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ABSTRACT 
 
 

Solving the Eternity II Puzzle Using Evolutionary Techniques 
 

Papa Ousmane Niang 
 

 
The work presented in this thesis describes the application of genetic algorithms to solve 

an edge-matching puzzle known as Eternity II (E2). E2 is a hard combinatorial puzzle 

that is commercially available and for which a solution has not yet been found 

(December 2010). There are thousands of ways that E2 can be solved to win the prize 

of $US 2.000.000 promised by the company to the first person who solves the puzzle. 

The puzzle consists of 256 square pieces that are bordered by colored patterns which 

must be aligned across the whole puzzle. E2 is an NP-complete and multi-constrained 

combinatorial problem that has received a lot of attention worldwide. 

This thesis proposes a framework and a new approach for solving complex 

combinatorial optimization problems, such as edge-matching puzzles like the E2. 

The proposed solution uses a hybrid method composed of Evolutionary 

Programming (EP) and Constraint Satisfaction Problem (CSP) techniques. 

We draw comparisons between the state-of-the-art methods that have been 

used so far to try to solve the E2 puzzle and our proposed method, and show the 

advantages of using genetic algorithms to solve edge-matching puzzles in general.  
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1. Introduction 

The Eternity II (E2) puzzle is a commercial edge-matching puzzle that was created by 

two mathematicians at Oxford University, namely Alex Selby and Oliver Riordan [Toulis, 

Tomy]. It is an extremely difficult puzzle with a reward of US$2.000.000 for the first 

person to submit a solution by December 31, 2010. As of this writing, a solution had not 

been found. 

The publication of the puzzle and the prize reward generated a lot of attention 

worldwide.  

An edge-matching puzzle is a type of tiling puzzle similar to a Jigsaw puzzle that 

first appeared in the 1890s [Haubrich]. The edges of the tiles are colored or filled with 

different patterns. In order to solve the puzzle, all tiles must be placed in such a way 

that all edges of adjacent tiles match. In Jigsaw puzzles, only one solution is expected. 

All tiles must fit exactly in one place in order to constitute the final image. Edge-

matching puzzles are harder and more challenging than Jigsaw puzzles because they 

don’t have a guiding image. The final tile placement is known only once the puzzle has 

been solved, because a tile can fit in many ways. Additionally, the complexity is 

increased with the number of patterns and the size of the tiles. 

The E2 puzzle is an edge-matching puzzle that is made of 256 unique tiles. 

Twenty-three (23) patterns are used to decorate the tiles. Each tile has a specific 

combination of four (4) patterns. The tiles that must be placed on the borders have the 

edges touching the border of the grid colored in grey. The patterns used to decorate the 

tiles are shown in figure 1. 
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Figure 1 - Patterns used in Eternity II 

The problem is defined as follows: 

Place all 256 tiles on the grid, such that all tiles match along their edges. The tiles can 

be rotated (90°, 180° and 270°) before being placed on the board. 

A quick analysis of the puzzle shows that it is an extremely difficult combinatorial 

problem. 

The effective branching factor for a problem of this size is about 382, which 

means that the A* search method heuristic would have to consider 382 children nodes 

for each node it visited [Toulis]. To give the reader an idea of the size and complexity of 

the problem, the game of chess has an effective branching factor of 100. 

On an n x n board, the number of edges that need to be matched is given by the 

following formula: 

          

Therefore, on a 16x16 board, which is the size of the E2 puzzle, 544 edges will 

have to be matched to solve the puzzle. Given that the border and corner tiles are easily 

identifiable, that number can be reduced to 480 (N - 64)1. 

To give the reader a rough idea of the search space, there are 4! ways to place a 

corner tile, 56! ways to place a border and           ways to place internal tiles. 

                                           

1 In a 16x16 configuration, there are 16 tiles on each border. The total number of border tiles is 
therefore 4x16 = 64. 
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Therefore the size of the search space is approximately          . If we’re taking into 

consideration the hint piece2 we have           possible combinations. 

Solving the E2 puzzle is clearly hard and computationally challenging. It will 

involve research in the areas of algorithms, parallel computing, software engineering, 

image processing, pattern matching, etc… We believe that a lot of practical applications 

will benefit from the results of this experiment. Figure 2 illustrates a solved 5x5 grid 

using E2 patterns. 

      

Figure 2 – Two different images of a 5x5 board with E2 patterns generated by the Eternity II 

Editor 

Edge-matching puzzles have been studied widely. They are hard combinatorial 

optimization problems that are classified as NP-Complete and, in general, there is no 

efficient algorithm that can solve them [Demaine].  

Several researchers (in and outside academia) have attempted to solve the E2 

puzzle using different meta-heuristics and techniques. Most of the empirical results that 

were obtained did not meet the requirements. The number of edges matched ranged 

between 396 and 459 out of 480, which is the total number of edges that must be 

matched in order to have a solution to the puzzle. 

                                           

2 The hint piece is tile number 139, which actually divides the board in 4 regions. 
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 For instance, [Anso] applied state-of-the-art Satisfiability Problem (SAT) and 

Constraint Satisfaction Problem (CSP) techniques to the problem. They used competitive 

SAT solvers, Partial-Look-Ahead (PLA) and Maintaining-Arc Consistency (MAC) 

algorithms, which are known to be very efficient search heuristics and have been used 

for years to solve highly constrained problems. The benefit of MAC and PLA is that they 

can increase the depth of the search, but this is done at a high cost [Toulis]. However, 

their solution could not solve an 8x8 puzzle. 

