

Solving the Eternity II Puzzle using Evolutionary Computing Techniques

Papa Ousmane Niang

A Thesis

In

The Department

Of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Applied Science at

Concordia University
Montreal, Quebec, Canada

December 2010

© Papa Ousmane Niang, 2010

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Papa Ousmane Niang

Entitled: Solving the Eternity II Puzzle using Evolutionary Computing Techniques

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Electrical and Computer Engineering)

complies with the regulations of the University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

Dr. Dongyu Qiu______________Chair

Dr. Abdelwahab Hamou-Lhadj__ Examiner

Dr. Peter Grogono___________ Examiner

Dr. Nawwaf Kharma__________ Supervisor

Approved by Dr. William E. Lynch___________________________

Chair of Department or Graduate Program Director

January 20, 2011 Robin A. L. Drew_______________________________

Dean of Faculty

iii

ABSTRACT

Solving the Eternity II Puzzle Using Evolutionary Techniques

Papa Ousmane Niang

The work presented in this thesis describes the application of genetic algorithms to solve

an edge-matching puzzle known as Eternity II (E2). E2 is a hard combinatorial puzzle

that is commercially available and for which a solution has not yet been found

(December 2010). There are thousands of ways that E2 can be solved to win the prize

of $US 2.000.000 promised by the company to the first person who solves the puzzle.

The puzzle consists of 256 square pieces that are bordered by colored patterns which

must be aligned across the whole puzzle. E2 is an NP-complete and multi-constrained

combinatorial problem that has received a lot of attention worldwide.

This thesis proposes a framework and a new approach for solving complex

combinatorial optimization problems, such as edge-matching puzzles like the E2.

The proposed solution uses a hybrid method composed of Evolutionary

Programming (EP) and Constraint Satisfaction Problem (CSP) techniques.

We draw comparisons between the state-of-the-art methods that have been

used so far to try to solve the E2 puzzle and our proposed method, and show the

advantages of using genetic algorithms to solve edge-matching puzzles in general.

iv

ACKNOWLEDMENTS

I want to express my deeply-felt thanks to my thesis supervisor, Dr. Nawwaf KHARMA,

for his warm encouragement and thoughtful guidance.

I would like to thank Dr. Peter Grogono for his inspiration in the fields of

Programming Languages and Artificial Intelligence.

I also would like to thank the administration staff of the Electrical and Computer

Engineering department, particularly Mrs. Diane Moffat.

Finally, I would like to thank my family for their support during this academic

journey.

