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Abstract

Simulatable Auditing in Micro-Databases

Li Deng

How to protect individuals’ privacy while releasing microdata tables for analysis pur-

poses has attracted significant attention. We study the case where different microdata tables

generalized over the same underlying secret table may be released upon users’ queries. To

satisfy privacy constraints, an auditing system must determine whether the next query can

be safely answered based on the history of answered queries. However, when answering a

new query is not safe, denying it may not be, either, since a denial itself may still convey

some sensitive information to the user. We first model this issue in the context of releasing

microdata tables. Inspired by the Simulatable Auditing technique in statistical databases,

we propose a safe strategy for auditing queries that ask for microdata tables generalized

over secret tables. The strategy can provide provably safe answers and good data utility.

We also study how to efficiently maintain the history of answered queries for the auditing

purpose. To the best of our knowledge, this is the first study on the simulatable auditing

issue of microdata queries.
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Chapter 1

Introduction

The issue of privacy-preservation in data publication has drawn significant attention lately.

There are two fundamentally conflicting goals in such a data publication application: Data

utility and privacy. On one hand, many organizations need to give datasets to third parties

for analysis or research purposes. On the other hand, such organizations need to protect

individuals’ private information contained in such datasets. For example, a healthcare orga-

nization may share with researchers their databases of medical records but the organization

is obliged to keep the privacy of its patients. An ideal solution in such scenarios should

maximize the data utility while protecting individuals’ privacy. In this thesis, we address

this issue by providing models and strategies that allow analysts to query a dataset while

protecting individuals’ private information contained in the dataset.

Privacy issues exist in many forms of data publications. First, private data may be pub-

lished as the so-called micro-data tables in which explicit identifiers have been removed

and other identifying values have been generalized with coarser-grained values. Nonethe-

less, individuals may be re-identified from such a micro-data table by linking it to other

data sources. For example, as shown in [45], anonymized micro-data tables of medical

records from a hospital may be combined with identifying information from a voters’ list

to infer medical conditions of individuals, which clearly violates their privacy. Second,

1



numerical private data may also be published as their aggregates. In such a case, private

values may be inferred by combining multiple aggregates over such values. In this thesis,

we shall focus on data publication in terms of micro-data tables.

From another aspect, data publication applications may be classified into two cate-

gories, namely, online and offline applications. In an offline application, data owners will

compute one or more micro-data tables over the secret dataset before releasing the tables.

Performance is generally not critical here since the computation may take as much time as

needed. Also, what micro-data to release is mainly decided by the data owner and users

of such micro-data usually only play a passive role. On the other hand, in an online ap-

plication, users interact with a database to ask for specific forms of data. In such a case,

performance is typically more important since users’ queries cannot be adversely delayed.

Also, since it is the user who decides which query to be asked next, data owners must ex-

amine each new query together with all previously answered queries to determine whether

privacy requirement can be satisfied. In this thesis, we shall address the online application

in which users may ask for micro-data tables. We call such a system micro-database.

Micro-data tables are obtained using generalization techniques that transform a secret

relational table into a micro-data table containing coarser values for satisfying privacy prop-

erties, such as k-anonymity [43] and l-diversity [34]. For example, a secret table containing

patients’ personal information, such as names, genders, social identity numbers, addresses,

DOBs, and disease information, may be generalized into a micro-data table that has names

and social identity numbers removed, and other attributes, except disease information, gen-

eralized. Although significant efforts have been seen on privacy preservation for releasing

micro-data tables, most of these work are for the offline application of pre-computing one

or more micro-data tables to be released, which is different from the online application that

we shall study.

Closest to our work, the issue of micro-data auditing is studied in [9] where multiple
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views on a secret table are checked for violations of privacy requirements. However, the

case where a query cannot be answered and the denial may disclose sensitive information

is not the focus in [9]. This issue is addressed in the context of statistical databases in [25],

that is, whether giving answers or denials to queries asking for statistical aggregates (SUM,

MAX) will violate privacy requirements. We address a similar problem in the different

context of micro-databases, and we shall propose an improved strategy than the one in [25].

This thesis addresses three issues: (1) Modeling what information is disclosed by pre-

viously disclosed answers to queries; (2) Determining whether a new query is safe with

respect to privacy requirements and the answer can be given; (3) Designing an online au-

diting strategy to satisfy the privacy requirements while not adversely impacting the data

utility. Based on the privacy property !-uncertainty introduced in [9], we shall define the

auditing problem in the context of a micro-database. We propose a novel auditing strategy

for micro-databases for determining whether answering a query satisfies !-uncertainty. We

study the maintenance of a so-called knowledge dictionary that keeps track of all previ-

ously answered queries and their answers. We also study how concurrent queries can be

more efficiently handled and provide optimized strategies for this purpose.

The reminder of the thesis is organized as follows. The rest of this chapter reviews

relevant background knowledge in inference control, simulatable auditing, and micro-data

disclosure. In Chapter 2, we discuss related work on auditing and micro-data disclosure.

In Chapter 3, we give motivating examples and an overview of the auditing system, its

assumptions, and basic notations. The proposed strategy for the auditing system and corre-

sponding algorithms are presented in Chapter 4. In Chapter 5, we discuss how to efficiently

update knowledge dictionary for the system. As extensions of the work, we present the han-

dling of concurrent queries and improved strategies for improving data utility in Chapter 6.

In Chapter 7, we give conclusions and future work.
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1.1 Inference control

Our study of the auditing problem is partly inspired by a similar problem studied in the con-

text of inference control in statistical databases. In this section, we briefly review inference

control.

Inference control has been extensively studied for more than forty years. The goal

is to prevent adversaries from inferring secret numeric values from their statistical aggre-

gates. There are broadly two types of inference control techniques, restriction-based and

perturbation-based, for protecting privacy in statistical databases. In the restriction-based

techniques, the user queries the database through a privacy protection mechanism, which

may decide to either deny the query or answer it, in order to ensure privacy. Perturbation-

based techniques add random noises to sensitive data or answers to queries such as to

prevent the violation of privacy requirements.

To determine the safety of answering queries, restriction-based techniques base their

decisions on various properties, including the minimal number of values aggregated by a

query, the maximum number of common values aggregated by different queries, the ap-

proximate intervals that can be guessed from query results, and the maximal rank of a

matrix representing all answered queries. Instead of enumerating all the methods in the

literature, we show a few examples of restriction-based techniques in the following.

First, one of the first efforts on inference control is the query set size control. The subset

of a relational table that matches a query’s WHERE clauses is called a query set. Query set

size control denies a query whose query set includes less than k tuples. If the database has

totally n tuples, then the query whose query set is greater than n− k is prohibited, since its

complement includes less than k tuples, which violates the control. For example, consider

the simple relation comm shown in Table 1, and suppose the query set size control is in

place with k = 2. The following query has a singleton query set (whose only member is

the first record), and hence is denied.
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SELECT SUM(commission)

FROM comm

WHERE employee=’Alice’ and quarter=’Q1’ and location=’Domestic’

employee quarter location commission
Alice Q1 Domestic 800
Alice Q1 Interational 200
Bob Q1 Domestic 500
Mary Q1 Domestic 1200
Mary Q1 International 800
Bob Q2 Interational 1500
Mary Q2 Domestic 500
Jim Q2 Domestic 1000

Table 1: An Example Relation comm for Inference Control

By considering that the WHERE clause is the conjunction of three conditions, we can

ask the following two queries. The query set of both queries is between k (two) and n − k

(seven). Both queries will thus be allowed. Subtracting the result of the second query from

that of the first query leads to the inference of the first record. We can similarly infer any

query asking for the aggregation of less than k records.

SELECT SUM(commission)

FROM comm

WHERE quarter=’Q1’ and location=’Domestic’

SELECT SUM(commission)

FROM comm

WHERE employee<>’Alice’ and quarter=’Q1’ and location=’Domestic’
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The above tracker will depend on records to be inferred, and each inference requires

a different tracker. A better way is to find a universal tracker and pad it to any record (or

query) to be inferred. For example, in Table 1 we can form the tracker with the selection

condition employee=’Mary’ or employee=’Jim’. Because the tracker’s query

set has four records, the following two queries will both be allowed.

SELECT SUM(commission)

FROM comm

WHERE employee=’Mary’ OR employee=’Jim’

SELECT SUM(commission)

FROM comm

employee<>’Mary’ AND employee<>’Jim’

Adding the results to the two queries together gives us the total commission in the

table. Next, without loss of generality, suppose we want to infer the first record. We ask

the following two queries.

SELECT SUM(commission)

FROM comm

WHERE (employee=’Alice’ AND quarter=’Q1’ AND location=’Domestic’)

OR (employee=’Mary’ OR employee=’Jim’)

SELECT SUM(commission)
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FROM comm

WHERE (employee=’Alice’ AND quarter=’Q1’ AND location=’Domestic’)

OR (employee<>’Mary’ AND employee<>’Jim’)

We can see that the first query pads the first record with the tracker, and the second

query pads it with the complement of the tracker. Adding the result to the two queries and

then subtracting the value from the total commission that we have computed earlier leads to

the inference of the first record. Similarly we can infer any query asking for the aggregation

of less than k records. Because the inference pads the query to be inferred with both the

tracker and the complement of the tracker. In order for such two queries to be allowed, the

size of the tracker must meet a more stringent condition, that is it must be between 2k and

n− 2k. However, more complicated trackers may relax this condition. Trackers are indeed

examples of the more general linear system attack we shall discuss shortly. However, the

study of trackers nonetheless demonstrates the ineffectiveness of the query set size control.

The above tracker attacks can be generalized with the linear system attack based on the

following model. Given sensitive values x1, x2, . . . , xn, any SUM query on those values

can be modeled as an equation
∑n

1 aixi, where ai = 1 if xi is in the query set and ai = 0,

otherwise. A collection of m queries thus form a linear system AX = D, where A is

an m × n binary matrix, X = (x1, x2, . . . , xn), and D is the vector of query results. An

inference using the tracker can then be modeled as a sequence of elementary row operations

on the matrix A (that is, multiplying a row with a non-zero number, swapping two rows,

adding a row to another multiplied by a number).

In order to determine whether any given queries may lead to an inference, we must an-

swer the question: Does there exist a sequence of elementary row operations that transform

A into a unit row vector (that is, a vector with one 1-element and all others being 0’s)? Chin

and Ozsoyoglu show that this can be determined by first transforming A into its reduced
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row echelon form (RREF) through a special sequence of elementary row operations, that is

the Gauss-Jordan elimination.

