
SIDE CHANNEL ATTACKS ON SYMMETRIC KEY

PRIMITIVES

YASER ESMAEILI SALEHANI

A THESIS

IN

THE DEPARTMENT

OF

ELECTRICAL AND COMPUTER ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF APPLIED SCIENCE IN ELECTRICAL AND

COMPUTER ENGINEERING

CONCORDIA UNIVERSITY

MONTRÉAL, QUÉBEC, CANADA

JULY 2011

c⃝ YASER ESMAEILI SALEHANI, 2011

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Yaser Esmaeili Salehani

Entitled: “Side Channel Attacks on Symmetric Key Primitives”

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science

Complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee:

 __ Chair

 Dr. R. Raut

 __ Examiner, External

 Dr. A. Bagchi (BCEE) To the Program

 __ Examiner

 Dr. A. Agarwal

 __ Supervisor

 Dr. A. Youssef

Approved by: ___

 Dr. W. E. Lynch, Chair

 Department of Electrical and Computer Engineering

____________20_____ ___________________________________

 Dr. Robin A. L. Drew

 Dean, Faculty of Engineering and

 Computer Science

Abstract

Side Channel Attacks on Symmetric Key Primitives

Yaser Esmaeili Salehani

Cryptographic primitives, including symmetric key encryption algorithms, are the basic

building blocks of security systems. Cryptanalytic attacks against these algorithms can be

divided into two classes: pure mathematical attacks and side channel attacks. Pure mathe-

matical attacks are traditional cryptanalytic techniques that rely only on known or chosen

input-output pairs of the encryption function, and exploit the inner structure of the cipher

to reveal secret key information. In side channel attacks, the physical implementation of

the cryptographic algorithms is considered. In particular, in this class of attacks, it is as-

sumed that the attacker has some access to the cryptographic device and is able to make

measurements with respect to time or power consumption, or is able to induce errors in the

memory or operation of the device. The additional information gained by utilizing such a

side channel are then combined with methods that exploit the inner structure of the cipher to

reveal the secret key. The wide spread of unprotected software or hardware cryptographic

implementations can offer various possibilities for these side channel attacks. Throughout

this thesis, we present side channel cryptanalysis against three symmetric key ciphers.

First, we present a differential fault analysis of SOSEMANUK which is a software-based

stream cipher that supports a variable key length between 128 and 256 bits and a 128-bit

iii

initial value. SOSEMANUK has passed all three stages of the ECRYPT stream cipher project

and is a member of the eSTREAM software portfolio. We analyze the cipher utilizing

the fault model in which the attacker is assumed to be able to fault a random inner state

word but cannot control the exact injected fault locations. Our attack, which recovers the

secret inner state of the cipher, requires around 6144 faults, work equivalent to around 248

SOSEMANUK iterations and a storage of around 238.17 bytes.

Next, we present a differential fault analysis against Hummingbird. Hummingbird is

a lightweight encryption algorithm that has a hybrid structure of block cipher and stream

cipher with 16-bit block size, 256-bit key size, and 80-bit internal state. We analyze the

cipher utilizing the fault model in which the attacker is assumed to be able to fault a random

word before the linear transform, after the s-boxes, of the four block ciphers which are used

in the Hummingbird encryption process but cannot control the exact location of injected

faults. Our attack, which recovers the 256-bit key, requires around 50 faults and 266 steps.

ZUC is a new stream cipher that was proposed for the 4G mobile standard by the Data

Assurance and Communication Security Research Center of the Chinese Academy of Sci-

ences. Our third contribution is a scan based cryptanalysis of ZUC. A scan path connects

registers in a hardware circuit serially so that a tester can observe the register values inside

the circuit. Scan-based attacks exploit the scan chains that are inserted into the devices for

the purpose of testing. Under reasonable assumptions, our scan-based cryptanalysis allows

the attacker to ascertain the whole location of internal registers including the LFSR and

the memory cells of the cipher. The attack, which utilizes the key loading procedure and

the working mode of the cipher execution procedure, allows the cryptanalyst to recover the

iv

secret internal state of the cipher in a relatively small number of clock cycles.

v

Acknowledgments

I would like to appreciate everyone who made this dissertation possible.

First of all, I would like to express gratitude to my supervisor, Dr. Amr Youssef, whose

encouragement and support in all academical stages paved the way for me. I thank him for

sharing his knowledge, enthusiasm, time and ideas with me from the start to the end.

I would like to say a special thank you to my wife, Mona, for her patience. She helped

me to concentrate on completing this dissertation and supported me faithfully during my

endeavors. Nothing I can say can do justice to how I feel about your support, Mona.

I also wish to express my appreciation for my parents. Without their belief in my goals,

their kindness and affection, I would not be able to enter the field of scientific research.

Finally, I wish to thank my colleagues at Concordia University. My keen appreciation

goes to both Aleksandar Kircanski and Hossein Khonsari for their help and their productive

research discussions.

vi

Contents

List of Figures x

List of Tables xi

List of Acronyms xii

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions of the thesis . 5

1.3 Thesis Outline . 6

2 Cryptanalysis of Symmetric Key Encryption Algorithms 8

2.1 Block ciphers . 8

2.1.1 Resource constrained block ciphers 9

2.2 Stream ciphers . 10

2.3 Cryptanalysis of symmetric ciphers . 13

2.3.1 Pure mathematical attacks of symmetric ciphers 15

2.3.2 Side channel attacks . 17

vii

3 Differential Fault Analysis of SOSEMANUK 25

3.1 Introduction . 25

3.2 The SOSEMANUK specifications . 27

3.3 The attack overview . 30

3.3.1 The main idea . 30

3.3.2 The steps of the attack . 33

3.4 Reducing the number of candidates for LFSR registers (s0, s1, s2, s3) and

(s8, s9, s10, s11) . 34

3.4.1 Recovering the s-box differences 34

3.4.2 Restricting the number of candidates for the LFSR registers 40

3.4.3 Further pruning of the LFSR registers candidates 42

3.5 Recovering the rest of the inner state . 44

3.6 Summary and conclusions . 46

4 Differential Fault Analysis of Hummingbird 48

4.1 Introduction . 48

4.2 Description of Hummingbird . 50

4.3 The proposed attack . 52

4.3.1 Key recovery of Eki . 53

4.3.2 The complexity of our attack . 57

4.4 Summary and conclusions . 57

5 Scan Based Side Channel Attack on ZUC 59

viii

5.1 Introduction . 59

5.2 General description of the attack . 61

5.3 The ZUC specifications . 63

5.4 The proposed attack . 68

5.4.1 Overview . 68

5.4.2 Key loading stage . 69

5.4.3 Determining the locations of the remaining LFSR bits 70

5.4.4 Determining the location of the remaining bits in R1 and R2 84

5.5 Summary and conclusions . 89

6 Conclusions and Future Work 92

6.1 Summary . 92

6.2 Future work . 93

ix

List of Figures

1 The Serpent1 function . 28

2 Overview of the SOSEMANUK stream cipher 29

3 The Δf values corresponding to the case where s4 is faulted 31

4 An overview of the Hummingbird encryption process. 51

5 The structure of Eki - the 16-bit block cipher of Hummingbird in encryp-

tion mode. 58

6 Overview of the ZUC stream cipher . 65

x

List of Tables

1 Determining the s-box input-output values based on sets ±i and Δi 41

2 Possible differential outputs of the linear transformation - The D’s list . . . 54

3 Summary of the fault attack on Hummingbird 55

4 Formulas used in step 1 . 85

5 Formulas used in step 2 . 87

6 Formulas used in step 3 . 88

7 Formulas used in step 4 . 90

8 Formulas used in step 5 . 91

xi

List of Acronyms

AES Advanced Encryption Standard

CRT Chinese Remainder Theorem

DES Data Encryption Standard

DFA Differential Fault Analysis

DFT Design For Testability

DPA Differential Power Analysis

ECC Elliptic Curve Cryptosystems

ECRYPT European Network of Excellence for Cryptology

EDC Error Detecting Codes

eSTREAM ECRYPT Stream Cipher Project

FSM Finite State Machine

GE Gate Equivalent

LFSR Linear Feedback Shift Register

LTE Long Term Evolution

MAC Message Authentication Code

NESSIE New European Schemes for Signatures, Integrity and Encryption

xii

NIST National Institute of Standards and Technology

NLCG Non-Linear Combiner Generator

NLFF Non-Linear Filter Function

RBT Redundancy Based Techniques

RFID Radio Frequency Identification

SHA Secure Hash Algorithm

SPA Simple Power Analysis

SPN Substitution Permutation Network

TEA Tiny Encryption Algorithm

xiii

Chapter 1

Introduction

Protection and hiding of valuable information has a very old history [1] where cryptology

has developed over the centuries from an art, in which only few were ingenious, into a

science with well established foundations. There are several goals which security profes-

sionals desire to achieve through the use of cryptography. These goals include confidential-

ity, data integrity, entity authentication, non-repudiation and data origin authentication [2].

Cryptology encompasses two related fields: cryptography and cryptanalysis. Cryptogra-

phy can be defined as the study of mathematical techniques to ensure various aspects of

information security as those mentioned. On the other hand, cryptanalysis can be defined

as the study of techniques to analyze, and break, information security services by targeting,

specifically, the underlying cryptographic algorithms.

Cryptographic primitives, which can be seen as the basic building blocks of any cryp-

tosystem, are extremely important in the view of cryptographers and attackers. While cryp-

tographers design cryptosystems using these low-level building blocks, attackers attempt

1

to evaluate such blocks in order to compromise the overall security of deployed systems.

Block ciphers, stream ciphers, hash functions, message authentication codes and public key

cryptosystems are among the most fundamental primitives of cryptography.

Cryptographic algorithms can be divided into two basic classes: symmetric key (or

secret key) systems and asymmetric key (or public key) systems. Both of these systems

are used to provide a variety of security functions for networks and information systems.

Whereas symmetric key cryptography uses the same key for encrypting and decrypting

information, public key algorithms do not require a secure initial exchange of one or more

secret keys between the sender and receiver. In symmetric key cryptography, confidentiality

is provided by using stream ciphers or block ciphers. While stream ciphers encrypt the bits

of the message one at a time, block ciphers take a number of bits and encrypt them as block

units under a private key. The focus of this work is the cryptanalysis of symmetric key

primitives.

1.1 Motivation

Generally, cryptanalysis of a cipher, or simply cipher breaking, does not mean finding

an efficient algorithm for an adversary to recover the plaintext from the ciphertext. In

particular, in the academic cryptanalysis literature, breaking a cipher mainly means finding

a weakness in the cipher that can be exploited with a complexity strictly less than brute

force. In other words, the cryptosystem is said to be broken if the effort required by the

attacker to gain the secret information (e.g., plaintext or key) is less than the effort needed

2

by naive exhaustive key search. Based on this definition, which can be controversial, one

may need unrealistic amounts of time, memory, or known/chosen plaintext-ciphertext pairs.

In fact, most of the published pure mathematical attacks against modern ciphers belong to

this category, i.e., these attacks require an unrealistic amount of resources.

However, in many practical scenarios, the adversary may have access to the crypto-

graphic device. In such a case, side channel attacks allow the attackers to practically

break these cryptosystems using relatively small amount of computational resources and

a small number of known/chosen plaintext-ciphertext pairs. In particular, side channel at-

tacks make use of the physical implementation of the cryptosystem and cover different

models which increase the capabilities of the attackers. These capabilities include gain-

ing side channel information about the encryption or decryption process such as timing

analysis [3] and power analysis [4]. It may also include the ability to apply some kind of

influence on the internal state of the cryptographic devices by using unsupported supply

voltage or excessively overclocking the device. Strong electric or magnetic fields, or even

ionizing radiation flipping random bit(s) in the internal registers of the hardware implemen-

tation may also be used to gain access to some faulty computations of the cryptographic

devices which allow the recovery of secret internal information [5].

Currently, the wide spread of unprotected software or hardware cryptographic imple-

mentations offer various possibilities for these side channel attacks. Such attacks are practi-

cal and do not require expensive equipments. One class of side channel attacks that we will

focus on throughout this work is differential fault analysis (DFA) [6]. DFA is a powerful

3

side channel attack which can be applied to various kinds of cryptographic devices includ-

ing public key systems, block ciphers and stream ciphers. The basic idea behind DFA is to

force the cryptographic device to produce some controlled incorrect output results which

allow the attacker to deduce information about the secret internal state of the cryptographic

device. This technique was first applied to RSA [6] and then generalized to other public

key ciphers [6] and block ciphers such as DES [7] and AES [8]. Later on, DFA was also

applied to stream ciphers [9], particularly against the finalist list of the eStream project

including HC-128 [10] and Rabbit [11, 12].

In the first part of this work, we present a differential fault analysis on SOSEMANUK,

which is a software-based stream cipher that has passed all three stages of the ECRYPT

stream cipher project and is a member of the eSTREAM software portfolio.

Recently, dedicated ultra-lightweight symmetric key algorithms have been proposed for

applications within low-cost resource constrained devices such as RFID tags, smart cards,

and wireless sensor nodes. Obviously, security and privacy challenges should be considered

in these devices as well. In particular, DFA technique is still one of the main cryptanalysis

techniques that can be utilized to break theses cryptographic devices. Consequently, in

the second part of this work, we apply DFA to cryptanalyze a relatively new lightweight

encryption algorithm, Hummingbird, proposed by Engels et al. at FC’10 [13].

Design for testability (DFT) is a technique which has drastically improved the manu-

facturing testing with an efficient method of yielding a high fault coverage. Although the

scan test causes DFT to be more successful, it can also be applied to assist attackers launch

non-invasive attacks, which exploit information that is unintentionally leaked externally,

4

to recover important secret information from the cryptographic device. In general, this

method can be applied to various kinds of cryptographic algorithms that are implemented

in hardware. In the last part of this thesis, we present a scan-based cryptanalysis against a

hardware implementation of the new stream cipher ZUC which was recently proposed for

inclusion in the 4G Long Term Evolution (LTE) mobile standard [14, 15].

1.2 Contributions of the thesis

Our contributions can be summarized as follows:

∙ Differential Fault Analysis of SOSEMANUK: SOSEMANUK [16] is a software-

based stream cipher which supports a variable key length between 128 and 256 bits

and a 128-bit initial value. It has passed all three stages of the ECRYPT stream cipher

project and is a member of the eSTREAM software portfolio. Our first contribution

is a fault analysis attack on SOSEMANUK. The fault model in which we analyze

the cipher is the one in which the attacker is assumed to be able to fault a random

inner state word but cannot control the exact location of injected faults. Our attack,

which recovers the secret inner state of the cipher, requires around 6144 faults, work

equivalent to around 248 SOSEMANUK iterations and a storage of around 238.17 bytes.

∙ Differential Fault Analysis of Hummingbird: Hummingbird [13,17] is a lightweight

encryption algorithm proposed by Engels et al. at FC’10. Unlike other lightweight

cryptographic primitives, which can be classified as either block ciphers or stream

ciphers, Hummingbird has a hybrid structure of block cipher and stream cipher with

5

16-bit block size, 256-bit key size, and 80-bit internal state. Preliminary analysis

conducted by the cipher’s designers shows that it is resistant to most common attacks

against block ciphers and stream ciphers. Our second contribution is a differential

fault analysis attack on Hummingbird. The fault model in which we analyze the

cipher, is the one where the attacker is assumed to be able to fault a random word

before the linear transform, after the s-boxes, of the four block ciphers which are

used in the Hummingbird encryption process but cannot control the exact location of

injected faults. Our attack, which recovers the 256-bit key, requires around 50 faults

and 266 steps.

∙ Scan Based Side Channel Attack of ZUC: ZUC [14, 15] is a relatively new stream

cipher that was proposed for the 4G mobile standard by the Data Assurance and

Communication Security Research Center of the Chinese Academy of Sciences. Our

third contribution is a scan based cryptanalysis against ZUC. Under reasonable as-

sumptions, our cryptanalysis allows the attacker to ascertain the whole location of

internal registers of the LFSR and the memory cells.

The above results are partially published in [18] and [19].

1.3 Thesis Outline

The rest of the thesis is organized as follows. The next chapter introduces the required

background and the literature review of the side channel attacks. Our differential fault

analysis of SOSEMANUK is presented in chapter 3. Chapter 4 includes our differential fault

6

analysis of Hummingbird. The scan based cryptanalysis of ZUC is presented in chapter 5.

Finally, chapter 6 provides the conclusions and future work.

7

Chapter 2

Cryptanalysis of Symmetric Key

Encryption Algorithms

Symmetric key encryption algorithms can be classified as either block ciphers or stream

ciphers. In this chapter, we first provide a brief introduction to block ciphers and stream ci-

phers. We then present an overview of different cryptanalytic attacks against these ciphers.

2.1 Block ciphers

Symmetric key block ciphers are among the most prominent elements in modern cryptog-

raphy. As a fundamental building block, their versatility allows the construction of pseudo

random number generators, stream ciphers, MACs, and hash functions [2]. Individually,

they provide confidentiality under a secret parameter called private key or secret key.

Block ciphers operate on fixed length groups of bits, called blocks, typically of sizes

8

ranging between 64 to 256 bits. The Data Encryption Standard (DES) [20], which was

developed in the 1970s by IBM, is an example for a symmetric key block cipher which

encrypts 64-bit data blocks under the control of a 56-bit key. The DES decryption is the

inverse of DES encryption and uses the same key. In 2001, the Advanced Encryption

Standard (AES) [21], with a 128-bit block length and 128-256 bit key length, was approved

by NIST as a replacement for DES.

Block ciphers are constructed by combining basic building blocks which consist mainly

of linear transformations or permutations, non-linear functions such as s-boxes, and mod-

ular addition. Usually, these building blocks are combined in units called rounds. The

Substitution Permutation Network (SPN) structures and Feistel (also referred to as DES-

like) structures are the two most commonly used designs for block cipher constructions [2].

2.1.1 Resource constrained block ciphers

Due to the tight cost and constrained resources of high volume consumer devices such as

RFID tags, smart cards and wireless sensor networks, it is desirable to employ lightweight

and specialized cryptographic primitives for many security applications. Several resource

constrained devices have limited capabilities in every aspect of computation, communica-

tion and storage. To secure these devices, lightweight cryptographic primitives are needed.

The gate constraints for security of low-cost tags are about 200-2000 gates which is

less than what is usually required by standard cryptographic primitives. Thus existing

cryptographic algorithms can be hardly implemented under such resource constraints. The

9

resources required for AES are around 3600 Gate Equivalent (GE). While the exact imple-

mentation requirements for the primarily constrained resource algorithms, Tiny Encryption

Algorithm (TEA) [22], are not known, a crude estimate is that TEA needs at least 2100 GE

and XTEA [23] needs at least 2000 GE. Some of the most extensive proposals for low-cost

implementation are mCrypton [24], HIGHT [25], SEA [26], CGEN [27], PRESENT [28],

MIBS [29], and Hummingbird [13] (CGEN and Hummingbird are not classified as pure

block ciphers). The required gates for the hardware implementation of some of these en-

cryption algorithms are 2949 GE for mCrypton , 3048 GE for HIGHT, 2280 GE for SEA,

1570 GE for PRESENT and 1396 for MIBS.

2.2 Stream ciphers

Stream ciphers provide another alternative for block ciphers in applications requiring sym-

metric key encryption. Generally, compared to block ciphers, stream ciphers are preferred

in software applications with very high throughput requirements, and in hardware applica-

tions with restricted resources such as limited storage, gate count, or power consumption.