 The results obtained are understandable because the solvers will often run into 

situations similar to the one depicted in figure 3. The solvers will have to backtrack and 

restart. SAT solvers were also used by [Heule] without noticeable improvements. 

 

Figure 3 - Dead end reached (Picture is from [Toulis]) 

  Several local search algorithms were applied separately or combined by [Toulis] 

without any major improvements. [Toulis] was however able to get good results 

(455/480) with hybrid algorithms, namely a meta-heuristic called Variable Neighborhood 

Search (VNS) implemented using a fitness function, swaps and rotation sequences. This 

method was also used by [Coelho] and did not generate better results. 

 Other hybrid variations of local search meta-heuristics were also used without 

generating results that were close to goal of 480 matches [Wang]. 
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 We found only one implementation that used evolutionary techniques to solve 

E2. Without any additional heuristics, [Munoz] was able to obtain a score of 396 out 

480, which is still lower than most of the scores obtained. 

 The best results so far have been achieved by [Schaus] and [Vancro]. [Schaus] 

used a combination of tabu search and very large neighborhood search and was able to 

obtain 458 out of 480. [Vancro] used hyper-heuristics which are recent trend in heuristic 

algorithms and obtained a score of 459 out 480. His solution included a DFS (Depth First 

Search), Tournament Selection and lower level heuristics, such tile rotation, tile 

exchange, and very large neighborhood search. 

 We can clearly see that the solutions that produced the best results were a 

combination of hyper and meta-heuristics. However, they have failed to find a solution 

to the E2 puzzle. 

 There appears to be no explanation as to why these methods did not succeed in 

finding a solution. The number of solutions estimated by [Anso, Toulis, Anonymous] is 

quite large (around 15x106). 

 We believe that most these approaches failed because their search was 

performed on localized areas ignoring completely the cohesiveness of the final 

appearance of the board. We also noticed that the hint peace divides the board in four 

regions depicted in figure 4. This could turn out to be an interesting observation for our 

research. 
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Figure 4 - E2 board with the hint piece divided in 4 regions 

Given the enormous space that has to be considered in this problem, we believe 

that, the application of evolutionary techniques and other meta-heuristics can improve 

the results obtained by the other researchers. Furthermore, [Demaine] proved that a 

Jigsaw puzzle and an edge-matching puzzle are computationally the same. Jigsaw 

puzzles have been solved successfully using evolutionary techniques [Toyama, Gindre]; 

therefore a correct representation of the problem will increase our chances to find a 

solution to the E2 puzzle.  

In this thesis, we plan to present a new approach to solve the E2 puzzle using 

evolutionary techniques. The study will provide a model for improving the results 

presented in [Munoz] and expand the options available to others researchers. 

The main contributions of this thesis are: 

 An intelligent crossover operator for exchanging genetic material without 

disrupting too much the structure of the new off-springs. 

 Several new and adapted mutation operators that can be combined to 

achieve good results. 

 A software design with an optimal structure for implementing computer 

programs to run the experiments. 
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2. Literature Review 

The research conducted for this thesis revolved around three major areas: evolutionary 

techniques for solving complex combinatorial problems, genetic algorithms for solving 

NP-Complete problems and effectively solving edge-matching puzzles using computers. 

The literature dealt mostly with complex combinatorial problems and evolutionary 

techniques. We will provide short summaries of our findings in the following paragraphs. 

Several of the books and articles that we reviewed discussed at length the use of 

evolutionary techniques to solve complex combinatorial problems. The information that 

we collected was very important to our research since it revealed that evolutionary 

techniques could be considered to solve the E2 puzzle [Munoz]. We also found that the 

use of other meta-heuristics could lead us to a global optimal solution [Affen]. The 

traditional methods of search only find local optima [Jourdan]. 

Most of the articles that we reviewed considered genetic algorithms (GA) to be 

among the most powerful optimization heuristics for solving complex combinatorial 

optimization problems [Eiben, Affen, Toyama].  

A combinatorial optimization problem of the size of the E2 puzzle requires the 

robustness of a genetic algorithm and its ability to perform efficiently on large complex 

search spaces. Furthermore, GAs are also known for their ability to find global optima in 

large search spaces [Toyama]. 

The E2 puzzle belongs to the class of NP-Complete problems [Demaine]. We 

realized while reviewing the literature that it was also important to understand how GAs 

performed, as a generic method, on problems that were computationally intractable – 

NP-Complete. 
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[DeJong] concluded in a published paper titled “Using Genetic Algorithms to 

Solve NP-Complete Problems,” that genetic algorithms were a robust and effective 

search heuristic for NP-Complete problems. 

All authors agreed that NP-Complete problems were very challenging and hard to 

solve. In general, there are no efficient algorithms that can solve these problems 

[Demaine]. 

The puzzle problem that we studied in our research is a complex combinatorial 

problem with an extremely large search space that falls into the category of edge-

matching puzzles.  

[Demaine] states in their work that edge-matching puzzles and jigsaw puzzles 

are computationally equal. Even though, edge-matching are much harder than jigsaw 

puzzles, we reviewed the work of several researchers who attempted to solve jigsaw 

puzzles using genetic algorithms [Gindre, Toyama].  

Much of the literature that discussed the E2 puzzle proposed problem-specific 

algorithms as an effective way of attempting to solve the puzzle. None of the algorithms 

that were applied to the puzzle found a solution [Toulis]. As of this writing, there are no 

known solutions to the problem that were submitted. 

