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ABSTRACT

Criminal Network Mining and Analysis for Forensic Investigations

Rabeah Alzaidy

Criminal network analysis tools are widely used by law enforcement, mainly in cases

of organized crime. The data required for a majority of these tools are police records and

databases. In many cases, forensically collected data contains valuable information about

the suspect’s social network. This information is normally obtained by manual inspection

of the collected documents using forensic tools’ queries and other basic search features.

The information is then manually entered in the police database. There are no known

tools that provide methods to automatically extract social networks from raw documents

on behalf of the investigator, add them to a knowledge base and then analyze them.

In this thesis, we propose a method that is capable of performing these tasks. In our

proposed system, we claim three distinct contributions to cyber forensics investigations.

The first is by constructing the social network of one or multiple suspects from documents

in a file system. Secondly, we provide an analysis of the interactions and structures of these

social networks and the communities comprising them. Thirdly, potential evidence and

leads are identified by extracting conceptual links between members of the social network

across the document set.
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Finally, the proposed method is implemented and experimental results are obtained to

demonstrate the feasibility of the approach.
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Chapter 1

Introduction

The recent availability of storage media in large sizes has increased the average amount of

data that can be saved by an individual. When law enforcement investigates a crime, these

devices must be seized from the suspects involved in the case for forensic inspection. In-

spection of the files involves searching their content for information that can be used as ev-

idence or lead to other sources of information that may assist the investigation process and

analyzing this retrieved information. The forensic analysis of this collected data is a tedious

task; therefore, many tools have emerged to assist investigators. However, it is typically

up to the investigator to search for data that is significant to the case at hand. Significant

information such as information about other criminals or the suspect’s collaborations is

among the most sought after in the analysis process. Social Network Analysis (SNA) tools

provide mechanisms to analyze social networks once provided with a database of criminals

and their allies. However, in the case of hard drives and forensically seized storage media,

contrary to police reports, the individuals in the social networks are not stored in a database

but are scattered across the hard drive’s documents. The identification of social networks

in text documents can be viewed as the task of mining the data collection in search for

individuals and their interactions. This approach allows us to address the problem as a data

mining one and we can apply data mining techniques to solve it.
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1.1 Motivation

The procedures for accomplishing digital forensics involve two key steps: the collection of

digital evidence and the analysis of the collected data. Typically, in the collection phase,

data is gathered from digital sources in formats varying from common file types to memory

dumps and in many cases data is extracted in bitstream formats (a bitstream is a sequence

of bits that requires further processing in order to transform it to a human-readable format.)

Today’s digital forensic practitioners have a large number of tools developed for the afore-

mentioned forensic tasks to choose from. Most of these tools focus solely on physical anal-

ysis, i.e, representing the retrieved digital content in a human-readable format. However,

once the logical analysis of the data begins, investigators are faced with the monumental

task of examining the vast amount of collected data in search for evidence. On this front,

toolkits, such as EnCase [26] and Forensic ToolKit [8], provide various forensic features

such as data filtering, keyword search, and time line views. These features are designed

in an attempt to alleviate the magnitude of the analysis task. Although these features are

useful, they cannot be considered sufficient for several reasons:

- They rely mainly on the investigative skills of the data analyst in constructing a

proper list of terms related to the case.

- Even so, there remains the fact that on the outset of a case these lists are usually

based on hunches and few of them have actual facts to support them, regardless of

how skilled the investigator is.

- These tools do not provide any intelligent information retrieval features.

- They have no conceptual content analysis features, i.e., they do not provide any

content-based classifications or interpretations for the documents.
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The need to provide intelligence features to content analysis tools has initiated studies

that have proposed tools that aim to address the conceptual content analysis, such as SNA

tools.

Forensic SNA tools attempt to systematically analyze complex social structures be-

tween criminals in large data sets. The application of SNA tools for criminal network

analysis has been the focus of many studies for many reasons, some of which are:

- In organized crime cases, where crimes are carried out by a group of collaborating

criminals, the documents on the hard drive of a criminal in the group are likely to

contain names of the other criminals in the group. Texts retrieved from chat sessions

and email messages are the most likely to contain these names.

- Names are a common lead in investigations. For example, names of business person-

nel can be found that might be able to testify for the occurrence of some purchase or

interaction of significance. A certain business such as hotel or a bank in which the

suspect kept a record of might have other names mentioned with it in textual context,

and this can lead to one of the suspect’s contacts.

- Novel relationships may be hidden in the data. Criminals tend to use certain terms

unknown to anyone other than themselves. These terms can be mentioned in a docu-

ment with the suspects name and in another document with another name. This link

can rarely be found by manually going through the documents.

- According to [22], the failure to objectively analyze criminal networks is one of the

major reasons law enforcement and intelligence can fail. By using SNA systems, a

more objective analysis is ensured.

- Generally, SNA tools can be effective tools in supporting law enforcement prosecu-

tions if they are reliable enough to serve as evidence. Identifying key players in a

criminal network and providing meaningful information about the social structure of
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the network can prove that a criminal has played a role in a certain network. How-

ever, because of the various challenges facing such tools, e.g., the lack of reliable

data sources, SNA tools have not reached this level of reliability [22].

- Investigators who are provided with a meaningful criminal network analysis have

greater chances to learn more about their opponents. By examining criminal net-

works closely and studying the behavior of the individuals comprising these networks

and the flow of resources among them, investigators enhance their understanding of

structures of various crimes. Moreover, they gain more knowledge about how and in

what positions the individuals participate in the network to successfully achieve their

criminal goals.

1.2 Objectives

The main objective of this thesis is to provide forensic analysis tools with intelligence fea-

tures. Our focus is on providing these tools with the ability to identify social communities

from forensically collected text documents. Moreover, we aim to analyze the social links

between members of the networks and extract valuable information about their interac-

tions. Our goal is to provide a means to automate the construction and analysis of the

social networks, yet allow for the intervenience of human guidance. Since our analysis is

in the context of forensic investigation, the extracted information must be of investigatory

and evidentiary value, specifically we select the following information:

1. Members and key role-players of a suspect’s social network

2. Analysis of the links between members of the social network

3. Sensitive information related to social communities in the network
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4. Indirect links between members of the social network, i.e., links through trails of

evidence

Moreover, we aim to provide a visual representation to display the results of the analy-

sis. Exploration of the social networks is most efficient when they are displayed as graphs

that map the network members and the links between them.

To meet these objectives, it is necessary to examine information extraction methods,

as well as link analysis techniques. Sensitive data such as contact information and topics

about the communities add to the value of the extracted communities, which many social

network extraction tools do not provide. The display of social networks and the sensitive

data found attached to these networks, along with the mining of possible indirect links

between these networks is a novel approach that we believe will provide both a powerful

and reliable criminal network analyzer.

1.3 Contribution

In order to meet our objectives, we have developed a novel method for social network

mining and analysis in a data set of forensically collected documents. We propose two

methods for identifying two types of links between social entities from the documents of

a file system. Both methods are implemented and successfully tested to identify social

networks and perform an analysis of the interactions between members of the network. In

many cases the system is able to present new names and links across the data set that the

user was not aware of. The system is also capable of suggesting hypothetical links across

members of the social network. In many cases the links have been proven to be a valid

hypothesis.

Our approach has the following merits:

• We explore the feasibility of Named Entity Recognition in identifying members of a
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social network in textual content

• We investigate the efficiency of a frequent pattern approach to identify criminal com-

munities in a set of text documents

• We examine the application of Information Extraction techniques in analyzing links

between the individuals in a social network

• We explore the employment of Hypothesis Discovery methods in detecting evidential

trails between individuals in the network

• We propose a visual representation of the social network and the interaction patterns

between the individuals

Figure 1 depicts an overview of our proposed approach to address the criminal network

analysis problem. The first task is to read a collection of text documents and extract peo-

ples’ names from them. The name extraction task is followed by a normalization process

to eliminate duplicate names that refer to the same person. The next task is to extract the

prominent criminal communities from the document files. Then, we extract the information

that is valuable to investigators such as contact information. After the criminal communi-

ties are identified, we extract the indirect links between the criminals from the data set.

Finally, the social network is visualized along with the relevant information regarding the

actors.

An implementation of our approach, named the Criminal Communities Mining System

(CCMS), is developed to test the feasibility of our proposed methods. The system identi-

fies social communities in a data collection and retrieves sensitive information about these

communities. The analysis is also capable of defining the structure of the social commu-

nities by identifying the sub-groups existing in larger communities. We implement the

analysis methods such that various parameters of each method can be set manually by the
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Figure 1: Proposed Criminal Communities Mining System
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user. Integrating the professional expertise in the proposed systematic methods allows for

finer tuning of the analysis results.

1.4 Thesis Organization

The remainder of this thesis is organized as follows.

Chapter 2 presents definitions of digital forensic terms. It describes the significance

of data analysis in digital forensics procedures and some major challenges in this domain.

It also addresses limitations of some popular state-of-the-art forensic tool kits in analysis

performance. Moreover, it provides definitions of data-mining techniques and terms as

well as some hypothesis generation concepts. Additionally, we introduce concepts related

to social network analysis and data visualization.

Chapter 3 explains our proposed method for extracting social networks. It demonstrates

how the criminal communities are identified and the methods employed to extract sensitive

information about them.

Chapter 4 addresses the detection of indirect relationships. It explains our proposed

discovery algorithm that is developed to address this problem.

Chapter 5 introduces our social network extraction tool. This tool is developed to assist

investigators in analyzing digitally collected data by detecting social networks and their

interaction data. Finally, chapter 6 summarizes our research and provides conclusions and

future research directions.
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Chapter 2

Preliminaries

In this chapter, we explain the background information that is relevant to the field of digital

forensics, especially in the areas of digital evidence analysis and criminal network analysis.

In order to analyze criminal networks, the information required for the analysis must first be

extracted from the storage media. Therefore, we discuss Information Extraction (IE) tech-

niques and models, focusing on the ones that are adopted in our proposed system. Since

data mining techniques are employed to identify the criminal networks, we briefly ex-

plain the relevant algorithms. We also explain the Hypothesis Generation (HG) algorithms,

the basis of our proposed indirect relationship extraction method. Finally, we present an

overview of key concepts and techniques of data visualization.

2.1 Digital Forensics

The science of digital forensics can be defined as the use of scientifically derived and proven

methods used for the preservation, collection, validation, identification, analysis, interpre-

tation, documentation, and presentation of digital evidence derived from digital sources for

the purpose of facilitating or furthering the reconstruction of criminal events [40]. In order

to present a formal methodology to accomplish these tasks, many proposed methodologies
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emerged. In 2001, the Digital Forensics Research Workshop [40] proposed a process for

digital investigations that involves the following six procedures:

1. Identification - identify the incident and specify its type

2. Preservation - preserve and secure digital and physical evidence

3. Collection - document the crime scene and produce forensic copies of digital evi-

dence

4. Examination - in-depth examination and search for evidence and preparation of de-

tailed documentation for analysis.

5. Analysis - filter and detect important data either manually or through analysis tools

6. Presentation - summarize and explain the conclusions.

Since criminal network analysis is a task that is conducted during the analysis phase,

we specifically discuss this phase in the remainder of this section.

In an investigation, the analysis phase is the one that most relies on the investigator’s

skills and experience. To analyze the data collected about a case, an investigator wants to

understand and know where the suspect might have hidden the data and in what formats

and what application he might have used. Some patterns in the data are important; once

found and fully examined, they can lead to more evidence. In order to achieve a successful

analysis, many tools are adopted to aid investigators analyze the collected data. Common

tools include EnCase [26] and the Forensic ToolKit [8] which comes with a searching tool

dtSearch. These tools display the files of a storage media and allow the user to navigate

through the files similar to traditional file explorers. However, they provide additional

features that are useful in forensics context such as displaying file headers and opening

compressed files. Some of these tools provide more contextual analysis features such as

10



queries and a time-line view of the files. However, the investigator is responsible for man-

ually performing the analysis and gathering knowledge from the extracted data. Thus, the

main shortcoming of these tools is that they do not provide automated intelligent analysis

of the information they are developed to extract.

2.2 Information Extraction

Information Extraction (IE) refers to the automatic identification of information, such as

entities, relationships between entities, and attributes describing entities, often referred to

as structured information, from unstructured sources [38, 48]. For over two decades, re-

searchers have been addressing the challenging task of extracting structures from noisy,

unstructured data collections. Extracting information involves many tasks including the

identification of named entities such as people and organization names from natural lan-

guage textual content. The advances in information extraction techniques were strongly

influenced by both the Message Understanding Conference (MUC) and the Automatic Con-

tent Extraction (ACE) program [48].