Stream ciphers can be though of as pseudorandom number generators that are initialed

by secret keys and, usually known, Initial Values (IVs). The encryption process is per-

formed by combining the plaintext with the produced key stream, usually through an XOR

operation.

Unlike the case for block ciphers, currently there is no specific standard for stream

10

ciphers. However, two main projects are worth mentioning. The first one, the New Euro-

pean Schemes for Signatures, Integrity and Encryption (NESSIE), is a European research

project funded from 2000 to 2003 [30]. At the end of this project, none of the submitted

stream ciphers were selected because all of them were attacked. In 2004, a call for an-

other competition of stream ciphers proposals was issued by the Network of Excellence

within the Information Societies Technology (IST) Programme of the European Commis-

sion [31]. Thirty five stream cipher algorithms were submitted to the project, known as the

eSTREAM [32], at three profiles: Profile I (Software), Profile II (Hardware) and Profile

I+II (Software+Hardware). In 2008 and after three phases, four algorithms were selected

as Profile I and three stream ciphers were announced as Profile II as follows:

∙ Profile I (SW): HC-128 [33], Rabbit [34], Salsa20/12 [35] and SOSEMANUK [16].

∙ Profile II (HW): Grain [36], MICKEY [37] and Trivium [38].

Stream ciphers can be classified as synchronous and self-synchronizing or asynchronous.

A synchronous stream cipher is one in which the keystream is generated independent of the

plaintext message and of the ciphertext. Synchronization requirements, and no error prop-

agation are properties of synchronous stream ciphers. An asynchronous stream cipher is

one in which the previous ciphertext digits participate in computing the next keystream

word. Consequently, the keystream generated by an asynchronous stream cipher algorithm

is a function of the key and a fixed number of previous ciphertext digits. Some properties

of asynchronous stream ciphers are self-synchronization, limited error propagation, active

attacks and diffusion of plaintext statistics.

11

Stream ciphers can also be classified with respect to their design components into shift

register based and non shift register based stream ciphers. RC4 [39], HC-128 [33] and

HC-256 [40] are examples for non shift register based steam ciphers. Shift register based

ciphers can be further divided into Linear Feedback Shift Register (LFSR)-based and Non-

Linear Feedback Shift Register (NLFSR)-based structures. Due to inherent linearity of the

output of LFSRs sequences, its direct application in cryptography is restricted although its

produced sequences may have several good properties such as long period, balancedness

and good correlation properties. To eliminate this inherent linearity in LFSRs based stream

ciphers, one can use more than one LFSR and utilize a Non-Linear Combiner Generator

(NLCG) to remove the linearity of the produced sequence in a regularly clocked LFSR.

The nonlinear combining functions are required to have cryptographic properties such as

balance, high nonlinearity, correlation immunity, high algebraic degree and high algebraic

immunity degree [42] to ensure that the output of the stream cipher is secure. Another

method to improve the nonlinearity of the output sequence is through the use of Non-Linear

Filter Function (NLFF) which operates on a subset of the bits of the LFSR. Irregularly

clocked LFSRs were also proposed to improve the nonlinearity of stream ciphers [41]. In

this case, the underlying structure has more than one LFSR where each of them is clocked

at a different rate, independent of the others, at each step of the cipher iterations.

12

2.3 Cryptanalysis of symmetric ciphers

Cryptanalysis is the study of techniques which attempt to defeat information security ser-

vices by compromising the underlying cryptographic schemes. Cryptanalysis of symmetric

key ciphers typically involves looking for attacks against block ciphers, stream ciphers and

MACs. There is a wide variety of cryptanalytic attacks and they can be classified by several

ways.

Based on the nature of the adversary, cryptanalytic techniques can be classified into

either passive attacks or active attacks. A passive attack is one where the adversary only

monitors the communication channel which only threatens the data confidentiality. On the

other hand, in an active attack, the attacker may attempt to delete, add, or change the trans-

mission on the channel. Data integrity, authentication and confidentiality are threatened by

this type of adversaries.

Another classification is based on the information available to the adversary. In this

case, cryptanalytic attacks can be classified as ciphertext-only attacks, known-plaintext at-

tacks, chosen-plaintext attacks, chosen-ciphertext attack, adaptive chosen-plaintext attacks

and adaptive chosen-ciphertext attacks [2]. In a ciphertext-only attack, the cryptanalyst

has access only to the ciphertext and tries to recover the key or plaintext whereas in a

known-plaintext attack, the cryptanalyst has access to a ciphertext and its corresponding

plaintext. A chosen-plaintext attack is a cryptanalysis form in which the adversary may

13

choose a plaintext and learn its corresponding ciphertext while in a chosen-ciphertext at-

tack, the attacker can choose ciphertexts and learn their corresponding plaintexts. In adap-

tive chosen-plaintext attack, the cryptanalyst makes a series of interactive queries, choosing

subsequent plaintexts based on the information from the previous encryptions. Finally, an

adaptive chosen-ciphertext attack is an interactive model of chosen-ciphertext attacks in

which an attacker sends a number of ciphertexts to be decrypted, then uses the results of

these decryptions to select subsequent ciphertexts.

There is another classification of attacks with respect to whether the attacker has some

sort of physical access to the encrypting device or not. Pure mathematical attacks are

traditional cryptanalytic techniques that rely only on known or chosen input-output pairs

of the encryption function, and exploit the inner structure of the cipher to reveal secret key

information. On the contrary, in side channel attacks, it is assumed that the attacker has

some access to the encryption device, either by being able to make measurements with

respect to time or power consumption, or by being able to induce errors in the memory

of the device (fault analysis). The additional information gained by utilizing such a side

channel is then combined with methods that exploit the inner structure of the cipher to

reveal the secret key.

The success of a cryptanalytic attack is typically measured by the following complexi-

ties:

- Data complexity: The amount of plaintext/ciphertext information necessary to per-

form the attack.

14

- Time complexity: The amount of necessary computations required to execute the

attack. For example, in the case of a brute force attack in which every key is trivially

examined, the number of operations is 2∣K∣−1 on average, where ∣K∣ denotes the size

of the key space in bits.

- Memory complexity: The amount of storage required by the algorithm that executes

the attack.

- Number of necessary physical actions on the encrypting device: This measure is rel-

evant only to side channel attacks and can include the number of necessary measure-

ments in case of side channel analysis (such as power analysis attacks and timing

attacks) or number of induced faults in the memory of the cipher, in case of fault

analysis.

2.3.1 Pure mathematical attacks of symmetric ciphers

In pure mathematical attacks, the adversary regards the problem as how to recover the

secret key given input/output pairs of the encryption algorithm from a purely mathematical

perspective without considering the physical implementation of the cipher.

There are various types of pure mathematical cryptanalysis models against symmetric

key ciphers. However, a set of generic cryptanalytic methods exists regardless whether the

cryptographic algorithm is a stream cipher or a block cipher. Brute force or exhaustive key

15

search is the most trivial generic cryptanalytic method which can be applied to such algo-

rithms, independent of the design details. Besides, many other cryptanalytic methods in-

vestigate weaknesses of symmetric algorithms. In what follows, the intuition behind some

of the well-known cryptanalysis methods which are applicable to symmetric primitives is

given.

Linear cryptanalysis [43] is a known plaintext attack that utilizes the existence of any

linear relation, between some plaintext and ciphertext bits, that holds with probability dif-

ferent than 1
2
. Linear cryptanalysis was successfully applied by Matsui against DES in

1993. Later on, the attack was widely applied to many other block ciphers with different

degrees of success. The first step of linear cryptanalysis is to obtain a linear approximation

for the nonlinear blocks (e.g., s-boxes or non-linear combining functions). In this step, the

attacker utilizes approximations that hold with a large bias. The second step is to propa-

gate the achieved approximation throughout the other component of the cipher in order to

achieve an overall probabilistic linear relation that involves the plaintext, ciphrtext and the

key bits (as the only unknowns).

Differential cryptanalysis [44] is a general cryptanalytic method applicable primarily

to block ciphers, but was also applied recently to stream ciphers. In a very broad sense,

differential cryptanalysis studies how specific differences in the input of a particular trans-

formation affect the resulting output differences. As in linear cryptanalysis, the first step

of differential cryptanalysis is to find differential characteristics that hold with relatively

good probability for the different building blocks of the cipher. Then, these characteristics

are concatenated to form a differential for the overall cipher. Consequently, possible key

16

values can be recovered from the desired output difference between two chosen or known

plaintext inputs.

Truncated differential cryptanalysis [45], impossible differential attacks [46], higher-

order differential cryptanalysis [47], and Boomerang attacks [48] are some well known

extensions of differential cryptanalysis.

Other attacks on block ciphers, independent of linear and differential cryptanalysis,

include the interpolation attacks [49], related key attacks [50], square attacks, integral at-

tacks, and multiset attacks [51,52]. Examples of dedicated cryptanalysis techniques against

stream ciphers include the correlation attacks [53] and the guess and determine attacks [54].

For modern stream and block ciphers, the above examples of pure mathematical at-

tacks are interesting, mainly, from a theoretical perspective but they typically require an

overwhelming computation and/or data complexity.

2.3.2 Side channel attacks

Side channel attacks concentrate on how to utilize the information leaked from physical

implementations of cryptographic modules during execution of the algorithm. Implemen-

tation dependent attacks, i.e., side channel attacks, present a serious threat for many appli-

cations of symmetric key primitives which are widely deployed in many devices such as

TV set-top boxes, prepaid cards and smart cards.

In the side channel attacks, the cryptanalyst is assumed to have some physical access

to the particular device that performs the encryption. Certain parameters such as the in-

stantaneous power consumption of the cryptographic device or the time used to perform

17

the encryption operation can be measured. In some of these attacks, the attacker is also

assumed to be able to induce errors in the memory of the device or at a particular step

of the computation process of the device (fault analysis). In other words, the leakage of

information can be extracted by analyzing timing measurements, power consumption or

electromagnetic radiations. Besides, other forms of side channel information can be avail-

able as a result of hardware or software failures which can be cleverly introduced into the

cryptographic device by changing the operating frequency or temperature beyond the al-

lowed limits or by other dedicated methods of fault injection. By utilizing this side channel

information, the attacker might be able to deduce some information about the encrypting

process which leads to recovering the key.

Anderson et al. [55] categorize side channel attacks into the following four classes:

- Invasive Attacks: These attacks require a direct physical access to the internal ele-

ments of the cryptographic modules. For instance, the attacker may reach the layer

of the cryptographic module and put a microprobing needle on a data bus to record,

and later analyze, the data transfer. Several defensive measures are usually imple-

mented in hardware to efficiently limit invasive attacks. For example, if tampering

is detected, some cryptographic modules with higher security level reset all their

memories [56].

- Semi-invasive Attacks: In these attacks, the adversary can access the device but with-

out inducing a physical damage to the chip or making unauthorized electrical inter-

face connection. For example, in fault analysis attacks, the attacker may utilize a

18

laser beam to ionize the device to change some of its memory data and finally alter

the device output [5].

- Local non-invasive Attacks: In this class of attacks, the cryptanalyst needs close

investigation or manipulation of the device’s operation. For example, from the power

analysis point of view, the attacker can observe the current drawn by the processor

precisely. Then, the cryptographic keys can be recovered by means of measuring the

correlation of the mentioned parameter with the computations being performed by

the device.

- Remote attacks: These attacks require only observation or manipulation of the de-

vice’s normal input and output. There are various types of attack that are independent

of the distance between the attacker and the cryptographic device. Timing analysis,

protocol analysis and attacks on application programming interfaces belong to this

group.

Each of these types of attacks may also be classified as passive or active depending on

assumptions regarding the control executed by the attacker over the computation process.

In passive attacks, the normal operations of the device are not affected, i.e., the adversary

can collect information about the operation of the target system without disturbing its nor-

mal task. In active attacks, the attacker can interfere with the device inputs or environment

to change the normal operation while the target system may or may not be able to detect

such an influence.

Among various kinds of side channel attacks, timing attacks [3], power analysis attacks

19

[4] and fault attacks [6] are the three most well-known and widely studied attacks. Other

types of side channel attacks include electromagnetic attacks [57,58], acoustic attacks [59]

and cold boot attacks [60, 61].

Timing attacks, introduced in 1996 by Kocher [3] against RSA, are the first type of

modern side channel attacks presented in the open academic literature. The basic idea of the

timing attack comes from the fact that typical implementations of cryptographic algorithms

execute the computations in a non-fixed time. Whenever these operations involve secret

parameters, they should be considered as a potential risk because these timing variations

can leak some useful information about the secret parameters. By careful study of the

obtained timing statistics, one can recover these secret parameters. A common method

to prevent timing attacks is that all operations should be designed to take the same time

duration. In case this is not achievable, some rough timing disturbance can be applied by

introducing random timing shifts and wait states or by adding dummy instructions. To

increase the number of ciphertexts required by the adversary, random delays can be added

to the processing time. Generally, the number of required samples increases approximately

as the square of the timing noise [3].

Power analysis attacks are another powerful form of side channel attacks which utilize

the correlation between the power consumption of cryptographic devices and the secret

parameters used in the cryptographic computations performed by these devices. These at-

tacks, which were proposed in 1998 by Kocher et al. [4], can non-invasively extract secret

information, such as cryptographic keys, from the device by measuring the instantaneous

20

power consumption from the running cryptographic operations that involve the desired se-

cret parameters. Unlike the timing analysis, power analysis attacks are mainly applicable to

hardware implementations. There are two general types of power analysis attack: Simple

Power Analysis (SPA) and differential power analysis (DPA). In SPA attacks, the attacker

tries to guess which particular instruction is being carried out at a specific time from the

measured power traces as well as the input and output values of this instruction. In con-

trast to SPA, DPA is a more advanced form of power analysis that needs no knowledge of

implementation details. In DPA attacks, the adversary computes the intermediate values

within cryptographic computations by statistically analyzing data collected from multiple

cryptographic operations. To alleviate power analysis attacks, one can modify the design

of the hardware device to randomize its power consumption or to equalize the power con-

sumption of all operations to make it independent of the processed secret values. Another

commonly used countermeasure method against power analysis attacks is the data masking

technique, which can be applied at the software or hardware level [62, 63].

In fault analysis attacks, the cryptanalyst applies some kinds of physical influence, such

as ionizing radiation, on the internal state of the cryptosystem which influence the crypto-

graphic primitive execution or memory. By carefully studying the results of computations

performed under such faults, the attacker can retrieve information about the secret key. In

1996, Boneh et al. [6] introduced fault analysis by describing an attack that targets the RSA

public key cryptosystem and exploits a faulty Chinese Remainder Theorem computation to

factor the modulus n. Subsequently, fault analysis attacks were extended to symmetric

21

systems such as DES [7] and later to AES [8]. Fault analysis attacks became a more se-

rious threat after cheap and low-tech methods of applying faults were presented [5]. Fault

attacks against stream ciphers were introduced by Hoch et al [9], where attacks against

LILI-128 and SOBER-t32 and RC4 were described. Other stream ciphers that were ana-

lyzed in the fault analysis model include SNOW 3G [64], Trivium [65], HC-128 [10] and

Rabbit [11, 12].

The number of required faults in the above fault attacks varies depending on the as-

sumed fault analysis model. In general, all models follow the one given in Armknecht et

al. [66], which assumes that the attacker has access to the physical device, and that the

attacker is able to reset the device to the same unknown initial settings as often as needed.

However, different assumptions with respect to the amount of control the attacker has over

the induced faults are utilized. For example, the attacker may have control over the loca-

tion of the faulted memory register, or may be able to restrict the Hamming weight of the

induced faults. For instance, Biham et al. [67] assumed a model in which the attacker can

choose the exact location (register) of the fault which causes RC4 to enter a special inner

state and makes its recovery a trivial task. Similarly, Armknecht et al. [66] described a

fault analysis attack against SNOW 2.0 where they assumed that the fault occurs exactly in

a particular register of the cipher. On the other hand, in the fault analysis of Trivium [65],

it is assumed that the attacker has no control or knowledge over the fault position. Differ-

ent assumptions also exist regarding the Hamming weight of induced faults. For instance,

in [10], it is assumed that the fault causes a 1-bit flip in the inner state of the cipher, whereas

in [67], it is assumed that the fault is localized in one byte of the inner state.

22

Fault analysis attacks have also been applied to several block ciphers [7, 68–70]. The

basic idea of the differential fault attack against SPN-based block ciphers is to use the

diffusion property of the last linear transformation layer in order to determine whether the

difference before the last nonlinear layer possibly originates in a fault or not. In particular,

the adversary induces a fault as a differential input of the last linear transform and looks

at the corresponding differential output. This provides the attacker with a distinguishing

criteria for the last round key. More details on this class of attacks can be found in [69].

To secure cryptographic devices against fault analysis, proper countermeasures have to

be applied. Generally, these countermeasures try to detect any temporal or permanent faults

which happen in the cryptosystem, and then, immediately, disable the device output or rest

all the output bits to 0s. As a result, the attacker will be prevented from observing the output

of the faulty cryptographic computations and hence the vulnerability of the cryptosystem to

these attacks can be alleviated. Several approaches of fault detection techniques have been

investigated. These techniques include error detecting codes (EDCs) and redundancy-based

techniques (RBT) [71, 72].

In addition to the above mentioned side channel attacks and models, another technique,

called scan based side channel attack, was recently introduced to recover secret keys from

hardware implementation of cryptographic devices that are designed with some built-in

testability features. In the proposed model [73], the attacker first locates all the scan ele-

ments of the scan chain by scanning out the internal state in the test mode after loading pairs

of known plaintexts with one-bit difference in the normal mode. In [73], the secret key was

determined by using the structure of the DES s-boxes and three additional plaintexts. This

23

attack was also applied to stream ciphers [74, 75].

The flipped scan technique [76] was proposed to mitigate scan based side channel at-

tacks. In this technique, inverters are introduced at random points in the scan chain. The

authors in [76] claimed that the required security is reached when the inverter positions

cannot be guessed with a probability significantly greater than 1
2
. However, Agrawal et

al. showed that this technique was vulnerable to the reset attack [74]. To prevent this at-

tack, they also proposed another protection mechanism, called the XOR-chain, in which

XOR gates are inserted at random points in the scan chain [74]. In this scheme, each XOR

gate acts as a data-dependent inverter which conditionally changes the current input of the

flip-flop based on the preceding one. As a result, the new method using XOR chains has

been shown to provide a good level of resistance against known scan based attacks without

compromising testability [74].

