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ABSTRACT 
 

Kineto-dynamic Analyses of Vehicle Suspension for Optimal Synthesis 

 
Krishna Prasad Balike, Ph. D. 

Concordia University, 2010. 

Design and synthesis of a vehicle suspension is a complex task due to constraints 

imposed by multiple widely conflicting kinematic and dynamic performance measures, 

which are further influenced by the suspension damper nonlinearity. In addition, 

synthesis of suspension for hybrid vehicles may involve additional design compromises 

among different measures in view of the limited lateral packaging space due to larger 

sub-frame requirements for placing the batteries. In this dissertation research, a coupled 

kineto-dynamic analysis method is proposed for synthesis of vehicle suspension system, 

including its geometry and joint coordinates, and asymmetric damping properties. 

Quarter-car and two-dimensional roll plane kineto-dynamic models of linkage 

suspensions are proposed for coupled kinematic and dynamic analyses, and optimal 

suspension geometry and damper syntheses. 

The kinematic responses of quadra-link and double wishbone types of suspensions 

are evaluated using the single-wheel kinematic models. Laboratory measurements were 

performed and the data were applied to demonstrate validity of the 3- dimensional 

kinematic model. A sensitivity analysis method is proposed to study influences of various 

joint coordinates on kinematic responses and to identify a desirable synthesis. A kineto-

dynamic quarter car model comprising linkage kinematics of a double wishbone type of 

suspension together with a linear, and single- and two-stage asymmetric damper is 

subsequently proposed for coupled kinematic and dynamic analyses. The coupling 

between the various kinematic and dynamic responses, and their significance are 
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discussed for suspension synthesis. The effects of damping asymmetry on coupled 

responses are thoroughly evaluated under idealized bump/pothole and random road 

excitations, which revealed conflicting design requirements under different excitations. A 

constrained optimization problem is formulated and solved to seek design guidance for 

synthesis of a two-stage asymmetric damper that would yield an acceptable compromise 

among the kinematic and dynamic performance measures under selected excitations and 

range of forward speeds.  

The coupled kinematic and dynamic responses in the roll plane are further analyzed 

through development and analysis of a kineto-dynamic roll-plane vehicle model 

comprising double wishbone type of suspensions, asymmetric damping and an antiroll 

bar. The results are discussed to illustrate conflicting kinematic responses such as 

bump/roll camber and wheel track variations, and an optimal geometry synthesis is 

derived considering the conflicting kinematic measures together with the lateral space 

constraint. A full-vehicle model comprising double wishbone type of suspensions is also 

developed in the ADAMS/car platform to study influences of faults in suspension 

bushings and linkages on the dynamic responses. The results of the study suggest that an 

optimal vehicle suspension synthesis necessitates considerations of the coupled kinematic 

and dynamic response analyses.  
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CHAPTER 1 

 INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction 

The design and synthesis of a vehicle suspension is known to be a highly complex task 

due to widely conflicting design constraints imposed by the various performance 

measures, namely the ride, handling and directional control. The design compromises 

between the ride comfort, road holding and the working space have been widely studied 

considering the dynamic responses of the vehicle models. Syntheses of suspension 

systems considering various vehicle performance measures have been extensively 

reported in the literature. These studies could be grouped in two different categories on 

the basis of the performance measures, (i) synthesis of suspension geometry focusing on 

selected kinematic performance criteria; and (ii) synthesis of forcing elements such as 

springs, dampers, and the antiroll bar (passive, semi-active or active), which consider 

various dynamic performance measures. These studies have considered suspension and 

vehicle models of varying complexities, although linear or nonlinear quarter-car models 

have been most widely used to evaluate the ride, rattle space and the dynamic tire force 

responses of suspension design concepts, and synthesis of semi-active and active 

suspension control strategies. The dynamic performance measures are also strongly 

coupled with the kinematic response measures, while such coupling effects are rarely 

considered in vast majority of the reported vehicle models with the exception of 

comprehensive models formulated in multibody dynamics simulation softwares. For 

instance, the road holding and handling dynamic performance of vehicles are strongly 

related to wheel orientation which is a complex function of various kinematic measures 
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such as wheel camber, toe and caster angles. It has been suggested that minimizing the 

variation in these angles through consideration of coupled effects could help achieve 

improved road holding performance [1, 2]. 

Dynamic analyses of one-, two-, and three- dimensional models have substantially 

contributed to suspension design for enhancement of ride, pitch, lateral and roll dynamic 

performances of the vehicles. The contributions due to non-linear kinematic motions of 

the linkages and bushings, however, could not be identified. Furthermore, conventional 

dynamic vehicle models assume constrained motions of the unsprung masses along the 

vertical direction. In an independent suspension system, the wheel carrier or the spindle is 

generally connected to the chassis through the suspension linkages, which induce 

rotational motion of the wheel about the vehicle longitudinal axis apart from the vertical 

motion. Suspension kinematics thus contributes considerably to the vertical and roll 

dynamic responses. Furthermore, both the dynamic and kinematic responses of a road 

vehicle are strongly dependent upon the suspension damper properties in a highly 

complex manner.  

Automotive suspension dampers invariably exhibit asymmetric damping 

characteristics in compression and rebound, with considerably greater damping during 

rebound than in compression, while the contributions due to damping asymmetry have 

not been adequately addressed in the reported studies. The damping asymmetry coupled 

with the nonlinear kinematic responses of the suspension could significantly alter the 

dynamic responses, particularly the drift in the vehicle equilibrium position. Although the 

asymmetric suspension damping is widely implemented and is highly desirable in view of 

the road holding performance, the reasons for such asymmetry have not been explicitly 
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defined, which in-part can be attributed to limited understanding of influences of damper 

asymmetry on the kinematic and dynamic responses of the vehicle. The design guidance 

for such asymmetry have been limited to a general rule of thumb suggesting that a 

rebound to compression damping ratio in the order of 2 or 3 would reduce the force 

transmitted to the sprung mass while negotiating a bump [1, 2].  

Systematic study of asymmetric damping together with coupled kinematic and 

dynamic effects would thus be desirable to establish design guidelines. Such a study 

would also be beneficial in realizing suspension synthesis for emerging hybrid vehicles 

that impose greater challenges related to sprung mass and sub-frame space requirements, 

and thus the chassis design [3]. The larger space requirements of the hybrid vehicles also 

necessitate considerations of the suspension synthesis with limited lateral space, which 

would most likely involve complex compromises among the different performance 

measures. Furthermore, such a study would enable the considerations of flexibility due to 

joint bushings, which influence the dynamic responses of the vehicle considerably.  

Inclusion of the bushing properties in the vehicle dynamic model, however is challenging 

due to highly nonlinear properties of the flexible bushings. Moreover, the bushing wear 

and joint clearances can affect not only the dynamics of the vehicle, but also the 

operational safety. A timely detection of the bushing clearance or the onset of probable 

failure would thus help prevent potential vehicle break down. Apart from the suspension 

kinematics and joints flexibility, the tire lateral compliance can also influence the 

dynamic responses of the vehicle. The synthesis of automotive suspension thus 

necessitates a thorough understanding and considerations of the couplings between the 
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suspension linkage kinematics with the dynamic responses of the vehicle, together with 

the tire and joint compliances, and the asymmetric damping.  

The primary objective of this dissertation research is thus formulated towards 

synthesis of a vehicle suspension system including its geometry and joint coordinates, 

and asymmetric damping properties through coupled kinematic and dynamic analysis.  

This dissertation research involves developments in kinematic, and one- and two-

dimensional kineto-dynamic models of the vehicle suspension system incorporating the 

coupled kinematic and dynamic responses and the lateral tire compliance. The influences 

of joint coordinates on the kinematic and dynamic response characteristics are 

investigated and discussed in view of the track variation and lateral space requirements in 

hybrid vehicles. The study is further concerned with the selection of optimal joint 

coordinates and asymmetric parameters of a two-stage damper considering the design 

conflicts among the different kinematic and dynamic responses. Influences of suspension 

faults including those in joint bushings, damper and linkages on the dynamic responses of 

the suspension are also presented.   

1.2 Literature Review 

The suspension synthesis process involves considerations of influences of suspension 

components on the various dynamic responses of the vehicle including ride, roll, handling 

dynamics and directional stability. The analyses and syntheses of independent suspension 

systems thus require an essential fundamental knowledge of the component properties, 

the ride and handling dynamics of the vehicle, suspension kinematics, tire-road 

interactions, modeling methods, characterization of joint bushings, and more. The 

reported relevant studies are thus thoroughly reviewed and briefly discussed in the 
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following sections to gain fundamental knowledge and to formulate the scope of the 

dissertation research.  

1.2.1 Synthesis of Independent Suspensions for Road Vehicles  

The independent suspension designs offer considerable advantages over the dependent 

type of suspension such as smaller space requirement, easier steerability, lower weight 

and absence of mutual wheel influence. It has been identified that the absence of mutual 

wheel influence is beneficial in good road holding, particularly during cornering on a 

bumpy road surface [4]. MacPherson strut and double wishbone type of suspension 

constitute the majority of the independent suspensions in the road vehicles [1, 2], while 

multi-link suspensions, including the quadra-link and five-link types, are increasingly 

being employed in the passenger cars [5, 6].  The study of suspension kinematics or 

suspension geometry involves the analyses of coupling between the unsprung mass and 

the sprung mass [1]. The kinematic design of an independent suspension is considered to 

be a complex task due to couplings between various kinematic responses of the 

suspension including the wheel center trajectories in the pitch and roll planes, and 

variations in camber, toe and caster angles. These kinematic properties of the suspension 

are strongly coupled with the vertical and roll motions of the vehicle. For instance, a 

suspension designed for minimal camber variation during wheel vertical travel yields a 

large camber variation during vehicle roll [4, 7-9].  

Earlier stages of the conventional suspension design process involve kinematic 

analysis of the suspension mechanisms, particularly, the wheel centre trajectory and 

changes in the wheel aligning parameters with the wheel vertical travel [4,10]. The 

changes in the track width, roll centre height and motion ratios are other parameters of 
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interest in the kinematic analysis [10]. In such analyses, the chassis, suspension links and 

the wheel-tire assembly are generally assumed as rigid bodies, while the contributions 

due to joints flexibility are considered negligible [5, 6, 10-12]. 

 The suspension kinematic responses have been studied using graphical, analytical or 

experimental means. Graphical methods were widely used in the earlier studies to 

estimate the suspension kinematic parameter changes, before the wide spread use of 

computers [4, 13]. The graphical method poses considerable complexities for predicting 

the trajectories of spatial suspension mechanisms and may yield considerable errors. 

Numerous analytical models of varying complexities have been developed to study the 

kinematic responses of various types of commonly used suspensions including the 

MacPherson strut, double wishbone and multilink suspensions [6, 11, 12, 14-17]. The 

planar kinematic properties of a suspension can be effectively analyzed considering the 

suspension system as a planar mechanism. The position analyses of planar mechanism 

can generally be carried out by solving the mechanism loop closure equations [11, 18] or 

by displacement matrix methods [19, 20]. While the planar representation of the 

suspension makes it possible to analyze some of the kinematic properties, such as camber 

variation with roll or bump in the roll-plane, such models ignore the existence of steering 

mechanisms and kinematic effects of steer or caster angles. It would be possible to 

represent the mechanism in the pitch or yaw-plane to estimate such kinematics effects.   

Three-dimensional or spatial kinematic analyses are considered instrumental for 

determination of variations in the steer, camber or caster angles simultaneously, taking 

into account the coupled kinematic effects of suspension linkages. The reported spatial 

kinematic models use loop closure equations, displacement and transformation matrices 
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for the displacement analysis, while the orientations of the wheel are derived from the 

geometrical relations [6, 11, 12, 14, 16, 17, 21]. Cronin [11] proposed a kinematic model 

of a MacPherson suspension based upon vector algebra. The mechanism was assumed to 

have two- degrees of freedom (DOF) including the jounce motion of the wheel carrier 

and rotation of the knuckle about the strut axis to represent the steering motion. Position 

loop equations were written for displacement of each of the two mechanism loops 

(chassis-wheel knuckle-strut-chassis and chassis-knuckle-tie rod-rack-chassis). Further, 

nonlinear scalar expressions in terms of the suspension geometry were obtained for the 

displacement of each link. A similar kinematic models of the MacPherson suspension 

have also been proposed by Suh [14] employing the displacement matrix method, and 

using Euler transformation [21].  

Suh [14, 19, 20] proposed the use of displacement matrices for analysis and synthesis 

of the spatial suspension mechanisms, defined by multi loop spatial guidance 

mechanisms with single-DOF assigned to each loop. The motions of the mechanisms 

were described by using displacement, velocity and acceleration matrices together with 

the constraint equations for each of the suspension link. The application of displacement 

matrix method was demonstrated for a double wishbone suspension. Rae et al. [15] 

demonstrated that Euler angles and Euler parameters can be effectively used to describe 

the motion of the wheel carrier of the double A-arm suspension.  

A vast number of studies have also reported spatial kinematic analysis of complex 

five-link rear suspension mechanisms [5, 6, 12, 17, 22, 23]. The five-link rear suspension 

is considered as the basic multi-link suspension configuration with five distinct links 

connecting the wheel carrier to the chassis. Unlike the MacPherson or double wishbone 
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suspensions the kingpin axis is not clearly defined in the multi-link suspension, which 

makes the kinematic modeling a challenging task [6, 12].  Lee et al. [6] proposed a 

method to estimate the wheel centre and linkage joint trajectories as a function of wheel 

vertical movement using rigid body velocity vector relations. The instantaneous 

velocities of different joint centers in the wheel carrier were expressed by vector sum of 

wheel center velocity and cross product of angular velocity and position vector from 

wheel center to the joints. Another set of equation was obtained from the condition that 

the dot product of velocity of each joint at wheel carrier and their position vectors from 

the chassis would be zero. These equations could be solved to yield velocities of each 

joint for a given wheel vertical velocity. The study concluded that the solutions of the 

equations were sensitive to the wheel vertical velocity.   

Knapczyk et al. [12, 26] performed kinematic analysis of a five-link suspension 

considering a transformed mechanism with upper two links removed. The joint positions 

of the transformed mechanism were described by the spring length and two orientation 

angles formed by the control arms. An optimization problem was formulated describing 

the condition that the distances between the coupling joints remain equal to the lengths of 

the disconnected members. The optimal solutions for the joint positions were applied to 

determine the camber and toe angles, and coordinates of the wheel-road contact point 

through the vector relations. Simionescu [5] formed a motion generation synthesis 

problem for the synthesis and later for the kinematic analysis of a five-link suspension. 

The study formulated an optimization problem that allowed the wheel carrier, released 

from its joints, to move in successive positions along an ideal trajectory (vertically 

upwards in the case of suspension), while the distance between the joints of individual 
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links vary as little as possible. The solution of the minimization problem resulted in 

wheel carrier displacement and orientation. All of the reported analyses of five-link 

suspension have shown similar kinematic responses. 

The kinematic analyses of suspension mechanisms have employed various multi-body 

dynamic tools, such as ADAMS [10, 27, 28]. The ADAMS/car and ADAMS/chassis 

modules provide platforms to build suspension models and permit the kinematic analysis 

with or without considering the joints compliance [27, 28]. The parallel wheel analyses of 

suspensions in ADAMS/car module provide various kinematic responses, including 

variations in the camber, caster and toe angles, and roll center height as a function of 

wheel vertical motion. Shim et al. [27] developed front MacPherson and rear multilink 

suspension mechanisms models in ADAMS/car platform to perform the parallel wheel 

analyses, which were subsequently integrated to the full vehicle model. The validity of 

the MacPherson and rear multilink suspension models was demonstrated using the 

measured kinematic properties. 

Although, the kinematic analyses of different suspension mechanism have been widely 

reported, only a few studies have investigated the suspension linkage kinematics through 

laboratory experiments [21, 26, 27, 29]. The measured data reported in these studies have 

been widely used for model verifications. The reported studies have shown reasonably 

good agreements between the model responses and the measured data in terms of camber 

change and contact-point trajectory, while considerable differences in the toe angle 

response were observed. Mantaras [21] demonstrated the validity of the MacPherson 

suspension mechanism model by using the measured kinematic responses. Ozdalyan et 

al. [29] in a similar manner used measured data acquired from a McPherson front 
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suspension set-up to validate the model developed in the ADAMS platform. Knapczyk et 

al. [26] used a half-car five-link suspension set-up to experimentally investigate the 

kinematics and elasto-kinematics of the suspension with the goal of evaluating the 

influence of deflections of the elastic bushings on spatial displacements of the wheels. 

The model validity was demonstrated using the measured camber, toe and steer angles. It 

was shown that the wheel contact-point and the wheel center trajectory, and camber and 

caster angles, predicted by the model were reasonably close to the measured data with 

peak difference being below 10%, while the toe angle response showed larger deviation. 

The reported studies have suggested that kinematic responses of an independent 

suspension are highly influenced by the joint coordinates and linkage lengths in a 

complex manner, while identification of most influential joint coordinates continues to be 

one of the most challenging tasks in the synthesis process [30]. Raghavan [7, 13] 

specified the requirements of the suspension mechanisms for limiting the wheel motion in 

the vertical plane, irrespective of the vehicle attitude. The wheel motion, however, was 

strongly coupled with vertical and roll motion of the vehicles. A suspension designed for 

minimal camber variation during wheel vertical travel would thus yield a large camber 

variation during vehicle roll [4, 7-9]. It has thus been recognized that changes in the 

camber angle and the wheel track cannot be avoided under roll motions and that 

compromises in various performance measures are inevitable with the existing 

suspension configurations. 

A number of studies have attempted to synthesize optimal suspension geometry that 

could achieve better compromise between the conflicting kinematic response 

characteristics of various suspension mechanisms, including the MacPherson’s, double 
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wishbone and multilink types of suspensions [5, 24, 30-34]. Majority of these studies 

have employed, predefined kinematic target measures, in the form of desired wheel path, 

and variations in camber and toe angles with the wheel vertical travel considering only a 

single suspension [5, 30, 31]. Li et al. [34] considered minimal track-width, camber and 

toe angles variations with the wheel vertical travel, as the objective functions for 

optimizing the geometry of a multilink suspension developed in the ADAMS/car 

platform. While the model assumed fixed chassis, the optimal suspension geometry 

showed reduced camber angle and track width variations, with increased variations in the 

toe angle when compared to the responses of the original suspension. 

Relatively fewer studies have considered the suspension systems on both sides of axle 

to incorporate the contributions of the chassis roll.  Habibi [24] employed genetic 

algorithm to identify optimal joint coordinates of a MacPherson’s suspension mechanism 

in order to yield design compromise among the roll steer and bump steer responses. Fijita 

et al. [32] proposed an optimization methodology for the synthesis of front and rear 

wheels multilink suspensions by minimizing an objective function comprising the 

deviations from the desired toe and camber angle variations, roll centre height, and 

sprung mass responses e.g. roll angle, lateral acceleration and vertical vibration 

amplitude. The methodology involved identification of 92 design parameters that 

included the coordinates of the suspension joints and suspension rates. Significant 

improvements in the vehicle ride and handling dynamic responses were claimed to be 

achieved by the study, although related results were not presented by the study. 

Numerous studies have proposed alternate suspension configurations, or modification 

to the existing kinematic designs in order to reduce the couplings effects [7, 9, 35, 36]. 
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Raghavan [7] proposed addition of an intermediate linkage between the independent 

suspension and the sprung mass to achieve zero camber angles during vehicle roll. The 

additional linkage with revolute joint was expected to provide an additional DOF to the 

system.  The physical implementation of the concept, however, was considered to be 

complex due to additional link. Deo et al. [35] proposed a novel six bar suspension 

mechanism to reduce couplings between the different kinematic parameters. The 

axiomatic design method, employed in the study, identified that the wheel aligning 

parameters and the suspension vertical travel are coupled in the existing four-bar type of 

suspension mechanisms. The study suggested that the identified couplings can be 

decoupled by increasing the number of links in the mechanism. However, the camber 

angle variations due to sprung mass roll could not be incorporated into the design 

problem. Furthermore, the proposed mechanism had limitations due to the increased 

number of links and joints and associated higher cost and unsprung weight [35].  

Heuze et al. [9] proposed an optimal contact patch (OCP) suspension mechanism to 

prevent the wheel camber during vehicle roll by providing an additional degree of 

mobility to the mechanism. The aim of the proposed mechanism was to obtain a negative 

camber while cornering, only by the application of the ground lateral loads. The study 

was limited to the roll-plane of the vehicle, which did not thus permit the analyses of the 

influences of the new configuration on other kinematic parameters. Sharp et al. [36] 

presented a kinematic cross-linked suspension system with two diagonal interconnections 

between two independent suspensions of an axle. The cross linked suspension allowed 

the camber angle of right hand side wheel to be influenced by the left wheel bounce. The 

study showed that such cross-linking reduced the sprung mass roll motion considerably, 
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and yielded minimal camber variations during wheel bounce and sprung mass roll. 

However, the suspension design was relatively more sensitive to geometric changes.  

Apart from the above mentioned conflicting kinematic measures; namely, bump/roll 

camber, bump/roll steer (toe angle), caster angle and wheel track variations, the 

packaging space limitations pose additional challenges during design of the suspension 

geometry. Raghavan [13] proposed synthesis of a planar suspension configuration 

considering the lateral packaging space and wheel camber variations as the performance 

measures. Lateral packaging space limitation becomes a predominant design constraint in 

the design of suspension systems for hybrid vehicles, which require a large subframe or 

chassis space for placing the batteries or fuel cells [3, 37].    

1.2.2 Suspension Joint Bushings  

The vehicle suspension joints bushings are typically composed of a hollow elastomer 

cylinder contained between inner and outer steel sleeves. The flexible bushings help 

isolate road induced vibration, reduce noise transmission, accommodate oscillatory 

motions and accept misalignments of axes. The flexibility of the joint bushings of 

suspension mechanisms contributes to wheel compliance particularly in the lateral 

direction, which influences the handling dynamics of the vehicle in a significant manner 

[4, 38, 39]. The bushing design requirements are thus conflicting in that the vehicle 

handling performance requires stiff bushings, while the ride comfort demands highly 

compliant joint bushings [40]. Furthermore, the bushing properties are highly nonlinear 

in translational and rotational directions due to the nature of the elastomeric material [38, 

41-43]. 
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Various studies have reported compliance properties of suspension joint bushings in 

terms of linear or nonlinear force-displacement or force-velocity relations [22, 26, 38, 43-

45]. These have generally suggested two different approaches to obtain force-

displacement relations for the elastomeric bushings: (i) through solutions of the analytical 

boundary value problem of classical mechanics; and (ii) through experiments on sample 

specimens [38].  Within the classical mechanics approach, a three-dimensional equation 

relating the stresses and strains under a range of deformation and time conditions were 

formulated. The approach, however, was considered highly cumbersome [38, 41].  

Consequently the experimental approach of determining the force-displacement 

properties has been widely used. This approach, however, does not permit identification 

of a general relationship and requires repeated measurements for bushings at different 

stages of wear and for new bushing designs [38, 43]. Further, the response of the flexible 

material at local levels cannot be determined. 

Experiments conducted on the joint bushings materials have shown that the 

displacement reaches within 2% of the fully relaxed value 20 seconds after the 

application of the force, which is attributable to the visco-elastic properties of the 

bushings [41, 43]. Further studies have shown that the force-displacement or moment-

rotation relations of bushing materials are influenced by the type of loading. For instance, 

under coupled mode (radial and torsional) of deformation, the radial force decreases with 

an increase in the torsion to reach a minimum value, while a further increase in torsion 

causes increase in the radial force [41]. The dynamic characteristics of the bushings have 

been captured through identifications of the model components properties, which may 

include a simple spring or a spring with a viscous damping element with or without 



15 

 

consideration of the friction damping [44, 45, 46].  Dzierzek [46] proposed a bushing 

model comprising springs, viscous and friction damping in conjunction with two sets of 

in-series springs and viscous damping elements, all assumed to be in parallel. Pu et al. 

[44, 45] considered nonlinear bushing model to include in-parallel spring and damper that 

are connected in series to another spring element. The parameters were identified by 

comparing the frequency responses of the proposed model with the experimental data. 

The proposed model with the identified parameters was shown to yield comparable force 

force-displacement and force-velocity characteristics to those of the measured data. 

The compliance in the suspension joint bushings can shift the joint centers when the 

mechanism is assembled, which can thus alter the kinematic and dynamic responses [47, 

48].  Messonnier et al. [47] proposed an identification method for the bushing model to 

study the influences of geometric shifts in the bushing centers. The proposed model 

comprised springs in three orthogonal directions, and the identification procedure 

involved measurements of the suspension geometry and use of a multiplication algorithm 

in conjunction with the force-deflection relations. The force-deflection relations were 

obtained by simulating the suspension model developed in a multibody dynamic 

platform. Such identification process, however, required precise measurements of the 

reference coordinates on the suspension assembly in addition to the multibody dynamic 

simulation tool for estimating the bushing forces [48]. 

Suspension joint bushing properties in static or quasi-static conditions have been 

analyzed by a few studies employing either analytical models [22, 26, 49], or multi-body 

dynamic tools [42]. Such analysis, also known as elasto-kinematic analysis, provides 

useful information on the influences of bushing compliance on variations in the kinematic 
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responses such as wheel camber, caster and toe angles during the wheel relative motion 

with respect to the sprung mass. Knapczyk et al. [26, 49] investigated the influences of 

five-link suspension joints and subframe bushings properties on the wheel compliance by 

comparing the suspension kinematic responses under three conditions, namely: (i) non-

compliant joints; (ii) bushing compliance represented by radial spring alone; and (iii) 

bushing compliance represented by three linear orthogonal springs. The wheel center 

displacement, and toe and camber angle responses were evaluated as a function of the 

wheel vertical travel and compared with the experimental data. The responses of the 

model with bushings characterized by three orthogonal springs showed a closer 

resemblance to the experimental data. It was shown that the suspension subframe 

bushings compliance influence the toe angle and wheel longitudinal displacement, while 

a negligible influence were observed on the toe angle under a braking force input.  

Blundell [42] investigated the influences of joint bushings on the suspension kinematic 

responses including variations in camber, caster and steer angles, wheel track and roll 

centre height using a trailing arm rear suspension model in the ADAMS platform.  The 

study compared the responses of the model with non-flexible joints, bushing joints with 

linear stiffness and bushing joints with nonlinear stiffness. It was revealed that the 

variations in the camber and caster angles and wheel track increase marginally by 

including the bushings in the analysis, while the toe angle variation reduced considerably. 

The suspension with nonlinear bushing model showed comparable responses to those of 

the model with linear bushing model. Caputo et al. [50] performed similar analyses for a 

five-link suspension and concluded that the bushings of the camber link influence the 

camber angle and track properties.  
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Flexible bushings invariably used in suspension joints have also been modeled by 

translational and rotational springs along three axes, particularly in the model analyzed 

using multibody dynamic formulations [51] or available software tools [42, 52] for the 

dynamic analyses. For example, ADAMS software permits bushings models with three 

translational and three rotational spring and damping elements [28, 42]. Yang et al. [52] 

conducted a sensitivity analysis in order to study the influences of the front suspension 

bushing rates on the vehicle impact harshness under bump excitation using a full-vehicle 

model with linear translational bushing compliance developed in ADAMS/car. The study 

showed that the impact harshness performance was dominantly affected by the fore-aft 

bushing stiffness of the lower control arm and vertical stiffness of the upper shock mount. 

It was further shown that the impact response was significantly affected by the vehicle 

forward velocity significantly. The joint bushing flexibility can also influence the fatigue 

life of the suspension arm apart from the ride and handling dynamics of the vehicle [53]. 

The effect on the fatigue life was illustrated through the stress analysis of the 

MacPherson suspension control arm, and it was shown that the life cycle (S/N ratio) of 

the suspension components can be increased significantly through careful synthesis of the 

bushing properties.   

1.2.3 Joint Clearances and Fault Diagnostics 

Majority of the studies related to the kinematic and dynamic responses of the vehicle 

suspension have assumed idealized suspension joints with negligible clearances [5, 6, 

17]. Although a few studies have shown considerable influences of suspension joints 

bushing on the dynamic responses, even fewer studies have been reported on the effects 

of suspension bushing clearances [54, 55]. The effects of bushing clearances on the 
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kinematic and dynamic responses of various mechanisms, however, have been 

extensively reported [56-60].  These studies have invariably shown that the clearances in 

the joints of any mechanism yield most significant repeated impacts between the mating 

members, apart from the undesirable kinematic responses.  

The forces in the clearance joints are generally estimated either by continuous contact 

models, where the forces arising from the collisions are assumed as continuous function 

of deformation or by discontinuous contact models that assume instantaneous impacts. 

Flores et al. [56, 57, 60] studied the clearances in revolute joints of a four bar mechanism 

using continuous contact model with radial spring elements. The study showed abrupt 

variations in the responses of a rigid four bar mechanism, while the responses were 

evaluated in terms of velocity and acceleration of the slider, the moment acting on the 

crank, and the relative motion between the journal and the bearings.  Further, a small 

change in the magnitude of the clearance, in the order of 10 μm showed considerable 

variation in the responses. The consideration of link elasticity in the model, however, can 

reduce the peak contact force [58]. The models proposed in the analyses of general 

mechanisms could be effectively applied to study the effects of bushing clearance on the 

kinematic and dynamic responses of various suspension mechanisms.  

The influence of faulty damper and upper strut bushings on the dynamic responses has 

been studied by Azadi et al. [54, 55]. The study employed a full vehicle model with 

front- and rear- rigid type of suspension, developed in the ADAMS/car platform.  Faulty 

damper in the study, was modeled by reduced damping coefficient, while the faulty 

bushing at the upper strut mount was modeled by a discontinuity in the force-

displacement characteristic of the bushing. The study showed higher wavelet signal 
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energy of the sprung mass pitch acceleration of the model with faulty bushings than that 

with the nominal bushing and the vertical acceleration response of the wheel connected 

with the faulty damper and bushings was higher than those of other wheels. The observed 

response trends could be applied for developing a bushing fault detection algorithm, 

although the study was limited to the clearance in the upper strut bushing only. 

Suspension fault detection has been attempted in only a few other studies employing 

simple lumped-parameter vehicle models [61] or finite element full vehicle models [62]. 

These studies, however, were concerned with the fault detection in the suspension spring 

or damper, while an optimal number of sensors and their locations were also discussed. 

The detection of faults in the joint bushings due to clearances, however, was not 

considered in these studies.  

1.2.4 Handling Dynamics of Road Vehicles  

The handling dynamic analyses of road vehicles consider forces and moments caused 

during directional maneuvers. The vehicle ride and handling dynamics in practical 

vehicle designs have been thoroughly discussed by Crolla [63], while the handling 

dynamics of vehicles are generally studied under transient and steady-state maneuvers 

[64, 65]. The transient handling dynamics relates to time-varying directional responses to 

a given maneuver, which are generally evaluated in terms of lateral acceleration, yaw 

rate, roll angle, roll rate, understeer coefficient, etc. Such responses have been evaluated 

under different maneuvers, such as steady state cornering, cornering with braking, 

straight line braking and path change type of maneuvers [65]. Steady-state handling 

performance, on the other hand, is concerned with the directional behavior during a 

steady turn under non-time varying conditions [65, 66].  
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An understeer vehicle is known to be unconditionally directionally stable, while an 

oversteer vehicle could lead to directional instability at speeds near or above the critical 

speed [1, 65, 66]. Some studies have also suggested that the understeer coefficient of a 

vehicle should be maintained relatively constant during both the linear and nonlinear slip 

angle ranges in order to retain consistent drivers’ control [67, 68]. Other studies have 

proposed contradictory handling requirements suggesting that a higher understeer 

coefficient with increasing lateral acceleration would be desirable, so as to improve 

vehicle yaw or directional stability [64, 66]. Vehicles tend to understeer while 

accelerating during cornering, but could lead to oversteering tendency during braking-in-

cornering maneuver [69]. The suspension damping together with the kinematic response 

of the suspension can influence the understeer coefficient of the vehicle in a considerable 

manner. For example, a higher front suspension damping coupled with a lower rear 

suspension damping can result in greater understeering tendency [68, 69]. 

The steering and braking maneuvers cause lateral and longitudinal load transfers, 

which may result in significant changes in the handling and stability limits of the vehicle 

[1, 67]. It is well known that the lateral forces and moments developed at the tires 

strongly determine the lateral or handling dynamics of the vehicle, and the cornering 

forces are strong nonlinear function of the coefficient of adhesion, normal load, slip angle 

and the slip ratio [67, 68, 70]. A large number of studies on handling dynamics have 

employed simple vehicle models with linear or non-linear tire models [71-73], while the 

contributions due to suspension kinematics and asymmetric damping were ignored in 

these studies.  
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   The handling dynamics of road vehicles have been extensively studied through linear 

and nonlinear analytical models of varying DOF. The linear 2- DOF bicycle model that 

considers vehicle lateral velocity and yaw rate as the degrees-of-freedom had been used 

in earlier studies on steady-state and transient handling analyses [65, 66, 68, 74, 75]. In 

the linear bicycle model, the effects of suspension kinematics, vehicle roll and lateral 

load transfer are ignored and constant forward speed with linear tire characteristics is 

assumed. Such assumptions would be reasonably valid at lateral accelerations below 0.3 

or 0.4g [74, 75, 76]. Although the lateral and longitudinal load transfers have been 

incorporated in the simple models through suspension roll rates or with an additional roll 

DOF, the effects of suspension kinematics were still ignored in such models [65, 74]. 

Further studies have shown that a yaw-plane model with reduced roll DOF could yield 

considerable deviations from the measured data by as much as 15% at lateral 

accelerations exceeding 6 m/s
2
.  

The suspension kinematics can significantly alter the wheel camber, caster and toe, 

and the roll center heights, and thereby handling properties of vehicles. Numerous have 

investigated the handling dynamics of vehicles using models comprising the suspension 

kinematics. The majority of these employed multi-body dynamic models to study the 

handling responses of vehicles to steering and braking inputs [74, 76-81]. Janson and 

Oosten [74] employed a 36- DOF multibody dynamic model that included suspension 

kinematics and joint compliance, which revealed deviations from the measured data in 

the order of 5%. The reported three- DOF yaw-plane models with reduced roll-DOF and 

elaborate multibody models had incorporated Magic Formula tire models for calculating 
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the tire forces, while the yaw-plane models ignored the suspension kinematics and 

considered a stationary roll axis passing through the suspension roll centers.  

Hegazy et al. [76] proposed a 34 mass, 94- DOF vehicle model including the 

suspension nonlinearities for transient handling dynamics analysis under a double lane 

change type of maneuver at a constant forward speed of 90 km/h, as described in the 

international standard, ISO-3888 [82]. The model included suspension kinematics and 

joint compliances, while the tire forces were estimated using the Magic Formula. The 

study concluded that the model can be effectively used for handling dynamic analysis 

even though the model validation was not discussed. Further studies by the same authors 

have shown that the multibody dynamic vehicle model, developed in ADAMS platform, 

is useful in correlating various forces developed at the tire road interface, such as high 

magnitude abrupt peaks in the vertical tire forces may be related to suspension bump stop 

forces in the opposite direction [81]. A simplified 18- DOF multibody dynamic vehicle 

model was proposed by Sayers et al. [80] to study the handling and braking response of a 

road vehicle. The model considered 6- DOF for the sprung mass and a vertical DOF for 

each of the four unsprung masses, while auxiliary DOF were considered for the spin rate 

and tangent of delayed lateral slip angle contributing to the relaxation length of the tires.  

Multibody dynamic analysis tools, such as ADAMS, could provide considerable 

flexibility in modeling the dynamic vehicle system, although very little interpretations 

could be made from the equations generated within the software [77-79]. Furthermore, 

such models require considerable data which suggests that the complexity of computer-

based modeling is dependent upon the particular application and the objective. For 

instance, inclusion of bushings while modeling a double wishbone suspension is 
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considered to have only a minimal influence on the camber change during wheel vertical 

travel [77]. The transient response analyses under a double lane change maneuver at a 

speed of 100 km/h could thus be performed using a simple yaw-plane vehicle model with 

equivalent roll stiffness as opposed to the full suspension linkage model [76, 79, 81].  It 

was further shown that such a vehicle model would overestimate the lateral acceleration 

and roll angle responses in the absence of camber effects, while similar yaw rate 

responses could be obtained without consideration of the camber [79].  

The levels of required modeling complexity have long been debated in developing 

vehicle models for dynamic analyses [83]. The engineers and analysts in the industry 

often generate quite complex models to achieve greater accuracy. The academic 

researchers, however, have put forward the view that typical industry-used vehicle 

models are too complex and inefficient as design tools [10, 70, 84]. Sharp [84] suggested 

that an ideal model should possess minimum complexity and be capable of solving the 

concerned problems with an acceptable accuracy.  

1.2.5 Ride Dynamics of Vehicles  

Ride comfort performance of a passenger vehicle has been the key design goal during 

the synthesis of the automotive suspension system. The ride performance of road vehicles 

is generally assessed in terms of two measures: (i) objective vibration performance of the 

vehicle expressed by the acceleration responses of the chassis evaluated either from field 

measurements or through simulation; and (ii) subjective evaluations of occupant comfort 

[1, 66, 85]. The objective evaluations of occupant comfort performance have also been 

reported on the basis of frequency-weighted acceleration as defined in ISO 2631 [86]. 

Considering that the road induced vibration is directly associated with the occupant 
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comfort, extensive efforts have been made to realize suspension designs for attenuating 

the road induced vibration. These studies generally employed acceleration responses of 

the sprung mass as measure of the ride quality. 

Interactions of the tires with the road roughness serve as the primary excitations when 

evaluating the ride performance of the suspension, although the rattle space requirement 

and road holding properties are also incorporated in the analyses [66, 87]. The ride 

properties of vehicles have been evaluated under varying excitations at the tire-road 

interface, including harmonic [1, 66, 88, 89], idealized bump and pothole inputs [90, 91] 

and randomly distributed road roughness inputs. The assessments of the vehicle 

responses under road roughness excitation, however, are considered vital for suspension 

designs and evaluations [92, 93, 94]. While time histories of road profiles are generally 

used as the inputs to the nonlinear analytical vehicle models, the road roughness is 

generally characterized by its power spectral density (PSD) [93, 95].  

The dynamic properties of the tire, road profile and their interactions are critical for 

suspension development. The most widely used and simplest model of tires representing 

their fundamental mode of vibration is the linear point-contact spring in parallel with a 

viscous damping element [2, 66, 87, 96]. Captain et al. [96] proposed and compared the 

responses of four different tire models in a single DOF vertical dynamic model of the 

vehicles, namely: (i) a point contact tire model; (ii) a rigid tread band tire model, which is 

the modified form of the point contact tire model with a roller type contact between the 

tire and the road; (iii) a fixed foot print tire model, which interacts with the ground 

through a foot print of constant size independent of the tire deflection; and (iv) an 

adaptive foot print model which consists of flexible tread band inflated by internal 
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pressure, linked to the wheel center by radially distributed stiffness and damping 

elements. The study concluded that all the four models yield comparable results under 

low frequency excitation, while the point contact model can overestimate the transmitted 

tire force significantly at higher frequencies. An adaptive foot print tire model was shown 

to yield good results over a wide range of frequencies, while it involves demanding 

parameter identification and computations.  

The analytical studies on ride dynamics involve modeling of essential suspension 

components with varying degrees of complexities. The reported ride dynamic models 

include one, two or three dimensional models with varying DOF. One dimensional 

single- or two- DOF quarter-car models have been widely used to study different 

concepts in suspension and the vertical dynamics of the vehicles. These models include 

either linear or nonlinear spring or dampers [2, 66, 97], and tire vertical properties [92, 

98]. Two-dimensional half-car, 2- to 4- DOF models with linear or nonlinear suspension 

and tire models have been used to study the pitch and roll ride response coupled with the 

vertical dynamics [2, 66, 99, 100]. The vertical ride, roll and pitch dynamic responses of 

vehicles have been investigated more comprehensively using the three-dimensional full-

car models [101, 102]. These include 7-DOF full-car models comprising heave, roll and 

pitch motions of the sprung mass, and the vertical motions of the independent unsprung 

masses. Influence of suspension properties including those of the spring rate, damping 

(passive, semi-active or active), and antiroll bars on vertical, roll and pitch responses 

have been widely explored by such ride models [101, 102]. Such models, however, 

ignore longitudinal, lateral and yaw motions of the vehicle, and cannot be employed to 

analyze handling and directional dynamic responses of the vehicle. A few studies have 
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employed three-dimensional full car models to study the ride and handling properties of 

vehicles and role of suspension design [103-105]. These models consider the yaw and 

lateral motions of the sprung mass in addition to the heave, pitch and roll motions. Such 

models were proved to be instrumental in studying the influences of road induced 

vibrations on the handling dynamics of the vehicles.  

The ride performances of road vehicles strongly depend on the suspension properties, 

namely the stiffness and damping parameters. A damper in an automotive suspension 

system plays a vital role in the ride and handling dynamics of a vehicle, while modeling 

of damper properties is considered as a challenging task due to its highly nonlinear 

behavior. The nonlinearity in the damper is attributed to its dependency on the damping 

valves, gas spring, end bushings, temperature sensitivity and the hysteresis. The damper 

characteristics are typically represented by force-velocity curves. The suspension 

damping properties and their effects on various vehicle performance measures have been 

extensively investigated under different inputs, including the contributions due to gas 

spring, bushings compliance, and temperature and hysteresis effects [89, 106-111].  

Hardware-in-the-loop (HiL) test and analysis techniques have been developed in a few 

studies to investigate the contributions due to suspension damping. These studies, in 

general, integrate the measured damping force of the damper hardware in response to 

suspension deflections that is derived from a quarter-vehicle simulation models [112-

114]. The HiL method thus permits consideration of contributions due to nonlinearities 

effects that are difficult to model, such as the effects of bushings, temperature variations 

and damping valves.  Misselhorn et al. [112] investigated the suitability of HiL method of 

analysis for suspension development using a quarter-car model of a vehicle. It was shown 
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that the displacement response predicted by the quarter-vehicle model simulation was 

lower than that derived from the HiL simulation under a step input, while it was higher 

for a bump input. A delay between the two responses was also observed, which was 

attributed to the phase lag of the servo-hydraulic actuation system. The study further 

compared the results attained from HiL simulation with those measured from a quarter-

car experimental setup. The study observed the phenomenon of stick-slip within the 

quarter-car setup, which was in-part attributed to the bushing properties causing large 

resistive force at low speeds and small resistive force at high speeds. The HiL simulation 

techniques have also been applied for synthesis of controllers for various semi-active and 

magneto-rheological fluid dampers [114-116]. Although a HiL technique can provide 

efficient simulations of suspension nonlinearities, the contributions due to suspension 

kinematics, particularly the rotation of the damper strut, are entirely ignored. 

Automotive suspensions invariably employ asymmetric dampers, which exhibit higher 

damping coefficient in rebound than in compression. The precise reasons for such 

asymmetry, however, have not been explicitly quantified [117], which is most likely 

attributed to highly complex dependence of different performance measures on the 

damping asymmetry. Furthermore, the effects of damping asymmetry greatly depend 

upon the nature of excitation and suspension responses. The reported results thus do not 

permit the design guidance for damping asymmetry, which has been limited to a general 

rule of thumb suggesting that a rebound to compression damping ratio in the order of 2 or 

3 would reduce the magnitude of the force transmitted to the sprung mass, while 

negotiating a bump [1,2]. Only a few studies, however, have attempted to quantify the 
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effects of asymmetric damping on the vehicle responses to transient excitations idealizing 

bumps or potholes [94, 117, 118]. 

Fukushima et al. [119] investigated the influence of asymmetric damping on ride 

comfort and concluded that a lower damping in compression than in rebound would yield 

significant reduction in the initial sprung mass acceleration peak response to a bump 

excitation. The study, however, did not present the effect of damping asymmetry on the 

subsequent response peaks or the responses to a pothole type of excitation. Verros et al. 

[91] investigated the transient response of a single-degree-of-freedom (DOF) quarter-car 

model with single stage asymmetric dampers with rebound to compression damping 

ratios of 3 and 1/3 under pothole excitations. The study showed considerable influences 

of the damping asymmetry on the sprung mass acceleration and rattle space responses.  

A few studies have also suggested that damping asymmetry causes suspension 

‘packing’ or ‘jacking down’ [88, 89], while no efforts have been made to quantify such 

phenomenon in relation to the suspension kinematics. Using a quarter-car model 

employing a nonlinear damper model with asymmetric damping rates, Warner et al. [88] 

showed that the damper asymmetry causes change in the ride height or ‘dynamic drift’, 

which is dependent upon the low-speed compression and rebound damping coefficients. 

Rajalingham and Rakheja [89] presented variations in the vehicle ride height in terms of 

alternating and mean components of the suspension deflection, where the mean 

component represented the magnitude of packing down of the asymmetric suspension. In 

a similar manner, Eslaminasab [120] decomposed the damping force due to a single stage 

asymmetric damper under harmonic excitations into a symmetric component and a 

discontinuous component attributed to the damping asymmetry. Simms et al. [118] also 
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showed the presence of drift under random road excitations using a quarter-car model 

incorporating hysteresis model of a damper. The simulation results obtained with an 

asymmetric damper with relatively higher rebound damping revealed offset in the 

suspension rattle space response, which was not evident with the linear damping.   

The reported studies generally describe nonlinear asymmetric damping by piecewise 

linear functions in compression and rebound considering either single-stage or two-stage 

(low- and high-speed) damping coefficients. Ahmed et al. [121] described the nonlinear 

asymmetric damping by an array of locally linear damping constants using the principle 

of energy similarity to study the frequency response of a quarter-car model employing a 

two-stage asymmetric damper. Calvo et al. [122] showed that a piecewise linear damper 

model, which takes into account the differences between the compression and rebound 

behaviors, and incorporates the low- and high-speed damping, can yield acceptable 

results in all the driving maneuvers.  

Synthesis of optimal damper characteristics in compression and rebound has been a 

challenging task, which is mostly attributed to couplings among the different 

performance measures together with complex dependence on various parameters of an 

asymmetric multi-stage damper. A number of studies have attempted to identify optimal 

suspension parameters including dampers with linear or piecewise linear force-velocity 

characteristics in order to achieve better compromises among the ride, suspension 

deflection and road holding measures. He and McPhee [123] critically reviewed reported 

automated design synthesis approaches for ground vehicle suspension developments.  

Dahlberg [94] optimized the natural frequency of the sprung mass and the damping 

ratio considering a linear suspension damper to achieve an improved compromise 



30 

 

between the ride comfort and road holding measures under random road excitations. A 

few other studies [124, 125] suggested the use of genetic algorithm (GA) based multi-

objective programming technique for attaining optimal values of linear stiffness and 

damping coefficients using either simple quarter-car or full-vehicle models.  

A few studies have also attempted to identify optimal asymmetric damping using 

different vehicle models and excitations. Verros et al. [92] derived optimal values of the 

asymmetry ratio using a 2-DOF quarter-car model under random road excitations, and 

concluded that the optimum values are dependent upon a number of operating factors 

such as the forward speed, the road roughness and the target performance measure. 

Georgiou et al. [126, 127] employed multi-objective evolutionary methods to derive 

optimal damping coefficients for the single- and two-stage aymmetric dampers using a 

conventional quarter-car and a multibody dynamic full vehicle models. These studies 

considered the deterministic pothole type or random road excitations, and concluded that 

the optimal damping coefficients depend upon the forward speed of the vehicle and 

design criteria selected, as suggeted in [92]. Optimal damping characteristics suggested 

by these studies were thus a complex function of the forward velocity of the vehicle with 

significant differences in the identified optimal damping coefficients corresponding to 

lower and higher vehicle velocities. This in-part could be attributed to limited 

understanding of influences of damper asymmetric properties in relation to the vehicle 

forward velocities, particulalry under random road excitations.   

1.2.6 Influences of Suspension Kinematics on Dynamics of the Vehicle 

Influences of suspension kinematics on the handling dynamics have been reported in 

many studies. These generally suggested that the suspension kinematics strongly 
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influence the lateral load transfer, wheel camber and toe angles and thereby significantly 

alters the forces developed at the tire-road interface [4, 5, 18, 75, 76, 79]. The chassis roll 

is also known to cause changes in the camber and steer angles and thus the handling 

performance. The roll camber influences both transient and steady handling responses, 

while the roll steer does not have significant influence on the transient response of the 

vehicle since it increases gradually with the chassis roll [5, 18, 81]. It is, however, 

suggested that inclusion of roll steer in the handling analysis is crucial owing to its 

considerable influence on the steady state responses [67]. The changes in the camber and 

toe angles during a wheel bump also causes lateral forces to develop at the tires. These 

forces influence the sensation of poor handling and require additional efforts from the 

driver in terms of corrective steering to overcome the change in direction due to tire slip 

angles [7]. The suspension kinematics in many of these studies is characterized by 

equivalent roll stiffness. 

Nalecz et al. [18, 67] proposed a three-mass (sprung, front and rear unsprung masses) 

3- DOF nonlinear model to study the influence of suspension linkage kinematics on 

vehicle stability. The model considered lateral, yaw and roll motions with vehicle roll 

motion about the roll axis, while the cornering stiffness was determined as a nonlinear 

function of instantaneous normal load, comprising the static as well as the dynamic 

lateral weight transfer. The tire forces were determined using ‘friction ellipse concept’, 

with lateral forces as nonlinear function of normal load, slip angle and tire skid number. 

The stability analysis was based upon lateral acceleration, yaw rate and roll angle 

responses to various handling maneuvers, including combined braking and steering. The 

study concluded that representation of roll stiffness in lieu of suspension kinematics is 
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not adequate since 20-70% of the total lateral load transfer can be attributed to the body 

roll and the roll center movement. Furthermore, 6-8% of the total lateral load transfer can 

be due to the unsprung masses depending upon the type of suspension used. Further 

studies by the same authors considered the tire forces due to wheel camber and toe 

obtained through spatial kinematic analysis [18]. The handling responses to ramp-steer 

input showed that the lateral forces developed at the tires due to camber and steer angles 

can have negative influence on the stability of the vehicle. Minimal variations in these 

angles were thus considered as desirable. The findings, however, were based on 

responses to ramp steer inputs alone, while the variations in the effective spring rate due 

to suspension kinematics were ignored.  