v

DEDICATION

To my parents

vi

Table of Contents

LIST OF FIGURES ... VIII

LIST OF TABLES ... X

LIST OF ALGORITHMS .. XI

LIST OF ACRONYMS .. XII

1. INTRODUCTION ... 1

2. LITERATURE REVIEW ... 7

3. PROBLEM STATEMENT ..10

4. METHODOLOGY ..16

4.1 DESCRIPTION OF THE PROBLEM AS A CSP ... 16

4.2 INDIVIDUALS AND POPULATION.. 17

4.3 REPRESENTATION (ENCODING) .. 17

4.4 SELECTION OPERATORS ... 19

4.4.1 FITNESS PROPORTIONAL SELECTION (ROULETTE WHEEL) ... 19

4.4.2 LINEAR RANKING SELECTION ... 19

4.4.3 TOURNAMENT SELECTION ... 20

4.4.4 ELITISM ... 20

4.5 MUTATION OPERATORS ... 21

4.5.1 ROTATE MUTATION... 21

4.5.2 SWAP MUTATION ... 21

4.5.3 SWAP & ROTATE MUTATION ... 22

4.5.4 ROTATE REGION MUTATION .. 22

4.5.5 SWAP REGION MUTATION... 23

4.5.6 REGION INVERSION MUTATION .. 23

vii

4.5.7 ROW AND COLUMN INVERSION MUTATION .. 24

4.5.8 SCRAMBLE MUTATION.. 24

4.6 CROSSOVER OPERATORS .. 24

4.6.1 REGION EXCHANGE CROSSOVER ... 25

4.6.2 UNIFORM CROSSOVER ... 26

4.7 FITNESS FUNCTION .. 26

4.8 SELECTION HEURISTICS ... 27

4.9 REPAIR HEURISTICS ... 27

5. SOFTWARE APPLICATION ..28

6. RESULTS AND ANALYSIS ..34

7. CONCLUSION AND FUTURE WORKS ...46

8. REFERENCES ..47

APPENDIX A: SCREENSHOTS OF THE RESULTS OBTAINED USING DIFFERENT

BOARD CONFIGURATIONS ...50

viii

List of Figures

Figure 1 - Patterns used in Eternity II ... 2

Figure 2 – Two different images of a 5x5 board with E2 patterns generated by the

Eternity II Editor ... 3

Figure 3 - Dead end reached (Picture is from [Toulis]) .. 4

Figure 4 - E2 board with the hint piece divided in 4 regions .. 6

Figure 5 - E2 puzzle solution sheet ...10

Figure 6 - E2 Online demo puzzle solved [Tomy] ...10

Figure 7 – Non-matching edges ...15

Figure 8 - 2x2 Area not matching...15

Figure 9 - Matching edges ...15

Figure 10 - Matching 2x2 Area ...15

Figure 11 Internal representation of a tile ...18

Figure 12 Tile before rotation ..18

Figure 13 Rotated tile ...18

Figure 14 - Tile appearance after a Rotate Mutation ..21

Figure 15 - Board appearance after a Swap Mutation ..21

Figure 16 - Board appearance after a Swap & Rotate Mutation22

Figure 17 - Board appearance after a Region Rotation Mutation22

Figure 18 - Swap Region Mutation ...23

Figure 19 - Region Inversion Mutation ..23

Figure 20 - Row Inversion ...24

Figure 21 - Column Inversion ..24

Figure 22 - Region Exchange Crossover ..26

ix

Figure 23 - Execution of a 5x5 E2 board ...28

Figure 24 - Successful completion of a run ...28

Figure 25 - 5x5 Eternity II board displayed by the Eternity II Editor29

Figure 26 - Class Board ...30

Figure 27 - Constraint structure ...30

Figure 28 - Constraint Repository class ...30

Figure 29 – class Board ...32

Figure 30 - Fitness function ...33

Figure 31 - Fitness evolution without elitism and no repair Heuristic35

Figure 32 - Fitness evolution with elitism and repair heuristic35

Figure 33 - Fitness evolution with elitism and repair heuristic36

Figure 34 - Fitness evolution with elitism and no repair ..36

Figure 35 - Evolution of the fitness with high mutation rate (0.8)37

Figure 36 - Evolution of the fitness without mutation (0%) ..38

Figure 37 - Evolution of fitness with mutation and no crossover39

Figure 38 - Fitness evolution using a bigger population (1000) and repair40

Figure 39 - Fitness evolution with smaller population (500) and repair41

Figure 40 - Fitness evolution for 4 runs (1 run has 2 constraints)42

Figure 41 - Fitness evolution for 4 runs (1 run has 2 constraints)43

Figure 42 - Time vs. Size of the board ..44

Figure 43 - Results of a 6x6 run ...50

Figure 44 - Results of a 4x4 run ...51

Figure 45 - Results of a 5x5 run ...51

x

List of Tables

Table 1 - GA Parameters (01) ..34

Table 2 – GA Parameters (02) ...37

Table 3 - GA Parameters (03) ..38

Table 4 - GA Parameters (04) ..39

Table 5 - GA Parameters (05) ..40

Table 6 - GA Parameters (06) ..41

Table 7 - GA Parameters (07) ..42

Table 8 - GA Parameters (08) ..43

Table 9 - Summary of experimental results: board runs ...44

xi

List of Algorithms

Algorithm 1 - Hill Climbing Algorithm ..11

Algorithm 2 - Basic Tabu Search Algorithm ...11

Algorithm 3 - Simulated Annealing Algorithm ..12

Algorithm 4 - Basic form of the Genetic Algorithm ...14

Algorithm 5 - The Canonical GA Algorithm ..16

Algorithm 6 – Tournament Selection Algorithm ...20

Algorithm 7 - Region Exchange Crossover ..26

xii

List of Acronyms

E2 – Eternity II

GA – Genetic Algorithm

TSP – Traveling Salesman Problem

SP – Scheduling Problem

CVRP – Capacitated Vehicle Routing Problem

SAT – Satisfiability Problem

CSP – Constraint Satisfaction Problem

PLA – Partial Look Ahead

MAC – Maintaining-Arc Consistency

VNS – Variable Neighborhood Search

NP-C – NP-Complete

NP – Non-deterministic Polynomial

1

1. Introduction

The Eternity II (E2) puzzle is a commercial edge-matching puzzle that was created by

two mathematicians at Oxford University, namely Alex Selby and Oliver Riordan [Toulis,

Tomy]. It is an extremely difficult puzzle with a reward of US$2.000.000 for the first

person to submit a solution by December 31, 2010. As of this writing, a solution had not

been found.

The publication of the puzzle and the prize reward generated a lot of attention

worldwide.

An edge-matching puzzle is a type of tiling puzzle similar to a Jigsaw puzzle that

first appeared in the 1890s [Haubrich]. The edges of the tiles are colored or filled with

different patterns. In order to solve the puzzle, all tiles must be placed in such a way

that all edges of adjacent tiles match. In Jigsaw puzzles, only one solution is expected.

All tiles must fit exactly in one place in order to constitute the final image. Edge-

matching puzzles are harder and more challenging than Jigsaw puzzles because they

don’t have a guiding image. The final tile placement is known only once the puzzle has

been solved, because a tile can fit in many ways. Additionally, the complexity is

increased with the number of patterns and the size of the tiles.

The E2 puzzle is an edge-matching puzzle that is made of 256 unique tiles.

Twenty-three (23) patterns are used to decorate the tiles. Each tile has a specific

combination of four (4) patterns. The tiles that must be placed on the borders have the

edges touching the border of the grid colored in grey. The patterns used to decorate the

tiles are shown in figure 1.

2

Figure 1 - Patterns used in Eternity II

The problem is defined as follows:

Place all 256 tiles on the grid, such that all tiles match along their edges. The tiles can

be rotated (90°, 180° and 270°) before being placed on the board.

A quick analysis of the puzzle shows that it is an extremely difficult combinatorial

problem.

The effective branching factor for a problem of this size is about 382, which

means that the A* search method heuristic would have to consider 382 children nodes

for each node it visited [Toulis]. To give the reader an idea of the size and complexity of

the problem, the game of chess has an effective branching factor of 100.

On an n x n board, the number of edges that need to be matched is given by the

following formula:

Therefore, on a 16x16 board, which is the size of the E2 puzzle, 544 edges will

have to be matched to solve the puzzle. Given that the border and corner tiles are easily

identifiable, that number can be reduced to 480 (N - 64)1.

To give the reader a rough idea of the search space, there are 4! ways to place a

corner tile, 56! ways to place a border and ways to place internal tiles.

1 In a 16x16 configuration, there are 16 tiles on each border. The total number of border tiles is
therefore 4x16 = 64.

3

Therefore the size of the search space is approximately . If we’re taking into

consideration the hint piece2 we have possible combinations.

Solving the E2 puzzle is clearly hard and computationally challenging. It will

involve research in the areas of algorithms, parallel computing, software engineering,

image processing, pattern matching, etc… We believe that a lot of practical applications

will benefit from the results of this experiment. Figure 2 illustrates a solved 5x5 grid

using E2 patterns.

Figure 2 – Two different images of a 5x5 board with E2 patterns generated by the Eternity II

Editor

Edge-matching puzzles have been studied widely. They are hard combinatorial

optimization problems that are classified as NP-Complete and, in general, there is no

efficient algorithm that can solve them [Demaine].

Several researchers (in and outside academia) have attempted to solve the E2

puzzle using different meta-heuristics and techniques. Most of the empirical results that

were obtained did not meet the requirements. The number of edges matched ranged

between 396 and 459 out of 480, which is the total number of edges that must be

matched in order to have a solution to the puzzle.

2 The hint piece is tile number 139, which actually divides the board in 4 regions.

4

 For instance, [Anso] applied state-of-the-art Satisfiability Problem (SAT) and

Constraint Satisfaction Problem (CSP) techniques to the problem. They used competitive

SAT solvers, Partial-Look-Ahead (PLA) and Maintaining-Arc Consistency (MAC)

algorithms, which are known to be very efficient search heuristics and have been used

for years to solve highly constrained problems. The benefit of MAC and PLA is that they

can increase the depth of the search, but this is done at a high cost [Toulis]. However,

their solution could not solve an 8x8 puzzle.

 The results obtained are understandable because the solvers will often run into

situations similar to the one depicted in figure 3. The solvers will have to backtrack and

restart. SAT solvers were also used by [Heule] without noticeable improvements.

Figure 3 - Dead end reached (Picture is from [Toulis])

 Several local search algorithms were applied separately or combined by [Toulis]

without any major improvements. [Toulis] was however able to get good results

(455/480) with hybrid algorithms, namely a meta-heuristic called Variable Neighborhood

Search (VNS) implemented using a fitness function, swaps and rotation sequences. This

method was also used by [Coelho] and did not generate better results.

 Other hybrid variations of local search meta-heuristics were also used without

generating results that were close to goal of 480 matches [Wang].

5

 We found only one implementation that used evolutionary techniques to solve

E2. Without any additional heuristics, [Munoz] was able to obtain a score of 396 out

480, which is still lower than most of the scores obtained.