We also observed that most authors considered defining the E2 puzzle as a 

Constraint Satisfaction Problem (CSP), which is a natural choice for an edge-matching 

puzzle given that combinatorial optimization problems can be modeled as constrained 

optimization problems [Toulis]. Therefore, a GA can combine its search abilities and the 

use of constraints definitions to find optimal solutions. We found that this method was 

poorly addressed in the literature, but were encouraged by the results obtained by 

[Munoz]. [Munoz] transformed the constraints into optimization objectives and used the 
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optimization power of genetic algorithm to achieve those objectives. We believe that 

[Munoz] could have achieved better results by additionally using other meta-heuristics 

and/or biased operators. 

In most of the literature discussing the use of evolutionary techniques to solve 

constrained problems, the following were determining factors in constructing a 

successful and efficient GA: the problem definition, the representation of solution 

candidates and the crossover operator. 

The literature also revealed that the recent publication of the E2 puzzle 

generated a lot of interest in academic circles [Anso]. It is an opportunity for 

researchers to investigate new solutions to old problems and to revisit existing ones. 

The literature provided sufficient information on the use of evolutionary 

techniques to solve complex combinatorial problems, but did not elaborate on the 

techniques that could be used to solve edge-matching puzzles using genetic algorithms. 
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3. Problem Statement 

The Eternity II (E2) puzzle contest generated a lot of interest in the scientific community 

[Anso]. The E2 puzzle can be classified as an edge-matching puzzle which is considered 

NP-Complete (NP-C) [Demaine]. Problems that are categorized as NP-C are known to be 

the hardest to solve. Therefore, a simple search algorithm will not produce a solution. 

The objective of the game is to place 256 unique patterned tiles on a board, 

such that all touching pairs of edges match (fig. 5 and fig. 6). The tiles with the grey 

pattern must be placed around the border. Many attempts have been made where local 

search meta-heuristics such as Tabu search, Simulated Annealing, Hill Climbing and 

hyper-heuristics [Anso, Toulis, Heule, Schaus] were used, without finding a solution. As 

of today’s writing the company that produced the game has not reported a winner. 

 

Figure 5 - E2 puzzle solution sheet 

 

Figure 6 - E2 Online demo puzzle solved 
[Tomy] 
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          Hill Climbing is an old, simple and fast local search method. It is a good iterative 

algorithm for finding local optima. The search starts with an arbitrary solution and tries 

to find a better solution. The search stops when all neighboring candidate solutions are 

worse than the current solution. The algorithm is show below: 

1. Construct a sub-optimal solution that meets the constraints of the problem 

2. Take the solution and make an improvement upon it 

3. Repeatedly improve the solution until no more improvements are necessary/possible 

Algorithm 1 - Hill Climbing Algorithm 

With Tabu Search [Glover] the local or neighborhood search procedure looks for 

a potential solution and once it finds it tags it as “tabu” to prevent the procedure from 

revisiting it. It enhances the performance of local search meta-heuristics by using 

memory structures to store the candidate solutions already visited. The algorithm of the 

Tabu search is shown below: 

k := 1.  

generate initial solution  

WHILE the stopping condition is not met DO  

    Identify N(s). (Neighbourhood set)  

    Identify T(s,k). (Tabu set)  

    Identify A(s,k). (Aspirant set)  

    Choose the best s’ Î  N(s,k) = {N(s) - T(s,k)}+A(s,k).  

    Memorize s’ if it improves the previous best known solution  

    s := s’.  

    k := k+1.  

END WHILE 

Algorithm 2 - Basic Tabu Search Algorithm 
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Simulated Annealing [Kirkpatrick] is a generic probabilistic meta-heuristic that searches 

for a good solution, rather than the best possible solution. It tries to locate a solution 

close to the global optimum. The algorithm used in simulated annealing is described 

below: 

s ← s0; e ← E(s)                                   // Initial state, energy. 

sbest ← s; ebest ← e                                // Initial "best" solution 

k ← 0                                               // Energy evaluation count. 

while k < kmax and e < emax                     // While time left & not good enough: 

snew ← neighbour(s)                    // Pick some neighbour. 

enew ← E(snew)                           // Compute its energy. 

   if P(e, enew, temp(k/kmax)) > random() then   // Should we move to it? 

     s ← snew; e ← enew                     // Yes, change state. 

   if enew < ebest then                       // Is this a new best? 

        sbest ← snew; ebest ← enew     // Save 'new neighbour' to 'best found'. 

  k ← k + 1                                         // One more evaluation done 

return sbest        

Algorithm 3 - Simulated Annealing Algorithm 

 Most of the local search meta-heuristics work in a very small search area and 

habitually only find local minima and rarely global optima. Finding global optima comes 

at a high cost, reducing the ability of such algorithms to perform well in large search 

spaces. 

 In this thesis we will focus particularly on Evolutionary Algorithms, specifically on 

Genetic Algorithms and demonstrate that population based algorithms have a better 

chance to succeed with this type of problem. 
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Genetic algorithms (GA) have been successfully used to solve a great number of 

complex combinatorial optimization problems where the search space can be very large 

[Oliveto]. They were formally introduced in the United States in the 1970s by John 

Holland at University of Michigan. 

A genetic algorithm is a stochastic search technique that takes its inspiration 

from Darwin’s theory of evolution. The fittest individuals in a population survive and 

reproduce, passing on their traits to future generations. This phenomenon is known as 

the survival of the fittest. 