A simplified 18- DOF multibody dynamic vehicle model was proposed by Sayers et 

al. [80] to study the handling and braking response of a road vehicle. The model 

considered 6- DOF for the sprung mass and vertical DOF for each of the four unsprung 

masses, while auxiliary DOF were considered for the spin rate and tangent of delayed 

lateral slip angle contributing to the relaxation length of tires. Furthermore, the model 

incorporated suspension kinematic effects of toe-change and camber change via look-up 

tables. Lateral acceleration and yaw rate responses to a step-steer input showed similar 

trends as those of the detailed (suspension kinematics) model while the simple model 

underestimated the roll angle response at speeds greater than 20 m/s. Further studies on 

the multibody dynamic full vehicle model with suspension linkages have shown that such 

a vehicle model overestimates the lateral acceleration and roll angle responses in the 

absence of camber effects, while similar yaw rate responses could be obtained without 

consideration of the camber [79].  
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Influence of suspension kinematic properties on vehicle roll response was studied by 

Shim et al. [8]. The roll angle response of the vehicle model with front MacPherson and 

rear multi-link suspension, developed in ADAMS/car, was investigated under a fishhook 

maneuver. The study showed that an increase in toe-in reduces the sprung mass roll angle 

with an increase in the understeer gradient. A decrease in the camber-change reduces the 

sprung mass roll angle response, while the understeer gradient increases. The study 

further showed that increases in the roll-center height and caster angle cause the roll 

response to decrease.  

Although influences of suspension kinematics on handling and roll dynamic 

responses under steering input have been reported in many studies, the vast majority of 

the vertical ride dynamic models ignore the contributions of suspension kinematics. 

Conventional ride models serve as effective tools for assessing different concepts in 

suspension components, the complex contributions due to linkages and bushing 

properties cannot be evaluated [63, 87]. In an independent suspension system, the wheel 

carrier or the spindle is generally connected to the chassis through the suspension 

linkages, which induce rotational motion of the wheel apart from the vertical motion. The 

center of rotation of the wheel greatly relies on the suspension geometry and tends to 

influence the dynamic responses of the vehicle. Furthermore, the suspension strut is 

generally mounted away from the unsprung mass center (cg) and thus the point of 

application of spring and damping forces and the unsprung mass are not colinear. 

Furthermore, the vast majority of the suspension yield asymmetric kinematic responses 

during bump and rebound, which would add to the asymmetry in the dynamic responses 

attributed to asymmetric damping properties. 
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Only a few studies have attempted to incorporate the suspension kinematic 

nonlinearities into the vertical dynamic model [90, 128-133], using different approaches, 

particularly for the quarter-car models. Kim et al. [90] identified equivalent suspension 

parameters namely, the sprung and unsprung masses, suspension spring rate, and 

damping rates in compression and rebound, of a simple quarter car model using the 

responses of a 3-D model developed in ADAMS software. The study showed that the 

identified parameters of a double wishbone suspension vary considerably with changes in 

the control arms lengths or the strut inclination angle. The parameters of a MacPherson 

suspension, however, were less sensitive to geometric variations. Similarly, the responses 

of a nonlinar multibody dynamic MacPherson suspension model were obsereved to be 

comparable to those of a linear quarter-car model with identified parameters [129]. The 

identification of equivalent parameters of a linkage suspension may require 

measurements of repsonses of the physical suspension system which would be 

cumbersome. Considering the strong effects of variations in the suspension geometry and 

joint coordinates, such variations in a physical suspension, however, would be extremely 

demanding. 

Other studies have proposed models of the linkage suspensions, although the vast 

majority have focussed on the MacPherson suspension. Stenson et al. [131] proposed a 

planar non-linear dynamic model of a MacPherson suspension using the kinematic 

relations derived from the suspension geometry. The dynamic analyses were conducted 

asuming the chassis as fixed, while the tire dynamics was neglected. Hong et al. [128] 

developed a two-DOF quarter-car model, as illustrated in Fig. 1.1 (a), considering sprung 

mass vertical displacement and the control arm rotation as the generalized coordinates. 
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The model included the kinematics of the control arm and the strut, while the strut was 

assumed to be mounted on the control arm. Fallah et al. [132] extended the MacPherson 

suspension model, proposed in [128], by locating the strut on the wheel spindle, as shown 

in Fig. 1.1 (b). The dynamics of the system were derived considering the camber rotation 

and lateral displacement of the wheel. The study also investigated the variations in the 

wheel track, and camber, caster and kingpin angles during dynamic events. The above-

cited studies  on  MacPherson suspension quarter-car models [128, 132] considered the 

tire as a vertical spring, while the contribution due to its lateral compliance was ignored. 

Moreover, these studies compared the responses of the kineto-dynamic models with those 

of a conventional quarter-car model assuming that the strut positioned on the wheel 

center provides equivalency between the two models, therby ignoring the kinematics of 

the strut.  

     
                                (a)                                                                          (b) 

Figure 1.1: Schematics of the quarter-car model comprising linkage kinematics of the 

MacPherson suspension configuration: (a) strut on the control arm [128]; and  (b) strut on 

the wheel knuckle [132]. 
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Kim et al. [90] concluded that the contribution of the MacPherson suspension 

kinematics on the equivalent parameters and the dynamic responses are considerably 

small. The strut location away from the wheel center, however, yields some effects of the 

kinematics. The kinematics of a double wishbone suspension may yield considerably 

stronger effects on the dynamic responses compared to the MacPherson suspension. This 

is attributable to kinematics associated with the additional control arm, strut location on 

the lower control arm and additional kinematic constraints. The identification of coupling 

between the linkage kinematics of a double wishbone suspension and the dynamics has 

been attempted in a single study, although such a suspension has been most widely used. 

Joo [133] proposed a kineto-dynamic quarter-car model of a double wishbone suspension 

considering the control arm lengths and angles as the geometric parameters for 

developing an  active control strategy, while, the tire lateral compliance was ignored. 

Furthermore, vertical spring and damping elements were considered, and thus the effects 

of strut inclinations were ignored, as shown in Fig. 1.2. The study had concluded that the 

model responses were sensitive to the joint coordinate variations, while a synthesis of the 

suspension geometry considering such influences was not considered in the study. 

The conventional roll-plane vehicle ride models with vertical- and roll- DOF of the 

sprung mass have generally ignored the contributions due to suspension kinematics and 

considered the vehicle roll axis passing through the sprung mass center or sprung mass 

roll motion about a roll center [83, 134-136]. A few studies have used extended models 

with incorporating the lateral degree-of-freedom of the sprung mass [83, 134]. Majority 

of these studies, however, consider a dependent type of suspension, used in heavy 

vehicles, where suspension kinematics would be of negligible importance. 
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Figure 1.2: Quarter-car model comprising linkage kinematics of double wishbone type of 

suspension configuration [133] 

 

Stone and Cebon [135] considered five- DOF roll-plane model of a vehicle with 

independent type trailing arm suspension. The influence of linkage kinematics of 

independent type of suspensions has been reported in another study on the synthesis of an 

active suspension for minimizing the body roll [136]. The study considered a simple 

suspension model comprising a single suspension arm between the chassis and the wheel 

assembly. The unsprung mass in both the models, however, was permitted only a vertical 

DOF with no consideration of its rotation about the vehicle longitudinal axis.  

 Consideration of joint bushing properties in the dynamic analyses requires a more 

comprehensive vehicle model with suspension linkages and the types of joints and their 

coordinates. Multibody dynamic tool, ADAMS/car, was used by Azadi et al. [56] in order 

to study the influences of faulty damper and upper damper bushings on the dynamic 

responses of the vehicle. The full vehicle model in this study comprised of rigid type 
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suspension (both front and rear) with A-arms connecting the chassis and the axle with 

joints bushings.   

1.3 Scope of the Proposed Dissertation Research 

From the review of literature it is evident that vehicle suspension design involves 

considerable challenges in order to realize acceptable compromises in ride, handling, 

directional control and road holding performances with reasonable durability. It involves 

a thorough analysis of the suspension kinematics, and its contributions to the dynamic 

responses of the vehicle, such as the ride, handling and directional control performances. 

Moreover, the dynamic responses are highly influenced by the vertical and lateral 

properties of the tire. Conventional studies on the suspension synthesis and related 

concepts consider kinematics of the suspension in the initial stages of suspension design, 

which are generally performed to achieve a compromise among variations in roll and 

bump camber, toe angles, and wheel track and wheelbase. These kinematic measures are 

mostly selected considering the handling dynamics and the road holding performances 

only, while the influences of these responses on the vertical dynamics of the vehicle are 

completely ignored. On the other hand, the conventional suspension synthesis process 

also involves design of suspension components including spring, damper or anti-roll bars 

considering the dynamic responses only, and ignoring the influences of these elements 

properties on the kinematic responses, which would further influence the dynamic 

responses. Furthermore, possible influences of tire lateral compliance properties on the 

vertical dynamics is ignored in the conventional suspension design studies. Suspension 

synthesis involving the couplings between the suspension linkage kinematics and tire 
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lateral compliances with the vertical dynamics responses would thus be highly desirable, 

while the majority of the existing vehicle models do not permit such coupled analyses. 

 The literature further reveals that the suspension kinematic and dynamic responses are 

strongly affected by the joint coordinates in a complex manner. The current trends in 

hybrid vehicles developments impose considerable challenges related to the sprung mass 

and the sub-frame space requirements and thus the chassis design. The larger space 

requirements of the hybrid vehicles also necessitate considerations of the suspension 

synthesis with limited lateral space, which would most likely involve complex 

compromises among performance measures related to vehicle ride and handling. The 

synthesis of a suspension with constrained lateral space thus necessitates investigations of 

the influences of joint coordinates on the kinematic and dynamic responses, and the 

related measures including the variations in the wheel load. 

The kinematic and dynamic responses are further influenced by the asymmetric force-

velocity properties of the dampers in compression and rebound. The design guidelines for 

such asymmetry has thus far been limited to a general rule of thumb suggesting that a 

rebound to compression damping ratio in the order of 2 or 3 would reduce the magnitude 

of the force transmitted to the sprung mass. Further, the asymmetry in the dampers causes 

mean shift in the sprung mass position relative to that of the unsprung mass, which is also 

known as ‘damper jacking’. The influence of the damper jacking on the suspension 

kinematic responses, particularly variations in the camber angle, which are directly 

related to the suspension deflection, are generally ignored while synthesizing a 

suspension damper. An optimal synthesis of suspension damper would thus involve 

consideration of the kinematic measures (camber change etc.) apart from the widely 
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known complexities involving design compromises to satisfy the conflicting ride 

comfort, rattle space and road-holding measures. Furthermore, the synthesis of 

suspension damper with asymmetric properties in rebound and compression necessiates 

study of influences of the damper asymmetry on the dynamic and kinematic responses as 

a function of the vehicle forward speed under various inputs including bump, pothole and 

random road excitations. A systematic kineto-dynamic analysis of the suspension with 

asymmetric damper could thus yield design guidance for the damping asymmetry. 

The majority of the studies on suspension kinematics have assumed idealized 

mechanisms and joints, neglecting the contributions due to joints clearances, attributed to 

joint bushing aging and wear. Clearances in different joints may cause deteriorated 

kinematic and dynamic performances of the mechanism; the effects, however, have been 

investigated in a very few studies using particular suspensions syntheses. The influences 

of magnitudes of joint clearances on the kinematic and dynamic performance 

characteristics of general mechanisms, however, have shown increased joint reaction 

forces due to clearances. These methodologies can be applied for systematic studies on 

qualitative and quantitative effects of nonlinearities due to joint clearances in the 

suspension mechanisms, which are highly desirable for developing a suspension fault 

diagnostic system.  

1.4 Objectives of the Dissertation Research 

The proposed dissertation research is formulated with an overall objective of 

synthesis of an optimal independent suspension system comprising asymmetric damper, 

linkage kinematics, tire lateral compliances, and joints clearances in order to enhance the 
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dynamic performance of the suspension. The specific objectives of the proposed 

dissertation research are summarized as follows: 

a. Develop a kinematic model of a candidate suspension mechanism, and investigate 

the influences of joint coordinates on the kinematic performance measures 

through sensitivity analyses; 

b. Develop laboratory experimental setup comprising essential suspension links and 

measure kinematic response parameters, and examine the validity of the kinematic 

modeling methodology; 

c. Develop a kineto-dynamic quarter-car model of a road vehicle incorporating the 

suspension linkage kinematic effects and tire lateral compliances, and investigate 

the coupling between the suspension kinematics, tire lateral compliance and 

torsional compliance of joint bushings with the vertical dynamic performance 

measures; 

d. Investigate the influences of damping asymmetry on the coupled dynamic and 

kinematic responses of the suspension under different road excitations over a wide 

range of vehicle speeds; 

e. Synthesize an optimal two-stage asymmetric damper so as to yield compromise 

among the kinematic and dynamic performance measures; 

f.  Develop a kineto-dynamic half-car roll-plane model of the road vehicle 

incorporating the suspension linkage kinematic effects and tire lateral 

compliances, and investigate the coupling between the suspension kinematics, tire 

lateral compliance and the vertical and roll dynamic performance measures; 
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g. Select optimal joint coordinates considering the kinematic performance measures, 

and investigate the effects of the change in coordinates on the dynamic and 

kinematic performance measures;  

h. Investigate the influences of damping asymmetry on the coupled dynamic and 

kinematic responses of the roll-plane half-car model under different road and 

lateral excitations; 

i. Extend the kineto-dynamic model to incorporate suspension faults including joint 

clearances, linkage deformation and leaked damper, and investigate the effects on 

the dynamic performance measures of the suspension systems 

1.5 Organization of the Dissertation  

This dissertation is organized into seven chapters with the first chapter focusing on the 

review of relevant literature and the scope and objectives of the dissertation research. 

Chapter 2 presents the study of influences of suspension joints coordinates on the 

kinematic responses of the suspension, and synthesis of suspension geometry considering 

the kinematic performances of the suspension. Kinematic models and their analytical 

formulations of quadra-link and double wishbone type of suspensions are presented 

together with the design of experiment and validations of the proposed analytical models.  

The influences of the joint coordinates on the suspension kinematic responses under 

wheel vertical displacement excitations are further investigated through sensitivity 

analyses. The kinematic model of the double wishbone suspension is formulated in such a 

manner that the linkage kinematics can be easily integrated into the dynamic model. 

Chapter 3 of this dissertation is concerned with the kineto-dynamic analyses of a 

quarter-vehicle model comprising double wishbone supension. A quarter-car model is 
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formulated integrating the kinematic relations of the suspension linkages described in 

Chapter 2 using the Lagrange’s energy method. Transient dynamic responses of the 

model are analyzed under different road excitations, and simulation results are presented 

so as to illustrate the contributions of suspension kinematics on the dynamic responses. 

Synthesis of suspension linkage joints coordinates considering the lateral space 

constraints, with an application to the hybrid vehicles is discussed in the chapter. This 

chapter further presents the kineto-dynamic analyses of model with flexible joint 

bushings. The influences of suspension joints flexibility on the kinematic and dynamic 

responses are investigated, and influences of the variations in the flexibility are also 

presented so as to  yield design guidelines for the synthesis of joint bushings.  

In Chapter 4, an optimal synthesis of two-stage asymmetric damper is presented 

giving due considerations to the different conflicting demands related to the kinematic 

and dynamic performance measures. Initially, influences of damper asymmetry is 

analyzed on the kinematic and dynamic performance measures under harmonic, bump 

and pothole excitations. An optimal synthesis of two-stage asymmetric damper is 

presented considering design conflicts under bump and pothole type of excitations. The 

influences of the damping asymmetry on the kinematic and dynamic performance 

measures under random rough road excitations are further analyzed to indentfy the 

conflicting requirements on the damper synthesis. Finally, this chapter presents the 

optimal synthesis of two-stage asymmetric damper parameters considering the design 

compromises related to kinematic and dynamic performance measures corresponding to 

ride, rattle space, roadholding and camber angle variations. 
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Roll-plane kineto-dynamic analyses of the vehicle are presented in Chapter 5. A 

kinematic roll-plane vehicle model comprising double wishbone suspension is deveoped, 

and the formulations of kinematic responses such as bump camber, roll camber and wheel 

track variation are derived. The responses are analyzed under wheel vertical motions, 

chassis roll motions and simultaneous motions of wheel and the chassis. Influences of the 

joints coordinates on the kinematic performance measures  under these excitations are 

discussed and conflicting design criteria are identified. Selection of optimal joint 

coordinates considering only the kinematic performance measures is presented. This 

chapter further presents development of kineto-dynamic roll-plane vehicle model 

including double wishbone suspension linkages kinematics. The roll and vertical dynamic 

responses of the model under vertical and lateral centrifugal force excitations are 

analyzed. A methodology of suspension geometry synthesis considering both kinematic 

and dynamic response characteristics of the model is further presented in this chapter.  

Chapter 6 presents the study of influences of suspension faults on the dynamic 

performance of the vehicle. Modeling of bushing clearances in ADAMS platform is 

discussed in this chapter. A preliminary study on the fault diagnostic system has also 

been presented briefly in this chapter. In Chapter 7, the major conclusions drawn from the 

dissertation research are described followed by the potential future studies in this field.  
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CHAPTER 2 

 KINEMATIC ANALYSIS AND SYNTHESIS OF SUSPENSION 

GEOMETRY USING A QUARTER CAR MODEL 

 

2.1 Introduction 

Synthesis of suspension is a complex task due to many conflicting kinematic and 

dynamic performance measures. Various studies have suggested that kinematic responses 

of independent suspension systems such as variations in camber, caster and toe angles, 

and wheel track and base could significantly influence the handling dynamics of the 

vehicle and the tire wear characteristics [2, 4, 7, 137]. It has been further suggested that 

the kinematic responses are highly influenced by the joint coordinates and the lengths of 

suspension linkages in a complex manner. Synthesis of a suspension geometry (locations 

of joint coordinates and lengths of linkages) thus poses considerable challenges as 

evident from the large number of reported studies [5, 7, 8, 14, 13], although the vast 

majority focus on achieving minimal kinematic response variations under suspension 

vertical travel. Current trends in hybrid vehicles developments impose additional design 

challenges related to the sub-frame space requirements and thus the chassis design [3], 

which necessitate considerations of the suspension synthesis with limited lateral space. 

Synthesis of suspension geometry with constrained lateral space has been addressed only 

in a few studies [13, 31, 32], which would most likely involve additional design 

compromises among performance measures related to the kinematic as well as dynamic 

responses.  

Synthesis of suspension geometry involves the study of kinematic responses of the 

suspension under wheel and chassis excitations, and influences of joint coordinates on the 
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kinematic responses. Identification of most influential joint coordinates has been 

considered as an essential and most challenging process during suspension geometry 

synthesis [30]. In this chapter, a kinematic model of a suspension mechanism is 

formulated together with the essential excitations and the performance measures. The 

influences of the joint coordinates on the suspension kinematic responses are 

systematically evaluated under wheel vertical displacement excitations, for two different 

widely used suspension mechanisms: a quadra-link and a double wishbone type of 

suspension. The validity of the proposed kinematic model of the quadra-link suspension 

is examined by comparing the responses of the model with those attained from the 

laboratory measurement.  

2.2 Features of Kinematic Analysis  

Early stages of the suspension synthesis process involve kinematic analysis of the 

suspension mechanisms, particularly, the variations in the camber, toe and caster angles 

and the wheel track under wheel vertical travel. It has been suggested that a kinematic 

model of a single wheel station comprising the suspension linkages, chassis and the 

wheel spindle can be conveniently used to study the essential kinematic responses of a 

suspension [10]. Such simplified models could also incorporate contributions due to the 

roll motion of the chassis through analysis of the roll center. Numerous analytical models 

of varying complexities have been developed to study the kinematic responses of various 

types of commonly used suspension configurations such as MacPherson strut [11, 20, 

21], double wishbone [14, 15] and multi-link (five-link) [5, 6, 14, 17]. The kinematic 

responses are analyzed considering the suspension system either as planar or spatial 

mechanisms. Planar analyses permit analyses of a few of the kinematic responses in a 
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highly efficient manner, such as variation in camber angle and half wheel track during 

wheel jounce and rebound motions, although the contributions due to steering mechanism 

and kinematic effects of steer and caster angles are ignored. Kinematic analysis of three-

dimensional suspension mechanism is thus essential for determination of variations in the 

steer, camber or caster angles simultaneously, while taking into account the coupled 

kinematic effects of suspension linkages.  

The kinematic analysis of a mechanism, in general, involves determination of 

position, velocity and acceleration of a body relative to another body without considering 

the force that causes the motions. The relative position, velocity and acceleration 

responses are dependent upon the geometry of the mechanism, type of links, and the 

associated mobility and the constraints. Development of a kinematic model of an 

automotive suspension thus necessitates knowledge of various kinematic constraints and 

corresponding equations. Various kinematic joint constraints and types of links employed 

in vehicle suspension mechanisms are briefly reviewed and discussed in the following 

section. 

2.2.1 Kinematic Constraints in a Suspension Mechanism 

      The motions of a mechanism are strongly dependent upon the kinematic constraints 

that describe the joints in a multi-body system, types of links and joints. The types of 

links employed in a suspension mechanism are often classified on the basis of the type of 

joints supporting a link such as spherical-spherical, revolute-revolute and revolute-

spherical. A brief description of these types of links and the respective constraint 

equations are given below.  
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 A Spherical-Spherical (S-S) link comprises spherical joints at each ends [138]. These 

types of links are generally found in multi-link type of suspensions with one of the 

spherical joints located at the chassis and the other at the wheel spindle. The constraint 

equation of a Spherical-Spherical link can be derived from the constant length between 

the two spherical joints before and after a displacement. Considering two points J and K 

as the centers of the spherical joints at two ends of a S-S link with (Jx0, Jy0, Jz0) and (Kx0, 

Ky0, Kz0) as the initial x- y- and z- coordinates, the constraint equations for the S-S link JK 

can be related to the coordinates of the joint centers (Jx, Jy, Jz) and (Kx, Ky, Kz) following 

a finite displacement, as illustrated in Fig. 2.1 (a), such that: 

(Jx-Kx)
2
 +(Jy-Ky)

2
+ (Jz -Kz)

2
 =(Jx0-Kx0)

2
 +(Jy0-Ky0)

2
+ (Jz0 -Kz0)

2
                      (2.1) 

A Revolute-Spherical (R-S) link, as the name suggests, consists of a revolute joint at one 

end and a spherical joint at the other end. The control arms of MacPherson strut, double 

wishbone and quadra-link suspension configurations are generally R-S type. The control 

arms in such suspensions forms a revolute joint with the chassis and a spherical joint with 

the wheel spindle. The motions of these links are governed by the condition that the link 

must rotate about a revolute axis at the revolute joint. Two specific conditions define the 

motion of R-S types of link, namely: (i) the distance between the revolute axis and the 

spherical joint remains constant during any motion; and (ii) the vector from the revolute 

axis to the spherical joint is normal to the revolute axis during the motion. 

Mathematically, the dot product of the unit vector representing the revolute axis and the 

vector from the revolute axis to spherical joint is zero.  
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Considering the point J as the intersection of a unit   along the revolute axis and a 

normal vector from the spherical joint K to the revolute axis (Fig. 2.1 (b)), the constraint 

equations for a R-S type of link can be written as:  

  

         (2.2)   
 

 

(a)                                                                  (b) 

Figure 2.1: Schematics of: (a) spherical-spherical link; and (b) revolute and spherical link 

[138]
 

 

 

Revolute-Revolute (R-R) type of link with revolute joints each at both the ends is 

seldom found in vehicle suspension mechanisms since such a link permits rotational 

motion about the two parallel revolute axes only. In planar suspension models, both the 

S-S and R-S types of links act as R-R type of link due to the possible rotational motion of 

the rigid bodies about axes normal to the plane.  The constraint equation of a R-R type of 

link can be derived from the constant length between the two revolute joints before and 

after a displacement. Considering two points J and K as the centers of the revolute joints 

at the two ends of a R-R link in the y-z plane with (Jy0, Jz0) and (Ky0, Kz0) as the initial 

coordinates, the constraint equations are to be obtained by relating to the coordinates of 

the joint centers (Jy, Jz) and (Ky, Kz) following a finite displacement of the link, such that: 
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(Jy-Ky)
2
+(Jz-Kz)

2
=(Jy0-Ky0)

2
+(Jz0-Kz0)

2
                                                                      (2.3)

                                                                 
 

2.2.2 Kinematic Responses of Automotive Suspensions 

The suspension kinematics are widely known to influence handling dynamics of a 

vehicle under lateral excitations arising from a steering input or wind gusts [1, 4, 7]. The 

kinematic responses, particularly, the variations in the wheel orientation angles (camber, 

toe and caster angles), the wheel-track and wheel-base during suspension travel may 

yield additional undesirable lateral forces at the tires. Furthermore, the variations in the 

wheel orientation angles, and the lateral and longitudinal motions of the spindle could 

yield accelerated tire wear. Various studies have suggested that minimal variations in 

these responses during wheel vertical motion are desirable for good handling 

performance of a vehicle [4, 5, 137]. Kinematic responses of a suspension mechanism are 

thus evaluated in terms of variations in the wheel track and wheel base, and the camber, 

caster and toe angles during the wheel vertical travel with respect to those corresponding 

to static conditions. The kinematic performance measures of a suspension system are thus 

often defined in terms of variations in these responses under a given suspension travel. 

2.3 Kinematic Analysis of a Quadra-link Suspension  

A quadra-link suspension configuration, as the name suggests, comprises four links 

connecting the chassis and the wheel spindle. The structure of a quadra-link suspension 

lies in between those of double wishbone and a five-link type of suspensions [1, 2, 5]. 

While a double wishbone suspension comprises two control arms only, the five-link 

suspension consists of five distinct links connecting the wheel spindle with the chassis. 

The quadra-link type of suspension considered in this study,  comprises an upper control 
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arm, two lower links and a trailing arm, as illustrated in Fig. 2.2. This suspension 

configuration is widely used in rear suspensions of passenger cars including the Chrysler-

Breeze and Sebring [139].  The strut in quadra-link type of suspension is located on the 

wheel  spindle. The spatial stucture of the quadra-link suspension, as seen in the figure, 

suggests that the kinematic response analyses and subsequent synthesis of the suspension 

necessitate a three-dimensional analysis. 

 

Figure 2.2: Schematic image of a quadra-link suspension 

      

Although a number of spatial kinematic models of different suspension mechanisms have 

been suggested for kinematic analysis and subsequent synthesis such as MacPherson, 

double wishbone and five-link suspension mechanisms, such analyses of a quadra-link 

type of suspension could be found in a single study only [140]. The reported study on the 

quadra-link suspension was conducted using the multi-body dynamic tool, 

ADAMS/chassis, with an objective to yield optimal joint bushing stiffness. The study of 
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the kinematic responses such as variations in the camber and toe angle, and wheel track 

and base, and the influences of the joint coordinates on the kinematic responses however 

were not considered. In this study, an analytical model of the quadra-link suspension is 

formulated for the kinematic analysis and synthesis in order to evaluate variations in the 

orientations of the wheel at different positions of the wheel center with respect to the 

chassis. 

2.3.1 Kinematic Model of the Quadra-link Suspension 

A spatial model of the quadra-link suspension incorporating all the linkages, 

subframe (chassis) and the wheel spindle is formulated as illustrated in Fig. 2.3. The 

upper control arm (M1-N1-M2) of the quadra-link suspension forms a revolute joint with 

the chassis, and permits rotational motion of the control arm about the revolute axis M1-

M2. The upper control arm is connected to the wheel spindle through a spherical joint, 

thereby forming a R-S link . The lower links O1-P1 and O2-P2, and the trailing link O3-

P3 form spherical joints with both the chassis and the wheel spindle, which can be 

identified as S-S type of links. The point C in the Fig. 2.3 (b) represents the wheel center. 

The chassis, the control arms and links, and the wheel spindle are assumed to be rigid 

bodies, while the tire is assumed to be integral part of the wheel spindle. The suspension 

kinematic relations are derived with an assumption that all the joints are frictionless. 

2.3.2 Mobility Analysis  

In a quadra-link suspension mechansim, the chassis, the upper control arm, the lower 

links, the trailing arm and the wheel spindle are components of the closed kinematic 

chain, while coupling with the fixed chassis forms the mechanism. The mobility of the 
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quadra-link suspension mechansim, as shown in the Fig. 2.3 (b), can be estimated from 

Grubler’s criteria for mobility of spatial mechanisms [19], such that: 

DOF=6(Nm-1)-5Rm-3Sm                                             (2.4) 

where Nm is the  the number of links, and Rm and Sm  are the number of revolute and 

spherical joints, respectively.  

 

(a) 

 
(b) 

Figure 2.3: (a) Schematic illustration; and (b) kinematic model of a quadra-link 

suspension  
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The mechanism comprises 6 rigid bodies (chassis, wheel spindle and four rigid links 

connecting the chassis and the wheel spindle), one revolute joint (between upper control 

arm and the chassis) and 7 spherical joints (3 between the chassis and the lower and 

trailing links, 3 between wheel  spindle and the lower and trailing links, and one between 

the upper control arm and the wheel spindle). The quadra link suspension mechanism 

coupled with a fixed chassis thus possess four degrees-of-freedom (DOF). An 

examination of the mechanism, however, suggests that three of the DOF are associated 

with the rotations of the trailing arm and the lower links about their respective 

longitudinal axes. Such rotational motions, however, do not influence articulation of the 

suspension, and are generally referred to as idle DOF [12]. The active degree of freedom 

of the mechanism is thus estimated as one, which is the vertical motion of the wheel 

spindle with respect to the chassis. The motion of the chassis with respect to the ground 

coordinate system can facilitate kinematic analysis of the suspension with simultaneous 

motions of the chassis and the wheel spindle. The generalized coordinates of the 

kinematic quadra-link suspension model are thus chosen as the vertical displacements of 

the sprung mass and the wheel spindle. 

2.3.3 Kinematic Formulations  

For the wheel spindle of the quadra-link suspension, the positions of joint centers, N1, 

P1, P2 and P3, and the wheel center C are identified as the parameters of particular 

interest, where (N1x0, N1y0, N1z0), (P1x0, P1y0, P1z0), (P2x0, P2y0, P2z0), (P3x0, P3y0, P3z0), 

and (Cx0, Cy0, Cz0) define the initial coordinates of N1, P1, P2, P3 and C, respectively. 

The first subscript of the variable represents the coordinate (x, y or z), while the second 

subscript (‘0’) designates the initial position. For a finite displacement of the wheel 
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spindle in the given coordinate frame, the displacement matrix can be formulated as [19, 

132]: 

 
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                 (2.5)  

where 

a11=cosψ cosθ ; a12= -sinψ cos+cosψ sinθ sin;  a13= sinψ sin+cosψ sinθ cos; 

a21=sinψ cosθ; a22= cosψ cos+sinψ sinθ sin;  a23= -cosψ sin+ sinψ sinθ cos;  

a31= -sinθ ; a32= cosθ sin; and  a33=cos θ cos  

Also, , θ, and ψ are the roll (about x- axis), pitch (about y- axis) and yaw (about z- axis) 

rotations, respectively, and Cx, Cy and Cz are the instantaneous coordinates of the wheel 

center C. 

The instantaneous coordinates of (N1x, N1y, N1z), (P1x, P1y, P1z), (P2x, P2y, P2z), (P3x, 

P3y, P3z) of joint centers N1, P1, P2, P3 and the wheel center C under a given wheel 

spindle vertical displacement zu are derived from the displacement matrix as: 
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                (2. 6) 

The above formulation exhibits 17 unknown parameters corresponding to a given wheel 

center vertical displacement (zu), namely, the x, y and z coordinates of N1, P1, P2 and P3, 

the x- and y- coordinates of C and the wheel rotation angles, θ, and ψ. Equation (2.6) is 

solved in conjunction with the constraint conditions imposed by the suspension 

mechanism to obtain kinematic responses. For the quadra-link suspension, the constraint 



56 

 

equations may be formulated considering the R-S (upper control arm M1-N1-M2) and S-S 

links (lower links O1-P1, O2-P2, and trailing link O3-P3), such that:   

2
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In the above, (Mx, My, Mz) and (Mx0, My0, Mz0) refer to the coordinates of M, the point of 

intersection of a unit vector along the revolute axis (u0) and a normal vector from the 

point N1. Moreover, Mx=Mx0, O1x=O1x0, O2x=O2x0, O3x=O3x0, My=My0, O1y=O1y0, 

O2y=O2y0, O3y=O3y0, Mz=Mz0+zs, O1z=O1z0+zs, O2z=O2z0+zs, O3z=O3z0+zs and 

Cz=Cz0+zu, while zs is vertical displacement of the sprung mass from its static equilibrium 

position.  

The unit vector 0u  along the revolute axis is obtained as:
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The coordinates of M can be obtained from equation of the position vector M , written as: 

         00 ).21.(2 uMNuMM             (2.9)    

The solution of Eq. (2.6) yields a system of nonlinear equations, as: 

xzzyyxxx CCNaCNaCNaN  )1()1()1(1 001300120011  

yzzyyxxy CCNaCNaCNaN  )1()1()1(1 002300220021  

zzzyyxxz CCNaCNaCNaN  )1()1()1(1 003300320031  

xzzyyxxx CCPaCPaCPaP  )1()1()1(1 001300120011  

yzzyyxxy CCPaCPaCPaP  )1()1()1(1 002300220021  

zzzyyxxz CCPaCPaCPaP  )1()1()1(1 003300320031  
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xzzyyxxx CCPaCPaCPaP  )2()2()1(2 001300120011  

yzzyyxxy CCPaCPaCPaP  )2()2()1(2 002300220021  

zzzyyxxz CCPaCPaCPaP  )2()2()1(2 003300320031  

xzzyyxxx CCPaCPaCPaP  )3()3()3(3 001300120011  

yzzyyxxy CCPaCPaCPaP  )3()3()3(3 002300220021  

zzzyyxxz CCPaCPaCPaP  )3()3()3(3 003300320031                           (2.10)
 

 

The nonlinear equations can be numerically solved to obtain unknown parameters 

under given vertical displacements of the chassis and/or the wheel center. The rotational 

motions of the wheel about x- and z- axes,  and ψ, yield the wheel camber and toe angle 

response of the suspension, respectively. The wheel center lateral displacement yu can be 

further obtained as yu=Cy-Cy0. The lateral displacement of the wheel-ground contact point 

T, with respect to the static position is considered as the variation in the wheel track, 

which has been directly related to the tire wear characteristics [4]. With the rigid body 

assumption of the wheel assembly, the lateral motion of the wheel-ground contact point 

Ty, is obtained as: 

yzzyyxxy CCTaCTaCTaT  )()()( 002300220021                 
                      (2.11) 

 

where (Tx0, Ty0, Tz0) are the initial coordinates of the contact point T. In a similar manner, 

the wheel base variation response of the suspension, which is directly related to the 

displacement of the contact point along x- axis during the wheel vertical travel Tx, can be 

obtained as:  

xzzyyxxx CCTaCTaCTaT  )()()( 001300120011               
                        (2.12)  

The velocities of various points in the wheel spindle are obtained by differentiating the 

expressions for the displacements. Alternately, velocity matrix written in terms of 

rotation of the wheel spindle about its instantaneous screw axis can be employed to yield 
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the velocity responses of the wheel spindle [19]. For a finite displacement of the wheel 

spindle in the given coordinate frame, the general velocity matrix,   spindle wheelD  is 

formulated as: 
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     (2.13)

 

where φ represents the rotation of the wheel spindle about the screw axis, and the dot 

over the variable denotes the time derivative. The screw axis can be obtained from the 

joint coordinates, as explained in [19]. The method, however, is not presented since it is 

not necessary for obtaining considered kinematic responses. The velocity matrix in Eq 

(2.13) can be employed to compute velocities of joints N1, P1, P2, and P3, as: 
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     (2.14) 

The solutions of the Eq (2.14) together with the time derivatives of the constraint 

equations in Eq (2.7) yield a system of equation in velocities of the suspension joints and 

the wheel center, such that: 

01)1(1)1(1)1( 000  zzzyyyxxx NMNNMNNMN 
 

 
0111 000  zzyyxx NuNuNu 

 
01)11(1)11(1)11( 000  zzzyyyxxx POPPOPPOP 

 

02)22(2)22(2)22( 000  zzzyyyxxx POPPOPPOP 

03)33(3)33(3)33( 000  zzzyyyxxx POPPOPPOP 
 

0)1()1(1 00  xzzyyyzx CCNCNN  
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zyyxxxyz CCNCNN   )1()1(1 00 
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0)2()2(2 00  xzzyyyzx CCPCPP  
 

0)2()2(2 00  yzzxxxzy CCPCPP  
 

zyyxxxyz CCPCPP   )2()2(2 00 
 

0)3()3(3 00  xzzyyyzx CCPCPP    

0)3()3(3 00  yzzxxxzy CCPCPP    

zyyxxxyz CCPCPP   )3()3(3 00         (2.15)
          

 

                         

where uz zC   . The above equations are obtained with an assumption that the chassis is 

fixed (zs=0). The velocities along x-, y- and z- axes of joints N1, P1, P2 and P3 together 

with the velocity of wheel center C along x- and y- axes, and the wheel rotation velocities 

for known values of wheel spindle vertical velocities can be obtained though solution of 

Eq (2.15). It can be observed that unlike the displacement equations given in Eqs (2.7) 

and (2.10), the velocity equations are linear. 

2.4  Measurements of Kinematic Responses 

Laboratory experiments were performed to measure the kinematic responses of a quadra-

link suspension. For this purpose, designs of test apparatus described in the reported 

studies were reviewed in terms of their complexities and limitations. Kinematic and 

Compliance (K&C) test rigs have been widely used in the industry for measuring 

kinematic responses of vehicle suspensions, including camber, caster and toe angle 

variations, and variations in wheel track and base during wheel vertical travel [141-143]. 

The K&C test rig supports the vehicle on its four posts, which can be actuated 

independently, while the responses are attained through 6-DOF sensors mounted on each 
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wheel. Although such test rigs are considered to yield measurements with high accuracy, 

the test rigs are quite complex and very expensive. Alternately, single wheel experimental 

setups have been used in a few studies for measuring the kinematic responses of 

prototype suspensions which could provide reasonably accurate kinematic responses [29]. 

In this study, an experimental set-up of single wheel station prototype quadra-link 

suspension was realized in the laboratory in order to measure the wheel spindle rotational 

motions during its vertical travel.  

 Figure 2.4 illustrates the experimental set-up employed for measuring the kinematic 

responses, which comprises: a hydraulic actuator to generate the desired excitation; servo 

controller to operate the actuator in displacement feedback control; a feedback 

displacement sensor (LVDT); an inertia frame representing the fixed chassis; and a two-

axis inclinometer to measure the camber (rotation about x- axis) and caster (rotation 

about y- axis) angles of the wheel. The suspension components included in the 

experiment set-up are: the cross-member, the strut, the upper control arm, the lower and 

trailing links, and the wheel spindle. The upper control arm and lower links are connected 

to the cross-member, while the cross-member is fixed to the frame through a custom 

made fixture, as seen the figure. The trailing link is attached to the frame through another 

fixture. In order to realize the actuator motion at the wheel center, as in the case of 

kinematic model, a rigid link comprising spherical joints at each ends was introduced 

between the wheel spindle and the actuator. The two- axes digital inclinometer was 

installed on a plate fixed to wheel spindle, as shown in the figure.  
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2.4.1 Measurements and Data Analysis 

The wheel displacement was progressively varied in the upward and downward 

directions, and the resulting rotational motions of the wheel spindle about x- and y- axes 

(camber and caster angles) were measured using the LVDT and the inclinometers, 

respectively. The wheel spindle was displaced vertically through the link connected to the 

servo-hydraulic actuator. The wheel displacement and the camber and caster angles were 

measured at each interval of 5 mm change in the wheel spindle vertical travel. The 

inclinometer signals were recorded only when the actuator approached its steady position 

in order to minimize the contribution due to inertia effect. The suspension strut was also 

removed from the setup in order to eliminate possible influences of the strut on the wheel 

spindle kinematics. The measurements were performed over a ±50 mm wheel travel.  

    

Figure 2.4: Laboratory setup for measurements of kinematic properties of a quadra-link 

suspension 

 

The measured variations in the camber and caster angles of the wheel spindle are 

illustrated in Fig. 2.5 over the ±50 mm spindle travel. The results suggest that the quadra-

link suspension considered in this study exhibits asymmetric variations in wheel camber 

and caster during jounce and rebound motions of the wheel. The suspension exhibits 
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greater camber variation during jounce than in rebound, while an opposite trend is 

observed in the caster angle response exhibited by the suspension.  

   
(a)                        (b) 

Figure 2.5: Variations in camber and caster angle responses of the quadra-link suspension 

under 50 mm jounce and rebound motion of wheel spindle: (a) Camber; and (b) Caster. 

 

2.5  Kinematic Model Validation 

The laboratory measured data are used to examine the validity of the kinematic model 

formulations presented in Eqs (2.4) and (2.6). For this purpose, coordinates of the joints, 

M1, O1, O2, O3, N1, P1, P2 and P3, and the wheel center C of the candidate suspension 

were measured with respect to the fixed frame using a vernier scale. The measured 

coordinates of the linkage joints were subsequently transformed to a coordinate system 

fixed in the chassis. Table 2.1 summarizes the coordinates of the joints in the fixed 

chassis coordinates system. 

The kinematic responses of quadra-link suspension model, particularly, the rotation of 

the wheel spindle about x- and y- axes were evaluated under a harmonic excitation at the 

wheel center, zu(t)=50sin(0.2πt) mm. The model responses are compared with the 

measured data in Figs. 2.6 (a) and (b) to examine the validity of the kinematic model. The 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
-50

-40

-30

-20

-10

0

10

20

30

40

50

Camber angle (deg)

W
h
e
e
l 
v
e
rt

ic
a
l 
tr

a
v
e
l 
(m

m
)

-0.4 -0.2 0 0.2 0.4 0.6
-50

-40

-30

-20

-10

0

10

20

30

40

50

W
h

e
e

l 
v
e

rt
ic

a
l 
tr

a
v
e

l 
(m

m
)

Caster angle (deg)



63 

 

Table 2. 1: Coordinates of various suspension link joints in the fixed chassis coordinates 

system. 

 Joint Coordinates (x, y, z) in mm Joint Coordinates (x, y, z) in mm 

M1 (120, 243, 443) C (0, 630, 313) 

M2 (-154, 229, 446) N1 (-40, 530, 390) 

O1 (-105, 143, 268) P1 (-132, 516, 193) 

O2 (99, 229, 332) P2 (106, 493, 239) 

O3 (446, 380, 243) P3 (9, 541, 178) 

 

comparisons suggest considerable differences between the model and measured 

responses near extremities of the wheel travel. The model response exhibits relatively 

smaller asymmetry in the camber angle but greater asymmetry in the caster during jounce 

and rebound travel of the wheel, compared to those observed from the experimental data. 

The model responses suggest that a 50 mm wheel jounce yields camber variation of         

-1.25º, while a 50 mm rebound causes camber variation of nearly 1º. The measured data 

on the other hand, exhibits camber variations of 1.05º and -0.57º in jounce and rebound, 

respectively. The model responses, however, are quite comparable with the measured 

data in the 40 mm to -20 mm wheel travel range.  

The caster angle response of the model exhibits greater asymmetry compared to the 

measured data. The peak caster variations of the model approach 0.08º at 50 mm jounce 

and 0.8º at 50 mm rebound, while the measured data revealed approximately 0.28º and 

0.72º peak caster in jounce and rebound, respectively. The caster responses of the model 

are quite comparable with the measured data under wheel rebound motion.  The model 

response, however, shows larger deviation from the measured data during upward motion 

of the wheel. It is thus observed from the figures that the model responses in camber 

angle during jounce and in caster angle during rebound motion of the wheel deviate 

considerably from the experimental data.  Such deviations are most likely caused by 
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errors in the coordinates of various joints that were measured using a simple vernier 

scale. 

 
                                      (a)        (b) 

Figure 2.6: Comparisons of the camber and caster angle responses of the quadra-link 

suspension kinematic model under wheel center vertical excitation,  

zu(t)=50sin(0.2πt) mm with the measured data: (a) camber; and (b) caster. 

 

The influence of possible inaccuracy in measurement of coordinates of the joints was 

investigated through simulations of the model responses under slight variations in the 

coordinates. The results revealed that only slight variations in the coordinates could alter 

the camber and caster responses substantially. A tuning of the coordinates was thus 

performed to achieve model response close to the measured data.  Table 2.2 illustrates the 

tuned coordinates of the linkage joints attained after a few iterations, while the numbers 

in bold face denote the changed coordinates. The table also illustrates the variations in the 

coordinates with respect to the measured coordinates. It can be seen that variations in the 

range of 1 to 5 mm only were needed to achieve responses closer to the measured data. 

Figure 2.7 shows comparisons of the camber and caster angle responses of the kinematic 

model with tuned joint coordinates with the measured data. The kinematic model with the 

modified coordinates exhibits comparable camber angle response until 40 mm of rebound 
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travel, while it also exhibits comparable caster angle response from 30 mm jounce to 25 

mm rebound motion of the wheel spindle.   

Table 2.2: Coordinates of the links joints of the quadra-link suspension attained after 

tuning and their deviations from the measured coordinates. 

 

Joint 
Coordinates 

 (x, y, z) in mm 

Deviations  

(x, y, z) in mm 
Joint 

Coordinates  

(x, y, z) in mm 

Deviations  

(x, y, z) in mm 

M1 (120, 243, 446) (0,0,3) C (0, 630, 313) (0,0,0) 

M2 (-154, 229, 447) (0,0,1) N1 (-40, 530, 388) (0,0,2) 

O1 (-105, 145, 264) (0,2,4) P1 (-132, 521, 191) (0,5,2) 

O2 (99, 229, 332) (0,0,0) P2 (106, 493, 242) (0,0,3) 

O3 (446, 380, 239) (0,0,4) P3 (9, 541, 173) (0,0,5) 

 

   
                                      (a)        (b) 

Figure 2.7: Comparisons of the camber and caster angle responses of the quadra-link 

suspension tuned model under wheel center vertical excitation, zu(t)=50sin(0.2πt) mm 

with the measured data: (a) camber; and (b) caster. 

  

An accurate measurement of the coordinates using a coordinate mapping system or 

parameter identification though minimizing an error function could yield more precise 

joint coordinates and thus comparable responses with the experimental values. However, 

the deviations between the kinematic model response and the measured angles cannot be 

entirely eliminated, partly due to lack of consideration of contributions due to compliance 

of joints/bushings. Furthermore, the actuator motion applied to the wheel center through 

the rigid link tends to impose a horizontal force on the wheel center. The magnitude of 

-1.5 -1 -0.5 0 0.5 1
-50

-40

-30

-20

-10

0

10

20

30

40

50

W
h
e
e
l 
v
e
rt

ic
a
l 
tr

a
v
e
l 
(m

m
)

Camber angle (deg)

 

 

Analytical

Experimental

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-50

-40

-30

-20

-10

0

10

20

30

40

50

W
h
e
e
l 
v
e
rt

ic
a
l 
tr

a
v
e
l 
(m

m
)

Caster angle (deg)

 

 

Analytical

Experimental



66 

 

the horizontal force would increase the vertical displacement. The responses of the 

proposed kinematic model with the refined coordinates, however, are considered 

adequate for study of various design factors affecting the suspension kinematic responses.   

2.6 Kinematic Response Analysis of the Quadra-Link Suspension 

The kinematic responses of the candidate quadra-link suspension are evaluated in terms 

of variations in the camber and toe angles, and wheel center and tire-ground contact point 

longitudinal and lateral displacements under wheel jounce and rebound motions. The 

wheel vertical motion is synthesized by a very low frequency harmonic displacement, 

zu(t)=100sin(0.2πt) mm. The kinematic responses of the tuned quadra-link suspension 

model, evaluated under ±100 mm wheel travel, are presented in Figs. 2.8 (a) to (e) as a 

function of wheel vertical travel. The camber angle variation response exhibits similar 

degree of asymmetry with wheel jounce and rebound as observed in Fig. 2.6(a). The 

suspension under consideration, exhibits a large toe angle variation with peak magnitude 

of -2.4º at 100mm wheel upward motion and 4.5º at 100mm rebound motion, as also seen 

in Fig. 2.8 (b). The wheel center longitudinal and lateral displacement responses with 

wheel vertical travel are also highly asymmetric about the static position, with very larger 

displacements in rebound than those in jounce travel, as seen in Figs. 2.8 (c) and 2.5 (d), 

respectively. The peak longitudinal and lateral displacements in rebound and jounce are 

nearby 12 and -44 mm, and -3.5 and 9 mm, respectively. The variations in the 

longitudinal and lateral displacement responses of the tire ground contact point (wheel 

base and track variation) also follow similar trend to those in the wheel center 

displacements. These results suggest that the wheel track and wheel base vary 

considerably and asymmetrically under wheel vertical motions.  
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(a)         (b) 

  
   (c)                  (d) 

   

   (e)        (f) 

Figure 2.8: Variations in the kinematic responses of the tuned quadra-link suspension 

model under wheel center vertical excitation, zu(t)=100sin(0.2πt) mm: (a) camber angle; 

(b) caster angle; (c) wheel center longitudinal displacement; (d) wheel center lateral 

displacement;  (e) wheel base; and (f) wheel track. 

 

The wheel track variation, which is the net result of camber and wheel center lateral 

displacement, exhibits a peak magnitude of -50 mm at 100 mm rebound position of the 
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wheel. The results thus suggest that the positive camber together with the negative wheel 

center displacement cause large wheel track variations. 

2.6.1 Sensitivity of Kinematic Responses to Variations in the Joint Coordinates  

The kinematic responses illustrated in Fig. 2.8 exhibit asymmetric and considerably 

large variations in the camber and toe angles, wheel base and track responses under 

wheel vertical motions. The degree of asymmetry in the responses would be strongly 

dependent on the suspension geometry and joint coordinates. With an increasing demand 

for larger subframe space, particularly for hybrid vehicles for placing the batteries [3], a 

suspension synthesis that can provide greater lateral subframe space without 

compromising the kinematic performances would be desirable, although it may involve 

difficult design compromises. The suspension lateral space availability is directly related 

to the links geometry, which may be characterized by the coordinates of joints M1, M2, 

O1, O2, O3, N1, P1, P2 and P3. A sensitivity analysis is thus performed to idenfy the 

most important joint coordinates that affect the kinematic responses of the suspension in 

a significant manner. 