 The best results so far have been achieved by [Schaus] and [Vancro]. [Schaus]

used a combination of tabu search and very large neighborhood search and was able to

obtain 458 out of 480. [Vancro] used hyper-heuristics which are recent trend in heuristic

algorithms and obtained a score of 459 out 480. His solution included a DFS (Depth First

Search), Tournament Selection and lower level heuristics, such tile rotation, tile

exchange, and very large neighborhood search.

 We can clearly see that the solutions that produced the best results were a

combination of hyper and meta-heuristics. However, they have failed to find a solution

to the E2 puzzle.

 There appears to be no explanation as to why these methods did not succeed in

finding a solution. The number of solutions estimated by [Anso, Toulis, Anonymous] is

quite large (around 15x106).

 We believe that most these approaches failed because their search was

performed on localized areas ignoring completely the cohesiveness of the final

appearance of the board. We also noticed that the hint peace divides the board in four

regions depicted in figure 4. This could turn out to be an interesting observation for our

research.

6

Figure 4 - E2 board with the hint piece divided in 4 regions

Given the enormous space that has to be considered in this problem, we believe

that, the application of evolutionary techniques and other meta-heuristics can improve

the results obtained by the other researchers. Furthermore, [Demaine] proved that a

Jigsaw puzzle and an edge-matching puzzle are computationally the same. Jigsaw

puzzles have been solved successfully using evolutionary techniques [Toyama, Gindre];

therefore a correct representation of the problem will increase our chances to find a

solution to the E2 puzzle.

In this thesis, we plan to present a new approach to solve the E2 puzzle using

evolutionary techniques. The study will provide a model for improving the results

presented in [Munoz] and expand the options available to others researchers.

The main contributions of this thesis are:

 An intelligent crossover operator for exchanging genetic material without

disrupting too much the structure of the new off-springs.

 Several new and adapted mutation operators that can be combined to

achieve good results.

 A software design with an optimal structure for implementing computer

programs to run the experiments.

7

2. Literature Review

The research conducted for this thesis revolved around three major areas: evolutionary

techniques for solving complex combinatorial problems, genetic algorithms for solving

NP-Complete problems and effectively solving edge-matching puzzles using computers.

The literature dealt mostly with complex combinatorial problems and evolutionary

techniques. We will provide short summaries of our findings in the following paragraphs.

Several of the books and articles that we reviewed discussed at length the use of

evolutionary techniques to solve complex combinatorial problems. The information that

we collected was very important to our research since it revealed that evolutionary

techniques could be considered to solve the E2 puzzle [Munoz]. We also found that the

use of other meta-heuristics could lead us to a global optimal solution [Affen]. The

traditional methods of search only find local optima [Jourdan].

Most of the articles that we reviewed considered genetic algorithms (GA) to be

among the most powerful optimization heuristics for solving complex combinatorial

optimization problems [Eiben, Affen, Toyama].

A combinatorial optimization problem of the size of the E2 puzzle requires the

robustness of a genetic algorithm and its ability to perform efficiently on large complex

search spaces. Furthermore, GAs are also known for their ability to find global optima in

large search spaces [Toyama].

The E2 puzzle belongs to the class of NP-Complete problems [Demaine]. We

realized while reviewing the literature that it was also important to understand how GAs

performed, as a generic method, on problems that were computationally intractable –

NP-Complete.

8

[DeJong] concluded in a published paper titled “Using Genetic Algorithms to

Solve NP-Complete Problems,” that genetic algorithms were a robust and effective

search heuristic for NP-Complete problems.

All authors agreed that NP-Complete problems were very challenging and hard to

solve. In general, there are no efficient algorithms that can solve these problems

[Demaine].

The puzzle problem that we studied in our research is a complex combinatorial

problem with an extremely large search space that falls into the category of edge-

matching puzzles.

[Demaine] states in their work that edge-matching puzzles and jigsaw puzzles

are computationally equal. Even though, edge-matching are much harder than jigsaw

puzzles, we reviewed the work of several researchers who attempted to solve jigsaw

puzzles using genetic algorithms [Gindre, Toyama].

Much of the literature that discussed the E2 puzzle proposed problem-specific

algorithms as an effective way of attempting to solve the puzzle. None of the algorithms

that were applied to the puzzle found a solution [Toulis]. As of this writing, there are no

known solutions to the problem that were submitted.

We also observed that most authors considered defining the E2 puzzle as a

Constraint Satisfaction Problem (CSP), which is a natural choice for an edge-matching

puzzle given that combinatorial optimization problems can be modeled as constrained

optimization problems [Toulis]. Therefore, a GA can combine its search abilities and the

use of constraints definitions to find optimal solutions. We found that this method was

poorly addressed in the literature, but were encouraged by the results obtained by

[Munoz]. [Munoz] transformed the constraints into optimization objectives and used the

9

optimization power of genetic algorithm to achieve those objectives. We believe that

[Munoz] could have achieved better results by additionally using other meta-heuristics

and/or biased operators.

In most of the literature discussing the use of evolutionary techniques to solve

constrained problems, the following were determining factors in constructing a

successful and efficient GA: the problem definition, the representation of solution

candidates and the crossover operator.

The literature also revealed that the recent publication of the E2 puzzle

generated a lot of interest in academic circles [Anso]. It is an opportunity for

researchers to investigate new solutions to old problems and to revisit existing ones.

The literature provided sufficient information on the use of evolutionary

techniques to solve complex combinatorial problems, but did not elaborate on the

techniques that could be used to solve edge-matching puzzles using genetic algorithms.

10

3. Problem Statement

The Eternity II (E2) puzzle contest generated a lot of interest in the scientific community

[Anso]. The E2 puzzle can be classified as an edge-matching puzzle which is considered

NP-Complete (NP-C) [Demaine]. Problems that are categorized as NP-C are known to be

the hardest to solve. Therefore, a simple search algorithm will not produce a solution.

The objective of the game is to place 256 unique patterned tiles on a board,

such that all touching pairs of edges match (fig. 5 and fig. 6). The tiles with the grey

pattern must be placed around the border. Many attempts have been made where local

search meta-heuristics such as Tabu search, Simulated Annealing, Hill Climbing and

hyper-heuristics [Anso, Toulis, Heule, Schaus] were used, without finding a solution. As

of today’s writing the company that produced the game has not reported a winner.