A genetic algorithm follows an iterative process and usually operates on a 

population of constant size. Solution candidates or chromosomes are added to a 

population randomly or using heuristics. Solution candidates are then evaluated and 

given a fitness value. This evaluation occurs for every generation. In each generation, a 

new population is created by selecting individuals according to their fitness value and 

then allowing them to exchange genetic material to create new off-springs, who will 

become the next generation of parents. In order to produce new chromosomes, GAs use 

two genetic operators, namely crossover and mutation [Affen]. 

 Crossover is the most important genetic operator. It combines the parts of two 

parents to create off-springs. 

Mutation is an important operator that is essentially used to modify the genetic 

composition of an individual to encourage exploration and avoid premature 

convergence. 

The general and basic form of the algorithm is given below. It is straightforward 

to apply and has performed very well on complex problems. 

Initialize population with random candidate solutions 
Evaluate each candidate      
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while termination criterion has not been reached 
{ 

Selection; 
Reproduction; 

       Crossover; 
      Mutation; 
       Evaluation; 
} 

Algorithm 4 - Basic form of the Genetic Algorithm 

 What makes GA unique compared to neighborhood-based search heuristics is 

that during crossover solutions candidates can inherit properties that may be located in 

different areas of the search space. This unique feature of GAs makes them much 

robust in avoiding stagnation in local optima. 

 There are a number of constraints that must be satisfied in order solve the E2 

puzzle (see introduction). Satisfying these constraints manually or using local search 

heuristics can be a daunting and even an impossible task. In E2, the size of the search 

space is approximately          , which represents a huge search space. With the use 

of genetic algorithms and constraint handling techniques as defined in Constraint 

Satisfaction Problems (CSP), we are able to explore many solutions and determine the 

ones that are valid and optimal. 

The problem is defined as follows: 

1. Each tile has a North (N), East (E), South (S) and West (W) edge. 

2. Each edge is decorated with a pattern. 

3. Each tile can be rotated 90, 180 and 270 degrees. 

4. If a tile is located on the frame, the edges touching the frame are 

colored in grey. 
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5. Given a tile t, an internal tile; tn, the tile located north of t; te,  the tile 

located east of t; ts, the tile located south of t; tw, the tile located 

west of t; the following must be true: 

a. The North edge of t must match the South edge of tn. 

b. The East edge of t must match the West edge of te. 

c. The South edge of t must match the North edge of ts. 

d. The West edge of t must match the East edge of tw. 

Figure 7, 8, 9 and 10 illustrate the rules described above. 

 

Figure 7 – Non-matching edges 

 

Figure 8 - 2x2 Area not matching 

 

Figure 9 - Matching edges 

 

Figure 10 - Matching 2x2 Area 
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4. Methodology 

The heuristics and algorithms used to solve the problem described in the previous 

section are explained in detail. 

Given the constrained nature of the Eternity II (E2) puzzle, we decided to use a 

hybrid solution that uses a mixture of Evolutionary Programming (EP) and Constraint 

Satisfaction Problem techniques [Craenen, Gindre, Gottlieb]. 

We use the canonical Genetic Algorithm (GA) definition to guide the search for a 

solution.  

Initialize population with random candidate solutions 
Evaluate each candidate      
while termination criterion has not been reached 
{ 

Selection; 
Reproduction; 

       Crossover; 
      Mutation; 
       Evaluation; 
} 

Algorithm 5 - The Canonical GA Algorithm 

Our objective is to demonstrate that the E2 puzzle can be solved using 

evolutionary techniques. In order to achieve that, we designed and implemented an 

efficient computer program based on our genetic algorithm. The program was optimized 

to run for hours with a steady use of computer resources. The problem description and 

the discussion of our GA coding standards follow. 

4.1 Description of the problem as a CSP 

E2 can be naturally classified as a Constraint Satisfaction Problem and formulated as 

follows: 

Problem = {T, P, N, E, S, W, and O}, where: 

Tij = {1, t2 …, n2} is a set of tiles, 
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P = {0, p1…, p} is a set of patterns, 

Nij = {1, c2 …p} is a set of constraints belonging to variables, 

Eij = {1, o1…p} is a set of constraints belonging to variables, 

Sij = {1, q1 …p} is a set of constraints belonging to variables, 

Wij = {w1, w2 …p} is a set of constraints belonging to variables, 

 Oij = {0…3} is set representing the orientation. 

 c = {1, 2…m} set of constraints associated with edges 

  C = {1, 2…x} set of constraints associated with 2x2 squares 

Where the edge-matching constraints are expressed as:  

       , Ni,j = Si-1,j , Ei,j = Wi,j+1, Si,j = Ni+1,j, Wi,j = Ei,j-1 

And the penalties as:   

    ̅   ∑       ̅     

 

 

          ̅      {
      ̅            

           
 

respectively,  

    ̅   ∑       ̅     

 

 

          ̅      {
      ̅            

           
 

For each  ̅        ̅                   ̅            ̅    

 

4.2 Individuals and Population 

A population is collection of individuals which are defined as n x n boards. Each board is 

filled using n x n 4-patterned tiles. 

4.3 Representation (Encoding) 

A board is a 2-dimensional structure that contains N x N tiles. Each tile is represented as 

a vector containing five (5) integers. The first four (4) integers represent the four edges 
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of the tile and the last one is used to maintain the information about the orientation of 

the tile. 

