1.429 10.998 18.346 3.851 6.204

Upper strut mount | 0.911 1.437 12.645 19.713 4.340 6.593
Lower strut mount | 0.901 1.429 11.000 18.333 3.850 6.198

Power spectral density (PSD) of LCA and wheel spindle acceleration responses of the
model with faulty upper and lower strut bushings are compared with that of the model
with nominal bushings in Fig. 6.8. A clearance in the upper strut mount cause an
amplification in the peak magnitudes of the spectrum of both wheel spindle and LCA
responses as compared to that of model with the nominal bushings. A slight variation in
the frequencies corresponding peak magnitude of LCA and wheel spindle spectrum
(nearly 0.02 Hz) 1s also observed. As expected, clearance in the lower strut mount does
not exhibit any influence in the frequency spectrum. Although a clearance in the upper
strut mount influences the dynamic response considerably, an identification of the fault
from the frequency spectrum seems to be complex. A further study of the response

employing wavelet analysis technique might be instrumental.
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Figure 6.8: Comparisons of Power Spectral Density (PSD) of unsprung mass vertical
acceleration responses of full vehicle model with and without clearance in strut bushings:
(a) lower control arm (LCA); and (b) wheel spindle

Table 6.4 illustrates the rms acceleration responses of the wheel spindle and LCA with
faults in the LCA front bushing, while Table 6.5 shows the rms acceleration responses of
the wheel spindle and UCA with faults in the UCA front bushing under random
excitation at 50 and 100 km/h. The tables also compare the responses of the model with
nominal bushings. The results in both the tables suggest that considered bushing faults
exhibit minimal influences on the wheel spindle or control arm vertical acceleration
responses, although the degree of influences are slightly dependent on the vehicle speed.
It needs to be emphasized here that both lower and upper control arms comprise two
bushing joints at the chassis, while this study was limited to bushing faults in one joint
alone.

The results in Table 6.3 to 6.5 suggest that the strut upper mount clearance is the most
influential bushing defect among all of the faults considered in this study. However, it
needs to be noted that the study considered a larger clearance (2 mm) at the upper strut

mount bushing compared to that at other bushings. A 1 mm discontinuity in the force-

displacement relation of bushing represents only 0.5 mm clearance in a physical joint.

249



Larger clearance in any bushings could affect the dynamic responses in larger magnitude,
which however requires further studies.

Table 6.4: Influences of lower control arm bushing clearance in one of the suspensions on
vertical acceleration response of LCA and wheel spindle under random road excitations.

Wheel spindle vertical LCA vertical

Response 2> rms acceleration rms acceleration
(m/s”) (m/s”)
Bushings fault 50 km/h 100 km/h | 50 km/h 100 km/h
Nominal 10.998 18.346 3.851 6.204

LCA radial clearance 10.982 18.340 3.848 6.208
LCA torsional clearance | 11.072 18.339 3.870 6.201
LCA aged bushings 10.970 18.339 3.851 6.215

Table 6.5: Influences of upper control arm bushing clearance in one of the suspensions on
vertical acceleration response of UCA and wheel spindle under random road excitations.

Wheel spindle vertical UCA vertical

Response 2> rms acceleration rms acceleration
(m/s°) (m/s°)
Bushings fault 50 km/h 100 km/h | 50 km/h 100 km/h
Nominal 10.998 18.346 3.729 6.030

UCA radial clearance 10.939 18.325 3.706 6.015
UCA torsional clearance | 11.057 18.349 3.744 6.030
UCA aged bushings 10.989 18.356 3.726 6.031

6.7 Feasibility of a Fault Diagnostic System

The results in Section 6.4 to 6.6 suggest that asymmetric kinematic linkage, defective
damper and clearance in upper strut mount bushings cause variation in the frequencies
corresponding to first peak magnitudes of LCA accelerations. A close observation of the
results, however, suggests that a defective damper and upper mount clearance cause
reduction in the LCA vibration frequency, while the deformed linkage causes increase in
the frequency. The results corresponding to a decayed damper or strut mount bushing

clearance could be easily generalized, while the faults due to linkage deformation cannot
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be generalized, since this study is limited to variations in the joint coordinate in one
direction only. It can be noted that a negative change in y- coordinate of the LCA outer
joint exhibited higher influence among the variations considered, while this change is
known to cause increase in wheel rate (Section 3.6.5). Furthermore, damper fault does
not influence the peak frequency of the spindle, while strut mount bushing fault exhibits a
small influence on the wheel spindle peak frequency. This information could be used to
identify an approximate source of fault from the acceleration response of the LCA.