Figure 5 - E2 puzzle solution sheet

Figure 6 - E2 Online demo puzzle solved
[Tomy]

11

 Hill Climbing is an old, simple and fast local search method. It is a good iterative

algorithm for finding local optima. The search starts with an arbitrary solution and tries

to find a better solution. The search stops when all neighboring candidate solutions are

worse than the current solution. The algorithm is show below:

1. Construct a sub-optimal solution that meets the constraints of the problem

2. Take the solution and make an improvement upon it

3. Repeatedly improve the solution until no more improvements are necessary/possible

Algorithm 1 - Hill Climbing Algorithm

With Tabu Search [Glover] the local or neighborhood search procedure looks for

a potential solution and once it finds it tags it as “tabu” to prevent the procedure from

revisiting it. It enhances the performance of local search meta-heuristics by using

memory structures to store the candidate solutions already visited. The algorithm of the

Tabu search is shown below:

k := 1.

generate initial solution

WHILE the stopping condition is not met DO

 Identify N(s). (Neighbourhood set)

 Identify T(s,k). (Tabu set)

 Identify A(s,k). (Aspirant set)

 Choose the best s’ Î N(s,k) = {N(s) - T(s,k)}+A(s,k).

 Memorize s’ if it improves the previous best known solution

 s := s’.

 k := k+1.

END WHILE

Algorithm 2 - Basic Tabu Search Algorithm

12

Simulated Annealing [Kirkpatrick] is a generic probabilistic meta-heuristic that searches

for a good solution, rather than the best possible solution. It tries to locate a solution

close to the global optimum. The algorithm used in simulated annealing is described

below:

s ← s0; e ← E(s) // Initial state, energy.

sbest ← s; ebest ← e // Initial "best" solution

k ← 0 // Energy evaluation count.

while k < kmax and e < emax // While time left & not good enough:

snew ← neighbour(s) // Pick some neighbour.

enew ← E(snew) // Compute its energy.

 if P(e, enew, temp(k/kmax)) > random() then // Should we move to it?

 s ← snew; e ← enew // Yes, change state.

 if enew < ebest then // Is this a new best?

 sbest ← snew; ebest ← enew // Save 'new neighbour' to 'best found'.

 k ← k + 1 // One more evaluation done

return sbest

Algorithm 3 - Simulated Annealing Algorithm

 Most of the local search meta-heuristics work in a very small search area and

habitually only find local minima and rarely global optima. Finding global optima comes

at a high cost, reducing the ability of such algorithms to perform well in large search

spaces.

 In this thesis we will focus particularly on Evolutionary Algorithms, specifically on

Genetic Algorithms and demonstrate that population based algorithms have a better

chance to succeed with this type of problem.

13

Genetic algorithms (GA) have been successfully used to solve a great number of

complex combinatorial optimization problems where the search space can be very large

[Oliveto]. They were formally introduced in the United States in the 1970s by John

Holland at University of Michigan.

A genetic algorithm is a stochastic search technique that takes its inspiration

from Darwin’s theory of evolution. The fittest individuals in a population survive and

reproduce, passing on their traits to future generations. This phenomenon is known as

the survival of the fittest.

A genetic algorithm follows an iterative process and usually operates on a

population of constant size. Solution candidates or chromosomes are added to a

population randomly or using heuristics. Solution candidates are then evaluated and

given a fitness value. This evaluation occurs for every generation. In each generation, a

new population is created by selecting individuals according to their fitness value and

then allowing them to exchange genetic material to create new off-springs, who will

become the next generation of parents. In order to produce new chromosomes, GAs use

two genetic operators, namely crossover and mutation [Affen].

 Crossover is the most important genetic operator. It combines the parts of two

parents to create off-springs.

Mutation is an important operator that is essentially used to modify the genetic

composition of an individual to encourage exploration and avoid premature

convergence.

The general and basic form of the algorithm is given below. It is straightforward

to apply and has performed very well on complex problems.

Initialize population with random candidate solutions
Evaluate each candidate

14

while termination criterion has not been reached
{

Selection;
Reproduction;

 Crossover;
 Mutation;
 Evaluation;
}

Algorithm 4 - Basic form of the Genetic Algorithm

 What makes GA unique compared to neighborhood-based search heuristics is

that during crossover solutions candidates can inherit properties that may be located in

different areas of the search space. This unique feature of GAs makes them much

robust in avoiding stagnation in local optima.

 There are a number of constraints that must be satisfied in order solve the E2

puzzle (see introduction). Satisfying these constraints manually or using local search

heuristics can be a daunting and even an impossible task. In E2, the size of the search

space is approximately , which represents a huge search space. With the use

of genetic algorithms and constraint handling techniques as defined in Constraint

Satisfaction Problems (CSP), we are able to explore many solutions and determine the

ones that are valid and optimal.

The problem is defined as follows:

1. Each tile has a North (N), East (E), South (S) and West (W) edge.

2. Each edge is decorated with a pattern.

3. Each tile can be rotated 90, 180 and 270 degrees.

4. If a tile is located on the frame, the edges touching the frame are

colored in grey.

15

5. Given a tile t, an internal tile; tn, the tile located north of t; te, the tile

located east of t; ts, the tile located south of t; tw, the tile located

west of t; the following must be true:

a. The North edge of t must match the South edge of tn.

b. The East edge of t must match the West edge of te.

c. The South edge of t must match the North edge of ts.

d. The West edge of t must match the East edge of tw.

Figure 7, 8, 9 and 10 illustrate the rules described above.

Figure 7 – Non-matching edges

Figure 8 - 2x2 Area not matching

Figure 9 - Matching edges

Figure 10 - Matching 2x2 Area

16

4. Methodology

The heuristics and algorithms used to solve the problem described in the previous

section are explained in detail.

Given the constrained nature of the Eternity II (E2) puzzle, we decided to use a

hybrid solution that uses a mixture of Evolutionary Programming (EP) and Constraint

Satisfaction Problem techniques [Craenen, Gindre, Gottlieb].

We use the canonical Genetic Algorithm (GA) definition to guide the search for a

solution.

Initialize population with random candidate solutions
Evaluate each candidate
while termination criterion has not been reached
{

Selection;
Reproduction;

 Crossover;
 Mutation;
 Evaluation;
}

Algorithm 5 - The Canonical GA Algorithm

Our objective is to demonstrate that the E2 puzzle can be solved using

evolutionary techniques. In order to achieve that, we designed and implemented an

efficient computer program based on our genetic algorithm. The program was optimized

to run for hours with a steady use of computer resources. The problem description and

the discussion of our GA coding standards follow.

4.1 Description of the problem as a CSP

E2 can be naturally classified as a Constraint Satisfaction Problem and formulated as

follows:

Problem = {T, P, N, E, S, W, and O}, where:

Tij = {1, t2 …, n2} is a set of tiles,

17

P = {0, p1…, p} is a set of patterns,

Nij = {1, c2 …p} is a set of constraints belonging to variables,

Eij = {1, o1…p} is a set of constraints belonging to variables,

Sij = {1, q1 …p} is a set of constraints belonging to variables,

Wij = {w1, w2 …p} is a set of constraints belonging to variables,

 Oij = {0…3} is set representing the orientation.

 c = {1, 2…m} set of constraints associated with edges

 C = {1, 2…x} set of constraints associated with 2x2 squares

Where the edge-matching constraints are expressed as:

 , Ni,j = Si-1,j , Ei,j = Wi,j+1, Si,j = Ni+1,j, Wi,j = Ei,j-1

And the penalties as:

 ̅ ∑ ̅

 ̅ {
 ̅

respectively,

 ̅ ∑ ̅

 ̅ {
 ̅

For each ̅ ̅ ̅ ̅

4.2 Individuals and Population

A population is collection of individuals which are defined as n x n boards. Each board is

filled using n x n 4-patterned tiles.