24

Chapter 3

Differential Fault Analysis of

SOSEMANUK

3.1 Introduction

SOSEMANUK [16] is a fast software-oriented stream cipher that has passed all the three

phases of the ECRYPT eSTREAM competition and is currently a member of the eS-

TREAM Profile 1 (software portfolio). It uses a 128-bit initialization vector and allows

keys of either 128-bit or 256-bits, whereas the claimed security is always 128-bits. The

design of SOSEMANUK (See Figure 2) is based on the SNOW2.0 stream cipher [77] and

utilizes elements of the Serpent block cipher [78]. SOSEMANUK aims to fix weaknesses of

the SNOW 2.0 design and achieves better performance, notably in the ciphers initialization

phase. Also, the secret inner state of SOSEMANUK is reduced when compared to SNOW

2.0 and amounts to 384 bits.

25

The preliminary analysis [16], conducted during the SOSEMANUK design process, in-

cludes the assessment of the cipher with respect to different cryptanalytic attacks such as

correlation attacks, distinguishing attacks and algebraic attacks. Public analysis followed

and SOSEMANUK was assessed in [79] by Ahmadi et al. where a guess-and-determine

attack requiring 2226 operations and 24 keystream words was provided. Another improved

guess-and-determine attack was presented by Tsunoo et al. in [80]. A correlation attack

on SOSEMANUK was presented by Jung-Keun Lee et al. [81] with a computational com-

plexity of 2147.88 and success probability 99% to recover the initial secret inner state. The

data requirement for the attack was relaxed by Cho et al. [82]. In 2009, Lin et al. [83]

improved the guess-and-determine attack, achieving complexity of 24 word keystream us-

ing 2192 steps. Another guess-and-determine attack with time complexity 2176 was recently

presented by Feng et al. in Asiacrypt 2010 [84].

In this chapter, we present a fault analysis attack on SOSEMANUK. The fault analysis

model adopted in the chapter is the one in which the attacker is assumed to be able corrupt

a random inner state register in between the iterations of the cipher but the attacker has no

control or knowledge over which inner state register has been corrupted. Also, the attacker

is assumed to be able to reinitialize the cipher with the same key and IV arbitrary number

of times. The attack recovers the secret inner state without recovering the key and requires

about 6144 faults, 248 operations each equivalent to one SOSEMANUK iteration and the

storage of about 238.17 bytes.

The rest of the chapter is organized as follows. In the next section, we provide a brief

overview of fault analysis attacks. In section 3.2, relevant details of SOSEMANUK are

26

reviewed. An overview of the proposed attack is provided in section 3.3. Details of the

attack are described in section 3.4 and section 3.5. Finally, the conclusion is given in

section 5.5.

3.2 The SOSEMANUK specifications

The following notation will be utilized throughout the rest of the chapter:

- xi: i-th bit of an n-bit word x

- ⊞,× : addition and multiplication modulo 232, respectively

- ⊕ : bit-wise XOR

- <<< : left rotation defined on 32 bit values

- ∣ :concatenation

- Xi = f i
t+3∣f i

t+2∣f i
t+1∣f i

t : input value for i-th s-box applied in the Serpent1 function

at some step t (the t value will be clear from the context). The Serpent1 function,

shown in Figure 1, is defined by 32 applications of S in the bit-slice mode, where

S = [8, 6, 7, 9, 3, 12, 10, 15, 13, 1, 14, 4, 0, 11, 5, 2]

is the s-box used in the third s-box layer of the Serpent block cipher [78].

- ´: Sign for denoting faulty cipher registers or output. For example s′0 will denote the

LFSR register s0 in the faulty instance of the cipher.

27

…

…

f3
S S S SS S S SS S S SS S S S S S S SS S S SS S S SS S S S

f2 f0f1

Figure 1: The Serpent1 function

While the claimed security level of SOSEMANUK is 128 bits, it supports a variable key

length of 128 or 256 bits and 128 bit initialization value. As depicted in Figure 2, the secret

inner state of SOSEMANUK consists of 12 32-bit words (s0, . . . , s9, R1, R2) and utilizes

three main components to generate the keystream output: a linear feedback shift register

(LFSR), a finite state machine (FSM) and an s-box-like function, Serpent1. To update the

LFSR, the following recurrent relation is applied:

st+10 = st+9 ⊕ ®−1st+3 ⊕ ®st (1)

where ® is a root of the primitive polynomial P (X) = X4+¯23X3+¯245X2+¯48X+¯239

over GF(28) and ¯ ia a root of the primitive polynomial Q(X) = X8 +X7 +X5 +X3 +1

over GF(2).

28

1−α α

⊕
output

0s3s9s

1R 2R

⊕

MUX⊕ Serpent1Trans 4×tf

1s

⊕ ⊕

Figure 2: Overview of the SOSEMANUK stream cipher

The FSM update procedure is defined as follows:

R1t+1 = (R2t ⊞mux(lsb(R1t), st+1, st+1 ⊕ st+8)) (2)

R2t+1 = (Trans(R1t)) (3)

where mux(c, x, y) =

⎧
⎨
⎩

x if c = 0

y if c = 1

, Trans(x)=(M × x) <<< 7 and M = 0x54655307.

The FSM output at each step is defined by

ft = (st+9 ⊞R1t+1)⊕R2t+1 (4)

29

The inner state right after the initialization is denoted by (s0, . . . , s9, R10, R20). At each

step, first the FSM is updated and the ft and st values are preserved in the internal buffer,

then the LFSR is updated. Once every four steps, a 128-bit word is generated by

zt∣zt+1∣zt+2∣zt+3 = Serpent1(ft∣ft+1∣ft+2∣ft+3)⊕ st∣st+1∣st+2∣st+3. (5)

For a more detailed description of SOSEMANUK, the reader is referred to [16].

3.3 The attack overview

In this section, we provide a high level overview of the proposed attack. According to

our fault analysis model, the attacker is assumed to be able to re-initialize the cipher an

arbitrary number of times. Furthermore, while we assume that each induced fault corrupts

only one of the 12 inner state registers, the attacker does not know, and cannot control the

position or the new value of the faulted register.

3.3.1 The main idea

The main idea of the attack can be explained as follows. In every SOSEMANUK iteration,

32 s-boxes are applied in the bit-slice mode as a part of the Serpent1 function. The first part

of the attack restricts the input for each of the s-boxes by considering faults that occur at

s5 and s4. Consider the case where the fault has been injected right after the SOSEMANUK

initialization step and that it occurred in the register s5. During the next cipher iteration

30

⊕
Se

rpe
nt1

1−α α

0s3s9s

1R 2R

⊕

⊕

0 0f∆ =

1s

⊕ ⊕

1−α α

1s4s10s

1R 2R

⊕

⊕
2s

⊕ ⊕

1−α α

2s5s11s

1R 2R

⊕

⊕
3s

⊕ ⊕

1−α α

3s6s12s

1R 2R

⊕

⊕
4s

⊕ ⊕

1 0f∆ =

2f∆

3f∆

4s

4s

11s

Figure 3: The Δf values corresponding to the case where s4 is faulted

31

in which the z0∣z1∣z2∣z3 128-bit keystream word is produced, the fault moves in the right-

hand direction as the LFSR is clocked for 4 times. In particular, no faulty values participate

in generation of f0. Furthermore, since in every step, first the FSM is updated and then

the ft value is computed and finally the LFSR is clocked, f1 and f2 are computed without

error and the fault affects only f3. Now the non-faulty f0, f1, f2 and the faulty f3 enter

the Serpent1 function. In the bit-slice mode, the Serpent1 function applies 32 s-boxes 4-bit

inputs, where i-th bit comes from register fi, i = 0, . . . 3 (See Figure 1). Thus, the input

difference of all activated s-boxes will be equal to 0x8 (1000 in binary). The attacker can

then retrieve the corresponding s-box output difference and restrict the set of candidates for

the s-box input-output values. When the fault occurs at register s5, each s-box output will

be faulted with probability 1
2
, which allows us to establish a criterion to recognize faults in

register s5. Similarly, in the case where the fault occurs at s4, it propagates as shown in

Figure 3 potentially affecting only f2 and f3. In other words, only the two most significant

bits of every s-box input might be affected. Since a criterion for recognizing faults at s4

can also be established, observing the output s-box differences for such faults also reduces

the set of candidates for the s-box input-output values.

After the candidates for the s-box input-output values have been restricted, equation (5)

is used to provide a restriction on the LFSR registers. From (1), it follows that the LFSR

registers are not independent and restrictions on the LFSR registers can be coupled with the

dependence of the LFSR registers to further prune the candidates for the st values. Finally,

a guess and determine attack is used to find the rest of the inner state.

32

3.3.2 The steps of the attack

The attack can be divided into two phases. The first phase collects faulty output in four

different steps of the cipher execution and can be summarized as follows:

- For l ∈ {0, 1, 2, 4}

- Repeat the steps below for m times

- Reinitialize the cipher

- Iterate for l times

- Induce a fault, corrupting a random inner state register

- Collect and store the keystream output word z′4l∣z′4l+1∣z′4l+2∣z′4l+3

The second phase, which uses the collected information to uniquely determine the secret

inner state, can be summarized as follows:

(1) Use the faulty outputs gathered in the first phase of the attack for l ∈ {0, 2, 4} to re-

duce the number of candidates for (s0, s1, s2, s3), (s8, s9, s10, s11) and (s16, s17, s18, s19)

to 232 each. Then, use dependencies between the three fourplets imposed by relation

(1) to further reduce the corresponding numbers of candidates (details are explained

in section 3.4)

(2) Similar to the previous step, using the information collected in the first phase of the

attack for l = 1, reduce the number of candidates for (s4, s5, s6, s7) to 232 (details are

explained in section 3.4)

33

(3) Apply the guess-and-determine strategy through the space reduced sets of candidates

obtained by previous two steps to recover the complete inner state (details are ex-

plained in section 3.5)

In the first phase of attack, data is collected for l = 4 and not for l = 3 since the LFSR

registers candidate sets due to l = 0, l = 2 and l = 4 are correlated and allow further

reduction. The reduction due to l = 1 is used later in the guess-and-determine attack.

3.4 Reducing the number of candidates for LFSR regis-

ters (s0, s1, s2, s3) and (s8, s9, s10, s11)

The starting number of candidates for the LFSR registers (s0, s1, s2, s3) and (s8, s9, s10, s11)

is 2128 each. In this section, first we show how to reduce this number to 232 and then, by

exploiting the fact that the two register components are linked by relation (1), reduce it

further to 216, each.

3.4.1 Recovering the s-box differences

Let SOSEMANUK be in state t = 0. From (5) and since z0∣z1∣z2∣z3 is accessible to the

attacker, it is evident that reducing the uncertainty for f0∣f1∣f2∣f3 leads to reducing the

uncertainty of s0∣s1∣s2∣s3. In this subsection, the f0∣f1∣f2∣f3 value is constrained by calcu-

lating the s-box input-output differences using the faulty information. Since the algorithms

below are also applied to constraint f4∣f5∣f6∣f7, f8∣f9∣f10∣f11 and f16∣f17∣f18∣f19, these al-

gorithms are specified for general time t and will be used for t ∈ {0, 4, 8, 16}.

34

Define ±i and Δi by

±i = S(Xi ⊕ 0x8)⊕ S(Xi),

Δi = {S(Xi ⊕ 0x4)⊕ S(Xi), S(Xi ⊕ 0xc)⊕ S(Xi)}

for every i = 0, . . . 31. Algorithm 1 and Algorithm 2, described below, are used to recover

±i and Δi, respectively, for each i = 0, . . . 31.

In what follows, the probability distribution of the number of non-activated s-boxes in

the SOSEMANUK output is analyzed. In particular, probabilities of the event that there will

be more than 16 non-activated s-boxes are estimated under different assumptions about the

location of the fault. For that purpose, let 0 ≤ n ≤ 32 be a random variable which denotes

the number of s-boxes that are not active in the application of the 32 s-boxes of Serpent1

in some steps of a faulty SOSEMANUK instance. Consider for example the probability

that a particular s-box will not be activated given that the fault has occurred at s0. In that

case, only the 3 most significant bits of the s-box input may be corrupted. Note that, due

to (5) by which the corrupted s0 is XOR-ed to the least significant bits of each s-box, it

may also happen that the difference in the s-box output caused by the s-box input cancels

out. However, such a possibility has been ruled out by exhaustively checking that for each

s-box input value it is not possible to cause a difference only in the least significant bit of

the s-box output by any of the differences in the 3 most significant bits of the input. Thus,

the probability that the particular s-box has not been activated is 2−3. Now, it is clear that

variable n ∼ B(2−3, 32), i.e., n follows binomial distribution with parameters p = 2−3 and

35

n = 32. According to the binomial distribution, P [16 ≤ n ≤ 31] =
∑31

i=16

(
32
i

)
pi(1 −

p)32−i ≈ 2−21. More generally, the distribution of n in terms of the fault position is given

follows:

- {s0} : P [16 ≤ n ≤ 31] ≈ 2−21 as explained above.

- {s1, s9, R1, R2}: all four s-box input bits may be corrupted. Hence, n ∼ B(2−4, 32).

For the fault position s1, the possibility of cancelling out the s-box output difference

has been ruled out the same way as in the case of s0. Using the binomial distribution,

it follows that P [16 ≤ n ≤ 31] is negligible.

- {s8}: if R100 = 0, then, n = 0 with probability 1. Otherwise, all four s-box input bits

may be corrupted and n ∼ B(2−4, 32) and as for the previous case, P [16 ≤ n ≤ 31]

is negligible.

- {s2, s3}: only the least significant bit will certainly not be corrupted. For s3, the

cancellation of the s-box output difference is ruled out as in the case of s0. In case of

s2, there exists one s-box input such that the s-box output difference can be cancelled

out by inverting the second most significant bit (S(1111) = S(1111⊕1110)⊕0100).

Approximating n ∼ B(2−3, 32) gives P [16 ≤ n ≤ 31] ≈ 2−21.

- {s4}: the most significant two bits may be corrupted, from which it follows that

n ∼ B(2−2, 32). So, P [16 ≤ n ≤ 31] ≈ 0.002.

- {s6, s7}: no s-box input bits can be corrupted and thus n = 32 with probability 1

36

- {s5}: Only the most significant bit of every s-box input may be corrupted. Thus

n ∼ B(1
2
, 32) and P [16 ≤ n ≤ 31] =

∑31
i=16

(
32
i

)
1
2i

1
2(32−i) = 0.569.

From the above reasoning, it follows that when the fault does not occur at s5, P [16 ≤ n ≤

31] ≈ 1
11

× 0.02 ≈ 0.0018, where 1
11

is the probability that the fault occurred at s4, given

that it did not occur at s5. On the other hand, if the fault occurred at s5, the probability of

event 16 ≤ n ≤ 31 is equal to 0.569. This analysis indicates that one can decide whether

the fault occurred at s5 or not by verifying whether 16 ≤ n ≤ 31, or not, respectively.

In Algorithm 1, keystream words for which 16 ≤ n ≤ 31 are considered. Namely, once

such a keystream word have been found, the values of activated s-boxes are used to learn

about the corresponding ±i values. According to the discussion above, if the fault indeed oc-

curred at s5, such differences necessarily represent the s-box output difference for the input

difference equal to 0x8. To diminish the possibility of false positives (event 16 ≤ n ≤ 31

takes place, but the fault does not occur at s5), the final output difference value is taken as

the most frequent difference candidate taken over different faulty keystream words at the

(fixed) SOSEMANUK step in question, for which 16 ≤ n ≤ 31 holds.

Algorithm 1

- Initialize 32 multisets: Cand1(k) = ∅, k = 0, . . . , 31.

- For each faulty keystream word z′t∣z′t+1∣z′t+2∣z′t+3, such that

16 ≤ #{z′i
t ∣z

′i
t+1∣z

′i
t+2∣z

′i
t+3 = zit∣zit+1∣zit+2∣zit+3 : i = 0, . . . 31} ≤ 31 (6)

37

do:

- For each 0 ≤ k ≤ 31, if d = z
′k
t ∣z′k

t+1∣z′k
t+2∣z′k

t+3 ⊕ zkt ∣zkt+1∣zkt+2∣zkt+3 is different

than 0, add d to Cand1(k).

- Return the most frequent element in the multiset Cand1(i) as ±i = S(Xi ⊕ 0x8) ⊕

S(Xi), for each 0 ≤ i ≤ 31.

The overall number of required fault injections m = 1536 has been determined by

incrementing m in steps of 128 and experimentally verifying that Algorithm 1 always re-

covers the correct ±i = S(Xi ⊕ 0x8) ⊕ S(Xi), i = 0, . . . 31 for 1000 randomly initialized

instants of SOSEMANUK.

Algorithm 2 uses ±i recovered by Algorithm 1 to find the sets Δi, i = 0, . . . 31. In

particular, the algorithm recognizes faulty keystream words that correspond to an error in

register s4 and then uses the s-box output differences in such keystream words to deduce

Δi for i = 0, . . . 31.

The criterion for recognizing faults in register s4 is similar to the previously stated cri-

terion for recognizing faults in s5. However, instead of asking for 16 or more unactivated

s-boxes, we expect to have more than 16 s-boxes which are either unactivated or with output

difference equals to ±i. Namely, let v be the number of s-boxes in one step of SOSEMANUK

which are either not activated, or activated by an input difference of 0x8. The probability

of the event that one s-box is either not activated, or activated by an input difference of 0x8

depends on the location where the fault occurred. In case the error is in register s4, the

probability in question will be 1
2

since in that case only the 2 most significant bits of the

38

s-box input may be faulted and the input difference has to among 0x0, 0x8, 0xc and 0x4

values. Thus, if the fault is in s4, v ∼ B(1
2
, 32), and P [16 ≤ v ≤ 31] = 0.569. On the other

hand, if the fault occurs at some other register, say at R1, all four s-box input bits may be

corrupted and the probability that the input difference will be either 0x8 or 0x0 is signifi-

cantly smaller. Again, this gives a methodology to decided whether the fault occurred at s4

or not by counting the number of s-boxes which reacted with difference of either ±i (using

the corresponding i) or 0. Once the faults due to an error in register s4 are recognized,

finding the sets Δi proceeds with the following logic. When a keystream word for which

the event 16 ≤ v ≤ 31 took place has been found, the output s-box differences which are

not due to input difference of 0x8 or 0x0 have to be due to difference 0xc or 0x4. Again,

to diminish the possibility of false positives (i.e., 16 ≤ v ≤ 31 but the fault does not occur

at s4), the final output set is taken as the set with two most frequent difference candidates

for the difference taken over different faulty keystream words at the SOSEMANUK step in

question for which 16 ≤ v ≤ 31 holds.

Algorithm 2

- Initialize 32 multisets: Cand2,3(k) = ∅, k = 0, . . . , 31.

- For each faulty keystream output word z′t∣z′t+1∣z′t+2∣z′t+3, such that

16 ≤ #{z′i
t ∣z′i

t+1∣z′i
t+2∣z′i

t+3 = zit∣zit+1∣zit+2∣zit+3∣i = 0, . . . 31}+

#{z′i
t ∣z′i

t+1∣z′i
t+2∣z′i

t+3 ⊕ zit∣zit+1∣zit+2∣zit+3 = ±i∣i = 0, . . . 31} ≤ 31

(7)

39

where ±i, 0 ≤ i ≤ 31 has been recovered by Algorithm 1, do:

- For each 0 ≤ k ≤ 31, add each d = z
′k
t ∣z′k

t+1∣z′k
t+2∣z′k

t+3 ⊕ zkt ∣zkt+1∣zkt+2∣zkt+3 such

that d /∈ {0, ±k} to the multiset Cand2,3(k).