2.2.1 Named Entity Recognition

Named Entity Recognition (NER) is an IE task that involves identifying entities of pre-

defined types in unstructured texts. Entities can be names of persons, locations, etc. The

ability of NER tools to extract names is based on recognition and classification rules that

are provoked by features associated with positive and negative examples. NER techniques

can be categorized into supervised, semi-supervised, and unsupervised machine learning

techniques. According to [48], supervised learning approaches consist of systems that read

a large annotated corpus, memorize lists of entities, and create disambiguation rules based
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on discriminative features. Examples of models that are based on this approach are Hid-

den Markov Models (HMM) [42], Maximum Entropy (ME) [35], and Conditional Random

Fields (CRF) [31]. Semi-supervised learning, as the name indicates, involves a small de-

gree of supervision for the learning process. A common technique used for this approach

is bootstrapping. The last category, unsupervised learning, relies on a clustering approach

that makes use of lexical resources such as WordNet [37]. Techniques from either category

can be used depending on the application and they can also be combined to yield better

results.

Other important aspects of NER to consider are domain specific challenges. For in-

stance, extracting people’s names from a corpus of news articles might not be efficient

when applied to less formal texts such as instant message logs and email messages. In-

formal texts involve more complex methods to recognize the named entities within them.

This is due to the fact that these documents do not normally follow strict grammatical and

punctuation conventions.

Several open source NER tools have emerged, which employ Natural Language Processing

(NLP) techniques. The Stanford Named Entity Recognizer performs well on newswire

documents [13] and the Illinois Named Entity Tagger has also shown high performance

rates [7, 44].

2.2.2 Text Summarization

Text summarization is the process of distilling the most important information from a

source or multiple sources to produce an abridged version for a particular user and task.

Automatic text summarization tools take textual documents and provide a synopsis of

the input document. A synopsis can vary from being a set of keywords that represent the

main topic of the document, to a list of sentences that grouped together represent a coher-

ent summary of the content of the document [47]. According to [20], the summarization

12



process can be broken down into three stages:

1. Identification: Identify the important topics.

2. Interpretation: The identified topics are outputted after related topics are generalized

and redundancies are removed.

3. Generation: Construct a new text from the extracted topics and produce a coherent

summary.

Various approaches are used to address these tasks which can be classified into two main

categories depending on whether the summary is an abstraction or extraction. Extractions

are summaries that are based on selecting salient parts of the text as the summary, whereas

abstracts are summaries that are produced by understanding the texts and reproducing a

shorter, more focused version of the source document [14].

Extract summaries are often produced by approaches that are based on lexical and sta-

tistical relationships between the text units. The summary is produced by concatenation of

certain parts of the original text. These approaches usually follow a linear weight model,

that is relatively easy to implement. The linear weight is a model that assigns a weight to

each text unit by summing the weight values based on some features. Examples of such

approaches are ones that are based on features such as term frequency, location of the term,

and other statistically significant features. The Open Text summarizer [46] is an example

of an extract summarizer that is developed based on a linear model.

The main disadvantage of abstract summaries is that they require heavy computations.

They are usually obtained through either a syntactic parsing approach, or the NLP ap-

proach. The first approach produces parse trees of the text and then re-groups parts of the

tree based on some criteria to produce the summaries. The NLP approach also involves

syntactic parsing but does not produce parse trees as a result. Instead, it uses the parse trees

as a conceptual representation of the source document. These are assembled and used to
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build a text knowledge base. The Identification step is performed on the knowledge base

to produce a less detailed conceptual representation of the document, which is synthesized

as the output in the generation step. Many systems using the abstract approaches require

training corpora.

Examples of the most impressive existing text summarizing tools are the MEAD sys-

tem [43], the SUMMARIST system [21], [20], and the Newsblaster [9], which were all de-

veloped by employing extractive summarization techniques. Meanwhile, abstraction based

approaches are still mostly theoretical [34].

2.3 Frequent Itemset Mining

In data mining, frequent itemsets are used to find frequent patterns in a large set of data.

For instance, in a set of documents R, where each document must contain at least one

name, each name is an item, and each document is referred to as a transaction. In a single

transaction, each set of items (names) is referred to as an itemset. An itemset that consists

of k items is a k-itemset. The set {Bob,Alice} is a 2-itemset, whereas {Bob,Alice, John}

is a 3-itemset. The occurrence frequency of an itemset is the number of transactions (docu-

ments) in the data set that contain the itemset, this is called the support count of the itemset.

If the support count of an itemset satisfies a previously specified minimum support value, it

is called a frequent itemset. The set of frequent itemsets with k items is denoted by Lk. Fre-

quent itemset mining methods provide a means of efficiently finding frequent itemsets in

large data sets. In the following subsections, we present two of these methods and compare

them in terms of efficiency and scalability.
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2.3.1 The Apriori Algorithm

The Apriori algorithm is a bottom-top algorithm, proposed by R.Agrawal and R. Srikant

in 1994 for mining frequent itemsets [1] [3]. As the name indicates, this algorithm makes

use of prior knowledge of a property of frequents itemsets that is: all nonempty subsets of

frequent itemsets must be frequent. To illustrate this property, consider the 3-itemset {Bob,

Alice, John}. If we assume this itemset satisfies the minimum support, then by definition,

its subset {Bob, Alice} must also satisfy the minimum support threshold.

The Apriori algorithm uses this property in a depth first approach where frequent k-

itemsets are used to find frequent (k + 1)-itemsets. The first step is to scan the database

and accumulate the support count for each item. Those that pass the minimum support

threshold are added to the set of frequent 1-itemsets denoted L1. Next, L1 is used to find

the set of frequent 2-itemsets, L2. This is turn is used to find L3, and so on, until no more

frequent k-itemsets can be found. For each of these Lk sets, a full scan of the database is

required.

The Apriori algortihm has been employed in many applications for its accuracy in min-

ing frequent patterns. However, its main disadvantage is that it needs to generate a huge

number of candidate sets, which reduces its scalability. For instance, in order to find a

frequent itemset of size 100, it has to generate at least 2100-1 ≈ 10030 candidates in total.

Another drawback of this algorithm is that it must repeatedly scan the database, which is

costly.

Figure 1 outlines the steps of the Apriori algorithm. The algorithm requires a trans-

action database D and the minimum support count threshold min_support, as user input.

The Apriori algorithm generates the Lk sets of frequent itemsets from the set Lk−1 by fol-

lowing a sequence of pruning and joining steps iteratively, until no more Lk sets can be

found. The joining and pruning steps are as follows:

Joining For each iteration k in the Apriori algorithm, a set of candidate frequent itemsets
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Input:
- A database of transactions (D)
- The minimum support count threshold (min_support)

Output:
L, frequent itemsets in D.

Method:
L1 = find_frequent_1-itemsets(D);
for (k = 2 ; Lk−1 ̸= ϕ; k ++ ) do

Ck = apriori_gen(Lk−1)
for each transaction t ∈ D do

Ct = subset(Ck, t)
for each candidate c ∈ Ct do

c.count++;
end for

end for
Lk={c ∈ Ck |c.count ≥ min_support}

end for
return L = ∪kLk;

Procedure apriori_gen(Lk−1 : frequent k − 1-itemsets)
for each itemset l1 ∈ Lk−1 do

for each itemset l2 ∈ Lk−1 do
if ( l1[1] = l2[1] ) ∧ (l1[2] = l2[2]) ∧ . . .∧ (l1[k − 2] = l2[k − 2]) ∧ (l1[k − 1] < l2[k − 1])
then

c = l1 on l2
if has_infrequent_subsets(c, Lk−1) then

delete c;
else

add c to Ck

end if
end if

end for
end for
return Ck

Procedure has_infrequent_subsets(c : candidate k-itemsets, Lk−1 : frequent (k − 1)-itemsets)
for each (k − 1)-subset s of c do

if s ̸∈ Lk−1 then
return TRUE;

end if
end for
return FALSE

Algorithm 1: Apriori Algorithm [15]
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Ck is generated from the set of frequent itemsets found in the previous iteration k−1.

The set Ck is the result of joining the set of frequent k − 1 itemsets, namely Lk−1

with itself, Lk−1 on Lk−1. In order to join two itemsets l1 and l2 in Lk−1 their first

k − 2 items must have the same values. For instance, let l1[i] denote the ith item in

l1. Then, for l1 and l2 to be joinable, they must satisfy :

( l1[1] = l2[1] ) ∧ (l1[2] = l2[2]) ∧ . . .∧ (l1[k − 2] = l2[k − 2])

It is important to note that in order to avoid generating duplicates, the Apriori al-

gorithm assumes that items are lexicographically ordered within the itemsets. By

joining the sets l1, l2 that satisfy the joinable condition, we get the candidate itemsets

containing the items: l1[1], l1[2], . . . , l1[k − 1], l2[k − 1].

Pruning The purpose of the joining step is to generate a list of itemsets that are candid

to be frequent, based on the knowledge that they are constructed from itemsets that

are frequent. The set of frequent k-itemsets, Lk, is a subset of Ck. The pruning

step removes all non-frequent itemsets that occur in Ck, the resulting list after the

pruning is Lk. To count the support of each candidate itemset in Ck, a scan of the

transaction database D is required, where the support count for each itemset li in Ck

is calculated. As a result of the large number of itemsets generated in the joining

step, we eliminate from our scan all candidates that contain a non-frequent subsets.

For such candidates, we know it is not frequent prior to counting its support in the

database because at least one of its subsets is infrequent. This frequent subset check

is useful since it reduces the number of itemsets in Ck that are looked up in the

database scan.

For a transaction database D and a preset value for the minimum support count thresh-

old min_support, the joining and pruning steps are adopted to find the frequent 1-itemsets,

2-itemsets, . . . , k-itemsets denoted L1, L2, . . . , Lk respectively. The Apriori algorithm pro-

ceeds as follows:
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1. Start Apriori by a scan of the transaction database D to create a list Ck of all items

in D and count their support.

2. All items in Ck whose minimum support count does not pass the min_support

threshold are removed from Ck. The resulting list of frequent 1-itemsets is L1.

3. If L1 is a non-empty set, use the method explained in the joining step to generate the

list of frequent 2-itemset candidates, namely C2.

4. Apply the pruning step to remove any non-frequent itemsets from C2. The result is a

set of the frequent 2-itemsets, L2.

5. To find the sets of frequent itemsets for the remaining values of k, steps 3 and 4 are

repeated until they yield either an empty L set or an empty C set. An empty set value

for either C or L terminates the Apriori algorithm.

2.3.2 Frequent-Pattern Growth Algorithm

The Frequent Pattern (FP) Growth method [16] is yet another method for mining frequent

itemsets. One of the main advantages of this method compared to the Apriori algorithm is

the fact that it does not involve the costly step of candidate generation. In this approach,

the database representing frequent itemsets is compressed in a frequent-pattern tree, or FP-

tree. The tree is constructed after scanning all the transactions in the database. Thus, the

problem of mining frequent itemsets in the database is transformed to that of mining the

FP-tree. This approach is more scalable in the sense that it does not include the costly step

of generating candidates. It also requires less scans of the database. Yet, for very large

databases, the construction of a memory-based FP-tree is impractical.

The FP-growth algorithm for mining frequent itemsets consists of two steps: (1) con-

structing an FP-Tree, (2) mining frequent patterns using FP-tree. For a transaction database
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D, and a minimum support threshold min_support, mining the frequent itemsets using the

FP-growth algorithm is achieved through the following steps:

1. Constructing the FP-tree:

(a) The tree consists of a root node labeled “null”, a set of item-prefix subtrees as

the children of the root, and a frequent item-header table.

(b) Each node in the item-prefix subtree carries three values: the name of the item,

a pointer value, and a support count value. The pointer links the node to any

other node in the tree that has the same value for the node name, this value is set

to null if no such node exists. The support count value represents the number

of transactions in the database that contain the items in the portion of the path

from the root down to this node as an itemset in that transaction.

(c) The frequent item-header table consists of records, each record contains two

values: the item-name and a pointer to the first node in the FP-tree carrying an

item with this name. Thus the size of the table is equal to the number of unique

items in the database.

2. The second step is to traverse the tree to find the frequent itemsets.

(a) To extract the frequent itemsets from the FP-tree a bottom-up algorithm is used,

it starts from the leaf nodes and traverses upwards toward the root.

(b) Divide and conquer: first it looks for frequent itemsets ending with a specific

item ,e for instance. Then, it searches for the itemset ending with de, and so on

until all possible prefixes are searched. Next, it continues to d, then cd, and so

on.

(c) First, extract prefix path sub-trees ending in an item(set) using the linked lists.
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(d) Each prefix path sub-tree is processed recursively to extract the frequent item-

sets. Solutions are then merged.

2.4 Hypothesis Generation

Generating hypotheses [27] is a major step in making new discoveries. The generation

of hypothesis requires prior knowledge, experience, and intuition [54]. The more data to

generate the hypothesis from, the more challenging the task becomes. Many studies made

use of text mining techniques to generate propositions or hypothesis that require further

verification. Text mining is a field similar to data mining, but differs from it in that it

involves mining unstructured texts instead of databases [17]. In the biomedical domain

Swanson at al. were able to use text mining techniques to propose several hypothesis from

MEDLINE, the National Library of Medicine’s premier bibliographic database, that were

later confirmed by bioscientists. Ever since, this knowledge discovery approach has been

studied by other researchers. One major contributor was Srinivan who after two decades

proposed the open and closed discovery methods [50] that were built within the discovery

framework initiated by Swanson [51, 52] and Smalheiser [53]. The main goals of the dis-

covery algorithms are to process a large set of documents of textual content and generate

interesting hypotheses concerning the associations of specific terms, thus discovering new

knowledge [50].