4.3 Representation (Encoding)

A board is a 2-dimensional structure that contains N x N tiles. Each tile is represented as

a vector containing five (5) integers. The first four (4) integers represent the four edges

18

of the tile and the last one is used to maintain the information about the orientation of

the tile.

Figure 11 Internal representation of a tile

For example, 1 – 4 – 5 – 6 – 0 represents the following tile:

Figure 12 Tile before rotation

And 1 – 4 – 5 – 6 – 1 represents the following rotated tile:

Figure 13 Rotated tile

19

4.4 Selection operators

4.4.1 Fitness Proportional Selection (Roulette Wheel)

This is the classical selection method that has been proposed by [Holland]. This method

is also known as the Roulette Wheel. Each candidate is represented on the wheel

according to its probability to be selected. If a candidate i, has a fitness , then its

selection probability is

∑

, where n is the size of the population.

This type of selection favors individual with the best fitness, even though they

can be eliminated. When the fitness values are close to each other, there is almost no

selection pressure. It is as if we were selecting individuals randomly [Eiben].

We decided not to use the method of selection, because of the poor results. The

candidate solutions need to retain the same number of tiles without duplicate. Under

this constraint most candidates will have fitness values that close together.

4.4.2 Linear Ranking Selection

This selection method is known to keep the selection pressure constant. It tries to

correct some of the drawbacks observed with Fitness Proportional Selection (high

selection pressure) [Eiben].

In Linear-Ranking Selection, the individuals of the population are sorted based

on their fitness and assigned a selection probability calculated using the following

formula for the linear ranking scheme:

The selection is then based on their rank rather than their fitness values, with

the intent of reducing the dominating effect of individuals with the best fitness values

[Affen].

20

4.4.3 Tournament Selection

The Tournament Selection is one of the most used selection scheme in modern

applications of GAs. It is easy to implement and apply and does not rely on global

knowledge of the population, which could be very costly to obtain [Eiben]. k individuals

selected from the population compete based on their fitness values and the best

candidate is selected and added to the mating pool. The advantage of this selection

method is that the selection pressure can be scaled easily by altering k [Affen].

We observed great improvement with this method and decided to use it as part of our

selection heuristics.

The following algorithm was implemented as part of the experiments.

Begin

 Set current_member = 1;

While (current_member < µ)

 Pick k individuals randomly, with or without replacement;

 Select the best of these k individuals comparing their fitness values;

 Denote this individual as I;

 Set mating_pool[current_member] = i;

 Set current_member = current_member + 1;

End While

End

Algorithm 6 – Tournament Selection Algorithm

4.4.4 Elitism

The Elitism replacement scheme is very popular with combinatorial optimization

problems. The best candidates of the last generation are kept in the newly created

population by replacing the individual with the worst fitness value.

21

We experimented mostly by keeping the best individual of the previous

generation (n-elitism, with n=1). This is also referred to as the “golden cage model”.

4.5 Mutation Operators

We experimented with several mutation schemes, either by using them individually or by

combining them. We describe the most effective ones below.

4.5.1 Rotate Mutation

This rotation mutation operator simply rotates the tile clockwise.

Figure 14 - Tile appearance after a Rotate Mutation

4.5.2 Swap Mutation

The Swap Mutation is one of the most natural methods for combinatorial problems. Two

(2) tiles are randomly selected from the board and exchanged. This basic operator did

not contribute to change the fitness value of the individual and we did not notice and

improvement in the overall fitness of the population. The operation is illustrated in figure

15, where tile #1 and tile #11 have been swapped.

Figure 15 - Board appearance after a Swap Mutation

22

4.5.3 Swap & Rotate Mutation

This is a combination of the Rotate and Swap mutation operators described above.

Two (2) tiles are randomly selected from the board, rotated and swapped. This

operation is illustrated in figure 16.

Figure 16 - Board appearance after a Swap & Rotate Mutation

4.5.4 Rotate Region Mutation

The Rotate Region Mutation schema is described in [Munoz]. A square region with a

minimum width of two (2) is selected on the board and rotated. This mutation operator

outperformed all other mutation operators that were used in the experiments. At the

board assembles and collates matching pieces, a mutation operator should not disturb

that order. The region rotation allows the board to try a different combination and keep

the sub-region consistency. The operation is illustrated in figure 17.

Figure 17 - Board appearance after a Region Rotation Mutation

23

4.5.5 Swap Region Mutation

The Swap Region Mutation schema is described in [Munoz]. A slight modification was

applied to our implementation. We used vertical and horizontal swapping. The board is

divided in two halves vertically or horizontally, and a region of the same size is selected

in each half and swapped. The operation has the advantage of preserving blocks of

matching tiles. It is described in figure 18.

Figure 18 - Swap Region Mutation

4.5.6 Region Inversion Mutation

The Region Inversion operator follows the principle used in the well know Inversion

Mutation scheme. All tiles collected from a randomly selected region on the board are

copied back to the same region starting with the last tile in the block. The first tile is

always at the top left corner of the region and the tiles are copied for left to right. This

operator’s functioning is depicted in figure 19.

Figure 19 - Region Inversion Mutation

24

4.5.7 Row and Column Inversion Mutation

The Column and Row mutations schemes are similar to the Inversion Mutation operator

defined in [Eiben]. In order to selectively apply mutations to rows and columns, we

decided to create two separate operators. The operators are described in figure 20 and

21.

Figure 20 - Row Inversion

Figure 21 - Column Inversion

4.5.8 Scramble Mutation

The Scramble mutation operator maintains a corner tile in the left corner and scrambles

the rest of the tiles, in order to force the board to re-assemble. It is a very effective

mutation operator when the board is completely stuck.

4.6 Crossover Operators

Combinatorial optimization problems are complex problems that require crossover

operators to be designed very carefully [Affen]. In order to test our solution we

considered several crossover operators that were used successfully to solved complex

combinatorial problems such as the traveling salesman problem (TSP), the capacitated

25

vehicle routing problem (CVRP), the scheduling problem (SP), but after a careful

analysis we decided not retain any of them. These crossover operators are built to

preserve order which is not an essential requirement for our problems.

In order to assemble properties of candidate located in different regions of the

search space, the region exchange crossover defined by [Munoz] produced the best

results. We also ran some experiments with the Uniform Crossover operator. The Region

Exchange and Uniform crossover operators are described below.