- Return the two highest occurring elements in the multiset Cand2,3(i) as the required

two-element set Δi, for each i.

For the above choice of total number of faults m = 1536, Algorithm 2 always suc-

ceeded in recovering the sets Δi, i = 0, . . . 31, for 1000 randomly initialized instants of

SOSEMANUK.

3.4.2 Restricting the number of candidates for the LFSR registers

In each SOSEMANUK step, in which a 128-bit keystream word is produced, according to

(5), 32 4 × 4 s-boxes are applied. In the previous subsection, it has been shown how to

use the faulty information to deduce the s-box output differences for certain input s-box

differences. Naturally, these evaluated input-output differences impose a constraint on the

actual input-output values. In this subsection, the sets of possible s-box input-output values

are deduced and the effect of the deduced input-output s-box values constraints on the

number of candidates for the LFSR registers (s0, s1, s2, s3) is presented.

Having determined the ±i value and the two-element set Δi by Algorithms 1 and 2, for

each 0 ≤ i ≤ 31, the actual input-output values for the s-box are deduced according to

Table 1. As can be noted from the table, in case the s-box input is even, the input-output

value can be deduced uniquely. On the other hand, in case when the s-box input value is

40

±i,Δi i-th s-box input i-th s-box output
5,{8,B} 0 8
9, {2,D} 2 7
3,{B,E} 4 3
F,{4,D} 6 A
5,{D,E} 8 D
9,{4,B} A E
3,{8,D} C 0
F,{2,B} E 5
7,{A,D} {1,5,9,D} {6,C,1,B}
D,{6,B} {3,7,B,F} {9,F,4,2}

Table 1: Determining the s-box input-output values based on sets ±i and Δi

odd, there exist four candidates for the s-box input-output.

Assuming a uniform distribution on the s-box input values, it is expected that the at-

tacker will deduce 64 out of 128 output bits. For the remaining 64 bits, it will be composed

out of 16 4-bit values, each restricted to 4 candidates. The overall number of candidates for

the 128-bit value Serpent1(f0∣f1∣f2∣f3) is then 416 = 232. Since we have

z0∣z1∣z2∣z3 = Serpent1(f0∣f1∣f2∣f3)⊕ s0∣s1∣s2∣s3 (8)

and z0∣z1∣z2∣z3 is known, it follows that there will be 232 candidates for s0∣s1∣s2∣s3.

The number of candidates for s4∣s5∣s6∣s7, s8∣s9∣s10∣s11 and s16∣s17∣s18∣s19 can be re-

stricted in a similar way. Namely, for that purpose, Algorithms 1 and 2 need to be applied

using z4∣z5∣z6∣z7, z8∣z9∣z10∣z11 and z16∣z17∣z18∣z19 and the faulty values obtained by the first

phase of the attack described in section 3.3 for l = 1, l = 2 and l = 4, respectively. Then,

Table 1 is utilized to restrict the s-box input-output values occurring in steps t = 1, t = 2

and t = 4. Following the procedure explained in this section, it follows that s4∣s5∣s6∣s7,

41

s8∣s9∣s10∣s11 and s16∣s17∣s18∣s19 are expected to be restricted to 232 candidates each.

3.4.3 Further pruning of the LFSR registers candidates

In the previous subsection, the uncertainty for (s0, s1,s2, s3), (s8, s9,s10, s11) and (s16,s17,

s18,s19) values has been reduced. In this subsection, we note that these three four-tuples of

32-bit values are not independent. Namely, according to (1), we have s10 = s9 ⊕ ®−1s3 ⊕

®s0 and s18 = s17⊕®−1s11⊕®s8. These two relations are used to further prune candidates

for (s0, s1, s2, s3) and (s8, s9, s10, s11). More precisely, after the end of the process, the

attacker is left with 216 candidates for

(f0, f1, f2, f3, s0, s1, s2, s3, f8, f9, f10, f11, s8, s9, s10, s11) (9)

The two relations from the previous paragraph can be rewritten as

®−1s3 ⊕ ®s0 = s10 ⊕ s9 (10)

®−1s11 ⊕ ®s8 = s18 ⊕ s17 (11)

Before stating the candidate reduction procedure, we note that the candidates for (s0, s1, s2, s3)

are specified in a way which allows listing them in a table efficiently. In particular, the can-

didate set for (s0, s1, s2, s3) is specified by sets Bi, i = 0, . . . 31, such that si0∣si1∣si2∣si3 ∈ Bi.

Then, each element of the set B0 ×B1 × . . .×B31 specifies one (s0, s1, s2, s3) value. The

sets of candidates for (s8, s9,s10, s11) and (s16, s17, s18, s19) can be transformed to a list in

42

the same way and this property is used in step (1) and step (5) of the procedure below.

1. List all of the (s0, s1, s2, s3) and (s16, s17, s18, s19) candidates and call the two gener-

ated tables T1 and T3, respectively. Include also the columns containing (f0, f1, f2, f3)

and (f16, f17, f18, f19) in T1 and T3, respectively. Create an empty table T .

2. Extend T1 by adding a column with the left-hand side of equation (10).

3. Extend T3 by adding a column with the right-hand side of equation (11).

4. Sort T1 and T3 by columns added in steps (2) and (3).

5. For each candidate for (s8, s9, s10, s11)

5.1. Calculate the left-hand side of equation (11). If there does not exists an element

in T3 such that (11) holds, go to the next (s8, s9, s10, s11) candidate (step (5)).

5.2. Otherwise, calculate the right-hand side of equation (10) and find rows of T1

for which (10) holds. For each such row, add the complete row of the form (9)

to table T .

To find the expected size of table T , note that it is expected that 16 bits of the T3 table

column containing s18 ⊕ s17 value are constant, due to the fact that 16 out of 32 s-box

inputs corresponding to (si16, s
i
17, s

i
18, s

i
19) have been recovered uniquely by the procedure

in the previous subsection. On the other hand, no constant bits are expected to exist in

®−1s11 ⊕®s8 values due to randomization resulting from multiplying by ® and ®−1. Thus,

about 216 candidates for (s8, s9, s10, s11), with the corresponding (f8, f9, f10, f11), will pass

the elimination step (5.1).

43

In step (5.2), the remaining 216 candidates are joined with T1, which contains 232 rows,

according to (10). Since there exists no fixed bits in the ®−1s3 ⊕ ®s0 column of T1, it is

expected that around 216 will be present in the output of the join step, i.e., in table T . Since

both T1 and T3 contain 9 32-bit words in each row and table T contains 16 32-bit words

in each row, the required memory space for the previous procedure is 2 × 232 × 9 × 4 +

216 × 16 × 4 = 238.17 bytes. The computational cost is equal to sorting two tables of 232

rows, executing a search in a sorted table of length 232 for 232 times and finally executing a

search for 216 times in the sorted table of 232 entries. By noting that sorting tables of length

n takes O(nlog(n)) steps and that a binary search in the sorted table requires O(log(n))

steps, the overall cost is about 232 × 32× 2 + 232 × 32 + 216 × 32 = 238.585 operations.

3.5 Recovering the rest of the inner state

In the previous subsections, we have reduced the LFSR complexity to 232 candidates for

(s4, s5, s6, s7) and 216 candidates for the registers present in (9). In this subsection, a guess-

and-determine like procedure that completes the secret inner state recovery is provided.

Let R10t denote the least significant bit of register R1t. To recover s4, s5, R10 and R20,

the following steps are applied:

- Pick a row from table T as a guess for (9).

- Determine s4 from s4 = ®(®s1)⊕ ®(s10 ⊕ s11) which holds due to (1) since s1, s10

and s11 are known.

- Guess R10 by fixing the register to one of the 232 possible values.

44

- Determine:

- R20, from f0 = (R10 ⊞ s9)⊕R20

- R21, from R21 = Trans(R10)

- R11, from R11 = R20 ⊞ (s2 ⊕R100 ⋅ s9), which is another way to formulate (2)

- R22, from R22 = Trans(R11)

- R12, from R12 = R21 ⊞ (s3 ⊕R101 ⋅ s10), which follows from (2)

- R23, from R23 = Trans(R12)

- R13, from R13 = R22 ⊞ (s4 ⊕R102 ⋅ s11), which follows from (2)

- s12, from f3 = (R13 ⊞ s12)⊕R23

- s5, from s12 = s11 ⊕ ®−1s5 ⊕ ®s2

With a guess for (9) from the first step of the procedure above and having recovered s4,

s5, R10 and R20, the only left unknown inner state registers are s6 and s7. To recover the

remaining two registers, the table of 232 candidates for (s4, s5, s6, s7) obtained in section

3.4.2 is matched with newly found value for s4, s5, as follows. Consider the s-box input-

output in the second iteration of SOSEMANUK, for which the input-output has not been

recovered uniquely. For some 0 ≤ i ≤ 31, f i
7∣f i

6∣f i
5∣f i

4 and consequently, S(f i
7∣f i

6∣f i
5∣f i

4)

can take 4 values as specified by Table 1. More precisely, rewriting (5) while isolating i-th

s-box

zi7∣zi6∣zi5∣zi4 = S(f i
7∣f i

6∣f i
5∣f i

4)⊕ si7∣si6∣si5∣si4, (12)

we have two options regarding the possible candidates. In other words, from the last two

45

rows of Table 1, we have either

S(f i
7∣f i

6∣f i
5∣f i

4) ∈ {0110, 1100, 0001, 1011} (13)

or

S(f i
7∣f i

6∣f i
5∣f i

4) ∈ {1001, 1111, 0100, 0010}. (14)

Moreover, according to the procedure given in this subsection, the value of bits si4, si5

has been determined uniquely. Since si4 and si5 are known, according to (12), the two

least significant bits of S(f i
7∣f i

6∣f i
5∣f i

4) can be determined uniquely. Finally, due to the

structure of sets (13) or (14), given information on the two least significant bits, all the 4

bits of S(f i
7∣f i

6∣f i
5∣f i

4) are uniquely determined. Presented reasoning uniquely determines

the input-output for every s-box, from which, according to (12), s7 and s6 are determined

uniquely, which completes the recovery of the whole secret inner state.

Now, the found secret inner state can be verified by comparing the actual SOSEMANUK

output with the output produced by the recovered inner state. If a difference registered, the

next guess for (9) and R10 is made and the procedure is repeated.

3.6 Summary and conclusions

In this chapter, a differential fault analysis attack on SOSEMANUK was presented. The

overall attack complexity can be summarized as follows:

- The average number of faults required to perform the attack is 4 × 1536 = 6144.

46

These 1536 transient faults are introduced in steps t = 0, t = 1, t = 2 and t = 4.

This fault injection phase requires the attacker to reinitialize the cipher for 6144 times

- The number of operations required for the attack is dominated by the guess-and-

determine part of the analysis. Namely, as concluded in section 3.4.3, table T has

216 rows and thus there exists 216 possible guesses for (9). Since register R10 is

a 32-bit value, the number of guesses that need to be checked is 216 × 232 = 248.

Verifying each guess according to the procedure in section 3.5 is equivalent to one

SOSEMANUK iteration and thus the attack requires work equivalent to around 248

iterations.

- The storage amount required for the attack is equal to the size of the tables T1, T3

and T which amounts to 238.17 bytes.

47

Chapter 4

Differential Fault Analysis of

Hummingbird

4.1 Introduction

Hummingbird [13, 17] is an encryption algorithm designed for lightweight software and

lightweight hardware implementations on resource-constrained devices such as RFID tags

and wireless sensor nodes. Its design was inspired by the Enigma machine which led to a

hybrid combination of block cipher and stream cipher structures.

The security of Hummingbird was evaluated by its designers who concluded that the

the cipher is resistant to most common attacks against block ciphers and stream ciphers

including birthday attacks, differential and linear cryptanalysis, structure attacks, algebraic

attacks, and cube attacks. Also a chosen-IV and chosen-message attack was reported by

Saarinen [85].

48

In this chapter, we present a differential fault analysis attack on Hummingbird. The

fault model in which we analyze the cipher is the one in which the attacker is assumed to

inject a transient fault at a random 4 bit word before the linear transformation, after the

4 × 4 s-boxes, of the four block ciphers which are used in the Hummingbird encryption

process but cannot control the exact location of injected faults. We also assume that the

attacker is able to reset the cipher an arbitrary number of times.

The main idea of our attack is inspired by recent differential fault analysis attacks

against the AES. In these attacks, the attacker collects few differential pairs relative to

the last non-linear step which allows the attacker to reduce and finally guess the values

computed in the last rounds and infer the last round key. However, unlike the AES case in

which once the round key has been recovered, the key schedule can be inverted to obtain

the initial secret key, this is not possible for Hummingbird since it does not have an explicit

invertible key schedule. Instead, the above procedure has to be reiterated on each round,

starting from the last one, until the whole key material is exposed. Our simulation results

showed that our attack, which recovers the 256-bit key, requires around 50 fault injections

and 266 steps.

The rest of the chapter is organized as follows. A brief description of the relevant details

of Hummingbird is provided in the next section. Our attack and its complexity analysis are

provided in section 4.3.

49

4.2 Description of Hummingbird

The following notation and functions are used throughout the chapter:

⊞ : addition mod 216.

⊕ : bit-wise XOR.

∣∣ : Concatenation of the words.

<<< : left rotation defined on 16-bit value.

Si: the itℎ 4-bit s-box where i = 1, 2, 3, 4.

SBOX: the 16-bit nonlinear function which equals to S1∣∣S2∣∣S3∣∣S4.

SBOX−1: the inverse mapping of SBOX .

L(x) : the 16-bit linear transform equation.

L−1(x) : the inverse mapping of L(x).

△Xi : the 4-bit differential input of Si.

△Yi : the 4-bit differential input of Si.

As mentioned above, Hummingbird has a hybrid structure and consists of two main com-

ponents: a stream cipher and a block cipher. The input/output block size is 16-bit and the

internal state and key size are 80-bit and 256-bit, respectively.

Figure 4 depicts a top level view of the encryption process. The cipher algorithm con-

sists of four 16-bit block ciphers, Eki(i = 1, 2, 3, 4), four 16-bit internal state registers

RSi(i = 1, 2, 3, 4), and a 16-bit linear feedback shift register (LFSR). The original 256-bit

key is divided into four 64-bit subkeys ki, i = 1, 2, 3, 4, which are used in the four block

50

Encryption Process

12
t

V =
1

k
E (

i
PT 1

t
RS)

23
t

V =
2

k
E (12

t
V 2

t
RS)

34
t

V =
3

k
E (23

t
V 3

t
RS)

i
CT =

4
k

E (34
t

V 4
t

RS)

Internal State Updating

1t t
LFSR LFSR

+
←

1
1

t
RS

+
= 1

t
RS 34

t
V

1
3

t
RS

+
= 3

t
RS 23

t
V

1t
LFSR

+

1
4

t
RS

+
= 4

t
RS 12

t
V

1
1

t
RS

+

1
2

t
RS

+
= 2

t
RS 12

t
V

1
4

t
RS

+

12
t

V

PTi

1
k

E

1
t

RS

23
t

V

2
t

RS

2
k

E

CTi

34
t

V

4
t

RS

3
t

RS

3
k

E

4
k

E

Figure 4: An overview of the Hummingbird encryption process.

ciphers.

A 16-bit plaintext block PTi is added to the first internal state register RS1 modulo 216.

The result of the addition is then encrypted by the first block cipher Ek1 . This procedure

is repeated in a similar manner for another three times and the output of Ek4 is the corre-

sponding ciphertext, CTi. At the same time, the states of the four internal state registers

will also be updated based on their current state values, the outputs of the first three block

ciphers, and the value of the LFSR. The decryption process follows a similar pattern as in

the encryption mode.

51

In practice, Hummingbird is initialized with four 16-bit random nonces, NONCEi, i =

0, 1, 2, 3, to construct the four internal state registers RSi, i = 1, 2, 3, 4, respectively, fol-

lowed by applying the encryption algorithm to the message RS1 ⊞ RS3. The final 16-bit

ciphertext of the initialization is used to initialize the LFSR where the 13tℎ bit of the LFSR

is always set to 1.

The 16-bit block cipher is a typical substitution-permutation (SP) network with 16-bit

block size and 64-bit key. It consists of five rounds: four regular rounds and a final round

that only includes the key mixing and the s-box substitution steps. Each round comprises

of a key mixing step, a substitution layer, and a permutation layer. For the key mixing, a

simple xor operation is used. Figure 5 depicts the structure of the 16-bit block cipher and

the specification of the four s-boxes and linear transform mapping which are used in Eki .

The 64-bit subkey ki is divided into four 16-bit round keys K
(i)
j , j = 1, 2, 3, 4, which

are used in the four regular rounds of SP structure, respectively. Moreover, two keys K(i)
5

and K
(i)
6 which are directly derived from the four round keys are applied before and after

the last s-boxes.

Further details about the encryption, decryption and initialization processes can be

found in [13].

4.3 The proposed attack

The main idea of using differential fault analysis against Hummingbird is to recover the

whole secret keys based on determining round keys in four steps. In particular, we can

52

retrieve k4 and peel off the last round function of the encryption process (Ek4) to determine

V 34t⊞RS4t. Detailed explanation of how to recover the keys of the Eki step is provided in

the next subsection. By guessing all the 216 values of RS4t and applying the same method

for determining the keys of the 16-bit block cipher (Ek3), k3 can be revealed. Similarly, the

values of k2 and k1 can be determined by applying the same procedure and guessing RS3t

and RS2t. Finally, by guessing RS2t, RS3t and RS4t we can determine 248 candidates

for k1, k2, k3 and k4. The correct key can then be uniquely determined using additional

plaintext/ciphertext pairs.

4.3.1 Key recovery of Eki

In this section, we describe a differential fault analysis on the Eki function which are used

in Hummingbird algorithm. The injected faults are assumed to occur in one 4-bit word

before the linear transform and after the 4× 4 s-boxes.

Consider one 4-bit word differences at the input of the linear layer L(x). We have

60 (= 15 × 4) possible such differences corresponding to 4 different possible locations

and 15 different possible values. Because of the linearity, the number of corresponding

possible differences at its output is also 60 but, while the input difference affected one 4-

bit word only, the output difference affects up to 12 bits because of the diffusion linear

transformation layer (See Table 4.3.1.) Note that the key addition does not change the set

of possible differences.

First we describe how we can recover the last round subkey K
(i)
6 . We follow the same

idea of the attack described in [69]. Algorithm 1 shows the details.