The key result lies in that any matrix A can be transformed into a unit row vector

through a sequence of elementary row operations, if and only if its RREF includes such a

vector. The if part is trivial, because the Gauss-Jordan elimination itself is a sequence of

elementary row operations. The only if part can be proved by contradiction. A unit row

vector whose 1-element is in the first, second, or fourth position clearly cannot be a linear

combination of those four rows in the matrix. A unit row vector whose 1-element is in other

positions cannot, either. Because any linear combination of the four rows will have at least

one non-zero element in the first, second, or fourth position. The above result is essentially

a precise model for inferences of unbounded real values using SUM-only queries.

The above result also yields a method for checking whether a new query, taken together

with queries answered before, will cause inferences. A straightforward but inefficient ap-

proach is to keep all answered queries and re-computing the RREF when each new query

is received. For m queries on n values, the Gauss-Jordan elimination takes time O(m2n).

Considering that the elementary row operations on a matrix is associative, a better approach

is to incrementally updates the RREF for each newly answered query. Audit Expert main-

tains the RREF of a matrix that corresponds to the set of queries answered so far. A query

is denied when adding it to this set causes an inferences. Because the RREF of a matrix

only includes linearly independent rows, the total number of rows must be no greater than

the rank of matrix. For queries over n values, this rank cannot be greater than n. After

a new row is added to the matrix, the RREF of the new matrix can thus be computed in

O(n2) time.
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1.2 Simulatable Auditing

Recall that in an online query auditing application, the data owner will receive a sequence

of queries from a user for which answers must be providied The answer is either the true

answer of the query, or a denial. The key issue in such an application is that upon receiving

a new query that cannot be safely answered, even denying the answer may cause privacy

properties to be breached. The issue is first addressed in [25] and a corresponding Simulat-

able Auditing strategy is proposed as a solution. Our work extends the idea of simulatable

auditing from statistical databases to micro-data publication applications.

To make the above issue more concrete, we consider some examples of statistical

database auditing. Suppose that an adversary sends the first query asking for sum(x1, x2, x3)

and gets the answer 15. The adversary then asks for the second query max(x1, x2, x3),

which is denied. The denial tells the attacker that if the answer to the second query were

given, then some data value would have been compromised (that is, known by the ad-

versary). The adversary can then guess as follows. If max(x1, x2, x3) > 5 were true,

then the query would not have been denied, since no value can be compromised. Also,

max(x1, x2, x3) < 5 is not possible either, since sum(x1, x2, x3) equals 15. Consequently,

max(x1, x2, x3) = 5must have been the true answer to the second query, and the adversary

then immediately learns that x1 = x2 = x3 = 5.

This problem is possible even with the same type of queries. For example, suppose a

query asks for max(t1, t2, t3, t4) and is answered as 10. Then for the second query asking

formax(t1, t2, t3), it is not safe to deny since the denial will tell the adversary that t4 must

have the value 10, because this is the only case a value can be compromised and thus the

query would be denied. Similarly, if the second query is answered, the adversary can ask

for a third query for any two of these three values, and we would be in the same situation

where a denial is not safe.

The above examples show that the auditing system may fail to protect data privacy
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even when denying a query. The denial itself leaks information from which the adversary

learns secret values. The reason is that the auditing system decides to deny a query based on

information not available to the adversary (that is, the secret values). That is, if the decision

for allowing or denying a query depends on the actual data values, then the decision will

convey information to avdersaries, even if it is simply a denial.

A simulatable auditing strategy is proposed in [25]. The model is based on the idea that

the auditing process is simulatable in the sense that all decisions to either deny or answer a

query is independent of the actual data values. In this way, the denial of a query does not

convey any information to the adversary beyond what is already known by him/her from

previously answered queries’ answers. In another word, the adversary can tell by him-

self/herself what decision would be made. Simulatable auditing keeps all posted queries

q1, ..., qt and the answers a1, ..., at to decide whether to answer or deny a newly posed

query qt+1. Note that queries q1, ..., qt are only the answered queries. The denied queries

will not be counted as knowledge of adversaries since the denied queries are asked by the

adversaries and the denials do not carry any additonal information.

More formally, simulatable auditing is defined in [25] as: An auditor is simulatable

if the decision to deny or give an answer to the query qt is made based exclusively on

q1, ..., qt, and a1, ..., at−1 (and not at and not the dataset X=x1, ..., xn) and possible also

the underlying probability distribution D from which the data was drawn.

1.3 Micro-Data Disclosure

Unlike in statistical databases, the key issue of micro-data disclosure is for the data owner

to release generalized views, called microdata tables, over the secret table while protecting

individual’s privacy. Various privacy properties have been proposed, such as k-anonymity,

l-diversity, t-closeness, uncertainty, indistinguishability, and so on. Various generalization

techniques have also been proposed to transform a relational table into micro-data tables
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that satisfy given privacy properties. We shall review these through a few examples in the

following.

An example of micro-data table T is shown in Table 2. Suppose the sensitive attribute

is patients’ medical conditions. Simply deleting the identifier Name before releasing the

table is not sufficient due to potential linking attacks using the quasi-identifiers, the attribute

DoB in this case. The sensitive attribute for a tuple may potentially be linked to a unique

person though such quasi-identifiers.

A Micro-Data Table T Generalization g1(T )
Name DoB Condition
Alice 1990 flu
Bob 1985 cold
Charlie 1974 cancer
David 1962 cancer
Eve 1953 headache
Fen 1941 toothache

DoB Condition
1980∼1999 flu

cold
1960∼1979 cancer

cancer
1940∼1959 headache

toothache

Generalization g2(T ) Generalization g3(T )
DoB Condition

1970∼1999 flu
cold
cancer

1940∼1969 cancer
headache
toothache

DoB Condition
1960∼1999 flu

cold
cancer
cancer

1940∼1959 headache
toothache

Table 2: A Micro-Data Table and Three Generalizations

To prevent the linking attack, the micro-data table needs to be generalized to protect

each individual’s anonymity in the table. The k-anonymity property is proposed for this

purpose. k-anonymity is to obfuscate quasi-identifier values such that an adversary can

only link a real world individual to at lease k tuples in the micro-data table. The tabular

g1(T ) in Table 1 shows a generalization that satisfies 2-anonymity. Any identity in this

release will belong to a group of two tuples that are anonymous. Therefore, a linking attack
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cannot bind a person to a unique tuple through the quasi-identifier. However, k-anonymity

by itself is not sufficient since linking a person to the second group in g1(T ) already reveals

the condition to be cancer; or if the adversary knows that Eve does not has toothache, by

linking Eve to third group, Eve’s condition has been compromised.

To avoid having only the same sensitive values in a group and the above external

knowledge-based attacks, the generalization must also ensure enough diversity inside each

group of sensitive values, namely, to satisfy the l-diversity property. For example, assume

2-diversity is desired. If the generalization g2(T ) is disclosed, a person can at best be linked

to a group with three different conditions among which each is equally likely to be that per-

son’s real condition. The desired privacy property is thus satisfied. Various algotithms have

been proposed to apply l-diversity in micro-data generalization.

On the other hand, when the generation algorithms is publicly known, the above privacy

metric needs to be applied more carefully. If we do not consider such knowledge, an

adversary looking at g2(T ) in Table 2 can guess that the three persons in each group may

have the three conditions in any given order. Therefore, the adversary’s mental image of T

is a set of totally 3! × 3! = 36 table instances, each of which is equally likely to be T (a

common assumption is that the quasi-identifier attribute is public knowledge).

Now suppose we consider an adversary knows the generalization algorithm, which has

considered g1(T ) before it discloses g2(T ). This knowledge will enable the adversary in

excluding some invalid guesses from the permutation set. The only reason that the system

release g2(T ) instead of g1(T ) is that g1(T ) violates the data privacy requirement. So the

adversary can refine his/her guesses of T to a smaller set of tables. As the result, it can be

shown that 2-diversity will be violated in this particular case (we shall omit details here).

Solutions to the above problem exists, such as that in [56]. In order to determine

whether a generalization is safe to disclose, a disclosure set is used to model adversaries’

mental image of the secret table in order to evaluate the desired privacy property, such as
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l-diversity. The evaluation is based on all considered, but unused generalizations, and is a

recursive process. For example, consider how to compute the disclosure set of next gen-

eralization, g3(T ), in Table 2. In the permutation set of g3(T ), we need to exclude any

table T , if either g1(T ) or g2(T ) satisfies 2-diversity. However, to determine whether g2(T )

satisfies 2-diversity, we would have to compute the disclosure set of g2(T ) to determine if

it violates 2-diversity of g1(T ).

The above discussions based on privacy properties such as k-anonymity and l-diversity

only apply to the disclosure of anonymized micro-data table in offline applications. For

online applications where users may ask for specific views over the micro-data table, only

limited efforts have been made, as demonstrated in Table 3 where data is published as

multiple views over the same secret table.

Private Micro-Table
Name Job Salary Condition
George Manager 70K cold
John Manager 90K Obesity
Bill Lawyer 110K HIV

∏
Name σSalary>80K

∏
Name σSalary<105K

∏
Condition σ80K<Salary<100K

Name
John
Bill

Name
George
John

Condition
Obesity

Table 3: Privacy compromised from views

Uncertainty and indistinguishability are two privacy properties proposed for the online

application of data publication. Uncertainty means that given a set of k distinct private

values, the adversary cannot tell which private value an individual actually has. The ex-

ample of applying uncertainty problem to multiple micro-data views is shown in table 3,

where none of the three released answers to queries will violate the privacy requirement.

However, by combining all three views, John’s medical condition will be known.

Indistinguishability refers to the property that the adversary cannot see the difference
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among k distinct individuals based on the released micro-data, such that none of the k indi-

viduals would draw special attentions from the adversaries. Indistinguishability is another

aspect of privacy that is different from uncertainty. For example, an adversary may reveal

an employee John’s salary to be in a large interval (say, 100K to 300K annually). There

may be enough uncertainty. However, if the adversary also reveal that the salaries of all

other employees are in ranges that are very dierent from John’s range (say, in ranges of 50K

to 100K), then John’s privacy may still be considered as violated, since he will draw special

attentions from adversaries. As another example, suppose from the released data we can

infer that all patients in a hospital may only have Cold or SARS except that John may have

Cold or AIDS. Even though the uncertainty of John’s condition has the same amount of

uncertainty as that of the other patients, John may still feel his privacy is violated, since

he is the only one who possibly has AIDS. For the protection from being brought to the

attention of others, the indistinguishability should be applied.
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Chapter 2

Related work

There are generally two categories of applications for protecting data privacy, online appli-

cations and offline applications. In the former, users query the database and the database

may deny the query or alter the answer to a query in order to ensure privacy. This is also

known as query auditing [13, 22, 25, 41]. In the offline application, the original database is

first sanitized or generalized so as to preserve privacy before releasing. The generalization

technique has received significant attention lately [1, 4, 20, 28, 29]. The results obtained in

the online applications may yield better data utility in the sense that only queries of interest

to a user are answered, whereas in the offline applications, the user has more accesses to

data since the entire sanitized database is available to him/her.