4.6.1 Region Exchange Crossover

The region exchange crossover was proposed by [Munoz]. We implemented a slightly

different version to obtain better results.

The operator works very intelligently. Two regions randomly selected are exchanged

between two parents and two off-springs are produced. The off-springs will acquire

some new genetic material but at the same time preserve the overall genetic

composition of the parents [Munoz]. Keeping the relationship between adjacent tiles is

essential but not critical, as a tile can fit many other tiles. Further details are provided in

Algorithm 1 and Figure 22.

1. Select a random region [select two points, a random length and width]

2. Clone the two parents [parent A, parent B]

3. Remove from parent A all tiles that are inside the region in parent B.

4. Remove from parent B all tiles that are inside the region in parent A.

5. Add the tiles remaining in both regions to two separate lists: list and list B

6. Copy to parent A’s region all tiles that in parent B’s region.

7. Copy to parent B’s region all tiles that in parent A’s region.

26

8. Fill the empty places in child A and child B using the tiles from list A and list B,

respectively.

Algorithm 7 - Region Exchange Crossover

Figure 22 - Region Exchange Crossover

4.6.2 Uniform Crossover

The Uniform crossover follows the same principle as the one defined in [Eiben]. A

template is created and randomly filled with values of 1 and 2. Then, the two parents

are selected and two off-springs are created by choosing from parent 1 or parent 2,

depending on the value read from the template. The procedure makes sure that the tiles

are not duplicated. We obtained some good results with this crossover, but the region

exchange crossover was the preferred method.

4.7 Fitness Function

The fitness function was designed with the minimum number of constraints to avoid

excluding “bad” individuals. Those individual might have some genetic material needed

by the individuals with the best fitness. A fit individual has a fitness value of 1.

It was designed with a minimum of two objectives:

1. A penalty is incurred if the edges of two adjacent tiles do not match. (fig. 7)

2. A penalty is incurred if the interior edges of 2x2 area do not match (fig. 8)

27

 ̅

 ∑

4.8 Selection Heuristics

The selection heuristic that we developed for this experiment checks the best individuals

to see if they are deadlocked, when the repair threshold is reached. All individuals who

seem to be deadlocked are tagged and the threshold is lowered by a percentage. The

next time the threshold is reached, if the tagged individuals are still unable to improve

the repair heuristic corresponding to the symptoms is executed.

4.9 Repair Heuristics

Two repair heuristics were developed to cope with two different symptoms. One repair

function was developed to remove the deadlocks and one to rearrange the 2x2 areas

and another to rearrange the border tiles.

28

5. Software Application

An experimental software application was developed C#.Net to test the solution. It is

console application with no input capabilities. The information displayed is very

informative and allows the user to observe the progress of the transformation. Figure 23

shows the execution of a 5x5 board.

Figure 23 - Execution of a 5x5 E2 board

The following screen (fig. 24) shows the successful completion of a run. The output is

formatted in such a way that it can be copied to the Eternity II Editor to check the

results.

Figure 24 - Successful completion of a run

29

The results can be copied to the Eternity II Editor and visualized.

Figure 25 - 5x5 Eternity II board displayed by the Eternity II Editor

The program has been optimized to run for hours without running out memory. It uses

the basic C# construct to store the information about the tiles. We need O (1) to access

the tile structure if we want the application to run efficiently and fast.

We constructed a main Board class that includes all the method necessary to manipulate

the tile patterns and rotation. There are also very useful methods for searching for tiles.

30

Figure 26 - Class Board

Figure 27 - Constraint structure

Figure 28 - Constraint Repository class

The class Board uses jagged-arrays to store the tile information. We store five piece of

information: the 4 colors and the rotation direction. Access to the colors and rotation is

very fast.

namespace Puzzle.Solver
{
 /// <summary>
 /// Represents a puzzle board/grid. Each slot contains a pattern.
 /// </summary>
 public class Board
 {
 #region Fields

31

 int _columns;
 int _rows;
 private readonly int[] _hintTile;
 int[][][] _tiles;

 public const int Edges = 5;
 int _gridSize = 2;
 private readonly int[][] _matches;
 private readonly int _pieces;
 public static readonly Random RandomGenerator = new Random();

 public static int DirNorth = 0;
 public static int DirEast = 1;
 public static int DirSouth = 2;
 public static int DirWest = 3;

 public static readonly int[] NegativeTile = new[] { -1, -1, -1, -1, -1 };

 public Guid Id = Guid.NewGuid();

 public bool Tagged = false;

 #endregion

 #region Properties

 public int[] HintTile
 {
 get { return _hintTile; }
 }

 public int Size
 {
 get { return _gridSize; }
 }

 public int[][][] Tiles
 {
 get { return _tiles; }
 }

 public int Rows
 {
 get { return _rows; }
 }

 public int Columns
 {
 get { return _columns; }
 }

32

 public int[] this[int tileIndex]
 {
 get
 {
 var row = (tileIndex - 1) / _gridSize;
 var column = (tileIndex - 1) % _gridSize;
 return this[row, column];
 }
 set
 {
 var row = (tileIndex - 1) / _gridSize;
 var column = (tileIndex - 1) % _gridSize;
 this[row, column] = value;
 }
 }

}
}

Figure 29 – class Board

The fitness is computed dynamically by iterating through the constraints. Every

constraint is defined separately and the compute method is executed when the fitness is

evaluated.

namespace Puzzle.Solver
{
 public class PenaltyFunction : IFitness
 {
 private int _violations;

 public Double Evaluate(Board board)
 {

 foreach (var key in ConstraintRepository.GetConstraints().Keys)
 {
 try
 {
 var constraint = ConstraintRepository.GetConstraints()[key];
 var total = constraint.Compute(board);
 var violations = constraint.Violations;

 }
 catch (IOException e)
 {
 Console.WriteLine(e.StackTrace);
 }
 }

 return fitness;

33

 }

 public int GetViolations()
 {
 return _violations;
 }
 }
}

Figure 30 - Fitness function

34

6. Results and Analysis

We present here the results obtained during the experiments. We developed a computer

program in C#.Net to execute the algorithms. Most of the experiments were run on a

2.4GHz dual-processor machine running a 64-bit version of Windows 7.

The main objective of the experiments was to see if we were getting constant

improvements with time and that the best solution obtained was within the range of

expectations.

The parameters for the first runs are listed below in Table 1.

Table 1 - GA Parameters (01)

Parameters for the GA

Generations 100

Population Size 200

Elitism Rate 0

Mutation Rate 0.1

Crossover Rate 0.9

Selection Operator Tournament

Mutation Operator Region Rot/Swap

Crossover Operator Region Exchange

We observed the behavior of the fitness with respect to the following factors: the

mutation rate, the crossover rate, elitism, the size of the population. We also looked at

the fitness values when selection and repair heuristics were applied. All fitness values

are plotted against the number of iterations (generations).