53

Differential input = (△X1 △X2 △X3 △X4)
△X1 ∕= 0 △X2 ∕= 0 △X3 ∕= 0 △X4 ∕= 0

T
he

co
rr

es
po

nd
in

g
di

ff
er

en
tia

lo
ut

pu
t

1440 0144 4014 4401
2880 0288 8028 8802
3CC0 03CC C03C CC03
4011 1401 1140 0114
5451 1545 5154 4515
6891 1689 9168 8916
7CD1 17CD D17C CD17
8022 2802 2280 0228
9462 2946 6294 4629
A8A2 2A8A A2A8 8A2A
BCE2 2BCE E2BC CE2B
C033 3C03 33C0 033C
D473 3D47 73D4 473D
E8B3 3E8B B3E8 8B3E
FCF3 3FCF F3FC CF3F

Table 2: Possible differential outputs of the linear transformation - The D’s list
(Differential output = (△Y1 △ Y2 △ Y3 △ Y4)

All values are in Hexadecimal)

Algorithm 1:

1. Compute the 60 possible differences at the output of linear transform (L(x)), i.e. the

60 values of L(x), where x = x1∣∣x2∣∣x3∣∣x4 and only one of the xi’s has a Hamming

weight not equal to zero. Store the obtained values in a list D.

2. Consider a plaintext P , its corresponding ciphertext C and faulty ciphertext C ′.

3. Guess the value of the round key K
(i)
6 .

4. Compute the difference SBOX−1(C⊕K
(i)
6)⊕SBOX−1(C ′⊕K

(i)
6). Check whether

it is in D. If yes, add the round key to the list ℒ of possible candidates.

54

Fault location The recovered
data

The recovered
keys

round 4 K
(4)
2 ⊕K

(4)
4

round 3 K
(4)
1 ⊕K

(4)
3Ek4 round 2 K

(4)
4 K

(4)
2 ,K(4)

4

round 1 K
(4)
3 K

(4)
1 ,K(4)

3

Guess all of 216 possibilities of RS4t 7−→ Get V 34t

round 4 K
(3)
2 ⊕K

(3)
4

round 3 K
(3)
1 ⊕K

(3)
3Ek3 round 2 K

(3)
4 K

(3)
2 ,K(3)

4

round 1 K
(3)
3 K

(3)
1 ,K(3)

3

Guess all of 216 possibilities of RS3t 7−→ Get V 23t

round 4 K
(2)
2 ⊕K

(2)
4

round 3 K
(2)
1 ⊕K

(2)
3Ek2 round 2 K

(2)
4 K

(2)
2 ,K(2)

4

round 1 K
(4)
2 K

(2)
1 ,K(2)

3

Guess all of 216 possibilities of RS2t 7−→ Get V 12t

round 4 K
(1)
2 ⊕K

(1)
4

round 3 K
(1)
1 ⊕K

(1)
3Ek1 round 2 K

(1)
4 K

(1)
2 ,K(1)

4

round 1 K
(1)
3 K

(1)
1 ,K(1)

3

Table 3: Summary of the fault attack on Hummingbird

55

5. Consider a new plaintext P (with corresponding C and C ′) and go back to step 2.

This time, the round key guesses only go through the list ℒ of possible candidates. If

the difference computed at step 4 is not in D, remove the candidate from ℒ). Repeat

until there remains only one candidate in ℒ.

The complexity of the Algorithm 1 is around 216 since we have to search all of the

target key at the beginning of step 3 of the algorithm. After K(i)
6 is uniquely determined,

the last round is peeled off, and the attack is repeated on the reduced cipher.

We can find the subkey K
(i)
5 by repeating the same algorithm which is used to recover

K
(i)
6 but using the difference equation SBOX−1(L−1(C−1⊕K

(i)
5))⊕SBOX−1(L−1(C ′

−1⊕

K
(i)
5)) where C−1 = SBOX−1(C⊕K

(i)
6) and C ′

−1 = SBOX−1(C ′⊕K
(i)
6). K(i)

3 and K
(i)
4

are revealed in the same way. Finally, we determine the remaining subkeys of K(i)
1 and

K
(i)
2 by computing K

(i)
3 ⊕K

(i)
5 and K

(i)
4 ⊕K

(i)
6 , respectively.

The above attack was simulated for 10,000 times using different random values for the

16-bit input and 64-bit subkey of ki for Eki . Based on our simulations, our attack requires

an average of 12.51 fault injections to recover the whole subkeys, ki, i = 1, 2, 3, 4. The

recorded minimum and the largest number of required faults were 8 and 22, respectively.

Table 4.3.1 summarizes the whole steps of the attack to recover the 256-bit secret key.

After the keys are recovered, we can then find the other internal registers by applying

the initialization process since the values of NONCEi(i = 0, 1, 2, 3) are public.

56

4.3.2 The complexity of our attack

To recover all of the 256-bit secret key we have to apply the above fault attack for four

times and guess all candidate values of the three internal registers: RS2t, RS3t and RS4t.

From our experimental results, we need around 12.5 faulty values to uniquely determine

each subround key. Thus, our attack requires 50 faulty ciphertext, 248 guessing of 16-bit

values and calling Algorithm 1 (with complexity 216) in each step to reveal the subkeys.

Since we have to use four times of the Algorithm 1 in each step of Eki , the total complexity

of our attack is about 4× 216 × 248 = 266.

4.4 Summary and conclusions

In this chapter, we presented a fault attack against a newly introduced ultra lightweight

encryption algorithm, Hummingbird. Each 64-bit round key can be found, on average,

using 12.51 faulty encryptions. If we assume that the 256-bit secret key and 80-bit internal

state have random distribution, then the whole cipher can be broken after around 50 faults.

To fully recover the key, we have to guess 248 values of three 16-bit internal state registers

which brings the whole complexity of our attack to 266.

57

������� �� �� �	
������������ �
L� ()

1

i
K

4*4-bit

�� �� �� �	
������������ �
L� ()

2

i
K

4*4-bit

�� �� �� �	
����� ������� �
L� ()

4

i
K

4*4-bit

�� �� �� �	 () () ()

5 1 3

i i i
K K K= ⊕

4*4-bit

() () ()

6 2 4

i i i
K K K= ⊕

4*4-bit ������

�� �� �� �	
����� ������� �
L� ()

3

i
K

4*4-bit

 Four S-boxes which used in the block cipher in Hummingbird

(in hexadecimal notation) �
0 1 2 3 4 5 6 7 8 9 A B C D E F �

1(
�

) 8 6 5 F 1 C A 9 E B 2 4 7 0 D 3 �
2(
�

) 0 7 E 1 5 B 8 2 3 A D 6 F C 4 9 �
3(
�

) 2 E F 5 C 1 9 A B 4 6 8 0 7 3 D �
4(
�

) 0 7 3 4 C 1 A F D E 6 B 2 8 9 5

Linear Transform (L) : {0,1}
16

 → {0,1}
16

L(�) = � ⊕ (� <<< 6) ⊕ (� <<< 10)

Figure 5: The structure of Eki - the 16-bit block cipher of Hummingbird in encryption
mode.

58

Chapter 5

Scan Based Side Channel Attack on

ZUC

5.1 Introduction

Recently, a new set of cryptographic algorithms was proposed by the Data Assurance and

Communication Security (DACAS) research center of the Chinese Academy of Sciences

[14, 15] for inclusion in the 4G Long Term Evolution (LTE) mobile standard. The core

of the new LTE cryptographic algorithms consist of an encryption algorithm, called 128-

EEA3, and an integrity algorithm, called 128-EIA3.

The ZUC algorithm [86, 87] is the core of the proposed confidentiality and integrity

algorithms. ZUC is a word-oriented stream cipher that generates a key stream of 32-bit

words based on two stages of execution. It uses a 128-bit key and a 128-bit initial vec-

tor (iv) as input. The two execution stages of ZUC are the key initialization stage and

59

the working stage. In the first stage, a key initialization is performed, i.e., the cipher is

clocked without producing any output. In the second stage, a 32-bit word of output is

produced with every round. Preliminary evaluation of the ZUC algorithm, conducted by

the algorithm standardization group ETSI SAGE, concluded that it is a strong and suitable

candidate for the LTE. Some other evaluations were also presented in the first international

workshop on ZUC algorithm [88]. Generally, all of these security evaluations considered

only the potential theoretical weaknesses of the algorithm. On the other hand, hardware

implementations [89] of cryptographic algorithm are used in many applications in order

to achieve the growing requirements for high throughout. Thus, hardware implementation

related attacks have to be considered.

In this chapter, we present a scan-based attack on ZUC. A scan path connects registers

in a circuit serially so that a tester can observe the register values inside the circuit. The

scan path is widely used in recent circuit implementations due to its ease of implementation

and high test coverage [90]. Scan-based attacks exploit the scan chains that are inserted into

the devices for the purpose of testing. Scan based attacks have been demonstrated on block

ciphers such as DES [73] and AES [91], stream ciphers [74, 75] and public keys such as

elliptic curve cryptosystems [90]. Our scan based attack on ZUC allows us to uniquely

determine the corresponding locations of the inner state variables (the LFSR registers and

the memory cells) in the output scan chain and consequently recover the secret initial state.

The rest of the chapter is organized as follows. In the next section, we provide a brief

overview of scan based analysis attacks. In section 5.3, relevant details of ZUC are re-

viewed. Details of the attack are described in section 5.4. Finally, the conclusion is given

60

in section 5.5.

5.2 General description of the attack

Scan chain based attacks can be considered as a class of side channel attacks that targets

the design for testability feature of modern hardware circuity. This design for testability

is a design technique in which scan chains are kept with the objective to test designs by

providing a simple way to set and observe every flip flop in the hardware circuit. A special

signal, scan enable, is added to the design. When this scan enable signal is set, every

flip flip of the tested circuit is connected as a chain of registers. The data to this chain is

provided through one input pin and the scan output is provided through another output pin.

An input pattern can be scanned into the registers on each clock event. Then after a normal

run of the circuit, the scan chain content can be scanned out for testing.

In 2004, Yang et al. [73] introduced the notion of scan based attacks against dedicated

hardware implementations of cryptographic algorithms and described the details of these

attacks against DES. This class of attacks was extended to AES in [91] and [92]. Besides,

a scan-based attack against ECC was proposed in [90]. Scan based attacks against stream

ciphers were introduced by Agrawal et al [74], where a detailed attack against Trivium was

described. Liu et al in [75] presented scan based attacks against other LFSR-based stream

ciphers where this technique was applied on the six such stream ciphers including DECIM,

Pomaranch, A5/1, A5/2, w7 and LILI II.

Scan based attacks have two phases [74]: ascertaining the internal structure of the scan

61

chain and deciphering the cryptosystem by revealing the secret internal data. Throughout

our analysis, we assume that:

∙ The attacker knows the details of the cipher algorithm.

∙ The attacker has access to high level timing diagram of the hardware implementation.

∙ The secret key is stored in a secure memory and is not part of the scan chain.

∙ The attacker does not know the structure of the scan chain.

∙ The device under attack can be run for any prespecified number of clock cycles cho-

sen by the attacker.

∙ The attacker can scan out the states of internal registers of the device after any pre-

specified number of clock cycles.

∙ The attacker can scan in chosen vectors and apply chosen inputs to the device under

attack.

For our analysis, we assume a straightforward hardware implementation of ZUC that

does not imply any pipelining optimization. We consider an implementation in which both

stages of ZUC, the initialization stage and the working stage, are performed in hardware.

Furthermore, we assume that the key loading procedure (see section 5.3) is performed off

line and then its result is loaded into the LFSR. In this scenario, the hardware associated

with the internal state of ZUC would consists of 496 bits for the LFSR and 64 bits for R1

and R2. In other words, the scan chain for ZUC will have a total of 560 bits.

62

5.3 The ZUC specifications

ZUC is a word-oriented stream cipher which takes a 128-bit initial key and a 128-bit initial

vector (iv) as input and generates a 32-bit word as an output in every clock cycle. This

key stream can be used to encrypt the plaintext. ZUC utilizes three main components to

generate the keystream output: a Linear Feedback Shift Register (LFSR), bit-reorganization

(BR) and non-linear function (F).

The following notation, mostly from [14, 15], will be used throughout the rest of this

chapter:

- ⊞ : The addition modulo 232.

- ⊕ : The bit-wise XOR.

- ∨ : The bit-wise OR.

- ∧ : The bit-wise AND.

- X : The bit-wise complement of an n-bit word X .

- ∣∣ : Concatenation.

- mod : The modulo operation of integers.

- (a1, a2, . . . , an) −→ (b1, b2, . . . , bn) : The assignment of the values of ai to bi in

parallel.

- aH : The leftmost 16 bits of integer a.

63

- aL : The rightmost 16 bits of integer a.

- a <<<n k : The k-bit cyclic shift of the n-bit register a to the left.

- a >> 1 : The l-bit right shift of integer a.

- Xj
i : The j-th bit of an n-bit word Xi.

- Xj
i (t): The j-th bit of an n-bit word Xi after t clock cycles.

-
?

X
j
i : The j-th bit of an n-bit word Xi has been set to 1 but its corresponding location

in the scan chain output has not been determined uniquely.

-
✓
X

j
i : The location, in the scan chain output, of the j-th bit of an n-bit word Xi has

been determined uniquely.

Figure 6 shows the three dependent layers of ZUC. The secret inner state of ZUC con-

sists of the LFSR and the F function layers which have sixteen 31-bit words (s0, . . . , s15)

and 2 32-bit words (R1, R2), respectively. The LFSR has two modes of operations: the

initialization mode and the working mode.

According to the new version of the ZUC specifications [15], the first mode works as

follows:

LFSR With Initialization Mode (u) {

1. v = 215s15 + 217s13 + 221s10 + 220s4 + (1 + 28)s0 mod (231 − 1);

2. s16 = (v + u) mod (231 − 1);

3. If s16 = 0, then set s16 = 231 − 1;

64

⊕

6S9S15S

⊕⊕

7S 2S
0S1S

3S4S5S8S
10S11S12S

13S14S

0X
1X 2X 3X

81 2+152 172 212 202

31mod 2 1−
L

F

S

R

2R1R

2S•L1S•L

W

F

B

R

16<<<

Z

Figure 6: Overview of the ZUC stream cipher

4. (s1, s2, . . . , s15, s16) −→ (s0, s1, . . . , s14, s15).}

In the working mode, the LFSR does not receive any input, and it updates its current

state as follows:

LFSR With Work Mode() {

1. s16 = 215s15 + 217s13 + 221s10 + 220s4 + (1 + 28)s0 mod (231 − 1);

2. If s16 = 0, then set s16 = 231 − 1;

65

3. (s1, s2, . . . , s15, s16) −→ (s0, s1, . . . , s14, s15).}

The bit-reorganization layer extracts 128 bits from 8 registers of the LFSR and forms 4

32-bit words as follows:

Bit reorganization() {

1. X0 = s15H ∣∣s14L;

2. X1 = s11L∣∣s9H ;

3. X2 = s7L∣∣s5H ;

4. X3 = s2L∣∣s0H .}

The nonlinear function F consists of two 32-bit words R1 and R2 as memory cells. F

takes X0, X1 and X2 as it’s inputs, which are the outputs of the bit-reorganization layer,

then outputs a 32-bit word W as follows:

F(X0, X1, X2) {

1. W = (X0 ⊕R1)⊞R2;

2. W1 = R1 ⊞X1;

3. W2 = R2 ⊕X2;

4. R1 = S(L1(W1L∣∣W2H));

5. R2 = S(L2(W2L∣∣W1H)).}

66

where S is a 32×32 s-box, L1 and L2 are linear transformation. The s-box is composed

by 4 juxtaposed 8 × 8 s-boxes, i.e., S = (S0, S1, S0, S1). The lookup table definition of

these s-boxes can be found in [15]. L1 and L2 are linear mapping from 32-bit words to

32-bit words, and are defined as follows:

L1(X) = X ⊕ (X <<<32 2)⊕ (X <<<32 10)⊕ (X <<<32 18)⊕ (X <<<32 24)

L2(X) = X ⊕ (X <<<32 8)⊕ (X <<<32 14)⊕ (X <<<32 22)⊕ (X <<<32 30)

The execution of ZUC has two stages: key initialization stage and working stage. The

algorithm first calls the key loading procedure to load the key and the iv into the LFSR as

the initial state and set R1 and R2 to all 0’s.

The key loading procedure works as follows:

Key loading {

1. Let D be a 240 bit constant value by

D = d0∣∣d1∣∣ . . . ∣∣d15

2. For i = 0 . . . 15, let si = ki∣∣di∣∣ivi.}

where di are 16 15-bit constant values, ki and ivi, i = 0 . . . 15 are all bytes of the 128-bit

initial key k and the 128-bit initial vector iv respectively. Then the cipher runs the follow-

ing operation 32 times to finish the key initialization stage.

The initialization stage {

1. Bit reorganization();

67

2. w = F (X0, X1, X2);

3. LFSR With Initialization Mode(w >> 1).}

After the initialization stage and the first iteration of the working stage, in which the

output W of F is discarded, the algorithm goes into the stage of generation key stream. For

each iteration, the following operations are done once and a 32-bit word Z is produced as

an output:

The working stage {

1. Bit reorganization();

2. Z = F (X0, X1, X2)⊕X3;

3. LFSR With Work Mode(). }

5.4 The proposed attack

5.4.1 Overview

Our proposed attack is applicable to scenarios where the attacker has access to the encryp-

tion hardware device after the key loading process and the initialization stage have been

executed. The proposed scan based attack allows the attacker to recover the internal state

of the cipher, but not the key, since we assume that the key bits are stored in a secure mem-

ory and cannot be scanned out. According to our scan based analysis model, the attacker is

also assumed to be able to re-initialize the encryption device an arbitrary number of times

and obtain the values of the states of internal registers of the device after each clock cycle.

68

The attack can be divided into two phases. The first phase uses the key loading proce-

dure to determine correspondence between the individual bits in the scan chain output and

the si bits that are loaded with the 128-bit initial key k and the 128-bit initial vector iv in

step 2 of the key initialization stage.

In the second phase (explained in sections 5.4.3 and 5.4.4), the attacker determines the

remaining structure of the scan chain, i.e., the attacker determines the exact location of the

remaining internal state registers including the remaining bits of the LFSR and the memory

cells R1 and R2.

5.4.2 Key loading stage

The scan out bits corresponding to the 256 bits of the LFSR register that are loaded with

the 128-bit initial key k and the 128-bit initial vector iv in step 2 of the key initialization

stage can be determined by the key loading procedure as follows:

For l = 0 . . . 127:

1 Set iv=0 and k = 2l.

2 Load the k and the iv.

3 Determine the location corresponding to the ltℎ bit in k (which is set to 1) in the

scanned− out.

4 Use scanned− in with the information of step 2 to determine the correspondence

in the scanned− in position.

69

The above procedure recovers the positions, in the scan out chain, corresponding to the

most significant bytes of the LFSR. Recovering the position of the least significant bytes

can be achieved by applying the same procedure with k=0 and iv = 2l. Thus, after this

step, we have
✓
S31
i ,

✓
S30
i ,

✓
S29
i ,

✓
S28
i ,

✓
S27
i ,

✓
S26
i ,

✓
S25
i ,

✓
S24
i ,

✓
S8
i ,

✓
S7
i ,

✓
S6
i ,

✓
S5
i ,

✓
S4
i ,

✓
S3
i ,

✓
S2
i ,

✓
S1
i

(15)

for i=0. . . 15.