The main challenge for online auditing is to answer queries without allowing inferences

of secret individual values. The earliest auditing work include [13] and [41] for statistical

databases, which show that with queries involving at least k data elements, each pair over-

lapping in at most r data elements, any data set can be compromised in (2k − (l + 1))/r

queries by an adversary knowing l data elements. For fixed k, l and r, if the auditor denies

the (2k − (l + 1))/r and further queries, the individual data elements are protected. The

auditor logs all queries and denies the query qi satisfying that |qi| < k, |qi

⋂
qt| > r(t < i),

or i < (2k − (l + 1))/r.
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The auditing methods in [15] checks whether each new query can be safely answered

based on a history of previously answered queries. These auditors are simulatable since

the denies do not leak any informaiton about the actual data. The authors of [15, 22, 25]

considered the same problem in more specific settings of both offline and online auditing.

The auditing methods in [25, 33] consider if the decision itself leaks any privacy while

solving the problem that a denial answer leaks information to adversaries . In [25], the

authors build a simulatable auditor in statistical database for SUM and MAX queries. The

auditor checks whether each new query can be safely answered based on the set of previous

query answers, which is known as the knowledge base. In this method, the denied query

does not leak any information since the decision to answer a new query or not does not

depend on actual databases. To improve data utility for simulatable auditing, the authors

in [33] propose a method that bind denied queries together to increase data utility while

keeping data privacy in an acceptable range.

In the offline auditing problem, the auditor is given a set of queries q1, ..., qn and true

answers a1, ...at and it must determine if a breach of privacy is possible with those queries

answered. If only sum or only max queries are considered, then polynomial-time audit-

ing algorithms are known to exist [7]. However, when sum and max queries are inter-

mingled, then determining whether a value can be uniquely determinded is known to be

NP-hard [15]. In [24], the auditors consider auditing subcube queries which take the form

of a sequence of 0s, 1s and *s where the *s represent “don’t care”. For example, the query

10**1* matches all entries with a 1 in the first position, 0 in the second, 1 in the fifth and

anything else in the remaining positions. Assuming sum queries over the subcubes, they

demonstrate that when a compromise can occur will depend on the number of *s in the

queries and also on the range of input data values. In [22], the authors investigate the of-

fline sum auditing problem of boolean data. They begin by proving that the offline sum

auditing problem is coNP-hard. Then they give an efficient offline sum auditing algorithm
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in the case that the queries are one-dimensional, based on some ordering of the elements,

say x1, ..., xn, each query involves a consecutive sequence of values such as xi, xi+1, ..., xj .

The offline application of releasing tabular data have received significant attention [1,

4, 20, 28, 29]. A number of information disclosure limitation techniques have been de-

signed for the publication of census tabular data. Two main approaches have been proposed

for protecting sensitive cells in such data: Data Swapping [19, 38, 48] and Cell Suppres-

sion [30]. However, these techniques may compromise data integrity of the table. The

data swapping approach involves moving data entries from one cell to another in the con-

tingency table in a manner that is consistent with the set of published marginals. In the

data suppression approach, cells with low counts will simply be deleted, which then might

lead to the deletion of more cells. A measurement of information disclosed through query

results over secret view of a table based on the perfect secrecy notion by Shannon is given

in [18]. The authors in [11] tackle the problem ascribed to the independence assumption

made in [18].

The important notion of k-anonymity has been proposed by Samarati and Sweeney

[43, 44, 47] as a model of privacy, where the basic idea is to make a set of records indistin-

guishable from each other with respect to identifying attributes, namely, quasi-identifers.

This concept has received tremendous interest in recent years. In the k-anonymity model,

we suppress or generalize some entries in a table so as to ensure that for each tuple in the

modified table, there are at least k-1 other tuples in the same table that are identical to the

tuple in terms of quasi-identifiers. Consequently, even with the knowledge of an individ-

ual’s quasi-identifying attributes, an adversary cannot locate an individual’s record to more

than a set of at least k records. In other words, releasing a table under k-anonymization

keeps each individual hidden in a crowd of k-1 other people.

To achieve optimal k-anonymity with the most data utility is known to be computation-

ally intractable [36]. Optimal k-anonymity has been proved to be NP-hard for k ! 3. Much
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efforts have been seen on efficient k-anonymity algorithms [2,3,14,16,26,42,43], whereas

the safety of the algorithms is generally assumed. These algorithms render the data coarser

by generalizing the data to make it less specific, or suppress the data and perturb the data

to replace with a random value the actual value. A personalized requirement for anonymity

is studied in [55]. In [21], the authors approach the issue from a different perspective,

that is, the privacy property is based on generalization of the protected data and could be

customized by users.

Other models are proposed to address limitations of k-anonymity. A model based on

the intuition of blending individuals in a crowd is proposed in [46]. Many work focus on

the deficiency of allowing insecure groups with a small number of sensitive values, such as

l-diversity [34], t-closeness [31], alpha-k-anonymity [53], and so on. Machanavajjhala et

al. [34] proposed l-diversity as an important step beyond k-anonymity which overcomes the

shortcoming that an adversary can discover the sensitive value, when there is little diversity,

or through external knowledge. The model requires each equivalence class to have at least

l well-represented values for each sensitive attribute. The authors in [55] observe that l-

diversity cannot prevent attribute disclosure when multiple records in the table correspond

to one individual. They propose to have each individual specify privacy policies about

its own attributes. t-closeness is a privacy notion that requires that the distribution of a

sensitive attribute in any equivalence class to be close to the distribution of the attribute in

the overall table.

In [54], a data anonymitization approach divides one table into two parts for release; one

includes original quasi-identifiers and a group of id, and the other include the association

between the group id and the sensitive attribute values. In addition, a generic model called

GBP was proposed to unify the perspective of privacy guarantees in both generalization-

based publishing and view-based publishing [10]. In [9] and [8], the authors give the

privacy properties for micro-data disclosure when publication is based on multiple views

18



since multiple views may reveal data privacy in a non-obvious way.

While most existing work assume the disclosed generalization to be the only source

of information available to an adversary, recent work [56] and [52] show the limitation of

such an assumption. In addition to such information, the adversary may also know about

the disclosure algorithm. With such extra knowledge, the adversary may deduce more

information and eventually violate the privacy property. In the work of [56] and [52], the

authors discover this issue and correspondingly introduce models and algorithms to address

it. However, the method in [52] depends on a specific privacy property, whereas the one

in [56] is more general, but it also incurs a high complexity.
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Chapter 3

Preliminaries

In this chapter, we first give motivating examples. We then briefly overview the system

architecture and discuss privacymetric that we choose for our system. Finally, we introduce

basic notations that will be used later in this thesis.

3.1 Motivating examples

Suppose the relationship between individuals and their disease names is considered sen-

sitive. Simply deleting the identity (Name) is not sufficient since a tuple’s sensitive value

may still be linked to a unique identity through the quasi-identifier(Age) when combined

with external knowledge, namely linking attack. We assume individuals can be identified

by their unique ages for this example (in general, the quasi-identifier is usually a combina-

tion of multiple attributes). Now suppose a query asks for information about those whose

age is between 32 to 60. The real answer of this query based on the database is shown as

A1 in Table 4, which is simply a relational table. Hiding the names in the answer will not

help to protect privacy, since the ages can still identify each individual.

For protecting privacy, the relationship between names (or ages) and diseases shown in

the real answer must be hidden. A simple solution we may immediately come up with is
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to give the answer that contain all the values but with the association between names and

diseases removed, shown as F 1 in Table 4. F 1 contains the same values for each attribute

as the real answer A1 does. However, it is shown as two independent relations (separated

by the double vertical lines). In each relation, the values are simply sorted in ascending

order. We call such a relation a fact. In this case, based on the released facts, adversaries

can only reason that any individual identity can be linked to one of the five diseases (since

there is one duplicate) among which each is equally likely to be that identity’s true disease.

Real Answer of Query1(A1) Fact of Query1(F 1)
Name Age Disease
Alice 60 flu
Bob 50 cancer
Clark 40 cancer
Diana 35 headache
Ellen 34 gastritis
Fen 33 pneumonia

Name Age Disease
Alice 60 cancer
Bob 50 cancer
Clark 40 flu
Diana 35 gastritis
Ellen 34 headache
Fen 33 pneumonia

Fact of Query 2(F 2) Fact of Query 3(F 3)
Name Age Disease
Bob 50 cancer
Clark 40 cancer
Diana 35 gastritis
Ellen 34 headache
Fen 33 pneumonia
George 30 HIV

Name Age Disease
Bob 50 Denial
Clark 40 Denial

Table 4: Micro-data query auditing issues

However, simply hiding the relation is not enough to protect data privacy. Suppose the

second query is asked about those of an age between 30 to 50. The answer should be the

fact F 2 shown in Table 4. This answer seems to be safe since any identity can be linked

equally likely to a group of five diseases. However, this is not true if adversaries consider

the two query answers altogether. Combining F1 and F2, an adversary can easily deduce

that Alice has flu and George has HIV (consider “subtracting” F1 from F2 and vice versa).
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To protect privacy, the auditor must thus respond with a denial in order to prevent such a

situation.

We say this is the simple strategy for auditing, which denies a query if its answer will

lead to privacy breach. A flowchart illustrating the simple strategy is shown in Figure 1.

As shown in the figure, a query is sent to the database; the answer of this query is sent to

the auditor as one of the inputs to the strategy for making a decision as whether to give the

answer. In the figure, G stands for a knowledge dictionary which contains the information

about all previously released facts (that is, answers to queries). It is also one of the inputs

to the auditor’s strategy for making a decision. If the answer to current query combined

with the knowledge dictionary will violate privacy, a denial must be given instead of the

answer; otherwise, an answer is given.