Based upon this preliminary study, a fault diagnostic system could be proposed, which
would comprise four accelerometers mounted on the lower control arms of each
suspension. The system also necessitates a processing unit that could convert the time
response of the accelerometer into frequency domain. The processing unit should be
capable of comparing the real time responses with prerecorded data corresponding to the
suspension without faults, while correlating with the forward speed of the vehicle. As
discussed previously, wavelet analysis of the acceleration response would also be
necessary for precise identification of the source of fault, which should also be facilitated

in the processing unit.

6.8 Summary

This chapter presented the study of influences of suspension faults such as
asymmetrically deformed suspension linkage, defective damper and bushings clearances
on the dynamic responses of a vehicle and suspension through analyses of a full vehicle
model developed in ADAMS/car platform. Suspension linkage deformation was modeled
by considering changes in joint coordinate of lower control arm outer joint of front left

suspension. Damper defect due to leaking of hydraulic fluid was assumed to cause
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reduction in the damping coefficient, and such defective damper was represented by 25
and 50% reduction in the force-velocity characteristics. Flexible joint bushings in the full
vehicle model were represented by force-displacement and moment-rotation relations
along and about three axes, respectively. Clearance in a bushing was modeled by
discontinuity in the force-displacement characteristics, while the study also considered
influences of aged bushing assuming an increase in the force-displacement
characteristics.

Vertical acceleration responses of the chassis, control arm and wheel spindle are
analyzed to evaluate the influences of suspension faults considered in this study. The
spectral analysis revealed that data measured from the lower control arm can be
conveniently employed to detect the suspension faults due to linkage asymmetry or
defective damper, and can be used to yield an early warning of the faults. Upper strut
bushing clearance showed considerable influence on the control arm acceleration
response, while other bushing faults exhibited negligible influence. Determination of an
exact source and type of faults, however, would necessitate employment of additional

tools such as wavelet analysis, apart from the spectral analysis used in this study.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER
STUDIES

7.1 Dissertation Research Highlights

This dissertation research has presented methodology to systematically investigate the
influences of various suspension nonlinearities, particularly the linkage kinematics, tire
lateral complaince, damper asymmetry and flexible joint bushings, on the kinematic and
dynamic responses of a vehicle. These are illustrated through developments and analyses
of kineto-dynamic quarter- and half-car models incorporating the suspension linkages,
tire lateral and bushing compliance, and asymmetric dampers. A methodology for
synthesis of optimal suspension geometry (joint coordinates) has been presented
considering the coupled kinematic and dynamic responses with contraint on the lateral
packaging space for potential applications in emerging hybrid vehicle designs. Synthesis
of an asymmetric two- stage damper has also been presented considering design
compromises between the ride, rattle space, road holding and camber angle performances
in an attempt to develop design guidance. A full vehicle model in ADAMS/car is further
analyzed to study the influences of faulty bushings, dampers and kinematic linkages on
the dynamic responses.

The major highlights and contributions of the dissertation research are briefly
summarized below:

e Single-wheel kinematic models of two types of suspensions, quadra-link and

double wishbone, are proposed to study the kinematic responses, which could be
employed for synthesis of suspension geometry. Laboratory-measured data were

applied to demonstrate validity of the 3- dimensional kinematic model of the
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quadra-link suspension. A sensitivity analysis method was proposed to investigate
the influences of various suspension joint coordinates on the kinematic responses.
A planar kinematic model of the double wishbone suspension is also formulated for
anaysis of roll-plane kinematic responses, including variations in camber angle,
wheel track and wheel center lateral displacement.