Conventional sensitivity analyses methods generally involve a trend anlyses in 

selected responses under systematic variations in each coordinate. Considering that a 

quadra-link suspension comprises  a total of 27 coordinates corresponding to 9 joints, the 

conventional method of sensitivity analysis would be highly cumbersome. Moreover, 

identification of relative degree of influences of a coordinate variation on the kinematic 

responses would be quite complex. Nalecz [144] suggested a matrix method of sensitivity 

analysis for evaluating the sensitivity of dynamic responses of linear systems to the 

parameter variations. The matrix method, however, can not be applied to nonlinear 
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systems, as in the case of displacement responses of the quadra-link suspension model. 

This approach could be applied to linear system of equations describing the velocities of 

the joint coordinates given in Eq (2.12). The displacement responses could subsequently 

be estimated from the velocity responses. Lee et al. [6]  showed that the wheel spindle 

velocity equations of a five-link suspension mechanism could yield approximate 

displacement responses of the suspension by defining unity velocity excitations at the 

wheel center. In this section, the velocity equations, derived in Eq (2.12) are used to  

formulate the displacement and wheel rotation analyses. The linear equations are 

subsequently used to identify sensitivity of kinematic responses to variations in the joint 

coordinates. The linear system of equations in velocity responses, presented in Eq (2.15), 

can be expressed in the matrix form, as: 

}{}]{[ MM IqJ                                             (2.16) 

where  [JM] is a matrix with elements composed of nominal joint coordinates, and {q} 

and {IM} are the joints velocity vector and input vectors, respectively, given by:  

   Tyyxyxzyxzyxzyxzyx CCPPPPPPPPPNNNq        3 3 3 2 2 2 1 1 1 1 1 1
 

   T

uuuuM zzzzI  0000000000000
 

Equation (2.16) is solved to determine various joint velocities for known initial joint 

coordinates and matrix, [JM], and wheel vertical velocity {IM}. The displacement 

responses at a point in the wheel knuckle within a finite time are estimated from the 

velocity. The solutions can be conveniently used to study the sensitivity of kinematic 

responses to variations in the joint coordinates. The parameter sensitivity index is defined 

as the change in the response with change in a parameter value [143]. Assuming [JM] 

being continuous, the parameter vector {s} is defined considering the initial coordinates 
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of the suspension joints as the variables. The sensitivity index of the kinematic responses 

{q} to a change in any element si of the parameter vector {s} is expressed as:  

 
 

 
  }{}{

11
1

MM

i

M
MM

i
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i

IJ
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q 





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







;   i= 1…n         (2.17) 

where n is the number of parameters considered.  

The sensitivity of the kinematic responses to different parameters is obtained for a 

finite vertical displacement at the wheel center. Table 2.3 illustrates the sensitivity indices 

of the wheel center longitudinal (Cx) and lateral (Cy) displacements, and camber, caster 

and toe angles, respectively, to variations in the coordinates of different joints. The 

positive numbers indicate an increase in the response caused by a positive change in the 

coordinate, while the negative numbers indicate decrease in the responses. Furthermore, 

the sensitivity values presented in the table have been multiplied by 10
6
. For instance, a 

positive change in the z- coordinate of joint M1 would yield a negative change in the 

wheel center lateral displacement, camber and caster angle responses, and positive 

change in the wheel center longitudinal displacement and toe angle responses. The results 

in Table 2.3 suggest that the kinematic responses are complex functions of variations in 

the joint coordinates. The table shows that the x- coordinates of the joints located at the 

chassis (M1, M2, O1, O2 and O3) do not influence any of the kinematic responses, 

considered in the analyses, while the x- coordinates of the joints located at the wheel 

spindle (N1, P1, P2 and P3) cause only small variations in the kinematic responses. The 

variations in the y- and z- coordinates of the upper control arm joints (M1, M2 and N1) 

show significant influences on each of the kinematic responses, although the majority of 

these influences are conflicting. For instance, a positive change in z- coordinate of joint 

M2 yields a negative change in camber and toe angle, and Cx and Cy, but positive change 
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in the caster angle response. Positive changes in the z- coordinates of both the M1 and 

M2 joints cause decrease in Cy, but in opposing influences on Cx. The results of the 

sensitivity analysis further suggest that the coordinates of upper control arm joints plays 

most significant role in articulation of the suspension.  

Table 2.3: Sensitivity of kinematic responses of quadra-link suspension to variations in 

the linkage joint coordinates (sensitivity values x 10
6
) 

 

Joint 
Co- 

ordinate 

Wheel center displacement Wheel angle 

Longitudinal  Lateral Camber  Caster  Toe  

M1 

x 0 0 0 0 0 

y 5 -2 -1 -2 0 

z 28 -10 -4 -9 2 

M2 

x 0 0 0 0 0 

y -5 -2 -1 2 -1 

z -27 -12 -6 10 -3 

O1 

x 0 0 0 0 0 

y 4 -4 1 -1 3 

z 12 -11 4 -2 9 

O2 

x 0 0 0 0 0 

y -2 0 1 0 -1 

z -11 -1 5 -2 -6 

O3 

x 0 0 0 0 0 

y 2 0 0 2 0 

z 6 0 0 6 -1 

N1 

x 0 4 2 0 0 

y -5 4 2 2 0 

z 1 20 9 -1 1 

P1 

x -2 2 -1 0 -2 

y -4 3 -1 1 -3 

z -11 10 -4 2 -9 

P2 

x 2 0 -1 0 1 

y 2 0 -1 0 1 

z 10 1 -4 1 5 

P3 

x 1 0 0 1 0 

y -3 0 0 -3 1 

z -5 0 0 -5 1 
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The results further show that variations in z- coordinates of joints O1 and P1 yield 

greatest influence on the toe angle response, although in the opposing direction. The 

joints of the lower link (O1-P1) could thus be tuned to yield lower toe angle response. It 

is interesting to note that the link O1-P1 is also known as toe control link [145], which is 

used for setting the static toe angle of the wheel. The table further shows that the lower 

link also influences other kinematic responses considerably, including the wheel track 

and base, and camber angle variations. The results thus suggest that toe angle setting 

using the link O1-P1 would also yield variations in other kinematic responses during the 

wheel travel. Apart from the joints of the lower control arm, the coordinates of joints O2 

and P2 (particularly z- coordinates) influence the camber angle variations considerably. 

The link O2-P2 also known as the camber control link [145] could also influence toe 

angle response of the suspension. 

The variations in coordinates of joints O3 and P3 yield notable influences on the 

wheel center longitudinal displacement and the caster angle responses, with only slight 

changes in the toe angle response.  The results thus suggest that the trailing link joints can 

be tuned to yield improved wheel base and caster angle responses. The validity of the 

proposed sensitivity analysis method is examined by evaluating the responses of the 

kinematic model of the quadra-link suspension by changing the z- coordinates of joints 

M1, M2 and O3 in the positive direction by 10 mm. Variations in the wheel center 

longitudinal displacement, and caster, camber and toe angle responses are evaluated 

under wheel center displacement of 100 mm peak jounce and rebound, and compared 

with those of the model with nominal coordinates, and  the comparisons are illustrated in 

Fig. 2.9. The sensitivity indices of M1, M2 and O3 corresponding to wheel center 
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longitudinal displacement are 28, -27 and -6 (Table 2.3), respectively. Figure 2.9 (a) 

shows that the wheel center longitudinal displacement response decreases considerably 

when z-coordinate of M2 is increased, while an opposing trend is observed with change 

in the z-coordinate of M1. The change in z-coordinate of O3 also results in increase in Cx, 

while the change is relatively lower than that observed with the change in z-coordinate of 

M1.   

The sensitivity index values of M1, M2 and O3 corresponding to camber, caster and 

toe angle response were obtained as: -4, -6, 0; -9, 10, 6; and 2, 3, -1, respectively (Table 

2.3). Figures 2.9 (b) to (d) show variations in camber, caster and toe angle responses of 

the kinematic response characteristics of the quadra-link suspension model with changes 

in z- coordinates of these joints. Variations in z-coordinates of M1 and M2, with relatively 

larger sensitivity index values, show significant changes in the camber, caster and toe 

angle responses. Variations in z-coordinate of O3, with sensitivity index values 6 and -1 

for the caster and toe angle responses, yield notable change in the caster and toe angles, 

while the effect on camber angle is negligible, particularly during the jounce motion. This 

confirms with the results summarized in Table 2.3, which show a sensitivity index of 0 

corresponding to the camber angle, although a slight decrease in camber angle is 

observed during rebound motion of the wheel. This was attributed to rounding-off of the 

magnitudes of the sensitivity indices. 

The results in Table 2.3 suggest that the kinematic responses are highly influenced by 

the joint coordinates of the quadra-link suspension. The proposed sensitivity analysis 

method could thus help identify relative influences of various joint coordinates on the 

suspension responses, and thereby facilitate an optimal suspension geometry synthesis.  
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                                    (a)              (b) 

  
                                   (c)                                                                            (d) 

Figure 2.9: Comparisons of kinematic responses of the suspension with +10 mm change 

in the z- coordinate of M1, M2 and O3 joints with those of the model with nominal 

coordinates:  (a) wheel center longitudinal displacement; (b) camber and (c) caster and 

(d) toe angle. 

2.7 Kinematic Analysis of a Double Wishbone Suspension 

A double wishbone suspension, illustrated in Fig. 2.10, is one of the most widely used 

independent suspension in passenger and racing cars. In its basic form, it consists of two 

control arms connecting the chassis with the wheel spindle, which also determine the 

mechanism articulation [2, 137]. The double wishbone suspension is considered to offer 

specific advantages over other types of suspension owing to its simplicity and minimal 

toe angle variations during wheel vertical motions [1, 4]. The strut in a double wishbone 
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suspension is located on either the upper or the lower control arm, while it exhibits 

minimal influence on the articulation of the suspension mechanism.  

 

 
Figure 2.10: A schematic image of double wishbone suspension 

2.7.1  Kinematic Model of the Double Wishbone Suspension 

The roll-plane kinematic properties of a double wishbone suspension can be 

effectively evaluated using a planar model [1, 4]. Consequently, a planar model of the 

suspension is formulated, as shown in the Fig. 2.11, which comprises of upper (MN) and 

lower (OP) control arms, and the strut (AB) including spring and damper mounted on the 

lower control arm. The points M and O represent the revolute joints of the upper and 

lower control arms with the chassis, while points N and P represent the upper and lower 

ball joints (between wheel spindle, and upper and lower control arms), respectively. The 

upper and lower control arms connecting the chassis with the wheel spindle form R-R 

links considering that the ball joints in a plane are similar to the revolute joints. The point 

C in Fig. 2.11 represents the wheel center. The chassis, control arms and the wheel 

spindle are assumed to be rigid bodies, while the tire is assumed to be integral part of the 
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wheel spindle. The suspension kinematic relations are derived with an assumption that 

the revolute joints between the chassis and control arms and between the control arms 

and wheel spindle are frictionless.  

 

Figure 2.11: Planar kinematic model of a double wishbone suspension 

 

In the planar suspension mechansim, the chassis, control arms and the wheel spindle 

form the components of the kinematic chain, while consideration of the fixed chassis 

forms the mechanism. The double wishbone suspension with the chassis, two control 

arms and the wheel spindle thus forms a four bar mechanism. The mobility of the four 

bar planar suspension system can be estimated from the Grubler’s criteria for mobility 

[19], such that: 

DOF=3(Nm-1)-2Rm                     (2.18) 

where Nm and Rm denote the number of links and revolute joints, respectively. 

Considering each of the four links and the revolute joints, a double wishbone suspension 
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with the fixed chassis has only one degree of freedom. This DOF of the mechanism is the 

vertical motion of the wheel assembly with respect to the fixed chassis. The translational 

and rotational motions of the wheel spindle are dependent on its vertical motion.  

The kinematic analysis of a suspension is generally performed under prescribed wheel 

vertical displacement considering fixed chassis. This approach, however, does not permit 

analysis of wheel motions with a simultaneous chassis movement. In this study, a vertical 

degree of freedom of the chassis is introduced in addition to that of the wheel spindle in 

order to study the kinematic responses under vertical motions of both the chassis and the 

wheel spindle. The generalised coordinates are thus chosen as the vertical displacements 

of the chassis (zs) and wheel spindle (zu). A coordinate system fixed at the ground is 

assumed, while motion of the chassis is also considered to occur with respect to a ground 

coordinate system. Initially, the origins of both the coordinates are assumed to coincide.   

The orientation of a planar rigid body, in general, can be determined by the positions 

of any three points in the plane. For the wheel spindle, the two joint centers N and P, and 

the wheel center C are conveniently chosen, where (Ny0, Nz0), (Py0, Pz0) and (Cy0, Cz0) 

define the initial coordinates of N, P and C, respectively. The first subscript of the 

variable represents the coordinate (y or z), while the second subscript (‘0’) designates the 

initial position, when present. For a finite displacement of the wheel spindle in the given 

plane, a general displacement matrix can be formulated as [19, 132]: 

 
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where a22=a33=cos, -a23=a32=sin, and  is the wheel spindle rotation about x-axis. In 

the above expression, Cy and Cz are the instantaneous coordinates of the wheel center C. 

The instantaneous coordinates (Ny, Nz) and (Py, Pz) of N and P, respectively, following 

application of a wheel spindle vertical displacement zu, are derived from the displacement 

matrix, as: 
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                                                                (2.19) 

The above formulation exhibits 6 unknown parameters corresponding to a given zu, 

namely, the y and z coordinates of N and P, the y- coordinate of C and the wheel rotation, 

. Equation (2.19) is solved in conjunction with two constraint conditions imposed by the 

suspension mechanism, which are formulated considering constant lengths of the upper 

(lMN) and lower (lOP) control arms, such that:        

222 )()( MNzzyy lMNMN  ; and 222 )()( OPzzyy lOPOP 
                                       (2.20)

 

The solutions of Eq. (2.19) yield following nonlinear system of equation in displacements 

of the joints:      

yzzyyy CCNaCNaN  )()( 00230022
; zzzyyz CCNaCNaN  )()( 00330032

yzzyyy CCPaCPaP  )()( 00230022 ; and zzzyyz CCPaCPaP  )()( 00330032  

               
(2.21) 

 

where My=My0, Oy=Oy0, Mz=Mz0+zs, Oz=Oz0+zs and Cz=Cz0+zu.   

The nonlinear system of equations can be numerically solved to obtain the 

instantaneous coordinates of the joints and the wheel center following vertical 

displacements of the chassis and the wheel center. The rotational motion of the wheel, , 

directly yields the wheel camber angle response, while the wheel center lateral 
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displacement yu can be derived from yu=Cy-Cy0. The lateral displacement Ty of the wheel-

ground contact point T with respect to the static position is considered as the variation in 

the wheel track, which can be directly related to the tire wear characteristics. With the 

rigid body assumption of the wheel assembly, the lateral motion of the wheel-ground 

contact point is obtained as: 

yzzyyy CCTaCTaT  )()( 00230022              (2.22)  

where (Ty0, Tz0) define the initial coordinates of the contact point T. Alternatively, the 

lateral displacement of the contact point can also be obtained from the wheel camber and 

wheel center lateral displacement, such that:  

      Ty=yu- (Cz0-Tz0)              (2.23)                                             

The above formulation in Ty assumes small rotation of the wheel, such that (a22 =1; a23 

=). 

The translational velocities of points M, N and C, and the angular velocity of the 

wheel spindle about the x- axis can be further obtained from time derivatives of the Eqs 

(2.20) and (2.21), as:   

yzzyyy CCNaCNaN   )()( 00230022
; uzzyyz zCNaCNaN   )()( 00330032   

yzzyyy CCPaCPaP   )()( 00230022 ;  uzzyyz zCPaCPaP   )()( 00330032  
0))(()( 00  szszzyyy zNzMNNMN  ; and 0))(()( 00  szszzyyy zPzOPPOP 

 

                                                                                                                                 
(2.24) 

where  sin22
 a ,  cos23

 a ,  cos32
 a  and  sin33

 a . In the above 

system of equations, a dot over a coordinate or variable denotes the time derivative. 

Unlike displacement expressions in Eqs (2.20) and (2.21), the velocity expressions are 

linear (for known chassis and wheel spindle vertical velocities, joint coordinate 

displacements and wheel rotation). 
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2.7.2  Kinematic Response Analysis of a Double Wishbone Suspension 

The kinematic responses, particularly, the variations in the camber angle (), wheel 

center lateral displacement (Cy) and half wheel-track (Ty) are evaluated by considering 

fixed chassis (zs = 0), while the wheel center is subjected to a very low frequency (0.1Hz) 

harmonic displacement of 100 mm amplitude, such that zu(t)=100sin(0.2πt). The y- and z- 

coordinates of various joints were selected on the basis of a three-dimensional SLA 

(Short Long Arm) suspension configuration reported in [146], such that: M = (0.430, 

0.818); N = (0.644, 0.852); O = (0.365, 0.360); P = (0.743, 0.347); C = (0.787, 0.452); A 

= (0.660, 0.350) and B = (0.615, 0.920).  

The validity of the model and the solution method was examined by comparing the 

kinematic responses of the kineto-dynamic model with those derived from a 2-

dimensional multi-body kinematic model of the same suspension developed in 

ADAMS/view and illustrated in Fig. 2.12. The upper and lower control arms of the 

planar multi-body (ADAMS/view) kinematic model are connected to the chassis and the 

wheel spindle through revolute joints. The chassis was constrained to travel in vertical 

direction only by defining a translational joint in the vertical direction. A harmonic 

chassis motion is considered along the vertical direction. Furthermore, a general point 

motion was defined at the wheel center in vertical direction, which permits the wheel 

spindle to have translation motion in lateral and vertical directions apart from the 

rotational (camber) motion. The comparisons of the kinematic responses revealed 

excellent agreements between the responses of both the models.  
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Figure 2.12: Planar multi-body kinematic model of the suspension developed in 

ADAMS/view 

 

Figure 2.13 illustrates variations in the camber angle, wheel center lateral 

displacement and half wheel-track variation with the wheel vertical travel. The results 

show highly asymmetric camber angle variations during compression and rebound, which 

ranges from -3.18º at 100 mm jounce position vs. 1.14º at 100 mm rebound position of 

the wheel. The lateral displacement of the wheel center, however, is only slightly 

asymmetric about the corresponding static equilibrium position. Moreover, the wheel 

center moves laterally closer to the chassis during both jounce and rebound motion of the 

suspension. The half wheel track variation which is the combined result of the camber 

rotation and the wheel center lateral motion, as evident in Eq (2.23), exhibit considerably 

large asymmetry in the response during compression and rebound. The 100 mm jounce 

and rebound motions cause peak variations in the half wheel track of 6 mm and -22 mm, 

respectively. Variations in the camber angle are either positive or negative depending on 

the jounce or rebound position of the suspension. The results suggest that both the 
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camber angle and wheel center lateral motion add up to increase the lateral displacement 

of the tire-ground contact point during the rebound motion. 

 

Figure 2.13: Variations in Camber angle, wheel center lateral displacement and half 

wheel track responses under wheel vertical displacement, zu= 100 sin (0.2πt) mm 

 

The kinematic responses of the suspension model with differential motion across the 

suspension is further evaluated by subjecting the model to vertical motions of the chassis 

and the wheel center such that zs = 100 sin(2πt) mm and zu = 50 sin(2πt) mm. The 

responses of the proposed model were observed to be identical to those of the ADAMS 

models. Figure 2.14 illustrates variation in camber angle , wheel center lateral 

displacement Cy and half wheel-track Ty of the double wishbone suspension model. The 

results suggest that the variations in Cy occur at twice the excitation frequency of 1Hz. 

The results also show asymmetric variations in each of the responses during jounce and 

rebound, as observed in Fig. 2.13. It can also be seen that the suspension configuration 
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considered in the study would yield lower effective wheel track under wheel rebound 

motions, and a higher effective wheel track under the wheel jounce  motions.  

 

Figure 2.14:  Variations in camber angle, wheel center lateral displacement and half 

wheel-track responses of the suspension under differential excitation,  

zs = 100sin (2πt) mm and zu = 50sin (2πt) mm. 

2.7.3  Sensitivity of Kinematic Responses to Joint Coordinates 

Results in Figs. 2.13 and 2.14 show asymmetric and considerably large variations in 

the camber angle and wheel track responses under wheel vertical motions. The degree of 

asymmetry in the responses is expected to strongly depend on the suspension geometry 

and joint coordinates. With an increasing demand for larger subframe space, particularly 

for hybrid vehicles for placing the batteries [3], a suspension synthesis that can provide 

greater lateral subframe space without compromising the kinematic performances would 

be desirable. The suspension lateral space availability is directly related to the links 

geometry, which may be characterized by the coordinates of joints M, N, O and P. A 
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sensitivity analysis is thus performed to identify the influences of joint coordinates on the 

kinematic responses of the suspension. 

The y- and z- coordinates of each joint is varied by ±50 mm about the nominal values, 

while the variation in the  y- coordinates of P is limited only to -50 mm due to limited 

clearance between the wheel and joint P. The effects of variations in the joint coordinates 

are evaluated under 100 mm positive and negative wheel vertical motion, in terms of 

peak variations in camber angle and the wheel track during jounce and rebound motion of 

the wheel, denoted as peak-jounce camber, peak-rebound camber, peak-jounce track and 

peak-rebound track, respectively. It needs to be emphasized that the responses are 

evaluated with change in one coordinate and maintaining other coordinates at their 

respective nominal values. The sensitivity of the kinematic responses to changes in the 

joint coordinates are presented in Table 2.4, while the table also presents these responses 

of the suspension with nominal coordiantes. Moreover, the table illustrates (within the 

parenthesis) percentage change in the responses with respect to those of the nominal 

suspension geometry per millimeter (mm) change in the joint coordinates. For example, a 

+50 mm change in the y- coordinate of joint M, increases the peak jounce camber to          

-4.52º as compared to -3.19º of peak camber variation with the nominal suspension. A 50 

mm positive change in  the y- coordinate of joint M thus results in 42% increment in the 

peak jounce camber angle. With an assumption that this increment is linear with change 

in the joint coordinate, a 1 mm positive change in the y- coordinate of joint M would 

increase the peak jounce camber by 0.84%, as illustrated in Table 2.4. 

The results suggest that the camber angle and wheel track variation responses of the 

suspension are a complex function of the joint coordinates. Positve changes in z- 
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coordinates of joints M and P, and negative changes in z- coordinates of joints N and O 

help reduce the peak changes in the camber cangle and the wheel track during both 

jounce and rebound travel of the wheel. It is also evident from the table that opposite 

changes in these coordinates cause opposite effects. The results suggest that the changes 

in the z- coordinates show significantly large influences on the kinematic responses 

considered in this study. The changes in the z- coordinates of the joints M and P in 

positive sense, and of the joints N and O in a negative sense either increase the distance 

between the upper and lower control arm joint with the chassis or decrease the distance 

between the upper and lower ball joints. A double wishbone suspension with closer upper 

and lower ball joints may thus yield lower variations in the camber angle and  wheel track 

responses of the suspension under the wheel jounce and rebound motions.   

The results in Table 2.4 further suggest that changes in the y- coordinate of any joint 

yield conflicting influences on the peak jounce and rebound camber angle and the wheel 

track responses of the model. For instance, a positive change in  y- coordinate of the joint 

M yields higher peak jounce camber angle (-4.52º) and peak jounce track variation (12.4 

mm)  but lower peak rebound camber angle (1.02º) and peak rebound track (-21.0 mm) 

responses. It is further seen that negative changes in y- coordinates of joints M and O or a 

positve change in y- coordinate of the joint N yield lower jounce camber angle and wheel 

track responses, while the opposite changes in the coordinates yield opposite effects. 

These suggest that increase in the control arms lengths would decrease variations in the 

camber angle and wheel track responses during wheel jounce motions, while reducing the 

control arms lengths would yield lower peak variations in camber angle and wheel track 

during rebound motion of the wheel.   
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Table 2.4: Sensitivity of peak variations in camber angle and wheel track responses under 

100 mm jounce and rebound  motion of the wheel to changes in the joint coordinates 

 

Coordinate 

variation 

Peak-jounce 

camber –deg (% 

variation/mm 

change) 

Peak-rebound 

camber-deg (% 

variation/mm 

change) 

Peak-jounce 

track-mm    (% 

variation/mm 

change) 

Peak-rebound 

track-mm (% 

variation/mm 

change) 

Nominal -3.19      (0) 1.14       (0) 5.9    (0) -22.2     (0) 

My + -4.52  (0.84) 1.02 (-0.21) 12.4 (2.21) -21.0 (-0.11) 

My - -2.39 (-0.50) 1.29  (0.27) 3.5 (-0.81) -22.9  (0.06) 

Mz + -2.26 (-0.58) 0.05 (-1.92) 0.0 (-1.98) -6.8 (-1.39) 

Mz - -5.55  (1.48) 3.60  (4.34) 17.3 (3.91) -33.5  (1.01) 

Ny + -2.50 (-0.43) 1.26  (0.22) 3.7 (-0.74) -22.8  (0.05) 

Ny - -4.21  (0.64) 1.04 (-0.17) 10.8  (1.69) -21.2 (-0.09) 

Nz + -5.15  (1.23) 3.28  (3.79) 15.4  (3.25) -32.0  (0.88) 

Nz - -2.58 (-0.38) 0.05 (-1.91) 0.0 (-1.99) -6.2 (-1.44) 

Oy + -3.05 (-0.09) 1.46  (0.57) 4.7  -0.41) -26.4  (0.37) 

Oy - -3.29  (0.07) 0.92 (-0.38) 7.5  (0.55) -19.1 (-0.28) 

Oz + -4.41  (0.77) 2.76  (2.87) 24.7 (6.43) -43.4  (1.91) 

Oz - -1.90 (-0.81) 0.10 (-1.82) 1.4 (-1.54) -14.1 (-0.73) 

Py - -3.11 (-0.05) 1.41  (0.48) 5.1 (-0.27) -25.7  (0.32) 

Pz + -2.07 (-0.70) 0.11 (-1.80) 1.2 (-1.58) -11.4 (-0.97) 

Pz - -4.07  (0.56) 2.51  (2.42) 19.5  (4.67) -40.1  (1.61) 

 

The results in Table 2.4 suggest that the kinematic responses of a double wishbone 

suspension including the variations in the camber angle and wheel track are strongly 

influenced by the joint coordinates. The synthesis of the suspension geometry is thus a 

complex task particularly with additional constraint on the lateral space. Suspension 

lateral space is directly related to the y- coordinates of the joints, and an additional 

subframe space requirement would necessiate consideration of positive changes in the y- 

coordinates of joints M and O (chassis-control arm joints). Such variation in the joint 
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coordinates would also influence the roll camber response of the suspension, which 

necessitates consideration of an extended half-car model in the roll-plane of the vehicle. 

2.8  Summary 

Single-wheel station kinematic models of two types of suspension are formulated to 

study the kinematic responses of the suspension, which could also be employed for 

synthesis of suspension geometry.  The validity of the three-dimensional kinematic model 

of a quadra-link suspension is demonstrated by comparing the camber and caster angle 

variations of the model with the laboratory-measured data. The kinematic responses of 

the quadra-link suspension including wheel center displacements, variations in the wheel 

base and track, and camber, caster and toe angles as a function of wheel vertical travel are 

analyzed. Based on the matrix equations, a sensitivity analysis method is proposed to 

investigate the influences of variation in the suspension joint coordinates on the 

kinematic responses. Planar model of a double wishbone suspension is also proposed for 

anaysis of roll-plane kinematic responses, such as variations in the camber angle, wheel 

track and wheel center lateral displacement. Validity of the proposed model was 

examined by comparing the kinematic responses with those of a planar model developed 

in ADAMS/view platform. The kinematic responses of the double wishbone suspension 

are studied under wheel vertical motions, and simultaneous vertical motions of the wheel 

and the chassis. The influences of the joint coordinates on the kinematic responses are 

investigated through a sensitivity analysis. The results of the sensitivity analyses of both 

the suspensions are interpreted so as to attain design guidelines for suspension geometry 

synthesis. The proposed models are further enhanced in the subsequent chapters to 

investigate kineto-dynamic response characteristics of the suspension system. 
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CHAPTER 3 

 KINETO-DYNAMIC ANALYSIS OF A DOUBLE WISHBONE 

SUSPENSION 

 

3.1 Introduction 

Dynamic performances of a vehicle are strongly influenced by its suspension design in 

a highly complex manner. The synthesis of a vehicle suspension thus involves complex 

compromises among the various conflicting performance measures through judicious 

selection of the suspension elements. Linear or nonlinear quarter-car models have been 

widely used to evaluate the ride, rattle space and the dynamic tire force responses of 

suspension design concepts, and synthesis of semi-active and active suspension control 

strategies, assuming negligible contributions due to suspension kinematics [63, 85, 90, 

97, 121]. The conventional quarter-car model as illustrated in Fig. 3.1 employs equivalent 

stiffness and damping  properties of the suspension coupling the chassis and the wheel 

masses, while the suspension is permitted to undergo pure vertical deflections. In an 

independent suspension system, the wheel carrier or the spindle is generally connected to 

the chassis through the suspension linkages, which induce rotational motion of the wheel 

apart from the vertical motion. The center of rotational motion of the wheel relies on the 

suspension geometry and tends to influence the dynamic responses of the vehicle. 

Furthermore, the suspension strut is generally mounted away from the unsprung mass 

center (cg) and thus the point of application of spring and damping forces and the 

unsprung mass are not colinear. It has been suggested that the suspension kinematics can 

lead to nonlinear responses and significantly affect the vertical dynamics [90,128]. 
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The identification of a vehicle model that incorporates the contributions due to 

linkage kinematics, and flexible bushing in the joints may thus be desirable for dynamic 

analyses of alternate concepts in an effective manner, and could serve as an effective tool 

to study the influences of the linkage geometry and joint flexibilty on the dynamic 

responses. Such a model is identified as ‘kineto-dynamic’ model, and could also be used 

for the synthesis of the suspension of a ground vehicle.  A kineto-dynamic model would 

represent physical suspension mechanism by including the suspension kinematics, and 

can be employed to synthesize a vehicle supension considering both kinematic and 

dynamic responses.  

 
Figure 3.1: Conventional quarter car model 

 

A few studies have been reported with inclusion of the suspension linkage kinematics 

either by parameter identification of the simple quarter car model [90] or by employing 

kineto-dynamic models [128-133]. The majority of these reported studies on the 

influences of suspension linkages on the dynamic responses of the vehicle considered 

MacPherson type of suspension [128,131, 132], while kineto-dynamic model of a double 

wishbone suspension has been attempted in a single study [133], although such a 

suspension has been widely used. Kim et al. [90] concluded that the contribution of the 
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MacPherson suspension kinematics on the equivalent parameter and the dynamic 

responses are considerably small. The strut location away from the wheel center, 

however, yields some effects of the kinematics. The kinematics of a double wishbone 

suspension may yield considerably stronger effects on the dynamic responses compared 

to the MacPherson suspension. This is attributable to kinematics associated with the 

additional control arm, strut location on the lower control arm, and additional kinematic 

constraints.  

This chapter presents the study of influences of the linkage kinematics, tire lateral 

compliance and the flexible joint bushings on the dynamic and kinematic responses of a 

vehicle comprising a double wishbone type of suspension. The study involves developing 

a quarter-car kineto-dynamic model incorporating double wishbone linkage kinematics 

and tire lateral compliance, and identification of equivalent spring and damping rates to 

be employed in a conventional quarter car model. The responses of the kineto-dynamic 

model are compared with those of a conventional quarter-car model employing 

equivalent suspension and damping rates corresponding to static equilibrium under 

harmonic and idealized bump inputs. It needs to be emphasized here that only the 

dynamic responses of the proposed model can be compared with the conventional model, 

while the proposed model can be effectively used to generate responses that cannot be 

obtained from the conventional model. Suspension joints bushing compliance is further 

included in the kineto-dynamic model to investigate the influences of flexible bushings 

on  the kinematic and dynamic responses of the model. The proposed kineto-dynamic 

model is employed to realize synthesis of suspension linkage joint coordinates 

considering lateral space limitations. 
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3.2 Model Development 

Figure 3.2 illustrates the proposed kineto-dynamic quarter-car model comprising a 

double wishbone type of suspension system. The proposed planar model includes upper 

(MN) and lower (OP) control arms, and a strut (AB) mounted on the lower control arm. 

The strut is modeled assuming linear stiffness and damping properties. The control arms 

are connected to the chassis and the wheel spindle through revolute joints. The control 

arms are considered to be massless and the total unsprung mass is assumed to be lumped 

at the center of gravity (cg) of the wheel assembly. The tire is modeled as a combination 

of a vertical spring and a damper, while the lateral compliance is represented by lateral 

linear stiffness. The model is formulated considering vertical displacements of the sprung 

mass and the wheel as the degrees-of-freedom (DOF) as in the case of a conventional 

quarter-car model, shown in Fig. 3.2. A coordinate system with its origin fixed at the 

chassis corresponding to its static equilibrium position is considered. 

 

Figure 3.2: Proposed kineto-dynamic quarter car model of a vehicle with double 

wishbone suspension 
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3.2.1 Kinematic Analysis 

The kinematic relations describing the motions of the wheel knuckle can be produced 

using displacement matrix and the constraint equations corresponding to the control arm 

joints as discussed in Section 2.7.1. The nonlinear kinematic relations as obtained in Eqs 

(2.20) and (2.21) can be written as:   

yzzyyy CCNaCNaN  )()( 00230022
 

zzzyyz CCNaCNaN  )()( 00330032
 

yzzyyy CCPaCPaP  )()( 00230022
                                    

zzzyyz CCPaCPaP  )()( 00330032
 

222 )()( MNzzyy lMNMN 
 

222 )()( OPzzyy lOPOP 
                            (3.1)

 

where My=My0, Oy=Oy0, Mz=Mz0+zs, Oz=Oz0+zs and Cz=Cz0+zu, while zs is the vertical 

displacements of the sprung mass from the static equilibrium position. In Eq (3.1), lMN 

and lOP are the lengths of upper and lower control arms, respectively. Moreover, 

a22=a33=cos and –a23=a32=sin. In order to correlate the kinematic relations to the 

dynamic responses, closed form solutions of the unknowns in terms of generalized 

coordinates are desirable, which may be quite complex. A linear system of kinematic 

relations, however, could be achieved using small angle assumptions, such that a22=a33=1 

and –a23=a32=, and first-order Taylor series approximation of the constraint equations, 

which yield:  

)()( 0000 yyyzzy CNCCNN   

uzyyz zNCNN  000 )(  

)()( 0000 yyyzzy CPCCPP                                  

uzyyz zPCPP  000 )(  

0)()))((())(( 0000000  szzzzszzyyyy zMNNNzMNNNMN
 

0)()))((())(( 0000000  szzzzszzyyyy zOPPPzOPPPOP         (3.2)
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Solutions of the above linear system of equations yield following expressions in the 

generalized coordinates zs and zu, as; 
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where Den=ge(b-d)+ec(h-2zs)+ga(f-2zs); a=Ny0 -Cy0, b=Nz0 -Cz0, c=Py0 -Cy0, d=Pz0 -Cz0,  

e=Ny0 -My0, f=Nz0 -Mz0, g=Py0 -Oy0 and h=Pz0 -Oz0. Furthermore, the lateral displacement 

of the wheel center yu can be expressed as, yu=Cy -Cy0. The coordinates of the lower strut 

mount A can be obtained from the kinematics of link OP, such that:  
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where lOA is the distance of strut mount location A with respect to joint O.  

The velocities of different joints are derived through time derivatives of linear system of 

equations in Eq (2.21), such that:   
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Alternatively, the velocity responses can also be obtained through time derivative of the 

displacement expressions in Eq (3.2). The wheel angular velocity and lateral velocity of 

the wheel center are derived in a similar manner, as: 
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The wheel spindle angular and lateral acceleration can be obtained from the time 

derivative of Eq (3.6) as:  
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3.2.2 Kineto-dynamic Analysis 

The equations of dynamic motion of the kineto-dynamic quarter-vehicle system are 

derived using Lagrange’s method. The kinetic (T) and potential (U) energies of the 

system are formulated as: 
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where ms and mu are the masses of the vehicle body and the wheel, respectively, Iux is the 

mass moment of inertia of the wheel about x- axis, Ks is the suspension spring rate, R is 

the effective wheel radius, and Kt and Ktl are the tire vertical and lateral spring rates,  

respectively. In the above expression, Δl and Δzt are the strut and tire deflections, given 

by: 

  2/12
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2
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where ls0 is the initial strut length, By0 and Bz0 are the initial coordinates of the upper strut 

mount B,  and z0 is the vertical road input, as shown in Fig. 3.2. 

The dissipative energy contributing to the generalized forces in the system is derived as: 
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where Cs and Ct are the viscous damping coefficients of the strut and the tire, 

respectively. 
tz and l are the time derivatives of the tire and strut deflections, 

respectively, given by:  
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The equations of motion are derived from the energy equations (3.8) and (3.10) together 

with the kinematic relations defined in Eqs (3.3) to (3.7). Upon neglecting the 

contributions due to products of derivative terms, the equations of motion of the kineto-

dynamic model are derived as:       
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In the above equations, uy , ,
uy , ,

uy , , l and l  are defined by the kinematic relations 

in Eqs (3.3), (3.5), (3.6) and (3.7). Moreover, each term in Eq (3.12) is a function of 

us zz  ,  zs, and zu, with the exception of sszm  and uu zm  .  

3.3 Equivalent Spring and Damping Rates 

The equations of motion of a conventional quarter-car model, shown in Fig. 3.1, can 

be written as: 

0)()(  usequseqss zzKzzCzm     

0)()()()( 00  zzKzzCzzKzzCzm ututusequsequu
                           (3.13)                                                             

where Keq and Ceq are equivalent vertical stiffness and damping rates of the suspension, 

respectively. The effectiveness of this simple model could be considerably enhanced by 

employing equivalent spring and damping rates that can account for the kinematic 

effects. In this study, the kinematic relations, formulated in Section 3.2.1 are used to 

identify; (i) equivalent suspension rate, defined as the vertical suspension force acting at 

the wheel center per unit vertical displacement of the wheel center; and (ii) equivalent 

damping rate, defined as vertical suspension force at the wheel center per unit vertical 

velocity of the wheel center [1,16]. 

3.3.1 Formulations of Equivalent Spring- and Damping Rates 

The equivalent spring and damping rates are derived considering the chassis fixed, 

while a vertical displacement input is imparted at the wheel centre. The effective strut 

force acting at the wheel center is subsequently derived by considering the suspension 

kinematics, particularly the wheel camber and the lateral displacement responses during 

the vertical wheel motion, as illustrated in Fig.3.3. For a given wheel center 
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displacement, the restoring force developed by the strut (KsΔl), along its axis can be 

related to the equivalent force at joint P of the lower control arm and the wheel spindle, 

as:  

 
OP

OA
ssPN
l

l
lKF cos                                                                                             (3.14) 

where θs is the strut inclination angle with a normal to the control arm, as shown Fig. 3.3.  

The equivalent suspension force Fw acting at the wheel center can be related to FPN by 

considering the instantaneous center of rotation P' of the double wishbone suspension 

(Fig. 3.3).  

 
Figure 3.3: Effective force at the wheel center 

 

Since P and C lie on the same rigid body (wheel spindle), the normal component of the 

equivalent force at the wheel center FWN is related to FPN, as:  

PN

CP

PP
W N F

l

l
F

'

'                                                                   (3.15) 

where FWN acts at the wheel center along the normal to a line joining instantaneous center 

P' and the wheel center C. In the above equation, lP'P and lP'C are the distances of points P 
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and C from the instantaneous center, which are related to the angular rotation θ0 of the 

lower control arm in the following manner: 

wu
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where θw is the angle between the force FWN and the fixed vertical axis. The lower control 

arm rotation θO, can be further related to θs such that sOOA ll  cos .                                          

The equivalent vertical force at the wheel center, FW is then derived from the normal 

force as,  
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Equations (3.14) to (3.17) yield the following expression for the equivalent vertical force,                         
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In the above expression, the spring deflection Δl is only a function of wheel vertical 

deflection zu, when zs=0.  The angles θs and θw are also functions of zu considering that 

these angles can be written in terms of the joint coordinates, Ny, Nz, Py, Pz, Cy, Cz, Ay and 

Az. The small angles θs and θw are related to the joint coordinates, as: 
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where yPand zP  are the coordinates of the instantaneous point Pwhich can be obtained 

by solving the equations of lines MN and OP as: 
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Although the angles θs and θw are functions of zu, the variations in these angles with 

respect to zu are very small. Assuming small variations in these angles, the suspension 

rate Keq is obtained by differentiating the wheel force in Eq (3.18) with respect to zu. The 

resulting suspension rate can be related to the suspension stiffness, as: 
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suspension rate incorporating the suspension kinematics, while the rate of change of strut 

length with respect to zu can be obtained from: 
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The equivalent damping force FWd, at the wheel center is derived in a similar manner as: 
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This leads to an expression for the equivalent damping rate as: 
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The above equation can be further simplified in terms of another geometry factor Ψd, in a 

similar manner to that of the equivalent spring rate. The equivalent damping thus is 

directly related to the strut damping coefficient, as: 

dseq ΨCC  ;     where 
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Equations (3.21) and (3.25) derive the equivalent spring and damping rates of a double 

wishbone suspension as a function of the wheel spindle vertical displacement and 

velocity relative to the chassis.  

The geometry factor Ψ is a function of zu for a given joint coordinates and may be 

considered as analogous to the square of the ‘installation ratio’ [1]. A further examination 

of the geometry factor Ψ in conjunction with Eqs (3.9) and (3.22) suggests that it is 

dependent on the ratio of the distance of the strut mounting point lower control arm (A) 

from the pivot (O) to the control arm length (lOA/lOP), and on the coordinates of the strut 

mounts (A and B). The coordinates of the strut mounts are related to those of joints O and 

P, as it is evident from Eq (3.9). The geometry factor thus accounts for the total 

suspension kinematic effects. This further suggests that variations in the joint 

coordinates, which are generally carried out during suspension tuning, can alter the 

equivalent suspension rates, and thus, influence the dynamic responses of the suspension. 

3.3.2 Variations in Equivalent Spring and Damping Rates 

The effective spring and damping rates of the suspension, however, tend to vary 

during vertical motions of the chassis and the wheel, which may alter the vehicle ride and 

handling properties.  The variations in the effective spring and damping rates are 

analyzed considering the coordinates of various suspension joints (Fig. 3.2) as given in 

Section 2.4.4, such that: M=(0.430, 0.818); N=(0.644, 0.852); O=(0.365, 0.360);     

P=(0.743, 0.347); C=(0.787, 0.452); A=(0.660, 0.350) and B=(0.615, 0.920), while these 

coordinates are taken in meters. The variations in the effective spring and damping rates, 

evaluated from Eqs (3.21) and (3.25), respectively, by considering the chassis fixed (zs = 

0), while the wheel center is subjected to a very low frequency (0.1 Hz) harmonic 
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displacement of 0.12 m amplitude, while, the variations in the rates are illustrated in Fig. 

3.4 (a) and (b), respectively.  The figures show the variations in the suspension spring 

rate with the wheel vertical travel, and the damping rates as a function of wheel vertical 

velocity. The results in the figures suggest that the effective spring and damping rates 

decrease under upward wheel motion (jounce) and increase during rebound, while the 

variations are asymmetric in jounce and rebound. The results also show nearly symmetric 

variations in the wheel rate under small wheel displacements, and relatively lower 

changes in the suspension rate and damping rate in rebound compared to jounce.  

 

 
                                        (a)                                                                   (b) 

Figure 3.4: Variations in (a) wheel rate; and (b) damping rate of the suspension under    

zu= 0.12 sin (2πt) m and zs = 0 

 

3.4 Dynamic Response Analyses 

The kineto-dynamic formulations presented in sections 3.2 and 3.3 are solved to 

determine the kinematic and dynamic responses to harmonic and transient excitations. 

The model parameters used in simulation are summarized in Table 3.1 [97, 147]. The 

results attained are discussed in the following sections. 
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Table 3. 1: Vehicle and suspension data [97, 147] 

 

Parameter Value 

Sprung mass (ms) 

Unsprung mass (mu) 

Unsprung mass moment of inertia about x axis (Iux) 

Suspension spring stiffness (Ks) 

Suspension damping rate (Cs) 

Tire vertical stiffness (Kt) 

Tire damping rate (Ct) 

Tire lateral stiffness (Ktl) 

Tire effective radius (R) 

439.38 kg 

42.27 kg 

1.86 kg-m
2 

38404 N/m 

3593.4 Ns/m 

200 kN/m 

352.27 Ns/m 

100 kN/m 

0.35 m 

 

3.4.1 Responses to Harmonic Inputs 

Apart from variations in the spring and damping rates, the tire lateral compliance can 

also influence the vertical dynamics of the system, particularly when the wheel track and 

the camber angle add up to increase the lateral displacement of the tire-ground contact 

point. Furthermore, the sprung and unsprung masses are constrained by the suspension 

linkages, which can also alter the dynamic properties. The combined effects of variations 

in the suspension and damping rates, tire lateral forces and the constraints imposed by the 

suspension linkages are illustrated by comparing the dynamic responses of the kineto-

dynamic model with those of a conventional quarter-car model under harmonic and 

idealized bump excitations. The conventional model employs equivalent suspension and 

damping rates in the vicinity of the static equilibrium operating point (Figs. 3.4 (a) and 

(b)).   

The dynamic responses of the kineto-dynamic and the linear quarter-car model are 

evaluated under sinusoidal displacement at the tire ground interface with z0max as the 

displacement amplitude. The responses are evaluated in terms of sprung-mass 

displacement ratio, zs/z0max, and the rattle space ratio, (zs-zu)/z0max. Figures 3.5 (a) and (b) 
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illustrate the steady-state sprung mass displacement ratio responses of the two models 

under two different displacement amplitudes (z0max= 0.05 and 0.08 m) at a frequency of    

1 Hz. It can be observed that the conventional model shows symmetric variations in the 

responses about the static equilibrium, irrespective of the excitation amplitude with peak 

displacement ratio near 2.1. Moreover, the displacement ratio response is independent of 

the excitation amplitude due to the assumed linearity. The proposed kineto-dynamic 

model, however, exhibits a small asymmetry in the responses in jounce and rebound. The 

peak responses of the kineto-dynamic model are lower compared to those of the 

conventional model. The peak ratio under z0max= 0.05 m is observed to be near 1.96 

during the upward motion of the sprung mass and nearly 1.95 during the downward 

displacement. The peak displacement ratio increases slightly when the input amplitude is 

increased to 0.08 m. The asymmetry in the response can be attributed to kinematics of the 

suspension giving rise to asymmetric variation in the camber angle, suspension rate and 

damping rate, as shown in Figs. 3.4 and 3.5, respectively. During the jounce (sprung mass 

upward displacement), total lateral displacement of tire-ground contact point is larger 

compared to that of rebound owing to variations in the camber angle and the wheel track.  

Figures 3.6 (a) and (b) compare the rattle space ratio responses of the kineto-dynamic 

and the conventional model under the two displacement excitation amplitudes. The 

results show considerable deviations between the responses of the two models for both 

excitation amplitudes. The kineto-dynamic model yields considerably lower peak rattle 

space compared to the linear model, particularly under the lower excitation. This is partly 

attributed to slight difference in the sprung mass natural frequency of the kineto-dynamic 

model from that of the linear model. It can also be observed that the rattle space response 
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of the kineto-dynamic model lags that of the conventional model slightly during upward 

displacement, and it leads the conventional model peak response during the downward 

motion, which can be attributed to non-linearity due to kinematic constraints imposed by 

the suspension linkages in the kineto-dynamic model.  

 
   (a)                                                                    (b) 

Figure 3.5: Sprung mass displacement ratio response to harmonic excitations at 1 Hz:    

(a) z0max=0.05 m; and (b) z0max=0.08 m. 

 

 
(a)                                                                    (b) 

Figure 3.6: Rattle space ratio response to harmonic excitations at 1Hz: (a) z0max=0.05 m; 

and (b) z0max=0.08 m. 

 

3.4.2 Responses to Idealized Bump Excitations 

The transient responses of the kineto-dynamic and linear quarter-vehicle models are 

evaluated under an idealized bump excitation with positive and negative vertical 

displacements to study the effects of suspension kinematics causing variations in the 
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suspension and damping rates, camber angle and wheel track. The bump excitation is 

idealized by a rounded pulse displacement, given by [148]: 

t
tztz 0)71828.2()(

4

)71828.2(
)( 2

0

2

max00

 
                                                        (3.26) 

where z0max is the maximum amplitude, ω0=2π and γ is the pulse severity parameter, 

which directly relates to rate of change of the displacement. The above formulation is 

also applied to synthesize a negative displacement, idealizing a pothole input, by letting 

z0max<0, in order to study the asymmetry in the transient responses. Figure 3.7 illustrates 

the positive and negative normalized rounded pulse displacement excitations to the model 

for different severity parameters (γ =1, 3 and 5).  

 
   (a)       (b) 

Figure 3.7: The rounded pulse displacement input corresponding to different severity 

factors: (a) idealized bump excitation; and (b) idealized pothole excitation. 

 

The dynamic responses are evaluated for two different amplitudes of excitations, 

namely z0max=±0.05m and ±0.1m, in terms of sprung mass acceleration ratio (
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2

0/ zzs  ), 

the rattle space ratio ( max0/)( zzz us  ) and the dynamic tire force ratio (dynamic tire 

force/static tire force), considered to provide measures of passenger comfort, vertical 

packaging space availability and the road holding ability of the suspension, respectively. 
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The dynamic and kinematic responses are further evaluated by the peak responses, 

defined by: sprung-mass shock acceleration ratio, max0

2

0max
/ zzSSAR s   and peak 

relative displacement ratio, max0max
/ zzzSRDR us  ; and peak tire dynamic force ratio, 

TDFR. 

Figure 3.8 illustrates the sprung mass acceleration ratio responses of the conventional 

and the kineto-dynamic models subject to positive and negative rounded pulse excitations 

with a severity factor, γ=1. The conventionl model, as expected, responds symetrically to 

the positive and negative pulse inputs, while the peak response is near 0.8 under both 

excitation amplitudes. The results also suggest that the free oscillation response occurs at 

1.04 Hz. The kineto-dynamic model, however, shows asymmetric responses to bump and 

pothole inputs. Moreover, the peak acceleration ratio is slightly larger than that of the 

conventional model under positive pulse excitation. A larger deviation in the peak 

response, however, can be observed under the negative excitation.  The peak acceleration 

ratios under 0.05 and 0.1 m excitations are 0.95 and 1.05. These asymmetric variations in 

the response are attributable to suspension kinematics leading to asymmetric suspension 

and damping rates, and tire lateral force, which tend to show greatest influences during 

suspension compression. The results in Fig. 3.8 also demonstrate that the free oscillation 

of the kineto-dynamic model occurs at 1.12 Hz, while rate of decay of oscillation is 

higher than that of the conventional model.  