The open and closed discovery algorithms presented in [50] are based on representing

topics in a structure referred to as a profile. These profiles are built as a set of MeSH terms

related to the topic of interest. MeSH terms, short for Medical Subject Headings terms, are

the metadata applied to MEDLINE records. By selecting different MeSH terms different

profiles can be generated for a specific topic. Consequently, the algorithms expect two

inputs: topics of interest and the type of profile to build. The algorithms were then tested

and evaluated with various parameters.
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2.4.1 Profiles

The profile for a term A that is extracted from a collection of texts specifies all terms that are

statistically related to this term within this textual context. The assumption in this case is

that a statistical association implies a conceptual association. To illustrate this assumption,

consider the profile built for the topic Barack Obama extracted from newswire article texts.

The profile contains names of places he visited, issues he is involved in, and the events he

participates in. In order to build a profile for a given topic, the type of relevant information

must first be clearly identified. Here, the type of information refers to its semantic type

that can be extracted from a textual collection through Information Extraction methods.

Phone numbers can be a type of relative terms, city names are also another type of terms.

Each term is assigned a weight, which represents the strength of the association between

the term and the topic. Weights can be calculated as the distance between the term and the

topic in the documents, i.e., the number of words between them, or as the term frequency.

Moreover, the terms can be further classified within the profile by their semantic types.

Thus, a term is represented by its semantic type and its weight. Each semantic type is

represented as a vector of weighted terms. Basically a profile for a topic Ti is a vector of

semantic terms vectors,

Profile(Ti) = {{wi,1,1m1,1, . . . , wi,1,km1,k}, . . . , {wi,j,1mj,1, . . . , wi,j,kmj,k}}

where mx,y represents the yth related term of semantic type x and wi,x,y is the computed

weight for mx,y. Within each semantic type vector, the terms are sorted with terms of

highest weight first. This way, a profile represents the terms most relevant to the topic Ti in

a view that can be chosen by varying the semantic types accordingly.
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2.4.2 Discovery Algorithms

Given a topic of interest A, a normal query of this term should return terms B that are re-

lated to A. If a user is interested in finding terms C that are indirectly connected to term A

through a collection of terms B, a simple query will not be sufficient. Hypothesis discov-

ery algorithms address such connections, which are both indirect and novel. An indirect

relationship between two terms A and C is identified as one where A and C are connected

through an intermediate term B, whereas a novel relationship is one where terms A and C

occur in two different contexts that do not overlap. It is important to note the significant

role of the B terms, as they act as conceptual links between A and C. Thus, the selection

of the B terms is key to the accuracy and novelty of the association between the initial

terms. We refer to the initial term as the A term, the intermediate terms as the B terms, and

the second term as C term. The following are the open and closed hypothesis discovery

algorithms proposed by [50].

Open Discovery Algorithm

Algorithm 2 shows the steps of the Open Discovery algorithm. The algorithm requires

the following input: an initial topic A, a set of semantic types ST -B that are used to

construct the profile of topic A, a set of semantic types ST -C that are used to select the C

terms, and a value N that specifies the number of terms that are selected from the profile of

the initial topic A.

Starting with topic A, a search in the data set is conducted to build a profile for A. This

profile is built according to the semantic types specified in ST -B. All terms that are of

a semantic type in ST -B and occur in the same document with topic A are added to the

profile in the corresponding semantic type vector in the profile. The terms in the profile are

sorted in descending order by weight within each semantic type vector. After the profile is

populated with terms related to A, the size of the resulting profile will typically be large.
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Input:
(1) A topic of interest (A),
(2) A set of UMLS semantic types of interest (ST -B) for selecting B terms.
(3) A set (ST -C) for selecting C terms.
(4) A parameter N specifying the number of B terms in the profile .

Method:
Step 1: Conduct an appropriate PubMed search for topic A and build its MeSH profile limited

to the semantic types in ST -B. Call this profile AP .
Step 2: For each semantic type in ST -B, select the N top ranking MeSH terms from AP . These

are designated the B terms.
Step 3: Conduct an independent PubMed search for each term Bi and build its profile limited

to the semantic types ST -C. Call these profiles BPi.
Step 4: Compute a final combined profile where the combined weight of a MeSH term is the

sum of its weights in BP1, BP2, etc. Call this initial profile CP .
Step 5: For each term Bi in CP , if a MEDLINE search on topic A AND Bi returns non empty

results, eliminate Bi from CP .
Output:

The MeSH terms in CP ranked by combined weight, for each semantic type in ST -C. (These
are the C terms organized by semantic type and ranked by estimated potential.)

Algorithm 2: Open Discovery Algorithm [50]

In order to reduce the size of this profile, we select only the N first terms for each semantic

type in the profile and discard the rest. These are the terms with the greatest weight values.

Let these terms be the intermediate terms Bi. Once the Bi terms are specified, we conduct

a search in the data set for each of these terms. The purpose of this step is to find all terms

that are of semantic types ST -C and occur in the same document with the term Bi. The

resulting profiles are called BPi. The next step is to combine the BPi profiles into one

new profile called CP . This is achieved by combining all terms in all the semantic types

accordingly. If a term occurs in more than one BP profile, its weights are summed and

then the term is added to CP as one term and is assigned a weight value equivalent to the

combined weights. To ensure that only novel relationships are returned, for each term Bi in

CP , a search is conducted in the data set for: (Bi AND A). If the search returns documents

in which Bi occurred with A, remove Bi from CP . The reason for this step is that the

occurrence of Bi with A in the same document represents a direct relationship between the

two terms. By filtering CP using the query mentioned in the previous paragraph, we now

23



have a list of terms categorized by their semantic types and ranked by their weights. These

terms are the C terms and the weights represent their estimated potential as linking terms.

The term weight can be measured in various ways, depending on several factors, such

as the properties of the data set and the selection of the semantic types. An example of a

method to calculate the weights is by using the term frequency value [50]. By experiment-

ing with various methods and measuring the ranking accuracy, a suitable weight calculation

scheme can be reached.

Many variations of the open discovery algorithm were used to develop automated dis-

covery systems. Examples of such systems is the LitLinker system [61], which discovers

interesting and novel connections between biomedical terms in the biomedical literature.

Several studies involved the employment of the open discovery algorithm for forensic pur-

poses. The ATHENS system, proposed in [49], mines the world wide web for novel rela-

tionships between two query topics. This system searches for topics that are related to the

user-entered initial topic, but cannot be directly found using only the initial topic.

Closed Discovery Algorithm

The input for the closed discovery algorithm differs from the open algorithm in that it

takes two initial topics A and B instead of one. The purpose behind the closed algorithm

is to find a link between these two initial topics A and B. One set of semantic types ST-B

is required, as well as a parameter N to specify the maximum number of terms to consider

in the intermediate list of terms.

As shown in Algorithm 3, the first step is to build a profile for each of the input topics A

and C, name them AP and AC, respectively. The profile is built by searching the data set

for these topics, and only considering results that belong to one of the semantic types in ST -

B. The terms are sorted in the profile by weight within each semantic type in descending

order. After the profile is built its size is reduced by considering only the first N terms in
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Input:
(1) Two topics of interest denoted A and C
(2) A set of semantic types of interest (ST -B) for selecting intermediate B terms.
(3) A parameter N specifying the number of terms to be considered in the combined profile

Method:
Step 1: Conduct independent PubMed searches for A and C. Build the A and C MeSH profiles.

Call these profiles AP and AC respectively.
Step 2: Limit AP and CP to component vectors for semantic types listed in ST -B. Also for

each ST -B semantic type retain only the highest weighted P MeSH terms within AP
and CP .

Step 3: Compute a B profile (BP ) composed of terms Bi that are in common between AP
and CP . The weight of a MeSH term in BP is the sum of its weights in AP and CP .

Step 4: Eliminate terms from BP that do not represent novel associations. That is, if a search
for A AND Bi AND C returns non empty results, then eliminate Bi from BP . The
remaining MeSH terms are the potential B concepts of interest. (This constraint may be
relaxed if the user is also interested in connections that are not necessarily novel).

Output:
A ranked list of MeSH terms for each semantic type in ST -B. Each term represents a potential
conceptual connection between A and C.

Algorithm 3: Closed Discovery Algorithm [50]

each semantic type. For each semantic type in ST -B, we select all the terms Bi that occur

in both AP and AC, calculate the sum of their weights and add them to a new profile BP

with their combined weight. The new profile BP must be built with the same semantic

types ST − B, and each term should be added to the corresponding semantic type in BP .

The final step is to eliminate from BP all terms that occur in the same document with both

A and C. Thus, for every term Bi in BP, search the data set for (Bi AND A AND C). If

this query returns non empty results, remove Bi from BP . The remaining terms in BP are

used to define an indirect association between A and C as follows: A is linked to Bi which

is linked to C, thus A and C are linked through Bi. The association paths are ranked by

weight, where the most meaningful relationships are the ones with highest weight values.

This algorithm has been employed in various applications. For instance, in investigative

applications, [27] proposed a tool to identify links between two initial topics. This was

tested on the 9/11 counterterrorism commission report as a corpus. To rank the links are

extracted, concept association graphs are employed to rank the links by relevance [28].

25



2.5 Criminal Network Analysis and Visualization

Criminal network analysis is a task that is related to organized crime. The analysis is

conducted by gathering data from various incidents and sources related to the case under

investigation and identifying the patterns, structures and flow of information in the criminal

network.

A good start to the analysis process is to map the criminals’ activities to a visualized

graph that displays the associations between the criminals [36]. In this section we present

the trends in criminal network analysis methods and tools. We also discuss the process of

data visualization with a focus on the visualization of criminal networks.

2.5.1 Criminal Network Analysis

The social structure of criminal communities affects how they should be approached for

analysis. Consequently, this impacts many law enforcement crime-fighting strategies. Re-

cent studies have proposed the notion of adopting a social network paradigm for crimi-

nal community analysis as a replacement for the traditional hierarchical paradigm. This

paradigm has been widely accepted by both the research community and law enforcement

agencies [32].

In this section, we address Social Network Analysis (SNA) terminology and features.

We refer to criminal networks and social networks interchangeably. A social network can

be defined as a specific set of linkages among a defined set of persons with the additional

property that the characteristics of these linkages as a whole may be used to interpret the

social behavior of the person involved [32].

The main feature of social network analysis approaches is that the subjects of analysis

are the characteristics of the relationships between the social entities rather than the char-

acteristics of the entities themselves. Therefore, the actual and potential flow of resources
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between the individuals can be inferred by examining the characteristics of the relation-

ships. Moreover, hierarchical relationships such as leadership and authority can also be

encompassed by analyzing the relationships.

According to [58], extracting the structural properties of criminal networks such as

subgroups and roles of individuals is an important goal of the networks analysis process.

Generally, SNA involves trying to measure key attributes of the social network. In [32] the

authors describe six basic attributes of social networks: network size, network composition,

the multiplicity of the ties between the entities, the relative duration of ties, the network

density, and the frequency of contact between the entities.

2.5.2 Data Visualization and Criminal Network Analysis

Data visualization [55] is the process of visually representing data. Large sets of data need

to be explored and analyzed when the user has previous knowledge of the existence of

valuable information within that data. Visualization methods provide a means to perform

this analysis with a better chance of finding this valuable information. For this reason,

data visualization is commonly associated with data mining. Some advantages of visual

representations of data are:

• They allow for involvement of the human factor in the data exploration process

• They go hand in hand with the hypothesis generation process. The visualization of

data provides the user with a perceptual view of the data in which they can develop a

hypothesis

• They produce good results for data sets in which the data is of a varying and noisy

nature

• They have been proven to be useful when the user is exploring a large database that

he knows little about, and does not know exactly what he is looking for
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• They provide a faster means to explore large amounts of data

Thus, applications that involve the management of large data sets which need to be

analyzed have adopted data visualization methods. In [29] the author emphasizes the im-

portance of integrating the human user in the data exploration process, that is to gain insight

from the large amounts of data, and directly interact with it.

The data visualization process depends on the goal that the designer intends to achieve

by the visualization system. Based on the task the visualization is required to perform,

visualization systems can be categorized into three main categories. These are Exploratory

Visualization, Confirmatory Visualization, and Production Visualization [10].

This is a rather general categorization, which classifies the visualization systems ac-

cording to the task at hand. However, more technical details are involved in the visualiza-

tion process. In [29], the author specifies three dimensions that should be addressed when

designing the visualization. The dimensions are: the type of the input data to the visualiza-

tion method, the visualization method, and the interaction and distortion techniques. The

data types can be one-dimensional data, two-dimensional data, multi-dimensional data, text

and hypertext, hierarchies and graphs, and algorithms and software.

The author also classifies visualization methods into five main categories. The first cat-

egory is the standard 2D/3D displays, such as pie and bar charts. The second is techniques

that employ geometrically transformed displays. Third, techniques that are icon-based.