Figure 1: The Simple Strategy

If we were to apply the simple strategy to the online auditing problem, a privacy breach

may become unavoidable. For example, suppose a new query asking for age between 40

to 50 is received after the system has released F1. After the auditor checks whether an-

swering this new query breaches data privacy, the auditor gives a denial, instead of F3, as

the response. As the adversary gets a denial, he/she would be able to deduce the disease
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information of Bob and Clark as follows. The adversary first infers that the possible dis-

eases for Bob and Clark from F1 lead to 11 possible answers as shown in Table5. These 11

possible answers is combined by the known knowledge F1. Among the 11 combinations,

only one shows that Bob and Clark both have cancer. This is the only case where answer-

ing this new query is not safe, and thus a denial is given, if we assume 2-uncertainty as the

privacy property. Therefore, the denial itself tells the adversary that both Bob and Clark

must have cancer. The auditor has no choice at this time, since neither answering the query

nor denying it is safe.

Name Disease
Bob cancer
Clark cancer

Name Disease
Bob cancer
Clark flu

Name Disease
Bob cancer
Clark gastritis

Name Disease
Bob cancer
Clark headache

Name Disease
Bob cancer
Clark pneumonia

Name Disease
Bob flu
Clark gastritis

Name Disease
Bob flu
Clark headache

Name Disease
Bob flu
Clark pneumonia

Name Disease
Bob gastritis
Clark headache

Name Disease
Bob gastritis
Clark pneumonia

Name Disease
Bob headache
Clark pneumonia

Table 5: The possible answers

To prevent the situation in which a denial will still breach privacy in online auditing,

another strategy, simulatable auditing [25] can be applied here. A simulatable auditor will

make decisions based on the query and knowledge from previously released answers only,

without referring to the actual database. If there exists a possibility to breach data privacy

by combining previously answered queries and the answer to the new query, regardless

of what the database might be, the new query should be denied by the auditor. To apply

simulatable auditing in our example, the auditor should give a denial to the query asking

for age between 40 to 50, since there exists the above possibility (a database in which Bob
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and Clark both have cancer) that breaches data privacy, even though the actual database

may be different.

The flowchart of the simulatable auditing strategy is shown in Figure 2. A query is sent

to the auditor. The auditor decides whether to answer this query based on the new query

and the knowledge dictionary. If it is impossible to breach data privacy by combining this

new query and previously released answers, regardless what the actual database is, then

the query will be sent to the database and an answer is given out. Otherwise, the query is

denied.

Figure 2: The Scenario of Simulatable Auduting Strategy

The simulatable strategy can protect data privacy. It, however, may be overly strict

in the sense that many safe queries may be denied. For example, suppose F1 (shown in

Table 6) has been released. The second query asks for Alice and Bob. By looking at F1,

we can see that the privacy of Alice and Bob may be breached, either when Alice and Bob

both may have cancer, or when they both have headache. Therefore, if we apply simulatable

auditing strategy here, we would give a denial as the answer to this query right away.

However, the privacy is actually not breached in this case, although simulatable auditing

says so, due to the following. There are more than one possibility for breaching privacy.

Now consider the simple strategy again. If Alice and Bob both have the same disease,
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any one of the above two, then the simple strategy will deny the query. The adversary

receiving this denial could learn that Alice and Bob both have cancer, or they both have

headache. Assuming the privacy property is that one identity must be associate with more

than one sensitive value, then this case does not violate the privacy property. Hence, it is

safe to check the actual database for this query, even though there do exist possibilities for

breaching data privacy.

In summary, the problem of simulatable auditing strategy is that it requires a denial to

never leak any information. However, a response of the auditor may actually leak informa-

tion, but that information does not breach the data privacy. In order to protect data privacy

and release more useful information, we should allow a denial to leak information as long

as it does not breach data privacy. The above example leads to the key observation of our

approach. That is, the set of all possible table instances, which match previously answered

queries and the new one, may be deemed as unsafe under the simulatable auditing strategy,

while it can actually satisfy the privacy property. Therefore, it is safe to release the answer

to the new query in such a case.

A question now naturally arises, that is, what exactly is the adversary’s knowledge

obtained from all answered queries and released facts. Suppose the two facts shown in

Table 6 (F 1 and F 2) have been released. F 1 and F 2 share some common identities. For

those common identities, the associated diseases must appear in both facts. Based on this,

we can easily obtain all possible disease values for each identity, as listed in Table 6.

To make decisions based on the simulatable auditing strategy, we should analyze the

knowledge dictionary together with the new query. For example, suppose another query

(Alice, Bob, Diana) is being asked. Consider the list of possible values. Suppose those

three identities all have the same disease: Alice, Bob and Diana all have flu, cancer, or

headache. Obviously, in any of these cases, the facts will breach data privacy, since all

three people’s disease will be the same. However, looking at F 1, we will see that these
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F 1 F 2

Name Age Disease
Alice 33 cancer
Bob 34 cancer
Clark 35 flu
Diana 40 headache
Ellen 50 headache
Fen 60 pneumonia

Name Age Disease
Diana 25 cancer
Ellen 28 flu
Fen 30 flu
George 33 HIV
Helen 34 headache
Ian 35 headache

Possible value list
Name Disease
Alice flu, cancer, headache, pneumonia
Bob flu, cancer, headache, pneumonia
Clark flu, cancer, headache, pneumonia
Diana flu, cancer, headache
Ellen flu, cancer, headache
Fen flu, cancer, headache
George flu, cancer, headache, HIV
Helen flu, cancer, headache, HIV
Ian flu, cancer, headache, HIV

Table 6: An example showing the need for a meaingful knowledge dictionary

case are not possible, since in F 1 no disease name has appeared three times. That is, the

possible values of those identities are not independent, but are correlated. Therefore, the

above list is not convenient for the analysis, and we need a better model of adversaries’

knowledge.

3.2 Overview

The online auditing problem between an auditor and an adversary can be informally de-

scribed as the following. The adversary sends a series of queries in an attempt to breach

data privacy using responses from the auditor, whereas the auditor will audit all queries to

model the adversary’s knowledge, and deny queries if not doing so will allow the adversary
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to breach data privacy using the knowledge and answers. At the same time, the auditor

would like to provide as many answers as possible, since the query may as well be from a

normal user instead of an adversary.

The high level architecture of the micro-database auditing system is illustrated in Fig-

ure 3. A query (Query) is asked over a secret database (DB) by an outside user. To satisfy

a given privacy property, the auditor follows a strategy (Strategy) in processing the query.

A response (Response) to the query is sent to the outside user based on the strategy, a

knowledge dictionary (Knowledge Dictionary) that model all previous answered queries

and their answers, and/or the database. The auditor transforms all responses to a fact set

(Fact Set), from which the knowledge dictionary is updated.












Figure 3: System Architecture

More formally, let T be a relational table consisting of n tuples. For simplicity we

consider one attribute of interest contain private information about individuals. A micro-

data query q specifies a subset of tuples in T . We consider the following online query

auditing problem: Queries q1, ..., qn−1 have already been received and the corresponding

answers a1, ..., an−1 have already been given, where each ai is either the correct answer to

the query qi, or “denied”, for i = 1, ..., n − 1; given a new query qn, decide whether to

return “denied” if answering the query will violate given privacy property, or the correct
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answer to qn, otherwise.

For privacy property, we follow the uncertainly concept introduced in [9]. The reason

we do not use !-diversity or k-anonymity is that in a micro-database, an adversary’s knowl-

edge about each identity in an anonymized group may be different, which renders these

privacy property proposed for single-view release inapplicable [9]. In our system, we name

the privacy property as !-uncertainty. !-uncertainty basically requires that any identity can

be deterministically associated with less than ! sensitive values in the secret table, where

an association is obtained based on all released facts and the answer to the new query.

Notice that this concept does not require identities to be grouped, as with k-anonymity or

l-diversity.

3.3 Notions and Notations

We useDB for a micro-database that contains relations where each relation T has n tuples

t1, t2..tn (n is a positive integer) under the schemaD=(ID, QI1, ..., QIi, S), where ID is an

attribute that is can be linked to an individual, such as Name or SSN;QI1, ..., QIi are quasi-

identifier attributes, such as Age, Address, and Occupation; S is an attribute containing

private information, such as medical conditions (in our discussions we shall limit our scope

such that there is only one sensitive attribute). As commonly assumed in the literature, the

relation T is considered as secret but its projections on ID, QI1, ..., QIi and that on S are

both publicly known.

A fact is a collection of two independent relations with the schema (ID, QI1, ..., QIi)

and (S), respectively. We use F to denote a set of facts F1, F2, .., Fl−1 that includes all

responses the system has given to previously asked queries q1, q2..ql−1 (we will not inves-

tigate the details of a query which can be in any suitable format). Use qj(T ) for the query

answer computed based on the secret table T for query qj . We use qj(T )[id] for the set
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of values of the ID attribute and qj(T )[s] for that of the S attribute. We use similar nota-

tions for the a fact Fj , that is, Fj[id] and Fj [s]. We also use Fj [id]1,Fj[id]2.. Fj [id]k and

Fj [s]1,Fj [s]2.. Fj[s]k to denote elements of the sets.

An instance I is a possible guess of the secret table T in the sense that regarding I as T

will not cause a conflict to any previously released fact in F . We useG for the knowledge

dictionary, which is the collection of all possible instances based on all released facts in F .

Initially, when no fact has been released from the database, the knowledge dictionary G

would simply include all one-to-one mapping from the projection of T on ID, QI1, ..., QIi

to the projection on S.

DB Database
T Micro-data table
ID Identity attribute
S Sensitive attribute
Fi, F A fact and the set of released facts
G Knowledge dictionary
I An instance
q, qi A query
q(T ), qi(T ) The real answer of a query
qi(T )[id], qi(T )[s] The projection of an answer on ID and S, respectively
Fi[id], Fi[s] The projection of a fact on ID and S, respectively

Table 7: Notation Table
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Chapter 4

!-Uncertainty Simulatable Strategy

In this chapter, we shall present our simulatable strategy and discuss how the auditor can

make decisions while protecting data privacy by satisfying !-Uncertainty.

4.1 Overview

From our motivating examples, we have seen that denials may leak information to adver-

saries. Such a leakage happens when sensitive information flows from the database to

adversaries through the denials to queries. In other words, if a decision whether to answer

a query is made based on actual data in the database, then the decision itself may carry

information about that data.

A simple solution to the above information leakage problem is to not only deny a query

when answering it breaches data privacy, but also deny some safe queries that are randomly

chosen by the auditor. This solution prevents the leakage of information caused by denials

because the adversary will not knowwhether a denial is the result of protecting data privacy,

or simply a random choice. However, the solution may not be practical. The problem is

that the auditor must keep track of all randomly denied queries, since the adversary could

repeat a query for which the auditor is expected to give the same answer. Moreover, how
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to determine whether two queries are asking for the same result is difficult.