The rattle space ratio responses of both the models under the two rounded pulse 

inputs with γ=1, are presented in Fig. 3.9. Although the peak reponses of both the models 

under the positive displacement occur at about the same instant, the kineto-dynamic 

model response tends to lead that of the linear model under the negative excitation, which 
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is attributed to the higher sprung mass frequency of the kineto-dynamic model and 

variations in the damping rate.  

 
   (a)                                                                    (b) 

Figure 3.8: Sprung mass acceleration ratio ( max0

2

0/ zzs  ) response to: (a) idealized bump 

excitation (z0max=0.05 and 0.1 m); and (b) idealized pothole excitation (z0max=0.05 and 

0.1 m) 

 
   (a)                                                      (b) 

Figure 3.9: Rattle space ratio ( max0/)( zzz us  ) response to: (a) idealized bump excitation 

(z0max=0.05 and 0.1 m); and (b) idealized pothole excitation (z0max=0.05 and 0.1 m) 

 

Figure 3.10 presents the tire dynamic force ratio responses of both the models to 

rounded pulse inputs. The conventional model responds symmetrically to positive and 

negative inputs, as expected, with peak dynamic force ratio being 0.31 under 0.1m 

excitation. The tire dynamic force ratio response of the kineto-dynamic model, however, 

deviates considerably from that of the conventional model. The peak force ratio is 
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significantly higher for the bump input, particularly near the peak input displacement. 

The kineto-dynamic model, however, exhibits lower peak response under the negative 

input compared to the linear model. The asymmetric tire force response is attributed to 

suspension kinematics leading to large camber variations, particulary under large 

displacement inputs.  

 
          (a)       (b) 

Figure 3.10:  Tire dynamic force ratio response to: (a) idealized bump excitation 

(z0max=0.05 and 0.1 m); and (b) idealized pothole excitation (z0max=0.05 and 0.1 m) 

 

The peak responses of both the models to rounded pulse displacement excitations are 

further summarized in Table 3.2 in terms of SSAR, SRDR and TDFR. The results are 

presented for ±0.05m and ±0.1m inputs with severity factors of γ=1 and 5. The peak 

sprung mass acceleration and relative displacement responses of the linear model, as 

expected, are identical under negative and positive inputs, irrespective of the peak 

displacement, while the TDFR under 0.1 m excitation is twice that under 0.05 m input. 

The kineto-dynamic model, however, shows different peak responses under positive and 

negative excitations, while the differences are more significant for γ=1 compared to γ=5. 

The peak responses of the kineto-dynamic model to more severe pulse input (γ=5) are 

quite comparable to those of the linear model except for SSAR, which is higher for the 
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kineto-dynamic model. These suggest that the non-linearity and asymmetry in the 

responses due to suspension kinematics are more pronounced under the lower frequency 

excitation. Under the higher frequency excitation, the responses are predominantly 

influenced by the unsprung mass properties.  

Table 3.2: Comparisons of dynamic responses of the kineto-dynamic and linear models to 

positive (bump) and negative (pothole) rounded pulse displacement inputs of different 

peak magnitude (z0max=0.05 and 0.1m) and severity factors (γ=1 and 5). 

 

Performance 

Measure 

Pulse 

severity 

factor, γ 

Linear Model 

Bump/pothole 

Kineto-dynamic Model 

Bump Pothole Bump Pothole 

z0max = 

0.05m 

z0max = 

0.1m 

z0max = 0.05m 

 

z0max = 0.1m 

 

SSAR 
1 

5 

0.85 

3.51 

0.85 

3.51 

0.87 

4.03 

0.97 

4.02 

0.86 

4.00 

1.01 

4.02 

SRDR 
1 

5 

0.54 

0.91 

0.54 

0.91 

0.47 

0.88 

0.49 

0.88 

0.48 

0.89 

0.51 

0.88 

TDFR 
1 

5 

0.16 

0.85 

0.32 

1.70 

0.14 

0.85 

0.15 

0.85 

0.38 

1.70 

0.30 

1.70 

 

3.5 Suspension Synthesis With Constrained Lateral Space 

With an increasing demand for larger subframe space, particularly for hybrid vehicles 

for placing the batteries [3], a suspension synthesis that can provide greater lateral 

subframe space without compromising the dynamic performances would be desirable, 

although it may involve difficult design compromises. The suspension lateral space 

availability is directly related to the links geometry, which may be characterized by the 

coordinates of joints M, N, O and P. The proposed kineto-dynamic model could be 

effectively applied to identify optimal or near optimal joint coordinates with 

consideration of both the dynamic and kinematic suspension properties. This feature of 

the model is illustrated through a parametric sensitivity analysis.  
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3.5.1 Sensitivity Analysis  

The influence of variation in the lateral space on the selected kinematic and dynamic 

measures are evaluated under variations in the coordinates of joints M, N,  O and P. The 

variations in the y- coordinates are limited to ±5 cm about the nominal values, while the 

variation in the coordinates of P is limited only to -5 cm due to limited clearance between 

the wheel and joint P. The effects of variations in the joint coordinates are evaluated 

under 0.05 m positive and negative rounded pulse excitation (γ=1).   The influences of the 

joint coordinates on dynamic and kinematic responses are evaluated considering the 

lateral space as the constraint. In addition to the SSAR, SRDR and TDFR, the responses 

are also evaluated to determine the camber displacement ratio, ( max0max
/ zCDR  ) and 

the wheel-center lateral displacement ratio, ( max0max
/ zyWLDR u ), known to influence 

the directional behavior of a vehicle and the tire wear characteristics.  

Tables 3.3 and 3.4 show the sensitivity of the selected performance measures to the 

variation in the lateral coordinates of the joints under positive and negative pulse 

displacement inputs, respectively. The tables present the responses normalized by those 

of the nominal geometry suspension. The tables also include the sensitivity of the 

geometry factor Ψ to the variations in the joint coordinates normalized to that of the 

nominal geometry (Ψ=0.59). It can be observed that most of the responses are strongly 

influenced by the considered variations in the joint coordinates. Moreover, the effects are 

highly coupled. The results show conflicting effects of variations in the measures under 

the bump and pothole excitations, while the TDFR response appears to be least sensitive 

to such variations since it is mostly affected by the unsprung mass responses. For 

example, a positive change in the y- coordinate of point M yields slightly lower peak 
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sprung mass acceleration ratio under a pothole input, and slightly higher under the bump 

excitation. A similar conflicting effect of a positive change in the coordinate of N can be 

observed in WLDR, and that in the coordinate of O on the CDR and WLDR. A negative 

change in joint M can decrease the camber angle variation significantly without 

compromising other dynamic responses. The negative change in the joint M coordinate, 

however, increases the lateral space requirement of the suspension, while a positive 

change in the y- coordinate of joint O can reduce the suspension lateral space 

requirement. The geometry factor Ψ is predominantly influenced by the coordinates of 

lower control arm joints, particulary the joint P. Moreover, an increase in SSAR response 

is not always associated with an increase in the suspension rate. For example, a negative 

change in the y- coordinate of joint N results in a 1% decrease in the effective rates, while 

the SSAR increases by 6%. The corresponding CDR and WLDR increases substantially, 

by 18% and 14%, respectively. These suggest that tire lateral compliance also contributes 

to higher vertical acceleration response.  

The results in Tables 3.3 and 3.4 suggest that a positive change in the y- coordinate of 

joint O yields beneficial effects in SSAR under both inputs, and CDR and WLDR under 

the negative input. Similarly, a positive change in the coordinate of N also yields 

beneficial effects in SSAR and CDR under both inputs and WLDR under the negative 

input. The combined effect of positive changes in the coordinates of both the N and O 

joints are thus further evaluated in order to reduce the suspension lateral space 

requirements. The results obtained under pulse excitations along positive and negative 

directions, are also summarized in Tables 3.3 and 3.4.  
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Table 3.3: Influence of variations of the suspension joint coordinates on the normalized 

dynamic and kinematic responses of the kineto-dynamic model subject to positive 

rounded pulse displacement input (γ = 1; and z0max = 0.05 m).  

 

Coordinate Variation Ψ SSAR TDFR SRDR CDR WLDR 

Nominal 

My (-5 cm) 

My (+5 cm) 

Ny (-5 cm) 

Ny (+5 cm) 

Oy (-5 cm) 

 Oy (+5 cm) 

Py (-5 cm) 

Ny (+5 cm), Oy (+5 cm) 

Ny (+5 cm), Oy (+10 cm) 

1.00 

1.00 

0.99 

0.99 

1.00 

1.07 

0.92 

1.28 

0.92 

0.81 

1.00 

0.98 

1.01 

1.06 

0.95 

1.05 

0.93 

1.16 

0.89 

0.80 

1.00 

1.00 

1.00 

0.94 

1.06 

1.00 

1.00 

1.12 

1.06 

1.12 

1.00 

1.02 

0.98 

0.94 

1.04 

0.96 

1.06 

0.83 

1.02 

1.11 

1.00 

0.88 

1.24 

1.18 

0.91 

0.96 

1.08 

0.88 

1.00 

1.20 

1.00 

1.21 

1.21 

1.14 

1.29 

0.86 

1.43 

0.79 

1.71 

2.43 

 

Table 3.4: Influence of variations of the suspension joint coordinates on the normalized 

dynamic and kinematic responses of the kineto-dynamic model subject to negative 

rounded pulse displacement input (γ = 1; and z0max = -0.05 m).  

 

Coordinate Variation Ψ SSAR TDFR SRDR CDR WLDR 

Nominal 

My (-5 cm) 

My (+5 cm) 

Ny (-5 cm) 

Ny (+5 cm) 

Oy (-5 cm) 

 Oy (+5 cm) 

Py (-5 cm) 

Ny (+5 cm), Oy (+5 cm) 

Ny (+5 cm), Oy (+10 cm) 

1.00 

1.00 

0.99 

0.99 

1.00 

1.07 

0.92 

1.28 

0.92 

0.81 

1.00 

1.00 

0.99 

1.01 

0.98 

1.01 

0.98 

1.10 

0.96 

0.94 

1.00 

1.00 

1.00 

1.00 

1.07 

1.07 

0.93 

1.13 

1.00 

0.93 

1.00 

1.00 

0.96 

0.92 

1.02 

0.94 

1.04 

0.82 

1.10 

1.12 

1.00 

0.84 

1.24 

1.17 

0.88 

0.95 

1.07 

0.81 

0.94 

1.04 

1.00 

0.89 

1.26 

1.16 

0.89 

0.95 

1.11 

0.68 

1.05 

1.32 

 

The results suggest that positive variations in lateral coordinates of both the joints 

yield considerable reduction in SSAR under both inputs and CDR under the negative 

inputs, with only slight increase in the SRDR and WLDR. Owing to the benificial effects 

of these changes, the y- coordinate of joint O was increased by 10 cm in an attempt to 

further reduce the suspension lateral space requirement. The results show further 
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reduction in SSAR but significantly higher CDR and WLDR responses. The results thus 

suggest that a +5 cm change in the coordinate of N and O would offer a reasonably  good 

design compromise leading to total decrease of 12% in the lateral packaging. 

Figure 3.11 shows the variations in the camber angle and half wheel-track responses 

of the modified suspension geometry (5 cm change in the y-coordinates of joints O and 

N) together with those of the nominal suspension geometry to 0.05 m bump input. 

Although, the modified geometry yields only minimal changes in the camber angle 

variation, the peak wheel-track variation of the modified suspension is significantly 

higher than the nominal suspension.  

 
   (a)            (b)  

Figure 3.11: Comparison of (a) camber angle; and (b) half wheel-track variations of the 

nominal and modified suspension geometry (joints O and N displaced by +5 cm) under 

+0.05 m pulse excitation. 

 

The sensitivity analysis results suggest that variations in the joint coordinates would 

lead to compromises in both the kinematic and dynamic performance measures. 

Consequently, a suspension synthesis objective may be formulated to achieve minimal 

SSAR, SRDR, CDR and WLDR responses with a practical limit constraint on the lateral 

packaging space with joints coordinates being the design variables. The limit constraint 

on the lateral packaging space can be specified as  (Cy0 –Oy1)<σ1(Cy0-Oy0) and  (Cy0 –
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My1)< σ2(Cy0-My0),  where the subscripts ‘0’ and ‘1’ refer to the nominal and the 

identified design variables or the coordinates, and σ1 and σ2 would serve as constants 

defining the target reduction factor. The nominal wheel track, however, must be 

maintained in identification of most desirable joint coordinates. 

3.6 Influences of Joint Bushing Compliance   

The suspension joint bushings, which are generally made flexible, can influence the 

kinematic and dynamic responses of the vehicle in a significant manner. Conventional 

studies related to the synthesis of vehicle suspension, in general, ignore influences of the 

joint bushing compliance on the dynamic responses. Swayze et al. [149] studied the 

influence of joint bushings vertical compliance on the vertical dynamic responses of a 

vehicle employing a 5-DOF quarter car model. Studies related to the torsional stiffness of 

the flexible bushings in conjunction with vehicle models have been reported in a limited 

number of studies [52-54], while the majority of them employed multibody dynamic full 

vehicle models for the studies. Such vehicle models, however, require a large number of 

data related to vehicle which are generally available only at the final stages of vehicle 

design. This part of the study investigates the influences of nonlinearity due to joint 

bushing compliance on the kineto-dynamic responses of the quarter-car model 

comprising double wishbone type of suspension with compliant bushing joints between 

upper- and lower control arms and the chassis.  

The kineto-dynamic quarter-car model shown in Fig. 3.2 is modified to include 

flexible bushings at the joints between the upper- and lower control arms and the chassis 

(points M and O, repsectively) as illustrated in Fig. 3.12. The flexible bushings at the 

chassis joints are modeled as linear torsional springs which cause restoring forces due to 
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any rotation of the upper- or lower control arms about the joints M or O, respectively. 

Unlike the model considered in Fig. 3.2, this modified model also considers the 

nonlinearity due to wheel hop.  

 

Figure 3.12: Kineto-dynamic model comprising flexible bushings at the linkage-chassis 

joints 

 

3.6.1 Dynamic Formulations with Flexible Bushing 

In addition to the kinetic and dissipative energies considered in section 3.3 through 

Eqs (3.8) and (3.10), the total potential energy of the system are formulated considering 

the contributions due to the linear torsional springs representing the joint bushings as: 
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where KM and KO are the torsional spring rates (linear) of compliant bushings at joints M 

and O, respectively, while θM and θO denote upper- and lower control arm rotations, 

which upon small angle approximations can be obtained as: 
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The equations of motion derived from the potential energy equation given in Eq (3.27) in 

conjunction with the kinetic (T) and dissipative (D) energy equations given in Eqs (3.8) 

and (3.10) are written as:  
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where  fss, fsu, fds and fdu represent the suspension spring and damper forces acting on the 

sprung and the unsprung masses, respectively, such that:  
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In Eq (3.29) ftls and ftlu represent the wheel forces on sprung and unsprung masses due to 

the tire lateral compliance, while the ftsu and ftdu represent the wheel forces due to vertical 

stiffness and damping properties of the tire, acting on the unsprung mass. Considering the 

wheel hops (potential tire loss of contact with the ground), the forces ftlj (j = s, u), ftsu and 

ftdu are obtained as: 
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where δzt is the tire deflection obtained as zt-z0 and δst is the static tire deflection 

corresponding to static equilibrium, can be expressed as: 
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 In the above equation (3.31), 
tz is the time derivative of the vertical tire deflection Δzt.  
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3.6.2 Influences of Joint Bushings under Harmonic Inputs 

The combined effects of spring and damping rate variations, tire lateral compliance, 

suspension linkage constraints and the joints compliance are studied by comparing the 

dynamic responses of the kineto-dynamic quarter-car model with those of a conventional 

quarter-car model under harmonic and idealized bump excitations. In order to illustrate 

the influence of bushing compliance, the responses of the model are also compared with 

the responses of the same model assuming the joints are free (non-flexible) with no 

resistance to relative motion between the connecting links. The influences of the joints 

bushing flexibility on the kinematic responses are investigated by comparing the 

responses of the kineto-dynamic model with free and flexible joints. In addition to the 

model parameters considered in section 3.4, the torsional stiffness of bushings at both 

upper- and lower control arm joints (KM and KO) were taken as 80 Nm/rad [150] for the 

simulation. 

The dynamic responses of the kineto-dynamic model with free joints and flexible 

joints, and the conventional quarter-car model are evaluated under sinusoidal 

displacement at the tire ground interface. The dynamic responses are evaluated in terms 

of sprung-mass acceleration ratio, (
sz /ω0

2
z0max) and the rattle space ratio, (zs-zu)/z0max 

under 1.1 Hz harmonic excitation of 0.06 m peak amplitude (z0max=0.06 m).  

Figure 3.13 (a) and (b) illustrate the steady-state sprung mass acceleration ratio and 

rattle space ratio responses of the three models (conventional, kineto-dynamic with free 

and flexible joints) under the harmonic excitation. It can be observed from the figures 

that the conventional model shows symmetric variations in the acceleration and rattle 

space responses about the static equilibrium, as was discussed in section 2.4.1. The 
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kineto-dynamic model, however, exhibits asymmetric variations in the responses in 

jounce and rebound irrespective of type of joint considered, while, the magnitude of the 

asymmetry seems to be slightly larger when bushing flexibility is considered.  It can be 

seen from the Fig. 3.13(a) that the peak acceleration ratio responses attained from kineto-

dynamic model in the upward direction are near 2.06 and 2.18 with free joint and flexible 

joint models, respectively. The result suggests that the bushing torsional compliance 

could increase the sprung mass acceleration by approximately 5%, attributed to the 

bushing spring torque being transmitted to the sprung mass together with the suspension 

spring force. The Fig. 3.13(a) also shows that kineto-dynamic model attains considerably 

smaller peak downward acceleration as compared to that in upward direction. The 

asymmetry in the sprung mass acceleration response is attributed to suspension 

kinematics.  

 
(a)            (b) 

Figure 3.13: Comparisons of (a) sprung mass acceleration ratio ( max0

2

0/ zzs  ); and         

(b) rattle space ratio response of the kineto-dynamic model with free and flexible joints, 

and conventional model to harmonic excitations at 1.1 Hz and z0max=0.06 m. 

 

The rattle space ratio responses of the kineto-dynamic and the conventional model as 

illustrated in Fig. 3.13(b) show considerable deviation between the responses of the 
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causes less significant influence on the rattle space ratio responses. The kineto-dynamic 

model with free and flexible joints yields considerably lower peak rattle space response 

as compared to that of the conventional model. 

The rotation angles of the suspension control arms are evaluated under the harmonic 

input since the bushing torque generated at the linkage joints is proportional to the 

magnitude of control arm rotations (Eq (3.27)). Figures 3.14 (a) and (b) show the 

rotations of upper control arm (UCA) and lower control arm (LCA) of the kineto-

dynamic model with free and flexible joints in steady state condition under harmonic 

excitations. It can be seen that the upper control arm, in general, rotates more than the 

lower control arm, attributable to smaller length of the UCA compared to that of LCA. 

The figure further demonstrates that the kineto-dynamic model with flexible joints yield 

5% lower rotation of the UCA and LCA as compared to that of the model with free joints. 

The reduction in the control arm rotation response of the kineto-dynamic model with 

flexible joints bushing can be attributed to the torsional stiffness of joint bushings that 

offer resistance to the control arm rotation.  

The kinematic responses of the kineto-dynamic model with free and flexible joints are 

further evaluated in terms of variations in the camber angle and wheel track under the 

harmonic inputs, as illustrated Fig. 3.15. The results show asymmetric variations in both 

the responses during jounce and rebound. The peak responses of the model with free 

joints are 5% more than that of the model with flexible joints. For example, peak camber 

angle when free joints are considered is -2.42°, while the peak camber angle response 

with flexible joints is -2.29°. The results thus suggest that suspension joints with torsional 

compliance would decrease the variations in the camber angle and the wheel track. The 
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results in the Figs. 3.15 further suggest that peak magnitudes of camber angle and wheel 

track response occur at different time. 

 
(a)            (b) 

Figure 3.14: Comparisons of (a) upper  and (b) lower control arm rotations of the kineto-

dynamic model with free and flexible joints under harmonic excitations at 1.1 Hz and 

z0max=0.06m 

 
(a)            (b) 

Figure 3.15: Comparisons of (a) camber angle  and (b) half- wheel track variation 

responses of the kineto-dynamic model with free and flexible joints under harmonic 

excitations at 1.1Hz and z0max=0.06m 

3.6.3 Influences of Bushing Compliance under Idealized Bump Excitations 

The transient responses of the conventional and kineto-dynamic quarter-vehicle model 

with free and flexible bushings are evaluated under idealized bump excitations as given 
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Eq (3.26) is written in terms of vehicle forward velocity V considering the peak of the 

displacement input occurs at a distance of 0.4 m from the beginning of the bump or 

pothole, such that: 

00

5

4.0

2




VV
                                                                                                         (3.33) 

 Figure 3.16 illustrates the positive and negative normalized rounded pulse displacement 

excitations for different forward velocities (1.5, 4 and 8 m/s). The dynamic responses are 

evaluated for two different forward velocities (1.5 and 8 m/s) with amplitude of 

excitations z0max=±0.1 m. The responses are evaluated in terms of sprung mass 

acceleration ratio, (
sz /ω0

2
z0max) and tire force ratio (tire force/static force) responses. 

 
Figure 3.16: The rounded pulse displacement input corresponding to different forward 

velocities: (a) idealized bump excitation; and (b) idealized pothole excitation 

 

The sprung mass acceleration ratio responses of the kineto-dynamic model with free 

and flexible joints are compared with that of the conventional model with equivalent 
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1.5 m/s are shown in Figs. 3.17 (a) and (b). As discussed in section 3.4.2, the conventionl 
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ratio response at 0.95, and the free oscillation response occurs at 1.05 Hz. The peak 

acceleration ratio responses of the kineto-dynamic model are slightly larger than that of 

the conventional model under positive displacement pulse excitation (Fig. 3.17 (a)), 

irrespective of the joint conditions considered in this study. Under the pothole input, the 

second peak acceleration responses of the kineto-dynamic model exhibit a larger 

deviation from that of the conventional quarter car model with equivalent rates. The peak 

response of the kineto-dynamic model with flexible joints under the positive and negative 

displacement inputs are 1.1 and 1.18, respectively, while the model with free joints 

exhibits peak acceleration ratio responses as 1.05 and 1.1, respectively. The results thus 

suggest that the flexible joints increase the acceleration responses of the sprung mass by 

nearly 5%. The results in the Figs. 3.17 (a) and (b) also show that the free oscillation of 

the proposed kineto-dynamic model occurs at 1.11 and 1.18 Hz, respectively, when free 

and flexible joint conditions are considered in the model.  

Figures 3.18 (a) and (b) presents the tire force ratio response of the conventional and 

the kineto-dynamic model with free and flexible joints under rounded pulse positive and 

negative inputs at forward velocity of 1.5 m/s. The conventional model responds 

symmetrically to bump and pothole inputs with minimum force ratio at -0.36 and -0.35 

under bump and pothole excitations, respectively. The tire force ratio response of the 

kineto-dynamic model, however, deviates from that of the conventional model, which 

under the bump input are at -0.38 and -0.43 with free and flexible joints, respectively. 

The results suggest that the suspension joint bushing compliance could increase the tire 

force variations under input.  Under the pothole input, the first negative peak tire force is 
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insensitive to the type of joints, while the first positive, and second negative peak 

responses are different with free or flexible joints.  

  
(a)       (b) 

Figure 3.17: Comparisons of sprung mass acceleration ratio ( max0

2

0/ zzs  ) responses of 

the kineto-dynamic model with free and flexible joints, and conventional model to 

idealized: (a) bump; and (b) pothole excitation (forward velocity=1.5m/s and z0max=0.1m) 

 

  
(a)       (b) 

Figure 3.18: Comparisons of tire force ratio responses of the kineto-dynamic model with 

free and flexible joints, and conventional model to idealized: (a) bump; and (b) pothole 

excitation (forward velocity=1.5 m/s and z0max=0.1 m) 

 

The tire force responses of the kineto-dynamic model, in general, tend to lead that of 

conventional model irrespective of the type of joints considered. The responses of the 

kineto-dynamic model  with flexible joints lead that of the model with free joints under 

both bump and pothole excitations as seen in the Figs. 3.18 (a) and (b), although the 
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magnitude of the lead is very small. It can also be seen in the figure that the tire does not 

lose contact (tire force ratio yields magnitude greater than -1)  with the ground under this 

excitation. 

The tire force ratio responses of the kineto-dynamic model with free and flexible joints 

were also evaluated under idealised rounded pulse inputs at higher forward velocity of    

8 m/s and  z0max =±0.1 m (results not shown). It was observed that the tire loses contact 

with the ground under both positive and negative displacement inputs irrespective of the 

type of joints considered. At higher forward velocity, however, the responses were less 

influenced by the suspension kinematics or by the torsinal stiffness of the joint bushings. 

The tire force response seemed to be predominantly influenced  by the unsprung mass 

properties under such excitations.  

3.6.4 Bushing Stiffness Sensitivity Analysis 

The results in section 3.6.2 and 3.6.3 suggest that the suspension joints torsional 

compliance considered in this study exhibit considerable (to the order of 5%) influences 

on the kinematic and dynamic responses of the kineto-dynamic model. It was thus 

considered desirable to study the infuence of variation in the bushing stiffness from the 

nominal value on the dynamic responses. The study would be instrumental either in the 

synthesis of bushing stiffness or in the analysis of vehicle responses under joint bushings 

with deteorated conditions. It needs to be emphasized that elastomeric bushings tend to 

change the stiffness properties with time or when exposed to different working 

conditions. A sensitivity analysis is carried out by investigating the dynamic responses 

after varying the bushing stiffness individually by 50% from its nominal value in both 
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positive and negative senses. The sprung mass acceleration ratio responses are 

investigated under bump excitation at a forward velocity of 1.5 m/s.  

Figures 3.19 (a) and (b) show the sprung mass acceleration ratio response of the 

kineto-dynamic quarter-car model with 50% variations in the stiffness of the UCA and 

LCA  joint bushings under bump input. It can be seen that increase in the UCA bushing 

stiffness results in increase in the peak  acceleration response. The peaks of the 

acceleration ratio response are near 1.24 and 1.15  when the UCA bushing stiffness 

values are varied by 50% in positive and negative sense, respectively, from the nominal 

value. The results suggest that the peak acceleration responses vary nearly 5% and 2.5%,  

respectively from that with the model with nominal bushing stiffness. The figure further 

shows that the variation in the LCA bushing does not influence the acceleration ratio 

response under this excitation. This negligible influence of bushing stiffness of the LCA 

joint is attributable to the lower rotation angles of LCA.  

  
(a)       (b) 

Figure 3.19:  Comparison of sprung mass acceleration ratio response of the kineto-

dynamic model with variation in bushing stiffness of (a) joint M; and (b) joint O under 

idealized bump excitation (forward velocity=1.5 m/s and z0max=0.1 m) 

 

The sensitivity analysis results thus suggest that decreasing the torsional stiffness of 
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results also show that increment in the bushing stiffness of UCA joint could increase the 

sprung mass acceleration repsonses.  

3.7 Summary 

This chapter presented the study of couplings between the suspension kinematics, tire 

lateral compliance and joints flexibility with the vertical dynamics of the vehicle. A 

kineto-dynamic quarter car model is proposed in order to account for contributions due to 

kinematics of a double wishbone suspension to the dynamic responses, which may also 

facilitate suspension synthesis. The formulations for the in-plane 2-DOF kineto-dynamic 

model are used to obtain equivalent suspension and damping rates that may be employed 

in a conventional quarter car model for analysis of responses in an efficient manner. The 

consideration of the kineto-dynamics of the suspension revealed coupling between the 

vertical, lateral and camber responses, which was attributed to lateral compliance of the 

tire and suspension kinematics, and could not be obtained using the equivalent model.  

The dynamic responses to harmonic and idealized rounded pulse excitations, evaluated in 

terms of sprung mass vertical acceleration, suspension rattle-space and dynamic tire 

force, also showed asymmetric variations, while the degree of asymmetry was dependent 

on the amplitude and frequency of the inputs, and suspension joint coordinates.  

Both the kinematic and dynamic responses are strongly dependent upon the suspension  

joint coordinates. The variations in the joint coordinates however would involve difficult 

compromise between the kinematic and dynamic response measures.  The proposed 

model enable suspenson synthesis and analysis of couplings between the selected 

kinematic and dynamic responses, and lateral packaging space, which may be vital for 

future vehicle suspensions that must carry large volumes of fuel cells or batteries. This  
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study has revealed 5% variations in the kinematic and dynamic responses  of the 

suspension system due to the joint bushing flexibility. Torsional stiffness of the joint 

bushings were observed to be additive to the suspension spring stiffness causing an 

increased sprung mass acceleration. The sensitivity analysis results have shown that 

decreasing the torsional stiffness of the upper control arm has beneficial influence on the 

sprung mass acceleration, while, the influence of variation in the lower control arm joint 

bushing was negligible.  

The asymmetric responses of vehicle model due to suspension kinematics and tire 

lateral compliance may have to be taken into consideration in design of suspension 

dampers, which invariably exhibit asymmtric properties in compression and rebound. The 

coupled effects of damper asymmetry and the asymmetry in suspension kinematics on the 

dynamic and kinematic responses of the suspension needs to be studied in order to 

synthesize a good asymmetric suspension damper. Kineto-dynamic model, as proposed in 

this chapter, is necessary for such studies and for optimal synthesis of automotive 

dampers.  
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CHAPTER 4 

KINETO-DYNAMIC ANALYSIS WITH AN ASYMMETRIC 

DAMPER, AND OPTIMAL DAMPER SYNTHESIS 

4.1. Introduction 

Automotive suspensions invariably employ asymmetric dampers, which exhibit higher 

damping coefficient in rebound than in compression. It has been however pointed that the 

reasons for such asymmetry have not been explicitly quantified [117], which is most 

likely attributed to highly complex dependence of different performance measures on the 

damping asymmetry. Furthermore, the effects of damping asymmetry greatly depend 

upon the nature of excitation and suspension responses. The suspension damping 

properties and their effects on various vehicle performance measures have been 

extensively investigated [107-111]. The reported studies have invariably ignored the 

asymmetry in damping, and the results thus do not permit the design guidance for 

damping asymmetry, which has been limited to a general rule of thumb suggesting that a 

rebound to compression damping asymmetry ratio in the order of 2 or 3 would reduce the 

magnitude of the force transmitted to the sprung mass while negotiating a bump [1, 2]. 

Only a few studies, however, have attempted to quantify the effects of asymmetric 

damping on the vehicle responses to transient excitations idealizing bumps or potholes 

[91, 117, 118]. 

Apart from the asymmetry in suspension damping, the suspension kinematics and tire 

lateral compliance also contribute to the asymmetry in the responses as shown in Chapter 

3. The ride dynamic response of a vehicle would thus be expected to depend upon the 

coupled effects of damper, suspension and tire compliance asymmetry. On the other 

hand, the suspension kinematic responses are affected by the joint coordinates in a 



129 

 

complex manner, which are generally selected to achieve a compromise among variations 

in roll and bump camber, toe angles, and wheel track and wheelbase [4]. The asymmetry 

in the kinematic responses during upward and downward wheel motions, particularly in 

wheel camber and track variations can be seen in the Figs. 2.5, 2.6 and 2.11. The 

damping asymmetry, which affects the dynamic responses of the vehicle in a significant 

manner, may also affect the kinematics of the suspension.  

Synthesis of optimal damper characteristics in compression and rebound has been a 

challenging task, which is mostly attributed to couplings among the different 

performance measures together with complex dependence on various parameters of an 

asymmetric multi-stage damper. Many studies have attempted to identify optimal damper 

parameters in order to achieve enhanced compromises among the ride, suspension 

deflection and road holding measures [92, 126, 127]. Although these studies have yielded 

important guidelines for the suspension damper synthesis, the findings were generally 

based on considerations of limited performance measures, while the damping asymmetry 

had been ignored in most of the studies. The synthesis of a suspension damper may 

involve consideration of the kinematic responses apart from the widely known 

complexities involving design compromises to satisfy the conflicting ride comfort, rattle 

space and road-holding measures. Furthermore, the study of influences of the damper 

asymmetry on the dynamic and kinematic responses as a function of the vehicle forward 

speed under different road excitations is necessary. 

In this chapter of the dissertation, the influences of damper asymmetry coupled with 

kinematics of a double wishbone suspension on the kinematic and dynamic responses are 

investigated using a kineto-dynamic quarter-car model of the vehicle. The effects of 
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damping asymmetry on the dynamic and kinematic responses are evaluated under 

harmonic and idealized bump and pothole excitations. The conflicting design 

requirements under bump and pothole type of excitations are initially analyzed. An 

optimization problem is formulated comprising peak sprung mass acceleration with 

constraint on the suspension travel space, and solved to seek design guidance on damper 

asymmetry that would yield an acceptable compromise among the performance measures 

under the idealized bump and pothole excitations considered in the study. The dynamic 

and kinematic responses of the model with single- and two-stage asymmetric dampers are 

further evaluated under random road excitations over a range of forward velocities. 

Finally, an optimal synthesis of a two-stage asymmetric damper to yield compromise 

between the conflicting performance measures under random road inputs are presented in 

this chapter.  

4.2 Kineto-dynamic Quarter-car Model with Asymmetric Damper 

The equations of motion of the kineto-dynamic quarter-car model, as shown in the Fig. 

3.2, in the generalized coordinates, zs and zu, are written considering the forces developed 

by the suspension spring, damping and the tire, as given in Eq (3.29). Among the various 

force components of Eq (3.29), the spring forces fss and fsu, and the tire forces ftls,,  ftlu,  ftsu 

and ftdu are obtained as explained in Eqs (3.30) to (3.32) of Section 3.6.1, while the 

damper forces, fdj (j=s, u) are obtained as explained in the following section. 

4.2.1 Asymmetric Damper Models 

Suspension damper with asymmetric damping properties in compression and rebound 

is considered in the kineto-dynamic vehicle model. The force-velocity characteristics of 
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the damper are characterized by piecewise linear functions in both compression and 

rebound. Two different types of piecewise linear force-velocity functions are considered 

for the relative analyses; namely, single-stage (bilinear) and two-stage asymmetric 

damper as shown in Fig. 4.1. The figure also shows the linear equivalent characteristics 

of the bilinear damper (Fig. 4.1 (a)). 

      

     (a)                     (b) 

Figure 4.1: Piecewise linear force-velocity characteristics of: (a) single-stage asymmetric 

(bilinear) and the linear equivalent damper; and (b) two-stage asymmetric damper 

 

Bilinear Damper 

The force-velocity characteristics of the bilinear damper model as shown in Fig. 4.1(a) 

is expressed in terms of compression damping coefficient, Cc and rebound damping 

coefficient, Cr, while, the rebound damping coefficient is related to the compression 

damping coefficient by a damper asymmetry ratio ρ, such that: Cr=ρCc. The compression 

damping coefficient, Cc of the bilinear damper can also be expressed in terms of the 

compression mode damping ratio δc and the critical damping coefficient Ccrit as 

Cc=δcCcrit. The compression and rebound damping forces acting on the sprung and 
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unsprung masses due to the bilinear damper, denoted by fdj-c and fdj-r (j=s, u), respectively, 

can be obtained as: 
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where l is the time-derivative of the strut deflection as given in Eq (3.11), which is a 

complex function of the suspension joint coordinates and linkage lengths. The linear 

equivalent damping coefficient Ceqv is realized assuming dissipated energy similarity 

between the linear and bilinear asymmetric dampers, such that [88, 117]: 

Ceqv = Cc (1+ρ)/2                                                                                                     (4.2) 

The damping force due to the equivalent linear damper on sprung and unsprung masses, 

fdj are estimated by the relation, lCf eqvdj

 

 Two-Stage Asymmetric Damper:
 

For the two-stage damper model shown in Fig. 4.1(b), the low-speed rebound damping 

coefficient Cr is related to the low-speed compression damping coefficient Cc as in the 

case of the bilinear damper.  The high-speed rebound and compression damping 

coefficients are related to the respective low speed damping coefficients through the 

reduction factors, λr and λc, respectively. The transition from low- to high-speed damping 

in compression and rebound is assumed to occur at velocities, αc and αr, respectively, 

which are also referred to as the damper saturation limits in compression and rebound, 

beyond which the damping forces are determined by the respective high velocity 

damping coefficients. Such a piecewise linear damper model incorporating low- and 
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high-speed behaviors in both the compression and rebound has been proven to yield 

sufficiently accurate estimation of the dynamic responses of the vehicle under all driving 

manoeuvres [122]. The compression and rebound forces, fdj-c and fdj-r, due to the two-

stage asymmetric damper can be obtained as:  
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According to Eqs (4.1) and (4.3), the damping force acting on the sprung and unsprung 

masses is asymmetric about the equilibrium position of the system, when the asymmetry 

factor ρ is non-unity. Moreover, these equations show that the damping forces acting on 

the sprung and unsprung masses are complex functions of kinematics of suspension apart 

from the damper asymmetry and reduction factors. It should also be noted that the low-

speed compression and rebound damping coefficients of the two-stage damper are equal 

to that of bilinear damper, while, consideration of high-speed reduction factors and 

saturation limits in compression and in rebound reduces the effective damping of the two-

stage damper. Figure 4.2 compares the force velocity characteristics of bilinear, linear 

equivalent and two-stage damper models considered in this study.  

4.2.2 Analysis of Damping Force Asymmetry 

 The nonlinear damping force due to a single-stage asymmetric damper has been 

expressed as a combination of a symmetric force component, arising from ρ=1, and a 
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discontinuous force component attributed to deviation of the asymmetry ratio from the 

unity value, such that [120]: 

  

Figure 4.2: Comparisons of force velocity characteristics of the two-stage and bilinear 

asymmetric and equivalent linear damper 
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where fds-c is the compression force, considered as the symmetric component and fdis is the 

discontinuous force component that is considered to be acting during rebound only. The 

nonlinear damping force of a two-stage asymmetric damper considered in this study can 

also be expressed in terms of a symmetric force component arising during strut 

compression, and a discontinuous force component, which is related to the asymmetry 

ratio and the saturation limits of the damper. The magnitude of the discontinuous force 

component fdis, is thus defined for four different operating conditions related to the strut 

velocity: (i) the strut velocity is within the low-speed range in both compression ( l >αc) 

and rebound ( l <αr); (ii) low-speed in compression  ( l >αc) with high-speed in rebound 

( l >αr); (iii) high-speed in compression ( l <αc) with low-speed in rebound ( l <αr); and 
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(iv) high-speed in both compression ( l <αc) and rebound ( l >αr). The discontinuous 

force components corresponding to these four strut velocity ranges can be expressed as:  
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A simplified expression for the discontinuous force due to asymmetric damping can be 

achieved by considering the compression and rebound reduction factors, λc and λr as unity 

(λc=λr=1), such that: 
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Equation (4.6) represents a simple single-stage asymmetric (bilinear) damping property. 

The magnitude of the discontinuous force due to damper asymmetry may be directly 

related to the deviations in the steady-state mean position of the sprung mass from its 

static equilibrium, which has been demonstrated in a few studies [88, 89] in terms of 

mean shift or dynamic drift. An estimate of this mean shift δmean, in the sprung mass 

position under a harmonic excitation may be obtained directly from the discontinuous 

force magnitude and the suspension spring stiffness as [112]: 

s

dis
mean

K

f

2
                                                                                            (4.7)  



136 

 

From Eqs (4.5) and (4.6), it is observed that the magnitude of fdis is dependent upon the 

damping asymmetry ratio ρ, the reduction factors λr and λc, and the saturation limits, αc 

and αr.  

4.3 Responses of Kineto-dynamic Model with Asymmetric Damper to 

Harmonic Inputs 

 

The kineto-dynamic model comprising asymmetric damper is analyzed under 

harmonic excitations to study the influence of damping asymmetry on the kinematic and 

dynamic responses. In addition to the kineto-dynamic quarter-car model parameters 

considered in Table 3.1 of Chapter 3, the nominal damping properties assumed for 

simulation are Cc=2386 Ns/m and ρ=2 for a bilinear damper, and λc= λr=0.5, and               

-αc=αr=0.2 m/s for a two-stage asymmetric damper. The nominal coordinates of the 

suspension linkage joints M, N, O, P, C, A and B, as shown in Fig. 3.2, are taken in 

meters as: M(0.430, 0.818), N(0.644, 0.852), O(0.365, 0.360), P(0.743, 0.347), C(0.787, 

0.452), A(0.660, 0.349) and B(0.615, 0.920), respectively. It can be recalled that the 

kinematic response characteristics of the chosen suspension under wheel vertical 

excitation with respect to chassis are such that the wheel exhibits a negative camber 

during jounce travel and a positive wheel camber during the rebound motion (Fig. 2.11).   

The kineto-dynamic models with equivalent linear and bilinear dampers are initially 

analyzed under a 0.05 m amplitude harmonic excitation at a frequency of 1.2 Hz. The 

responses are evaluated in terms of the sprung mass displacement zs, the unsprung mass 

displacement relative to the sprung mass zu-zs, and variations in the camber angle and the 

wheel track.  The influence of damping asymmetry on the kinematic and dynamic 

responses is evaluated by comparing the responses of the kineto-dynamic model with 
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asymmetric and equivalent linear damping. The simulations are performed for two types 

of asymmetry: (i) Cr=2Cc (ρ=2); and (ii) Cr=0.5Cc (ρ=0.5). The compression damping 

coefficients corresponding to the selected asymmetry ratios were chosen to achieve 

constant value of the equivalent linear damping rate, using Eq (4.2). For the latter case, 

ρ=0.5, Cc was thus chosen twice that for the first case, ρ=2.  

The sprung mass displacement and relative displacement responses of the kineto-

dynamic model with linear (Eq 4.2) and bilinear (Eq 4.1) dampers (ρ=2 and 0.5) under 

the harmonic excitation are demonstrated in Fig. 4.3. The linear damper model yields 

peak sprung mass displacements of 0.096 and -0.097 m. The slight asymmetry in the 

response is attributable to the suspension kinematics and coupling between the tire lateral 

compliance and the vertical dynamics. The positive and negative peak displacements of 

the sprung mass with the bilinear damper (0.082 and -0.108 m for ρ=2, and 0.11 and -

0.084 m for ρ=0.5), however, differ considerably. These cause the mean position of the 

sprung mass to shift from the equilibrium position by -13 mm for ρ=2, and by +13 mm 

for ρ=0.5. Thus, a larger rebound to compression ratio in damping causes a negative 

(downward) shift in the sprung mass mean position, while a larger compression to 

rebound ratio results in an upward shift in the mean position.  

The relative displacement response peaks of the kineto-dynamic model with linear 

damper approach 0.076 and -0.075 m, in the positive and negative directions, 

respectively, while those of bilinear dampers are 0.088 and -0.062 m for ρ=2, and 0.064 

and -0.089 m for ρ=0.5. The total suspension stroke of the model with linear and bilinear 

dampers is quite comparable, which suggests negligible effect of damper asymmetry on 

the steady-state suspension travel response.  The bilinear damper, however, yields a shift 
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in the mean relative position of the unsprung mass with respect to the sprung mass in the 

order of 13 mm for ρ=2, and -12.5 mm for ρ=0.5, as seen in Fig. 4.3 (b). The magnitudes 

of shifts are also quite comparable with those observed in the sprung mass displacement 

response in Fig. 4.3 (a), which suggests relatively small effect of damper asymmetry on 

the unsprung mass displacement response.  

    
(a)                                                                            (b) 

Figure 4.3: Comparisons of steady state (a) sprung mass displacement and (b) relative 

displacement responses of the model with equivalent linear and bilinear asymmetric 

dampers under a harmonic excitation, z0(t)=0.05 sin (2.4πt) 

 

The asymmetry in the suspension deflection response (zu-zs) of the bilinear damper, 

shown in Fig. 4.3 (b), also causes greater asymmetric variations in the kinematic 

responses such as the camber angle and the wheel track that are related to the suspension 

stroke. Figure 4.4 illustrates the camber angle and wheel track variation responses of the 

model with linear and bilinear damper models under the given harmonic excitation. 

Although total suspension strokes of the kineto-dynamic model is not influenced by the 

damper asymmetry, the peak camber angle response seems to be greatly affected by the 

damping asymmetry.  
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The wheel camber of the model with equivalent linear damper varies from -2.2° in 

compression to 1.04° during rebound, while the bilinear damper with higher rebound to 

compression ratio (ρ=2) yields camber variations from -2.68° in compression to 0.94° in 

rebound, as seen in Fig. 5(a). The damper model with ρ=0.5 causes the camber angle to 

vary from -1.76° in compression to 1.11° in rebound.  While the model with linear 

damping exhibits considerable asymmetry in camber variation attributed to the 

suspension kinematics, a higher rebound damping (ρ=2) increases the peak wheel camber 

variation by 0.48°
 
and a lower rebound damping (ρ=0.5) reduces camber by 0.46°. This 

additional asymmetric variation in the wheel camber is attributed to the mean shift in the 

unsprung mass relative position with respect to that of the chassis. Studies have shown 

that a camber angle of 1°
 
could cause a vehicle tire to generate 80 N lateral force [4]. A 

variation in the camber angle in the order of 0.48°
 
may thus lead to change in the lateral 

force of each tire in the order of 40 N, which may influence the handling dynamics of the 

vehicle, in addition to causing accelerated tire wear.  

The wheel camber variations together with the wheel lateral displacement also 

instigate asymmetric variations in the vehicle track, as seen in Fig. 4.4 (b). It can be seen 

that the peak wheel track variation during rebound approaches -11 mm for the equivalent 

linear damper, and -14 and -18 mm, respectively, for the bilinear dampers with 

asymmetry ratios of 2 and 0.5, during rebound. The peak wheel track variation during the 

compression is nearly 4.5 mm irrespective of the type of damper employed. Although a 

higher rebound to compression asymmetry ratio yields greater camber angle variation, the 

wheel track variation is found to decrease due to the inward motion of the wheel centre 

during wheel vertical travel.  
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Figure 4.4: Comparisons of variations in steady-state: (a) camber angle; and (b) wheel 

track responses to a harmonic excitation at 1.2 Hz 

 

The symmetric and discontinuous components of the damping force developed by the 

bilinear damper model, computed from Eq (4.6), are illustrated in Fig. 4.5 considering 

ρ=2, together with the equivalent linear damper force. The symmetric force component of 

the bilinear damper is considerably smaller than the linear damper force, while the peak 

magnitude of the discontinuous force (938.4 N) is identical to that of the peak symmetric 

force of the bilinear damper. For the nominal suspension spring rate, this would yield a 

0.0125 m shift in the sprung mass mean position. 

The results in Figs. 4.3 to 4.5 and the corresponding observations could not be 

generalized since these have been evaluated under a harmonic excitation in the vicinity of 

the sprung mass natural frequency. The results, however, provide important insight to the 

relation between the kinematic responses and the damper asymmetry under steady state 

conditions. The changes in axle lateral force attributed to the camber angle variations, 

presented in the Fig. 4.4 (a), may diminish when both wheels of the axle undergo similar 

camber angle variation. The presence of a bump excitation to only one wheel of the axle, 
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however, could induce a large bump camber change, leading to considerable variation in 

the tire lateral force, and slip angles. Furthermore, the damper asymmetry could also 

influence other suspension kinematic responses including the bump steer and wheel base 

variation. An investigation of the influences of damping asymmetry on such responses, 

however, would necessitate formulations and analyses of a three-dimensional model.   

 

Figure 4.5: (a) Discontinuous force component of the bilinear damper; and (b) 

comparison of the symmetric force due to bilinear damper with the equivalent linear 

damping force under a harmonic excitation, z0(t)=0.05 sin (2.4πt). 

 

4.4 Responses of Asymmetric Damper to Idealized Bump and Pothole 

Inputs 

 

Transient responses of the kineto-dynamic model with asymmetric damper are 

evaluated under rounded pulse displacement inputs, defined in Eq (3.26) with the pulse 

severity parameter as given in Eq (3.33). The peak displacement input is assumed to 

occur at a distance of 0.4 m from the beginning of the bump or pothole input of peak 

magnitude, z0max=30 mm. This bump and pothole profiles are selected to ensure that the 

total circumference of the wheel under consideration maintains contact with the ground 
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during the forward motion, although a loss of tire-road contact may occur at higher 

speeds. The responses to pothole inputs described by a negative rectangular pulse input 

considered in a few studies [92, 118] may result in greater loss of tire-road contact due to 

abrupt changes of the profile.  

4.4.1 Influences of Bilinear Damper Asymmetry  

The responses of the kineto-dynamic model with bilinear damper are evaluated in 

terms of the sprung mass acceleration; the ratio of unsprung mass relative displacement 

to the maximum displacement input (rattle space ratio), (zu-zs)/z0max; and the dynamic tire 

force ratio, the ratio of tire force variation to the static tire force. The influences of the 

damper asymmetry on the dynamic responses are investigated by comparing the 

responses of the kineto-dynamic model comprising bilinear dampers (ρ=2 and 0.5) with 

those of the linear damper model. Figure 4.6 (a) compares the sprung mass acceleration 

response of the models with equivalent linear and bilinear asymmetric dampers under the 

idealized bump and pothole inputs. The results suggest that the suspension with greater 

rebound to compression damping asymmetry ratio (lower compression damping) yields a 

significant reduction in the first response peak under a bump excitation. This result is in 

agreement with that reported in [119], although the corresponding negative acceleration 

peak can also be observed, which was not reported in the same study.  

Under the idealized pothole input, the results show an increase in the first peak 

response and a decrease in the subsequent peaks in the acceleration response. Lower 

rebound to compression asymmetry ratio (ρ=0.5), on the other hand, yields lower 

acceleration peak to a pothole input and higher peak under the bump input. Considering 

that the human ride comfort is directly related to the sprung mass vertical acceleration, 
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the results show that the choice of ρ=2 would not be appropriate under a pothole 

excitation. This contradicts the earlier studies which suggest the use of dampers with 

rebound to compression ratio in the order of 2 [1] or 3 [2].  