5.4.3 Determining the locations of the remaining LFSR bits

In what follows, we show how to determine the remaining 16 × 15 = 240 bit position of

the LFSR (which are loaded by the di values in the key loading procedure). We also show

how to determine four bits of R1 and R2 (R15
1 , R18

1 , R22
1 , R32

2).

First, we initialize the LFSR register, R1 and R2 with all 0’s and then run the system for

1 clock cycle to determine some specific positions. Then, we reset the circuit and scan in a

specific input pattern with a Hamming weight equals "1". Finally we run the system for a

prespecified number of clock cycles to load the above pattern and then perform a scan out

operation. As shown below, examining the output pattern in the scan chain output allows

us to determine the required bit positions.

70

1. Determining the bit locations of S15:

(a) Set S0(0) = . . . = S15(0)=0 and R1(0) = R2(0) = 0. Then after 1 clock cycle

we have:

∙ X0 = X1 = X2 = X3 = 0.

∙ R1(1)=0x3E553E55 and R2(1)=0x3E553E55.

∙ S16 = 231 − 1.

∙ (S0, S1, . . . , S15) = (0, 0, . . .,0,0x7FFFFFFF).

∙ (R1, R2)=(0x3E553E55,0x3E553E55).

Thus all the activated bits, i.e., the bits that are set to "1" in the above process,

belong to S15, R1 and R2.

(b) For i = 0 . . . 7: set S0(0) = 2i, S1(0) = . . . = S15(0)=0 and R1(0) = R2(0) =

0. Then after 1 clock cycle we have:

∙ X0 = X1 = X2 = X3 = 0.

∙ R1(1)=0x3E553E55 and R2(1)=0x3E553E55.

∙ S16 = 2i + 2i+8.

∙ (S0, S1, . . . , S15) = (0, 0, . . . , 0, 2i + 2i+8).

∙ (R1, R2)=(0x3E553E55,0x3E553E55).

The values of R1 and R2 remain the same as in step 1a. On the other hand,

two bits of S15 will change which allows us to determine the position of the

(i + 9)tℎ, i = 0 . . . 7, bit in S15 which corresponds to 2i+8 in the equations

71

above. Consequently, at the end of this step we have

✓
S
9
15

✓
S
10
15 ,

✓
S
11
15 ,

✓
S
12
15 ,

✓
S
13
15 ,

✓
S
14
15 ,

✓
S
15
15 ,

✓
S
16
15

(c) For i = 0 . . . 5: set S13(0) = 2i, S0(0) = . . . = S12(0) = S14(0) = S15(0)=0

and R1(0) = R2(0) = 0. Then after 1 clock cycle we have:

∙ X0 = X1 = X2 = X3 = 0.

∙ R1(1)=0x3E553E55 and R2(1)=0x3E553E55.

∙ S16 = 2i+17.

∙ (S0, S1, . . . , S15) = (0, 0, . . . , 2i, 0, 0, 2i+17).

∙ (R1, R2)=(0x3E553E55,0x3E553E55).

Again, the positions of activated bits in R1 and R2 do not change from step 1a.

However the (i+18)tℎ, i = 0 . . . 5, bit of S15, which corresponds to 2i+17 in the

equations above, will change which allows us to determine the exact positions

of these bits. Finally, the position of the remaining bit S17
15 , can be found from

the fact that all positions of S15 are already determined during step 1a. Thus at

the end of this step we have

✓
S
17
15 ,

✓
S
18
15 ,

✓
S
19
15 ,

✓
S
20
15 ,

✓
S
21
15 ,

✓
S
22
15 ,

✓
S
23
15

2. Determining the bit locations of S14:

(a) Set S0(0) = . . . = S15(0)=0 and R1(0) = R2(0) = 0. Then after 2 clock cycles

72

we have:

∙ X0 = X1 = X2 = X3 = 0.

∙ R1(2)=0x38A538A5 and R2(2)=0x34813481.

∙ S16 = 231 − 1.

∙ (S0, S1, . . . , S15) = (0, 0, . . .,0,0x7FFFFFFF,0x7FFFFFFF).

∙ (R1, R2)=(0x38A538A5,0x34813481).

Thus all the activated bits, i.e., the bits that are set to "1" in the above process,

belong to S14, S15, R1 and R2.

(b) For i = 0 . . . 7: set S0(0) = 2i, S1(0) = . . . = S15(0)=0 and R1(0) = R2(0) =

0. Then after 2 clock cycles we have:

∙ X0 = X1 = X2 = X3 = 0.

∙ R1(2)=0x38A538A5 and R2(2)=0x34813481.

∙ S16 = 215+i + 223+i.

∙ (S0, S1, . . . , S15) = (0, 0, . . . , 0, 2i + 2i+8, 215+i + 223+i).

∙ (R1, R2)=(0x38A538A5,0x34813481).

The values of R1 and R2 remain the same as in step 2a. On the other hand,

two bits of S14 will change which allows us to determine the position of the

(i + 9)tℎ, i = 0 . . . 7, bit in S14 which corresponds to 2i+8 in the equations

above. Consequently, at the end of this step we have

✓
S
9
14

✓
S
10
14 ,

✓
S
11
14 ,

✓
S
12
14 ,

✓
S
13
14 ,

✓
S
14
14 ,

✓
S
15
14 ,

✓
S
16
14

73

(c) For i = 1 . . . 7: set S15(0) = 2i, S0(0) = . . . = S14(0)=0 and R1(0) = R2(0) =

0. Then after 2 clock cycles we have:

∙ X0 ∕= 0, X1 = X2 = X3 = 0.

∙ R1(2)=0x38A538A5 and R2(2)=0x34813481.

∙ S16 = 2i+17.

∙ (S0, S1, . . . , S14) = (0, 0, . . . , 2i, 2i+15).

∙ (R1, R2)=(0x38A538A5,0x34813481).

Again, the positions of activated bits in R1 and R2 do not change from step 2a.

However the (i+16)tℎ, i = 1 . . . 7, bit of S14, which corresponds to 2i+15 in the

equations above, is changed which allows us to determine the exact positions

of these bits. Thus at the end of this step we have

✓
S
17
14 ,

✓
S
18
14 ,

✓
S
19
14 ,

✓
S
20
14 ,

✓
S
21
14 ,

✓
S
22
14 ,

✓
S
23
14

3. Determining the bit locations of S13:

(a) Set S0(0) = . . . = S15(0)=0 and R1(0) = R2(0) = 0. Then after 3 clock cycles

we have:

∙ X0 =0xFFFFFFFF,X1 = X2 = X3 = 0.

∙ R1(3)=0x5334B0EC and R2(3)=0xFE03AA92.

∙ S16 = 231 − 1.

∙ (S0, S1, . . . , S15) = (0, 0, . . .,0,0x7FFFFFFF,0x7FFFFFFF,

74

0x7FFFFFFF).

∙ (R1, R2)=(0x5334B0EC,0xFE03AA92).

Thus all the activated bits, i.e. the bits that are set to "1" in the above process,

belong to S13, S14, S15, R1 and R2.

(b) For i = 0 . . . 7: set S0(0) = 2i, S1(0) = . . . = S15(0)=0 and R1(0) = R2(0) =

0. Then after 3 clock cycles we have:

∙ X0 ∕= 0, X1 = X2 = X3 = 0.

∙ R1(3)=0x5334B0EC and R2(3)=0xFE03AA92.

∙ S16 = 215+i + 223+i.

∙ (S0, S1, . . . , S13) = (0, 0, . . . , 0, 2i + 2i+8).

∙ (R1, R2)=(0x5334B0EC,0xFE03AA92).

The values of R1 and R2 remain the same as in step 3a. On the other hand,

two bits of S13 are changed during the clocks which allows us to determine the

position of the (i+ 9)tℎ, i = 0 . . . 7, bit in S13 which corresponds to 2i+8 in the

equations above. Consequently, at the end of this step we have

✓
S
9
13

✓
S
10
13 ,

✓
S
11
13 ,

✓
S
12
13 ,

✓
S
13
13 ,

✓
S
14
13 ,

✓
S
15
13 ,

✓
S
16
13

(c) For i = 1 . . . 7: set S15(0) = 2i, S0(0) = . . . = S14(0)=0 and R1(0) = R2(0) =

0. Then after 3 clock cycles we have:

∙ X0 ∕= 0, X1 = X2 = X3 = 0.

75

∙ R1(3)=0x5334B0EC and R2(3)=0xFE03AA92.

∙ S16 = 2i+17.

∙ (S0, S1, . . . , S13) = (0, 0, . . . , 2i, 2i+15).

∙ (R1, R2)=(0x5334B0EC,0xFE03AA92).

Again, the positions of activated bits in R1 and R2 do not change from step 3a.

However the (i+16)tℎ, i = 1 . . . 7, bit of S13, which corresponds to 2i+15 in the

equations above, is changed which allows us to determine the exact positions

of these bits. Thus at the end of this step we have

✓
S
17
13 ,

✓
S
18
13 ,

✓
S
19
13 ,

✓
S
20
13 ,

✓
S
21
13 ,

✓
S
22
13 ,

✓
S
23
13

4. Determining the bit locations of S12:

(a) Set S0(0) = . . . = S15(0)=0 and R1(0) = R2(0) = 0. Then after 4 clock cycles

we have:

∙ X0 =0xFFFFFFFF,X1 = X2 = X3 = 0.

∙ R1(4)=0x39A8912E and R2(4)=0x14AE6F5C.

∙ S16 = 231 − 1.

∙ (S0, S1, . . . , S15) = (0, 0, . . .,0,0x7FFFFFFF,0x7FFFFFFF,

0x7FFFFFFF,0x7FFFFFFF).

∙ (R1, R2)=(0x39A8912E,0x14AE6F5C).

Thus all the activated bits, i.e. the bits that are set to "1" in the above process,

76

belong to S12, S13, S14, S15, R1 and R2.

(b) For i = 0 . . . 7: set S0(0) = 2i, S1(0) = . . . = S15(0)=0 and R1(0) = R2(0) =

0. Then after 4 clock cycles we have:

∙ X0 ∕= 0, X1 = X2 = X3 = 0.

∙ R1(4)=0x39A8912E and R2(4)=0x14AE6F5C.

∙ S16 = 215+i + 223+i.

∙ (S0, S1, . . . , S12) = (0, 0, . . . , 0, 2i + 2i+8).

∙ (R1, R2)=(0x39A8912E,0x14AE6F5C).

The values of R1 and R2 remain the same as in step 4a. On the other hand,

two bits of S12 are changed during the clocks which allows us to determine the

position of the (i+ 9)tℎ, i = 0 . . . 7, bit in S12 which corresponds to 2i+8 in the

equations above. Consequently, at the end of this step we have

✓
S
9
12

✓
S
10
12 ,

✓
S
11
12 ,

✓
S
12
12 ,

✓
S
13
12 ,

✓
S
14
12 ,

✓
S
15
12 ,

✓
S
16
12

(c) For i = 1 . . . 7: set S15(0) = 2i, S0(0) = . . . = S14(0)=0 and R1(0) = R2(0) =

0. Then after 4 clock cycles we have:

∙ X0 ∕= 0, X1 = X2 = X3 = 0.

∙ R1(4)=0x39A8912E and R2(4)=0x14AE6F5C.

∙ S16 = 2i+17.

∙ (S0, S1, . . . , S12) = (0, 0, . . . , 2i, 2i+15).

77

∙ (R1, R2)=(0x39A8912E,0x14AE6F5C).

Again, the positions of activated bits in R1 and R2 do not change from step 4a.

However the (i+16)tℎ, i = 1 . . . 7, bit of S12, which corresponds to 2i+15 in the

equations above, is changed which allows us to determine the exact positions

of these bits. Thus at the end of this step we have

✓
S
17
12 ,

✓
S
18
12 ,

✓
S
19
12 ,

✓
S
20
12 ,

✓
S
21
12 ,

✓
S
22
12 ,

✓
S
23
12

5. Determining the bit locations of S11 and R22
1 :

(a) Set S0(0) = . . . = S15(0)=0 and R1(0) = R2(0) = 0. Then after 5 clock cycles

we have:

∙ X0 =0xFFFFFFFF,X1 = X2 = X3 = 0.

∙ R1(5)=0xBF289712 and R2(5)=0x21513161.

∙ S16 = 231 − 1.

∙ (S0, S1, . . . , S15) = (0, 0, . . .,0,0x7FFFFFFF,0x7FFFFFFF,

0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF).

∙ (R1, R2)=(0xBF289712,0x21513161).

Thus all the activated bits, i.e., the bits that are set to "1" in the above process,

belong to S11, S12, S13, S14, S15, R1 and R2. At the end of this step, the 22tℎ bit

of R1 can be determined by matching and comparing with the previous values

of R1 (
✓
R22

1).

78

(b) For i = 0 . . . 7: set S0(0) = 2i, S1(0) = . . . = S15(0)=0 and R1(0) = R2(0) =

0. Then after 5 clock cycles we have:

∙ X0 ∕= 0, X1 = X2 = X3 = 0.

∙ R1(5)=0xBF289712 and R2(5)=0x21513161.

∙ S16 = 215+i + 223+i.

∙ (S0, S1, . . . , S11) = (0, 0, . . . , 0, 2i + 2i+8).

∙ (R1, R2)=(0xBF289712,0x21513161).

The values of R1 and R2 remain the same as in step 5a. On the other hand,

two bits of S11 are changed during the clocks which allows us to determine the

position of the (i+ 9)tℎ, i = 0 . . . 7, bit in S11 which corresponds to 2i+8 in the

equations above. Consequently, at the end of this step we have

✓
S
9
11

✓
S
10
11 ,

✓
S
11
11 ,

✓
S
12
11 ,

✓
S
13
11 ,

✓
S
14
11 ,

✓
S
15
11 ,

✓
S
16
11

(c) For i = 16 . . . 22: set S12(0) = 2i, S0(0) = . . . = S11(0) = S13(0) = S14(0) =

S15(0)=0 and R1(0) = R2(0) = 0. Then after 1 clock cycle we have:

∙ X1 = X2 = 0.

∙ R1(1) = R2(1)=0x3E553E55.

∙ S16 = 231 − 1.

∙ (S0, S1, . . . , S15) = (0, 0, . . . , 0, 2i, 0, 0, 0, 231 − 1).

∙ (R1, R2)=(0x3E553E55,0x3E553E55).

79

Again, the positions of activated bits in R1 and R2 do not change from step 1a.

However, the (i + 1)tℎ, i = 16 . . . 22, bit of S11, which corresponds to 2i in the

equations above, is changed which allows us to determine the exact positions

of these bits. Thus at the end of this step we have

✓
S
17
11 ,

✓
S
18
11 ,

✓
S
19
11 ,

✓
S
20
11 ,

✓
S
21
11 ,

✓
S
22
11 ,

✓
S
23
11

6. Determining the bit locations of S10 and R32
2 :

(a) For i = 8 . . . 22: set S11(0) = 2i, S0(0) = . . . = S10(0) = S12(0) = . . . =

S15(0)=0 and R1(0) = R2(0) = 0. Then after 1 clock cycle we have:

∙ X1 = 2i+16, and X2 = 0.

∙ (S0, S1, . . . , S10) = (0, 0, . . . , 0, 2i).

∙ R1(1)=0x3E553E55 and R2(1) ∕= 0 (For the first 8 values of i, i = 8 . . . 15)

– i = 8, R2(1)=0x762072DD =⇒
✓
S9
10

– i = 9, R2(1)=0xB1AE5BAD =⇒
?

S10
10 and

?

R32
2

– i = 10, R2(1)=0x723BE0C2 =⇒
✓
S11
10

– i = 11, R2(1)=0x5B9F5463 =⇒
✓
S12
10

– i = 12, R2(1)=0xCA8CAF3B =⇒
?

S13
10 and

?

R32
2 , the position of R32

2

is activated again. So, all positions of S10
10 , R

32
2 and S13

10 can be deter-

mined:
✓
S10
10 ,

✓
S13
10 and

✓
R32

2 .

– i = 13, R2(1)=0x0444DD9F =⇒
✓
S14
10

80

– i = 14, R2(1)=0x7BDDE38C =⇒
✓
S15
10

– i = 15, R2(1)=0x4DADBC44 =⇒
✓
S16
10

∙ R1(1) = R2(1) =0x3E553E55 (For the last 7 values of i, i = 16 . . . 22).

Again, the positions of activated bits in R1 and R2 do not change from step

1a. However the (i+1)tℎ, i = 16 . . . 22, bit of S10, which corresponds to 2i

in the equations above, is changed which allows us to determine the exact

positions of these bits. Thus at the end of this step we have

✓
S
17
10 ,

✓
S
18
10 ,

✓
S
19
10 ,

✓
S
20
10 ,

✓
S
21
10 ,

✓
S
22
10 ,

✓
S
23
10

Finally, we can find all unknown positions of S10 and the most significant bit

place of R2 at the end of this step.

7. Determining the bit locations of S9:

(a) For i = 8 . . . 22: set S10(0) = 2i, S0(0) = . . . = S9(0) = S11(0) = . . . =

S15(0)=0 and R1(0) = R2(0) = 0. Then after 1 clock cycle we have:

∙ X1 = X2 = 0.

∙ R1(1) = R2(1)=0x3E553E55.

∙ (S0, S1, . . . , S9) = (0, 0, . . . , 0, 2i).

∙ (R1, R2)=(0x3E553E55,0x3E553E55).

Again, the positions of activated bits in R1 and R2 do not change from step 1a.

However the (i + 1)tℎ, i = 8 . . . 22, bit of S9, which corresponds to 2i in the

81

equations above, is changed which allows us to determine the exact positions

of these bits. Thus at the end of this step we have

✓
S
9
9 . . . ,

✓
S
23
9

8. Determining the bit locations of S8, R15
1 and R18

1 :

(a) For i = 8 . . . 22: set S9(0) = 2i, S0(0) = . . . = S8(0) = S10(0) = . . . =

S15(0)=0 and R1(0) = R2(0) = 0. Then after 1 clock cycle we have:

∙ (S0, S1, . . . , S8) = (0, 0, . . . , 0, 2i).

∙ R1(1) = R2(1) =0x3E553E55 (For i = 8 . . . 14).

The values of R1 and R2 remain the same as in step 1a. On the other hand,

two bits of S8 are changed during the clocks which allows us to determine

the position of the (i+ 1)tℎ, i = 8 . . . 14, bit in S8 which corresponds to 2i

in the equations above. Consequently, at the end of this step we have

✓
S
9
8

✓
S
10
8 ,

✓
S
11
8 ,

✓
S
12
8 ,

✓
S
13
8 ,

✓
S
14
8 ,

✓
S
15
8

∙ R2(1)=0x3E553E55 and R1(1) ∕= 0 (For i = 15, 16, 17)

– X1 = 2i−15, and X2 = 0.

– i = 15, R1(1)=0xCAC8723B =⇒
?

S16
8 and

?

R15
1 .

– i = 16, R1(1)=0x04DA5B9F =⇒
?