The simulatable auditingmodel proposed in [25] takes a simpler approach. That is, only

previously answered queries and their answers are used to make decisions about whether

to answer a new query. Therefore, a denial of queries will not convey any information to

an adversary beyond what is already known from previous answered queries and answers.

Moreover, the denied queries will not count towards the adversary’s knowledge because

the denied queries will not leak any information and they would not change the decision

for following queries.

From the motivating examples, we know that when a new query’s answer leads to un-

safe possible instances of the secret database, those unsafe instances altogether may actu-

ally be safe. That is, although each such instance does not provide enough uncertainty, they

together do, since the adversary cannot determine which such instance indeed corresponds

to the secret database. Consequently, it is not necessary for a denial to leak absolutely no

information, as required by the simulatable auditing strategy, but instead a denial can leak

information but within a safe range.

The key difference between our proposed strategy and the simulatable auditing [25] is

that the decision to deny a query for leaking too much information, or to check database

for an answer, is independent of the actual database. Our auditor is simulatable since the

decision to check database or not is independent of the actual database, so the denial of a

query will not breach data privacy beyond what may have already been known based on

previous queries and answers.

Definition 1 An auditor is simulatable if the decision to deny a query or check the

database for an answer is only based on previously disclosed information, but not the

actual database. The previously disclosed information here include all queries and their

corresponding answers, as encoded in the knowledge dictionary.

Our general strategy works as follows: We compute all possible answers to the new
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query ql using knowledge dictionary alone, without referring to the actual database. For

each of these possible answers, we check if privacy is breached based on the !-uncertainty

privacy property. We then combine all unsafe answers and check if they together breach

privacy. If this is indeed the case, the query will be denied. Otherwise, the query will be

sent to the database to compute the answer. If the answer breaches data privacy, the query

is denied; the query is answered, otherwise.

4.2 The Strategy

We now design our simulatable auditor. In a database with n secret records, a new query

asks for information about a subset of the records. Given a set of previously answered

queries q1, ..., ql−1 and their corresponding responses f1, ..., fl−1, and the new query ql,

the simulatable auditor must deny ql if answering it breaches the data privacy. That is,

considering all potential answers to this query, if the collection of all possible instances

of ql does not satisfy !-uncertainty, then this new query should be denied. Notice that in

this step, the decision to deny a query or not is independent of the actual database and the

real answer to the new query, since we have not referred to either of them. Then, if the

query is not denied after this step, then we would check the database and its real answer. If

the answer would breach data privacy, the query will still be denied. Otherwise, it will be

answered.

Notice that the response from a database auditor is either the real answer computed

based on the database, or a denial for protecting data privacy. We now consider how a real

answer satisfying !-uncertainty is related to a fact (that is, a collection of separate rela-

tions, as defined in the previous chapter). Because the association between those separate

relations in a fact has been removed and those relations have the same size, a fact itself

satisfies !-uncertainty if the relation containing sensitive values include ! distinct values.

We have seen that when a fact is disclosed, the knowledge that an adversary can deduce
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is usually more than what the fact itself contains. Such knowledge can be modeled as the

updated knowledge dictionary (that is, the model of a set of all possible instances of the

secret database based on the information disclosed so far) with this new fact taken into

consideration. Therefore, we emphasize that when we say a fact satisfies !-uncertainty, it

implies that not only the fact itself satisfies !-uncertainty but also the updated knowledge

dictionary does. More precisely, we say the knowledge dictionary satisfies !-uncertainty

if every identity can be associated with at least ! distinct sensitive values among all possi-

ble instances of the secret database. We will delay the discussion of updating knowledge

dictionary in next section.

Given the two inputs, a new query ql and the current knowledge dictionary G, the

auditor must make a decision as whether to check the database or to deny the query. First

of all, the secret table must be one of the possible instances modeled by the knowledge

dictionary. Assuming it is the instance I, the new query ql that asks for information about

I is safe to forward to the database, if its corresponding fact does not breach data privacy

and the updated knowledge dictionary, with this query answered, would not breach data

privacy, either. We can check each possible database instance in the knowledge dictionary

against the privacy property. More formally, we have the following.

Definition 2 (!-Uncertainty Safe Instance) Given the knowledge dictionaryG computed

from the set of previously disclosed facts F , and a new query ql, we say a table instance I (I

∈ G) is !-uncertainty safe, denotes as !SI(I|ql,G), if F ′ = ql(I) and the new knowledge

dictionary computed fromG and F ′ are both safe.

In Definition 2, the condition for an instance to be !-uncertainty safe is for the fact re-

sulted from the new query, and the new knowledge dictionary resulted from releasing this

fact to both satisfy !-uncertainty. As we have discussed, we can determine whether a fact

satisfies !-uncertainty simply based on whether the fact includes at least ! distinct sensitive

values. In order to determine whether a knowledge dictionary satisfies !-uncertainty, we
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need to count the number of distinct sensitive values that are assoicated with each iden-

tity among all possible instances. For example, suppose there are ten identities and the

knowledge dictionary represents a group of ten instances. If all identities are associated

with exactly five distinct sensitive values, except one identity to only two distinct sensitive

values, then we say this knowledge dictionary only satisfies !-Uncertainty with !=2.

Next, the auditor will collect all instances that are unsafe for answering the new query,

and will try to determine whether it is safe to go to the secret database to compute the real

answer. Here an unsafe instance is one modeled in the knowledge dictionary to which a

denial may breach data privacy. In other words, if this instance is indeed the secret table,

then denying the new query after applying the strategy will breach the data privacy. For

example, suppose there exists only one instance that is unsafe with respect to !-uncertainty

among the set of all possible instances, and suppose after we check the database we find

that the real answer must not be given, then at this time a denial will immediately tell

adversaries that this unsafe instance is indeed the secret database.

More precisely, with given knowledge dictionary G and a new query ql, the query

separates current knowledge dictionary to two parts, based on whether an instance is !-

uncertainty safe. Let &(ql,G, !) be the set of unsafe instances, that is, &(ql,G, !) =

{Ii|Ii ∈ G,¬!SI(Ii|ql,G)|}. As we know, the knowledge dictionary models all possible

database instances, so the complement of the set of unsafe instances with respect to the

knowledge dictionary will be the set of instances that satisfy !-uncertainty property, which

we shall denote as ∇(ql,G, !).

Now we look more closely at how a denial may breach data privacy. From the previ-

ously examples, we learned that a denial breaches privacy when the adversary infers that

the secret table must belong to the set of unsafe instances, &(ql,G, !); if this set itself

breaches data privacy, then the denial would also do so. By saying this set breaches data

privacy, we mean that there will be less than ! distinct sensitive values associated with at

34



least one identity across all instances in this set. For example, among all instances in set

&(ql,G, !), suppose we always have either a = S1 or a = S2, then the privacy of identity

a will be breached if we assume !=3. Note that this is true, even though the adversary is not

really given the query answer, but only knows the real database is in the set&(ql,G, !).

One may ask a similar question about the set of safe instances, that is, whether the set

of safe instances may also breach data privacy so it is not safe for an adversary to infer

that the actual instance is in this set using the responses. However, the answer is always no

according to Lemma 1.

Lemma 1 Adversarial knowledge of T ∈ ∇(ql,G, !) does not breach data privacy.

Proof: By Definition 2, for any instance I ∈ ∇(ql,G, !), the new dictionary Gn computed

from the query answer ql(I) and previous knowledge dictionary G is !-uncertainty safe.

By the definition of knowledge dictionary, we know that for any I ′ ∈ Gn (including I), I ′

is a possible instance in the sense that assuming I ′ to be the real database will not cause

any conflict to the query answer ql(I), that is, ql(I) = ql(I ′). Since the new knowledge

dictionary Gn is computed based on the query answer ql(I) and previous knowledge dic-

tionaryG, which are both identical for I and I ′, we have that I and I ′ must both lead to the

same new knowledge dictionary Gn, which is !-uncertainty safe. Therefore, all instances

in Gn are !-uncertainty safe, that is, we have Gn ⊆ ∇(ql,G, !). Also, the new knowledge

dictionary of an instance actually forms an equivalence relation over∇(ql,G, !). Since any

such equivalence class must satisfy !-uncertainty, ∇(ql,G, !) must do so, too, because the

number of distinct sensitive values that can be associated with each identity will increase

monotonically in the number of possible instances. This concludes the proof. "

Next, to prevent a denial from breaching privacy, the auditing system must make the

decision as whether to check the database in a simulatable manner. That is, the decision

should be made in a way that adversaries can potentially repeat the process by themselves.
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Note that from the above discussions, we have not referred to the real database in determin-

ing whether the set of safe and unsafe instances. This means our method is indeed simulat-

able. Therefore, it would be sufficient for the auditor to only access the real database when

the set&(ql,G, !) satisfies !-uncertainty property.

First of all, we use )&(ql,G, !)* to denote the least number of distinct sensitive values

associated with each identities among all possible instances in (the union of) all knowl-

edge dictionaries. We can thus compare this number with the privacy property ! to decide

whether a denial would breach privacy and whether we should go to check the real database.

For example, assuming there are three instances I1, I2, I3 in the set &(ql,G, !) for query

ql. In the data dictionary of I1, we have a = S1; in that of I2, we have a = S2; for I3 we

have a = S1. Then we have )&(ql,G, !)* equal to 2. In summary, we have the following

definition and result.

Definition 3 (!-Uncertainty Safe Query) Given the knowledge dictionary G computed

from the set of facts F and given a new query ql, we say query ql is !-uncertainty safe,

denotes as !SQ(ql,G), if )&(ql,G, !)* ≥ !.

Lemma 2 Denying a query when a query is !-uncertainty safe will not breach data privacy.

The notion of !-uncertainty safe query is to determine if the auditor can safely access the

actual database. From lemma 2, we know that if the set &(ql,G, !) satisfies !-uncertainty

property, to access database and give out a denial does not breach data privacy. This means

to determine whether a query is !-uncertainty safe query discloses the same information

as a denial of this query. That is, the denial will not allow an adversary to associate any

identity to less than ! distinct sensitive values. For this purpose, we will check whether

)&(ql,G, !)* is less than ! by looking at all instances in the set and count vertically to

make sure every identity has ! distinct sensitive values.

In computing the number of associations between identities and sensitive values, an

identity must appear in all the instances of &(ql,G, !). If an identity does not appear in
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one instance, then this identity can basically be ignored in determining privacy breaches

since the identity could potentially be associated with any sensitive value in the domain.

That is, if there are n unsafe instances in&(ql,G, !) and one identity only appears in n− 1

instances, then this identity may take any sensitive value (in the nth instance).