 
(a)                                                             (b) 

Figure 4.6: Comparisons of: (a) sprung mass acceleration; and (b) relative displacement 

ratio responses of the model with linear and bilinear dampers under idealized bump and 

pothole inputs 

 

The figures also show that the magnitudes of the peak acceleration responses of the 

model with equivalent linear damper to bump and pothole excitations are slightly 

different due to contributions of the suspension kinematics and coupling of the tire lateral 

compliance with the vertical dynamics. Furthermore, the peak-to-peak accelerations due 

to the linear and bilinear damping rates are approximately the same. The damper with 

higher rebound to compression ratio (ρ=2) exhibits larger peak rattle space ratio response 

(near 1.1) compared to that of the damper with ρ=0.5 (near 0.8) under the bump 

excitation, while an opposite effect can be observed under the pothole excitation, as seen 

in Fig. 4.6 (b). The linear damper, on the other hand, yields a peak response ratio of 0.95. 

The larger peak suspension travel response of the model with the asymmetric damper 

also indicates occurrence of a larger bump camber response. Although the increment in 
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the camber angle under this excitation (not shown) was only 0.1°,
 
a larger bump camber 

would be expected under a larger displacement input. 

The variations in the dynamic tire force ratio responses of the model with linear and 

bilinear dampers are compared in Fig. 4.7 (a) corresponding to a forward speed of         

10 m/s. At this speed, the displacement input approaches its peak value at 0.04 s. The 

dynamic tire force ratio approaches its peak value prior to the displacement input peak. 

The peak tire force ratio responses of the model with different dampers, however, are 

quite comparable. The minimum tire force ratio responses approach -0.45, -0.52 and        

-0.41 under the bump input, and -0.71, -0.73 and -0.69 under the pothole input, 

respectively, with linear, bilinear ρ=2 and bilinear ρ=0.5 damper models. The damper 

with higher rebound to compression ratio thus shows greater variations in the tire force 

under bump excitation, which could be related to relatively lower road holding property 

and greater wheel hop tendency. This is quite evident from the responses attained under 

the 50 mm excitation at a speed of 12 m/s, as seen in Fig. 4.7 (b). The results show that 

the bilinear damper with ρ=2 results in loss of tire-road contact under the bump input, 

which is not evident with the linear and bilinear (ρ=0.5) dampers. The pothole excitation, 

however, yields loss of tire contact, irrespective of the damper model employed. This is 

attributed to substantial extension of the tire spring prior to peak input displacement.  

A further analysis of the tire and suspension deflection responses revealed that both 

the tire and suspension springs initially undergo compression under the bump input, and 

the tire spring goes into extension prior to the suspension spring. The peak compression 

of the suspension spring and peak extension of the tire spring occur simultaneously which 

is also evident from the rattle space and tire force responses shown in Figs. 4.6 (b) and 
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4.7 (a). The bilinear damper with larger rebound to compression asymmetry ratio yields 

greater peak suspension compression and larger tire spring extension. Higher rebound to 

compression ratio in damping causes larger extension of the tire spring as compared to 

that with the linear damper, thus causing reduction in the tire force. Similarly, higher 

compression to rebound ratio in damping causes increment in the minimum tire force 

ratio response under the bump input.  

 

         (a)                                  (b) 

Figure 4.7: Comparisons of the dynamic tire force ratio responses of the model with 

linear and bilinear dampers under idealized bump and pothole inputs: (a) z0max=30 mm, 

V=10 m/s; and (b) z0max=50 mm, V=12 m/s 

 

The wheel hop tendency of the kineto-dynamic model with the bilinear and equivalent 

linear models are further investigated under 50 mm peak displacement excitations and 

various forward speeds in the 4 to 16 m/s range. The response is evaluated in terms of the 

normalized wheel lift-off, defined as the ratio of the wheel lift-off duration to a reference 

time taken as 5 times the time corresponding to the peak input displacement. The results, 

presented in Fig. 4.8, clearly show that a higher rebound to compression damping 

asymmetry ratio yields higher normalized tire lift-off duration compared to the linear or 

the bilinear damper (ρ=0.5), particularly under the bump input. Under the bump input, the 

kineto-dynamic model with bilinear damper (ρ=2) exhibits loss of tire-road contact at 
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speeds above 10 m/s, while the linear damper exhibits loss of tire-road contact at speeds 

above 12 m/s. The lower rebound to compression damping asymmetry ratio (ρ=0.5), 

however, retains the tire contact with the road in the entire selected speed range. 

 

Figure 4.8: Comparison of normalized wheel lift-off responses of the model with linear 

and bilinear dampers under idealized bump and pothole input at different vehicle forward 

velocities 

 

The wheel lift-off under a pothole input occurs at a significantly lower velocity, 

irrespective of the damper used. This is attributed to nearly in-phase suspension spring 

and tire extension. The bilinear damper with ρ=2 and linear damper exhibits wheel lift-off 

at speeds as low as 6 m/s. Under both the bump and pothole excitations, in general, the 

wheel lift-off duration is larger with a bilinear damper with higher rebound to 

compression asymmetry ratio than that with a linear damper or with a bilinear damper 

with ρ=0.5. The results in the Figs. 4.7 and 4.8 suggest that the suspension with an 

equivalent linear damping would yield better road holding performance under both the 

bump and pothole excitations as compared to the bilinear asymmetric dampers. 
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4.4.2 Influences of Two-stage Asymmetric Damper 

The results presented in Figs. 4.6 to 4.8 are attained for single-stage asymmetric 

dampers, where the compression and rebound damping coefficients remain constant, 

irrespective of the damper velocity (λr and λc=1). A sensitivity analysis is conducted to 

further investigate the influences of the two-stage asymmetric damper parameters, 

namely, the asymmetry ratio, ρ, reduction factors, λr and λc, and damper saturation limits, 

αr and αc on the dynamic responses.  The responses to idealized bump and pothole 

excitations with z0max=30 mm (such that the tires do not lose contact with the ground) are 

evaluated in terms of: i) first and second peaks in the sprung mass acceleration, denoted 

as 
1-p)( sz and 2-p)( sz ; ii) root mean square (rms) sprung mass acceleration, denoted as 

RMSsz ; iii) the first peak in suspension travel ratio (the ratio of the unsprung mass relative 

displecement with respect to the sprung mass and the peak displacement input), denoted 

as RDRp; iv) the peak-to-peak suspension travel ratio, denoted as RDRpp; and v) the tire 

dynamic force ratio defined as ratio of rms tire dynamic load to the static tire load, and 

denoted as TFR. The rms values of the acceleration and tire force fluctuation are 

evaluated over a time duration of five times the time corresponding to the peak input 

displacement. This time duration is considered to be sufficient for the transients to settle 

down or to reduce to a very small magnitude.  

Sensitivity analysis is performed by considering variations in the asymmetric damper 

parameters, namely: 50, 150 and 200% of the nominal asymmetry ratio of 2 (ρ=1, 3 and 

4), and 50 and 200% of the nominal reduction factors of 0.5 (λr, λc=0.25 and 1) and the 

nominal saturation limits of 0.2 m/s (αr=0.1 and 0.4; αc=-0.1 and -0.4 m/s). The 

sensitivity studies are conducted considering variations in only one of the parameters, 
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while all the other parameters are held at their respective nominal values. Tables 1 and 2 

illustrate the results of the sensitivity analysis attained under the bump and pothole 

inputs, respectively. The tables also present the responses of the model with nominal 

damper parameters (ρ=2; λr =λc =0.5; αr=0.2 m/s; and αc=-0.2 m/s). It should be noted 

that the low speed damping coefficient was selected as identical to that considered for the 

bilinear damper (Cc=2386 Ns/m). 

A comparison of the nominal parameter model results with those attained with the 

bilinear damper in Fig. 4.6 (a) suggests that reduction or saturation in the damping force 

yields relatively lower first and second peaks in sprung mass acceleration responses 

under both the bump and pothole excitations. The magnitudes of the first and second 

peaks in the sprung mass acceleration response of the model with bilinear damper (ρ=2 

and λr=λc=1) under a bump input were obtained as 4.95 and -4.79 m/s
2
, respectively, 

which reduced to 3.99 and -3.88 m/s
2
 with the two- stage nominal damper. The saturation 

limits in the damping force (λr=λc=0.5) resulted in even greater reductions in the peak 

acceleration under the pothole excitation (from -6.69 and 3.08 m/s
2
 with the bilinear 

damper to -5.51 and 2.32 m/s
2 

with the two- stage asymmetric damper), as seen in Fig. 

4.3 (a) and Tables 4.1 and 4.2. The results suggest that lower high-speed damping or 

damping force saturation would be preferable for enhancement of ride comfort while 

negotiating a bump or a pothole. Fukushima et al. [119] suggested lighter damping on the 

basis of results attained with a bilinear asymmetric damper, although the damping force 

saturation could not be considered in their study. A lower value of the high-strut velocity 

damping (λc=0.25), however, yields slightly higher first peak rattle space ratio response 

(RDRp from 1.1 to 1.17) under the bump input, while its effect on the TFR was negligible.  
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The results in Table 4.1 suggest that an increment in ρ or in λr yields higher negative 

peak acceleration responses under both the positive (bump) and negative (pothole) 

displacement inputs. This is attributable to higher rebound damping force compared to 

the compression damping. The effect on RDRp during compression under the bump input 

is thus very small, while the RDRp during rebound decreases considerably resulting in 

lower RDRpp value (Table 4.1). Higher rebound damping also yields lower RDRp (during 

extension) under the pothole excitation, while the effects on RDRpp are very small (Table 

4.2). Increments in both ρ and λr also cause larger TFR under both the inputs due to 

greater tire deflection as it was observed from Fig. 4.7. 

Relaxing the damping force saturation in the compression mode (λc=1)  reduces the 

first peak in suspension travel (RDRp) considerably under the bump excitation, while the 

effect on the RDRp under the negative input is not observed. This is attributable to higher 

compression mode damping at higher strut velocity, which results in relatively lower 

negative peak in sprung mass peak acceleration, 
2-p)( sz , and the TFR under the bump 

input, while an opposite trend in 
2-p)( sz  is observed under the negative displacement 

input. The higher high- speed compression damping, however, yields considerable 

increase in the magnitude of the 
1-p)( sz  under the bump input, while the effect is 

negligible under the pothole input. The rms acceleration also tends to be higher under 

both inputs, which confirms that a lower high- speed compression damping is desirable in 

view of ride comfort performance. A lower high- speed rebound damping (λr=0.25) is 

also beneficial in view of the rms acceleration responses to both inputs. The lower high- 

speed damping coefficients (λr=λc=0.25), however, would yield reduced road holding 

performance, as observed from the resulting increments in the TFR.  
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Table 4.1: Comparisons of the kineto-dynamic quarter car model responses to idealized 

bump excitation with variations in the asymmetric damper parameters. 

 

Parameter 
1-p)( sz
 

(m/s
2
)
 

2-p)( sz
 

(m/s
2
) 

RMSsz
 

(m/s
2
) 

RDRp RDRpp TFR 

Nominal 3.99 -3.88 2.15 1.17 1.32 0.301 

ρ=1 3.99 -2.34 1.83 1.18 1.60 0.313 

ρ=3 3.99 -5.06 2.59 1.18 1.21 0.315 

ρ=4 3.99 -5.96 3.03 1.18 1.19 0.339 

λr=1 3.99 -5.10 2.53 1.18 1.24 0.311 

λr=0.25 3.99 -3.01 1.97 1.18 1.45 0.305 

λc=1 4.96 -3.72 2.39 1.06 1.32 0.290 

λc=0.25 3.47 -4.01 2.03 1.25 1.34 0.312 

αr=0.4 3.99 -4.44 2.35 1.18 1.24 0.305 

αr=0.1 3.99 -3.59 2.06 1.18 1.38 0.300 

αc=-0.4 4.32 -3.81 2.26 1.13 1.23 0.296 

αc=-0.1 3.82 -3.91 2.10 1.20 1.30 0.303 

 

Table 4.2: Comparisons of the kineto-dynamic quarter car model responses to idealized 

pothole excitation with variations in the asymmetric damper parameters 

 

Parameter 
1-p)( sz
 

(m/s
2
)
 

2-p)( sz
 

(m/s
2
) 

RMSsz
 

(m/s
2
) 

RDRp RDRpp TFR 

Nominal -5.51 2.32 2.40 -0.97 1.63 0.295 

ρ=1 -4.01 2.33 1.84 -1.17 1.61 0.312 

ρ=3 -6.67 2.44 2.87 -0.82 1.64 0.304 

ρ=4 -7.55 2.61 3.26 -0.70 1.66 0.322 

λr=1 -6.69 2.41 2.77 -0.84 1.62 0.298 

λr=0.25 -4.67 2.33 2.14 -1.07 1.64 0.303 

λc=1 -5.51 3.07 2.49 -0.97 1.50 0.289 

λc=0.25 -5.51 1.98 2.38 -0.97 1.71 0.303 

αr=0.4 -6.06 2.36 2.63 -0.89 1.63 0.296 

αr=0.1 -5.23 2.31 2.26 -1.01 1.62 0.295 

αc=-0.4 -5.51 2.66 2.44 -0.97 1.56 0.292 

αc=-0.1 -5.51 2.15 2.38 -0.97 1.64 0.297 

 

Lower saturation limits (αr, αc) also yield lower rms acceleration of the sprung mass 

under both the inputs. A lower value of αc tends to limit low- speed compression damping 

to a lower value, which yields lower magnitudes of 
1-p)( sz under the bump input and 

2-p)( sz  under the pothole inputs, respectively, with only a slight increase in RDRp under 
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the bump input. A lower value of αr, on the other hand, yields lower magnitude of the 

2-p)( sz  under the bump input and 
1-p)( sz under the pothole input, respectively. The 

reductions in αr and αc, however, yield only negligible effect on TFR, which is mostly 

attributable to relatively higher compression mode damping, while it must be noted that 

the compression mode damping is considered constant in this study. The results, in 

general, show minimal effects of variation in any one of the asymmetric damping 

properties on the TFR, except for high damping asymmetry (ρ=4), which causes 

considerably higher TFR. 

4.5 Optimal Synthesis of Asymmetric Damper under Bump and Pothole 

Inputs 

 

The results in Tables 4.1 and 4.2 clearly show that the kineto-dynamic model 

responses to bump and pothole excitations vary considerably with changes in the 

asymmetric damper parameters, while the responses to bump and pothole excitations are 

generally contradictory. The variations in these responses may also depend upon the 

vehicle forward speed, and may involve different performance compromises at different 

speeds.  It is thus desirable to seek optimal damper parameters that could yield improved 

vehicle performances or an improved design compromise under both the excitations at 

different forward speeds. 

4.5.1 Formulation of Performance Index and Optimization Methodology 

An optimization problem is formulated to seek damper design parameters for 

enhanced ride and road holding performance under the bump and pothole types of 

excitations. The vibration ride comfort performance of a vehicle has been directly related 

to sprung mass acceleration [1,117], while the ride and road holding dynamic 
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performance, and camber variation can be related to suspension deflection and tire force 

responses [2, 92,117]. The optimization problem may thus be formulated to minimize the 

peak absolute acceleration of the sprung mass under both the bump and pothole inputs, 

while imposing a limit constraint on the peak suspension deflection, such that:  

      
2

1

 z F(v) Minimize
V

V
peaks  ; 

     max

max0

RDR
z

zz
  Subject to

peakus



            (4.8) 

where v = {ρ, λr, λc, αr, αc} is the vector of design parameters, V1 and V2 are the lower and 

upper bounds of the vehicle speed, and RDRmax is the maximum allowable rattle space 

ratio. In this study, V1 and V2 are chosen as 2.5 and 10 m/s, while RDRmax is taken as 1.3 

(maximum RDR attained with the asymmetric damper of compression mode damping 

ratio 0.1).  

The above optimization problem was solved using a gradient-based, sequential 

quadratic programming (SQP) algorithm available in the Matlab optimization toolbox 

[151], while considering different vehicle speeds in the range considered with an 

incremental step of 2.5 m/s. The solutions of the optimization problem were sought for 

two different values of low- speed compression-damping coefficients, which were chosen 

to achieve low-speed compression damping ratio δc of an equivalent linear system of 0.1 

and 0.2. Limit constraints were defined so as to achieve the solutions in the feasible 

ranges, namely: 1≤ρ≤6; 0.25≤λc≤1; 0.25≤λr≤1; 0.1≤αr≤0.4; and -0.4≤αr≤-0.1. The 

solutions of the minimization problem were attained by considering the positive, 

negative, and both the positive and negative displacement inputs (z0max=50 mm).  
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4.5.2 Optimization Results and Discussion 

The optimization problem generally converged to multiple solutions for different 

initial design vectors, which were mostly attributed to strong coupling among the various 

design variables. For instance, identical magnitudes of peak acceleration could be 

achieved with different combinations of low speed compression damping, damper 

asymmetry ratio, saturation velocities and high speed damping coefficients. An optimal 

solution was subsequently chosen so as to achieve minimal TFR response under the given 

excitation, apart from the minimal sprung mass acceleration. Table 4.3 presents the 

optimal parameters corresponding to the idealized bump and pothole excitations and 

chosen compression damping ratios, δc=0.1 and 0.2. The solutions are denoted as Opt-1b, 

Opt-2b, Opt-1p and Opt-2p, where ‘1’ and ‘2’ represent the compression damping ratio of 

0.1 and 0.2, respectively, and subscripts ‘b’ and ‘p’ represent bump and pothole types of 

inputs, respectively. Tables 4.4 and 4.5 present the responses of the kineto-dynamic 

model under bump and pothole inputs, respectively, at forward velocities of 2.5, 5, 7.5 

and 10 m/s, together with those the model with nominal damper parameters. The 

responses are illustrated in terms of
1-p)( sz , 2-p)( sz ,

RMSsz , RDRp, RDRpp, TFR and 

normalized wheel lift-off, denoted as NWL.  

Table 4.3: Optimal solutions corresponding to  the bump and pothole types of excitations. 

 

Excitation  
Solution set 

Design Parameters  

Type ρ λr λc αr (m/s) αc (m/s) 

Bump Opt-1b (δc=0.1) 3.00 0.50 0.80 0.20 -0.10 

Opt-2b (δc=0.2) 1.94 0.31 0.25 0.12 -0.10 

Pothole Opt-1p (δc=0.1) 1.00 0.73 1.00 0.10 -0.40 

Opt-2p (δc=0.2) 1.00 0.26 0.78 0.10 -0.40 
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Table 4.4: Comparisons of responses of the kineto-dynamic model with nominal and 

optimal damper parameters (Opt-1b and Opt-2b) under the bump input. 

 

Response  Design 
Velocity (m/s)  

2.5 5 7.5 10 

(m/s
2
) 

Nom 2.86 4.80 5.92 6.52 

Opt-1b  2.31 4.00 4.94 5.40 

Opt-2b 2.51 4.11 4.97 5.39 

(m/s
2
) 

Nom -2.40 -2.43 -4.05 -6.17 

Opt-1b  -2.29 -1.91 -2.79 -4.67 

Opt-2b -2.47 -2.02 -2.80 -4.61 

(m/s
2
) 

Nom 1.48 1.93 2.64 3.44 

Opt-1b  1.52 1.64 2.08 2.75 

Opt-2b 1.49 1.69 2.13 2.77 

RDRp 

Nom 0.65 0.99 1.15 1.20 

Opt-1b  0.69 1.06 1.23 1.29 

Opt-2b 0.67 1.05 1.23 1.29 

RDRpp 

Nom 1.11 1.31 1.37 1.37 

Opt-1b  1.31 1.48 1.52 1.54 

Opt-2b 1.25 1.46 1.52 1.55 

TFR 

Nom 0.126 0.194 0.337 0.502 

Opt-1b  0.131 0.190 0.352 0.547 

Opt-2b 0.130 0.194 0.357 0.550 

NWL 

Nom 0 0 0 0 

Opt-1b  0 0 0 0.071 

Opt-2b 0 0 0 0.071 

 

The results attained under the bump input (Opt-1b and Opt-2b) clearly show strong 

coupling between ρ, λc and δc. The solutions converge toward a higher value of ρ and λc 

(ρ=3; λc=0.8), and a lower value of αc, when a lower value of δc is chosen (0.1).  The 

optimal values of both ρ and λc decrease considerably to their lower limits when δc is  

relaxed to 0.2 (Table 4.3). In this case, the saturation limit and reduction factor in 

rebound mode also decrease significantly, since a higher rebound damping yields higher 

second peak in sprung mass acceleration, particularly at higher forward speeds. The 

results in Table 4.4 suggest that lower compression damping (δc=0.1; Opt-1b)   yields 

 

1-p)( sz

2-p)( sz

RMSsz
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Table 4.5: Comparisons of responses of the kineto-dynamic model with nominal and 

optimal dampers (Opt-1p and Opt-2p) under pothole input.  

 

Response Design 
Velocity(m/s)  

2.5 5 7.5 10 

(m/s
2
) 

Nom -3.85 -6.41 -7.98 -8.67 

Opt-1p  -2.58 -4.05 -4.99 -5.41 

Opt-2p -2.54 -4.16 -5.03 -5.40 

(m/s
2
) 

Nom 3.04 2.99 2.96 3.61 

Opt-1p  2.89 2.29 2.02 3.10 

Opt-2p 2.49 1.90 3.08 5.13 

 

(m/s
2
) 

Nom 1.88 2.71 3.32 3.78 

Opt-1p  1.87 1.93 2.06 2.48 

Opt-2p 1.63 1.70 2.12 2.80 

RDRp 

Nom -0.59 -0.85 -0.97 -0.99 

Opt-1p  -0.86 -1.06 -1.24 -1.29 

Opt-2p -0.67 -1.06 -1.24 -1.29 

RDRpp 

Nom 1.47 1.69 1.67 1.63 

Opt-1p  1.80 1.78 1.78 1.78 

Opt-2p 1.38 1.53 .531 1.52 

TFR 

Nom 0.155 0.238 0.352 0.476 

Opt-1p  0.154 0.212 0.381 0.588 

Opt-2p 0.135 0.191 0.350 0.536 

NWL 

Nom 0 0 0 0.071 

Opt-1p  0 0 0 0.051 

Opt-2p 0 0 0 0.051 

 

lowest first and second peaks in acceleration response in most of the speed range, except 

at 10 m/s, where the peak magnitudes for both values of δc are similar.  Both the 

solutions, Opt-1b and Opt-2b, however, yield considerably lower values of RMS, and first 

and second peak  acceleration magnitudes in the entire velocity range considered in the 

study, when compared to those attained with the nominal damper. Furthermore, both the 

solutions yield lower magnitudes of negative peaks in the sprung mass acceleration,

 at 5 m/s velocity compared to those at 2.5 m/s, unlike in the case of nominal 

damper. This may be attributable to the fact that the excitation frequency corresponding 

to 2.5 m/s  velocity is closer to the first natural frequency of the system. 

1-p)( sz

2-p)( sz

RMSsz

2-p)( sz
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The responses of the optimal damper to bump excitation further reveal that both the 

solutions, Opt-1b and Opt-2b, yield comparable magnitudes of RDRp and RDRpp, which 

are only slightly higher than those of the model with the nominal damper. Interestingly, 

the tire dynamic force ratio (TFR) responses of the model with optimal dampers, Opt-1b 

and Opt-2b, tend to be quite comparable in the entire velocity range, but slightly higher 

than those of the nominal damper. Furthermore, the nominal damper does not cause any 

wheel lift-off under the bump excitation even at the vehicle velocity 10 m/s, while the 

optimal dampers cause wheel lift-off (NWL=0.071) at this speed as seen in the Table 4.4. 

These results suggest that the tire road holding, under the bump input, depends upon the 

effective rebound damping coefficient. 

  From the results presented in Tables 4.3 and 4.4, it may be deduced that the peak and 

rms sprung mass acceleration response to a bump input is minimized through lower 

compression damping, while rebound damping asymmetry should be determined on the 

basis of suspension travel and road holding requirements. The damper asymmetry ratio is 

thus strongly dependent upon the compression damping coefficient. A damper 

asymmetry ratio in the order of 3 or 2 (depending upon δc) would be beneficial in 

achieving improved road holding. These values of damper asymmetry ratio are in good 

agreement with those suggested by Milliken [1] and Gillespie [2]. Lower rebound 

damping, however, would be desirable for a damper design with higher compression 

damping in order to reduce the second peak in sprung mass acceleration. 

Unlike the bump input, the solutions attained under the pothole input, Opt-1p and Opt-

2p, converge to unity value of the asymmetry factor, irrespective of the compression 

damping ratio δc (Table 4.5). This is attributable to the fact that a lower rebound damping 
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helps reduce the magnitude of the first peak in sprung mass acceleration, as it was 

observed in Table 4.2. Under the pothole input, the solutions also converged to higher 

values of high-speed compression damping compared to that in rebound (λc >λr). The λc is 

significantly larger than λr for the higher value of δc, which is opposite to the solutions 

attained under the bump input. Furthermore, unlike the solutions attained under the bump 

input, the optimal values of saturation limits in compression under the pothole input tend 

to be considerably higher than those in rebound (|αc|>αr). The αc in both Opt-1p and Opt-

2p is at its upper limit of 0.4 m/s, while αr is at its lower limit of 0.1 m/s. The solution 

corresponding to a pothole type of input suggest that a symmetric low-speed damping in 

compression and rebound with considerably lower high- speed damping in rebound 

would be beneficial in reducing the peak acceleration response. The compression mode 

damping, however, is determined by the maximum allowable suspension travel, second 

peak in acceleration and the tire dynamic force ratio. These are further evident from the 

responses presented in table 4.5.  

The solutions Opt-1p and Opt-2p yield considerably lower RMS and peak 

accelerations,  and  
2psz ,

 
compared to those of the nominal damper in majority of 

the velocity range considered. The Opt-2p solution, however, yields relatively higher 

magnitudes of  
2psz at 7.5 and 10 m/s velocity than the Opt-1p solution. This is 

attributable to higher compression mode damping associated with Opt-2p, which was 

essential for limiting the peak suspension travel, which are considerably higher than those 

of the nominal damper, as seen in Table 4.5. Considering the first and second peak 

acceleration responses alone, the Opt-1p solution seems to offer beneficial effects under a 

pothole type of input. The Opt-2p solution however yields lowest RDRpp and TFR values 

1-p)( sz
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in most of the velocity range. The TFR responses of the optimal solutions at the extreme 

velocity of 10 m/s, however, tend to be considerably higher than that of the nominal 

damper, which is most likely caused by the wheel lift-off. The results in general suggest 

that the Opt-2p solution offers a better design compromise in limiting the RDRp and TFR 

responses. 

The solutions attained under the bump and pothole types of excitation appear to be 

conflicting as seen in Table 4.3. An optimal damper design for realizing lower peak 

sprung mass acceleration to both the bump and pothole excitations would thus involve a 

complex design compromise. The solutions of the minimization problem were 

subsequently attempted by considering the responses to both the bump and pothole inputs 

(|z0max|=50 mm) in order to seek a design compromise. From the previous results, it is 

evident that such optimization would yield a linear damping in compression and rebound 

as a design compromise, which would cause higher TFR response. Considering the strong 

coupling between δc and ρ, the optimal solutions were attempted by considering two 

different constant values of δc (0.1 and 0.2) together with ρ of either 3 or 2, as determined 

from the Opt-1b and Opt-2b solutions, respectively. The design parameters were thus 

reduced to 4 (λr, λc, αr and αc). The resulting optimal parameters denoted as Opt-1bp 

(δc=0.1;  ρ =3) and Opt-2bp (δc=0.2;  ρ=2) were obtained as: λr=0.25; λc=0.74; αr=0.1;     

αc=-0.39, and λr=0.25; λc=0.5; αr=0.1; αc=-0.2, respectively. Table 4.6 compares the 

responses attained with solutions Opt-1bp and Opt-2bp under bump and pothole inputs in 

the 2.5 to 10 m/s range.  

The results in Table 4.6 suggest that the Opt-1bp solution yields lower responses 

to both bump and pothole inputs compared to those of the model with the nominal 

1-p)( sz



159 

 

damper (Tables 4.4 and 4.5). The solution Opt-2bp, on the other hand, yields 

responses comparable to those of the nominal damper under the bump input, but 

considerably lower responses under the pothole input.  The Opt-2bp solution also yields 

lower value of  and  
2psz  at lower speeds, while an opposite trend is observed at 

higher speeds. The Opt-2bp solution, however, yields considerably lower values of RDRp, 

RDRpp and TFR responses compared to the Opt-1bp solution under both types of 

excitations.  

Table 4. 6: Comparisons of responses of the kineto-dynamic model with Opt-1bp and Opt-

2bp dampers under bump and pothole inputs. 

 

Response Design 

Bump input Pothole input 

Velocity(m/s)  

2.5 5 7.5 10 2.5 5 7.5 10 

(m/s
2
) 

Opt-1bp  2.39 4.05 4.95 5.39 -2.68 -4.38 -5.31 -5.72 

Opt-2bp 2.86 4.80 5.91 6.52 -3.10 -5.04 -6.15 -6.67 

(m/s
2
) 

Opt-1bp  -2.72 -2.35 -2.20 -2.95 2.98 2.47 2.25 2.71 

Opt-2bp -2.65 -2.31 -2.42 -3.89 2.81 2.40 2.48 3.70 

(m/s
2
) 

Opt-1bp  1.68 1.85 2.08 2.50 1.87 2.06 2.23 2.59 

Opt-2bp 1.59 2.02 2.47 3.02 1.73 2.16 2.59 3.06 

RDRp 
Opt-1bp  0.73 1.06 1.23 1.29 -0.67 -1.03 -1.21 -1.26 

Opt-2bp 0.65 0.99 1.14 1.20 -0.63 -0.97 -1.12 -1.17 

RDRpp 
Opt-1bp  1.52 1.67 1.72 1.78 1.64 1.81 1.83 1.83 

Opt-2bp 1.31 1.53 1.58 1.59 1.44 1.65 1.65 1.64 

TFR 
Opt-1bp  0.148 0.213 0.386 0.598 0.153 0.217 0.384 0.585 

Opt-2bp 0.138 0.206 0.350 0.528 0.143 0.210 0.351 0.514 

NWL 
Opt-1bp  0 0 0 0.071 0 0 0 0.051 

Opt-2bp 0 0 0 0 0 0 0 0.061 

 

The influence of optimal damper designs on the wheel camber variations are further 

investigated and compared with those of the model with the nominal damper, as 

illustrated in Figs. 4.9 (a) and (b), respectively, under the bump and pothole types of 

excitations. The figures present the magnitudes of first and second peaks in camber angle 

1-p)( sz

RMSsz

1-p)( sz

2-p)( sz

RMSsz
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variation of the model with nominal, Opt-1bp and Opt-2bp dampers. It can be seen that the 

Opt-1bp solution yields larger positive and negative peak camber angle variations 

compared to those of the nominal and Opt-2bp dampers under the bump input in the entire 

velocity range considered in this study. The negative camber variation response of Opt-

2bp design, however, is comparable to that of the Opt-1bp design. Under the pothole input, 

both the optimal designs, however, yield lower peak positive and negative camber 

variations compared to the nominal responses in most of the velocity range, while Opt-1bp 

tends to show large positive but lower negative camber variations than Opt-2bp. The 

camber response to the pothole input at the low velocity of 2.5 m/s forms an exception to 

the above, where the negative peak of the model with Opt-1bp tends to be greater, which 

is attributable to higher second peak in relative displacement response of the unsrpung 

mass.  

    
(a)                                                                             (b) 

Figure 4.9: Comparisons of the peak camber angle variation responses of the model with 

nominal and optimal dampers under idealized: (a) bump; and (b) pothole excitations. 

 

The results in Table 4.6 and Fig. 4.9 suggest that Opt-2bp solution forms a better 

design compromise considering ride comfort, rattle space, road holding and peak camber 

angle performances under both the bump and pothole inputs. A low-speed compression 

damping ratio in the order of 0.2, damper asymmetry ratio of 2 coupled with very low 
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rebound saturation limit and reduction factor, and compression saturation limit in the 

order of -0.2 m/s with reduction factor around 0.5 can yield an optimal design 

compromise between the bump and pothole responses.   

4.6 Responses of Kineto-dynamic Model with Asymmetric Damper to 

Random Road Inputs 
 

The results presented in sections 4.4 to 4.5 suggested that synthesis of asymmetric 

damper is complex due to the various conflicting design requirements under deterministic 

bump and pothole type of excitations. It has been however suggested in the literature that 

suspension synthesis is more realistic only if it considers the random road excitations [2, 

92]. Different studies have reported optimal damper synthesis under random road 

excitations [92, 127] employing vehicle models of varying complexities. Optimal 

damping characteristics suggested by these studies were thus expressed as complex 

functions of the forward velocity of the vehicle with significant differences in the 

identified optimal damping coefficients corresponding to lower and higher vehicle 

velocities. This can be attributed to limited understanding of influences of damper 

asymmetric properties in relation to the vehicle forward velocity, particularly under 

random road excitation. The optimal synthesis of suspension damper with asymmetric 

properties in rebound and compression thus necessiates study of influences of the damper 

asymmetry on the dynamic and kinematic responses as a function of the vehicle forward 

speed under random road excitations. The kineto-dynamic responses of the model under 

varying forward speed are investigated in this section. 
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4.6.1 Random Road Characteristics 

Many studies have reported roughness properties of highways, secondary roads and 

dirt roads as real valued, zero mean, stationary and Gaussian random fields [66, 92]. In 

this study, the urban roads roughness, characterized on the basis of measured road 

elevations reported in a previous study [152], are used for evaluating the dynamic 

responses of the kineto-dynamic model and the performance measures. Figure 4.10 (a) 

illustrates the filtered roughness profile of the road over a span of 500 m, while, Fig. 4.10 

(b) shows the spatial power spectral density (PSD) of the road. The displacement PSD of 

the road is also compared with those of different roads classified as ‘poor’, ‘average’ and 

‘good’, denoted by roads D, C and B, respectively, in an ISO document [66, 86]. The 

comparison suggests that the measured road profile corresponds to a poor quality road at 

low frequencies, and lies between the average and a good road at higher frequencies.  

 
Figure 4.10: Roughness profile of an urban road: (a) elevation vs. distance; (b) spatial 

PSD of the elevation. 
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4.6.2 Influences of Bilinear Asymmetric Damper under Random Excitations  

Kinematic and dynamic responses of the kineto-dynamic model with bilinear damper 

are evaluated under the urban road excitation described in Fig. 4.10. The responses are 

evaluated with three different damper models, including two bilinear dampers with 

compression mode damping ratios δc=0.2, ρ=2 and δc=0.1, ρ=5, and an equivalent linear 

damper (δ=0.3; Ceqv=3037.5Ns/m). The dynamic responses of the kineto-dynamic model 

are evaluated in terms of: rms of sprung mass vertical acceleration and suspension 

deflection, denoted as  and (RD)RMS, respectively; ratio of rms tire load fluctuation 

to the static tire load, denoted as dynamic load coefficient (DLC); and percentage time 

duration of the wheel losing contact with the ground (over the entire road span) or % 

wheel lift-off. The kinematic responses of the suspension are evaluated in terms of rms of 

the camber angle variations, denoted as ()RMS. The responses are evaluated under 

random road excitation at different constant forward speeds in the 30 to 120 km/h range. 

Figures 4.11 to 4.14 illustrate the dynamic and kinematic responses of the kineto-

dynamic model with the two bilinear dampers (δc=0.2, ρ=2; and δc=0.1, ρ=5) and the 

linear damper (δ=0.3) in the speed range considered. 

Figures 4.11 (a) and (b) compare the sprung mass rms acceleration and DLC 

responses of the model with the three different dampers subjected to rough road input in 

the 30 to 120 km/h speed range. Although all the dampers yield equal effective damping 

coefficients, the acceleration and DLC responses are influenced by the damper 

asymmetry and the vehicle forward speed. At speeds below 90 km/h, the kineto-dynamic 

model with bilinear dampers yields lower rms acceleration compared to the model with 

linear damper (δ=0.3). At speeds below 60 km/h, both the bilinear dampers (δc=0.1 and 

RMSsz
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0.2) yield comparable rms acceleration response, while the model with δc=0.2 yields 

lower sprung mass acceleration above 60 km/h. The higher compression damping also 

yields lower DLC due to the tire force in the entire speed range, when compared to the 

bilinear damper with δc=0.1, which is attributable to its higher rebound damping (=5). 

At speeds above 90 km/h, the model with linear damper yields lower acceleration and 

DLC response compared to the bilinear damper with δc=0.1, but the responses are quite 

comparable with that of the bilinear damper with δc=0.2. These results suggest that 

dampers with different asymmetry but identical equivalent damping can yield very 

different rms acceleration and DLC responses, which further depend upon the vehicle 

velocity.  

The percent wheel lift-off and rms relative displacement responses of the model with 

the three dampers under random road inputs over the velocity range 30 to 120 km/h are 

presented in Fig. 4.12. The asymmetric bilinear dampers yield considerably higher wheel 

lift-off and relative displacements compared to the equivalent damper, which contribute 

to higher DLC as seen in Fig. 4.11 (b). This bilinear damper with lower compression 

damping (δc=0.1) yields significantly higher wheel lift-off duration and relative 

displacement responses, particularly at speeds above 50 km/h, which is attributable to 

greater compression mode deflection.  Higher compression damping (δc=0.2) tends to 

reduce both the responses but yields higher wheel lift-off at speeds above 70 km/h 

compared to the equivalent linear damper.  

The results in Fig. 4.12 also show that the (RD)RMS responses reach their peak values 

near 100 km/h velocity (near 120 km/h for δc=0.1), and the (RD)RMS magnitudes decrease 

at higher speeds. The results suggest that linear damping would be desirable considering 
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the road holding performance, particularly at higher velocities. Although a point contact 

tire model tends to emphasize the loss of tire-road contact and thus the variations in the 

tire forces [96], the results in Figs. 4.11 and 4.12 show relative dynamic responses of 

bilinear asymmetric and linear equivalent dampers considered in the study.  

 
         (a)                                  (b) 

Figure 4.11: Comparisons of (a) rms acceleration and (b) DLC responses of the kineto-

dynamic model with bilinear dampers (δc=0.2,   =2; δc=0.1,  =5) and an equivalent 

linear damper (δ=0.3) to random road excitations as a function of forward speed. 

 

  
         (a)                                  (b) 

Figure 4.12: Comparisons of (a) %wheel lift-off and (b) rms relative displacement 

responses of the kineto-dynamic model with bilinear dampers (δc=0.2,   =2; δc=0.1,  

=5) and an equivalent linear damper (δ=0.3) to random road excitations as a function of 

forward speed. 
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The suspension damping properties also affect the kinematic response of the vehicle. 

Figure 4.13 (a) compares the rms camber angle variation responses of the model with 

different dampers. The lowest camber variation, ()RMS is achieved with the linear 

equivalent damper in the entire speed range considered, while the bilinear damper with 

δc=0.1 yields largest camber variation. The ()RMS responses of the kineto-dynamic model 

approach peak values in the 100-120 km/h range, for all the dampers considered, as 

observed in the (RD)RMS responses. The results in Figs. 4.12 (b) and 4.13 (a) show similar 

trends in (RD)RMS responses and camber variations, as it would be expected. The relative 

differences in the two measures depend upon the type of damping considered and the 

forward speed. This difference is evaluated by considering ratio of ()RMS to (RD)RMS at a 

forward speed, normalized with the ratio at 30 km/h, termed as the camber increment 

ratio (CIR), such that: 

 

 
   

   
30

30

)(/)(

)(/)(
  

RMSVRMS

RMSVRMS

RDRD
CIRratioincrementCamber


                                         (4.9) 

where the subscript ‘V’ refers to the velocity considered, and (()RMS)30 and ((RD)RMS)30 

are the normalizing values at 30 km/h. Figure 4.13 (b) compares the CIR response of the 

model with different dampers in the velocity range 30 to 120 km/h. At lower velocities 

(<50 km/h), the CIR varies only about 1% for all the dampers considered, suggesting that 

the camber variation is directly related to the suspension deflection. The CIR response, 

however, is greatly influenced by the damping at speeds above 50 km/h. While the linear 

damper yields lowest CIR, the bilinear damper with δc=0.1 yields largest camber 

increment ratio. The results suggest that the camber angle variation is disproportional to 

the suspension deflection, particularly for asymmetric damper with δc=0.1.  
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         (a)                                  (b) 

Figure 4.13: Comparisons of (a) rms camber angle variation and (b) camber increment 

ratio responses of the kineto-dynamic model with bilinear dampers (δc=0.2,   =2; δc=0.1, 

 =5) and an equivalent linear damper (δ=0.3) to random road excitations as a function of 

forward speed. 

 

Figure 4.14 (a) compares the time-histories of camber variations of the model with 

linear and bilinear damping (δc=0.1) under the random road excitation at 100 km/h. The 

bilinear damper yields significantly larger negative peaks, while the linear damper 

consistently exhibits higher positive camber angle. The magnitudes of positive camber 

variations of the asymmetric damper, however, are considerably smaller than those in the 

negative camber. This is attributable to the suspension geometry, which is generally 

synthesized to achieve a compromise between variations in the roll and bump camber 

angles [4]. The asymmetric camber variation during upward and downward wheel 

motions has been shown in Fig. 2.11, and also been widely reported in different 

kinematic responses [4, 5]. This is also evident in the cumulative probability distribution 

of the absolute camber angle responses of the model with the three selected dampers in 

Fig. 4.14 (b). The comparisons show that the linear, and bilinear (δc=0.2 and 0.1) dampers 

exhibit camber angles of 0.77°, 1.01° and 1.39°, respectively, corresponding to the 95% 

probability.   
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         (a)                                  (b) 

Figure 4.14: Comparison of: (a) time histories of camber variations; and (b) cumulative 

probability disribution of absolute camber angle of the model with linear and asymmetric 

bilinear dampers under random road input (speed =100 km/h). 
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0 
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above 90-100 km/h. These trends, however, could not be generalized to the road holding 

measures (DLC and wheel lift-off).   

4.6.3 Influences of Two-stage Asymmetric Damper under Random Excitations  

The kinematic and dynamic responses of the kineto-dynamic model are also dependent 

upon the high speed damping reduction factors and the saturation velocities, apart from 

the damping asymmetry. The influences of these parameters are evaluated by considering 

a two-stage asymmetric damper (δc=0.2, ρ=2, λr=0.25, λc=0.5, αr= 0.1 m/s and αc= -0.2 

m/s) that has shown to yield a good compromise among the ride, road holding and 

suspension deflection performance measures under bump and pothole inputs in section 

4.5. The low-speed damping coefficients of the selected two-stage damper (δc=0.2 and 

ρ=2) are identical to those of one of the bilinear damper considered in the section 4.5.2, 

while the selected damper would yield lower effective damping due to the lower high 

speed damping (λr, λc<1). The kinematic and dynamic responses of the model evaluated 

under the random road excitation in the 30 to 120 km/h forward speed range are 

summarized in Table 4.7.  

The two-stage damper yields considerably lower magnitudes of RMSsz )( 
 
compared to 

the single-stage bilinear damper in the entire speed range, which is attributable to its 

lower high speed damping and damping force saturation. The RMSsz )(   value approaches a 

peak of 1.94 m/s
2
 at 100 km/h and decreases with further increase in the vehicle speed. 

This trend was not observed in case of the linear or bilinear damper, although the rate of 

increase diminished above 100 km/h. (Fig. 4.11). The reduced high-speed damping, 

however, causes relatively higher magnitudes of DLC, wheel lift-off (WLO), (RD)RMS and 
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()RMS responses. Both the DLC and WLO measures increase with the speed, while the 

rate increases in WLO is higher at higher speeds, as observed for the bilinear damper 

(Fig. 4.12). The (RD)RMS and ()RMS responses of the model with two-stage asymmetric 

damper reach their respective peak values near 100 km/h similar to that observed in the 

case of acceleration. The variations in DLC and (RD)RMS show similar tendency at lower 

speeds, but differ at higher speeds. The camber increment ratio of the two-stage damper 

was estimated to be 1.02 at 100 km/h, which is nearly same as that of the bilinear damper 

(Fig. 4.13).  This result further suggests nonlinear relation between the camber variation 

and the suspension deflection. Moreover, the absolute camber angle corresponding to 

0.95 cumulative probability at 100 km/h was computed as 1.14
0
, which is considerably 

greater than that of the bilinear damper with δc=0.2 (Fig. 4.14). 

Table 4. 7: Kinematic and dynamic responses of the kineto-dynamic model with two-

stage asymmetric damping.  

 

Velocity 

(km/h) 
 

(m/s
2
) 

DLC WLO 
(RD)RMS 

(m) 

()RMS 

(Deg) 

30 0.97 0.138 0.03 0.012 0.26 

40 1.09 0.168 0.04 0.013 0.30 

50 1.23 0.194 0.14 0.015 0.34 

60 1.42 0.226 0.28 0.018 0.40 

70 1.62 0.253 0.33 0.021 0.47 

80 1.72 0.268 0.44 0.023 0.51 

90 1.83 0.287 0.65 0.025 0.54 

100 1.94 0.309 0.85 0.026 0.57 

110 1.88 0.323 1.08 0.024 0.53 

120 1.80 0.333 1.30 0.022 0.48 

 

  

RMSsz
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4.7 Optimal Synthesis of Two-stage Asymmetric Damper under 

Random Inputs 

 

The ride dynamic responses of the vehicle model are strongly influenced by various 

suspension kinematic and dynamic properties, and damper asymmetry, apart from the 

road roughness and the speed, in a complex manner. Synthesis of an optimal damper is 

thus a formidable task, particularly when multi-stage asymmetric damping properties are 

considered. The few studies that have attempted to identify optimal damping parameters 

have generally concluded that the optimal parameters would depend upon the forward 

velocity, design criteria or the target performance chosen and the type and magnitude of 

excitation such as the road roughness and profiles of the bump/pothole inputs [91, 92, 94, 

126]. Although various studies have included combinations of sprung mass acceleration, 

suspension deflection or working space and tire force response measures in identification 

of optimal parameters, the kinematic responses have invariably been ignored. This is 

partly attributable to the use of ride dynamic models that do not permit the analyses of 

kinematic response, and in-part due to the assumption that suspension kinematics play 

only limited role in ride dynamics. The results presented in Figs. 4.11 to 4.13, and Table 

4.7, however, suggest strong coupling between the kinematic and dynamic responses, and 

important contributions of the suspension kinematics. 

4.7.1 Formulation of Performance Index and Optimization Methodology 

Optimal asymmetric damper parameters are sought to achieve acceptable compromise 

in ride, road holding and camber variation characteristics through minimization of an 

objective function, F(υ), of sprung mass acceleration and tire force as:  
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where F1(υ) and F2(υ) are rms acceleration and tire force or road holding measure, 

respectively, given by: 
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where Ft-s and Ft-d are the static and dynamic tire forces and υ is the design vector,            

υ={δc, ρ, λr, λc, αr, αc}. In Eq (4.10), w is the weighting factor, and nomF 1 and F2-nom are the 

magnitudes of F1(υ) and F2(υ) evaluated with nominal damper parameters corresponding 

to each speed. Owing to the strong dependence of optimal damper parameters on the 

vehicle forward velocity, as concluded in the reported studies, the weighted optimization 

function in Eq (4.10) is formulated considering the performance measures at different 

speeds, where V1 and V2 define the lower and upper bounds. In the optimization problem, 

the camber variation is limited by imposing a limit constraint such that: <β, where β is 

the maximum allowable absolute camber angle corresponding to cumulative probability 

of 0.95, which is computed during each iteration in the solution of the minimization 

problem at the higher speed of 100 km/h only. Furthermore, the limiting value β was 

varied in the 1 to 1.2° of camber range (1.14° attained with the nominal damper at 

100km/h) so as to study the influence of β on the attained solutions. 

The above optimization problem was solved using a gradient-based sequential 

quadratic programming (SQP) algorithm available in the Matlab optimization toolbox 

[151], while velocity bounds V1 and V2 were taken as 50 and 100 km/h, respectively, with 

an increment of 25 km/h. These velocity bounds are selected considering that they 
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represent the three zones of the sprung mass acceleration and camber angle relations with 

vehicle velocity (Figs. 4.11 to 4.13) identified in the section 4.6. Limit constraints were 

defined so as to achieve the solutions in the feasible ranges, namely: 0.05≤ δc ≤0.35;       

1≤ ρ ≤6; 0.25≤ λr ≤1; 0.25≤ λc ≤1; 0.1≤ αr ≤0.4; and 0.1 ≤|αc| ≤ 0.4.  

4.7.2 Results and Discussion 

Considering the strong coupling among the design variables of the asymmetric 

damper, the optimal solutions were initially examined to identify an acceptable value of 

low-speed compression mode damping ratio δc in view of the ride comfort alone. For this 

purpose, the initial solutions were obtained by letting w=1, and relaxing the upper limit 

on the camber variation (β) to a very high value of 5° in order to emphasize the sprung 

mass acceleration alone. Multiple solutions, as would be expected, were obtained with 

different initial design vectors, particularly for different values of ρ. The solutions, 

however, generally converged near δc=0.20 for the rough road and range of speed 

considered, while the high- speed reduction factors in both compression and rebound 

approached the respective lower bounds. The other design parameters (ρ, αr and αc) 

converged closer to their nominal values. The optimal parameters resulted in rms sprung 

mass acceleration magnitudes of 1.18, 1.62 and 1.85 m/s
2 

corresponding to 50, 75 and 

100 km/h forward speeds, which are lower than those attained with the nominal damper 

(Table 4.7). The identified value of low-speed compression damping ratio was thus 

considered acceptable for seeking optimal solutions to achieve design compromise 

among the measures considered. An equality constraint, δc=0.2, was thus subsequently 

imposed that resulted in slightly reduced design vector, v={ρ, λr, λc, αr, αc}. Moreover, the 
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more significant design variables (ρ, λr, λc), being directly related to the non-dimensional 

δc, would enhance the applicability of the optimal solutions for a wider range of vehicles.   

The minimization problem in Eq (4.11) was subsequently solved using three different 

weighting values (w=0.5, 0.6 and 0.7) and three different limiting values of camber 

variation (β=1°, 1.1° and 1.2°). The solutions were obtained with nominal values as the 

initial design vector, although several solutions were sought with different initial design 

vectors so as to attain the solutions corresponding to minima of the objective function. 