 

 

Figure 11 Internal representation of a tile 

For example, 1 – 4 – 5 – 6 – 0 represents the following tile: 

 

Figure 12 Tile before rotation 

And 1 – 4 – 5 – 6 – 1 represents the following rotated tile: 

 

Figure 13 Rotated tile 
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4.4 Selection operators 

4.4.1 Fitness Proportional Selection (Roulette Wheel) 

This is the classical selection method that has been proposed by [Holland]. This method 

is also known as the Roulette Wheel. Each candidate is represented on the wheel 

according to its probability to be selected. If a candidate i, has a fitness  , then its 

selection probability is 
  

∑    
   

, where n is the size of the population. 

This type of selection favors individual with the best fitness, even though they 

can be eliminated. When the fitness values are close to each other, there is almost no 

selection pressure. It is as if we were selecting individuals randomly [Eiben]. 

We decided not to use the method of selection, because of the poor results. The 

candidate solutions need to retain the same number of tiles without duplicate. Under 

this constraint most candidates will have fitness values that close together. 

4.4.2 Linear Ranking Selection 

This selection method is known to keep the selection pressure constant. It tries to 

correct some of the drawbacks observed with Fitness Proportional Selection (high 

selection pressure) [Eiben]. 

In Linear-Ranking Selection, the individuals of the population are sorted based 

on their fitness and assigned a selection probability calculated using the following 

formula for the linear ranking scheme: 

       
   

 
 

       

      
                           

The selection is then based on their rank rather than their fitness values, with 

the intent of reducing the dominating effect of individuals with the best fitness values 

[Affen]. 
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4.4.3 Tournament Selection 

The Tournament Selection is one of the most used selection scheme in modern 

applications of GAs. It is easy to implement and apply and does not rely on global 

knowledge of the population, which could be very costly to obtain [Eiben]. k individuals 

selected from the population compete based on their fitness values and the best 

candidate is selected and added to the mating pool. The advantage of this selection 

method is that the selection pressure can be scaled easily by altering k [Affen]. 

We observed great improvement with this method and decided to use it as part of our 

selection heuristics. 

The following algorithm was implemented as part of the experiments. 

Begin 

 Set current_member = 1; 

While (current_member < µ) 

 Pick k individuals randomly, with or without replacement; 

 Select the best of these k individuals comparing their fitness values; 

 Denote this individual as I; 

 Set mating_pool[current_member] = i; 

 Set current_member = current_member + 1; 

End While 

End 

Algorithm 6 – Tournament Selection Algorithm 

4.4.4 Elitism 

The Elitism replacement scheme is very popular with combinatorial optimization 

problems. The best candidates of the last generation are kept in the newly created 

population by replacing the individual with the worst fitness value. 
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We experimented mostly by keeping the best individual of the previous 

generation (n-elitism, with n=1). This is also referred to as the “golden cage model”. 

4.5 Mutation Operators 

We experimented with several mutation schemes, either by using them individually or by 

combining them. We describe the most effective ones below. 

4.5.1 Rotate Mutation 

This rotation mutation operator simply rotates the tile clockwise.  

 

Figure 14 - Tile appearance after a Rotate Mutation 

4.5.2 Swap Mutation 

The Swap Mutation is one of the most natural methods for combinatorial problems. Two 

(2) tiles are randomly selected from the board and exchanged. This basic operator did 

not contribute to change the fitness value of the individual and we did not notice and 

improvement in the overall fitness of the population. The operation is illustrated in figure 

15, where tile #1 and tile #11 have been swapped. 

                                

Figure 15 - Board appearance after a Swap Mutation 
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4.5.3 Swap & Rotate Mutation 

This is a combination of the Rotate and Swap mutation operators described above. 

Two (2) tiles are randomly selected from the board, rotated and swapped. This 

operation is illustrated in figure 16. 

 

Figure 16 - Board appearance after a Swap & Rotate Mutation 

4.5.4 Rotate Region Mutation 

The Rotate Region Mutation schema is described in [Munoz]. A square region with a 

minimum width of two (2) is selected on the board and rotated. This mutation operator 

outperformed all other mutation operators that were used in the experiments. At the 

board assembles and collates matching pieces, a mutation operator should not disturb 

that order. The region rotation allows the board to try a different combination and keep 

the sub-region consistency. The operation is illustrated in figure 17. 

 

Figure 17 - Board appearance after a Region Rotation Mutation 
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4.5.5 Swap Region Mutation 

The Swap Region Mutation schema is described in [Munoz]. A slight modification was 

applied to our implementation. We used vertical and horizontal swapping. The board is 

divided in two halves vertically or horizontally, and a region of the same size is selected 

in each half and swapped. The operation has the advantage of preserving blocks of 

matching tiles. It is described in figure 18. 

 

Figure 18 - Swap Region Mutation 

4.5.6 Region Inversion Mutation 

The Region Inversion operator follows the principle used in the well know Inversion 

Mutation scheme. All tiles collected from a randomly selected region on the board are 

copied back to the same region starting with the last tile in the block. The first tile is 

always at the top left corner of the region and the tiles are copied for left to right. This 

operator’s functioning is depicted in figure 19. 

 

Figure 19 - Region Inversion Mutation 
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4.5.7 Row and Column Inversion Mutation 

The Column and Row mutations schemes are similar to the Inversion Mutation operator 

defined in [Eiben]. In order to selectively apply mutations to rows and columns, we 

decided to create two separate operators. The operators are described in figure 20 and 

21. 

 

Figure 20 - Row Inversion 

 

Figure 21 - Column Inversion 

4.5.8 Scramble Mutation 

The Scramble mutation operator maintains a corner tile in the left corner and scrambles 

the rest of the tiles, in order to force the board to re-assemble. It is a very effective 

mutation operator when the board is completely stuck. 