The algorithm for checking whether a query is !-uncertainty safe is shown below.

Algorithm 1 !-Uncertainty Safe Query Checking

Input: Knowledge dictionaryG and a new query ql

Output: True or False

1: for each I ∈ G

2: if I is not !SI(I|ql,G)

3: insert I into&(ql,G, !);

5: end if

6: end for

7: for each id ∈ &(ql,G, !);

8: count how many sensitive values to which the id could be assigned;

9: end for

10:if there exists a count less than !

11: return False;

12:else

13: return True;

14:end if

After a query passes !-uncertainty checking, the auditor can access the actual database.

The actual database could be either an instance in set&(ql,G, !) or that in set ∇(ql,G, !)

(recall that we have not accessed the actual database so far). If the database is in set

&(ql,G, !), the query cannot be safely answered since the answer will not satisfy !-uncertainty
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property. Therefore, a denial will be given. Notice that this denial is different from the pre-

vious one in what causes the denial. We define the !-uncertainty simulatable strategy in the

following.

Definition 4 (!-Uncertainty Simulatable Strategy) Given the knowledge dictionary G

and a new query ql, ql will be answered unless if

• it is not !-uncertainty safe query, or

• Fl violates !-uncertainty property

As shown in Figure 4, a query may be denied at two different stages. First, a query may

be denied at the simulatable auditing stage if the denying the query may lead to privacy

breaches. Notice that the decision of this denial is independent of the actual database. That

is, a query may be denied, if though its answer computed based on the actual database may

be safe. This auditing is simulatable since adversaries may obtain the same decision by

themselves. Second, the actual database is used to make the decision, and a query will

be denied if the answer itself will lead to privacy breaches. This step is not simulatable

since the decision will depend on the actual database. Therefore, a denial at this stage will

disclose information to adversaries, and the knowledge dictionary will need to be updated

(we will discuss the update of knowledge dictionary in next chapter).

Figure 4: The Scenario of !-uncertainty Simulatable Strategy
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The strategy can be more precisely described as the algorithm below. It takes a knowl-

edge dictionary and new query as inputs, and outputs either a denial or answer to the query.

The algorithm will return a denial at either line 3 or line 8, corresponding the two cases

discussed above. The knowledge dictionary will be updated in the latter case since the de-

nial does disclose information to adversaries. Finally, if the query can be safely answered,

the answer will be returned at line 10, and the knowledge dictionary will be updated with

the released fact.

Algorithm 2 !-Uncertainty Simulatable Strategy

Input: Knowledge dictionaryG and a new query ql

Output: Denial, or an answer to ql

1: determine whether ql is !-uncertainty safe using Algorithm 1;

2: if ¬!SQ(ql,G)

3: return denial;

4: else

5: //access the actual database to compute the answer

6: Fl = ql(T);

7: if Fl violates !-uncertainty

8: return denial and updateG;

9: else

10: return Fl and updateG;

11: end if

12:end if
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Chapter 5

Extensions

In this chapter, we describe some extended work. First, we study how to compute and

maintain the knowledge dictionary. Then, we investigate how queries may be delayed or

denied in a combined manner in order to improve data utility in the sense that more queries

may be safely answered.

5.1 Knowledge Dictionary

In this section, we discuss how to generate the knowledge dictionary and update it while

more queries are either denied or answered.

We need a knowledge dictionary to capture adversarial knowledge about possible in-

stances when making decisions on new queries. To consider computing the knowledge

dictionary, we consider three states of the auditing system, that is, system initial, the first

query, and the following queries.

• When the auditing system first initiates and no query has been received, the knowl-

edge dictionary can be used to model public domain knowledge of the database. For

example, such domain knowledge can be modeled as the Cartesian product of the

domain of public and sensitive attributes, respectively. For a medical database, this
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may be the product of a population list and a list of disease names. This means

that nothing has been given out at the system initial time so an adversary would not

be able to make any inferences. The knowledge dictionary will include all possible

pairings between of each public and sensitive attribute value.

• Now consider the first received query. Since the knowledge dictionary at the system

initial will typically not breach the data privacy, the first query can be answered as

long as the corresponding fact is safe, that is, the number of unique sensitive value

it contains is greater than !. The adversary knows the strategy and knows that if

the query asks for a smaller set of values it will get denied and no information will

be disclosed. Consequently, after the first answer is given, be it the real answer or

a denial, the knowledge dictionary will be either be replaced by a real answer, or

remain unchanged in case it is a denial. This case is thus obvious since the answer

itself is the only information that is being disclosed to the adversary.

• When following queries are received, how to update the knowledge dictionary will

depend on at which stage an answer or denial is given by the strategy. We will study

how different updating actions should be taken at different stages of a strategy in the

following.

Updating the knowledge dictionary after queries are either denied or answered by the

system is the most important step in preventing data privacy disclosure. From last section,

we know that the strategy may give a response to a query at three different stages, a denial

if the query itself is not safe, a denial if the query’s answer is not safe according to the real

database, or an answer if the query can be safely answered. For simplicity, we shall call the

first denial negative denial and the second positive denial. Different stages require different

updating methods, as we shall enumerate next and illustrate in Figure 5.

• Negative Denial. The negative denial stage is a simulatable stage. When the number
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of unique sensitive values associated with each identifier among the set of unsafe

instances&(q, G,! ) is less than !, the strategy will give a denial. This step is simu-

latable in the sense that an adversary may obtain the same result by himself/herself,

with the knowledge of the current knowledge dictionary and the new query. The ad-

versary thus could not infer anything from this denial and the knowledge dictionary

will also remain unchanged after a negative denial is given.

For example, suppose an adversary asks a query for those with an age greater than or

equal to 50 while he/she has the knowledge F1 shown in Table 4. The system should

give a denial since there is only one chance to breach data privacy in which Alice

and Bob both have cancer. After this negative denial is given, the adversary cannot

infer any information. Hence, the knowledge dictionary will remain unchanged. As

shown in Figure 5.a, the knowledge dictionary (as the circle indicates) and unsafe set

(the shadowed portion). The number of sensitive values in the unsafe set is less than

!. The negative denial is thus the response. Figure 5.d shows the updated knowledge

dictionary, which is not changed. The real database state may or may not be in

&(q, G,! ).

• Positive Denial. The positive denial stage uses the real database to compute the an-

swer to a new query in order to determine whether this answer violates !-uncertainty

property. To reach the decision of checking for the real answer of this query, the

prerequisite is that )&(q, G,! )* greater or equal to !. From the adversary’s point

of view, after this denial is seen, he/she knows the real database must be inside set

&(q, G,! ), The knowledge dictionary will thus change to&(q, G,! ).

For example, suppose the adversary has the knowledge F1 (as shown in Table 8)

and asks for a query about Alice and Bob. Suppose !=2 and the system gives a

denial. After the adversary sees this denial, he/she knows that it must be a positive

denial since there have are possibilities for breaching the data privacy, that is, either
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Alice and Bob both have cancer, or Alice and Bob both have headache. This denial

must thus come from the real database, and one of these possibilities corresponds

to the real database. Therefore, the new knowledge dictionary for Alice and Bob

will change to these two cases. Figure Figure 5.b and Figure 5.e show this case.

Figure 5.b is the knowledge dictionary and the shadowed portion is the unsafe set for

the new query. Figure 5.e is the updated knowledge dictionary.

• Answer. If an answer does not breach data privacy at the previous stage, then the real

answer will be given out. The knowledge dictionary will be updated according to the

answer together with the previously knowledge dictionary.

F 1

Alice cancer
Bob cancer
Clark flu
Diana headache
Ellen headache
Fen pneumonia

V1 Alice cancer
Bob flu

V2 Clark cancer
Diana headache
Ellen headache
Fen pneumonia

Table 8: Updating knowledge dictionary

For the same example as above, if the answer {cancer, flu} is given for Alice and

Bob, the knowledge dictionary will be updated such that Alice and Bob can only

have cancer or flu. Note that an answer may affect other parts of the knowledge

dictionary, since in F1 all identities are equally likely to have one of the six disease,

while after the answer is given, two of the six diseases can no longer be associated to

the rest of the identities. The new knowledge dictionary is shown as V1 and V2. Note

that we are using a simplified example here; for more general cases, the updating

will not be so straightforward. We will discuss more details later. Figure Figure 5.c

and Figure 5.f illustrate this case. Figure 5.c is the knowledge dictionary and the

shadowed portion is the unsafe set corresponding to the new query. Figure 5.f is the

updated knowledge dictionary.
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Figure 5: Updating knowledge dictionary

Since a response from the auditing system, which is either an answer to the query or

a denial, can only cause some possible instances in the current knowledge dictionary to

become impossible and removed, we have the following straightforward result.

Lemma 3 The size of the knowledge dictionary will decrease monotonically as more and

more queries are processed by the auditing system.

To update the knowledge dictionary with a new fact, there exist three cases. In the

first, the identities in the new fact do not appear in the knowledge dictionary. For updating

the latter, we shall add the new fact to the knowledge dictionary. In the second case, the

identities in the new fact correspond to part of one of the views (the concept of a view will

be defined shortly) in the knowledge dictionary, such as in the examples shown below. To

update the knowledge dictionary, we shall separate that view to two views. In the third

case, the identities in the new fact involve part of (multiple) views, which will be discussed

in the following. The algorithm for updating knowledge dictionary is shown below.
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Algorithm 3 Updating Knowledge Dictionary

Input: knowledge dictionaryG, response(ND, PD, Fl)

Output: New knowledge dictionaryG

1: if ND; //Negative denial

2: return G;

3: end if

4: if PD; //Positive denial

5: return&(q, G,! );

6: end if

7: if Fl is given;

8: if Fl[id] overlapped withG[id];

9: Updating overlapped fact with G;

10: else;

11: return Fl

⋃
G;

12: end if

13: end if

To incorporate a new fact whose identities overlap with multiple facts in the knowledge

dictionary, we need to separate the intersections to separate views. Here a view is similar

to a fact, but specifically refers to one in the knowledge dictionary. We shall use view set

to denote the set of views in a knowledge dictionary whose lists of identities are always

mutually disjoint. If we see each view as two separate lists, one of identity values and the

other of sensitive values, then identity value lists of all the views in a view set are always

disjoint. Intuitively, we can regard views as smaller facts with their intersections separated

into new views. Similar to a fact, a view means each sensitive value may be associated to

any identity in the view. A straightforward result is that the size of a view set will always
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be larger than or equal to the size of the corresponding fact set.