A kineto-dynamic quarter car model comprising linkage kinematics of a double
wishbone type of suspension is proposed to study coupled kinematic and dynamic
responses of suspension and vehicle model. The significance of coupling between
the kinematic and dynamic responses is illustrated by comparing the responses of
the proposed model with those of a conventional dynamic model with equivalent
spring and damping rates. A methodology for deriving equivalent spring rate and
damping rates incorporating the contributions of linkage kinematics, is further
presented. The contributions due to compliance of suspension joint bushing to the
kinematic and dynamic responses are investigated assuming bushings as torsional
springs.

Owing to the lack of design guidance on suspension damping asymmetry, the
kineto-dynamic model is enhanced by incorporating single- and two- stage
asymmetric damping in order to seek a design guideline. The effects of damping
asymmetry on the coupled dynamic and kinematic responses are thoroughly
evaluated under harmonic and idealized bump and pothole excitations, and the
conflicting design requirements under different excitations are illustrated. A
constrained optimization problem is formulated and solved to seek design guidance

for synthesis of a two-stage asymmetric damper that would yield an acceptable
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compromise among the performance measures under idealized bump and pothole
excitations.

The coupled dynamic and kinematic responses of the model with single- and two-
stage asymmetric dampers are further evaluated under random road excitations over
a range of forward velocities. An optimal synthesis of a two-stage asymmetric
damper is presented to yield compromise between conflicting performance
measures corresponding to ride, rattle space, road holding and camber angle
responses under random road inputs.

The coupled kinematic and dynamic responses in the roll plane are analyzed
through development and analysis of a four-DOF, kineto-dynamic roll-plane
vehicle model comprising double wishbone type of suspensions. A methodology to
derive a suspension synthesis is subsequently proposed. The conflicting kinematic
responses including bump/roll camber and wheel track variations under chassis roll
and wheel vertical motions are identified, and a set of optimal joints coordinate
synthesis is attempted considering the conflicting responses coupled with the lateral
space constraint. The influences of asymmetric damping and an antiroll bar on the
kinematic and dynamic responses are further presented under selected excitations.
A full-vehicle model comprising double wishbone type of suspensions at both front
and rear axles is developed in ADAMS/car platform to study the influences of
faults in suspension bushings and linkage on the kinematic and dynamic responses.
The study was limited to two types of bushing faults, namely the clearances in the
bushing with reduction in bushing stiffness; and aged bushings with increase in the

bushing stiffness.
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7.2 Major Conclusions

This dissertation revealed significant coupling among various kinematic and dynamic

performance measures of vehicle suspensions. The results of the study yielded important

design guidelines pertaining to suspension geometry and damper synthesis. Major

conclusions drawn from this study are summarized below:

(a)

(b)

(©)

(d)

(e)

The kinematic and dynamic performance measures of a vehicle are coupled through
the linkage (independent) suspension design. A suspension design synthesis
therefore must be based on coupled kineto-dynamic analyses.

The linkage suspensions yield asymmetric variations in camber, caster and toe
angles, and wheel base and wheel tracks with respect to the static position under a
wheel vertical motion.

Each of the kinematic responses and the articulation of a double wishbone
suspension are very sensitive to variations in the upper control arm joints
coordinates. The front (camber link) and rear (toe link) lower links of the quadra-
link suspension exhibit large influences on the camber and toe angle responses,
respectively, apart from the other responses.

A double wishbone suspension with closer upper and lower ball joints would yield
lower variations in camber angle and wheel track responses under wheel jounce
and rebound motions.

The dynamic responses of a kineto-dynamic quarter car model to harmonic and
idealized rounded pulse excitations are generally asymmetric attributed to the
suspension kinematics, while the degree of asymmetry is dependent on the

amplitude and frequency of the inputs, and suspension joint coordinates. The
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(2

(h)

asymmetry in suspension damping in compression and rebound further contributes
to asymmetry in the dynamic responses.

Both the kinematic and dynamic responses of a kineto-dynamic quarter model
under bump/pothole inputs are strongly dependent upon the suspension joint
coordinates, while variations in the joint coordinates involve difficult compromises
between the kinematic and dynamic response measures.

The flexible joint bushings can lead to nearly 5% variations in the kinematic and
dynamic responses of the suspension system. A decrease in torsional stiffness of
the upper control arm bushing yields a benificial influence on the sprung mass
acceleration, while a variation in the lower control arm joint bushing offers
negligible influence.