These displays map the features of the data to those of an icon, such as stick figures or little

faces. The fourth class of techniques are the dense pixel displays. Finally, stacked displays

visualize data partitioned in a hierarchical structure.

The third dimension to data visualization is the interaction and distortion technique

used. This part is incorporated into the visualization process if the users are to interact with

the visualization and guide the exploration and visualization process. Examples of these

are interactive projection techniques, and interactive zooming techniques.

28



Any visualization may be designed to display one or more of the data types mentioned.

Multiple visualization techniques and interaction and distortion techniques can be used

within the same system. It is up to the designer of the visualization to determine which

combinations provide a better means to explore the data.

When visualizing a criminal network a sociogram is commonly used. A sociogram

displays the network as nodes and edges. This is the common graphical representation

of social networks where the attributes of the relationships between social entities can be

mapped as graphical attributes of the edges, i.e. color and shape properties.

Earlier in the criminology literature, Anacapa charts were used to display relationships

between criminals that have been analyzed by constructing an association matrix [58]. As-

sociation matrices are built by mapping relationships between a set of criminals, which

were gathered from raw data, to a matrix that is then visualized as an Anacapa chart. These

charts were widely deployed by investigators for their effectiveness, yet they can become

impractical when the size of the set of criminals is large, or in the case of a large data

collection.

In [30] the visualization of criminal networks is classified into three generations:

• First generation: this is the generation where no automation of the analysis has been

introduced yet. Hand-drawn Anacapa charts and maps with colored pins were used.

• Second generation: in this generation, network analysis tools are characterized by

their focus on graphically representing raw data, leaving the analysis of the content

to the user.

• Third generation: these tools are more focused on the implications and content of the

data.

Second generation analysis tools include visual analysis tools that are able to graphi-

cally represent large sets of raw data. However, the actual analysis of the content of the data
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is left to the user. Most of the common currently used analysis tools belong to this genera-

tion. Some of the most famous ones are the Analyst’s notebook [23] and XANALYS Link

Explorer [33].

Third generation tools are the most intelligent in terms of deriving meaningful knowl-

edge from the data. The COPLINK project [6] is an example of third generation tools. Its

analysis component, the CrimeNet Explorer [59], is used to discover knowledge in criminal

network data.
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Chapter 3

Mining Criminal Networks

Law enforcement used to view organized crime as static groups of criminals operating

through hierarchical structures led by "senior bosses" who control the criminal activities.

Some crime-fighters assume that the gang is dismantled once the big bosses are down.

However, studies on organized crime in the 1990s reveal that the assumed pyramid structure

no longer holds [30]. Many criminal organizations adapt a more dynamic paradigm and

operate in the form of a social network. Criminal organizations operating in the modern

paradigm of collaborative network structures have proven to be more successful in their

criminal business than the ones operating in the traditional hierarchical paradigm.

In this chapter, we present an algorithm to identify criminal communities from a set

of text documents collected from the computers of some suspect(s) in a forensically sound

manner. The text documents can include e-mails, chat logs, blogs, webpages, and any

textual data. The objective of our proposed method is to assist the crime investigator in

identifying the communities involved with the suspect and determining other members

involved in the communities. In many cases, an investigator may have very few clues on

the suspects or an organization at the early stage of investigation. In some other cases,

an investigator may already know the members involved in an organization, but does not

have concrete information on how the organization operates and relationships between the
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members. Thus, in addition to the discovery of communities, our method also measures the

closeness among the members in a community and extracts useful information for crime

investigation.

The remainder of this chapter is organized as follows. In section 3.1, we formally

define the problem of communities discovery. In section 3.2, we discuss some methods

employed to extract the entities from an input textual dataset. The general idea is to use

a classifier to determine the person names from each text document in the dataset. Each

identified person is a candidate to be an actor (a node) in the resulting criminal network. In

section 3.3, we present an efficient method to extract the communities from the identified

persons. Intuitively, a group of people is considered to be in the same community if their

names frequently co-occur in some documents. In section 3.4, we discuss the extraction

of useful information that can describe the relationship between members of a community

and that is of value to crime investigation. We also present some methods to extract such

information from the identified communities. The extracted information not only provides

the investigator with more information about the communities, but it also serves as the

labels in the resulting social networks to facilitate effective browsing.

3.1 The Problem of Criminal Communities Discovery

The problem of criminal communities discovery is to identify the hidden communities from

a set of text documents that is obtained from one (or multiple) suspect’s file systems. In

this thesis, a text document is broadly defined to include e-mail messages, chat log sessions,

webpages, blogs, and text files. Let D be a set of text documents. Let U = {p1, . . . , pm}

denote the universe of all person names in D. Each document d ∈ D is represented as a

set of names such that d ⊆ U . Let C ⊆ U be a set of person names called a community.

A document d contains a community C if C ⊆ d. A community having k person names

is a k-community. For example, C = {p1, p2, p4} is a 3-community. The support of a
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community C is the percentage of documents in D that contains C. A community C is a

prominent community in a set of documents D if the support of C is greater than or equal

to some user-specified minimum support threshold.

Definition 3.1.1 (Prominent community) Let D be a set of text documents. Let support(C)

be the number of documents in D that contain C, where C ⊆ U . A community C is

prominent in D if support(C) ≥ min_sup, where the minimum support min_sup is a

prespecified threshold.

Since the input set of text documents is obtained from a suspect’s file system, we call

the identified prominent communities to be the criminal communities related to the suspect.

The problem of criminal communities discovery is formally defined as follows:

Definition 3.1.2 (Problem of criminal communities discovery) Let D be a set of text doc-

uments. Let min_sup be user-specified threshold [0, 1]. The problem of criminal commu-

nities discovery is to identify all prominent communities from D, i.e., all communities

{C1, . . . , Cm} that have support(Cj) ≥ min_sup for 1 ≤ j ≤ m, and to extract informa-

tion that is useful for crime investigation.

3.2 Identifying Person Names

The first step is to identify the person names from a given set of text documents. There

are many Named Entity Recognition (NER) tools and methods available in the market to

identify person names. We briefly describe the Stanford NER [11], which is a promising

tool to identify English names.

Named entities are recognized by using classification rules that are generated based on

distinctive features of positive and negative examples of named entities. As mentioned in

Chapter 2, recent NER studies make use of Supervised Machine Learning (SML) algo-

rithms. These algorithms are used to study the features of examples of named entities in
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a large collection of annotated texts called the training corpus [39]. The rules are then

constructed based on these extracted features for a given entity type such as person, or-

ganization, and location. After the set of rules are constructed , they are applied to tag

the words in a text document in a testing corpus. The performance of the SML method

is evaluated by recall, the number of entities identified from the total number of entities

that actually exist in the testing corpus, and by precision of recognition, which is the num-

ber of identified entities that actually are entities from the total number of tagged entities

the method was able to identify. If the set of classification rules yields a reasonably good

performance in terms of recall and precision, the rules can be used to identify names in

some future unseen text documents. Common SML methods employed for NER are Hid-

den Markov Models (HMM) [42], Maximum Entropy (ME) [35], and Conditional Random

Fields (CRF) [31].

HMMs are statistical models used in machine learning. The assumption in this method

is that the state of the system being modeled is not directly visible but the output dependent

on the state is visible. Each state has a probability distribution over the possible outputs.

This model is used as a generative model to construct a probabilistic tagging model to

identify the part of speech for words or to find the names in texts that are not previously

known [2]. A main feature of HMM is that they consider future and previous observations

of the word. Future and previous observations, also called forward and backward observa-

tions, refer to the sequences of words in the text that occur before and after the word that

is being processed. This is particulary useful for improving the matching rates. Systems

based on HMM have produced accuracy rates up to 90% [57].

ME Models make use of the principle of maximum entropy which states that subject

to known constraints (called testable information), the probability distribution which best

represents the current state of knowledge is the one with the largest entropy. This principle

can be employed to formulate a discriminative model that is based on classifying words in
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a text document according to a set of predetermined classes of named entities types such as

persons and locations [45]. Some NER systems based on ME, such as the MENE system,

are able to obtain accuracy levels up to 96% precision and 89% recall [4].

CRF is a probabilistic model that is also used in NER systems. CRF is a probabilistic

model that is based on defining conditional probability distribution of a specific sequence

of words over sequences of labels applied to these words in the training corpus. This

conditional approach is discriminative, which is more desirable in a NER model as opposed

to generic approaches [56]. The ME model is also discriminative, but it does not take into

consideration future observations of the word being processed, whereas the CRF model

does. This makes the CRF a combination of the best features of the previous two models.

The Stanford NER tool uses the CRF model to identify named entities. It then tags the

entities into four categories: person for person names, location for locations such as cities

countries or street addresses, organization for organization and company names, and other

for all entities that do not fall into the above three categories. The Stanford NER only tags

the word tokens into one of the above four categories, and does not do any other further

processing. Thus, we implement the following preprocessing steps to increase the quality

of the result:

1. Elimination of duplicates of the same name entity

2. Variants of a name referring to the same individual are merged into one name

3. Elimination of the false positives produced by the tagger.

Each document in the given data set is considered to be a transaction. For each docu-

ment d, we apply the NER tagger, obtain a bag of entities R, and then remove any duplicates

of the same name such that R contains a set of distinct names. Furthermore, variants of

the same name are represented as one name. For instance, John, J. Smith, and John Smith

are transformed into a common form: John Smith. Initials that are followed by only other
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initials and no names are discarded. This is due to the observation that, through the ex-

periments, initials produced a significant amount of noise in the link identification step. In

many cases, the full name of a person occurs in the same document with the initials of the

same person. Since the full name is considered, discarding the initials in these cases will

cause no information loss.

To eliminate false positives, our method allows the user to incorporate his/her domain

knowledge. User interference to guide this step is crucial to improve the quality of the

result in the subsequent communities extraction and information extraction steps. In cer-

tain cases, an individual can have different names. For instance, some suspects can have

nicknames in a chat log and in the same session their real name is mentioned. According to

the identification method, these will be considered as two individuals if there is no lexico-

graphical resemblance between the two names. Our method allows the crime investigator

to interfere and merge the two names to one in the rest of the analysis process. This will

reduce the amount of redundancy in the identified communities, resulting in a more precise

analysis.

3.3 Extracting Criminal Communities

Once the individuals are identified, the next step is to identify all prominent criminal com-

munities. When two or more individuals interact frequently, from our analysis point of

view, this indicates a strong relationship or linkage. Analyzing the strength of linkages is

a key step for effective crime investigation. The strength of a linkage can be measured by

either the absolute strength or the relevant strength. The absolute strength is measured by

comparing the frequency of the interaction between the individuals to a fixed threshold. A

linkage is strong if the number of interactions passes a given threshold; otherwise, the link-

age is weak or there is no linkage. Alternatively, one can measure the strength of a linkage

by relevance, which is a more flexible method and requires no prior knowledge about the

36



data set. This is achieved by setting a threshold as percentage of the total number of text

documents instead of a fixed value. A group is considered to be a community if its support

is equal to or greater than a given percentage threshold.

A naive approach to identifying all prominent communities is to enumerate all possible

communities and identify the prominent ones by counting the support of each commu-

nity in D. Yet, in case the number of identified individuals |U | is large, it is infeasible to

enumerate all possible communities because there are 2|U | possible communities. To effi-

ciently extract all prominent communities from the set of identified individuals, we employ

the Apriori algorithm [1] (also see section 2.3.1), which is originally designed to extract

frequent patterns from transaction data.

Let U = {p1, . . . , pm} denote the universe of all person names in D. Each document

d ∈ D is represented as a set of names such that d ⊆ U . Refer to section 3.1 for the

notations. Apriori is a level-wise iterative search algorithm that uses the prominent k-

communities to explore the prominent (k + 1)-communities. First, the set of prominent

1-communities is found by scanning the documents D, accumulating the support count of

each person name, and collecting the person name p’s that has support(p) ≥ min_sup.

The resulting prominent 1-communities are then used to find the prominent 2-communities,

which are then used to find prominent 3-communities, and so on, until no more prominent

k-communities can be found. The generation of prominent (k + 1)-communities from

prominent k-communities is based on the following Apriori property.

Property 3.3.1 (Apriori property) All nonempty subsets of a prominent community must

also be prominent because support(C ′) ≥ support(C) if C ′ ⊆ C.