F 1 F 2

Alice cancer
Bob cancer
Clark flu
Diana headache
Ellen headache
Fen pneumonia

Diana cancer
Ellen flu
Fen flu
George HIV
Helen headache
Ian headache

Table 9: Updating knowledge dictionary for multiple facts

An example is given in Table 9. In the given two facts F1 and F2, the two lists of

identities have 3 common values {Diana, Ellen, Fen}, while those of the sensitive attribute

have four common values {flu, cancer, headache, headache}. This phenomenon is caused

by the identical sensitive values that appear in the two facts. Obviously, only three out of

the four common sensitive values can be associated with the three common identity values.

We shall call the sensitive values {flu, cancer, headache, headache} the possible values

for {Diana, Ellen, Fen} since we cannot determine which of those values can really be

associated with the identities. However, by examining the possible combinations of values,

we can see that ’headache’ here will always be associated with one of the three identities.

We say such a value is determined. In a special case, if the intersection of the identity lists

and that of the sensitive attribute both have the same size, then we can easily see that all the

sensitive values are determined. We now convert the two facts shown above into the view

set shown in Table 10.

V 1 V 2 V 3

A cancer
B pneumonia
C flu

cancer
headache

D headache
E flu
F cancer

headache

G flu
H HIV
I flu

cancer
headache

Table 10: Views in a knowledge dictionary

There are three views in this view set. The italic font denotes that the sensitive values
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are only possible values in the view. In V1 and V3, one of the three sensitive values will

belong to this view. In V2, two of the three sensitive values will belong to it. These possible

values inside each view are interdependent. For example, if the adversary has any reason to

believe that the value flu should be associated with one of {D, E, F}, then he can say that

flu is determined in V2, while for V1 and V3, flu will be removed from the list of possible

values.

When a new fact (the answer to a new query) is released, recall that we need to inter-

sect it with every view in the knowledge dictionary in order to update the latter, as shown in

Table 9. However, the aforementioned dependency relationship between views would pre-

vent such an update since the sensitive values in different views will depend on each other.

Therefore, we first break this relationship by converting the views that contain possible

values into sets of views that only contain determined values, by enumerating all possible

combinations. For example, in Table 10, the result of breaking the dependent relationship

between the three views will lead to (3
2) different sets of views, as shown in Table 11. Since

now all views inside each set only contain determined vales, we can then intersect the new

fact with each set of views as before.

A cancer
B pneumonia
C flu
D headache
E cancer
F headache
G flu
H HIV
I flu

A cancer
B pneumonia
C cancer
D headache
E flu
F headache
G flu
H HIV
I cancer

A cancer
B pneumonia
C headache
D headache
E flu
F cancer
G flu
H HIV
I headache

Table 11: Sets of Views

To intersect a new fact (the answer to a new query) with each set of views, it is con-

venient to organize these views by levels as follows. Suppose currently the knowledge

dictionary is the result of releasing totally n facts. Then, we place the view that is the result
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of intersecting all the n facts at the top level. Then, the views placed at the second level

will be the intersection between each set of (n − 1) facts, and there are at most (n
n−1) such

views at this level. Clearly, there can be at most n levels and
∑n

i=1(
n
i ) views. As shown

in Figure 6, we denote those views using integers with larger numbers at a higher level

(the order between views at the same level is not important) where ρ(f)n
i denotes the first

number at level i (which is equal to
∑i−1

j=1(
n
j ) + 1) and ρ(l)n

i the last at that level (which

is equal to ρ(l)n
i =

∑i
j=1(

n
j )). Note that there could be much less views in practice since

many facts may have an empty intersection.

Figure 6: Organizing views by levels

When we intersect a new fact with the views organized as above. We can compute

the intersections level by level, from top to the bottom, and the result can then be easily

organized in a similar way, as depicted more clearly in the algorithm below.
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Algorithm 4 Updating Overlapping Views

Input: The knowledge dictionaryG, a new fact Fl+1

Output: The updated knowledge dictionaryG

1: generate sets of views by breaking the dependency relationship among views inG;

2: organize each set of views
∑l

i=1(
l
i) to

∑l+1
i=1(

l+1
i )

3: for each set of views;

4: for i = l to 1

5: for j = ρ(f)l
i to ρ(l)l

i

6: Vρ(l)l
i+1

+k=Fl+1

⋂
Vj

7: Update Fl+1 and Vρ(f)l+1
i

+k

8: k = k + +

9: end for

10: end for

11: Vl+1=Fl+1

12:end for

13:return G

5.2 Concurrent Queries

In this section, we study the issue of auditing multiple queries received at the same time,

namely, concurrent queries. Concurrent queries can be checked in any order, since there is

no inherent order among those queries. The auditing system should select an order among

queries in order to answer as many queries as possibly allowed by the privacy requirement

under a strategy. Therefore, we need to answer following two questions.

• Does the order of checking concurrent queries affect their answers, and if so, can this

dependency relationship breach the data privacy?
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• How can wemaximize the number of concurrent queries that can be safely answered?

First, consider an example of answering concurrent queries by following the !-uncertainty

strategy. Assuming two concurrent queries(q1, q2) are received at the same time. q1 asks

for the disease information about those whose age is less then 35, whereas q2 asks for in-

formation about those whose age is larger and equal to 40. The adversary has already the

knowledge about F1 shown in Table 12. Applying !-uncertainty strategy here, we consider

first checking query q1 and then q2. The query q1 gets a negative denial since Ellen and

Fen may have the same disease. Then, query q2 gets answered with {cancer, cancer, flu}

(assuming the privacy requirement is !=2).

However, if we take the reversed order in checking these two queries, q2 and then q1,

then these two queries will both get answered. First, query q2 will get answered with {can-

cer,cancer,flu}, and the knowledge dictionary changes to G2 as shown in Table 12. Then,

query q1 will get answered with {pneumonia, gastritis}, since it is impossible that Ellen

and Fen would have the same disease cancer according to G2. The knowledge dictionary

will then be updated to G3 (shown in Table 12). This example shows that different orders

in checking concurrent queries may indeed lead to different results.

The above example shows that different orders may affect the result of auditing concur-

rent queries. The reason is that an answer not only depends on the query itself, but also the

knowledge dictionary, which will in turn depend on the queries that have been answered

before the present one, as described in Lemma 4. However, the order will not matter in a

special case where only negative denials are given. This is because a negative denial will

not cause the knowledge dictionary to be updated, as we mentioned before. Therefore, if

all queries get a negative denial as the answer, then an answer will not depend on howmany

other such queries have been answered before this query.

Lemma 4 Different orders in checking a set of concurrent queries may lead to different

results of each query, unless all those queries get a negative denial as the answer in which
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F1 F2

Name Disease
Alice cancer
Bob cancer
Clark flu
Diana gastritis
Ellen headache
Fen pneumonia
George HIV

Name Disease
Alice cancer
Bob cancer
Clark flu

G2 G3

V1 Alice cancer
Bob cancer
Clark flu

V2 Diana gastritis
Ellen headache
Fen pneumonia
George HIV

V1 Alice cancer
Bob cancer
Clark flu

V2 Diana gastritis
Ellen headache

V3 Fen pneumonia
George HIV

Table 12: Example of Concurrent Queries

case the order does not matter.

Next, we consider whether a denied query can be safely answered by changing the order

of auditing concurrent queries. First, we have the following result for positive denials.

Lemma 5 If qi gets a positive denial as the answer, then qi will still be denied even if more

queries are checked before it.

Proof: Consider a set of concurrent queries Q={q1, .., qn}. First of all, a positive denial

implies the following.

• )&(qi,G, !)* > !, that is, the number of sensitive values in the unsafe set of query

qi must be larger than !;

• DB ∈ &(qi,G, !), that is, the real database must belong to the unsafe set;

• The new knowledge dictionary Gi will be updated to&(qi,G, !).
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We know that the above second fact will not change even if more queries are checked

before qi, whereas the first fact may or may not change. Therefore, qi will either lead to a

positive denial (if the first fact becomes untrue) or a negative denial. "

Before we examine the case of negative denials, we build intuitions through an example

shown in Table13. Suppose the fact F1 shown in Table12 is released and a query q1 is

asked about Ellen and Fen. There are 16 (selecting 2 out of 7 then minus 5 since there

are two identical values) possible answers for q1. In this set of possible answers, only one

answer could breach the assumed 2-uncertainty property. Set &(q1,G, !) that includes

120 instances could lead to this unsafe answer in which both Ellen and Fen have cancer.

Therefore, the auditor gives a negative denial, and the knowledge dictionary will remain

the same. Now suppose another query q2 is asked, the answer will be given, since no

unsafe answer exists, and then the knowledge dictionary is updated as shown in Table 13.

Then, suppose the same query q1 is asked again. With the updated knowledge dictionary,

the unsafe answer will actually no longer be a possible instance. The number of possible

answers for q1 are thus reduced to 6, and all these answers turn out to be safe with respect

to 2-uncertainly property. Therefore, q1 can be answered now.

Lemma 6 When a query qi leads to a negative denial, qi may be answered if more queries

are checked before qi.

Proof: Suppose query qi gets a negative denial as the answer. This negative denial implies

that among instances in set &(qi,G, !), there must exist at least one identity ID that is

associated to !′(!′ < !) sensitive values S1, S2, . . . , Sl′ . Also, we know that the knowledge

dictionary will remain the same after this response. If another query qj is asked before qi

and gets answered, then we know that the knowledge dictionary will be updated to include

less instances, that is, some possible instances would need to be removed due to the answer.

It is thus possible that those instances that contain the association between ID and sensitive

values S1, S2, . . . , Sl′ are altogether removed. Therefore, qi would now be answerable. "
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q1(Diana, Ellen) q2(Alice, Bob, Clark) q1(Diana, Ellen)
# of Possible answers 16 25 6

Unsafe answer(s) Diana cancer
Ellen cancer

&(qi,G, !) 120 ∅ ∅

)&(qi,G, !)*
1 (Diana has cancer
Ellen has cancer) 2 2

Auditor’s response Negative Denial Answer Answer

Updated G

Alice cancer
Bob cancer
Clark flu
Diana gastritis
Ellen headache
Fen pneumonia
George HIV

Alice cancer
Bob cancer
Clark flu

Diana gastritis
Ellen headache
Fen pneumonia
George HIV

Alice cancer
Bob cancer
Clark flu

Diana gastritis
Ellen headache

Fen pneumonia
George HIV

Table 13: Examples of Negative Denial (! = 2)

Now we know that only negative denials will cause the results of queries checked in

different orders to vary. From our discussions in previous sections, we also know that

negative denials are the result of a simulatable auditing algorithm, that is, an adversary may

obtain the same results by himself/herself. If the auditing system checks a set of concurrent

queries in an order that maximizes the number of answered queries, then the results would

also be simulatable, and therefore, safe. We thus have the following straightforward result.