Moreover, the limit constraints on the design variables were defined as explained 

previously. The solutions of the minimization problem attained are presented in Table 

4.8, while the corresponding responses of the model including , DLC, ()RMS and 

(RD)RMS are presented in Figs. 4.15 to 4.18 as a function of the camber limit β. The 

responses presented in these figures were attained under the random road excitation at 

different forward speeds (30, 50, 80 and 100 km/h).  

The results in Table 4.8 suggest that the solutions are highly influenced by the chosen 

values of the weighting factor and camber variation limit, β. For w=0.5, relaxing the 

camber limit β yields lower values of the asymmetry ratio ρ, and the high-speed reduction 

factor λc and saturation limit αc in compression but higher high-speed rebound reduction 

ratio λr and saturation limit αr. Limiting the absolute camber variation to 1°, converges to 

higher damping forces in both compression and rebound modes. Relaxing β to 1.2°,
 

however, converges to lower compression mode damping. This suggests that damper 

synthesis for minimal camber variation involves compromise in the sprung mass vertical 

acceleration.  

RMSsz
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The solutions attained with slightly higher emphasis given to the ride comfort measure 

(w=0.6 and 0.7) revealed somewhat, opposing trend in ρ with increasing values of β. An 

increase in β resulted in convergence towards lower λr and λc, while a definite trend could 

Table 4.8: Solutions of the minimization problem with different weighting factors (w) 

and camber variation limits (β). 

w β ρ λr λc αr (m/s) αc (m/s) 

0.5 
1 2.22 0.35 0.78 0.20 -0.40 

1.1 1.83 0.43 0.68 0.34 -0.35 

1.2 1.70 0.51 0.63 0.35 -0.25 

0.6 
1 1.68 0.49 0.92 0.30 -0.10 

1.1 1.97 0.30 0.50 0.28 -0.20 

1.2 1.93 0.25 0.45 0.31 -0.24 

0.7 
1 1.46 0.32 0.67 0.33 -0.37 

1.1 2.00 0.25 0.36 0.21 -0.24 

1.2 1.95 0.25 0.39 0.27 -0.22 

 

not be observed in αr although the changes are quite small. A lower value of αc was 

obtained with relatively higher value of λc for w=0.6. The higher weighting on ride 

comfort (w=0.7) resulted in lower λc but higher αc, most likely leading to comparable 

effective damping in compression. Reducing the camber variation limit (β=1°) converged 

towards higher compression mode effective damping, while relaxing the limit β allows 

the compression mode damping to be lower, which also places a greater demand on the 

high-speed compression damping. The results thus suggest that a relatively smaller 

emphasis on the ride comfort would converge to lower low-speed rebound damping as 

the camber variation is relaxed. A slightly larger emphasis on the ride comfort, however, 

would generally require higher low-speed rebound damping with increasing β value.   

The results in Table 4.8 do not show definite relationships among the various 

parameters particularly when different weightings and camber limits are considered. This 

is mostly attributable to strong coupling among various factors in view of the effective 
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damping. For instance, an effective rebound to compression damping asymmetry could 

be achieved with different combinations of the low- and high- speed damping 

characteristics. In this study, the solutions to the minimization problem were also 

attempted for β<1° in order to investigate the possibility of attaining further reduction in 

the camber angle variations. The solutions, however, failed to converge due to the 

constraints posed on the compression mode damping (δc=0.2 and 0.25≤λc≤1). The camber 

variations could be further reduced by increasing the compression damping (Fig. 4.13 

(b)), which would also yield higher rebound damping considering the relations shown in 

Fig. 4.11 (b). 

The sprung mass acceleration response ( ), in general, tends to decrease with 

increase in the weighting factor w at each speed, as seen in Fig. 4.15. Increase in β from 1 

to 1.1° causes decrease in the sprung mass acceleration response, irrespective of the 

weighting factor and the forward speeds, while a further increase in β to 1.2° causes the 

sprung mass acceleration to decrease only when w=0.5. A higher weighting on the ride 

comfort (w=0.6 or 0.7) results in increase in the sprung mass acceleration response, 

particularly at lower speeds of 30 and 50 km/h. The results suggest that increasing w can 

yield lower sprung mass acceleration response, while relaxing the camber limit beyond a 

certain value deteriorates the ride comfort measure. The results further suggest that for 

each value of w there might exist a minimal value of sprung mass acceleration that can be 

achieved with different β values. The value of β corresponding to this minimal 

acceleration tends to become smaller as w increases. Such minimal values of acceleration 

with different constraints on suspension deflection had also been identified by Dahlberg 

RMSsz
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[94], while synthesizing optimal linear damper under random excitation at a single 

forward velocity.  

 
Figure 4.15: Sprung mass rms acceleration responses of the model with optimal damper 

parameters attained for different weighting factors (w) and camber variation limits (β) 

under random road input at: (a) 30 km/h; (b) 50 km/h; (c) 80 km/h and (d) 100 km/h. 

 

Unlike the sprung mass acceleration, the DLC due to tire force increases with an 

increase in the weighting factor w and the camber limit β in the forward speed range 

considered (Fig. 4.16). Lowering the value of w reduces the DLC response of the model, 

as it would be expected, which suggests that solutions corresponding to w=0.5 would 

yield better road holding properties. It can also be observed from the figure that the 0.5 

weighting yields nearly identical DLC responses for camber limits of 1 and 1.1°, 

irrespective of the speed.  Furthermore, the weighting of 0.5 and 0.6 yield nearly identical 

DLC values with β=1°, at each of the speeds considered. The results further suggest that 

the DLC is relatively less sensitive to β when a lesser emphasis is placed on the ride 

comfort measure (w=0.5). The limit imposed on the camber variation, however, plays a 

significant role with greater emphasis on the ride comfort (w=0.6 and 0.7). Opposite to 
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the sprung mass acceleration (Fig. 4.15), the DLC response tends to approach its 

maximum at β=1.1° with w=0.7.  

 
Figure 4.16: The DLC responses of the model with optimal damper parameters attained 

for different weighting factors (w) and camber variation limits (β) under random inputs 

at: (a) 30 km/h; (b) 50 km/h; (c) 80 km/h and (d) 100 km/h. 

 

The relative displacement (RD)RMS responses of the kineto-dynamic model with 

optimal damper parameters (Fig. 4.17) increase with an increase in the weighting factor w 

and the camber limit β with a trend somewhat comparable to that observed in the DLC 

responses (Fig. 4.16). The results show that the (RD)RMS responses approach maximum 

values with β in the order of 1.1, for a higher weighting on the ride comfort (w=0.6 and 

0.7). The optimal solutions with higher weighting yield lower (RD)RMS with further 

relaxation of the camber limit in the speed range considered. It can further be seen from 

the figure that unlike the DLC responses, the (RD)RMS is sensitive to the camber limit β. 

The trends in the (RD)RMS corresponding to β=1.1
 
and 1.2°, however, differ notably from 

those in the ()RMS shown in Fig. 4.18 for w=0.6 and 0.7 irrespective of the vehicle speed. 
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Figure 4.17: The RDRMS responses of the model with optimal damper parameters attained 

for different weighting factors (w) and camber variation limits (β) under random inputs 

at: (a) 30 km/h; (b) 50 km/h; (c) 80 km/h and (d) 100 km/h. 

 

 

Figure 4.18: The rms camber angle responses of the model with optimal damper 

parameters attained for different weighting factors (w) and camber variation limits (β) 

under random inputs at: (a) 30 km/h; (b) 50 km/h; (c) 80 km/h and (d) 100 km/h. 

 

variations, as expected, particularly for w=0.5. The ()RMS responses of the model with 
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the ()RMS responses corresponding to β=1.1°
 
and 1.2° are mostly negligible for w=0.6 

and 0.7. At vehicle speed exceeding 50 km/h, the rms camber response increases as β 

increases from 1°
 
to 1.1°, irrespective of the weighting factor.  

4.8 Summary 

This chapter presented coupled effects of damper asymmetry and the suspension 

kinematics on the dynamic and kinematic responses of a kineto-dynamic quarter car 

model comprising a double wishbone suspension coupled with single- and two-stage 

asymmetric dampers. It has been shown that both the suspension linkages and 

compression/rebound damping asymmetry contribute to asymmetry in kinematic as well 

as dynamic responses of the road vehicle. Higher rebound to compression damping 

asymmetry in general causes a downward shift in the sprung mass mean position, while 

higher compression to rebound asymmetry ratio causes an upward shift. The mean shift 

in the unsprung mass displacement relative to the sprung mass causes additional camber 

angle variation during the wheel vertical motions.  

The damping asymmetry of a bilinear damper yields conflicting effects on the sprung 

mass acceleration response to bump and pothole excitations. A higher rebound to 

compression damping asymmetry ratio in a bilinear damper helps reduce the magnitude 

of the first peak in sprung mass acceleration response to bump excitation, but yields 

higher acceleration under a pothole excitation. In case of two-stage damper with different 

low and high-speed damping coefficients, lower values of the high-velocity damping 

coefficients results in considerable reductions in the sprung mass acceleration response 

under both the inputs. The results suggest that the damping asymmetry ratio is strongly 
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dependent upon the low-speed compression damping. Under a bump input, asymmetry 

ratio of 2 and 3 would result in a good compromise between the ride and road holding 

performance for low- speed compression mode damping ratios of 0.2 and 0.1, 

respectively.  Under a pothole input, however, a linear (asymmetry ratio=1) or higher 

compression to rebound ratio provide a better design compromise. The results attained 

through minimization of the sprung mass acceleration with constrained rattle space 

provided design guidance for the asymmetric dampers under both the bump and pothole 

excitations.  

The simulation results under random road excitation showed that the kinematic and 

dynamic responses are strongly influenced by the compression/rebound damping 

asymmetry and the forward speed of the vehicle. This study identified notable consistent 

trends in the kinematic and dynamic responses of the model with asymmetric damper in 

three speed ranges: the responses increasing nearly linearly with forward speed in the 30-

60 km/h range; increasing nonlinearly in the medium speed range (60-90 km/h); and 

nonlinearly decreasing or saturating in the higher speed range (100-120 km/h). It is 

shown that a synthesis of an optimal asymmetric damper is highly complex due to strong 

coupling among the various damper parameters, namely, the rebound to compression 

damping asymmetry, high speed damping reduction factors and saturation velocities. The 

results attained through minimization of a weighted dynamic tire force and ride comfort 

measure suggest that a compromise solution would strongly depend upon the limit 

imposed on the camber variation. For minimal camber angle variations, a lower rebound 

to compression asymmetry in damping would be desirable, while the camber variations 
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correlate well with the tire force variations, when a greater emphasis is placed on the tire 

force variations. 

The results presented in this chapter are attained considering the vertical dynamic 

responses of a quarter-car model, while, the consideration of dynamic responses of the 

vehicle motions in other modes including roll and pitch can further increase the 

complexity of the design compromises. The camber angle variation response of a 

suspension during chassis roll is known to be significantly different than that during 

wheel vertical motion excitations. Similarly, the asymmetry in the dynamic responses 

could be different, particularly in roll motion mode of the chassis when asymmetric 

dampers are considered on both sides of the suspension, where one of the strut 

experiences compression when the other strut undergoes extension. A kineto-dynamic 

roll-plane vehicle model is therefore necessary for the coupled analyses of kinematic and 

dynamic responses of the suspension, and for the synthesis of suspension components. 
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CHAPTER 5 

 ROLL-PLANE KINETO-DYNAMIC ANALYSES OF DOUBLE 

WISHBONE SUSPENSION 

5.1 Introduction 

The ride and roll dynamic performance measures of a vehicle are known to impose 

conflicting design requirements on the suspension components [2,105]. Soft suspensions 

are most desirable for enhancing ride comfort, but yield reduced effective roll stiffness, 

and greater load transfer and roll response of the chassis. Apart from the conflicting 

dynamic measures, the suspension kinematic measures also impose conflicting demands 

on suspension geometry synthesis under chassis roll and wheel vertical motions [4]. In 

particular, minimal variations in the wheel camber under wheel vertical displacement 

motion (bump camber) and under chassis roll (roll camber) involve conflicting 

suspension synthesis. The variations in camber and toe angles, and wheel track width 

responses have been widely investigated under wheel displacement, with fixed chassis or 

under chassis roll motion in the absence of wheel vertical motion [5, 24]. The effects of 

both inputs, applied simultaneously, have not been adequately addressed. An optimal 

suspension synthesis that can yield acceptable compromise among various kinematic 

performance measures has been recognized to be a challenging task [4, 24]. Furthermore, 

the larger space requirements of hybrid vehicles necessitate considerations of the 

suspension synthesis with limited lateral space, which would most likely involve 

additional compromises among the kinematic and dynamic responses.  

From the results attained from the two-DOF kineto-dynamic model in Chapter 4, it 

was shown that kinematic and dynamic properties of the suspension are also coupled with 
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the suspension damping asymmetry in a complex manner. The complex dependency of 

damper asymmetry on the dynamic and kinematic responses would be expected to 

increase many folds, when coupled vertical and roll motions of chassis are considered.  In 

this chapter, a roll-plane kineto-dynamic vehicle model is formulated to study coupled 

vertical and roll dynamic responses together with the kinematic properties. The 

displacement matrix method is employed to derive kinematic formulations, while the 

Lagrange’s method is used to formulate the dynamic model. The conflicting kinematic 

responses including bump/roll camber and wheel track variations under chassis roll and 

wheel vertical motions are identified, and the roles of joint coordinates are evaluated. An 

optimal joints coordinate synthesis considering these conflicting responses together with 

the constraint on the lateral space is derived. The dynamic responses of the proposed 

kineto-dynamic model are compared with those of a conventional roll-plane model under 

idealized bump and pothole inputs.  The dynamic and kinematic responses of the model 

with nominal joint coordinates are further compared with those of model with optimal 

joint coordinates to illustrate the effectiveness of the optimal synthesis. The influences of 

damper asymmetry are further evaluated under both bump and pothole excitations.         

5.2 Development of Roll-plane Kineto-dynamic Vehicle Model 

The two-DOF kineto-dynamic model of double wishbone suspension formulated in 

Chapter 3 could be extended to the roll-plane vehicle model, as shown in Fig. 5.1. The 

four-DOF half-car kineto-dynamic model comprises planar representation of the double 

wishbone type of suspension, as discussed in Chapter 3. The control arms are modeled as 

mass less elements, and each unsprung mass is assumed to be lumped at the center of 

gravity (cg) of the wheel assembly. For the kineto-dynamic analysis, the tire is modeled 
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as a combination of a vertical linear spring and a viscous damper, while the lateral 

compliance of the tire is represented by a lateral linear stiffness, as in the case of the two- 

DOF model. The chassis and suspension kinematics are formulated considering the 

chassis, suspension linkages and the wheel spindle as rigid bodies, while the rigid body 

assumption was also applied to tire when kinematic analyses alone were concerned. The 

model is formulated assuming vertical (zs) and roll (s) displacements of the sprung mass, 

and left and right wheels vertical displacements (zuL and zuR) as the generalized 

coordinates. The rotation of the chassis is assumed to occur about the roll center, Rc [153, 

154], as shown in the Fig.5.1.   

 

Figure 5.1: Roll-plane kineto-dynamic model of a vehicle with double wishbone type of 

suspension   

5.2.1 Kinematics of the Chassis 

 A chassis kinematic model is formulated in order to evaluate instantaneous positions 

of suspension joints on the chassis under chassis rotation and/or vertical motions. The 

suspension kinematic responses are subsequently determined from coordinates of the 

linkage joints. A fixed coordinate system is considered with its origin located in the 

ground, while the sprung mass vertical and rotational displacements are considered about 

the roll center, Rc, of the vehicle body. The initial (Rcy0, Rcz0) and instantaneous (Rcy, 
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Rcz) coordinates of the roll center are related through the displacement matrix, Dchassis, 

under a finite displacement of the chassis, given by [138]: 
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where a22=a33=coss and a23=-a32=sins, with s 
being the vehicle body rotation about the 

roll center. The y- and z- coordinates of chassis-suspension joints, MR, OR, ML and OL, 

shown in the Fig. 5.1, can be determined using the displacement matrix Dchassis, such that:  
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                  (5.2)  

The leading subscripts ‘R’ and ‘L’ in Eq (5.2) refer to the right and left suspension joints, 

respectively, while the second subscripts ‘y’ and ‘z’ represent the lateral and vertical 

axes, respectively. The final subscript ‘0’ refers to the initial coordinate of the joint. 

The expansion of the Eq (5.2) yields expressions for the instantaneous coordinates of 

the suspension joints at the chassis, such that: 

yzkzykyky RcRcMaRcMaM  )()( 00230022  

zzkzykykz RcRcMaRcMaM  )()( 00330032  

yzkzykyky RcRcOaRcOaO  )()( 00230022                                               
(5.3)

                 
 

LRkRcRcOaRcOaO zzkzykykz ,                   )()( 00330032 
  

szzyy zGGGG  00  and  ;
                

The above equation can be solved to obtain instantaneous coordinates of the chassis-

linkage joints for a given chassis rotation s about the roll center and/or a vertical 

displacement of the chassis, zs. 
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The velocities of various chassis joints are obtained from the time derivatives of the 

displacement equations, such that: 

)()( 00230022 zkzykyky RcMaRcMaM  
 

zzkzykykz cRRcMaRcMaM   )()( 00330032  

)()( 00230022 zkzykyky RcOaRcOaO  
 

LRkcRRcOaRcOaO zzkzykykz ,                 )()( 00330032  
                 (5.4) 

 

where sz zcR   , ssaa  sin3322
  , and ssaa  cos3223

  . Differentiating the 

velocity expressions with respect to time yields following acceleration expression in joint 

coordinates:    
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5.2.2 Kinematics of the Suspension Linkages 

 The kinematic analysis of the suspension links is performed to determine variations in 

the camber angles and wheel track width in terms of the generalized coordinates. For 

finite displacements of the right and left wheel spindles in the given plane, the 

displacement matrices, DspindleR and DspindleL, of the right and left suspension units, 

respectively, are formulated as: 
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                (5.6) 

where a22k=a33k=cosk and a23k=-a32k=sink, k= R, L. In the above equation, R and L are 

the right and left spindle rotations, respectively, about the x-axis. Cky and Ckz refer to the 
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lateral and vertical coordinates, respectively, of the k
th

 (k=R, L) wheel center. The 

instantaneous coordinates of the suspension-spindle joints (NR, PR, NL and PL) following 

the displacement can be expressed using the right and left wheel spindle displacement 

matrices, DspindleR and DspindleL, as: 
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                        (5.7)  

The expansion of Eq (5.7) yields eight joints coordinates of the left and right wheel 

spindles. The above formulation, however, comprises a total of 12 unknown parameters 

corresponding to the wheel center displacements zuR and zuL, namely: the y and z 

coordinates of joints NR, PR, NL and PL; the y coordinates of the wheel centers CR and CL; 

and the camber angles R and L. Equation (5.7) is thus solved in conjunction with the 

constraint equations, which for a planar double wishbone suspension may be formulated 

considering the constant control arm lengths. The expanded form of Eq (5.7) together 

with the constraint equations thus yields a system of 12 non-linear equations, given by: 

kykzkzkkykykky CCNaCNaN  )()( 00230022  

ukkzkzkzkkykykkz zCCNaCNaN  000330032 )()(  

kykzkzkkykykky CCPaCPaP  )()( 00230022  

ukkzkzkzkkykykkz zCCPaCPaP  000330032 )()(  

222 )()( MNkkzkzkyky lMNMN 
                              

LRklOPOP OPkkykykyky ,.....)()( 222                       (5.8) 

                 

where lMNk and lOPk (k=R, L) are the lengths of upper and lower control arms, 

respectively. Equations (5.3) and (5.8) can be simultaneously solved to obtain kinematic 
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responses of the suspension for given vertical displacements of the left and/or right 

wheels, and/or vertical and roll displacements of the chassis. 

The camber angle variation responses of the left and right wheels (L and R) for given 

sprung mass and unsprung mass displacements either individually or simulataneously can 

be obtained from the solutions of Eqs (5.3) and (5.8). The variations in the wheel track 

with wheel vertical motion can be evaluated from the lateral displacement of the tire-

ground contact points, TR and TL, as shown in Fig. 5.1. The rigid body assumption of the 

tire leads to the expressions for the y- coordinate of the tire-road contact points, TR and 

TL, as: 

kykzkzkkykykky CCTaCTaT  )()( 00230022                                                           (5.9) 

The y- coordinates of the tire-ground contact points, determined by Eq (5.9), determine 

the wheel track width variations, while the roll center of the vehicle in the roll plane is 

estimated using the instantaneous centers of rotations of the wheel spindles [5,6], as 

illustrated in Fig. 5.1. 

The velocities of the joint centers between the upper- and lower control arms and the 

wheel spindle are obtained from time differentiation of Eq (5.8): 

kykzkzkkykykky CCNaCNaN   )()( 00230022  

ukkzkzkkykykkz zCNaCNaN   )()( 00330032  

kykzkzkkykykky CCPaCPaP   )()( 00230022  

ukkzkzkkykykkz zCPaCPaP   )()( 00330032  

0))(())((  kzkzjzkzkykykyky MNMNMNMN 
 

LRkOPOPOPOP kzkzkzkzkykykyky ,          0))(())((  
    (5.10)

 

where kkkk aa  sin3322
  ; and kkkk aa  cos3223

  .  

 



190 

 

5.2.3 Linearization of Kinematic Equations  

The nonlinear kinematic equations can be solved to yield the kinematic responses of 

the model under known inputs at the wheel center and the chassis. The closed form 

solutions of the unknowns in terms of generalized coordinates would be desirable, in 

order to correlate the kinematic relations to the dynamic responses, which may be quite 

complex. A linear system of kinematic relations for the chassis joints could be achieved 

using small angles assumptions, such that a22=a33 1; and a23=-a33 s    

)( 000 zkzskyky RcMMM   ;  skzykyskz zMRcMM  000 )( ; 

)( 000 zkzskyky RcOOO   ; skzykyskz zORcOO  000 )(                 (5.11) 

Similarly, the small angle assumptions in the kinematic equations of the suspension 

linkages yield a22k=a33k 1; and a23k=-a32k k. The small angle assumptions in 

conjunction with the first-order Taylor series approximation of the constraint equations 

yield the kinematic relations in the linear form as: 
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    (5.12) 

It needs to be emphasized that the vertical displacement zs considered while deriving the 

above equations is the vertical motion of the sprung mass at the roll center. The motions 

of the mass center of the sprung mass, sz  and sy , and their time derivatives, sz and sy , can 

be obtained as:  
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)( 000 zzsyy RcGGG   ; szszyysz zGzGRcGG  0000 )( ; 

szz s  and szzs RcGy )(  ; szz  s and
szzs RcGy  )(                  (5.13) 

Since lateral motion of the sprung mass is ignored in this study, y's=0. Eq (5.12) is 

solved to obtain expressions for the kinematic responses of the left- and right (k=L and R) 

suspensions, which include the instantaneous coordinates of the joints and the wheel 

camber angles, in terms of the generalized coordinates, such that: 
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where ak=Nky0-Cky0; bk=Nkz0-Ckz0; ck=Pky0-Cky0; dk=Pkz0-Ckz0; ek=Nky0+Mky0; fk=Nkz0+Mkz0; 

gk=Pky0+Oky0; hk=Pkz0+Okz0; x1k=
2

0

2

0

2

0

2

0 kzkzkyky MNMN  ; x2k = 2

0

2

0

2

0

2

0 kzkzkyky OPOP  ; 

and  

)2)](2()2([ )2)](2()2([ kykkzkkkykkkykkykkkzkkk MeOhcOgdOgMebMfaD 

 

The lateral displacements of the right and left wheel centers can be obtained from:  

0kykyuk CCy                         (5.15) 

5.2.4 Strut Deflection and Deflection Rate 

The restoring force developed by each strut is related to the change in the strut length, 

given by: 

  2/122

0 )()( kzkzkykysk BABAll                     (5.16) 

where ls0 is the initial strut length, assumed to be identical for the left and right struts. In 

the above expression, (Aky, Akz) and (Bky, Bkz) are the instantaneous coordinates of the 

lower and upper strut mounts, which can obtained from the kinematics of the chassis and 

suspension as: 
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 )( 000 zkzskyky RcBBB   ;    skzykyskz zBRcBB  000 )(     (5.17) 

where lOA and lOP are the distances of the joints AR and PR from point OR (or AL and PL 

from point OL). The deflection rates of left- and right suspension struts are subsequently 

estimated from the time derivatives of the displacement expression in Eq (5.16).  
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5.2.5 Kinematics of Torsion Bar 

Torsion bars or the antiroll bars are invariably employed in vehicle suspensions in 

order to enhance roll stiffness and to reduce dynamic load transfers. An antiroll bar 

couples vertical motions of the right and left wheels, and develops a resisting roll 

moment under chassis roll or differential wheel motions. The kinematic motion of a 

torsion bar thus involves spatial kinematic analysis, as illustrated in the Fig. 5.2.  

 
Figure 5.2: Kinematics of the torsion bar 

 

The torsion bar is assumed to be coupled to the chassis at points TcL and TcR, and to the 

lower control arms at the points TsL and TsR, respectively. The instantaneous z- 

coordinates of the chassis mounting points Tck (k=L, R) are estimated from the kinematics 

of the chassis as: 

skzykyskz zTcRcTcTc  000 )(                    (5.18) 

The small angular deformation of the torsion bar θT is determined from the changes in the 

coordinates of the mounting points, as: 



194 

 

        0000
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T

T TsTcTsTcTsTcTsTc
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               (5.19) 

where LT is the effective length of the torsion bar between attachment points TsR and TcR. 

The subscripts ‘z’ and ‘0’ are used to represent the z- coordinates and the initial 

coordinates, respectively. 

Equation (5.19) can be further simplified to yield: 
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                   (5.20) 

where T0  is the initial deformation angle of the torsion bar arm with respect to the 

horizontal axis of the reference coordinate system. The z- coordinates of the torsion bar 

mounting points at the lower control arms TsRz and TsLz, are obtained from the linkage 

kinematics, as: 
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OTs             k=R, L                                                 (5.21) 

where lOTs is the length of the lower control arm between the torsion bar mounting point, 

TsR and the chassis joint OR. 

5.3 Kineto-Dynamic Half-car Model 

The equations of dynamic motion of the kineto-dynamic half-vehicle system, as 

shown in Fig. 5.3 are derived using Lagrange’s method in a manner similar to that 

described in Chapter 3 for the quarter-car kineto-dynamic model. The kinetic energy (T) 

of the system is formulated as: 
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Figure 5.3: Kineto-dynamic half-car model with antiroll bar 

where ms, muR and muL are sprung mass, and right- and left unsprung masses, 

respectively. In the above expression, Ix and Iukx (k=R, L) are the  mass moment of inertia 

of the chassis and the right- and left wheel spindles about x- axis.  

The potential energy of the system is expressed as: 
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where Ks is the suspension spring rate, Kt is the equivalent tire vertical rate, Ktb is the 

linear stiffness of torsion bar, Ktl is the tire lateral stiffness and Rk are the effective radii 

of the wheels. Moreover, Δlk are the right- and left suspension spring deflections, as 

described in Eq (5.16), and Δztk are the right- and left tire deflections. The total energy 

dissipated by the system, attributed to the linear strut and tire damping, can be derived as: 
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where Cs and Ct are the viscous damping coefficients of the strut and the tire, 

respectively, and kl
 denote the time derivatives of the right- and left strut deflections, 

and 
tkz are the rates of right- and left tires deflection.  
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5.3.1 Equations of Motion:  

The equations of motion for the kineto-dynamic model are formulated from the kinetic 

(T), potential (U) and dissipative (D) energy functions described in Eqs (5.22) to (5.24). 

Assuming negligible contributions due to higher order derivative terms, the equations of 

motion are obtained as: 
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where fssk and fsuk (k=R, L) are the right- and left- suspension spring forces acting on the 

sprung and unsprung masses, respectively, fdsk and fduk are the right- and left- damping 

forces acting on the sprung and unsprung masses, respectively, and Tssk and Tdsk are the 

moments due to right- and left- suspension spring and damping forces, respectively. In 

Eq (5.25), ftlsk and ftluk are the vertical tire forces acting on the sprung and unsprung 

masses, respectively, and Ttlsk are the moments imposed on the sprung mass due to the 

right- and left- tire lateral compliance, respectively. Moreover, ftk are the tire forces, and 

ftbs and ftbuk are the forces transmitted to the sprung and unsprung masses, and Ttbs is the 

torque transmitted to the sprung mass due to the torsion bar. Assuming linear spring rates, 

the suspension spring forces fssk and fsuk are related to Δlk, as: 
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         k=R, L                          (5.26) 



197 

 

The torque imposed on the sprung mass due to the right- and left- suspension springs, Tssk 

is related to Δlk and chassis roll, as: 

 
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k
ksssk

l
lKT




      k=R, L                                       (5.27) 

Similarly, fdsk and fduk the left- and right suspension damping forces acting on the sprung 

and unsprung masses, respectively, and Tdsk, the torque due to the damper forces acting 

on the sprung mass, are obtained from: 
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The vertical forces due to the torsion bar exerted on the sprung mass, and left- and right 

unsprung masses, ftbs and ftbuk, and the torque on the sprung mass, Ttbs, are obtained from:   
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Ttbtbs KT  k=R, L               (5.29) 

5.3.2 Wheel Hop Conditions 

The nonlinearity associated with potential loss of contact between the ground and the 

tire (wheel hop) can also be incorporated in the kineto-dynamic model. The forces due to 

the tire viscous dampers, and the lateral and vertical compliance are formulated 

considering four different possible conditions; namely: (i) both the tires are in contact 

with the ground (zuL-z0L<δu and zuR-z0R<δu), where δu is the static tire deflection; (ii) left 

wheel in contact with the ground, while the right wheel loses the ground contact (zuL-

z0L<δu and zuR-z0R≥δu); (iii) right wheel is in contact with the ground, while the left wheel 

loses the ground contact (zuL-z0L≥δu and zuR-z0R<δu); and (iv) both wheels lose contact 

with the ground (zuL-z0L≥δu and zuR-z0L≥δu): 
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0tlskf ;  0tlskT ;   0tlukf ; 0tkf     k=R, L  for zuL-z0L≥δu and zuR-z0R≥δu     (5.30)             

 

5.3.3 Kineto-Dynamic Suspension Model with Asymmetric Damping 

Influences of suspension damping asymmetry on the kinematic and dynamic responses 

of the proposed half-car model is evaluated by considering asymmetric viscous damping 

forces acting on the sprung and unsprung masses (fdsk, fduk). The damping forces are 

described through bilinear and piece-wise linear force-velocity models as in the case of 

quarter car model. The damping forces developed by two-stage asymmetric dampers in 

compression and rebound, fdjk-c and fdjk-r, and the corresponding moments imposed on the 

forces on the sprung mass, Tdsk-c and Tdsk-r (k=R, L) are formulated as:  
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           (5.31) 

where Cc is compression damping coefficient, ρ is damping asymmetry ratio, αc and αr 

are the transition velocities in compression and rebound, respectively, and λc and λr are 

the respective damping reduction factors. The above equation, together with the equation 

of motion, Eq (5.25), describe the kineto-dynamics of the half-car model with double 

wishbone type of suspension and two-stage asymmetric damper. 

5.4 Roll-plane Dynamic Model of a Vehicle  

The dynamic motions of the vehicle in the roll-plane are generally described by a 4-

DOF model as shown in Fig. 5.4 [102, 135]. The responses of the proposed kineto-

dynamic half-car model can be conveniently compared with this conventional roll-plane 

model to evaluate the influences of linkage kinematics. The equations of motion 

describing the coupled vertical and roll motion are formulated as: 
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ssRsLss mffzm 81.9  

srccgssRsLssrccgx hhmWfWfmhhI  )(81.9))(( 2    

uLtLsLuLuL mffzm 81.9  

uRtRsRuRuR mffzm 81.9                                                                             (5.32) 

where W is the half suspension track width, which is generally considered to be identical 

to half tire track width, hcg and hrc are the mass center and roll center heights of the 

sprung mass, respectively. The roll motion of the chassis is thus assumed to occur about 

the roll center. In the above equation, fsL and fsR represent the left- and right- strut forces, 

and ftL and ftR are the left and right tire forces, respectively. Assuming linear suspension 

properties, fsL and fsR, can be obtained as:   

)()( uLssequLsseqsL zWzKzWzCf     

)()( uRssequRsseqsR zWzKzWzCf                                                        (5.33) 

where Keq and Ceq are the equivalent spring and damping rates, respectively, which are 

obtained from the kinematic and force analysis of the double wishbone suspension as 

illustrated in Chapter 3. The equivalent spring and damping rates are considered in order 

to account for the kinematic effects of suspension struts mountings coordinates with 

respect to the unsprung mass center (Fig. 5.2).  

 
Figure 5.4: Conventional roll-plane half-car model 
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Considering the wheel hop conditions, described in section 5.3, the left- and right tire 

forces ftL and ftR are formulated as:  

)()( 00 LuLtLuLttL zzKzzCf   ; 

)()( 00 RuRtRuRttR zzKzzCf   ;  
             

 for zuL-z0L<δu and zuR-z0R<δu   

)()( 00 LuLtLuLttL zzKzzCf   ; 0tRf ;   for zuL-z0L<δu and zuR-z0R≥δu 

0tLf ; )()( 00 RuRtRuRttR zzKzzCf   ;  for zuL-z0L≥δu and zuR-z0R<δu 

 

0tLf ; 0tRf ;                                             for  zuL-z0L≥δu and zuR-z0L≥δu)          
(5.34)

 
 

where Kt and Ct are the linear tire spring and damping rates, respectively. In the dynamic 

model, the lateral motion of chassis is assumed to be caused by the chassis roll, s.  

5.5 Kinematic Response Analyses and Suspension Geometry Synthesis 

The nonlinear kinematic formulations, presented in section 5.2.2, are solved using 

Newton-Raphson method to obtain kinematic responses of the half-car model, 

particularly the variations in the bump and roll camber angles and the wheel track under 

either vertical motions of the wheels or roll motion of the chassis or a combination of 

sprung and unsprung masses motions. The simulations are performed for joint 

coordinates of a typical double wishbone suspension, presented in chapter 2 [146]. 

Considering the symmetry between left and right suspensions, the coordinates of linkage 

suspension joints alone are defined: MR(0.430, 0.818), NR(0.644, 0.852), OR(0.365, 

0.360), PR(0.743, 0.347), CR(0.787, 0.452), AR(0.660, 0.349) and BR(0.615, 0.920). The 

left suspension is considered to be symmetric to the right suspension about a vertical line 

through the mass center of the vehicle body. Initial camber angles of the wheels are 
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assumed to be zero, since the analyses are concerned with variations in the responses 

alone. 

5.5.1 Kinematic Response Analyses 

The kinematic responses are evaluated in terms of: (i) the bump camber angles under 

vertical displacement inputs at the wheel centers with fixed chassis; (ii) roll camber 

response to chassis roll input; and (iii) variations in the bump/roll camber angles under 

simultaneously applied wheel centers displacements and chassis roll inputs. The wheel 

centers with fixed chassis was subjected to 100 mm peak harmonic jounce and rebound 

motion at a frequency of 1 Hz, such that zuR=zuL=100sin(2πt) mm and zs= 0. The analyses 

were performed considering two different types of simultaneous harmonic inputs, 

namely: (i) relatively large chassis roll coupled with smaller wheel bump motions 

(s=5sin(2πt)°; zuR= zuL=50sin(2πt) mm; and zs=0); and (ii) relatively large wheel bump 

motions coupled with smaller chassis roll motion (s=3sin(2πt)°; zuR= zuL=100sin(2πt) 

mm; and zs= 0). The responses of the right- and left- wheels to simultaneous harmonic 

inputs, thus defined, can be related to the outer and inner wheels of a vehicle negotiating 

a corner.  In the first half of the simultaneous harmonic inputs, both the wheels undergo 

jounce, while the chassis undergoes a positive (clockwise) roll motion. This could be 

related to the outer (right) and inner (left) wheels undergoing jounce while negotiating a 

corner (left turn of the vehicle). In a similar manner, both the suspensions undergo 

rebound motion during the second half of the harmonic inputs, while the chassis 

undergoes a negative (counterclockwise) roll, which corresponds to the outer (left) and 

inner (right) wheels undergoing rebound while negotiating the corner.  
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Figure 5.5 compares the bump camber responses of the right and left wheels under 

wheel vertical excitations alone (zuR=zuL=100sin(2πt) mm), and combined wheel 

displacement and chassis roll (s=3sin(2πt)°). Under vertical wheel displacements alone, 

both the wheels exhibit negative camber angle during jounce travel, which approach 

approximately -3.4° at 100 mm jounce. During rebound, the wheels exhibit positive 

camber with a maximum of 1.1°, suggesting asymmetric variations in jounce and 

rebound. Under the simultaneous wheel vertical and chassis roll inputs, the camber angle 

response of the right wheel in jounce reduces considerably, which is attributable to the 

compensating effect of the positive roll camber due to chassis roll. The right wheel under 

jounce displacement coupled with simultaneously applied positive chassis roll can be 

considered as the outer wheel of a vehicle negotiating a corner and undergoing a jounce 

motion. The camber angle of the right wheel in rebound in a similar manner would 

represent the inner wheel of the vehicle. It can be further seen that the net camber angle 

response of the right wheel in rebound tends to be negative with a peak value near -2°.  

The left wheel in jounce under the combined wheel vertical and chassis roll input, 

would represent the inner wheel of a vehicle negotiating a corner and undergoing jounce. 

It can be observed from the figure that the net camber angle of the left wheel in jounce 

goes further negative with a peak value near -4.5°. The left wheel under rebound travel 

with simultaneously applied negative chassis roll input represents the outer wheel of a 

vehicle negotiating a corner and undergoing rebound. The figure shows that the net 

camber angle of the left wheel in rebound under simultaneous inputs increases 

considerably as compared to the bump camber, and exhibits a peak response near 4°. It is 

widely suggested to minimize the net wheel camber of the outer wheel of a vehicle 
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negotiating a corner due to the greater load transfer to these wheels to achieve reduction 

in the camber thrust [5]. The lateral load transfer to the outer wheels would yield greater 

lateral force developed at the tires due to camber angle (camber thrust). A suspension 

synthesis thus needs to consider the net camber angle responses of the right- and left-

wheels undergoing jounce and rebound, respectively, under simultaneous inputs due to 

wheel motion and chassis roll. The results in Fig. 5.5 suggest that the net camber angle 

response of the left-wheel in jounce and rebound is considerably large. 

 

                                      (a)                                                                  (b) 

Figure 5.5: Variations in camber angles of: (a) the left; and (b) the right wheels under 

wheel vertical displacement inputs alone (zuR, zuL=100sin(2πt)) with fixed chassis, and 

coupled with 3° chassis roll input (s=3°sin(2πt), zs= 0) 

 

Figure 5.6 demonstrates the roll camber responses of the right and left wheels under 

chassis roll input alone, and under simultaneously applied wheel vertical displacement 

inputs (zuR, zuL =50sin(2πt) with zs= 0 and s= 5°sin(2πt)). Under a positive chassis roll, 

the right wheel exhibits positive camber with peak value of nearly 3°, while the left wheel 

exhibits a negative camber angle with peak value approaching nearly -4°. The camber 

angle responses to chassis roll are thus asymmetric with respect to the chassis roll, with 

peak roll camber under positive chassis roll (3°) being less than that under the negative 
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chassis roll (-4°). The responses to simultaneous inputs, presented in Fig. 5.6, illustrate 

similar significance of the chassis roll as that observed in Fig. 5.5. The right wheel 

exhibits decrement in the net camber angle, while the left wheel exhibits increment in the 

net camber angle under simultaneous inputs as compared to those under the chassis roll 

alone.  

 
                                  (a)                                                                  (b) 

Figure 5.6: Variations in camber angles of: (a) the left; and (b) the right wheels under a 

chassis roll input alone (s =5°sin(2πt))  and chassis roll input coupled with wheels 

vertical displacements, zuR, zuL =50 sin(2πt). 

 

5.5.2 Sensitivity Analysis 

A reduction in lateral packaging space of the suspension could be realized through 

variations in y- coordinates of joints OR and MR in a positive direction, while a similar 

change would be necessary for joints OL and ML to maintain a symmetry. A sensitivity 

analysis is thus initially performed out to study the influences of changes in the 

suspension joint coordinates on the kinematic responses, including the roll center height, 

bump and roll camber angles, and the track width variations. The analyses are performed 

by considering ±40 mm variations in y- and z- coordinates of various joints, and 

responses are evaluated in terms of: (i)  variation in the roll center height with respect that 
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of the nominal suspension geometry, Δ(RCH);  (ii) peak bump camber angles under 100 

mm of jounce and rebound, Δ(R)jou and Δ(R)reb; (iii) peak variations in wheel track 

width under 100 mm of wheel jounce and rebound, Δ(TW)jou, and Δ(TW)reb; and (iv) 

peak roll cambers of right- wheel under positive, and negative chassis roll of 5°. The peak 

net camber angles of the right wheel in jounce, Δ(R)jou, and the left wheel in rebound,
 

Δ(R)reb, are further evaluated under simultaneous 100 mm wheel displacements and 3° 

chassis roll. The responses were evaluated with change in a single coordinate at a time, 

while all other joint coordinates were held as nominal. The variation in the y-coordinate 

of joint PR, however, was limited to a negative change only, due to limited lateral space 

between the lower control arm joint (PR) and the wheel center (CR). The variation in a 

given coordinate, however, is considered symmetric for both the right- and left-side 

suspension links.  

    The results of the sensitivity analysis are summarized in Table 5.1. The variation in a 

joint coordinate along the y- or z- axis is indicated by the subscript of the joint, while the 

superscript ‘+’ or ‘-’ refer to the increase or decrease in the coordinate. For instance, 

notation Oy
+ 

in Table 5.1 denotes a 40 mm increase in y- coordinates of joints OR and OL 

with respect to the nominal values. It can be seen that a positive change in y- coordinates 

of joints O causes reductions in the peak jounce camber and track width under wheel 

vertical displacements, peak roll camber under negative chassis roll, and peak jounce 

camber angle under simultaneous inputs, with marginal increases in the peak rebound 

camber angle and track width responses under wheel vertical displacements. A positive 

change in y- coordinate of joint M causes a marginal reduction in the peak rebound 

camber angle and track width under wheel vertical displacements alone, and the peak roll 
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Table 5.1: Sensitivity of the kinematic responses of the half-car model to changes in the y and z coordinates of the linkage joints under 

vertical wheels displacement, chassis roll, and simultaneous wheels displacement and chassis roll inputs. 

 

Excitation Static Wheel vertical displacement Chassis roll Simultaneous 

Parameter 
Δ(RCH) 

(mm) 
Δ(ur)jou 

(deg)
 

Δ(ur)reb 
(deg)

 
Δ(TW)jou  

(mm) 

Δ(TW)reb 

 (mm) 
Δ(ur)roll 

(deg)
 

Δ(-ur)roll 
(deg)

 
Δ(ur)jou 

(deg)
 

Δ(ul)reb 
(deg)

 

Nominal 0 -3.19 1.14 5.9 -22.2 3.08 -4.05 -2.32 3.91 

Oy
+
 4.7 -3.07 1.38 4.9 -25.5 3.13 -3.94 -2.10 3.99 

Oy
-
 -3.9 -3.27 0.95 7.2 -19.6 3.04 -4.15 -2.55 3.82 

Oz
+
 123.2 -4.16 2.44 2.1 -39.2 2.36 -3.22 -3.62 4.63 

Oz
-
 -125.4 -2.16 0.19 -4.2 -5.3 0.21 -2.16 -0.97 3.19 

Py
-
 4.1 -3.13 1.35 5.2 -24.9 3.11 -3.96 -2.21 3.98 

Pz
+
 -116.7 -2.32 0.21 -3.1 -5.1 3.72 -4.88 -3.24 4.51 

Pz
-
 98.5 -3.92 2.25 17.0 -36.8 2.53 -3.35 -1.23 3.21 

My
+
 13.9 -4.19 1.03 10.7 -21.3 2.55 -4.04 -4.32 3.95 

My
-
 -9.7 -2.52 1.26 3.8 -22.8 3.44 -4.06 -1.06 3.88 

Mz
+
 -75.9 -1.19 -0.40 -0.5 -10.4 4.44 -5.56 -4.69 4.88 

Mz
-
 68.6 -5.09 3.15 15.1 -31.4 1.81 -2.74 0.41 2.56 

Ny
+
 -9 -2.62 1.24 4.0 -22.7 3.4 -4.07 -1.28 3.88 

Ny
-
 12.6 -3.96 1.05 9.6 -21.5 2.65 -4.03 -3.78 3.96 

Nz
+
 58.7 -4.79 2.92 13.6 -30.4 2.01 -2.9 -4.69 4.88 

Nz
-
 -102.7 -1.28 -0.44 -0.3 -9.7 4.40 -5.65 0.42 2.56 



208 

 

camber of the right wheel under positive chassis roll, while all other responses tend to be 

generally higher. The results suggest that suspension synthesis to achieve reduction in the 

lateral space thus, necessitates compromises among the performance measures. 

The results in Table 5.1 further show that changes in y coordinates of all the joints 

yield relatively smaller influence on the Δ(RCH) response, while variations in the z- 

coordinates yield substantial changes in Δ(RCH), irrespective of the direction of change, 

as it would be expected. Positive changes in z- coordinates of lower control arm-chassis 

joint O and upper control arm-spindle joint N, and negative changes in z-coordinates of 

lower control arm-spindle joint P and upper control arm-chassis joint M yield 

substantially higher roll center. Opposite changes in these coordinates yield an opposing 

effect on the roll center height. The wheel track variation response to wheel vertical 

displacements seems to be most sensitive to positive variations in z-coordinates of joints 

O and N, and negative variations in z-coordinates of joints M and P. Negative changes in 

z- coordinates of joints O and N, or a positive changes in z- coordinates of joints P and M 

tend to reduce the wheel track variations in both jounce and rebound, while these changes 

yield substantially lower roll center height. These results suggest the need for a design 

compromise between the roll center height and wheel track variations.  

The positive and negative changes in a coordinate, in general, yield an opposing 

influence on the selected performance measures except for the peak wheel track 

variations. For example, a positive change in z- coordinates of joints O yield higher peak 

bump camber angles in both jounce and rebound, while a negative change causes 

reduction in both the responses.  
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It can be observed that the changes (positive or negative) in the y or z- coordinates that 

cause reduction in peak bump camber angle also results in an increase in peak roll 

camber response, except for the negative changes in the z- coordinates of the lower 

control arm-chassis joints O. For example, a positive change in y- coordinates of joints O 

yields lower peak jounce camber but higher rebound camber, while an opposing effect on 

the roll camber is evident from Table 5.1. These results further suggest that the bump and 

roll camber angle responses are conflicting with respect to a change in the coordinates of 

the joints. A negative change in z- coordinates of joints O, however, could yield only 

small variations in both the bump and roll camber angle responses, while the 

corresponding roll center height decreases substantially.  

The results further show an interesting coupling between the net camber angle, and 

roll and bump camber responses. Notable reductions in the peak net camber angle during 

rebound occur for negative changes in vertical coordinates of joints O, P, M and N. 

Similar degrees of reductions also occur in peak roll camber under negative chassis roll, 

and in peak rebound camber under wheel vertical displacements. While the results from 

the sensitivity analysis could be interpreted to derive design guidelines in view of the 

performance measures and the inputs considered, the need for deriving a design 

compromise is also evident, particularly for realizing minimal variations in bump/roll 

camber and wheel track responses over the entire range of the inputs.  

5.5.3 Selection of Optimal Joint Coordinates 

The results of the sensitivity analysis suggest that the joint coordinates influence the 

kinematic performance measures significantly in a highly complex manner, while the 

influences on different measures are generally conflicting. Synthesis of a suspension for 
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achieving reduction in the lateral packaging space would thus involve compromises 

among the bump/roll camber, roll center height and track width variations. It is thus 

desirable to seek optimal joint geometry that could yield an acceptable design 

compromise among the conflicting kinematic performance measures while achieving 

reduction in the lateral packaging space.  

A suspension synthesis objective is thus formulated to identify joint coordinates that 

would yield minimal variations in the bump/roll camber angle and the track width under 

wheel vertical displacement and chassis roll motions with constrained lateral space. A 

weighted performance index is thus formulated as: 

)()()()( 332211 vFwvFwvFwvF 
                                                       (5.36)  

where F1(v) and F2(v) are the sum of squares of variations in the bump camber, and 

wheel track over the entire range of wheel vertical travel, respectively, and F3(v) is the 

sum of the squares of the roll camber response over the entire range of chassis roll, such 

that: 
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where the integration limits (zumin, zumax) and (smin, smax) refer to minimum and 

maximum wheel displacements and chassis roll inputs, respectively. In the performance 

index in Eq (5.36), w1, w2 and w3 are the weighting factors of individual measures, and v 

is the vector of design variables comprising the y- and z- coordinates of the joints M, N, O 

and P.  The weighted performance index was minimized using the gradient based 

sequential quadratic programming algorithm available in Matlab Optimization Toolbox 
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[151] to seek optimal joint coordinates, while a reduction in the lateral packaging space 

was sought by introducing inequality constraints. The lateral packaging space is 

expressed in terms of lateral distance between the y- coordinates of the joints O and M, 

and that of the wheel center C, while the reduction required in the lateral space of the 

optimal synthesis is expressed by fractional factors σ1 and σ2 of the nominal suspension 

geometry, such that: 

)()(

)()(
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yyyy

yyyy
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MCMC








                                                                             (5.38)        

where 0yM  and 0yO  are the y- coordinates of the joints M and O, respectively, identified 

from solutions of the minimization problem. The difference between the roll center 

heights of the optimal and nominal suspensions with respect to the corresponding static 

positions was also limited through a limit constraint with βl and βu,  being the lower and 

upper limits, respectively, such that: ul )RCH(    

The nominal coordinates were taken as the initial design vector, and y- and z- 

coordinates were bounded within ±80 mm and ±30 mm of the nominal values with the 

exception of y-coordinate of joint P, which was bounded within -80 and +20 mm. The 

solutions of the minimization problem were observed to be strongly dependent upon the 

weighting factors used in the performance index. The weighting factors were initially 

chosen to obtain nearly equal contributions of each measure to the weighted performance 

index. The subsequent solutions, however, were attained for different combinations of the 

weighting factors. Considering the comparable magnitudes of the camber angle and track 

width variations of the nominal geometry, identical weighting factors for each component 

(w1=w2) provided acceptable solutions for joint coordinates: M'(0.480, 0.838), N'(0.714, 
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0.862), O'(0.415, 0.392) and P'(0.750, 0.377). These coordinates resulted in 

approximately 10% and 12% reductions in the lateral space for the lower and upper 

control arms, respectively. The robustness of the optimal design, however, could be 

achieved by considering variations in the weighting factors.  