By definition, a community C ′ is not prominent if support(C ′) < min_sup. The above

property implies that adding a person name p to a non-prominent community C ′ will never

make it prominent. Thus, if a k-community C ′ is not prominent, then there is no need to

generate (k+1)-community C ′ ∪ p because C ′ ∪ p must not be prominent. The strength of
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Input: A set of text documents D.
Input: User-specified minimum support min_sup.
Output: Sets of prominent communities L1, . . . , Lk with support(Cj) and R(Cj).
Method:

1: L1 = all prominent 1-communities in D;
2: for (k = 2; Lk−1 ̸= ∅; k++) do
3: Candidatesk = Lk−1 on Lk−1;
4: for all community Cj ∈ Candidatesk do
5: if ∃s ∈ Cj such that s /∈ Lk−1 then
6: Candidatesk = Candidatesk − Cj;
7: end if
8: end for
9: support(Cj) = 0 and R(Cj) = ∅ for every Cj ∈ Candidatesk;

10: for all document di ∈ D do
11: for all Cj ∈ Candidatesk do
12: if Cj ⊆ di then
13: support(Cj) = support(Cj) + 1;
14: R(Cj)← di;
15: end if
16: end for
17: end for
18: Lk = {Cj ∈ Candidatesk | support(Cj) ≥ min_sup};
19: end for
20: return L1, . . . , Lk with support(Cj) and R(Cj);

Algorithm 4: Prominent Communities Discovery

the linkages among the members in a prominent community C is indicated by support(C).

The presented algorithm can identify all prominent communities by efficiently pruning all

communities that cannot be prominent based on the Apriori property.

Algorithm 4 summarizes our Prominent Communities Discovery algorithm. The algo-

rithm finds the prominent k-communities from the prominent (k − 1)-communities based

on the Apriori property. The first step is to find the set of prominent 1-communities, de-

noted by L1. This is achieved by scanning the data set once and counting the support

count for each 1-community Cj . The support count for Cj , denoted by support(Cj), is the

number of documents containing Cj . L1 contains all prominent 1-communities Cj with

support(Cj) ≥ min_sup. The set of prominent 1-communities is then used to identify the
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set of candidate 2-communities, denoted by Candidates2. Then the algorithm scans the

database once to count the support of each candidate Cj in Candidates2. All candidates

Cj that satisfy support(Cj) ≥ min_sup are prominent 2-communities, denoted by L2.

The algorithm repeats the process of generating Lk from Lk−1 and stops if Candidatek is

empty.

Two prominent (k − 1)-communities can be joined together to form a candidate k-

community only if their first (k − 2) person names are identical and their last (k − 1)

person names are different. This operation is based on the Apriori property: A community

Ck cannot be prominent if any of its subsets is not prominent. Thus, the only potential

prominent communities of size k are those that are formulated by joining prominent (k−1)-

communities. Lines 4-8 describe the procedure of removing candidates that contain at least

one non-prominent (k − 1)-community.

Lines 9-17 describe this procedure of scanning the database and obtaining the support

count of each community Cj in Candidatesk. Each candidate community Cj is looked up

in each document di in the document set. Once a match is found the value of support(Cj)

is incremented by 1 and the document di is added to the set R(Cj). If support(Cj) is larger

than the user-specified minimum threshold min_sup, then Cj is added to Lk, the set of

prominent k-communities with k members. The algorithm terminates when no more can-

didates can be generated or none of the candidate communities pass the min_sup threshold.

The algorithm returns all prominent communities L1, . . . , Lk with support counts and sets

of associated documents for each prominent community.

Data Structure for Efficiency Improvement

The most expensive operation in the Prominent Communities Discovery algorithm is

to scan the database for counting the supports of every community in Canadidatesk. We

present a tree structure to improve the efficiency of the support counting process.

In each iteration of Line 2 in Algorithm 4, the number of candidate communities
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Candidatesk can be huge. We use a prefix tree structure to represents each candidate

community as a tree path from root-to-leaf. The names within each community are sorted

in lexicographical order. A prefix tree uses the same path to represent two communities

that share the same first n members. Each leaf nodes keeps track of the support count of a

community. To count the support, each record is scanned and matched with the prefix tree.

The count at the leaf node is increased by one if the entire path is matched.

We describe the details as follows:

Tree Construction The construction of the tree follows the extended prefix-tree structure

to store the candidate communities. It is important to note that the names within

each community are sorted in lexicographical order. The following are the steps to

construct the tree from the set Candidatesk.

1. The root node of the tree is set to the value NULL.

2. Each path from the root node to a leaf node represents a community Cj ∈

Candidatesk.

3. All nodes must not have duplicate child nodes. Thus, if two (or multiple) com-

munities Cx and Cy have the same first n members, they are represented in the

same branch up to the non-leaf node pn. The node pn will have two (or multiple)

children: pn+1 of both Cx and Cy.

After the tree is constructed, the number of leaf nodes in the tree must be equivalent

to |Candidatesk|.

Tree Traversal/Support Counting Once the tree is constructed with all its leaf nodes as-

signed a count value that is reset to zero, the data set is scanned to count the support

as follows.

1. For each document in the data set, each person name will be looked up in the

tree through a breadth-first scan. If a matching node is found in the children of
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the root node it is marked to be searched in a subsequent lookup. The current

lookup is terminated at this node for this level and will proceed to the next level

in the tree, as explained in the next step.

2. To improve the breadth-first scan of the tree, the next level of nodes are not

searched entirely. Only the children of the marked children nodes of the root

(and the marked child nodes of those marked nodes) are searched. Once a match

is found the node will be marked if it is a non-leaf node. If the matching node

is a leaf, the count for that node is increased by one, and it is not marked, since

it has no children.

3. For the next document in the data set, the marks on the tree nodes are cleared.

However, the count value associated with the leaf nodes is not reset, instead it

accumulates during the scan of the entire data set.

4. After the scan is completed, the counter associated with the leaf nodes is tested

against the min_sup thresholds. If a leaf node’s count is less than the thresh-

old, the corresponding community Cj is removed from the set Candidatesk.

Since the communities in Candidatesk are sorted in lexicographical order, the

correlation between the leaf nodes and the communities is trivial.

Example 3.3.1 (Prominent Communities Discovery) Consider a document set D = {d1,

. . . , d9}, where each document is represented as a vector of person names, as shown in

Table 1. Suppose min_sup = 2. The algorithm scans D once to identify all prominent

1-communities, i.e., the names that appear in at least 2 documents in D. During the scan,

the algorithm counts not only the support for the prominent communities, but it also keeps

track of all the documents that contain a community C, denoted by R(C). In this example,

the set of prominent 1-communities is:

L1 = {{John}, {Jenny}, {Kim}, {Mike}, {Alan}},
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with

support({John}) = 6

support({Jenny}) = 7

support({Kim}) = 6

support({Mike}) = 2

support({Alan}) = 2

and

R({John}) = {d1, d4, d5, d7, d8, d9}

R({Jenny}) = {d1, d2, d3, d4, d6, d8, d9}

R({Kim}) = {d3, d5, d6, d7, d8, d9}

R({Mike}) = {d2, d4}

R({Alan}) = {d1, d8}

Next, the algorithm generates the set of candidate 2-communities by a self join on L1. This

results in:

Candidates2 = {{John, Jenny}, {John,Kim}, {John,Mike}, {John,Alan},

{Jenny,Kim}, {Jenny,Mike}, {Jenny,Alan},

{Kim,Mike}, {Kim,Alan}, {Mike,Alan}}

Then the algorithms scans the document set D to count the support of each candidate

community in Candidates2, and determines

L2 = {{John, Jenny}, {John,Kim}, {John,Alan},

{Jenny,Kim}, {Jenny,Mike}, {Jenny,Alan}}

Next, the algorithm generates the set of candidate 3-communities by a self join on L2. This

results in:
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Document Names in di
d1 {John, Jenny, Alan}
d2 {Jenny, Mike, Susan}
d3 {Jenny, Kim}
d4 {John, Jenny, Mike}
d5 {John, Kim}
d6 {Jenny, Kim}
d7 {John, Kim}
d8 {John, Jenny, Kim, Alan}
d9 {John, Jenny, Kim}

Table 1: Document Vectors for Data Set D

Candidates3 = {{John, Jenny,Kim}, {John, Jenny,Alan}}

Note that {John,Kim,Alan}, {Jenny,Kim,Mike}, {Jenny,Kim,Alan}, and {Jenny,

Mike, Alan} are not in Candidates3 because some of their subset(s) do not exist in L2

and they are pruned by Property 3.3.1. The candidate 3-communities have

support({John, Jenny,Kim}) = 2, R({John, Jenny,Kim}) = {d8, d9},

support({John, Jenny,Alan}) = 2, R({John, Jenny,Alan}) = {d1, d8}.

Thus,

L3 = {{John, Jenny,Kim}, {John, Jenny,Alan}}.

The algorithm performs a self join on L3, applies the Apriori property, and results in

Candidates4 = ∅. Finally, the algorithm terminates and returns the prominent commu-

nities L1, L2, and L3 with support(Cj) and R(Cj) for each Cj ∈ L1 ∪ L2 ∪ L3.

3.4 Retrieving Information from Criminal Communities

The next phase is to retrieve useful information for crime investigation, such as contact

information, from the identified criminal communities (i.e., prominent communities). In
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the context of this thesis, a group of people are considered to be in the same prominent

community if their names appear together frequently in some minimum percentage of text

documents. Thus, the topics of the set of documents containing their names are the “rea-

sons" bringing them together. By analyzing the content of the text documents containing

the names of the community members, a crime investigator may obtain valuable clues that

are useful for further investigation, especially in the early stages of the investigation. For

instance, if a set of community member names are all contained in the some chat sessions,

then summarizing the topics of the discussion can help the investigator infer the type of

relationship the community members share. To facilitate crime investigation, we extract

the following types of information from the set of documents R(Cj) for each prominent

community Cj:

1. Key topics

2. Names of other people not in Cj

3. Locations and addresses

4. Phone numbers

5. E-mail addresses

6. Website URLs

In some real-life cyber criminal cases, there could be thousands of identified individuals

and hundreds of criminal communities. Even with a data mining software, an investigator

may still find it difficult to cope with such a large volume of information. The summarized

key topics from R(Cj) can provide an investigator with an overview of each community

and the related topics. The extracted key topics can be a link label when the communities

are visualized on the screen as discussed in chapter 5. Some people names may appear

only a few times in R(Cj) but may not be frequent enough to be included as a member
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in Cj . Identifying these infrequent people names may lead to some new clues for investi-

gation. Locations, addresses, and contact information, such as phone numbers and e-mail

addresses, are valuable information for crime investigation because they may reveal other

potential channels of communications among the community members. To extract the key

topics, we employ an Open Text Summarizer (OTS) [5, 60]. The topic extraction involves

four steps:

1. Stop words removal: Stop words are common words in a language that do not help

differentiate the semantic of the text. Examples of stop words are "a", "the", "he",

"them", and "who", etc.

2. Stemming: The next step is to conflate words that have common stems into one

term since all these words usually share the same semantic. For instance, the words

"compute," "computing," and "computer" are all stemmed to "comput." Although

"comput" is not a valid English word, it does capture the meaning of compute.

3. Counting stemmed terms: Each document in R(Cj) is now represented as a vector

of stemmed terms. The next step is to count the frequency of each of the stemmed

terms.

4. Identifying key topics: The key topics of a document set R(Cj) are the top n frequent

terms in R(Cj), where n is a user-specified threshold.

To extract the city names, we search the documents for the cities in the GeoWorldMap

database [24]. To extract other addresses, phone number, and e-mail addresses, we use

regular expressions [12]. Note, the retrieved information is associated with Cj .

Other useful information may be extracted to further describe the relationship between

the members of an identified prominent community, such as the duration of the relationship.

The relationship duration is a key piece of information regarding the activity of members
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of a community. It is especially useful for investigators to provide them with a sense of a

time line for the relationships that the communities share.

In order to specify the duration of the relationship between a criminal community iden-

tified in a set of textual documents we make use of the metadata of these documents. The

metadata of a file is the data linked to this file by the hosting system upon creation of the

document. We can define the duration of a relationship as all or some of the values of: (1)

the starting date of the relationship, (2) the ending date, (3) and the amount of time the re-

lationship lasted. We can identify the starting date of the relationship between members of

a prominent community Cj , by the oldest of the dates attached to the documents in R(Cj).

The end date of the relationship is the most recent of the dates associated with these doc-

uments. The duration of the relationship is then calculated as the difference between the

start and end dates.

Algorithm 5 describes the community information retrieval process. We extract the

community information of every community Cj from the set of documents R(Cj) that

links the members of Cj together. The information extraction method identifies the phones,

emails, websites, and topics information from each document di in R(Cj) as follows.