S17
8 ,

?

R15
1 and

?

R18
1 . So, the other

three places are activated. Then, the position of R15
1 can be determined

82

(
✓
R15

1). Besides, the position of S16
8 can be found easily after finding

the position of R15
1 as well (

✓
S16
8). However, positions of S17

8 and R18
1

are still unknown.

– i = 17, R1(1)=0x7BA6CA8C =⇒
?

S18
8 and

?

R18
1 , two positions are ac-

tivated where R18
1 was just activated in the previous step. Then, R18

1

can be determined (
✓
R18

1). Finally, S18
8 can be found easily after finding

the position of R18
1 (

✓
S18
8).

∙ For the last 5 values of i = 18 . . . 22, all positions of R1(1) and R2(1) are

already distinguishable based on their previous values. the (i + 1)tℎ, i =

18 . . . 22, bit of S8, which corresponds to 2i, is changed which allows us to

determine the exact positions of these bits. Thus at the end of this step we

have
✓
S
19
8

✓
S
20
8 ,

✓
S
21
8 ,

✓
S
22
8 ,

✓
S
23
8 ,

✓
R

15
1 ,

✓
R

18
1

Thus, at the end of this step we are able to find all unknown positions of S8 and

two bit locations of R1.

9. Determining the bit locations of S0 . . . S7:

(a) For j = 8 . . . 1

For i = 8 . . . 22, set:

Sj(0) = 2i, S0(0) = . . . = Sj−1(0) = Sj+1(0) = . . . = S15(0)=0 and R1(0) =

R2(0) = 0. Then after 1 clock cycle we have:

83

∙ X1 = 0.

∙ (S0, S1, . . . , Sj) = (0, 0, . . . , 2i).

∙ R1(1) ∕= 0 and R2(1) ∕= 0. All of activated positions of R1 and R2 are

already distinguishable from the other registers based on their previous

values.

Again, the positions of activated bits in R1 and R2 do not change from previous

steps. However the (i + 1)tℎ, i = 8 . . . 22, bit of Sj ,j = 8 . . . 1, which corre-

sponds to 2i in the equations above, is changed which allows us to determine

the exact positions of these bits. Thus at the end of this step we have

✓
S
9
j−1 . . . ,

✓
S
23
j−1

5.4.4 Determining the location of the remaining bits in R1 and R2

In this section, we show how to determine the position of the remaining bits of the memory

cells. To achieve this, first we reset all registers to 0. Then, by examining the scan out chain

after clocking the circuit with a prespecified number of clock cycles, as shown below, we

are able to determine the position of these bits.

1. Determining the bit locations of R6
1, R

23
1 , R26

1 , R28
1 , R31

1 and R7
2:

Set S0(0) = . . . = S15(0)=0 and R1(0) = R2(0) = 0. During 5 clock cycles we

have:

(a) R1(1)= 0x3E553E55, R2(1)= 0x3E553E55.

84

(b) R1(2)= 0x38A538A5, R2(2)= 0x34813481.

(c) R1(3)= 0x5334B0EC, R2(3)= 0x FE03AA92.

(d) R1(4)= 0x39A8912E, R2(4)= 0x14AE6F5C.

(e) R1(5)= 0xBF289712, R2(5)= 0x21513161.

The location of the "1" bit in

R1(2)[1b] ∧R1(3)[1c] ∧R1(4)[1d] ∧ (R1(1)[1a] ∨R1(5)[1e])

corresponds to the position of R6
1 where R1(2)[1b] is the value of R1 in the 2nd clock

of the process 1b. In other words, the formula illustrates that the position of R6
1 can

be determined uniquely provided that this specific location must be "1" in steps 1b, 1c

and 1d and be "0" in steps 1a and 1e respectively. Similarly, the other bits can be

located as presented in Table 4.

R1(1)[1a] ∧ (R1(2)[1b] ∨R1(3)[1c] ∨R1(4)[1d] ∨R1(5)[1e]) =⇒ R23
1

R1(1)[1a] ∧R1(3)[1c] ∧R1(5)[1e] ∧ (R1(2)[1b] ∨R1(4)[1d]) =⇒ R26
1

R1(1)[1a] ∧R1(2)[1b] ∧R1(4)[1d] ∧R1(5)[1e] ∧ (R1(3)[1c]) =⇒ R28
1

R1(3)[1c] ∧R1(5)[1e] ∧ (R1(1)[1a] ∨R1(2)[1b] ∨R1(4)[1d]) =⇒ R31
1

R2(1)[1a] ∧R2(4)[1d] ∧R2(5)[1e] ∧ (R2(2)[1b] ∨R2(3)[1c]) =⇒ R7
2

Table 4: Formulas used in step 1

85

2. Determining the bit locations of R24
1 , R1

2, R
2
2, R

12
2 , R13

2 , R17
2 , R24

2 , R25
2 , R26

2 , R29
2 and

R30
2 :

Set S11(0) = 215, S0(0) = . . . = S10(0) = S12(0) = . . . = S15(0)=0 and

R1(0) = R2(0) = 0. Then after one clock cycle we have:

(a) R1(1)= 0x3E553E55, R2(1)= 0x4DADBC44.

The location of the "1" bit in

R1(2)[1b] ∧R1(4)[1d] ∧ (R1(1)[1a] ∨R1(3)[1c] ∨R1(5)[1e] ∨R1(1)[2a])

corresponds to the position of R24
1 and it can be determined uniquely.

Similarly, the location of the other bits can be determined as shown in Table 5.

3. Determining the bit locations of R1
1, R

3
1, R

4
1, R

14
1 , R19

1 , R29
1 , R30

1 , R32
1 , R6

2, R
11
2 , R18

2 ,

R27
2 and R28

2 :

Set S9(0) = 215, S0(0) = . . . = S8(0) = S10(0) = . . . = S15(0)=0 and R1(0) =

R2(0) = 0. Then after 1 clock cycle we have:

(a) R1(1)= 0xCAC8723B, R2(1)= 0x3E553E55.

The location of the "1" bit in

R1(1)[1a]∧R1(2)[1b]∧R1(1)[2a]∧R1(1)[3a]∧(R1(3)[1c] ∨R1(4)[1d] ∨R1(5)[1e])

corresponds to the position of R1
1 and it can be determined uniquely.

86

R2(1)[1a] ∧R2(2)[1b] ∧R2(5)[1e] ∧ (R2(3)[1c] ∨R2(4)[1d] ∨R2(1)[2a]) =⇒ R1
2

R2(3)[1c] ∧ (R2(1)[1a] ∨R2(2)[1b] ∨R2(4)[1d] ∨R2(5)[1e] ∨R2(1)[2a]) =⇒ R2
2

R2(1)[1a] ∧R2(3)[1c] ∧R2(4)[1d] ∧R2(1)[2a] ∧ (R2(2)[1b] ∨R2(5)[1e]) =⇒ R12
2

R2(1)[1a] ∧R2(2)[1b] ∧R2(5)[1e] ∧R2(1)[2a] ∧ (R2(3)[1c] ∨R2(4)[1d]) =⇒ R13
2

R2(1)[1a] ∧R2(2)[1b] ∧R2(3)[1c] ∧R2(5)[1e] ∧R2(1)[2a] ∧ (R2(4)[1d]) =⇒ R17
2

R2(2)[1b] ∧R2(4)[1d] ∧R2(1)[2a] ∧ (R2(1)[1a] ∨R2(3)[1c] ∨R2(5)[1e]) =⇒ R24
2

R2(5)[1e] ∧R2(1)[2a] ∧ (R2(1)[1a] ∨R2(2)[1b] ∨R2(3)[1c] ∨R2(4)[1d]) =⇒ R25
2

R2(1)[1a] ∧R2(3)[1c] ∧ (R2(2)[1b] ∨R2(4)[1d] ∨R2(5)[1e] ∨R2(1)[2a]) =⇒ R26
2

R2(1)[1a] ∧R2(2)[1b] ∧R2(3)[1c] ∧R2(4)[1d] ∧ (R2(5)[1e] ∨R2(1)[2a]) =⇒ R29
2

R2(1)[1a] ∧R2(2)[1b] ∧R2(3)[1c] ∧R2(5)[1e] ∧ (R2(4)[1d] ∨R2(1)[2a]) =⇒ R30
2

Table 5: Formulas used in step 2

Similarly, the location of the other bits can be determined as shown in Table 6.

4. Determining the bit locations of R2
1, R

7
1, R

8
1, R

9
1, R

11
1 , R13

1 , R16
1 , R20

1 , R21
1 , R25

1 , R27
1 ,

R3
2, R

8
2, R

9
2, R

14
2 , R16

2 , R19
2 , R20

2 , R22
2 and R31

2 :

Set S5 = 216 + 218 + 220 + 221=0x00350000, S9 = 216 + 220=0x00110000, Sj =

0; {j = 0 . . . 15, j ∕= 5, 9 } and R1(0) = R2(0) = 0. Then after 1 clock cycle we

have:

(a) R1(1)= 0xCF571B36, R2(1)= 0xC92206F5.

87

R1(1)[1a] ∧R1(2)[1b] ∧R1(3)[1c] ∧R1(4)[1d] ∧R1(1)[2a] ∧ (R1(5)[1e]) ∨R1(1)[3a] =⇒ R3
1

R1(3)[1c] ∧R1(4)[1d] ∧R1(1)[3a] ∧ (R1(1)[1a] ∨R1(2)[1b] ∨R1(5)[1e] ∨R1(1)[2a]) =⇒ R4
1

R1(1)[1a] ∧R1(2)[1b] ∧R1(3)[1c] ∧R1(1)[2a] ∧R1(1)[3a] ∧ (R1(4)[1d] ∨R1(5)[1e]) =⇒ R14
1

R1(1)[1a] ∧R1(2)[1b] ∧R1(3)[1c] ∧R1(1)[2a] ∧ (∨R1(4)[1d] ∨R1(5)[1e] ∨R1(1)[3a]) =⇒ R19
1

R1(1)[1a] ∧R1(2)[1b] ∧R1(3)[1c] ∧R1(4)[1d] ∧R1(5)[1e] ∧R1(1)[2a] ∧ (R1(1)[3a]) =⇒ R29
1

R1(1)[1a] ∧R1(2)[1b] ∧R1(4)[1d] ∧R1(1)[2a] ∧ (∨R1(3)[1c] ∨R1(5)[1e] ∨R1(1)[3a]) =⇒ R30
1

R1(5)[1a] ∧R1(1)[3a] ∧ (R1(1)[1a] ∨R1(2)[1b] ∨R1(3)[1c] ∨R1(4)[1d] ∨R1(1)[2a]) =⇒ R32
1

R2(5)[1a] ∧ (R2(1)[1a] ∨R2(2)[1b] ∨R2(3)[1c] ∨R2(4)[1d] ∨R2(1)[2a] ∨R2(1)[3a]) =⇒ R6
2

R2(1)[1a] ∧R2(2)[1b] ∧R2(4)[1d] ∧R2(1)[2a] ∧R2(1)[3a] ∧ (R2(3)[1c] ∨R2(5)[1e]) =⇒ R11
2

R2(3)[1c] ∧R2(4)[1d] ∧ (R2(1)[1a] ∨R2(2)[1b] ∨R2(5)[1e] ∨R2(1)[2a] ∨R2(1)[3a]) =⇒ R18
2

R2(1)[1a] ∧R2(2)[1b] ∧R2(3)[1c] ∧R2(4)[1d] ∧R2(1)[2a] ∧R2(1)[3a] ∧ (R2(5)[1e]) =⇒ R27
2

R2(1)[1a] ∧R2(3)[1c] ∧R2(1)[2a] ∧R2(1)[3a] ∧ (R2(2)[1b] ∨R2(4)[1d] ∨R2(5)[1e]) =⇒ R28
2

Table 6: Formulas used in step 3

The location of the "1" bit in

R1(4)[1d] ∧R1(5)[1e] ∧R1(1)[3a] ∧R1(1)[4a]∧

(R1(1)[1a] ∨R1(2)[1b] ∨R1(3)[1c] ∨R1(1)[2a])

corresponds to the position of R2
1 and it can be determined uniquely. Similarly, the

other bits can be located as depicted in Table 7.

5. Determining the bit locations of R5
1, R

10
1 , R12

1 , R17
1 , R4

2, R
5
2, R

10
2 , R15

2 , R21
2 and R23

2 :

Set S5=0x011700000, S9=0x01110000, Sj = 0; {j = 0 . . . 15, j ∕= 5, 9 } and

R1(0) = R2(0) = 0. Then after 1 clock cycle we have:

88

(a) R1(1)= 0x7D9C9DDD, R2(1)=0x9E4C22CB.

Table 8 shows how the remaining bits can be located.

Note that the computations performed in this section can be performed simultaneously,

i.e., in parallel, by observing the scan out results in section 5.4.3. In other words, these

steps do not require any extra clocking for the circuit.

5.5 Summary and conclusions

In this chapter, we presented a scan based side channel attack on ZUC. Our attack allows

the cryptanalyst to determine the bit positions corresponding to the cipher secret internal

state in the scan out chain. To do so, we first used the key loading procedure to determine

the least and the most significant byte locations of the LFSR register. Then we utilized the

working mode procedure to determine the positions corresponding to the remaining bits in

the LFSR and the memory cells R1 and R2.

89

R1(1)[1a] ∧R1(3)[1c] ∧R1(1)[2a] ∧ (R1(2)[1b] ∨R1(4)[1d] ∨R1(5)[1e] ∨R1(1)[3a] ∨R1(1)[4a]) =⇒ R7
1

R1(2)[1b] ∧R1(3)[1c] ∧ (R1(1)[1a] ∨R1(4)[1d] ∨R1(5)[1e] ∨R1(1)[2a] ∨R1(1)[3a] ∨R1(1)[4a]) =⇒ R8
1

R1(4)[1d] ∧R1(5)[1e] ∧R1(1)[4a] ∧ (R1(1)[1a] ∨R1(2)[1b] ∨R1(3)[1c] ∨R1(1)[2a] ∨R1(1)[3a]) =⇒ R9
1

R1(1)[1a] ∧R1(5)[1e] ∧R1(1)[2a] ∧ (R1(2)[1b] ∨R1(3)[1c] ∨R1(4)[1d] ∨R1(1)[3a] ∨R1(1)[4a]) =⇒ R11
1

R1(1)[1a] ∧R1(2)[1b] ∧R1(3)[1c] ∧R1(4)[1d] ∧R1(5)[1e] ∧R1(1)[2a] ∧R1(1)[3a] ∧R1(1)[4a] =⇒ R13
1

R1(3)[1c] ∧R1(4)[1d] ∧R1(5)[1e] ∧ (R1(1)[1a] ∨R1(2)[1b] ∨R1(1)[2a] ∨R1(1)[3a] ∨R1(1)[4a]) =⇒ R16
1

R1(4)[1d] ∧R1(5)[1e] ∧R1(1)[3a] ∧ (R1(1)[1a] ∨R1(2)[1b] ∨R1(3)[1c] ∨R1(1)[2a] ∨R1(1)[4a]) =⇒ R20
1

R1(1)[1a] ∧R1(3)[1c] ∧R1(1)[2a] ∧R1(1)[4a] ∧ (R1(2)[1b] ∨R1(4)[1d] ∨R1(5)[1e] ∨R1(1)[3a]) =⇒ R21
1

R1(3)[1c] ∧R1(4)[1d] ∧R1(5)[1e] ∧R1(1)[4a] ∧ (R1(1)[1a] ∨R1(2)[1b] ∨R1(1)[2a] ∨R1(1)[3a]) =⇒ R25
1

R1(1)[1a] ∧R1(5)[1e] ∧R1(1)[2a] ∧R1(1)[4a] ∧ (R1(2)[1b] ∨R1(3)[1c] ∨R1(4)[1d] ∨R1(1)[3a]) =⇒ R27
1

R2(1)[1a] ∧R2(4)[1d] ∧R2(1)[2a] ∧R2(1)[3a] ∧R2(1)[4a] ∧ (R2(2)[1b] ∨R2(3)[1c] ∨R2(5)[1e]) =⇒ R3
2

R2(2)[1b] ∧R2(3)[1c] ∧R2(1)[4a] ∧ (R2(1)[1a] ∨R2(4)[1d] ∨R2(5)[1e] ∨R2(1)[2a] ∨R2(1)[3a]) =⇒ R8
2

R2(4)[1d] ∧R2(5)[1e] ∧ (R2(1)[1a] ∨R2(2)[1b] ∨R2(3)[1c] ∨R2(1)[2a] ∨R2(1)[3a] ∨R2(1)[4a]) =⇒ R9
2

R2(1)[1a] ∧R2(2)[1b] ∧R2(3)[1c] ∧R2(4)[1d] ∧R2(5)[1e] ∧R2(1)[2a] ∧R2(1)[3a] ∧R2(1)[4a] =⇒ R14
2

R2(3)[1c] ∧R2(1)[2a] ∧ (R2(1)[1a] ∨R2(2)[1b] ∨R2(4)[1d] ∨R2(5)[1e] ∨R2(1)[3a] ∨R2(1)[4a]) =⇒ R16
2

R2(1)[1a] ∧R2(4)[1d] ∧R2(1)[2a] ∧R2(1)[3a] ∧ (R2(2)[1b] ∨R2(3)[1c] ∨R2(5)[1e] ∨R2(1)[4a]) =⇒ R19
2

R2(4)[1d] ∧R2(1)[2a] ∧ (R2(1)[1a] ∨R2(2)[1b] ∨R2(3)[1c] ∨R2(5)[1e] ∨R2(1)[3a] ∨R2(1)[4a]) =⇒ R20
2

R2(4)[1d] ∧R2(1)[2a] ∧R2(1)[4a] ∧ (R2(1)[1a] ∨R2(2)[1b] ∨R2(3)[1c] ∨R2(5)[1e] ∨R2(1)[3a]) =⇒ R22
2

R2(3)[1c] ∧R2(1)[2a] ∧R2(1)[4a] ∧ (R2(1)[1a] ∨R2(2)[1b] ∨R2(4)[1d] ∨R2(5)[1e] ∨R2(1)[3a]) =⇒ R31
2

Table 7: Formulas used in step 4

90

R1(1)[1a] ∧R1(5)[1e] ∧R1(1)[2a] ∧R1(1)[3a] ∧R1(1)[4a] ∧R1(1)[5a] ∧ (R1(2)[1b] ∨R1(3)[1c] ∨R1(4)[1d]) =⇒ R5
1

R1(1)[1a] ∧R1(5)[1e] ∧R1(1)[2a] ∧R1(1)[3a] ∧R1(1)[4a] ∧ (R1(2)[1b] ∨R1(3)[1c] ∨R1(4)[1d] ∨R1(1)[5a]) =⇒ R10
1

R1(1)[1a] ∧R1(2)[1b] ∧R1(1)[2a] ∧R1(1)[4a] ∧R1(1)[5a] ∧ (R1(3)[1c] ∨R1(4)[1d] ∨R1(5)[1e] ∨R1(1)[4a]) =⇒ R12
1

R1(1)[1a] ∧R1(2)[1b] ∧R1(1)[2a] ∧R1(1)[4a] ∧ (R1(3)[1c] ∨R1(4)[1d] ∨R1(5)[1e] ∨R1(1)[4a] ∨R1(1)[5a]) =⇒ R17
1

R2(4)[1d] ∧R2(1)[5a] ∧ (R2(1)[1a] ∨R2(2)[1b] ∨R2(3)[1c] ∨R2(5)[1e] ∨R2(1)[2a] ∨R2(1)[3a] ∨R2(1)[4a]) =⇒ R4
2

R2(1)[1a] ∧R2(3)[1c] ∧R2(4)[1d] ∧R2(1)[3a] ∧R2(1)[4a] ∧ (R2(2)[1b] ∨R2(5)[1e] ∨R2(1)[2a] ∨R2(1)[5a]) =⇒ R5
2

R2(1)[1a] ∧R2(3)[1c] ∧R2(4)[1d] ∧R2(1)[3a] ∧R2(1)[4a] ∧R2(1)[5a] ∧ (R2(2)[1b] ∨R2(5)[1e] ∨R2(1)[2a]) =⇒ R10
2

R2(4)[1d] ∧ (R2(1)[1a] ∨R2(2)[1b] ∨R2(3)[1c] ∨R2(5)[1e] ∨R2(1)[2a] ∨R2(1)[3a] ∨R2(1)[4a] ∨R2(1)[5a]) =⇒ R15
2

R2(1)[1a] ∧R2(5)[1e] ∧R2(1)[3a] ∧ (R2(2)[1b] ∨R2(3)[1c] ∨R2(4)[1d] ∨R2(1)[2a] ∨R2(1)[4a] ∨R2(1)[5a]) =⇒ R21
2

R2(1)[1a] ∧R2(5)[1e] ∧R2(1)[3a] ∧R2(1)[5a] ∧ (R2(2)[1b] ∨R2(3)[1c] ∨R2(4)[1d] ∨R2(1)[2a] ∨R2(1)[4a]) =⇒ R23
2

Table 8: Formulas used in step 5

91

Chapter 6

Conclusions and Future Work

6.1 Summary

Throughout this work, we presented side channel cryptanalytic attacks against three sym-

metric key ciphers: (i) SOSEMANUK, which is a software-based stream cipher of the eS-

TREAM software portfolio, (ii) Hummingbird, which is a hybrid structure of block cipher

and stream ciphers dedicated for ultra-lightweight encryption and (iii) ZUC, which is a new

stream cipher proposed for the 4G mobile standard.