Theorem 7 Given a set of concurrent queries Q, it is safe to answer Q′ ⊆ Q such that

| Q′ | is the maximum possible for satisfying the privacy requirement.

The naive way for maximizing the number of answerable queries is to check the queries

in all possible orders. However, based on the previous discussions, this process can be

optimized as shown in the below algorithm. First, we separately check each query using

the current knowledge dictionary, and we divide these queries into three groups based on

their answers, that is, the answerable, negative denials, and positive denials. We then check

queries in different orders within the answerable group and choose the optimal order which
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yields the greatest number of answers. Then, we process the positive denial group in which

queries shall all get a denial as the answer but will update the knowledge dictionary. Finally,

with the updated knowledge dictionary, we then process the negative denial group and

output the answers.

Algorithm 5 Checking Concurrent Query

Input: a set of concurrent queries {q1, .., qn}, knowledge dictionaryG, !

Output: Query answers

1: Check all queries using the !-uncertainty strategy and group them into three groups

A (Answerable), ND (Negative denials), and PD (Positive denials)

2: Determine the optimal order for answering A and place queries leading to denials

into ND and PD;

3: Check PD and update G

4: While ND -= φ

5: Check ND

6: End while

5.3 !-Uncertainty Delay and Joint Strategy

Now we consider possible variations of the basic strategy that can potentially improve data

utility. The key observation is that within the aforementioned strategy, the negative denial

stage employs a simulatable method in making the denial decision for a query, which means

the decision may not be justified by the real database. This simulatable method certainly

preserves data privacy but it will also have a greater impact on data utility.

By Lemma 6, we can then come up with a possible way for improving data utility. That

is, when a query gets a negative denial as the answer, it may become answerable if some

other queries are answered first since those instances that cause this query to be denied may
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be removed from set &(q, G,! ) when additional answers cause the knowledge dictionary

to be updated. This is of course under a necessary condition that is the actual database

state must not be inside set &(q, G,! ). Otherwise, if the actual database state is inside set

&(q, G,! ), then by previous discussions we know that the real database always stays in G

and&(q, G,! ) no matter how many queries are answered.

For improving the data utility, we extend the basic strategy to a new strategy called

!-uncertainty delay strategy, as described in below definition and illustrated in Figure 7.

Definition 5 (!-Uncertainty-Delay Strategy) Given the knowledge dictionary G com-

puted from previously released facts F{F1, .., Fl−1}, a new query ql and a delayed query

ql′ , the !-uncertainty delay strategy will

• delay ql, iff ¬!SQ(ql, G);

deny ql, iff DB ∈ &(ql, G, !);

answer ql, otherwise.

• answer ql′ , iff&(ql′, G, !) = ∅;

delay ql′ , otherwise.

As shown in Figure , the scenario of !-uncertainty delay strategy is similar to that of

!-uncertainty simulatable strategy. There are also three stages for giving a response to a

new query. However, instead of giving a negative denial, the auditing system will place the

query into a queue and mark it as being delayed. When the knowledge dictionary has been

updated after answering some other queries, the delayed queries will be checked again for

possible answers.

Taking the adversary’s point of view, when a denied query is answered after several

other queries are answered, the adversary cannot breach data privacy since the strategy

already take this into consideration. The only information that this answer will convey

to the adversary is that set &(ql, G, !) does not contain the real database instance. Also,
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Figure 7: The Scenario of !-uncertainty-Delay Strategy

since this new strategy may eventually answer some queries that would be denied under

the previous strategy, the data utility can potentially be improved. Therefore, we have the

following straightforward result.

Lemma 8 !-uncertainty-delay strategy satisfies the !-uncertainty property and has no worse

data utility than !-uncertainty strategy.

On the other hand, waiting for one or more queries whose answers will remove unsafe

instances from set &(ql, G, !) is a passive approach. We now consider a more active ap-

proach for the same goal of improving the data utility. We explain the approach through an

example in the following.

Suppose query qa has received a negative denial as the answer, and qa has been denied

because its answer will allow adversaries to know a = s1 or a = s2 (assuming !=3).

Also suppose some queries have been processed since then, and the knowledge dictionary

has been updated; however, the instances unsafe for qa have not been removed by those

answers. At this point, the auditing system cannot allow qa to check its answer against the

real database by the !-uncertainty delay strategy; the system will thus continue to delay the

query.

However, suppose among those queries, another query qb also gets a negative denial

since it allows the adversary to know that a = s2 and a = s3. Since each of these two
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negatively denied queries associates two possible sensitive values to the same identity, a

natural question to ask is whether we can combine them to yield a scenario where the

identity is associated with three possible sensitive values, which are a = s1, a = s2, and

a = s3, and thus the data privacy requirement is satisfied (!=3) and both q1 and q2 can be

answered. This approach would further improve data utility.

Based on this intuition, we define a strategy, called the !-uncertainty joint strategy. In

this strategy, we create a waiting pool to store all the negatively denied queries. In the

waiting pool, every query would have an answer that associates less than ! sensitive values

with an identity. However, once the total number of )&(qi, G, !)* for some of the queries in

the waiting pool becomes greater than ! (we shall call such a set of queries joint queries),

we forward them to the real database to check for the answer. We give all the answers

altogether only if they all satisfy !-uncertainty property at the same time; we deny all the

joint queries, otherwise. Taking the adversary’s point of view again, if we give a denial to

one of the joint queries whose answer does not satisfy the privacy property, the adversary

can infer that the actual database state must be in set &(qi, G, !) whose size is less then !.

Therefore, in this case, we should deny all the joint queries if only at least one of them gets

a denial.

To see why the data privacy is not breached when the auditing system denies a set of

joint queries as described above, consider Figure 8. In the figure, queries q1, q2, and q3

are joint queries that can collectively pass the negative denial check. If we either deny

or answer all the queries at the same time, the knowledge dictionary will change to the

illustrated union in which the privacy property is satisfied.

One subtlety is that in determining whether a set of joint queries satisfy a privacy prop-

erty, we must ensure all the queries are considered at the same time against each instance.

For example, suppose a = s1 is true for instance I1 under query qa, a = s2 for instance

I2 under query qa, b = s1 for instance I1 under query qa, and b = s2 for instance I2 under
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Figure 8: Knowledge dictionary for joint queries

query qb. Suppose these two queries are joint queries, and we need to determine whether

they satisfy the privacy property of !=3. It might seem that the property is satisfied since

altogether there are four different possiblities for a and b to be associated with sensitive

values. However, a closer look will reveal the opposite, since either a = s1 and b = s1 is

true with I1 being the real database, or a = s2 and b = s2 is true with I2. Therefore, the

privacy property is not satisfied with ! = 3.

Another issue is that since an originally denied query may benefit from being pushed

into the waiting pool, it might seem probable that a query that is to be denied by the delay

strategy may be pushed into the waiting pool such that it would have a second chance.

However, delaying such a query may breach the data privacy. Assume a series of queries

qa, .., qa+x, qb, .., qb+y are already in the waiting pool and we have )&(qa+i, G, !*) # ! hold

for 0 ≤ i ≤ x, and also
∑x

i=0)&(qa+i, G, !)* +
∑y

j=0)&(qb+j, G, !)* > ! is true.

Now suppose these queries have been denied after check with the real database. We

thus have DB ∈ &(qa, G, !) ∪ .. ∪ &(qa+x, G, !) ∪ &(qb, G, !) ∪ .,∪&(qb+y, G, !). Sup-

pose now we again push these queries into the waiting pool, and another series of queries

{qc, .., qc+zqc, .., qc+z} are then pushed into the waiting pool. The auditing system finds
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that the set of queries qa, .., qa+x, qc, .., qc+z are safe to check the real database. Now, a

denial will not breach the data privacy, since either DB ∈ &(qa, G, !) ∪ .. ∪ &(qa+x, G, !)

or DB ∈ &(qc, G, !) ∪ .. ∪ &(qc+z, G, !) must true. However, answering the queries

will breach the data privacy, since DB ∈ &(qb, G, !) ∪ .. ∪ &(qb+y, G, !) implies that

)&(qb, G, !)* ∪ .. ∪ )&(qb+y, G, !)* # ! must be true. Therefore, pushing already denied

queries back into the waiting pool may breach the data privacy.

Based on the above discussions, we now define the !-uncertainty joint strategy as shown

below and illustrated in Figure 9.

Definition 6 (!-uncertainty-Joint Strategy) Given the knowledge dictionary G com-

puted from previously released facts F{F1, .., Fl−1}, a new query ql, and the waiting pool

{qa, .., qb}, the !-uncertainty-Joint Strategy will

• push ql into the waiting pool, iff ¬!SQ(ql, G);

deny ql, iff DB ∈ &(ql, G, !);

answer ql, otherwise.

• leave all the queries in the waiting pool, if
∑

)&(qi, G, !)* < !;

remove them, if there exists qi(T ) not satisfying !-uncertainty property;

answer them, otherwise.

With a similar reason as in the proof of Lemma 8, we have the following result.

Lemma 9 The !-uncertainty joint strategy satisfies !-uncertainty property, and it has no

worse data utility than the !-uncertainty strategy
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Figure 9: The Scenario of !-Uncertainty Joint Strategy
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Chapter 6

Conclusions

In this thesis, we addressed the micro-data auditing issue in revealing useful information

about a secret table while preserving private information of individual records. We have

proposed a novel !-uncertainty strategy for micro-data auditing under the !-uncertainty pri-

vacy property. We have shown how to make decisions for preventing data privacy breaches

resulted from answering or denying a query. We have shown that our strategy can pre-

vent not only real answers but also denials from breaching the data privacy. In extended

work, we also studied the case of concurrent queries where no inherent order exists among

the queries. We have shown that checking concurrent queries in different orders does not

breach the data privacy. An optimal order can thus be chosen to improve data utility. Based

on this result, we extend the basic strategy to !-uncertainty delay and !-uncertainty joint

strategies both of which aim to reduce unnecessary impact on data utility. The first strategy

waits for queries to render a denied query safe, and the second strategy combines the an-

swers to multiple denied queries such that all of them may get a chance to be answered. As

a first step towards the study of auditing microdata disclosure, we have not considered the

computational complexity of our proposed strategies. This will be one of the main focuses

of our future work. We also plan to further study the data utility issue in such a context.
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