First, a document di is represented as a set of tokens {tok1, . . . , toky}. Next, stop words

such as the, a , it, and I are removed as they do not contribute any meaning to the topics

of the document. The next step is to match the tokens against the regular expressions of

phone numbers, email addresses, locations and website URLs. Once a match is found, the

token is added to the corresponding set. Then, the next token in di is processed. However,

if the token does not match any of the regular expressions the token is passed to the sum-

mary topics extraction procedure described in Lines 20-24. The topics are identified by first

stemming the tokens and then counting their frequency. The top n most frequent tokens

are selected as the document summary topics. The Open Text Summarizer (OTS) method
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Input: Document d as a string literal, phone_regex, email_regex, website_regex, num-
ber of topics n, a list of location names Loc, a list of stop words S

Output: phones, emails, locations, and topics
Method:

1: initialize a set V = ∅;
2: split d into tokens = {tok1, . . . , toky};
3: Count(toki) = 0 for 1 ≤ i ≤ y;
4: for tokens toki ∈ tokens do
5: if toki ∈ S then
6: tokens = tokens− toki;
7: end if
8: if toki matches phone_regex then
9: phones←− toki;

10: continue to the next token;
11: end if
12: if toki matches email_regex then
13: emails←− toki;
14: continue to the next token;
15: end if
16: if toki ∈ Loc then
17: locations←− toki;
18: continue to the next token;
19: end if
20: toki = stem_pre1(toki);
21: toki = stem_post1(toki);
22: toki = stem_manual(toki);
23: toki = stem_post2(toki);
24: toki = stem_synonym(toki);
25: V ←− toki;
26: Count(toki)++;
27: end for
28: sort V in descending order by Count(toki);
29: topics = top n most frequent tokens;
30: return phones, emails, locations, and topics;

Algorithm 5: Community Information Extraction
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we apply for extracting the topics stems the tokens in five distinct steps: stemming punctu-

ation prefixes, stemming punctuation suffixes, manual replacements, stemming inflection

suffixes, and synonym replacements.

The first two stemming steps, stem_pre1 and stem_post1, lines 20 and 21, remove any

punctation and delimiter prefixes and suffixes from the token. This includes the removal of

question marks, apostrophes, leading and trailing brackets, and parentheses from the token.

Next, the manual replacement step, stem_manual, addresses tokens that are irregular verbs.

In this step, the irregular verbs that are an inflection of their present tense are replaced

by the present tense. For instance, the verb taught will be replaced with its present tense

teach. In line 23, the stem_post2 is applied to the tokens. This is responsible for stemming

inflection suffixes. This type of stemming addresses regular verbs and inflected nouns.

The suffixes of regular verbs, such as the "ing" in trying, are removed such that the token

becomes try. Plural nouns, such as books, are reduced to the singular form book. Next,

the synonyms replacing step is applied. Tokens that are synonyms for a more general term

are replaced by the general topic. For example, the tokens pleased, satisfied, and glad are

replaced by the term happy.

After the tokens are stemmed they are collected in a set V and their count is accumu-

lated. We remove all terms that were reduced by the stemming process to words of less

than three characters from this set. The user specified value n, determines the number of

topics representing the document. The top n most frequent terms in the document di are

the summary topics for di and are added to the set topics. It is important to note that words

that are used as common criminal terminology or are related by meaning to a crime topic

are added to the topics list regardless of their frequency. This is due to their relevance to

the domain in interest. A user-specified list of criminal terminologies is obtained to facili-

tate this step. The information extraction method returns the sets of phone numbers, email

addresses, website URLs, and summary topics for each document di ∈ R(Cj). The last
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Figure 2: Sample Chat Session

step is to combine the sets of information for each document in R(Cj) into one set for each

information type. The following example illustrates the information extraction procedure.

Person Names Topics Phones Emails Geographic Location
john auction 611-123-1234 jenny@mels.org seattle
jenny sim
kim bid

id

Table 2: Link Related Information Retrieved from Chat Session

Example 3.4.1 (Information retrieval) Consider the chat session in Figure 2, which is a

slightly edited version of the chat logs obtained from the Linden case [41]. The information

retrieval process starts with processing the chat session that is in the form of a single string

of characters. The first step is to tokenize the content of the string into word tokens by
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using white spaces as delimiter. The document (chat session) is now in the form of a vector

of word tokens, as listed in the first column of Table 5.

Next, the tokens are matched against regular expressions of emails, websites, and phone

numbers. In this example, the email jenn@mels.org and phone number 611-123-4567 are

added to the sets emails and phones, respectively. By matching the tokens against the list of

location names, the city Seattle is added to the set locations. The stemming proceeds for

the remaining tokens by first removing the first type of prefixes and suffixes: punctuation

and delimiter prefixes and suffixes. Examples of punctuation and delimiter prefixes are the

brackets and parentheses, e.g., "{" and "(". After this step words such as auction? will

become auction and that’s and didn’t are reduced to that and did, respectively. The word

tokens of the chat session are shown in columns stem pre1 and stem post1 in Table 5, after

removing the prefixes and suffixes, respectively. The next step, stem_manual, replaces

irregular verbs with their present tense. For example, did is replaced with do. In Table 5,

the column stem manual contains a list of tokens after they are replaced by the present tense

verb.

Next, the tokens undergo the stem_post2 process. For example, the word actually is

replaced by actual and bidding is stemmed to bid. The complete list of words modified in

this step is listed in column stem post2 in Table 5. Then, the stemmed tokens are sorted

in descending order by their frequency count. The top n tokens with highest frequency

form the topics. By setting n = 4 for the chat session in Figure 2, we get the summary

topics auction, sim, bid, and id. Upon the completion of the information retrieval steps

in Algorithm 5, the criminal community found in the chat session excerpt in Figure 2 is

described by the information in Table 2.
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Chapter 4

Indirect Relationship Extraction

Our goal in the previous chapter was to identify the prominent criminal communities in

documents residing on storage media seized from a suspect for evidence extraction. In

this chapter, we examine the documents’ contents to further analyze the suspects’ social

networks. In the case of analyzing criminal communities relationships, it is important to

take into consideration hidden and indirect relationships. The direct relationships identified

by the proposed method in the previous chapter may not be the only ones existing in the

data. By generating hypotheses that are based on knowledge derived from our knowledge

base, hidden and indirect relationships between the names may be discovered.

In many cases, due to limited time, investigators cannot possibly examine every docu-

ment in the suspect’s hard drive to search for evidential trails. As a result, some important

information may be overlooked. Typically, investigators search the documents on the local

hard drive for evidence using search tools such as FTK or Google Desktop [25], which rely

mainly on the investigators’ skills in constructing the queries. However, by using hypothe-

sis discovery, the queries are constructed in an objective manner such that hidden evidential

trails between names in the data set are extracted.

In this chapter, we propose a method to discover the evidential trails between a promi-

nent community identified in a data set and other people in the data set who are not in
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the community. An evidential trail represents a relationship between the prominent com-

munity and other people through a common topic rather than co-occurrence. This trail is

extracted as a chain of intermediate terms that link a community to a person. Thus, for a

given a prominent community, Cj , and a person name, p, the indirect relationship discovery

method identifies a chain of intermediate terms from the data set that links Cj with p. The

length of the chain is limited by a user-specified threshold, denoted by d.

For instance, the evidential trail Cj → tickets → Bob, of length d = 1, indicates

that the prominent community Cj shares an indirect relationship with Bob through the

trail tickets which is a common topic the community shares with Bob. This relationship

can be considered valuable from an investigator’s perspective since it indicates that the

community and Bob were involved in some action related to tickets. However, this is not

a direct relationship since Bob is not a member of the prominent community Cj , i.e., Bob

and Cj never occurred in the same document.

The problem of indirect relationship discovery is to generate possible indirect relation-

ships between the prominent communities and individuals in a set of documents. In a

Hypothesis Generation (HG) problem, the process involves providing one or two initial

terms, that can be person names, to the hypothesis generation algorithm. Let the names be

A and C. The hypothesis generator searches for transitive relationships of the form: if A

connects to B, and B connects to C, then A connects to C via B. In order to comply to this

input requirement, we provide the hypothesis generator with two objects to link. The first

is a prominent community and the second is the name of an individual that is not related

to this community by any link. The intention is to search for all evidential trails that exist

between the given prominent community and other names of people that occur in the data

set. This provides for a more thorough examination of the relationships across the data set.

Individuals that share a direct relationship, i.e., belong to the same prominent community,

are by definition linked, and by additionally using HG, a more in-depth analysis of the
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relationships is performed. Thus the criminal network is defined in terms of direct links

that resemble co-occurrence relationships (prominent communities), and indirect links that

resemble relationships that are conceptual, and may or may not resemble an actual rela-

tionship. The relevance and accuracy of the results of the indirect relationships rely on the

parameters deployed in ranking or selecting the terms which link the initial terms A and C.

In our proposed method we selected the intermediate term B in a manner that ensures that

the extracted evidential trails are the most meaningful ones across the data set.

The rest of this chapter is organized as follows. Section 4.1, formally defines the prob-

lem of indirect relationships discovery. Section 4.2 discusses the construction of profiles

which are a basic structure required for the discovery algorithm. Section 4.3 explains the

discovery algorithm used to find indirect relationships.

4.1 The Problem of Indirect Relationship Discovery

Let D be a set of documents and let C be a prominent community in D (see Defini-

tion 3.1.1). Let U be the set of distinct person names in D. The problem of indirect

relationships discovery between the community C and an individual p ∈ U is identifying

a set of intermediate terms T that depict a conceptual relationship between C and p. Intu-

itively, we want to identify a set of terms that link a person to a prominent community. We

can model the problem of extracting indirect relationships using the concept of hypothesis

generation as follows.

Consider a criminal prominent community C and an individual p in D. Let R(·) ⊂ D

denote the set of documents containing the enclosed argument where the enclosed argument

is a community or a term. The problem of discovering hypothetical, conceptual relation-

ships between community C and individuals in U is generating the tuple (C, p) from D,

where p is a term with semantic type person. This tuple is generated for each person in

U by identifying connecting terms t that conceptually link C and p. A term t represents
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an indirect relationship between C and p if t occurs in at least one document for both sets

R(C) and R(p).

Definition 4.1.1 (Indirect Relationship) Let D be a set of documents. Let U be a set of

distinct names in D. Let C be a prominent community and p be an individual where C ⊆ U

and p ∈ (U − C). Let R(C) and R(p) be the sets of documents in D that contain C and p,

respectively. An indirect relationship, of depth d, between C and p is defined by the tuple

(C, p) generated by identifying the terms [t1, . . . , td] such that,

1. R(C)
∩

R(p) = ∅

2. (t1 ∈ R(C))
∧
(td ∈ R(p))

3. (tr ∈ R(tr−1))
∧
(tr ∈ R(tr+1)) for 1 < r < d

4. R(tr−1)
∩

R(tr+1) = ∅ for 1 < r < d

According to this definition, an indirect relationship between a community C and an

individual p through a set of intermediate terms [t1, . . . , td] exists if the following conditions

apply.

1. Community C and individual p do not occur in the same document, i.e., R(C)
∩
R(p) =

∅.

2. The first term t1 in the set of terms must occur in at least one document containing

the community C and the last term td must occur in at least one document containing

p, i.e. (t1 ∈ R(C))
∧

(td ∈ R(p)).

3. For indirect relationships of depth d > 1, each term tr must occur in at least one

document containing the previous term in the set tr−1. Moreover, it must occur in at

54



least one document containing the next term in the set tr+1, i.e., (tr ∈ R(tr−1))
∧

(tr ∈ R(tr+1)) for 1 < r < d and the terms tr−1 and tr+1 must not occur in the same

document, i.e., R(tr−1)
∩
R(tr+1) = ∅.

Given the definition of an indirect relationship, we now define the problem of discover-

ing indirect relationships in a document set D.

Definition 4.1.2 (Indirect Relationship Discovery Problem) Let D be a set of documents.

Let U denote the set of distinct person names in D. Let G be a set of prominent commu-

nities identified in D. The problem of identifying indirect relationships in D is identifying

all the indirect relationships between a prominent community C and individuals p1, . . . , pm

in U , for all the prominent communities C ∈ G.

4.2 Profile Construction

As explained in chapter 2, any term t in a data set D can be profiled by extracting interest-

ing information about it from the textual content of documents in D. For example, if the

document set is obtained from newswire documents, the profile of a topic such as Microsoft

can be: Corporation, Windows, Bill Gates, and Office. In the same sense, the profile for a

prominent community C existing in a hard drive can be city, phone, and email. This in-

formation can be retrieved from the documents in which the prominent community occurs.

However, this information should not be chosen randomly because of the importance of the

profile information in the hypothesis discovery process. If the profile information is too

general, the discovered relationship is unlikely to be significant and the investigator may

be overwhelmed by a large number of false hypotheses. Thus, data must only be added to

the profile if it satisfies some prespecified constraints or conditions that are set to ensure

the usefulness of this data.
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The structure of a profile, as mentioned in section 2.4.1, is based on semantic types.

The structure ensures that only a specific type of information is added to the profile. In the

criminal network analysis context, we select semantic types that are significant to inves-

tigations. In particular, the following semantic types are selected: (1) summarized topics

of the documents representing the prominent community’s interactions, (2) other names

of people mentioned in the documents with the prominent communities, (3) cities and lo-

cations, (4) email addresses, (5) phone numbers, and (6) website URLs. These semantic

types are also used to identify the relationship between the members of prominent commu-

nities. For the profiles of the prominent communities, we use the same information that is

retrieved for the prominent communities, as explained in section 3.4, for several reasons.

First, it is less costly in the information extraction process. Second, these semantic types

are extracted as forensically valuable information about the set of related individuals and

consequently any other relationships that are found using this information are likely to be

valuable as well. Within each semantic type in the profile of a prominent community, each

term has a weight associated with it. In order to minimize the computations, we define the

profiles for the prominent communities of maximal size, and combine all the profiles of the

sub-communities.