The kinematic responses of the identified suspension synthesis are compared with 

those of the nominal geometry suspension to illustrate relative benefits of the synthesis. 

Figure 5.7 compares wheel track variation responses of the optimal and nominal 

suspension geometries under wheel vertical displacement inputs alone and simultaneous 

chassis roll and wheels displacements. The results suggest that the optimal synthesis 

yields lower wheel track variation during wheel jounce under wheels displacement input 

with only slight increase during wheel rebound beyond 75 mm. Under the simultaneous 

inputs, the optimal synthesis also yields lower track variations in jounce but higher in 

rebound above 50 mm compared to that of the nominal geometry suspension. Figure 5.8 

compares the camber angle variation response of the suspensions under wheel vertical 

motion with and without the chassis roll. The results show that the optimal synthesis 

yields considerably lower bump and net camber angle variation compared to those of the 

nominal suspension over the entire jounce travel of the wheel under both types of 

excitations.  The bump and net camber responses of the optimal synthesis in the rebound 

region are comparable with those of the nominal suspension.  

The roll center height of the optimal synthesis in the static position was obtained as 

106.5 mm, which represents only 1 mm deviation from that of the nominal geometry 

suspension. Although, the optimization method proposed here resulted in a slight 

increment in the roll camber responses, with beneficial effects in terms of reductions in 
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the bump camber and wheel track variation in jounce coupled with 10% reduction in the 

suspension lateral packaging space, the identified coordinates may be considered as an 

acceptable design compromise. Further, the total roll response of vehicle under handling 

maneuvers can be controlled by using anti-roll bars.  

  

                                  (a)                                                                  (b) 

Figure 5.7: Comparisons of variations in wheel track responses of the optimal and 

nominal geometry suspensions under wheel vertical travel inputs: (a) without chassis roll; 

and (b) with chassis roll 

 
                                  (a)                                                                    (b) 

Figure 5.8: Comparisons of variations in camber angle of the right wheel of optimal and 

nominal geometry suspensions under wheel vertical travel inputs: (a) without chassis roll; 

and (b) with chassis roll input 
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12%, while that of the upper control arm is increased by 12%. This suggests that 

minimizing the bump/roll camber angle may not be feasible with reduction in the control 

arm lengths, and a compromise in the vertical space may be necessary.  

5.6 Kineto-dynamic Responses of the Roll-Plane Vehicle Model  

The kineto-dynamic formulations presented in Sections 5.3 are solved to determine the 

kinematic and dynamic responses of the vehicle model to transient excitations 

representing idealized ‘bump’ and ‘pothole’ excitations, as described in Section 3.6.3. 

The model parameters used in simulation are summarized in Table 5.2. The results 

attained are discussed in the following sections. 

5.6.1 Influences of Suspension Linkage Kinematics 

Dynamic responses of the proposed kineto-dynamic roll-plane vehicle model are 

compared with those of the conventional model so as to illustrate the influences of 

suspension kinematics on the dynamic responses. The transient responses of both the 

models to idealized bump and pothole inputs of 50 mm amplitude at the right wheel 

(obtained by numerical solutions of kineto-dynamic formulations) are evaluated at a 

forward velocity of 3 m/s, in terms of: sprung mass acceleration at the mass center (cg); 

sprung mass roll angle; and left- and right tire force ratios. The results presented in Figs. 

5.9 and 5.10 suggest considerable contributions of the kinematics to the dynamic 

responses. 

The peak sprung mass acceleration responses of the conventional model (section 5.4) 

with equivalent spring and damping rates are lower than those of the kineto-dynamic 

model under both bump and pothole type excitations, as seen in Fig. 5.9 (a).  
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Table 5.2: Vehicle and suspension data 

 

Parameter Value 

Sprung mass (ms) 

Sprung mass moment of inertia about x- axis (Ix) 

Unsprung mass (muR and muL) 

Unsprung mass moment of inertia about x- axis (Iux) 

Suspension spring stiffness (Ks) 

Suspension damping rate (Cs) 

Tire vertical stiffness (Kt) 

Tire damping rate (Ct) 

Tire lateral stiffness (Ktl) 

Tire effective radius (R) 

Torsion bar stiffness (Ktb) 

878.76 kg 

247.00 kg-m
2
 

42.27 kg 

1.86 kg-m
2 

38404 N/m 

3593.4 Ns/m 

200 kN/m 

352.27 Ns/m 

100 kN/m 

0.35 m 

560 Nm-rad 

 

 
                         (a)      (b) 

Figure 5.9: Comparisons of sprung mass responses of kineto-dynamic and conventional 

roll-plane models under idealized bump and pothole type excitations (z0max=±50 mm): (a) 

vertical acceleration; and (b) chassis roll angle. 
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frequency and roll damping of the kineto-dynamic model in comparison to the 

conventional roll dynamic model. Slight increase in the vertical frequency (attributed to 

an increase in the effective spring rate) was also observed in the kineto-dynamic quarter-

car model.  

The tire force ratio responses of left- and right wheels of the conventional and the 

kineto-dynamic model to bump and pothole inputs of ±50 mm amplitude are compared in 

Figs. 5.10 (a) and (b), respectively. The results suggest that inclusion of suspension 

linkages in the dynamic model affects the left tire force ratio response significantly under 

both bump and pothole inputs. The kineto-dynamic model response during the excitation 

period appears to be more nonlinear than that of the conventional model, which can be 

attributed to suspension linkages kinematics and tire lateral compliances. The peak left 

tire force of the kineto-dynamic model under bump and pothole inputs are slightly greater 

than that of the conventional model. The right-tire force response of the kineto-dynamic 

model is comparable to that of the conventional model, while the oscillations in the 

kineto-dynamic model response occur at a slightly higher frequency.  

 
    (a)         (b) 

Figure 5.10: Comparisons of tire force ratio responses of kineto-dynamic and 

conventional roll-plane models under idealized bump and pothole type excitations 

(z0max=±50 mm) of: (a) the left; and (b) the right tires. 
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5.6.2 Effects of Optimal Suspension Geometry 

The above results suggest notable contributions of the suspension kinematics on the 

dynamic responses. Variations in suspension joint coordinates are thus expected to 

influence the dynamic responses of the vehicle, as it was observed for the quarter vehicle 

model. The optimal suspension synthesized in section 5.5.3 on the basis of kinematic 

responses to wheel vertical displacement or chassis roll is employed in the kineto-

dynamic model to study the effects on the dynamic responses. The kinematic and 

dynamic responses of the kineto-dynamic half car model with the optimal joint 

coordinates are compared with those of the model with nominal joint coordinates in terms 

of: sprung mass acceleration; chassis roll angle; normalized load transfer (load transfer 

normalized by the total wheel load); and variations in the camber angle and wheel track 

under idealized bump and pothole inputs (z0max=±50 m; forward velocity=3 m/s) applied 

at the right wheel. The results presented in the Figs. 5.11 to 5.13 are also discussed in 

view of the optimization method used in the study.  

The results in Fig. 5.11 (a) show that the kineto-dynamic model with the optimal joint 

coordinates yields lower peak acceleration responses compared to the model with 

nominal coordinates under bump and pothole excitation. The peak acceleration response 

of the model with optimal coordinates is approximately 2.00 m/s
2
, which is 11% lower 

than that of the model with nominal coordinates.  The peak roll angle responses of the 

kineto-dynamic model with optimal joint coordinates under idealized bump and pothole 

excitations are also slightly lower than that those of the model with nominal suspension 

geometry. The magnitudes of second peak in roll angle, however, tend to be slightly 

higher for the optimal suspension geometry. The lower first peak is attributed to lower 
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effective roll stiffness, while the higher second peak is due to lower roll damping of the 

model with optimal coordinates. The results in Fig. 5.11 (a) and (b) suggest that the 

optimal coordinates selected on the basis of kinematic response alone cause significant 

change in the effective spring and damping rates, which could influence the ride and 

handling dynamics of the vehicle considerably.     

 
(a)      (b) 

Figure 5.11: Comparisons of sprung responses of kineto-dynamic model with nominal 

and optimal joint coordinates under idealized bump and pothole type of excitations 

(z0max=±50 mm): (a) vertical acceleration; and (b) chassis roll angle. 

 

 
(a)      (b) 

Figure 5.12: Comparisons of responses of kineto-dynamic model with nominal and 

optimal joint coordinates under idealized bump and pothole type excitations 

(z0max=±50mm): (a) normalized load transfer; and (b) wheel track variation 
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Figure 5.12 (a) shows the lateral load transfer response of the kineto-dynamic model 

with nominal and optimal joint coordinates. The peak load transfer responses of both the 

models are generally lower under a bump input than under the pothole input (the peak 

magnitudes of 0.18 and 0.28 under bump and pothole inputs). This is mainly attributed to 

the larger total tire force (sum of left- and right tire forces) under bump input than that 

under the pothole input. Under the bump input, the tire spring undergoes compression 

initially, while under the pothole input it experiences expansion. Both nominal and 

optimal joint coordinates yield comparable responses during the period of input, while 

the model with nominal coordinates yields slightly higher peak responses during the free 

oscillations. Variations in wheel track responses of the model with nominal and optimal 

joint coordinates follow the similar trend observed in the sprung mass roll angle, as seen 

in Fig. 5.12 (b).  

The peak camber angle variation responses of both the wheels with optimal joint 

coordinates are considerably lower compared to those of the model with nominal 

coordinates, particularly the first peaks, under both bump and pothole type inputs  as 

shown in Figs. 5.13.  The second peak in camber variation response of the model with 

optimal joint coordinates, however, is higher compared to that with the nominal 

coordinates. Considering that the magnitudes of the second peaks in camber variation 

responses are significantly lower, it may be deduced that the optimization method 

adopted in this study also yields beneficial effects under transient excitations. The results 

in Figs. 5.13 (a) and (b) suggest that the left wheel exhibits higher camber angle response 

than the right wheel. It needs to be noted here that the right wheel undergoes a vertical 

displacement relative to the chassis, while the vertical motion of the left wheel (due to 
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tire spring compression) is very small. The net camber angle variation of the right wheel 

is thus considerably lower. 

 

 
(a)      (b) 

Figure 5.13: Comparisons of camber angle variations of kineto-dynamic model with 

nominal and optimal joint coordinates under idealized bump and pothole type excitations 

(z0max=±50 mm): (a) the left; and (b) the right wheel. 

 

The results in the Figs. 5.11 and 5.12 (a) suggest that the suspension kinematics 

contributes considerably to the dynamic responses of the proposed half-car model, 

particularly due to variations in the effective spring and damping rates. The suspension 

geometry factor ψ that relates the effective spring rate to the actual spring rate of the 

suspension with the optimal joint coordinates was estimated as 0.54 (Section 3.3), which 

is lower than that of the nominal geometry (0.59). Apart from the linkage/joints 

geometry, the variation in the wheel rate would also depend upon the strut mounting 

locations. The influences of variations in the strut mounting locations are thus 
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in the positive and negative senses by 50 mm. The changes in the coordinates of the 
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coordinates at their nominal positions (optimal joint coordinates selected in section 5.4). 
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Furthermore, the optimal upper and lower control arms joints coordinates selected in the 

previous section were considered for the study. Figures 5.14 and 5.15 illustrate effects of 

variations in the lower and upper strut mounts location on the sprung mass acceleration 

and roll angle responses of the kineto-dynamic model under an idealized bump input of 

50 mm amplitude at the right wheel.  

A negative change in y- coordinate of the lower strut mount (Ay-) results in significant 

increase (in the order of 30%) in the sprung mass vertical acceleration and roll angle 

responses of the kineto-dynamic model as seen in Figs. 5.14 (a) and (b). The vertical and 

the roll oscillation frequencies increase considerably, which suggests that reducing the 

distance of the lower mount from the chassis joint increases the effective wheel rate. On 

the other hand, a positive change in the strut lower mount location causes reduction in 

these responses and the oscillation frequency. Variations in the y- coordinate of the strut 

upper mount, however, cause relatively less significant influences on the sprung mass 

acceleration response, as seen in Fig. 5.15 (a). The sprung roll angle response is almost 

insensitive to variations in the upper strut mount location. The results thus suggest that 

the dynamic response of the roll-plane vehicle model are highly sensitive to the lower 

strut mount coordinates, which demands considerable attention during suspension 

synthesis. 

The influences of variations in the strut mounting locations on the camber and wheel 

track variation responses were also evaluated, although the results are not presented. It is 

evident from the results in Figs. 5.11 to 5.15 that the kinematic and dynamic responses 

are strongly influenced by the suspension joint coordinates and strut mounts. The 

selection of optimal coordinates thus involves study of both kinematic and dynamic 



222 

 

responses rather than the kinematic responses alone, and the proposed kineto-dynamic 

model would be instrumental in deriving such optimal joint coordinates.  Defining an 

objective function involving kinematic and dynamic responses such as camber angle and 

wheel track variations, sprung mass acceleration and roll angle response and tire force 

variations under transient or random excitations, with joint coordinates as the design 

vector could yield optimal suspension joint coordinates of the double wishbone 

suspension. 

 
(a)      (b) 

Figure 5.14: Effects of variations in the lower strut mount coordinates on the responses of 

the sprung mass to an idealized bump excitation: (a) vertical acceleration; and (b) roll 

angle. 

 
(a)      (b) 

Figure 5.15: Effects of variations in the upper strut mount coordinates on the responses of 

the sprung mass to an idealized bump excitation: (a) vertical acceleration; and (b) roll 

angle. 
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5.6.3 Influences of Anti-roll Bar on the Kinematic Response Measures  

Auxiliary roll stiffness such as antiroll bars help to reduce the sprung mass roll angle 

and lateral load transfers under lateral excitation due to steering inputs, while the antiroll 

bars are also known to increase the roll angle response of the sprung mass under 

differential vertical road inputs [101]. The influences of antiroll bar on the suspension 

kinematic responses, however, could not be found in the literature. The sprung mass roll 

angle, wheel track variation, and the left- and right wheels camber angle variation 

responses of the kineto-dynamic model with and without an antiroll bar are thus 

evaluated under the bump and pothole inputs at the right wheel. The results presented in 

Figs. 5.16 and 5.17 consider effects of the antiroll bar on both the kinematic and dynamic 

responses.  

The roll angle response of the model with antiroll bar is higher compared to that of the 

model without the antiroll bar, under both the bump and pothole excitation, as seen in 

Fig. 5.16 (a). The addition of an antiroll bar increases the effective roll stiffness and thus 

the roll frequency, which is evident from the roll angle response. The peak roll-angle 

responses of the model with and without antiroll bar are at 1.95
°
 and 2.3

°
, respectively, 

under the bump and pothole inputs. The oscillations in the responses with and without 

antiroll bar occur near 1.35 and 1.7 Hz frequency, respectively. The higher roll angle 

response with the antiroll bar is most likely attributed to variations in suspension 

kinematic responses, which are strongly affected by the relative motions between the 

sprung and unsprung masses.  The effect on the wheel track variation responses, 

however, is negligible as seen in Fig. 5.16 (b), which is attributable to negligible lateral 
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motion of the left wheel-ground contact point under bump excitation at one wheel, 

particularly when the lateral DOF of the sprung mass is neglected.  

 
(a)      (b) 

Figure 5.16: Effects of antiroll bar on the sprung mass roll angle and wheel track 

variation responses of the kineto-dynamic model under idealized bump and pothole type 

excitations (z0max=±50 mm): (a) sprung mass roll angle; and (b) wheel track variation. 

 

The presence of an antiroll bar also causes significant changes in the camber angle 

responses of both the left- and right wheels, as shown in the Figs. 5.17 (a) and (b), 

respectively. The results show that peak left wheel camber is greater than that of the right 

wheel, irrespective of the antiroll bar and the type of input. This is attributed to the 

opposing bump and roll camber of the right wheel that undergoes a vertical motion 

during the bump. The net camber angle variation, however, is predominantly determined 

by the magnitude of the sprung mass roll angle. This can be observed from the 

oscillations in the camber variation responses, which follow a trend similar to that 

observed in the roll angle response (Fig. 5.16 (a)). The results in Figs. 5.16 and 5.17 

clearly suggest that addition of an antiroll bar in the suspension could change the camber 

angle response under differential road inputs at two wheels of an axle, which would 

further depend upon the antiroll bar stiffness. Synthesis of antiroll bar, thus poses an 
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additional design challenge in terms of kinematic responses, apart from the commonly 

known design compromises between ride and roll angle under lateral inputs. Previous 

studies have failed to identify this additional design compromise due to simpler vehicle 

and suspension models considered in these studies.  

 

 

 
(a)      (b) 

Figure 5.17: Comparisons of camber angle variation responses of the kineto-dynamic 

model with and without antiroll bar under idealized bump and pothole type excitations 

(z0max=±50 mm): (a) the left wheel; and (b) the right wheel. 

5.6.4 Influences of Suspension Damping Asymmetry  

The influence of damper asymmetry on the kinematic and dynamic responses of the 

kineto-dynamic roll-plane model of the vehicle is evaluated under bump and pothole type 

of excitations at the right wheel. Two types of asymmetric dampers were selected for the 

relative analyses similar to those described in section 4.6.2 for the quarter car model: (a) 

δc=0.1 and ρ=5; and (b) δc=0.2 and ρ=2. Sprung mass vertical acceleration and roll angle, 

and left- and right wheel camber angle variation responses of the kineto-dynamic roll-

plane model with asymmetric damper are compared with those of the model with the 

linear equivalent damper in Figs. 5.18 to 5.19, under 50 mm bump and pothole inputs at a 

forward velocity of 3 m/s. 
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(a)      (b) 

Figure 5.18: Comparisons of sprung mass responses of the kineto-dynamic model with 

bilinear (δc=0.1; ρ=5 and δc=0.2; ρ=2) and linear equivalent dampers under idealized 

bump and pothole type excitations (z0max=±50 mm): (a) vertical acceleration; and (b) roll 

angle. 

 
(a)      (b) 

Figure 5.19: Comparisons of camber angle variations of the kineto-dynamic model with 

bilinear (δc=0.1; ρ=5 and δc=0.2; ρ=2) and linear equivalent dampers under idealized 

bump and pothole type excitations (z0max=±50 mm): of (a) the left wheel; and (b) the right 

wheel. 

 

The kineto-dynamic model with light compression damping (δc=0.1, ρ=5) yields lower 

peak sprung mass acceleration and roll angle response of the model with other dampers. 

Both the peak acceleration and roll responses of the same damper, however, are relatively 

higher under the pothole input, as seen in Fig. 5.18 (a) and (b). The peak sprung mass 

response of the model with linear and bilinear damper with compression mode damping 
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2
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-2.25, -2.5 and -2.7 m/s
2
 under the pothole input. The results show trends similar to those 

obtained from the quarter car kineto-dynamic model (section 3.4.2). The responses were 

also obtained under pure vertical motions at both the wheels, which were identical to 

those obtained for the quarter-car model. The peak roll responses of the model with linear 

and bilinear dampers with compression mode damping ratio 0.2 and 0.1, respectively, are       

-2.2, -2 and -1.8° under the bump input, and 2.2, 2.55, and 3° under the pothole input. 

The results in the figure thus suggest that the roll angle responses of the model with 

bilinear dampers are opposite under the bump and pothole inputs. The model with lower 

compression mode damping (δc=0.1) yields significantly larger roll angle response 

compared to those of the model with linear and bilinear damper (δc=0.2) under the 

pothole type input. It is thus evident that the damper synthesis demands an additional 

design compromise in terms of conflicting roll angle response under bump and pothole 

excitations.   

Damping asymmetry also yields important influence on the camber angle variation 

responses of the suspension, particularly that of the left wheel (when excitation is given 

to the right wheel), as shown in the Fig. 5.19 (a) and (b). The peak camber variations of 

the unexcited wheel (left wheel) are 2.1, 1.9 and 1.5°, respectively, under the bump 

excitation with the linear and bilinear damper with compression damping ratios of 0.2 

and 0.1. Under the pothole input, the kineto-dynamic model with linear damper exhibits 

considerably smaller left wheel camber variation response compared to those of the 

model with bilinear damper. The influence of damper asymmetry on the camber variation 

response of the right wheel (excited wheel), on the other hand, is less significant, as seen 

in the Fig. 5.19 (b). It should be noted that the camber responses shown in the figures are 
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the net results of bump and roll cambers, and the excited wheel experiences both the 

bump and roll, while the unexcited wheel experiences only the roll camber. This clearly 

suggests that the asymmetric damping could influence roll camber response of a 

suspension apart from the bump camber, as observed in Chapter 4. Such a coupling 

between the roll camber and the damper asymmetry has not been identified in the 

reported studies.   

The results in Figs. 5.18 and 5.19 show significant influences of asymmetric damping 

on the kinematic and dynamic responses of the roll-plane vehicle model, while the results 

are limited to a very low vehicle speed (3 m/s). The influences of damper asymmetry on 

the responses are thus further investigated over a wide range of forward speeds (3 to 15 

m/s). Figures 5.20 to 5.21 illustrate the peak magnitudes of kinematic and dynamic 

responses of the model with three different dampers as a function of vehicle forward 

velocity. 

The peak sprung mass acceleration and roll angle responses of the model with linear 

and bilinear dampers are compared in Figs. 5.20 (a) and (b), respectively, as a function of 

the speed. Under the bump input, the bilinear damper with lower compression mode 

damping (δc=0.1; ρ=5) yields lowest peak acceleration response at speeds below 7 m/s 

and lowest roll angle at speeds below 12 m/s. The increase in peak acceleration at higher 

velocities is attributable to increase in the second peak rather than the first peak response, 

which is in agreement with the results observed in Chapter 4. A similar trend was also 

observed in the second peak in roll angle response of the model with δc=0.1 under bump 

input at speeds above 12 m/s. The model with equivalent linear damper yields highest 

acceleration at speeds below 10 m/s and highest roll angle in the entire speed range. The 
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bilinear damper with δc=0.2 yields lowest peak sprung mass acceleration and roll angle 

response to bump inputs at speeds above 7 m/s. Under the pothole input, linear damper 

yields lowest peak acceleration and roll angle responses in the entire speed range. The 

results suggest conflicting design demands on the damper synthesis and that a bilinear 

damper with δc=0.2 could yield good compromises in responses to bump and pothole 

excitations. 

The camber angle variation responses of the left- and right wheels of the kineto-

dynamic roll-plane model with linear and bilinear dampers under bump and pothole 

inputs are presented in Figs. 5.21 (a) and (b), respectively. The peak left wheel camber 

angle response, which is mainly due to contribution of the roll camber angle, exhibits 

trend similar to the peak roll angle response, as shown in Fig. 5.20 (b). Under the bump 

input, higher peak camber angle of the left wheel is observed for the model with linear 

dampers until the speed of 12.5 m/s, while above this speed, the model with δc=0.1 yields 

higher peak camber responses. The left wheel camber variation under the pothole input is 

more uniform, with the linear damper yielding the lowest camber variation in the entire 

velocity range, as seen in Fig. 5.21 (b). At speeds below 7 m/s, the kineto-dynamic model 

with linear damper yields higher right wheel camber response, which is attributed to the 

higher roll angle at lower velocities. The bump camber which is opposite in direction to 

that of the roll camber reduces the net camber response (compared to the left wheel 

camber responses). At high velocity bump and pothole inputs, however, the contribution 

of roll camber is higher compared to that of bump camber in the net camber variation 

response. The results thus suggest that at lower velocities (below 7 m/s), bilinear dampers 
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with lower compression damping yield lower camber variation response, while above 

7m/s, linear dampers yield lower camber variation.   

 
(a)      (b) 

Figure 5.20: Comparisons of sprung mass responses of kineto-dynamic model with 

bilinear (δc=0.1; ρ=5 and δc=0.2; ρ=2) and linear equivalent dampers under idealized 

bump and pothole type excitations (z0max=±50 mm) in the forward velocity range             

3-15 m/s: (a) vertical acceleration; and (b) roll angle. 

 

 

Lower compression mode damping yields slight beneficial influences on the normalized 

load transfer response of the model at low velocity (3-5 m/s) bump inputs, while the load 

transfer response of the model with the same damper at velocities above 5 m/s is 

considerably larger compared to those with the other dampers as seen in Fig. 5.22. 

Furthermore, under bump excitations, the bilinear dampers with δc=0.1 cause wheel lift-

off (normalized load transfer=1) at a relatively lower speed of 10 m/s, while the bilinear 

dampers with δc=0.2 and the linear dampers yield wheel lift-off at higher speed of 12.5 

and 15 m/s, respectively.  Wheel lift-off of the model under pothole input, in general, 

occurs at much lower velocities than those observed under the bump inputs, irrespective 

of the type of damper employed. The bilinear damper with δc=0.1 yields normalized load 

transfer of 1 at 7.5 m/s, while the linear and higher compression damping bilinear 

dampers yield wheel lift-off at only slightly higher speeds. Ironically, linear damper 

0

2

4

6

 

 

4 6 8 10 12 14
1

2

3

4

5

6

S
p
ru

n
g
 m

a
s
s
 p

e
a
k
 a

c
c
 (

m
/s

2
)

V (m/s)

Linear: =0.3

Bilinear: 
c
=0.1,=5

Bilinear: 
c
=0.2,=2

Bump

Pothole

0.5

1

1.5

2

2.5

 

 

4 6 8 10 12 14
0.5

1

1.5

2

2.5

3

P
e
a
k
 s

p
ru

n
g
 m

a
s
s
 r

o
ll 

(d
e
g
)

V (m/s)

Linear: =0.3

Bilinear: 
c
=0.1,=5

Bilinear: 
c
=0.2,=2Bump

Pothole



231 

 

yields better (lower) load transfer response under both bump and pothole inputs in the 

entire velocity range.   

 

 
(a)      (b) 

Figure 5.21: Comparisons of camber angle variation responses of kineto-dynamic model 

with bilinear (δc=0.1; ρ=5 and δc=0.2; ρ=2) and linear equivalent dampers idealized bump 

and pothole type excitations (z0max=±50 mm), in forward velocity range 3-15 m/s:           

(a) the left wheel; and (b) the right wheel. 

 

 

 
Figure 5.22: Comparisons of normalized load transfer response of kineto-dynamic model 

with bilinear (δc=0.1; ρ=5 and δc=0.2; ρ=2) and linear equivalent dampers under idealized 

bump and pothole type excitations (z0max=±50 mm), in the forward velocity range           

3-15 m/s. 
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The results in Figs. 5.18 to 5.22 thus suggest significant influences of asymmetric 

dampers on the dynamic and kinematic responses, which are also complex functions of 

the vehicle forward velocity and type of inputs. The responses of the model would further 

depend upon the saturation limits and high-speed reduction ratios of the asymmetric 

damper. Synthesis of an asymmetric damper would thus necessitate consideration of the 

kinematic and dynamic responses of the kineto-dynamic half-car model under different 

inputs including random road excitations. Further, the results have also suggested a 

complex coupling between the vertical excitation and the dynamic load transfer which is 

also a function of the lateral excitation. Consideration of simultaneous vertical wheel and 

lateral excitation at the sprung mass cg could yield considerable information about further 

couplings between the responses, which are instrumental and vital for the synthesis of the 

suspension components including an asymmetric damper.  

5.7 Summary 

A kineto-dynamic roll-plane vehicle model comprising double wishbone suspension is 

formulated and suspension geometry is synthesized considering the kinematic responses 

and lateral space constraints. The results attained from a sensitivity analysis suggested 

that changes in z- coordinates of any joint cause relatively more significant influence on 

the kinematic performances compared to those in the y- coordinates, while the y-

coordinates of some of the joints are most critical in view of the lateral packaging space. 

The joint coordinates that reduce the bump camber variation under wheel vertical motion, 

generally caused higher roll camber under chassis roll. The optimal geometry synthesis 

obtained through minimization of a composite performance index comprising the 

kinematic responses and constrained lateral packaging space resulted in 10 and 12% 
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reductions in the lateral space required for lower and upper control arms, together with 

reductions in variations in bump camber and track width responses under wheels vertical 

displacement, although the roll camber increased only slightly. The results thus suggest 

that achieving minimal lateral packaging space would necessitate compromise in the 

vertical packaging space.  

Comparisons of dynamic responses of the kineto-dynamic model with those of a 

conventional model showed significant contribution of the kinematic linkages. Higher 

sprung mass vertical and roll frequencies were observed from the kineto-dynamic 

responses compared to those of the conventional model. Furthermore, the camber angle 

variation response is strongly influenced by the antiroll bar, which has not been reported 

in previous studies. The kineto-dynamic responses also revealed complex dependency 

upon damper asymmetry ratio, vehicle forward speed and type of input. An asymmetric 

damper synthesis is thus a complex task involving a large number of design compromises 

among the vertical and roll dynamic, and kinematic performance measures. Formulation 

of a performance index comprising dynamic and kinematic responses of the model, and 

subsequent minimization of the performance index would be instrumental in obtaining an 

optimal asymmetric damper.   
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CHAPTER 6 

 INFLUENCES OF SUSPENSION GEOMETRY, DAMPER AND 

JOINT  BUSHING FAULTS  

6.1 Introduction 

Dynamic responses of a road vehicle are influenced by properties of suspension 

components, such as spring, damper and bushings in a significant manner. The responses 

of the vehicle could vary with change in suspension component properties, which are 

most likely to occur due to continued usage under varying operating conditions including 

weather and changing ambient temperature. Faults in the suspension system could arise 

from wear and tear, aging or as a result of past collisions, which could alter the dynamic 

responses or might cause breakdown of vehicles. An early warning of such faults in the 

suspension components, however, could eliminate   unexpected vehicle breakdowns. A 

few studies have proposed suspension fault diagnostics using vehicle models of varying 

complexities [54, 55, 61, 62], while these have mostly focused on faults in suspension 

dampers. Suspension fault, attributable to bushing clearances in upper bushing mount has 

been reported in a single study [62]. The study has concluded notable difference in the 

dynamic responses of the unsprung mass with bushing faults. Recent studies have 

reported significant attention to the synthesis of control arm bushings during vehicle 

design stage [53]. Furthermore, joint bushings are widely known to undergo wear and 

stiffen with age [38, 42]. The influences of such faults in control arm joint bushings on 

the dynamic responses, however, have not been reported in the literature.   

Analytical quarter-car and half-car kineto-dynamic models presented in previous 

chapters could be extended to full car model and to include more comprehensive bushing 

characteristics. Such formulations, however, are very complex and demanding. 



235 

 

Alternatively, commercially available multibody dynamic tool, ADAMS/car provides 

suitable platform for suspension and vehicle dynamic model development and subsequent 

analyses. This chapter presents study of influences of faulty suspension components on 

the dynamic responses of a full vehicle model developed in ADAMS/car. Four different 

types of suspension faults are considered in this study: (a) deformed suspension linkage; 

(b) faulty damper; (c) joints bushings clearances; and (d) aged bushings. The responses of 

the full-vehicle model with suspension faults, subjected to field measured random road 

excitations are compared with those of the model with normal suspensions. The results 

are discussed in connection with the development of an early warning based suspension 

fault diagnostic system.  

6.2 Full-vehicle Model Development in ADAMS/car  

A 95- DOF full-vehicle model comprising essential components of a vehicle, such as 

linkage suspension and steering systems, struts, power train, brake system, tires and 

vehicle bodies, is developed in ADAMS/car platform to evaluate the influences of 

suspension faults on the dynamic responses of a vehicle. The full-vehicle model, as 

illustrated in Fig. 6.1 is developed employing vehicle component subsystems available in 

ADAMS/car database library. The model comprises of double wishbone linkage 

mechanisms in both front and rear suspension systems and rack and pinion steering 

mechanism with two wheel steering system. The struts, comprising linear springs and 

nonlinear dampers are mounted on the lower control arm of the suspensions. Linkages 

between wheel knuckle and the chassis are joined to the chassis through revolute joints, 

while each of the joints excepting the ball joints   (between control arm and spindle)  
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Figure 6.1: Multi-body dynamic full-vehicle model with four post test rig facility in 

ADAMS/car platform. 

 
 

Figure 6.2: Double wishbone front suspension assembly 
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comprises flexible bushings, as illustrated in the Fig. 6.2. The tires in the vehicle model 

are considered as vertical spring and viscous dampers for evaluating vertical dynamic 

responses, while the model also considers Pacjecka tire model for estimating lateral tire 

forces, if required.  

6.2.1 Bushing Model  

Suspension bushings comprise flexible elastomeric material in between inner and 

outer steel casings. The joint bushings properties, in general, are characterized by force-

displacement and moment-rotation relations, while ADAMS/car permits definition of 

bushing properties in and about three axes (x- y- and z) [28]. Figure 6.3 illustrates force-

displacement and moment-rotation functions of upper and lower arm joint bushings along 

and about three axes. Force-displacement relations are mostly nonlinear, while moment-

rotation relations are more or less linear, except that of UCA about z- axis. Furthermore, 

torsional stiffness of UCA (upper control arm) bushings is greater than that of LCA 

(lower control arm) joints, attributable to the larger influences of UCA bushings on the 

ride quality, as observed in section 3.6.4. 

6.2.2 Bushing Fault Modeling  

Two types of bushing faults are considered in this study:  (i) bushings with clearance; 

and (ii) aged bushing. Bushing clearance is modeled as discontinuity in the force-

displacement relations, while it is assumed that the maximum discontinuity is limited to 1 

mm in all the bushings, excepting that at strut upper mount, which is considered to 

possess 2 mm clearance. The defective bushings are thus assumed to offer a very small 

restoring force (in order to eliminate singularity) during initial 0.5 mm of deformation in 

both compression and extension modes, as illustrated in Fig. 6.4.  
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      (a)                                                                (b) 

 
    (c)                                                             (d) 

      
       (e)                                                             (f) 

Figure 6.3: Characteristics of upper and lower control arm joint bushings in terms of: (a) 

force-displacement function along x- axis (radial); (b) force-displacement relation along 

y- axis (radial); (c) force-displacement relation along z- axis (axial); (d) moment-rotation 

relation about x- axis (radial); (e) moment-rotation relation about y- axis (radial); and (f) 

moment-rotation relation about z axis (axial). 
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The figures compare the characteristics of UCA and LCA bushings with clearance 

along x- and z- directions with that of the nominal ones, while the figures also illustrate 

the characteristics of aged bushings, which are modeled assuming an increase in the 

bushing stiffness. In this study, an increment of 50% in the stiffness is considered for the 

aged bushings, as illustrated in Fig. 6.4. It is further assumed that a bushing fault changes 

the properties in one direction only at any time.  

 

 
(a)                                                                     (b) 

Figure 6.4: Comparisons of force-displacement relations of LCA joint bushings in 

clearance and aged conditions with the nominal bushings along: (a) x- and y- axes 

(radial); and (b) z- axes (axial). 
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mechanisms could easily occur following a collision of the vehicle. Suspension linkage 

length could get altered due to linkage deformation which also would change joint 

coordinates. In this study, geometry faults in the suspension are modeled by varying the 

joint coordinates. Fault in an automotive damper is often modeled by its lower damping 
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analyzed in this study: (i) 25% decay; and (ii) 50% decay in dampers, represented by 25 

and 50% reduction in the damping coefficients.  

6.3 Four-post Test Rig Full-vehicle Analyses 

ADAMS/ride is an extension plug-in provided in the ADAMS/car tool for ride 

analysis of vehicle models. Assembled full-vehicle model is placed on a four post test rig, 

as illustrated in Fig. 6.1, which permits analysis with different inputs at the wheel spindle 

or beneath each of the tires. The input excitation can be defined in the form of 

displacement, velocity, acceleration or forces, as swept sine wave or road profiles [28]. 

While ADAMS is enabled with a road profile generator to produce different road 

profiles, including random roads as per ISO specifications, the road profile set up facility 

of ADAMS/car also permits user definition of roads in tabular form. The time lag 

between the front and rear excitations is calculated by the software automatically upon 

providing the vehicle forward speed. In this study, the urban roads roughness, 

characterized on the basis of measured road elevations reported in a previous study [152], 

are used for evaluating the dynamic responses of the full vehicle model and the 

performance measures. Figure 6.5 illustrates the filtered roughness profile of left and 

right tracks of the road over a span of 500 m, while the right-track road profile has been 

used for evaluating asymmetric damper performances in Chapter 4 (Fig. 4.10 (a) and (b)). 

The differences in the displacement amplitudes of left and right track suggest that the 

road profile could induce roll disturbances apart from the vertical irregularities. 
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Figure 6.5: Roughness profile of left and right tracks in an urban road in terms of 

elevation and distance 

6.4 Influence of Deformed Suspension Linkage 

Influences of suspension linkage asymmetric deformation are evaluated by 

considering variations in the coordinates of lower control arm outer ball joint (between 

control arm and spindle) of front-left suspension.  The full-vehicle kineto-dynamic model 

is subjected to random road excitations, as described in section 6.3 at 50 and 100 km/h 

vehicle forward speed, and the simulations are performed for 20 seconds. The dynamic 

responses are evaluated in terms of rms acceleration of vehicle chassis, wheel spindle and 

the lower control arm of front-left suspension. The responses of the model with 10 mm 

changes in x-, y- and z- coordinates of lower control arm outer joint of front left 
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illustrated in Table 6.1. It may be noted that the variations to the joint coordinates are 

realized by negative changes in the respective coordinates.  

The results in the table show minimal influence of suspension joint coordinate 

variations on the chassis vertical acceleration response, and small but notable influences 

on the spindle and lower control arm responses. Change in y- coordinate of LCA outer 

joint exhibits greater influence on the vertical acceleration responses as compared to that 

of variations in x- and z directions at lower speed of 50 km/h. The change in y- 

coordinates causes 0.011, 0.335 and    0.131 m/s
2
 (1.5, 3.5, 2.6%) changes in chassis, 

spindle and LCA vertical acceleration responses, respectively, at 50 km/h as compared to 

those of the suspension without any faults.  At higher speed of 100 km/h, however, 

variation in z- coordinate shows greater influence on the acceleration responses. The 

results of previous study of this work have clearly suggested that a change in joint 

coordinate would change the wheel rate of suspension (Section 3.5.1), which is major 

contributing factor for the changes in the acceleration responses.  

Table 6.1: Influences of asymmetric linkages on the responses of full vehicle model 

under random road excitations. 

 

 

Response  

Chassis vertical 

rms acceleration  

(m/s
2
) 

Wheel spindle vertical 

rms acceleration  

(m/s
2
) 

LCA vertical 

rms acceleration  

(m/s
2
) 

Coordinate  

variation 50 km/h 100 km/h 50 km/h 100 km/h 50 km/h 100 km/h 

Nominal 0.901 1.429 10.998 18.346 3.851 6.204 

x-  0.900 1.428 10.986 18.324 3.880 6.220 

y-  0.912 1.430 10.663 18.003 3.759 6.104 

z-  0.905 1.431 11.090 18.378 3.850 6.202 

 

While this study is limited to the vertical acceleration responses alone, roll and pitch 

angle response could also be influenced by the asymmetric suspension linkage geometry 
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of an axle. Furthermore, the joint coordinates influence kinematic responses such as 

camber and toe angle variations in a significant manner, which further influences ride and 

handling dynamics of the vehicle. Coupling of the lateral compliance of the tire with the 

vertical dynamics is not included in the ADAMS/ride default analyses, while its 

inclusion, generally, requires extended tire models. Moreover, simultaneous variations in 

two joint coordinates or larger variations than that considered in this study (>10 mm) in a 

coordinate could exhibit more significant influences on the vehicle dynamic responses. 

The results in Table 6.1 suggest identifiable variations in the rms acceleration 

responses of wheel spindle and LCA. A frequency domain analysis is further considered, 

which would also be necessary for diagnosis of faults in the suspension kinematics. 

Power spectral density (PSD) of acceleration responses of LCA and wheel spindle of the 

model under random road excitations at 50 km/h speed are generated using Matlab Signal 

Processing Tool Box, as illustrated in the Figs. 6.5 (a) and (b). It is seen in the figure that 

the LCA exhibits two peak responses, while the second peak would likely corresponds to 

that of wheel spindle natural frequency. Variations in the joint coordinates considered in 

this study show notable peak responses of the LCA and the spindle. The results in the 

figure suggest that the changes in the joint coordinates exhibit negligible influences on 

the wheel spindle peak frequency or the second peak frequency of LCA. A close 

observation of the first peak responses of the spectrum of LCA vertical acceleration, 

however, shows that there exist small variations (in the order of 0.06 Hz) in the 

frequencies corresponding to the peak magnitudes. Similar variations in the frequencies 

corresponding to the peak magnitudes of chassis acceleration spectrum have also been 

observed (not shown). The results thus suggest that an asymmetry in suspension joint 



244 

 

coordinates with respect to vehicle center would influence the suspension responses, 

while this asymmetry could be identified from the frequency response of the lower 

control arm accelerations. Furthermore, wavelet analysis of the acceleration signal is 

shown to be effective in the fault identification [54, 55] which, however, is not 

investigated in the present study. The wavelet analysis yields information that is localized 

in both time and frequency whereas the standard Fourier analysis is only localized in 

frequency. 

 
   (a)       (b) 

Figure 6.6: Comparisons of Power Spectral Density (PSD) of unsprung mass vertical 

acceleration responses of full vehicle model with deformed and normal linkages: (a) 

lower control arm (LCA); and (b) wheel spindle 

6.5 Influence of Defective Damper 

Defect in a suspension damper, perhaps due to leaking of hydraulic fluid could 

influence the dynamic performances of a suspension. The influences of damper fault on 

the dynamic responses are investigated by considering 25 and 50% reduction in the force-

velocity characteristics of the front left suspension damper.  The responses of the full 

vehicle model with defective dampers subjected to random road excitations at 50 and 100 

km/h vehicle forward speeds are compared with those of the model with normal damper. 
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seconds. The dynamic responses, evaluated in terms of rms acceleration of vehicle 

chassis, wheel spindle and the front-left suspension lower control arms are illustrated in 

Table 6.2.  

The results in the table suggest that a fault in one of the damper in a full vehicle model 

could influence the vertical acceleration responses of the chassis, wheel spindle or LCA. 

It is seen that the influence of the damper fault is dependent upon the vehicle forward 

speed. At lower speed of 50 km/h, decrease in the damping coefficient of the damper 

exhibit negligible influence on the sprung mass acceleration (<1%), while at 100 km/h, 

near 2.5% increase in the sprung mass rms acceleration is observed. Wheel spindle and 

LCA vertical acceleration responses on the other hand, exhibit increasing tendency with 

decrease in the damping coefficient of the defective damper, and decreasing trend with 

increase in the speed. Wheel spindle exhibits 7.2 and 15.8% increases at 50 km/h, and 6.5 

and 12.3% increases at 100 km/h, respectively, in the rms acceleration response. LCA 

vertical accelerations (rms) increase by 6.7 and 14.2% at 50 km/h and 6.1 and 11.7% at 

100 km/h, respectively. The results clearly suggest significant influence of the defective 

damper on the unsprung mass dynamic responses.   

Table 6.2: Influences of defective damper in one of the suspensions on the responses of 

full vehicle model under random road excitations. 

 

 

Response  

Chassis vertical 

rms acceleration  

(m/s
2
) 

Wheel spindle vertical 

rms acceleration  

(m/s
2
) 

LCA vertical 

rms acceleration  

(m/s
2
) 

Damper  

condition 50 km/h 100 km/h 50 km/h 100 km/h 50 km/h 100 km/h 

Nominal 0.901 1.429 10.998 18.346 3.851 6.204 

25%  decay  0.895 1.446 11.794 19.542 4.110 6.582 

50% decay 0.902 1.461 12.743 20.609 4.400 6.931 
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The power spectral density (PSD) of the wheel spindle and the LCA vertical 

acceleration responses of the model with defective dampers are compared with those of 

the model with a normal damper in Fig. 6.6. The results suggest significantly large 

deviations in the peak magnitudes in spectra of LCA (both first and second) and wheel 

spindle accelerations. The second (dominant) peaks of LCA and the peaks of the wheel 

spindle are seen to occur at nearly identical frequencies irrespective of the condition of 

the damper. The LCA spectra, however, reach the first peak magnitudes at different 

frequencies with damper condition (normal damper-3.18 Hz, 25% defective damper- 3.11 

Hz   and 50% defective damper- 3.05 Hz). The results in Fig. 6.7 clearly suggest decrease 

in the LCA vertical vibration frequencies with decrease in the damping coefficient of the 

suspension damper. As in the case of deformed suspension linkages, frequency response 

of the measured LCA accelerations could be conveniently employed to detect the damper 

faults in a vehicle suspension.  

 
              (a)       (b) 

Figure 6.7: Comparisons of Power Spectral Density (PSD) of unsprung mass vertical 

acceleration responses of full vehicle model with defective and normal dampers: (a) 

lower control arm (LCA); and (b) wheel spindle 
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6.6 Influence of Joint Bushings Faults  

Influences of joint bushing faults on the dynamic responses of the full vehicle model 

are evaluated by representing the bushing characteristics as illustrated in Fig. 6.4. 

Clearances at strut upper and lower mounts, and lower and upper control arm front 

bushings (Fig. 6.2) are considered in this study for the relative analysis. Effects of an 

axial clearance of 2 mm in the upper strut mount and a radial clearance of 0.5 mm in the 

lower strut mount are evaluated under random road excitations at 50 and 100 km/h 

vehicle speed. Three different types of bushing faults are analyzed in the case of LCA 

(lower control arm) and UCA (upper control arm) bushings: (i) 1 mm radial clearance; 

(ii) 3° angular clearance; and (iii) 50% increase in the bushing stiffness due to aging. The 

bushing defects are considered in front left suspension alone, and each fault is considered 

independently. Each of the bushing faults is analyzed at both lower and higher speeds (50 

and 100 km/h), while the acceleration response of the control arm corresponding to faulty 

bushing (LCA or UCA) is evaluated, in addition to the wheel spindle response.   

 The rms acceleration of chassis, wheel spindle and LCA of the model with defective 

strut bushings are compared with those of the model with nominal bushings, as illustrated 

in Table 6.3. The results in the table suggest that a clearance in the upper strut bushing 

could influence the dynamic response of lower control arm and the wheel spindle 

considerably with a minimal influence (<1%) on the sprung mass acceleration at both 50 

and 100 km/h forward velocity. The upper strut mount clearance causes increase of 15 

and 7% in the wheel spindle and 12.7 and 6% in the LCA vertical acceleration responses 

at 50 and 100 km/h speeds, respectively. It is thus seen that the degree of influences of 

upper strut bushing clearance is strongly dependent upon the vehicle forward speed. This 
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can be attributable to the fact that at higher acceleration excitations (higher forward 

velocities), the suspension properties exhibit lesser influences than the tire properties on 

the dynamic responses. The results in the table further show that a radial clearance in 

strut lower bushing (in the order of 0.5 mm) exhibits minimal influences on the sprung 

and unsprung mass responses.  

Table 6.3: Influences of strut bushings clearance in one of the suspensions on the 

responses of full vehicle model under random road excitations. 

 

 

Response  

Chassis vertical 

rms acceleration  

(m/s
2
) 

Wheel spindle vertical 

rms acceleration  

(m/s
2
) 

LCA vertical 

rms acceleration  

(m/s
2
) 

Bushings fault 50 km/h 100 km/h 50 km/h 100 km/h 50 km/h 100 km/h 

Nominal 0.901 1.429 10.998 18.346 3.851 6.204 

Upper strut mount  0.911 1.437 12.645 19.713 4.340 6.593 

Lower strut mount 0.901 1.429 11.000 18.333 3.850 6.198 

 

 

Power spectral density (PSD) of LCA and wheel spindle acceleration responses of the 

model with faulty upper and lower strut bushings are compared with that of the model 

with nominal bushings in Fig. 6.8.  A clearance in the upper strut mount cause an 

amplification in the peak magnitudes of the spectrum of both wheel spindle and LCA 

responses as compared to that of model with the nominal bushings. A slight variation in 

the frequencies corresponding peak magnitude of LCA and wheel spindle spectrum 

(nearly 0.02 Hz) is also observed. As expected, clearance in the lower strut mount does 

not exhibit any influence in the frequency spectrum. Although a clearance in the upper 

strut mount influences the dynamic response considerably, an identification of the fault 

from the frequency spectrum seems to be complex. A further study of the response 

employing wavelet analysis technique might be instrumental.  
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            (a)       (b) 

Figure 6.8: Comparisons of Power Spectral Density (PSD) of unsprung mass vertical 

acceleration responses of full vehicle model with and without clearance in strut bushings:         

(a) lower control arm (LCA); and (b) wheel spindle 

 

Table 6.4 illustrates the rms acceleration responses of the wheel spindle and LCA with 

faults in the LCA front bushing, while Table 6.5 shows the rms acceleration responses of 

the wheel spindle and UCA with faults in the UCA front bushing under random 

excitation at 50 and 100 km/h. The tables also compare the responses of the model with 

nominal bushings. The results in both the tables suggest that considered bushing faults 

exhibit minimal influences on the wheel spindle or control arm vertical acceleration 

responses, although the degree of influences are slightly dependent on the vehicle speed. 

It needs to be emphasized here that both lower and upper control arms comprise two 

bushing joints at the chassis, while this study was limited to bushing faults in one joint 

alone.  

The results in Table 6.3 to 6.5 suggest that the strut upper mount clearance is the most 

influential bushing defect among all of the faults considered in this study. However, it 

needs to be noted that the study considered a larger clearance (2 mm) at the upper strut 

mount bushing compared to that at other bushings. A 1 mm discontinuity in the force-

displacement relation of bushing represents only 0.5 mm clearance in a physical joint. 
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Larger clearance in any bushings could affect the dynamic responses in larger magnitude, 

which however requires further studies. 

Table 6.4: Influences of lower control arm bushing clearance in one of the suspensions on 

vertical acceleration response of LCA and wheel spindle under random road excitations. 