The following graphs show the evolution of the fitness depending on whether

elitism and/or repair functions. In figure 31, we observe that the fitness values are not

improving after the 40th iteration and they stagnate and stay within a range. There

appear to be no convergence towards the final solution.

35

Figure 31 - Fitness evolution without elitism and no repair Heuristic

The following graph (fig. 32) shows an improvement of the fitness when elitism

and repair heuristics are applied. We can clearly see that the fitness is converging

towards the final solution.

Figure 32 - Fitness evolution with elitism and repair heuristic

0

0.1

0.2

0.3

0.4

0.5

0.6

Fitness

Fitness

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fitness

Fitness

36

Figure 33 - Fitness evolution with elitism and repair heuristic

The following graph (fig. 34) seems to indicate that the repair heuristic should be run

after a certain number of iterations.

Figure 34 - Fitness evolution with elitism and no repair

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fitness

Fitness

0

0.1

0.2

0.3

0.4

0.5

0.6

Fitness

Fitness

37

In the following experiment, we look at the impact of a high mutation rate.

Table 2 – GA Parameters (02)

Parameters for the GA

Generations 100

Population Size 200

Elitism Rate 1

Mutation Rate 0.8

Crossover Rate 0.9

Selection Operator Tournament

Mutation Operator Region Rot/Swap

Crossover Operator Region Exchange

The following graph (fig. 35) shows that a high mutation rate can disturb the genetic

composition of a candidate solution. Starting at the 60th generation, the quality of the

best individuals is decreased.

Figure 35 - Evolution of the fitness with high mutation rate (0.8)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fitness

Fitness

38

In the following experiment, we study the impact of the absence of a mutation operator.

Table 3 - GA Parameters (03)

Parameters for the GA

Generations 100

Population Size 200

Elitism Rate 1

Mutation Rate 0

Crossover Rate 0.9

Selection Operator Tournament

Mutation Operator Region Rot/Swap

Crossover Operator Region Exchange

We notice in figure 36 that the individuals stop improving after a while. This is probably

an indication that mutation plays an important role in producing a successful candidate.

Figure 36 - Evolution of the fitness without mutation (0%)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fitness

Fitness

39

In the following experiment, we look the impact of the absence of a crossover operator.

Table 4 - GA Parameters (04)

Parameters for the GA

Generations 1000

Population Size 200

Elitism Rate 1

Mutation Rate 1.0

Crossover Rate 0

Selection Operator Tournament

Mutation Operator Region Rot/Swap

Crossover Operator Region Exchange

In figure 37, the graph shows that the fitness of the individuals is lower compared to

when there is crossover.

Figure 37 - Evolution of fitness with mutation and no crossover

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Fitness

Fitness

40

In the following experiment, we look the impact of repair heuristics. They are applied at

calculated intervals that depend on the rigidness of the individual to increase its fitness.

Table 5 - GA Parameters (05)

Parameters for the GA

Generations 1000

Population Size 1000

Elitism Rate 1

Mutation Rate 0.1

Crossover Rate 0.9

Selection Operator Tournament

Mutation Operator Region Rot/Swap

Crossover Operator Region Exchange

Repair Selection

 We observe in figure 38 that repairing the individuals can help them increase their

fitness values. However, we notice that immediately after a repair, individuals have

lower fitness values.

Figure 38 - Fitness evolution using a bigger population (1000) and repair

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fitness

Fitness

41

In the next experiment, we look at the impact of the size of the population.

Table 6 - GA Parameters (06)

Parameters for the GA

Generations 1000

Population Size 500

Elitism Rate 1

Mutation Rate 0.1

Crossover Rate 0.9

Selection Operator Tournament

Mutation Operator Region Rot/Swap

Crossover Operator Region Exchange

Repair Selection

In figure 39, we notice higher fitness values compared to figure 38. The size of the

population is not necessarily a dominant factor.

Figure 39 - Fitness evolution with smaller population (500) and repair

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fitness

Fitness

42

In the following, we look at four different experiments that were executed using Uniform

crossover. We notice that it took longer to achieve results obtained using the Region

Exchange crossover. The crossover operation also takes longer to execute. We could

determine the exact cause of the slowdown. One of the four GAs used in this

experiment used two constraints (refer to the fitness function definition, sec. 4.21).

Table 7 - GA Parameters (07)

Parameters for the GA

Generations 1000

Population Size 200

Elitism Rate 1

Mutation Rate 0.1

Crossover Rate 0.9

Selection Operator Tournament

Mutation Operator Region Rot/Swap

Crossover Operator Uniform

The graph in figure 40 shows that there is a point at which the fitness of the individuals

stops improving. (2c) does not seem to produce individuals with desirable fitness values.

Figure 40 - Fitness evolution for 4 runs (1 run has 2 constraints)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fitness1

Fitness2

Fitness3

Fitness4(2c)

43

The setup in this experiment is similar to the previous one. The only parameter that was

changed was the crossover operator. Instead of the Uniform crossover, we are using the

Region Exchange crossover.

Table 8 - GA Parameters (08)

Parameters for the GA

Generations 1000

Population Size 200

Elitism Rate 1

Mutation Rate 0.1

Crossover Rate 0.9

Selection Operator Tournament

Mutation Operator Region Rot/Swap

Crossover Operator Region Exchange

In figure 41, the graph is almost the same as in figure 40. We have higher fitness values

when using Region Exchange crossover.

Figure 41 - Fitness evolution for 4 runs (1 run has 2 constraints)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fitness1

Fitness2

Fitness3

Fitness4(2c)

44

In the following experiment, we applied the algorithm to three boards of sizes, 4x4, 5x5

and 6x6. We executed each configuration ten (10) times and calculated the average

time it took before a solution was found. Table 9 shows the summary of 30 runs (10 for

each board).

Table 9 - Summary of experimental results: board runs

Board Size
(patterns)

Average time Average
Evaluations

Average
Mutations

Average
Crossovers

4x4 (5) 27s 92,700 9,284 41,480

5x5 (5) 30s 212,140 20,333 95,286

6x6 (7) 195s 267,800 26,805 120,500

It is clear that the algorithm worked well and that it was able to locate solutions in a

very short time. We also see that the time it takes to find a solution increases

exponentially with the board size. The following graph (fig. 42) shows the average time

for each board.

Figure 42 - Time vs. Size of the board

.

0

50

100

150

200

250

4x4 5x5 6x6

Time (s)

Time

45

All experiments were conducted using a 7x7 board. Despite the fact that our

algorithm tested well on 4x4, 5x5 and 6x6, we were not able to obtain a solution on a

7x7. Apparently, our solution did not scale well.

However, the results of the experiments gave us a lot of insight as to what needs to

be improved in order to obtain a solution.

 We need to improve the selection and the repair heuristics.

 The crossover and mutation operators need to be more biased towards creating

fitter individuals. We consider testing this option, but we are not convinced that

it make an enormous difference given the size of the problem.