4.6 Crossover Operators 

Combinatorial optimization problems are complex problems that require crossover 

operators to be designed very carefully [Affen]. In order to test our solution we 

considered several crossover operators that were used successfully to solved complex 

combinatorial problems such as the traveling salesman problem (TSP), the capacitated 
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vehicle routing problem (CVRP), the scheduling problem (SP), but after a careful 

analysis we decided not retain any of them. These crossover operators are built to 

preserve order which is not an essential requirement for our problems. 

In order to assemble properties of candidate located in different regions of the 

search space, the region exchange crossover defined by [Munoz] produced the best 

results. We also ran some experiments with the Uniform Crossover operator. The Region 

Exchange and Uniform crossover operators are described below. 

4.6.1 Region Exchange Crossover 

The region exchange crossover was proposed by [Munoz]. We implemented a slightly 

different version to obtain better results. 

The operator works very intelligently. Two regions randomly selected are exchanged 

between two parents and two off-springs are produced. The off-springs will acquire 

some new genetic material but at the same time preserve the overall genetic 

composition of the parents [Munoz]. Keeping the relationship between adjacent tiles is 

essential but not critical, as a tile can fit many other tiles. Further details are provided in 

Algorithm 1 and Figure 22. 

1. Select a random region [select two points, a random length and width] 

2. Clone the two parents [parent A, parent B] 

3. Remove from parent A all tiles that are inside the region in parent B. 

4. Remove from parent B all tiles that are inside the region in parent A. 

5. Add the tiles remaining in both regions to two separate lists: list and list B 

6. Copy to parent A’s region all tiles that in parent B’s region. 

7. Copy to parent B’s region all tiles that in parent A’s region. 
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8.  Fill the empty places in child A and child B using the tiles from list A and list B, 

respectively. 

Algorithm 7 - Region Exchange Crossover 

 

Figure 22 - Region Exchange Crossover 

4.6.2 Uniform Crossover 

The Uniform crossover follows the same principle as the one defined in [Eiben]. A 

template is created and randomly filled with values of 1 and 2. Then, the two parents 

are selected and two off-springs are created by choosing from parent 1 or parent 2, 

depending on the value read from the template. The procedure makes sure that the tiles 

are not duplicated. We obtained some good results with this crossover, but the region 

exchange crossover was the preferred method. 

4.7 Fitness Function 

The fitness function was designed with the minimum number of constraints to avoid 

excluding “bad” individuals. Those individual might have some genetic material needed 

by the individuals with the best fitness. A fit individual has a fitness value of 1. 

It was designed with a minimum of two objectives: 

1. A penalty is incurred if the edges of two adjacent tiles do not match. (fig. 7) 

2. A penalty is incurred if the interior edges of 2x2 area do not match (fig. 8) 
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4.8 Selection Heuristics 

The selection heuristic that we developed for this experiment checks the best individuals 

to see if they are deadlocked, when the repair threshold is reached. All individuals who 

seem to be deadlocked are tagged and the threshold is lowered by a percentage. The 

next time the threshold is reached, if the tagged individuals are still unable to improve 

the repair heuristic corresponding to the symptoms is executed. 

4.9 Repair Heuristics 

Two repair heuristics were developed to cope with two different symptoms. One repair 

function was developed to remove the deadlocks and one to rearrange the 2x2 areas 

and another to rearrange the border tiles. 
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5. Software Application 

An experimental software application was developed C#.Net to test the solution. It is 

console application with no input capabilities. The information displayed is very 

informative and allows the user to observe the progress of the transformation. Figure 23 

shows the execution of a 5x5 board. 

 

Figure 23 - Execution of a 5x5 E2 board 

The following screen (fig. 24) shows the successful completion of a run. The output is 

formatted in such a way that it can be copied to the Eternity II Editor to check the 

results. 

 

Figure 24 - Successful completion of a run 
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The results can be copied to the Eternity II Editor and visualized. 

 

Figure 25 - 5x5 Eternity II board displayed by the Eternity II Editor 

The program has been optimized to run for hours without running out memory. It uses 

the basic C# construct to store the information about the tiles. We need O (1) to access 

the tile structure if we want the application to run efficiently and fast. 

We constructed a main Board class that includes all the method necessary to manipulate 

the tile patterns and rotation. There are also very useful methods for searching for tiles. 
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Figure 26 - Class Board 

 

Figure 27 - Constraint structure 

 

Figure 28 - Constraint Repository class 

The class Board uses jagged-arrays to store the tile information. We store five piece of 

information: the 4 colors and the rotation direction. Access to the colors and rotation is 

very fast. 

namespace Puzzle.Solver 
{ 
    /// <summary> 
    /// Represents a puzzle board/grid. Each slot contains a pattern. 
    /// </summary> 
    public class Board 
    { 
        #region Fields 
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        int _columns; 
        int _rows; 
        private readonly int[] _hintTile; 
        int[][][] _tiles; 
 
        public const int Edges = 5; 
        int _gridSize = 2; 
        private readonly int[][] _matches; 
        private readonly int _pieces; 
        public static readonly Random RandomGenerator = new Random(); 
 
        public static int DirNorth = 0; 
        public static int DirEast = 1; 
        public static int DirSouth = 2; 
        public static int DirWest = 3; 
 
        public static readonly int[] NegativeTile = new[] { -1, -1, -1, -1, -1 }; 
 
        public Guid Id = Guid.NewGuid(); 
 
        public bool Tagged = false; 
 