Definition 4.2.1 (Profile) A profile for a prominent community C, P (C), is defined by

a collection of vectors Vx1 , Vx2 , . . . , Vxn , where n denotes the number of semantic types

considered. Each vector Vxi
, of length lxi

, where lxi
is the number of terms of semantic

type xi, is given by:

Vxi
=



t1, fxi
(t1)

t2, fxi
(t2)

...

tlxi , fxi
(tlxi )
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where fxi
(tj) is the weight of term tj and is given by

fxi
(tj) =

f ′
xi
(tj)

maxj f ′
xi
(tj)

and

f ′
xi
(tj) = nxi,tj ∗ log(|D|/ntj),

where |D| denotes the the number of documents in the document set D, ntj denotes the

frequency of occurrence for term tj in the document set D, and nxi,tj denotes the frequency

of term tj of semantic type xi in R(C).

The prominent community identification algorithm, presented in Algorithm 4 (sec-

tion 3.3), produces a relatively large set of prominent communities. This is because it

provides the sets of prominent communities of each size L1, . . . , Lk where k is the size of

the largest prominent community found in the data set. Thus, in order specify which promi-

nent communities are addressed in the indirect relationship discovery process, we create a

set of the maximal prominent communities, denoted by G.

Definition 4.2.2 (Maximal Prominent Community) A prominent community C is a max-

imal prominent community if there is no prominent community C ′ such that C ′ ⊃ C.

The set of maximal prominent communities G is generated as follows. Starting from the

set of prominent communities Lk, all the communities C ∈ Lk are added to G and sorted

in decreasing order by their support(C). Next, for the remaining prominent communities

C ′ in the sets Lk−1, . . . , L2, before adding them to G, we must ensure that they are not

a subgroup of a community already in G. Thus, if C ′ happens to satisfy C ′ ⊂ C where

C ∈ G, then it is discarded. However, in cases where support(C ′) > support(C), prior

to discarding C ′ we set R(C) = R(C ′)
∪

R(C). Finally, we construct the profile P (C) for

each prominent community C (see definition 4.2.1).
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Community/ Doc ID Content
Individual
C=John, Jenny, d1 Jenny: how did you manage to get those? i didn’t even see
Kim them come up for auction?

John: just went to the purple sim on my map and looked
on the site
John: I got the auction id maybe because I was actually
standing on the sim
Kim: right.. and then u bid on them at the auction
Jenny: you did well then.. that’s good
John: If I get any of the others I bid on, you want to buy?
The Seattle one is still up..
Jenny: Sure, just ring me on 611-123-4567
or email me at jenny@mels.org

d2 Jenny: can you do this only with purple land, or can you do
it with any land that has an auction id?
Kim: only with purple land
John: If it goes without bids for long enough, they can
release it into general population as first land

Sam d5 Sam: Enter the active auction number on the page
Bob d4 Bob: LIM00290

its for 2849 Rensdon Ave.
Seattle, WA

Table 3: Document Sets for Prominent Communities and Individuals in Example 4.2.1

The profile construction process is illustrated in the following example.

Example 4.2.1 (Profile Construction) Consider the documents d1 and d2 (shown in Ta-

ble 3) which contain the prominent community C = {John, Jenny, Kim}. In order to

construct the profiles for this prominent community, we specify the semantic types to be

phones, cities, topics, websites, persons and emails. The profile construction process

proceeds by first extracting all the information of types phones, cities, topics, and emails

from the community’s document set R(C) = {d1, d2}. The value f ′(t) is calculated for

each extracted term using the formula in definition 4.2.1. Table 4 shows the extracted

terms for each semantic type, along with their weight, for the documents d1 and d2. Next,

we combine the terms of a certain semantic type, e.g. topics, from all documents in the
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Figure 3: Example of a Profile

community’s document set into one vector representing that same semantic type. When

combining the terms into one vector, we ensure that the weights are first combined and

then normalized as in definition 4.2.1. After the combining step in our example, the terms

in Vtopics are now auction, bid, id, land, purple, and sim with weights: f(auction) = 1,

f(bid) = 1, f(id) = 1, f(land) = 0.5, and f(purple) = 0.5, and f(sim) = 0.5. Figure 3

shows the profile built for the prominent community C = {John, Jenny, Kim}. The

profiles can now be processed by the discovery algorithm.

4.3 Indirect Relationships Discovery Algorithm

Given a prominent community C with profile P (C), we propose the indirect relationships

discovery algorithm to extract indirect relationships between the prominent community C

and other individuals in the data set. This algorithm is a hybrid version of both the open and
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di x1=Topics x2=Phones x3=Emails x4=Cities x5=Persons
d1 auction [1.2] (611)123-4567 [0.6] jenny@mels.org [0.6] seattle [1.2] john [0.6]

sim [0.6] jenny [0.6]
bid [0.6] kim [0.6]
id [0.6]

d2 purple [0.6] john [0.6]
land [0.6] jenny [0.6]
bid [0.6] kim [0.6]
id [0.6]

d3 auction [1.2] sam [0.6]
active [0.6]
number [0.6]
page [0.6]

d4 LIM00290 [0.6] seattle [1.2] bob [0.6]
rendson [0.6] WC [0.6]

Table 4: Extracted Terms of Specified Semantic Types from Documents

closed discovery algorithms described in section 2.4.2. The closed discovery requires two

initial terms A and C, and generates hypothetical relationships between A and C through

intermediate terms B. On the other hand, open discovery requires the entry of only one

initial term, the B and C are provided by the algorithm. We propose a model that is open in

the sense that it requires only one initial term to start the discovery process. However, the

other end of the relationship must be the name of an individual from the data set.

Algorithm 6 shows the steps of the indirect relationship discovery algorithm. As men-

tioned above, this method is applied to detect indirect relationships between the prominent

communities and other individuals in the data set. The method is applied for each commu-

nity Cj in the previously defined set G. The algorithm requires the profile of the prominent

community P (C) as input, where at least one of its term vectors Vx is of a semantic type

“persons". Both the number of intermediate terms, N , and the depth of the indirect rela-

tionship, d, are set by the user. If d = 1, for example, then the indirect relationship between

community a and person c is through one connecting term, e.g. a → b → c. However, if

d = 2, then the relationship is of the form a→ b→ e→ c.

The algorithm proceeds with the truncation of the term vectors, Vx, comprising the

profile P (C), by selecting the N top ranking terms in each Vx for all values of x ∈ X .
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Input: Profile P (C) = {Vx1 , . . . , Vxn} for community C (see definition 4.2.1), Number of inter-
mediate terms N , user-specified depth d

Output: Set of person names indirectly related to C through d intermediate terms
Method:

P = P (C)
while d > 0 do

Let Bxi denote the N top ranking terms in Vxi corresponding to P
Construct profile P (Bx[y]), x ∈ X , y = 1, . . . , N
Combine profiles P (Bx[y]) into one profile P (O), where the weight of a term in P (O) is the
sum of its weights in profiles P (Bx[y]), y = 1, . . . , N .
for each tj ∈ Vx of P (O), x ∈ X do

Conduct a query (tj AND C) in D
if result ̸= ∅ then

remove tj from P (O)
end if

end for
d = d− 1
P = P (O)

end while
return terms Ox ranked by weight, for semantic type x=“persons”

Algorithm 6: Indirect Relationship Discovery Algorithm

The new truncated vectors are called Bx for each semantic type x accordingly. Next, for

each xi ∈ X we search the data set for each term Bx[y], y = 1, . . . , N in order to build its

profile. The constructed profiles are P (Bx[1]), P (Bx[2]), . . . , P (Bx[N ]). Now, a combined

profile is computed where the combined weight of a term is the sum of its weights in each

of P (Bx[1]), P (Bx[2]), . . . , P (Bx[N ]) in which it occurs. This combined profile is called

P (O) and is comprised of vectors Vx for each semantic type x ∈ X . For each term in

tj in the profile P (O), if a search for (C AND tj) returns a non empty set, the term tj is

removed from P (O). If the depth is set to a value greater than 1, the algorithm iterates

again using the value of the profile P (O) produced from the previous iteration as the input

profile for the next iteration. Finally, the method returns the terms in P (O) for the semantic

type “persons" ranked by combined weight and terminates.

Example 4.3.1 (Profile Construction) To illustrate the steps of the algorithm, consider
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Figure 4: Indirect Relationship Discovery

the community C with profile P (C) from Figure 3. The objective is to discover the pos-

sibility of a conceptual, indirect relationship between this prominent community and the

individuals in the data set.

The algorithm starts with the profile P (C) for the community C = {John, Jenny,Kim}.

The parameter N specifies the number of terms that are considered in each of the term vec-

tors of this prominent community’s profile. Profiles for each term in the profile P (C) are

built and obtain the values shown in figure 4. Next, the profiles are combined into one

profile P (O) also shown in figure 4.

If d = 1, as it is in this example, the “persons" vectors in P (O) are used to generate the
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Figure 5: Direct Relationships (–) vs. Indirect Relationships (- -)

indirect relationships. For each name tj in this vector the document set is searched for doc-

uments containing both tj and C. In this example, the first lookup searches for documents

containing all four names: John, Jenny, Kim, and Sam. If such a document does not exist,

then it implies that Sam has no co-occurrence relationship with the prominent community.

This generates an indirect relationship between the prominent community John, Jenny,

Kim, and Sam through the topic term auction. The remaining relationships are extracted in

the same manner. Figure 4 shows the final results of the discovery method when applied to

this example. Figure 5 shows the prominent community sharing a direct relationship along

with the hypothetical indirect relationships to individuals Bob and Sam.
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Chapter 5

The Criminal Communities Mining

System

The proposed methods for mining and analyzing social networks from a suspect’s hard

drive are implemented in the Criminal Communities Mining System (CCMS). We evalu-

ated the performance of the proposed method in the system with real-life data sets. This

chapter explains the capabilities and features of the modules comprising the system. First,

we provide an overview of the system architecture and the integration with forensic anal-

ysis tools, followed by a description of the communities visualizer. Finally, we present

the experimental results to illustrate the performance of the proposed methods in terms of

capability of communities identification, efficiency, and scalability.

5.1 Architecture

Figure 6 provides an overview of the CCMS, which is composed of three major compo-

nents: a content parser, a social network analyzer, and a community visualizer. These are

all accessible through a user-friendly and interactive graphical user interface. The extracted
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information by the three components is stored in a database (knowledge base) at the back-

end.

The first component, the content parser, is a file system crawler. This module is re-

sponsible for reading the documents from the storage media and parsing their content into

a standard textual representation. Once processed by this component, the documents are in

the proper format in which the required information extraction techniques can be applied

to them.

The second component is the criminal communities mining module, which implements

the communities discovery and information extraction algorithms described in chapters 3

and 4. Users can participate in guiding the analysis through the options provided in the

user interface. The results of the analysis are fed to the visualization module, which will

prepare the data for the display process. This module is designed with both modularity and

scalability factors in mind.

The third component is the community visualizer, which provides a graphical view of

the results of the identified prominent communities together with the community informa-

tion. The visualization component is built on top of the Prefuse Library [18, 19] in order

to map the communities to geometric shapes. The visualization module is designed to

facilitate interactive data exploration.

5.2 Capabilities and Features

5.2.1 File Parsing

The first component is the file system content parser. This component is responsible for

constructing and populating the system’s dataset/database by reading the user-specified

files. Through the user interface, the parser allows the user to specify the source of the

documents that will be analyzed. The main functionality of this module is to crawl the
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Figure 6: System Architecture

file system, parse the content, and extract the useful information. The preprocessing of

the file system files is necessary to represent these files in a uniform structure that can be

processed by the subsequent modules. The user can specify a specific type of document or

a set of documents in which the analysis is to be performed, otherwise the system default is

to analyze the entire file system that is available on the machine including hidden files, for

all data file types. In many cases, forensic practitioners obtain more than one file system

for a single case. The CCMS tool is capable of parsing the content of one or multiple file

systems.

5.2.2 Criminal Communities Discovery

Criminal communities discovery is a major component in the system. This module is re-

sponsible for identifying the criminal communities that occur frequently in the documents

parsed by the previous component. Moreover, it generates hypotheses for potential indirect
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relationships between individuals across the data set. These two analysis tasks are per-

formed by two distinct modules in the analysis component. Each module allows the user

to specify certain values needed for the analysis.

Subgroup Identification

One key feature of the analysis module is to provide some insight on the strength of the re-

lationships among the members in a community. In the CCMS, closely related individuals

are identified by the frequency of the interactions between them. If a community contains

a group of individuals who interact more frequently with each other than they do with the

rest of the community, they are identified as a sub-group within the community. Similarly,

the individual with the highest frequency count in the data set is labeled as the leader in the

community. The investigator has the opportunity to explore the structure of a given com-

munity by navigating the subgroups. Investigators can accomplish this by manipulating

various preferences. The community size parameter allows investigators to view commu-

nities of a certain number of members. Another user-specified parameter is the min_sup,

which is the minimum support count to form a prominent community (see section 3.3).