 We need to revisit our algorithm and identify potential errors.

46

7. Conclusion and Future Works

The purpose of my research was to formulate a method using evolutionary techniques

that could possibly be a basis for further study in the area edge-matching puzzles.

This thesis was designed to contribute to advance the state-of-the-art in genetic

algorithms and to:

 Provide a model for improving GAs in the area of edge matching puzzles

 Expand the options available to GA practitioners for solving E2-type

puzzles

The objective was to implement and test a solution using genetic algorithms that

could produce better solutions to the E2 puzzle than the ones obtained using other

methods, such as hybrid local search meta-heuristics and hyper-heuristics.

The idea of solving the E2 puzzle using genetic algorithms is not naïve. We have

expanded the research that was started by [Munoz] and created a solution that can be

shared by other to further the work.

In summary, we have designed, implemented and tested a genetic algorithm to

solve a very complex problem known to the world. We have identified the limitations of

other methods used so far and established a framework for further research in

evolutionary algorithms.

 Researching problems of this kind has the benefit of accelerating problem

solving, developing machine intelligence and advancing the field of artificial intelligence.

We must be able to solve complex problems without relying on human expertise.

 I hope that the work presented in this thesis will stimulate interested in the

subject and encourage the reader to invest in learning evolutionary techniques.

47

8. References

[Affen] M. Affenzeller, S. Winkler, S. Wagner and A. Beham. Genetic Algorithms and

Genetic Programming: Modern Concepts and Practical Applications. CRC Press, 2009.

[Alajlan] N. Alajlan. “Solving Square Jigsaw Puzzles Using Dynamic Programming and

the Hungarian Procedure,” American Journal of Applied Sciences (2009): Vol. 6, Issue

11, pp. 1942-1948.

[Anonymous] kubzpa@yahoo.fr. “The number of solutions of the Eternity II puzzle,”

http://games.groups.yahoo.com/group/eternity_two.

[Anso] C. Ansótegui, R. Béjar, C. Fernández and C. Mateu. “How Hard is a Commercial

Puzzle: the Eternity II Challenge,” Proceeding of the 2008 conference on Artificial

Intelligence Research and Development (2008): pp. 99-108.

[Benoist] T. Benoist. “How many edges can be shared by N square tiles on a board?” e-

lab research report (April, 2008). http://tbenoist.pagesperso-orange.fr.

[Benoist] T. Benoist. “Fast Global Filtering for Eternity II,” Constraint Programming

Letters (2008): Vol. 3, pp. 36-49.

[Craenen] B. G. W. Craenen, A. E. Eiben, E. Marchiori. “Solving Constraint Satisfaction

Problems with Heuristics-based Evolutionary Algorithms,” IEEE Congress on Evolutionary

Computation, 2000 (2000): Vol. 2, pp. 1571.

[DeJong] K. A De Jong, W. M. Spears. “Using Genetic Algorithms to Solve NP-Complete

Problems,” Proceedings of the Int'l Conference on Genetic Algorithms (1989): pp. 124-

132.

[Demaine] E. D. Demaine and M. L. Demaine. “Jigsaw Puzzles, Edge Matching, and

Polyomino Packing: Connections and Complexity,” Graphs and Combinatorics (February

2007): Vol. 23, Issue 1, pp. 195-208.

http://games.groups.yahoo.com/group/eternity_two
http://tbenoist.pagesperso-orange.fr/

48

[Eiben] A. E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Springer,

2003.

[Glover] F. Glover. “Future paths for integer programming and links to artificial

intelligence,” Computers and Operations Research (1986): Vol. 13, pp. 533-549.

[Gindre] F. Gindre, D. A. Trejo Pizzo, G. Barrera and M. D. Lopez De Luise. “A Criterion-

Based Genetic Algorithm Solution to the Jigsaw Puzzle NP-Complete Problem,”

Proceedings of the World Congress on Engineering and Computer Science 2010 (San

Francisco, October 20-22, 2010): Vol. 1.

[Gottlieb] J. Gottlieb, E. Marchiori and C. Rossi “Evolutionary Algorithms for the

Satisfiability Problem,” Evolutionary Computation (Spring 2002): Vol. 10, No. 1, pp. 35-

50.

[Haubrich] J. Haubrich. Compendium of Card Matching Puzzles. Self-published, May

1995. Three volumes.

[Heule] M. J. H. Heule. “Solving Edge-Matching Problems with Satisfiability Solvers,” In

Proceedings of the Second International Workshop on Logic and Search (LaSh 2008):

pp. 88-102. University of Leuven.

[Holand] J. H. Holland. Adaption in Natural and Artificial Systems. University of Michigan

Press, 1975.

[Kumar] R. Kumar. “Simulation Optimization for Manufacturing System Design,”

Master’s Thesis (2003): pp. 17-18

[Kendall] G. Kendall, K. Spoerer. “Scripting the Game of Lemmings with a Genetic

Algorithm,” Congress on Evolutionary Computation, CEC2004 (2004): Vol. 1, pp. 117-

124.

49

[Kirkpatrick] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi. “Optimization by Simulated

Annealing,” American Association for the Advancement of Science. New Series (May 13,

1983): Vol. 220, No. 4598, pp. 671-680.

[Munoz] J. Munoz, G. Gutierrez and A. Sanchis. “Evolutionary Techniques in a

Constrained Satisfaction Problem: Puzzle Eternity II.” IEEE Congress on Evolutionary

Computation, 2009 (2009): pp. 2985-2991.

[Oliveto] P. S. Oliveto, J. He and X. Yao. “Time complexity of evolutionary algorithms for

combinatorial optimization: A decade of results,” International Journal of Automation

and Computing (2007): vol. 04, no. 3, pp. 281-293.

[Schaus] P. Schaus and Y. Deville. “Hybridization of CP and VLNS for Eternity II,”

Journées Francophones de Programmation par Contraintes JFPC'08 (2008).

[Tomy] Tomy. “Eternity II (official site),” http://us.eternityii.com

[Wang] W. Wang and T. Chiang. “Solving Eternity-II Puzzles With a Tabu Search

Algorithm,” META 2010 (2010).

[Toyama] F. Toyama, K. Shoji and J. Miyamichi. “Assembly of Puzzles Using a Genetic

Algorithm,” 16th International Conference on Pattern Recognition, 2002 (2002): 389-392.

[Zaritsky] A. Zaritsky and M Sipper. “The preservation of favored building blocks in the

struggle for fitness: the puzzle algorithm,” IEEE Transactions on Evolutionary

Computation 2004 (October 2004): Vol. 8, Issue 5, pp. 443.

http://us.eternityii.com/

50

Appendix A: Screenshots of the results obtained using different board

configurations

Figure 43 - Results of a 6x6 run

51

Figure 44 - Results of a 4x4 run

Figure 45 - Results of a 5x5 run