        #endregion 
 
        #region Properties 
 
        public int[] HintTile 
        { 
            get { return _hintTile; } 
        } 
 
        public int Size 
        { 
            get { return _gridSize; } 
        } 
 
        public int[][][] Tiles 
        { 
            get { return _tiles; } 
        } 
 
        public int Rows 
        { 
            get { return _rows; } 
        } 
 
        public int Columns 
        { 
            get { return _columns; } 
        } 
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        public int[] this[int tileIndex] 
        { 
            get 
            { 
                var row = (tileIndex - 1) / _gridSize; 
                var column = (tileIndex - 1) % _gridSize; 
                return this[row, column]; 
            } 
            set 
            { 
                var row = (tileIndex - 1) / _gridSize; 
                var column = (tileIndex - 1) % _gridSize; 
                this[row, column] = value; 
            } 
        } 

} 
} 

Figure 29 – class Board 

The fitness is computed dynamically by iterating through the constraints. Every 

constraint is defined separately and the compute method is executed when the fitness is 

evaluated. 

namespace Puzzle.Solver 
{ 
    public class PenaltyFunction : IFitness 
    { 
        private int _violations; 
 
        public Double Evaluate(Board board) 
        { 
 
            foreach (var key in ConstraintRepository.GetConstraints().Keys) 
            { 
                try 
                { 
                    var constraint = ConstraintRepository.GetConstraints()[key]; 
                    var total = constraint.Compute(board); 
                    var violations = constraint.Violations; 
 
                } 
                catch (IOException e) 
                { 
                    Console.WriteLine(e.StackTrace); 
                } 
            } 
 
            return fitness; 
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        } 
 
        public int GetViolations() 
        { 
            return _violations; 
        } 
    } 
} 

Figure 30 - Fitness function 
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6. Results and Analysis 

We present here the results obtained during the experiments. We developed a computer 

program in C#.Net to execute the algorithms. Most of the experiments were run on a 

2.4GHz dual-processor machine running a 64-bit version of Windows 7.  

The main objective of the experiments was to see if we were getting constant 

improvements with time and that the best solution obtained was within the range of 

expectations.  

The parameters for the first runs are listed below in Table 1. 

Table 1 - GA Parameters (01) 

Parameters for the GA 

Generations 100 

Population Size 200 

Elitism Rate 0 

Mutation Rate 0.1 

Crossover Rate 0.9 

Selection Operator Tournament 

Mutation Operator Region Rot/Swap 

Crossover Operator Region Exchange 

 

We observed the behavior of the fitness with respect to the following factors: the 

mutation rate, the crossover rate, elitism, the size of the population. We also looked at 

the fitness values when selection and repair heuristics were applied. All fitness values 

are plotted against the number of iterations (generations). 

The following graphs show the evolution of the fitness depending on whether 

elitism and/or repair functions. In figure 31, we observe that the fitness values are not 

improving after the 40th iteration and they stagnate and stay within a range. There 

appear to be no convergence towards the final solution. 
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Figure 31 - Fitness evolution without elitism and no repair Heuristic 

 

The following graph (fig. 32) shows an improvement of the fitness when elitism 

and repair heuristics are applied. We can clearly see that the fitness is converging 

towards the final solution.  

 

Figure 32 - Fitness evolution with elitism and repair heuristic 
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Figure 33 - Fitness evolution with elitism and repair heuristic 

 

The following graph (fig. 34) seems to indicate that the repair heuristic should be run 

after a certain number of iterations. 

 

Figure 34 - Fitness evolution with elitism and no repair 
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In the following experiment, we look at the impact of a high mutation rate. 

Table 2 – GA Parameters (02) 

Parameters for the GA 

Generations 100 

Population Size 200 

Elitism Rate 1 

Mutation Rate 0.8 

Crossover Rate 0.9 

Selection Operator Tournament 

Mutation Operator Region Rot/Swap 

Crossover Operator Region Exchange 

 

The following graph (fig. 35) shows that a high mutation rate can disturb the genetic 

composition of a candidate solution. Starting at the 60th generation, the quality of the 

best individuals is decreased. 

 

Figure 35 - Evolution of the fitness with high mutation rate (0.8) 
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In the following experiment, we study the impact of the absence of a mutation operator.  

Table 3 - GA Parameters (03) 

Parameters for the GA 

Generations 100 

Population Size 200 

Elitism Rate 1 

Mutation Rate 0 

Crossover Rate 0.9 

Selection Operator Tournament 

Mutation Operator Region Rot/Swap 

Crossover Operator Region Exchange 

 

We notice in figure 36 that the individuals stop improving after a while. This is probably 

an indication that mutation plays an important role in producing a successful candidate. 

 

Figure 36 - Evolution of the fitness without mutation (0%) 
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In the following experiment, we look the impact of the absence of a crossover operator. 

Table 4 - GA Parameters (04) 

Parameters for the GA 

Generations 1000 

Population Size 200 

Elitism Rate 1 

Mutation Rate 1.0 

Crossover Rate 0 

Selection Operator Tournament 

Mutation Operator Region Rot/Swap 

Crossover Operator Region Exchange 

 

In figure 37, the graph shows that the fitness of the individuals is lower compared to 

when there is crossover. 

 

Figure 37 - Evolution of fitness with mutation and no crossover 
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In the following experiment, we look the impact of repair heuristics. They are applied at 

calculated intervals that depend on the rigidness of the individual to increase its fitness. 