Higher rebound to compression damping asymmetry in general causes a downward
shift in the sprung mass mean position, while higher compression to rebound
asymmetry ratio causes an upward shift. The mean shift in the unsprung mass
displacement relative to the sprung mass causes additional camber angle variation
during the wheel vertical motions.

The damping asymmetry of a bilinear damper yields conflicting effects on the
sprung mass acceleration response to bump and pothole excitations. A higher
rebound to compression damping asymmetry helps reduce the magnitude of the
first peak in sprung mass acceleration to bump excitation, but yields higher
acceleration under a pothole excitation. In case of two-stage damper with different

low and high-speed damping coefficients, lower values of the high-velocity
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(k)

(D

damping coefficients resulted in considerable reductions in the sprung mass
acceleration response under both the inputs.

The damping asymmetry ratio is strongly dependent upon the low-speed
compression damping. Under a bump input, asymmetry ratio of 2 and 3 could result
in a good compromise between the ride and road holding performance for low-
speed compression mode damping ratios of 0.2 and 0.1, respectively. Under a
pothole input, however, a linear or higher compression to rebound damping
asymmetry ratio would be a better design compromise.

Kinematic and dynamic responses of a road vehicle with asymmetric damper
subjected to random road excitation would be strongly influenced by the
compression/rebound damping asymmetry and the forward speed of the vehicle.
With an asymmetric damper, notable consistent trends in the kinematic and
dynamic responses of the model could be identified in three speed ranges: the
responses increasing nearly linearly with forward speed in the 30-60 km/h range;
increasing nonlinearly in the medium speed range (60-90 km/h); and nonlinearly
decreasing or saturating in the higher speed range (100-120 km/h).

A synthesis of an optimal two-stage asymmetric damper is highly complex due to
strong couplings among the various damper parameters, and would strongly depend
upon the limit imposed on the camber variation. For minimal camber angle
variations, a lower rebound to compression damping asymmetry would be
desirable, while the camber variations correlate well with the tire force variations,

when a greater emphasis is placed on the tire force variations.
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(m)

(n)

(o)

(p)

The roll-plane kinematic analysis of a double wishbone suspension revealed that
the joint coordinates that reduce the bump camber variation under wheel vertical
motion, generally cause higher roll camber under chassis roll. Achieving minimal
lateral packaging space may necessitate compromise in the vertical packaging
space, because reduction in both control arms lengths and variations in the
bump/roll camber together may not be feasible.

Inclusion of antiroll bar in a suspension, apart from causing increase in the sprung
mass vertical acceleration and roll angle responses under bump excitation at one
wheel of the axle, could also increase the camber angle variation response
considerably.

Suspension faults such as deformed linkage, defective damper and clearance
bushings could influence the dynamic responses of the lower control arm of a full
vehicle model with double wishbone suspension. Power spectral density of the
lower control arm vertical acceleration response could be used to identify the
suspension faults in an approximate manner.

Clearance in strut upper mount bushing causes increase in the amplitude of the
unsprung mass vertical accelerations, while clearances in lower or upper control

arm bushings exhibit minimal influence.

7.3 Recommendations for Further Studies

This desertation research has helped identifying important couplings between the

suspension kinematics and dynamic responses of a road vehicle, which is related to the

suspension geometry and damping asymmetry in a highly complex manner. While this

study has enabled yielding a few significant conclusions and design guidance relevant to
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suspension geometry and asymmetric damper synthesis, further works in this direction
would be highly desirable for improved suspension synthesis, particularly for future
electric vehicles with constrained packaging space. Some of the recommended further
studies are listed below:
e Define kinematic and dynamic performance requirements based upon kineto-
dynamic vehicle model responses.
e Synthesis of a suspension system based upon coupled kinematic and dynamic
performance measures employing 3- dimensional suspension and vehicle model.
e Synthesize a suspension system considering lateral packaging space constraints
apart from the kineto-dynamic performance measures.
e Employ multi-objective optimization methodologies for the synthesis of multi-
stage asymmetric damper.
e Explore active/semi active linkages for enhanced kinematic and dynamic
performances.

e Develop early warning based suspension fault diagnostic system.
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