 

 

Response  

Wheel spindle vertical 

rms acceleration  

(m/s
2
) 

LCA vertical 

rms acceleration  

(m/s
2
) 

Bushings fault 50 km/h 100 km/h 50 km/h 100 km/h 

Nominal 10.998 18.346 3.851 6.204 

LCA radial clearance 10.982 18.340 3.848 6.208 

LCA torsional clearance 11.072 18.339 3.870 6.201 

LCA aged bushings 10.970 18.339 3.851 6.215 

 

Table 6.5: Influences of upper control arm bushing clearance in one of the suspensions on 

vertical acceleration response of UCA and wheel spindle under random road excitations. 

 

 

Response  

Wheel spindle vertical 

rms acceleration  

(m/s
2
) 

UCA vertical 

rms acceleration  

(m/s
2
) 

Bushings fault 50 km/h 100 km/h 50 km/h 100 km/h 

Nominal 10.998 18.346 3.729 6.030 

UCA radial clearance 10.939 18.325 3.706 6.015 

UCA torsional clearance 11.057 18.349 3.744 6.030 

UCA aged bushings 10.989 18.356 3.726 6.031 

 

 6.7 Feasibility of a Fault Diagnostic System 

The results in Section 6.4 to 6.6 suggest that asymmetric kinematic linkage, defective 

damper and clearance in upper strut mount bushings cause variation in the frequencies 

corresponding to first peak magnitudes of LCA accelerations. A close observation of the 

results, however, suggests that a defective damper and upper mount clearance cause 

reduction in the LCA vibration frequency, while the deformed linkage causes increase in 

the frequency. The results corresponding to a decayed damper or strut mount bushing 

clearance could be easily generalized, while the faults due to linkage deformation cannot 
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be generalized, since this study is limited to variations in the joint coordinate in one 

direction only. It can be noted that a negative change in y- coordinate of the LCA outer 

joint exhibited higher influence among the variations considered, while this change is 

known to cause increase in wheel rate (Section 3.6.5). Furthermore, damper fault does 

not influence the peak frequency of the spindle, while strut mount bushing fault exhibits a 

small influence on the wheel spindle peak frequency. This information could be used to 

identify an approximate source of fault from the acceleration response of the LCA.  

Based upon this preliminary study, a fault diagnostic system could be proposed, which 

would comprise four accelerometers mounted on the lower control arms of each 

suspension. The system also necessitates a processing unit that could convert the time 

response of the accelerometer into frequency domain. The processing unit should be 

capable of comparing the real time responses with prerecorded data corresponding to the 

suspension without faults, while correlating with the forward speed of the vehicle. As 

discussed previously, wavelet analysis of the acceleration response would also be 

necessary for precise identification of the source of fault, which should also be facilitated 

in the processing unit.  

6.8 Summary 

This chapter presented the study of influences of suspension faults such as 

asymmetrically deformed suspension linkage, defective damper and bushings clearances 

on the dynamic responses of a vehicle and suspension through analyses of a full vehicle 

model developed in ADAMS/car platform. Suspension linkage deformation was modeled 

by considering changes in joint coordinate of lower control arm outer joint of front left 

suspension. Damper defect due to leaking of hydraulic fluid was assumed to cause 
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reduction in the damping coefficient, and such defective damper was represented by 25 

and 50% reduction in the force-velocity characteristics. Flexible joint bushings in the full 

vehicle model were represented by force-displacement and moment-rotation relations 

along and about three axes, respectively. Clearance in a bushing was modeled by 

discontinuity in the force-displacement characteristics, while the study also considered 

influences of aged bushing assuming an increase in the force-displacement 

characteristics.  

Vertical acceleration responses of the chassis, control arm and wheel spindle are 

analyzed to evaluate the influences of suspension faults considered in this study. The 

spectral analysis revealed that data measured from the lower control arm can be 

conveniently employed to detect the suspension faults due to linkage asymmetry or 

defective damper, and can be used to yield an early warning of the faults. Upper strut 

bushing clearance showed considerable influence on the control arm acceleration 

response, while other bushing faults exhibited negligible influence. Determination of an 

exact source and type of faults, however, would necessitate employment of additional 

tools such as wavelet analysis, apart from the spectral analysis used in this study. 
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CHAPTER 7 

 CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER 

STUDIES 

7.1 Dissertation Research Highlights 

This dissertation research has presented methodology to systematically investigate the 

influences of various suspension nonlinearities, particularly the linkage kinematics, tire 

lateral complaince, damper asymmetry and flexible joint bushings, on the kinematic and 

dynamic responses of a vehicle. These are illustrated through developments and analyses 

of  kineto-dynamic quarter- and half-car models incorporating the suspension linkages, 

tire lateral and bushing  compliance, and asymmetric dampers. A methodology for 

synthesis  of optimal suspension geometry (joint coordinates) has been presented 

considering the coupled kinematic and dynamic responses with contraint on the lateral 

packaging space for potential applications in emerging hybrid vehicle designs. Synthesis 

of an asymmetric two- stage damper has also been presented considering design 

compromises between the ride, rattle space, road holding and camber angle performances 

in an attempt to develop design guidance. A full vehicle model in ADAMS/car is further 

analyzed to study the influences of faulty bushings, dampers and kinematic linkages on 

the dynamic responses. 

The major highlights and contributions of the dissertation research are briefly 

summarized below: 

 Single-wheel kinematic models of two types of suspensions, quadra-link and 

double wishbone, are proposed to study the kinematic responses, which could be 

employed for synthesis of suspension geometry. Laboratory-measured data were 

applied to demonstrate validity of the 3- dimensional kinematic model of the 
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quadra-link suspension. A sensitivity analysis method was proposed to investigate 

the influences of various suspension joint coordinates on the kinematic responses. 

A planar kinematic model of the double wishbone suspension is also formulated for 

anaysis of roll-plane kinematic responses, including variations in camber angle, 

wheel track and wheel center lateral displacement.  

 A kineto-dynamic quarter car model comprising linkage kinematics of a double 

wishbone type of suspension  is proposed to study coupled kinematic and dynamic 

responses of suspension and vehicle model. The significance of coupling between 

the kinematic and dynamic responses is illustrated by comparing the responses of 

the proposed model with those of  a conventional dynamic model with equivalent 

spring and damping rates. A methodology for deriving equivalent spring rate and 

damping rates incorporating the contributions of linkage kinematics, is further 

presented.  The contributions due to compliance of suspension joint bushing to the 

kinematic and dynamic responses are investigated assuming bushings as torsional 

springs.   

 Owing to the lack of design guidance on suspension damping asymmetry, the 

kineto-dynamic model is enhanced by incorporating single- and two- stage 

asymmetric damping in order to seek a design guideline. The effects of damping 

asymmetry on the coupled dynamic and kinematic responses are thoroughly 

evaluated under harmonic and idealized bump and pothole excitations, and the 

conflicting design requirements under different excitations are illustrated. A 

constrained optimization problem is formulated and solved to seek design guidance 

for synthesis of a two-stage asymmetric damper that would yield an acceptable 
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compromise among the performance measures under idealized bump and pothole 

excitations.  

 The coupled dynamic and kinematic responses of the model with single- and two-

stage asymmetric dampers are further evaluated under random road excitations over 

a range of forward velocities. An optimal synthesis of a two-stage asymmetric 

damper is presented to yield compromise between conflicting performance 

measures corresponding to ride, rattle space, road holding and camber angle 

responses under random road inputs.  

 The coupled kinematic and dynamic responses in the roll plane are analyzed 

through development and analysis of a four-DOF, kineto-dynamic roll-plane 

vehicle model comprising double wishbone type of suspensions. A methodology to 

derive a suspension synthesis is subsequently proposed. The conflicting kinematic 

responses including bump/roll camber and wheel track variations under chassis roll 

and wheel vertical motions are identified, and a set of optimal joints coordinate 

synthesis is attempted considering the conflicting responses coupled with the lateral 

space constraint. The influences of asymmetric damping and an antiroll bar on the 

kinematic and dynamic responses are further presented under selected excitations.  

 A full-vehicle model comprising double wishbone type of suspensions at both front 

and rear axles is developed in ADAMS/car platform to study the influences of 

faults in suspension bushings and linkage on the kinematic and dynamic responses. 

The study was limited to two types of bushing faults, namely the clearances in the 

bushing with reduction in bushing stiffness; and aged bushings with increase in the 

bushing stiffness.  
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7.2 Major Conclusions 

This dissertation revealed significant coupling among various kinematic and dynamic 

performance measures of vehicle suspensions. The results of the study yielded important 

design guidelines pertaining to suspension geometry and damper synthesis. Major 

conclusions drawn from this study are summarized below: 

(a) The kinematic and dynamic performance measures of a vehicle are coupled through 

the linkage (independent) suspension design. A suspension design synthesis 

therefore must be based on coupled kineto-dynamic analyses. 

(b) The linkage suspensions yield asymmetric variations in camber, caster and toe 

angles, and wheel base and wheel tracks with respect to the static position under a 

wheel vertical motion.  

(c) Each of the kinematic responses and the articulation of a double wishbone 

suspension are very sensitive to variations in the upper control arm joints 

coordinates. The front (camber link) and rear (toe link) lower links of the quadra-

link suspension exhibit large influences on the camber and toe angle responses, 

respectively, apart from the other responses.  

(d) A double wishbone suspension with closer upper and lower ball joints would yield 

lower variations in camber angle and  wheel track responses under wheel jounce 

and rebound motions.  

(e) The dynamic responses of a kineto-dynamic quarter car model to harmonic and 

idealized rounded pulse excitations are generally asymmetric attributed to the 

suspension kinematics, while the degree of asymmetry is dependent on the 

amplitude and frequency of the inputs, and suspension joint coordinates. The 
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asymmetry in suspension damping in compression and rebound further contributes 

to asymmetry in the dynamic responses. 

(f) Both the kinematic and dynamic responses of a kineto-dynamic quarter model 

under bump/pothole inputs are strongly dependent upon the suspension  joint 

coordinates, while variations in the joint coordinates involve difficult compromises 

between the kinematic and dynamic response measures.  

(g) The flexible joint bushings can lead to nearly 5% variations in the kinematic and 

dynamic responses  of the suspension system. A decrease in torsional stiffness of 

the upper control arm bushing yields a benificial influence on the sprung mass 

acceleration, while a variation in the lower control arm joint bushing offers 

negligible influence.  

(h) Higher rebound to compression damping asymmetry in general causes a downward 

shift in the sprung mass mean position, while higher compression to rebound 

asymmetry ratio causes an upward shift. The mean shift in the unsprung mass 

displacement relative to the sprung mass causes additional camber angle variation 

during the wheel vertical motions.  

(i) The damping asymmetry of a bilinear damper yields conflicting effects on the 

sprung mass acceleration response to bump and pothole excitations. A higher 

rebound to compression damping asymmetry helps reduce the magnitude of the 

first peak in sprung mass acceleration to bump excitation, but yields higher 

acceleration under a pothole excitation. In case of two-stage damper with different 

low and high-speed damping coefficients, lower values of the high-velocity 
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damping coefficients resulted in considerable reductions in the sprung mass 

acceleration response under both the inputs. 

(j) The damping asymmetry ratio is strongly dependent upon the low-speed 

compression damping. Under a bump input, asymmetry ratio of 2 and 3 could result 

in a good compromise between the ride and road holding performance for low- 

speed compression mode damping ratios of 0.2 and 0.1, respectively.  Under a 

pothole input, however, a linear or higher compression to rebound damping 

asymmetry ratio would be a better design compromise.  

(k) Kinematic and dynamic responses of a road vehicle with asymmetric damper 

subjected to random road excitation would be strongly influenced by the 

compression/rebound damping asymmetry and the forward speed of the vehicle. 

With an asymmetric damper, notable consistent trends in the kinematic and 

dynamic responses of the model could be identified in three speed ranges: the 

responses increasing nearly linearly with forward speed in the 30-60 km/h range; 

increasing nonlinearly in the medium speed range (60-90 km/h); and nonlinearly 

decreasing or saturating in the higher speed range (100-120 km/h). 

(l) A synthesis of an optimal two-stage asymmetric damper is highly complex due to 

strong couplings among the various damper parameters, and would strongly depend 

upon the limit imposed on the camber variation. For minimal camber angle 

variations, a lower rebound to compression damping asymmetry would be 

desirable, while the camber variations correlate well with the tire force variations, 

when a greater emphasis is placed on the tire force variations. 
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(m) The roll-plane kinematic analysis of a double wishbone suspension revealed that 

the joint coordinates that reduce the bump camber variation under wheel vertical 

motion, generally cause higher roll camber under chassis roll. Achieving minimal 

lateral packaging space may necessitate compromise in the vertical packaging 

space, because reduction in both control arms lengths and variations in the 

bump/roll camber together may not be feasible.  

(n) Inclusion of antiroll bar in a suspension, apart from causing increase in the sprung 

mass vertical acceleration and roll angle responses under bump excitation at one 

wheel of the axle, could also increase the camber angle variation response 

considerably.  

(o) Suspension faults such as deformed linkage, defective damper and clearance 

bushings could influence the dynamic responses of the lower control arm of a full 

vehicle model with double wishbone suspension. Power spectral density of the 

lower control arm vertical acceleration response could be used to identify the 

suspension faults in an approximate manner. 

(p) Clearance in strut upper mount bushing causes increase in the amplitude of the 

unsprung mass vertical accelerations, while clearances in lower or upper control 

arm bushings exhibit minimal influence.  

7.3 Recommendations for Further Studies 

This desertation research has helped identifying important couplings between the 

suspension kinematics and dynamic responses of a road vehicle, which is related to the 

suspension geometry and damping asymmetry in a highly complex manner. While this 

study has enabled yielding a few significant conclusions and design guidance relevant to 
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suspension geometry and asymmetric damper synthesis, further works in this direction 

would be highly desirable for improved suspension synthesis, particularly for future 

electric vehicles with constrained packaging space. Some of the recommended further 

studies are listed below: 

 Define kinematic and dynamic performance requirements based upon kineto-

dynamic vehicle model responses. 

 Synthesis of a suspension system based upon coupled kinematic and dynamic 

performance measures employing 3- dimensional suspension and vehicle model. 

 Synthesize a suspension system considering lateral packaging space constraints 

apart from the kineto-dynamic performance measures. 

 Employ multi-objective optimization methodologies for the synthesis of multi-

stage asymmetric damper. 

 Explore active/semi active linkages for enhanced kinematic and dynamic 

performances. 

 Develop early warning based suspension fault diagnostic system.  

 

 

 

 

 

 

  



261 

 

REFERENCES 

 

1. Milliken W F and Milliken D L, (1995) Race Car Dynamics, SAE Inc. Warrendale, 

PA, USA. 

2. Gillespie T D, (1992) Fundamentals of Vehicle Dynamics, SAE Inc. Warrendale, 

PA, USA.  

3. Fuhs A, (2009) Hybrid Vehicles and the Future of Personal Transportation, CRC 

Press, Boca Raton. 

4. Reimpell J and Stoll H, (1996) The Automotive Chassis: Engineering Principles, 

SAE Inc. Warrendale, PA, USA. 

5. Simionescue P A and Beale D, (2002) Synthesis and Analysis of the Five-link Rear 

Suspension System Used in Automobiles, Mechanism and Machine Theory, Vol 37, 

pp 815-832. 

6. Lee D M A, Pasocoe D M and ElMaraghy W H, (1993) An Analysis of the Multi-

link Independent Suspension System, Int. Journal of Vehicle design, Vol 14/1, pp 

44-58. 

7. Raghavan M, (1991) Suspension Kinematic Structure for Passive Control of Vehicle 

Attitude, Int. Journal of Vehicle Design, Vol 12/5&6, pp 525-547. 

8. Shim T and Velusamy P C, (2006) Influence of Suspension Properties on Vehicle   

Roll Stability, SAE Paper, 2006-01-1950. 

9. Heuze L, Ray P, Gogu G, Serra L and Andre F, (2003) Design Studies for a New 

Suspension Mechanism, IMechE Part D, Journal of Automobile Engineering, Vol 

217, pp 329-335. 

10. Blundell M V, (1999) The Modeling and Simulation of Vehicle Handling Part 1: 

Analysis Method, IMechE Part K, Journal of Multibody Systems Dynamics, Vol 

213, pp 103-118. 

11. Cronin D L, (1981) MacPherson Strut Kinematics, Mechanism and Machine 

Theory, Vol 16/6, pp 631-644. 

12. Knapczyk J and Dzierzek S, (1995) Displacement and Force Analysis of Five-Rod 

Suspension with Flexible Joints, Journal of Mechanical Design, Vol 117, pp 532-

538. 



262 

 

13. Raghavan M, (1996) Number and Dimensional Synthesis of Independent 

Suspension Mechanisms, Mechanism and Machine Theory, Vol 31/8, pp 1141-

1153.  

14. Suh C H, (1989) Synthesis and Analysis of Suspension Mechanisms With Use of 

Displacement Matrices, SAE Paper, 89098. 

15. Rae W J and Kasprzak E M, (2002) Kinematics of a Double A-arm Suspension 

Using Euler Orientation Variables, SAE Paper, 2002-01-0279. 

16. Manes E N and Starkey J M, (2004) Derivation of the Three-dimensional 

Installation Ratio for Dual A-arm Suspensions, SAE Paper, 2004-01-3535. 

17. Hiller  M and Frick  S, (1993) Five-link Suspension, Vehicle System Dynamics, Vol 

22,  pp 254-262. 

18. Nalecz A G, (1987) Investigation into the Effect of the Suspension Design on 

Stability of Light Vehicles, SAE Paper, 870497. 

19. Suh C H and Radcliff C W, (1978) Kinematics and Mechanisms Design, John 

Wiley & Sons, New York.  

20. Kang H Y and Suh C H, (1994) Synthesis and Analysis of Spherical-Cylindrical 

(SC) Link in the McPherson Strut Suspension Mechanism, Journal of Mechanical 

Design, Vol 116,  pp 599-606. 

21. Mantaras D A, Luque P and Vera C, (2004) Development and Validation of a 

Three-Dimensional Kinematic Model for the McPherson Steering and Suspension 

Mechanisms, Mechanism and Machine Theory, Vol 39, pp 603-619. 

22. Rocca E and Russo R, (2002) A Feasibility Study on Elasto-kinematic Parameter 

Identification for a Multilink Suspension, IMechE Part D, Journal of Automobile 

Engineering, Vol 216, pp 153-160. 

23.  Wach W, and Struski J, (2006) Rear Wheels Multi-link Suspension Synthesis with 

the Application of a Virtual Mechanism, SAE Paper, 2006-01-1376. 

24. Habibi H, Shiraz K K and Shishesaz M, (2008) Roll Steer Minimization of 

McPherson-Strut Suspension System using Genetic Algorithm Method, Mechanism 

and Machine Theory, Vol 43, pp 57-67. 

25. Wach W and Struski J, (2006) Rear Wheels Multi-link Suspension Synthesis with 

the Application of a Virtual Mechanism, SAE Paper, 2006-01-1376. 



263 

 

26. Knapczyk, J and Maniowski M,  (2006) Elastokinematic Modeling and Study of 

Five-Rod Suspension With Subframe, Mechanism and Machine Theory, Vol  41, pp 

1031-1047. 

27. Shim T and Velusamy P C, (2007) Suspension Design and Dynamic Analysis of a 

Lightweight Vehicle, Int. Journal of Vehicle Design, Vol 43, No 1-4, pp 258-280. 

28. ADMAS/car-User’s Manual, MD.ADAMS/2007r2/help 

29. Ozdalyan B, Blundell M V and Philips B, (1988) Comparison of Suspension Rig 

Measurements With Computer Simulation, International Conference on 

SIMULATION, Conference Publication No. 457, IEE 1998, pp 133-139. 

30. Bae S, Lee J M , Choi W J, Yun J R and Tak T O, (2003) Axiomatic Approach to 

the Kinematic Design of an Automotive Suspension System With the McPherson 

Strut Type, Int. Journal of Vehicle Design, Vol 31, pp 58-71. 

31. Chatillon M M, Jezequel L, Coutant P, and Baggio P, (2006) Hierarchical 

Optimization of the Design Parameters of a Vehicle Suspension System, Vehicle 

System Dynamics, Vol 44, pp 817-839. 

32. Fijita K, Hirokawa N, Akagi S, and Hirata T, (1998) Design Optimization of Multi 

Link Suspension System for Total Vehicle Handling and Stability, Proceedings of 7
th

 

AIAA/USAF/NASA/ISSMO/Symposium on Multidisciplinary Analysis and 

Optimization-Part 1, St. Louis, MO, pp 620-630. 

33. Mitchell S C, Smith S, Damiano A, Durgavich J and MacCracken R, (2004) Use of 

Genetic Algorithms with Multiple Metrics Aimed at the Optimization of Automotive 

Suspension Systems, SAE Paper, 04MSEC-59 

34. Li L, Xia C and Qin W, (2007) Analysis of Kinetic Characteristic and Structural 

Parameter Optimization of Multi-link Suspension, SAE Paper, 2007-01-3558. 

35. Deo H V and Suh N P, (2004) Axiomatic Design of Automobile Suspension and 

Steering Systems: Proposal for a Novel Six Bar Suspension, SAE Paper, 2004-01-

0811. 

36. Sharp R S and Dodu M, (2004) Kinematic Cross-linking in Automotive Suspension 

Systems, Vehicle System Dynamics-Supplement, Vol 41, pp 63-72. 

37. Hamedi B, Catala A, Canellas S and Elahimehr A, (2007) A New Hybrid (Bi-fuel) 

Vehicle Suspension Development, SAE Paper, 2007-01-0861.   



264 

 

38. Wineman A, Dyke T V and Shi S, (1998) A Nonlinear Visco-elastic Model for One 

Dimensional Response of Elastomeric Bushing, Int. Journal of Mechanical Science, 

Vol 40, pp 1295-1305. 

39. Yoo W S, Baek W K and Sohn  J H, (2004) A Practical Model for Bushing 

Components for Vehicle Dynamic Analysis, Int. Journal of Vehicle design, Vol 36, 

pp 345-364 

40. Piquet B, Mass C A and Capou F, (2007) Next Generation of Suspension Bushings: 

Review of Current Technologies and Expansion Upon New 3rd Generation Product 

Data, SAE Paper, 2007-01-0850.  

41. Kadlowec J, Wineman A and Hulbert H, (2003) Elastomer Bushing Response: 

Experiments and Finite Element Modeling, Acta Mechanica, Vol 163, pp 25-38. 

42. Blundell M V, (1998) The Influence of Rubber Bush Compliance on Vehicle 

Suspension Movement, Materials and Design, Vol 19, pp 29-37 

43. Lee S B and Wineman A, (1999) A Model for Non-linear Visco-elastic Axial 

Response of an Elastomeric Bushing, Int. Journal of Non linear Mechanics, Vol 34,  

pp 779-793 

44. Pu Y, Sumali H and Gaillard C L, (2001) Modeling of Non Linear Elastomeric 

Mounts: Part 1 Dynamic Testing and Parameter Identification, SAE Paper, 2001-

01-0042. 

45. Pu Y, Sumali H and Gaillard C L, (2001) Modeling of Non Linear Elastomeric 

Mounts: Part 2 Comparing Numerical Model and Test Results, SAE Paper, 2001-

01-0043. 

46. Dzierzek S, (2000) Experiment Based Modeling of Cylindrical Rubber Bushings for 

the Simulation of Wheel Suspension Dynamic Behavior, SAE Paper, 2000-01-0095. 

47. Messonnier J, Fauroux J C, Gogu  G and Montezin C, (2006) Geometric 

Identification of an Elasto-kinematic Model in a Car Suspension, IMechE Part D, 

Journal of Automobile Engineering,  Vol 220/9, pp 1209-1220  

48. Messonnier J, Fauroux J C, Gogu  G and Montezin C, (2006) Iterative 

Identification of Stiffness Parameters in a Car Suspension Elasto-kinematic Model, 

IMechE Part D, Journal of Automobile Engineering, Vol 220/11, pp 1477-1489.  



265 

 

49. Knapczyk J and Maniowski M, (2006) Stiffness Synthesis of a Five-rod Suspension 

for Given Load-displacement Characteristics, IMechE Part D, Journal of 

Automobile Engineering, Vol 220, pp 879-889. 

50. Caputo A, Spina M and Guglielmino E, (2003) Sensitivity of Suspension System 

Performance to Bushing Stiffness Variation- an Evaluation Methodology, SAE 

Paper, 2003-01-0237. 

51. Kang J S, Yun J R and Lee J M, (1997) Elasto-kinematic Analysis and Optimization 

of Suspension Compliance Characteristics, SAE Paper, 970104. 

52. Yang  X and Medepalli S, (2005) Sensitivities of Suspension Bushings on Vehicle 

Impact Harshness Performances, SAE Paper, 2005-01-0827. 

53. Kim J H, Sin H C, Kang B J and Kim N W, (2006) Characteristic Study of Bushing 

Compliance of Stresses in a Vehicle Suspension System by the Taguchi Method, 

IMechE Part D, Journal Automobile engineering,  Vol 220/10, pp 1383-1399. 

54. Azadi S and Soltani A, (2007) Application of Wavelet Analysis to the Suspension 

System Fault Detection of a Vehicle, SAE Paper, 2007-01-2370. 

55. Azadi S and Soltani A, (2009) Fault Detection of Vehicle Suspension System Using 

Wavelet Analysis, Vehicle System Dynamics, Vol 47, pp 403-418. 

56. Flores P and Ambrosio J, (2004) Revolute Joints with Clearance in Multibody 

Systems, Computers and Structures, Vol 82, pp 1359-1369.  

57. Flores P, Ambrosio J, Claro J C P and Lankarani H M, (2007) Dynamic Behavior of 

Planar Rigid Multi-body Systems Including Revolute Joints With Clearance, 

IMechE, Part K:, Journal of Multibody Dynamics, Vol 221, pp 161-174. 

58. Chunmei J, Yang Q, Ling F and Ling Z, (2002) The Non-linear Dynamic Behavior 

of an Elastic Linkage Mechanism with Clearances, Journal of Sound and Vibration, 

Vol. 249, pp 213-226. 

59. Rhee J and Akay A, (1996) Dynamic Response of a Revolute Joint with Clearance, 

Mechanism and Machine Theory, Vol 31, pp 121-134. 

60. Flores P, Ambrosio J, Claro J C P and Lankarani, H M, (2006) Dynamics of 

Multibody Systems With Spherical Clearance Joints, Journal of Computational and 

Nonlinear Dynamics, Vol 1, pp 240-247. 



266 

 

61. Metallidis P, Verros G, Natsivas S, and Papadimitriou C, (2003) Fault Detection 

and Optimal Sensor Location in Vehicle Suspensions, Journal of Vibration and 

Control, Vol 9, pp 337-359. 

62. Metallidis P, Stavrakis I, Natsivas S, (2008) Parametric Identification and Health 

Monitoring of Complex Ground Vehicle Models, Journal of Vibration and Control, 

Vol 14, pp 1021-1036. 

63. Crolla D A, Vehicle Dynamics-Theory into Practice, (1996) IMechE Part D, Journal 

of Automobile Engineering, Vol 210, pp 83-94. 

64. Ellis J R, (1994) Vehicle Handling Dynamics, Mechanical Engineering Publication 

Limited, London. 

65. Metz L D, (2004) What Constitutes Good Handling, SAE Paper 2004-01-3532. 

66. Wong J Y, (2001) Theory of Ground Vehicles, John Wiley & Sons, Inc. 

67. Nalecz A G and Bindmann A C, (1989) Handling Properties of Four Wheel 

Steering Vehicles, SAE Paper, 890080. 

68. Hac A and Bodie M O, (2002) Improvements in Vehicle Handling Through 

Integrated Control of Chassis Systems, Int. Journal of Vehicle Design, Vol 29/1, pp 

83-110.  

69. Bodie M O and Hac A, (2000) Closed Loop Yaw Control of Vehicles Using 

Magneto-rheological Dampers, SAE Paper, 2000-01-0107. 

70. Data S and Frigerio  F, (2002), Objective Evaluation of Handling Quality, IMechE 

Part D, Journal of Automobile Engineering, Vol 216, pp 297-305. 

71. Pacejka H B, (2002), Tyre and Vehicle Dynamics, Oxford: Butterworth-Heinemann. 

72. Pacejka H B and Bakker E, (1993) The Magic Formula Tire Model, Vehicle System 

Dynamics-Supplement, Vol 21, pp 1-18. 

73. Pacejka H B and Besselink I J M, (1997) Magic Formula Tire Model With 

Transient Properties, Suppl. Vehicle System Dynamics, Vol 27, pp 234-249. 

74. Jansen S T H and Oosten J J M V, (1995) Development and Evaluation of Vehicle 

Simulation Models for a 4WS Application, Vehicle System Dynamics, Vol 24, pp 

343-363. 

75. O’Kane  C and Timoney S, (2004) Investigation of Four Wheel Steering Algorithms 

for a Formula SAE Car, SAE Paper, 2004-01-1066. 



267 

 

76. Hegazy S, Rahnejat H and Hussain K, (2000) Multi-body Dynamics in Full-vehicle 

Handling Analysis Under Transient Maneuver, Vehicle System Dynamics, Vol 34, 

pp 1-24. 

77. Blundell M V, (1999) The Modeling and Simulation of Vehicle Handling Part 2: 

Vehicle Modeling, IMechE Part K, Journal of Multibody Systems Dynamics, Vol 

213, pp 119-134. 

78. Blundell M V, (1999) The Modeling and Simulation of Vehicle Handling Part 3: 

TireModeling, IMechE Part K, Journal of Multibody Systems Dynamics, Vol 214, 

pp 1-32. 

79. Blundell M V, (1999) The Modeling and Simulation of Vehicle Handling Part 4: 

Handling Simulation, IMechE Part K, Journal of Multibody Systems Dynamics, 

Vol 214, pp 71-94. 

80. Sayers M W and Han D, (1996) A Generic Vehicle Model for Simulating Handling 

and Braking, Vehicle System Dynamics-Supplement, Vol 25, pp 599-613. 

81. Hegazy S, Rahnejat H and Hussain K, (1999) Multi-body Dynamics in Full-vehicle 

Handling Analysis, IMechE, part K, Journal of Multibody Systems Dynamics, Vol 

213, pp 19-31 

82. ISO-3888, (1975) Passenger Cars- Test Track for a Severe Lane-change Maneuver. 

83. Cao D, (2008) Theoretical Analyses of Roll- and Pitch-Coupled Hydro-pneumatic 

Strut Suspensions, PhD Thesis, Concordia University, Canada. 

84. Sharp R S, (1991) Computer Codes for Road Vehicle Dynamic Models, Proceedings 

of Autotech 91, Brimingham, UK. 

85. Sharp R S and Crolla D A, (1987) Road Vehicle Suspension System Design- a 

Review, Vehicle System Dynamics, Vol 16, pp 167-192.   

86. ISO 2631-1, (1997) Mechanical Vibration and Shock Evaluation of Human 

Exposure to Whole Body Vibration-part 1: General requirements. 

87. Sharp R S and Hassan S A, (1986) An Evaluation of Passive Automotive Suspension 

Systems with Variable Stiffness and Damping Parameters, Vehicle System 

Dynamics, Vol 15, pp 335-350. 



268 

 

88. Rajalingham C and Rakheja S (2003) Influence of Suspension Damper Asymmetry 

on Vehicle Vibration Response to Ground Excitation, Journal of Sound and 

Vibration, Vol 266, pp 1117-1129. 

89. Warner B and Rakheja S (1996) An Investigation of the Influence of High 

Performance Dampers on the Suspension Performance of a Quarter Vehicle, SAE 

Paper, 962552. 

90. Kim C, Ro P I, and Kim H, (1999) Effect of the Suspension Structure on Equivalent 

Suspension Parameters, Proceedings of IMechE, Journal of Automobile 

Engineering, Vol 213, pp  457-470. 

91. Verros G, Natsivas S and Stepan G (2000) Control and Dynamics of Quarter-Car 

Models with Dual-rate Damping, Journal of Vibration and Control, Vol 6, pp 1045-

1063. 

92. Verros G, Natsiavas S, and Papadimitriou C, (2005) Design Optimization of 

Quarter-Car Models with Passive and Semi-active Suspensions Under Random 

Road Excitation, Journal of Vibration and Control, Vol 11, pp 581-606. 

93. Hac A, (1987) Adaptive Control of Vehicle Suspension, Vehicle System Dynamics, 

Vol 16, pp 57-74. 

94. Dahlberg T, (1978)  Ride Comfort and Road Holding of a 2-DOF Vehicle Traveling 

on a Randomly Profiled Road,  Journal of Sound and Vibration, Vol 58, pp 179-

187. 

95. ISO/TC108/SC2/WG4 N57, (1982) Reporting Vehicle Road Surface Irregularities. 

96. Captain K M, Boghani A B, and Wormley D N, (1979) Analytical Tire Models for 

Dynamic Vehicle Simulation, Vehicle System Dynamics, Vol 8, pp 1-32. 

97. Sun T,  Zhang Y and Barak P, (2002) Quarter Vehicle Ride Model, SAE Paper, 

2002-01-1581 

98. Kim C and Ro P I, (1998)  A Sliding Mode Controller for Vehicle Active Suspension 

Systems with Non-linearities, IMechE part D, Journal of Automobile Engineering, 

Vol 212, pp. 79-92. 

99. Hrovat D, (1997) Survey of Advanced Suspension Developments and Related 

Optimal Control Applications, Automatica, Vol 33, pp 1781-1717. 



269 

 

100. Sun T, Zhang Y and Barak P, (2002) 4 DOF Vehicle Ride Model, SAE Paper 2002-

01-1580. 

101. Barak P, Panakanti  N and Desai  T, (2004) Effect of Chassis Design Factors (CDF) 

on the Ride Quality Using a Seven Degree of Freedom Vehicle Model, SAE Paper 

2004-01-1555.  

102. Yagiz N, Hacioglu Y and Taskin Y, (2008) Fuzzy Sliding-Mode Control of Active 

Suspensions, IEEE Transactions on Industrial Electronics, Vol 55/11, pp 3883-

3890.   

103. Rill G, (1986) Steady State Cornering on Uneven Roadways, SAE Paper, 860575.  

104. Mashadi B, Crolla D A, (2005) Influence of Ride Motions on the Handling Behavior 

of Passenger Vehicle, IMechE Part D: Journal of Automobile Engineering, Vol 219,  

pp 1047-1058.  

105. Stone M R, Demetrou M A, (2000) Modeling and Simulation of Vehicle Ride and 

Handling Performance, Proceedings of the 15th IEEE International Symposium on 

Intelligent Control (ISIC 2000). 

106. Warner B, (1996), An Analytical and Experimental Investigation of High 

Performance Suspension Dampers, PhD Thesis, Concordia University, Canada. 

107. Anderson  R J, and Fan Y,  (1990) Dynamic Testing and Modeling of a Bus Shock 

Absorber, SAE Paper 902282 

108. Duym S, Stiens R and Rebrouck  K  (1997) Evaluation of Shock Absorber Models, 

Vehicle System Dynamics, Vol 27, pp 109-127. 

109. Basso R, (1998) Experimental Characterization of Damping Force in Shock 

Absorber with Constant Velocity Excitation, Vehicle System Dynamics, Vol 30, pp 

431-442. 

110. Duym S W R, (2000) Simulation Tools, Modeling and Identification, for an 

Automotive Shock Absorber in the Context of Vehicle Dynamics, Vehicle System 

Dynamics, Vol 33, pp 261-285. 

111. Gacka S P and Doherty C G, (2006) Design Analysis and Testing of Dampers for a 

Formula SAE Race Car, SAE Paper, 2006-01-3641 



270 

 

112. Sohn H C, Hong K S And Hedrick J K, (2000) Semi-active Control of the 

MacPherson Suspension Systems: Hardware-in-the-loop simulations, Proceedings 

of IEEE, Int. Conference on Control Application, Anchorage, USA. 

113. Misselhorn W  E, Theron N J and Els P S, (2006) Investigation of Hardware-in-the-

loop for Use in Suspension Development, Vehicle System Dynamics, Vol 44, 2006, 

pp 65-81. 

114. Batterbee D C and Sims N D, (2007) Hardware-in-the-loop Simulation of 

Magnetorheological Dampers for Vehicle Suspension Systems, IMechE Part I 

Journal of Systems and Control Engineering, Vol 221, pp 265-272. 

115. Xiaoxi H, (2009) Modeling and Analysis of a Semi-active Magneto-rheological 

Damper Suspension Seat and Controller Synthesis, Master Thesis, Concordia 

University, Canada. 

116. Ma X Q, (2006) Dynamic Characterization of a Magneto-rheological Fluid 

Damper and Synthesis of a Semi-active Suspension Seat, PhD Thesis, Concordia 

University, Canada. 

117. Dixon J C, (2007) The shock Absorber Handbook, SAE Inc, Warrendale, PA. 

118. Simms A and Crolla D, (2002) The Influence of Damper Properties on Vehicle 

Dynamic Behavior, SAE Paper, 2002-01-0319. 

119. Fukushima N, Hidaka K and Iwata K, (1983) Optimum Characteristics of 

Automotive Shock Absorbers Under Driving Conditions and Road Surfaces, Int. 

Journal of Vehicle Design, Vol 4, pp 463-473. 

120. Eslaminasab N, (2007) Development of a Semi-active Intelligent Suspension System 

for Heavy Vehicles, PhD Thesis, University of Waterloo, Canada. 

121. Ahmed A K W  and Rakheja S, (1991)  An Equivalent Linearization Technique for 

the Frequency Response Analysis of Asymmetric Dampers,  Journal of Sound and 

Vibration, Vol 153, pp 537-542. 

122. Calvo J A, Lopez-Boada B, San Roman J L and Gauchia A, (2009) Influence of a 

Shock Absorber Model on a Vehicle Dynamic Simulation, Proc of  IMechE Part D: 

Journal of  Automobile Engineering, Vol  223, pp 189-202. 



271 

 

123. He Y, and McPhee J, (2007) A Review of Automated Design Synthesis Approaches 

for Virtual Development of Ground Vehicle Suspensions, SAE Paper, 2007-01-

0856. 

124. Gobbi M and Mastinu G, (2001), Analytical Description and Optimization of the 

Dynamic Behaviour of Passively Suspended Road Vehicles, Journal of Sound and 

Vibration, Vol 245, pp 457-481. 

125. Scheibe F and Smith M C, (2009) Analytical Solutions for Optimal Ride Comfort 

and Tire Grip for Passive Vehicle Suspensions, Vehicle System Dynamics, Vol 47, 

pp 1229-1252. 

126. Georgiou G, Verros G and Natsiavas S, (2007), Multi-objective Optimization of 

Quarter-car Models with a Passive or Semi-active Suspension System, Vehicle 

System Dynamics, Vol 45, pp 77-92. 

127. Georgiou G and Natsiavas S, (2009), Optimal Selection of Suspension Parameters 

in Large Scale Vehicle Models, Vehicle System Dynamics, Vol 47, pp 1147-1166. 

128. Hong K S, Jeon D S, Yoo W S, Sunwoo H, Shin  S Y, Kim C M and Park B S, 

(1999) A New Model and an Optimal Pole-placement Control of the MacPherson 

Suspension System, SAE  Paper, 1999-01-1331. 

129. Anderson E, Sandu C, and Southward S, (2007) Multibody Dynamic Modeling and 

System Identification of a Quarter-car Test Rig with McPherson Strut Suspension, 

SAE Paper, 2007-01-4184. 

130. Jonsson M, (1991) Simulation of Dynamical Behavior of a Front Wheel Suspension, 

Vehicle System Dynamics, Vol 20, pp 269-281. 

131. Stenson C Asplund and Karlsson L, (1994) The Nonlinear Behavior of a 

MacPherson Strut Wheel Suspension, Vehicle System Dynamics, Vol 23, pp 85-

106. 

132. Fallah M S, (2010) New Dynamic Modeling and Practical Control Design for 

Macpherson Suspension System, Ph D Thesis, Concordia University, Canada. 

133. Joo D S, (1999) Fuzzy Logic Controller of Nonlinear Active Suspension Active 

Suspension System, PhD Thesis, University of Detroit, Detroit. 



272 

 

134. Cole D J and Cebon D, Truck Suspension Design to Minimize Road Damage, 

IMechE Part D, Journal of Automobile Engineering, Vol 210, pp 95-107. 

135. Stone and Cebon, (2002) A Preliminary Investigation of an Active Roll Control 

System for Heavy Vehicles, 6th International Symposium on Advanced Vehicle 

Control, AVEC2002 Hiroshima, Japan. 

136. Hudha K, Jamaluddin H, Samin P M and Rahman R A, (2003) Semi Active Roll 

Control Suspension (SARCS) System on a New Modified Half Car Model, SAE 

Paper, 2003-01-2274. 

137. Bastow D, (1993) Car Suspension and Handling, SAE Inc. Warrendale, USA. 

138. Suh C H, (1991), Suspension Analysis with Instant Screw Axis Theory, SAE Paper, 

910017. 

139. http://www.2carpros.com/forum/2004-chrysler-sebring-alignment-vt215020.html 

(accessed Sept 2010). 

140. Edara R and Shih S, (2004) Effective Use of Multibody Dynamics Simulation in 

Vehicle Suspension System Development, SAE Paper, 2004-01-1547. 

141. Holdman P and Kohn P, (1998) Suspension Kinematics and Compliance- 

Measuring and Simulation, SAE Paper, 980897. 

142. Das S, Ramamurthy P and Mahajan S, (2007) Correlation Issues and Simulation of 

Kinematics and Compliance in Automotive Suspensions, SAE Paper, 2007-26-046. 

143. Morse P, (2004) Using K&C Measurements for Practical Suspension Tuning and 

Development, SAE Paper, 2004-01-3547. 

144. Nalecz A G, (1989) Application of Sensitivity Methods to Analysis and Synthesis of 

Vehicle Dynamics Systems, Vehicle System Dynamics, Vol 18, pp 1-44. 

145. Technical Service Bulletin for Chrysler/Plymouth/Dodge Cars. 

146. Raghavan M, (2004) Suspension Design for Linear Toe-change Curves: A Case 

Study in Mechanical Synthesis, Transaction of ASME, Journal of Mechanical 

Design, Vol 126, pp 278-282. 

147. Loeb J S, Guenther D A, Chen H F and Ellis J R, (1990), Lateral Stiffness, 

Cornering Stiffness and Relaxation Length of the Pneumatic Tire, SAE Paper, 

900129.  

http://www.cvdc.org/recent_papers/MiegeCebon_avec02.pdf
http://www.cvdc.org/recent_papers/MiegeCebon_avec02.pdf
http://www.2carpros.com/forum/2004-chrysler-sebring-alignment-vt215020.html


273 

 

148. Rakheja S and Sankar S (1985) Vibration and Shock Isolation Performance of a 

Semi Active “on-off” Damper, Transactions of ASME, Journal of Vibration, 

Acoustics, Stress, and Reliability in Design, Vol 107, pp 398-403. 

149. Swayze J L, Bacharch B I and Shankar S R, (1999) Suspension Force Optimization 

Using Quarter Car Model with Elastomeric Elements, SAE Paper, 1999-01-0753. 

150. Garcia M J T, Kari L, Vinolas J and Gil-Negrete N, (2007), Torsion Stiffness of a 

Rubber Bushing: a Simple Engineering Design Formula Including the Amplitude 

Dependence, Journal of Strain Analysis, Vol 42, pp 13-21. 

151. Matlab Product Help, MathWorks Inc 2007. 

152. Rakheja S, Wang Z and Ahmed A K W, (2001), Urban Bus Optimal Passive 

Suspension Study, Final Report, Transport Canada, TP13787E. 

153. Dixon J C, (1987) The Roll Center Concept in Vehicle Handling Dynamics, IMechE 

Part D, Journal of Automobile Engineering, Vol 201, pp 69-78. 

154. Gerrard M B, (1999) Roll Centers and Jacking Forces in Independent Suspensions-

a First Principles Explanation and a Designer’s Toolkit, SAE Paper, 1999-01-0046. 

 

 


	This is to certify that the thesis prepared
	LIST OF FIGURES
	LIST OF TABLES
	NOMENCLATURE
	CHAPTER 1
	INTRODUCTION AND LITERATURE REVIEW
	1.1 Introduction
	1.2 Literature Review
	1.2.1 Synthesis of Independent Suspensions for Road Vehicles
	1.2.2 Suspension Joint Bushings
	1.2.3 Joint Clearances and Fault Diagnostics
	1.2.4 Handling Dynamics of Road Vehicles
	1.2.5 Ride Dynamics of Vehicles
	1.2.6 Influences of Suspension Kinematics on Dynamics of the Vehicle

	1.3 Scope of the Proposed Dissertation Research
	1.4 Objectives of the Dissertation Research
	1.5 Organization of the Dissertation

	CHAPTER 2
	KINEMATIC ANALYSIS AND SYNTHESIS OF SUSPENSION GEOMETRY USING A QUARTER CAR MODEL
	2.1 Introduction
	2.2 Features of Kinematic Analysis
	2.2.1 Kinematic Constraints in a Suspension Mechanism
	2.2.2 Kinematic Responses of Automotive Suspensions

	2.3 Kinematic Analysis of a Quadra-link Suspension
	2.3.1 Kinematic Model of the Quadra-link Suspension
	2.3.2 Mobility Analysis
	2.3.3 Kinematic Formulations

	2.4  Measurements of Kinematic Responses
	2.4.1 Measurements and Data Analysis

	2.5  Kinematic Model Validation
	2.6 Kinematic Response Analysis of the Quadra-Link Suspension
	2.6.1 Sensitivity of Kinematic Responses to Variations in the Joint Coordinates

	2.7 Kinematic Analysis of a Double Wishbone Suspension
	2.7.1  Kinematic Model of the Double Wishbone Suspension
	2.7.2  Kinematic Response Analysis of a Double Wishbone Suspension
	2.7.3  Sensitivity of Kinematic Responses to Joint Coordinates

	2.8  Summary

	CHAPTER 3
	KINETO-DYNAMIC ANALYSIS OF A DOUBLE WISHBONE SUSPENSION
	3.1 Introduction
	3.2 Model Development
	3.2.1 Kinematic Analysis
	3.2.2 Kineto-dynamic Analysis

	3.3 Equivalent Spring and Damping Rates
	3.3.1 Formulations of Equivalent Spring- and Damping Rates
	3.3.2 Variations in Equivalent Spring and Damping Rates

	3.4 Dynamic Response Analyses
	3.4.1 Responses to Harmonic Inputs
	3.4.2 Responses to Idealized Bump Excitations

	3.5 Suspension Synthesis With Constrained Lateral Space
	3.5.1 Sensitivity Analysis

	3.6 Influences of Joint Bushing Compliance
	3.6.1 Dynamic Formulations with Flexible Bushing
	3.6.2 Influences of Joint Bushings under Harmonic Inputs
	3.6.3 Influences of Bushing Compliance under Idealized Bump Excitations
	3.6.4 Bushing Stiffness Sensitivity Analysis

	3.7 Summary

	CHAPTER 4
	KINETO-DYNAMIC ANALYSIS WITH AN ASYMMETRIC DAMPER, AND OPTIMAL DAMPER SYNTHESIS
	4.1. Introduction
	4.2 Kineto-dynamic Quarter-car Model with Asymmetric Damper
	4.2.1 Asymmetric Damper Models
	4.2.2 Analysis of Damping Force Asymmetry

	4.3 Responses of Kineto-dynamic Model with Asymmetric Damper to Harmonic Inputs
	4.4 Responses of Asymmetric Damper to Idealized Bump and Pothole Inputs
	4.4.1 Influences of Bilinear Damper Asymmetry
	4.4.2 Influences of Two-stage Asymmetric Damper

	4.5 Optimal Synthesis of Asymmetric Damper under Bump and Pothole Inputs
	4.5.1 Formulation of Performance Index and Optimization Methodology
	4.5.2 Optimization Results and Discussion

	4.6 Responses of Kineto-dynamic Model with Asymmetric Damper to Random Road Inputs
	4.6.1 Random Road Characteristics
	4.6.2 Influences of Bilinear Asymmetric Damper under Random Excitations
	4.6.3 Influences of Two-stage Asymmetric Damper under Random Excitations

	4.7 Optimal Synthesis of Two-stage Asymmetric Damper under Random Inputs
	4.7.1 Formulation of Performance Index and Optimization Methodology
	4.7.2 Results and Discussion

	4.8 Summary

	CHAPTER 5
	ROLL-PLANE KINETO-DYNAMIC ANALYSES OF DOUBLE WISHBONE SUSPENSION
	5.1 Introduction
	5.2 Development of Roll-plane Kineto-dynamic Vehicle Model
	5.2.1 Kinematics of the Chassis
	5.2.2 Kinematics of the Suspension Linkages
	5.2.3 Linearization of Kinematic Equations
	5.2.4 Strut Deflection and Deflection Rate
	5.2.5 Kinematics of Torsion Bar

	5.3 Kineto-Dynamic Half-car Model
	5.3.1 Equations of Motion:
	5.3.2 Wheel Hop Conditions
	5.3.3 Kineto-Dynamic Suspension Model with Asymmetric Damping

	5.4 Roll-plane Dynamic Model of a Vehicle
	5.5 Kinematic Response Analyses and Suspension Geometry Synthesis
	5.5.1 Kinematic Response Analyses
	5.5.2 Sensitivity Analysis
	5.5.3 Selection of Optimal Joint Coordinates

	5.6 Kineto-dynamic Responses of the Roll-Plane Vehicle Model
	5.6.1 Influences of Suspension Linkage Kinematics
	5.6.2 Effects of Optimal Suspension Geometry
	5.6.3 Influences of Anti-roll Bar on the Kinematic Response Measures
	5.6.4 Influences of Suspension Damping Asymmetry

	5.7 Summary

	CHAPTER 6
	INFLUENCES OF SUSPENSION GEOMETRY, DAMPER AND JOINT  BUSHING FAULTS
	6.1 Introduction
	6.2 Full-vehicle Model Development in ADAMS/car
	6.2.1 Bushing Model
	6.2.2 Bushing Fault Modeling
	6.2.3 Modeling of Geometry and Damper Faults

	6.3 Four-post Test Rig Full-vehicle Analyses
	6.4 Influence of Deformed Suspension Linkage
	6.5 Influence of Defective Damper
	6.6 Influence of Joint Bushings Faults
	6.7 Feasibility of a Fault Diagnostic System
	6.8 Summary

	CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDIES
	7.1 Dissertation Research Highlights
	7.2 Major Conclusions
	7.3 Recommendations for Further Studies

	REFERENCES