Table 5 - GA Parameters (05) 

Parameters for the GA 

Generations 1000 

Population Size 1000 

Elitism Rate 1 

Mutation Rate 0.1 

Crossover Rate 0.9 

Selection Operator Tournament 

Mutation Operator Region Rot/Swap 

Crossover Operator Region Exchange 

Repair Selection 

 

 We observe in figure 38 that repairing the individuals can help them increase their 

fitness values. However, we notice that immediately after a repair, individuals have 

lower fitness values. 

 

Figure 38 - Fitness evolution using a bigger population (1000) and repair 
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In the next experiment, we look at the impact of the size of the population. 

Table 6 - GA Parameters (06) 

Parameters for the GA 

Generations 1000 

Population Size 500 

Elitism Rate 1 

Mutation Rate 0.1 

Crossover Rate 0.9 

Selection Operator Tournament 

Mutation Operator Region Rot/Swap 

Crossover Operator Region Exchange 

Repair Selection 

 

In figure 39, we notice higher fitness values compared to figure 38. The size of the 

population is not necessarily a dominant factor. 

 

Figure 39 - Fitness evolution with smaller population (500) and repair 
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In the following, we look at four different experiments that were executed using Uniform 

crossover. We notice that it took longer to achieve results obtained using the Region 

Exchange crossover. The crossover operation also takes longer to execute. We could 

determine the exact cause of the slowdown. One of the four GAs used in this 

experiment used two constraints (refer to the fitness function definition, sec. 4.21). 

Table 7 - GA Parameters (07) 

Parameters for the GA 

Generations 1000 

Population Size 200 

Elitism Rate 1 

Mutation Rate 0.1 

Crossover Rate 0.9 

Selection Operator Tournament 

Mutation Operator Region Rot/Swap 

Crossover Operator Uniform 

 

The graph in figure 40 shows that there is a point at which the fitness of the individuals 

stops improving. (2c) does not seem to produce individuals with desirable fitness values. 

 

Figure 40 - Fitness evolution for 4 runs (1 run has 2 constraints) 
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The setup in this experiment is similar to the previous one. The only parameter that was 

changed was the crossover operator. Instead of the Uniform crossover, we are using the 

Region Exchange crossover.   

Table 8 - GA Parameters (08) 

Parameters for the GA 

Generations 1000 

Population Size 200 

Elitism Rate 1 

Mutation Rate 0.1 

Crossover Rate 0.9 

Selection Operator Tournament 

Mutation Operator Region Rot/Swap 

Crossover Operator Region Exchange 

 

In figure 41, the graph is almost the same as in figure 40. We have higher fitness values 

when using Region Exchange crossover. 

 

Figure 41 - Fitness evolution for 4 runs (1 run has 2 constraints) 
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In the following experiment, we applied the algorithm to three boards of sizes, 4x4, 5x5 

and 6x6. We executed each configuration ten (10) times and calculated the average 

time it took before a solution was found. Table 9 shows the summary of 30 runs (10 for 

each board). 

Table 9 - Summary of experimental results: board runs 

Board Size 
(patterns) 

Average time Average 
Evaluations 

Average 
Mutations 

Average 
Crossovers 

4x4  (5) 27s 92,700 9,284 41,480 

5x5 (5) 30s 212,140 20,333 95,286 

6x6 (7) 195s 267,800 26,805 120,500 

 

It is clear that the algorithm worked well and that it was able to locate solutions in a 

very short time. We also see that the time it takes to find a solution increases 

exponentially with the board size. The following graph (fig. 42) shows the average time 

for each board. 

 

Figure 42 - Time vs. Size of the board 
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All experiments were conducted using a 7x7 board. Despite the fact that our 

algorithm tested well on 4x4, 5x5 and 6x6, we were not able to obtain a solution on a 

7x7. Apparently, our solution did not scale well. 

However, the results of the experiments gave us a lot of insight as to what needs to 

be improved in order to obtain a solution. 

 We need to improve the selection and the repair heuristics. 

 The crossover and mutation operators need to be more biased towards creating 

fitter individuals. We consider testing this option, but we are not convinced that 

it make an enormous difference given the size of the problem. 

 We need to revisit our algorithm and identify potential errors. 
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7. Conclusion and Future Works 

The purpose of my research was to formulate a method using evolutionary techniques 

that could possibly be a basis for further study in the area edge-matching puzzles.  

This thesis was designed to contribute to advance the state-of-the-art in genetic 

algorithms and to: 

 Provide a model for improving GAs in the area of edge matching puzzles 

 Expand the options available to GA practitioners for solving E2-type 

puzzles 

The objective was to implement and test a solution using genetic algorithms that 

could produce better solutions to the E2 puzzle than the ones obtained using other 

methods, such as hybrid local search meta-heuristics and hyper-heuristics. 

The idea of solving the E2 puzzle using genetic algorithms is not naïve. We have 

expanded the research that was started by [Munoz] and created a solution that can be 

shared by other to further the work. 

In summary, we have designed, implemented and tested a genetic algorithm to 

solve a very complex problem known to the world. We have identified the limitations of 

other methods used so far and established a framework for further research in 

evolutionary algorithms. 

 Researching problems of this kind has the benefit of accelerating problem 

solving, developing machine intelligence and advancing the field of artificial intelligence. 

We must be able to solve complex problems without relying on human expertise. 

 I hope that the work presented in this thesis will stimulate interested in the 

subject and encourage the reader to invest in learning evolutionary techniques.  
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Appendix A: Screenshots of the results obtained using different board 

configurations 

 

Figure 43 - Results of a 6x6 run 
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Figure 44 - Results of a 4x4 run 

 

Figure 45 - Results of a 5x5 run 