This allows the user to narrow down the results by increasing the threshold, or expand the

results by setting it to as low as 2.

Post-processing of Extracted Names

Extracted names that do not represent names of interest to the investigator can be manually

eliminated, through a selection button, from the analysis process. This allows for the elim-

ination of the false positives returned by the Named Entity Recognition (NER) component.

The investigator can also manually eliminate irrelevant communities identified by the tool.

The summary topics and additional information provided by the system allow the crime
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investigator to have a quick overview of the documents’ contents without actually read-

ing them. The document set can also be viewed by the user along with each community,

enabling the user to fully retrieve a document that appears to be of interest.

Indirect Relationship Discovery Depth

The second module generates the indirect relationships between the identified individuals

from the documents. The relationship identification can be set by the user to various levels.

If no links are found through a single intermediate topic, the user can increase the depth

parameter, thus increasing the length of the evidential trail between the community and the

individual.

5.2.3 Data Visualizer

The visualization component displays the findings from the analysis in a graphical repre-

sentation. The visualizer is built on top of the Prefuse Library [18, 19], and is designed

to facilitate the exploration of the analysis results and the file system behind it, if needed.

Individuals are mapped to nodes and the relationships are visualized as edges, varying in

color to discriminate co-occurrence relationships from hypothetical relationships. In this

module, the user is provided with an abstract view and a detailed view.

In the abstract view, the user can view the criminal communities of a certain number of

members, or simply view the maximal sizes of communities. Figure 7 depicts an abstract

view example. The visualization provides the user with the frequency of each linked group

of names. The user can make a quick assessment of the most dominant communities and

names in the document set. In the detailed view, the user can select a specific community

to view the potential hypothetical links to other names mentioned in the document set.

The link label facilitates effective browsing and the community’s profile provides a more

complete picture of the community’s behavior.
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Figure 7: Criminal Communities Analysis - Abstract View
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Figure 8: Criminal Communities Analysis - Detailed View
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Figure 9: Criminal Communities Analysis - Detailed View with Hint

Figures 8 and 9 show examples for the detailed view of the hypothetical indirect links

along with the direct links. The intermediate term(s) linking the individual to the prominent

community is displayed as a hint that appears when the investigator hovers over the edge

linking the individual to the community. The user can navigate between the different views

by selecting the required view, and focus on a particular community by clicking on it.

5.2.4 Efficiency and Scalability

This section describes our experimental results. We use a real-life data set to evaluate

the effectiveness and scalability of our proposed methods. The data set is obtained from

three machines of a graduate student at Concordia University. The documents are selected

from the standard My Documents directory on Microsoft Windows. The content of the
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documents is mainly related to research, tutoring, and course work topics. These include

various file types, ranging from Acrobat PDF files to Microsoft PowerPoint slides, from

email messages to standard Office documents.

In order to evaluate the effectiveness of our proposed approach, we measure the preci-

sion of both the prominent community discovery and indirect relationship discovery mod-

ules. By manually inspecting the resulting prominent communities shown in Figure 7, that

were obtained from the experiment data described above, we compare them with our prior

knowledge of the actual communities of the owner of the machine. The system identi-

fied a prominent community comprised of Christine, Kelly, Frank, Steven, and Ian. The

relationship information provided with this community suggested that the documents are

related to the topics LDAP, system, and project. Some phone numbers and emails are also

correctly identified. This group represents a group of students working on a team project

that involved the design of a Lightweight Directory Access Protocol (LDAP) server.

To evaluate the impact of the minimum support threshold on the number of prominent

communities, we apply the prominent community discovery method n times, 5 ≤ n ≤

12 on a single set of 350 files over n different min_sup values. Figure 10 shows the

number of prominent communities for the minimum support threshold from 5 to 12. As

the minimum support threshold increases, the number of prominent communities quickly

decreases because the number of documents sharing all members in a community decreases

very quickly.

Next, we evaluate the scalability of our proposed methods by measuring the runtime

required for each method on data sets of various sizes. The proposed communities discov-

ery, information extraction, and visualization modules are applied to data sets starting from

0.25GB up to 2GB with min_sup = 3 and depth = 1. Figure 11 shows the runtime of

our proposed methods with respect to the size of the document set from 0.25GB to 2GB.

In general, the total runtime increases as the data size increases. For instance, the program

72



�

�

��

��

��

��

� � �� ��

��
��
���
�	�

��
��
��
��
��
��
��
���
�

������������������������

Figure 10: Number of Prominent Communities vs. Minimum Support Threshold

takes 154.69 seconds to complete these three tasks for 2GB of data, excluding the the time

spent on reading the document files from the hard drive. The program takes 474 seconds to

read 25,000 files with a total size of 1GB from a hard drive.

73



�

��

��

��

��

���

���

���

���

���

� ���� ��� ��	� � ���� ��� ��	� � ����

��
���
��
�	

��
��
�
�

�����
����	���


����������
����������

�

���

���

���

���

���

���

� ���� ��� ��	� � ���� ��� ��	� � ����

��
���
��
�	

��
��
�
�

�����
����	���


�����������
���������

�

����

���

����

���

����

� ���� ��� ���� � ���� ��� ���� � ����

��
���
��
�	

��
��
�
�

�����
����	���

��	
���������
���������		���

�

��

��

��

��

���

���

���

���

���

� ���� ��� ��	� � ���� ��� ��	� � ����

��
���
��
�	

��
��
�
�

�����
����	���


�����������

Figure 11: Scalability: Runtime vs. Data Size
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Chapter 6

Conclusion and Future Work

6.1 Summary and Conclusions

In this thesis, we have proposed an approach to mine and analyze criminal networks in a

collection of text documents. The results of performing criminal network analysis depend

on the data that is available for the analysis and on the ability of the analysis method to

identify the characteristics of the relationships between the actors in the network. How-

ever, obtaining data about social individuals in the case of criminal networks faces a major

challenge, which is the scarcity of reliable data about the criminal individuals. In most

cases, forensically collected data contains valuable information about a suspect’s social

network. Typically, investigators try to find this information by manually inspecting the

documents using forensic tools’ queries and other basic search features. Once gathered,

the information is then manually entered into the law enforcement database. To the best

of our knowledge, there are no existing tools that provide methods to automatically ex-

tract social networks from raw documents, add them to a knowledge base and then analyze

them. Our proposed method aims to address two problems: the first is the task of mining

raw texts to identify the criminal networks within these texts. Second, we perform criminal

network analysis on these networks and provide a visual representation of their interactions
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and associations.

By exploring various Information Extraction (IE) methods, the application of Named

Entity Recognition (NER) tools have proven to be effective in identifying members of crim-

inal communities. Text summarization techniques are also beneficial in identifying key

topics which can label relationships between members of a criminal community. More-

over, data mining algorithms, such as the Apriori algorithm designed for mining frequent

patterns, can efficiently identify criminal communities that are related by co-occurrence.

Extracting communities using this algorithm is beneficial in many ways. One of its merits

is that it is able to identify criminal communities as well as the interlinked subgroups that

comprise them. Thus, the structure of the network is identified in a more fine-grained level,

which is a key requirement in criminal network analysis. Another merit of this approach

is that it maintains a structure that facilitates an important feature applied in the visualiza-

tion process. This feature allows for viewing the criminal network with different levels of

abstraction.

Additionally, our proposed discovery method provides the investigators with a domain

specific link analyzer for possible indirect links between a criminal community and other

actors in the data set where the relationship is through intermediate terms. The contact

information and document topics are used as the intermediate topics. By selecting terms

that are important in investigations as the intermediate linking terms, we are able to ensure

that the extracted indirect relationships are the most meaningful ones to the investigator.

The proposed approach, when implemented, produces reliable results and performs in

a scalable and efficient manner. By automatically identifying the prominent communities

residing on the hard drive and allowing the investigator to explore the attributes and infor-

mation about the individuals and the links in a simplified visual manner, the efficiency of

forensic examinations can be immensely increased. The indirect links are discovered by the

system based on information that has been already found in the data, leaving the user with
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only the task of rationalizing whether the evidential trail is one of interest to him or not.

The system has been designed to provide the investigator with the results of the analysis in

a visual representation that allows for quick and efficient exploration. The analysis process

can be guided by the experience and knowledge of the investigators to either provide a

more abstract or detailed analysis of the networks.

6.2 Future Work

The following is a summary of the future work for the approach proposed in this thesis.

In our system we are using the Stanford NER developed by Stanford in order to identify

person names in the textual content. One problem is that the Stanford NER is trained on

a data set obtained from American and British newswire, which relatively limits its per-

formance to the two domains. However, since names on hard drives are mostly found in

documents with informal structure, such as email messages and chat logs, the textual con-

tent we address is far less structured than newswire documents, which are well structured

and written formally. The names found in forensically collected data differ than other more

formal contexts in the following:

- They are usually shorter versions of names (nick names, initials) rather than complete

names

- They are rarely preceded by titles such as Mr., Dr, etc.

- In this context, fun nick names and gang specific names that do not occur in name

dictionaries are used

- Normal name writing conventions such as a leading capital letter are mostly ignored

- The same person can be referred to by more than one name
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- Proper punctuation is either ignored or not present because of the format of the doc-

uments. For instance, in chat logs different names are not separated by punctuation

marks which makes it difficult to infer the end of a single name.

Thus, in order to enhance the accuracy of our system, a forensic-customized named

entity recognition model should be designed, developed, and trained.

For the criminal community information extraction, our approach involves some pieces

of information that are of evidentiary significance. Studying the extraction methods for

more types of forensically significant information such as street addresses, credit card

numbers, names of banks, IP addresses, and any other types of data that are useful for

investigations can improve the performance of this tool on many levels:

- Identifying the information related to social groups provides the forensic examiners

with more options to select what type of data they are interested in viewing. More-

over, in the profiles that are built for the discovery algorithm, more semantic types

allow for better fine-tuning and for more experiments to be conducted for finding

evidence trails.

- Once more data types can be extracted, more information is available for analysis

research. Consequently, additional analysis approaches can emerge and be tested.

Different patterns, for the indirect relationship discovery, can be found by trying dif-

ferent combinations of semantic types for the intermediate terms. Our indirect relationship

discovery algorithm can be extended in order to experiment with different semantic types

and different values for the depth and intermediate terms.

The CCMS can be tested on an actual data set that is obtained from law enforcement

agencies. Experts can verify the results of the analysis, and evaluate the accuracy of the

identified communities and evidentiary significance of the extracted information.
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Appendix A

The Stemming Process

This appendix contains the table illustrating the steps of the stemming process explained in

section 3.4.

Table 5: Stemming Process Example

Token stem pre1 stem post1 stem manual stem post2 stem syn

[jenny] jenny] jenny jenny jenny jenny

how how how how how how

did did did do do do

you you you you you -

manage manage manage manage manag manag

to to to to to -

get get get get get get

those? those? those those thos thos

i i i i i -

didn’t didn’t did do do do

even even even even ev even

see see see see se see

them them them them them them

come come come come com com

Continued on Next Page. . .
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Table 5: Stemming Process Example

Token stem pre1 stem post1 stem manual stem post2 stem syn

up up up up up -

for for for for for -

auction? auction? auction auction auction auction

[john] john john john john john

just just just just just just

went went went go go go

to to to to to -

the the the the th -

purple purple purple purple purpl purpl

sim sim sim sim sim sim

on on on on on -

my my my my my -

map map map map map map

and and and and and -

looked looked looked looked look look

on on on on on -

the the the the th -

site site site site sit sit

[john] john] john john john john

i i i i i -

got got got get get get

the the the the th -

auction auction auction auction auction auction

id id id id id id

maybe maybe maybe maybe mayb mayb

because because because because becaus becaus

i i i i i -

was was was be be -

Continued on Next Page. . .
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Table 5: Stemming Process Example

Token stem pre1 stem post1 stem manual stem post2 stem syn

actually actually actually actually actual actual

standing standing standing standing stand stand

on on on on on -

the the the the th -

sim sim sim sim sim sim

[kim] kim] kim kim kim kim

right.. right.. right right right right

and and and and and -

then then then then th then

bid bid bid bid bid bid

on on on on on -

them them them them them them

at at at at at -

the the the the th -

auction auction auction auction auction auction

[jenny] jenny] jenny jenny jenny jenny

well well well well well well

then.. then.. then then then then

that’s that’s that that that that

[john] john] john john john john

if if if if if -

i i i i i -

get get get get get get

any any any any any any

of of of of of -

the the the the th -

others others others others others others

i i i i i -

Continued on Next Page. . .
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Table 5: Stemming Process Example

Token stem pre1 stem post1 stem manual stem post2 stem syn

am am am am am -

bidding bidding bidding bidding bid bid

on on on on on -

want want want want want want

to to to to to -

buy? buy? buy buy buy buy

the the the the th -

is is is is is -

still still still still still still

up.. up.. up up up up

[jenny] jenny] jenny jenny jenny jenny

sure sure sure sure sure -

just just just just just just

ring ring ring ring r ring

me me me me m -

on on on on on -

or or or or or -

email email email email email email

me me me me m -

at at at at at -
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