The overall complexity of our differential fault analysis attack against SOSEMANUK

can be summarized as follows: The average number of faults required to perform the attack

is 4×1536 = 6144. This fault injection phase requires the attacker to reinitialize the cipher

for 6144 times. The attack requires work equivalent to around 248 iterations. The storage

requirements amounts to 238.17 bytes.

Our attack against Hummingbird is inspired by the currently known attacks against

92

AES. However, unlike AES, the key schedule properties of Hummingbird cannot be utilized

by the attacker to further reduce the complexity of the attack. This forces the attacker to

iterate the fault injection on every round of the 16-bit block cipher algorithm to recover the

whole key. Each 64-bit round key can be found, on average, using 12.51 faulty encryptions.

If we assume that the 256-bit secret key and 80-bit internal state have random distribution,

then the whole cipher can be broken after around 50 faults. To fully recover the key, we

have to guess 248 values of three 16-bit internal state registers which brings the whole

complexity of our attack to O(268).

Finally, we presented a scan based side channel attack against ZUC. Under reasonable

assumptions, our cryptanalysis allows the attacker to ascertain the whole location of the

internal registers of the LFSR and the memory cells. Consequently, this attack allows

the cryptanalyst to efficiently recover the cipher secret internal state in a relatively small

number of clock cycles.

6.2 Future work

When compared to other stream ciphers in the equivalent fault analysis model, DFA of

SOSEMANUK requires a relatively smaller number of faults. For example, the DFA attack

on RC4 given in [9] requires 216 faults in random locations of its inner state. Another DFA

attack on HC-128 [10] requires around 213 faults in random locations. In future work, it

will be interesting to see whether the number of faults for the DFA of SOSEMANUK and

other stream ciphers can be drastically decreased in the assumed fault model.

93

A naive approach to prevent our attack is to use algorithm level redundancy and disable

the device output if the two produced key stream values do not match. Another more

efficient approach, which partially protects against fault attacks, is to add parity bits to

all the inner state resisters and disable the device output if any of these parity checks is

violated. Efficient fault analysis resistant implementations for SOSEMANUK, as well as for

other stream ciphers, need to be addressed in future research.

Another related research direction is the exploration of different side channel attacks

against the SHA-3 finalist [93] when operating in the MAC mode.

Developing cryptosystems that are inherently secure against side channel attacks, by

design, is also a very challenging research direction.

94

Bibliography

[1] D. Kahn, The Codebreakers: The Story of Secret Writing, Macmillan Pub Co; Reis-

sue edition, 1974.

[2] A.J. Menezes, P.C. Van Oorschot, and S.A. Vanstone, Handbook of Applied Cryp-

tography, CRC Press, 5th edition, 2001.

[3] P. Kocher, Timing attacks on implementations of Diffie-Hellmann, RSA, DSS, and

other systems, In proc. of CRYPTO ’96, LNCS 1109, pp. 104-113, Springer-Verlag,

1996.

[4] P. Kocher, J. Jaffe, and B. Jun, Differential power analysis, In proc. of CRYPTO

’99, LNCS 1666, pp. 388-397, Springer-Verlag, 1999.

[5] S.P. Skorobogatov and R.J. Anderson, Optical fault induction attacks, In proc. of

CHES 2003, LNCS 2523, pp. 2-12, Springer-Verlag, 2003.

[6] D. Boneh, R.A. DeMillo, and R.J. Lipton, On the importance of checking crypto-

graphic protocols for faults, In proc. of EUROCRYPT ’97, LNCS 1233, pp. 37-51,

Springer-Verlag, 1997.

95

[7] E. Biham and A. Shamir, Differential Fault Analysis of Secret Key Cryptosystems,

In proc. of CRYPTO ’97, LNCS 1294, pp. 513-525, Springer-Verlag, 1997.

[8] P. Dusart, G. Letourneux, and O. Vivolo, Differential fault analysis on AES, In

proc. of Applied Cryptography and Network Security (ACNS) 2003, LNCS 2846,

pp. 293-306, Springer-Verlag, 2003.

[9] J. Hoch and A. Shamir, Fault Analysis of Stream Ciphers, In proc. of CHES 2004,

LNCS 3156, pp. 240-253, Springer-Verlag, 2004.

[10] A. Kircanski and A.M. Youssef, Differential Fault Analysis of HC-128, In proc. of

AFRICACRYPT 2010, LNCS 6055, pp. 261-278, Springer-Verlag, 2010.

[11] A. Kircanski and A.M. Youssef, Differential Fault Analysis of Rabbit, In proc. of

Selected Areas in Cryptography (SAC) 2009, LNCS 5867, pp. 197-214, Springer-

Verlag, 2009.

[12] A. Berzati, C. Canovas-Dumas, and L. Goubin, Fault Analysis of Rabbit: Towards

a Secret-Key Leakage, In proc. of INDOCRYPT 2009, LNCS 5922, pp. 72-87,

Springer-Verlag, 2009.

[13] D. Engels, X. Fan, G. Gong, H. Hu and E. M. Smith, Hummingbird: Ultra-

Lightweight Cryptography for Resource-Constrained Devices, In proc. of Financial

Cryptography (FC) 2010, LNCS 6054, pp. 3-18, Springer-Verlag, 2010.

[14] Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 &

128-EIA3. Document 2: ZUC Specification, EEA3 IEA3 ZUC v1.4, July 2010.

96

[15] Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 &

128-EIA3. Document 2: ZUC Specification, v1.5, January 2011.

[16] C. Berbain, O. Billet, A. Canteaut, N. Courtois, H. Gilbert, L. Goubin, A.

Gouget, L. Granboulan, C. Lauradoux, M. Minier, T. Pornin, and H. Sib-

ert, SOSEMANUK, a fast software-oriented stream cipher, The eSTREAM Fi-

nalists, LNCS 4986, pp. 98-118, Springer-Verlag, 2008. Also available at

http://www.ecrypt.eu.org/stream/sosemanukp3.html

[17] X. Fan, H. Hu, G. Gong, E. M. Smith and D. Engels, Lightweight Implementa-

tion of Hummingbird Cryptographic Algorithm on 4-Bit Microcontroller, The 1st

international workshop on RFID Security and Cryptography 2009 (RISC ’09), pp.

838-844, 2009.

[18] Y. Esmaeili Salehani, A. Kircanski , and A.M. Youssef, Differential Fault Analysis

of SOSEMANUK, In proc. of AFRICACRYPT 2011, LNCS 6737, pp. 316-331,

Springer-Verlag, 2011.

[19] Y. Esmaeili Salehani and A.M. Youssef, Differential Fault Analysis of Humming-

bird, In proc. of the International Conference on Security and Cryptography (SE-

CRYPT) 2011, 2011.

[20] Data Encryption Standard, Federal Information Processing Standard (FIPS) 46,

National Bureau of Standards, 1977.

97

[21] J. Daemen and V. Rijmen, AES proposal: Rijndael. In AES Round 1

Technical Evaluation, CD-1: Documentation. NIST, 1998. Available at

http://www.esat.kuleuven.ac.be/ rijmen/rijndael/ or http://www.nist.gov/aes.

[22] D. Wheeler and R. Needham, TEA, a Tiny Encryption Algorithm, In proc. of Fast

Software Encryption (FSE) 1994, LNCS 1008, pp. 363-366, Springer-Verlag, 1994.

[23] D. Wheeler and R. Needham, TEA extensions, 1997. Available at

www.ftp.cl.cam.ac.uk/ftp/users/djw3/

[24] C. Lim and T. Korkishko, mCrypton - A Lightweight Block Cipher for Security of

Low-cost RFID Tags and Sensors, In proc. of Workshop on Information Security

Applications (WISA) 2005, LNCS 3786, pp. 243-258, Springer-Verlag, 2005.

[25] D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B.-S; Koo, C. Lee, D. Chang, J. Lee,

K. Jeong, H. Kim, J. Kim, and S. Chee, HIGHT: A New Block Cipher Suitable for

Low-Resource Device, In proc. of CHES 2006, LNCS 4249, pp. 46-59, Springer-

Verlag, 2006.

[26] F.-X. Standaert, G. Piret, N. Gershenfeld, and J.-J. Quisquater, SEA: A Scalable

Encryption Algorithm for Small Embedded Applications, In proc. of Smart Card

Research and Applications (CARDIS) 2006, LNCS 3928, pp. 222-236, Springer-

Verlag, 2006.

[27] M.J.B. Robshaw, Searching for compact algorithms: CGEN, In proc. of Vietcrypt

2006, LNCS 4341, pp. 37-49, Springer-Verlag, 2006.

98

[28] A. Bogdanov, L.R.Knudsen, G. Leander, C. Paar, A. Poschmann, M.J.B. Robshaw,

Y. Seurin, and C. Vikkelsoe, PRESENT: An ultra-lightweight block cipher, In proc.

of CHES 2007, LNCS 4727, pp. 450-466, Springer-Verlag, 2007.

[29] M.I. Izadi, B. Sadeghiyan, S.S. Sadeghian, and H.A. Khanooki, MIBS: a new

lightweight Block Cipher, In proc. of Cryptology and Network Security (CANS)

2009, LNCS 5888, pp. 334-348, Springer-Verlag, 2009.

[30] NESSIE, the New European Schemes for Signatures, Integrity and Encryption.

Available at https://www.cosic.esat.kuleuven.be/nessie/

[31] ECRYPT, the European Network of Excellence for Cryptology. Available at

http://www.ecrypt.eu.org/ecrypt1/

[32] eSTREAM, the ECRYPT Stream Cipher Project. Available at

http://www.ecrypt.eu.org/stream/

[33] H. Wu, The Stream Cipher HC-128, The eSTREAM Finalists,

LNCS 4986, pp. 39-47, Springer-Verlag, 2008. Also available at

http://www.ecrypt.eu.org/stream/hcpf.html

[34] M. Boesgaard, M. Vesterager, and E. Zenner, The Rabbit Stream Cipher, The eS-

TREAM Finalists, LNCS 4986, pp. 69-83, Springer-Verlag, 2008. Also available

at http://www.ecrypt.eu.org/stream/rabbitpf.html

99

[35] D.J. Bernstein, The Salsa20 Family of Stream Ciphers, The eSTREAM Fi-

nalists, LNCS 4986, pp. 84-97, Springer-Verlag, 2008. Also available at

http://www.ecrypt.eu.org/stream/salsa20pf.html

[36] M. Hell, T. Johansson, A. Maximov, and W. Meier, The Grain Family of Stream Ci-

phers, The eSTREAM Finalists, LNCS 4986, pp. 179-190, Springer-Verlag, 2008,

Also available at http://www.ecrypt.eu.org/stream/grainp3.html

[37] S. Babbage and M.Dodd, The stream cipher Mickey-128, The eSTREAM Fi-

nalists, LNCS 4986, pp. 191-209, Springer-Verlag, 2008, Also available at

http://www.ecrypt.eu.org/stream/mickeyp3.html

[38] C. De Cannière and B. Preneel, Trivium, The eSTREAM Finalists,

LNCS 4986, pp. 244-266, Springer-Verlag, 2008, Also available at

http://www.ecrypt.eu.org/stream/triviump3.html

[39] R.L. Rivest, The RC4 encryption algorithm, RSA Data Security, Inc., 1992.

[40] H. Wu, A New Stream Cipher HC-256, In proc. of Fast Software Encryption (FSE)

2004, LNCS 3017, pp. 226-244, Springer-Verlag, 2004.

[41] C.G. Gunther, Alternating step generators controlled by de Bruijn sequences, In

proc. of EUROCRYPT ’87, LNCS 304, pp. 5-14, Springer-Verlag, 1987.

[42] C. Carlet, Boolean functions for cryptography and error correcting codes, in

Boolean Methods and Models. Cambridge, U.K.: Cambridge Univ. Press, 2006.

100

[43] M. Matsui, Linear Cryptanalysis Method for DES Cipher, In proc. of EURO-

CRYPT’93, LNCS 765, pp. 386-397, Springer-Verlag, 1993.

[44] E. Biham and A. Shamir, Differential Cryptanalysis of the Full 16-Round DES, In

proc. of CRYPTO ’92, LNCS 740, Springer-Verlag, 1992.

[45] L.R. Knudsen, Truncated and Higher Order Differentials, In proc. of Fast Software

Encryption (FSE) 1995, LNCS 1008, pp.196-211, Springer-Verlag, 1995.

[46] E. Biham, A. Biryukov, and A. Shamir, Cryptanalysis of Skipjack Reduced to 31

Rounds using Impossible Differentials, In proc. of EUROCRYPT ’99, LNCS 1592,

pp. 12-23, Springer-Verlag, 1999.

[47] L.R. Knudsen, Partial and higher order differentials and its application to the DES,

BRICS report series, RS-95-9, ISSN 0909-0878, February 1995.

[48] D. Wagner, The Boomerang Attack, In proc. of Fast Software Encryption (FSE)

1999, LNCS 1636, pp. 156-170, Springer-Verlag, 1999.

[49] T. Jakobsen and L.R. Knudsen, The Interpolation Attack on Block Ciphers, In proc.

of Fast Software Encryption (FSE) 1997, LNCS 1267, pp. 28-40, Springer-Verlag,

1997.

[50] E. Biham, New Types of Cryptanalytic Attacks Using Related Keys, In proc. of

EUROCRYPT ’93, LNCS 765, pp. 398-409, Springer-Verlag, 1994.

[51] A. Biryukov and A. Shamir, Structural Cryptanalysis of SASAS, In proc. of EURO-

CRYPT ’01, LNCS 2045, pp. 394-405, Springer-Verlag, 2001.

101

[52] J. Daemen, L.R. Knudsen, and V. Rijmen, The Block Cipher SQUARE, In proc. of

Fast Software Encryption (FSE) 1997, LNCS 1267, pp 149-165, Springer-Verlag,

1997.

[53] T. Siegenthaler, Correlation-Immunity of Nonlinear Combining Functions for

Cryptographic Applications, IEEE Transactions on Information Theory 30 (5), pp.

776-780, 1984.

[54] J. Golic, Cryptanalysis of alleged A5 stream cipher, In proc. of EUROCRYPT ’97,

LNCS 1233, pp. 239-255, Springer-Verlag, 1997.

[55] R. Anderson, M. Bond, J. Clulow, and S. Skorobogatov, Cryptographic processors

- a survey, In proc. of the IEEE, vol. 94, pp. 357-369, Feb. 2006.

[56] FIPS PUB 140-2 Security Requirements for Cryptographic Modules. Available at

http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf.

[57] K. Gandolfi, C.Mourte, and F. Olivier, Electromagnetic Analysis: Concrete Results,

In proc. of CHES 2001, LNCS 2162, pp. 251-261, Springer-Verlag, 2001.

[58] J.J. Quisquater and D. Samyde, Electromagnetic analysis (EMA): measures and

countermeasures for smart cards, In proc. of E-smart 2001, LNCS 2140, pp. 200-

210, Springer-Verlag, 2001.

[59] A. Shamir and E.Tramer, Acoustic cryptanalysis: on nosy people and noisy ma-

chines, In proc. of EUROCRYPT ’04 rump session, May 2004.

102

[60] J.A. Halderman, S.D. Schoen, N. Heninger, W. Clarkson, W. Paul, J.A. Calandrino,

A.J. Feldman, J. Appelbaum, and E.W. Felten, Lest We Remember: Cold Boot

Attacks on Encryption Keys, In Proc. of 17tℎ USENIX Security Symposium (Sec

’08), San Jose, CA, 2008.

[61] A. Kamal and A. M. Youssef, Applications of SAT Solvers to AES key Recov-

ery from Decayed Key Schedule Images, In proc. of International Conference on

Emerging Security Information, Systems and Technologies (SECURWARE) 2010,

pp. 216-220, 2010.

[62] S. Chari, C. Jutla, J. Rao, and P. Rohatgi, Towards sound approaches to counter-

act power-analysis attacks, In proc. of CRYPTO ’99, LNCS 1666, pp. 398-412,

Springer-Verlag, 1999.

[63] L. Goubin, A sound method for switching between boolean and arithmetic masking,

In proc. of CHES 2001, LNCS 2162, pp. 3-15, Springer-Verlag, 2001.

[64] B. Debraize and I.M. Corbella, Fault analysis of the stream cipher Snow 3G, In

proc. of Workshop on Fault Diagnosis and Tolerance in Cryptography 2009, pp.

103-110 , 2009.

[65] M. Hojsik and B. Rudolf, Floating fault analysis of Trivium, In proc. of IN-

DOCRYPT 2008, LNCS 5365, pp. 239-250, Springer-Verlag, 2008.

103

[66] F. Armknecht and W. Meier, Fault Attacks on Combiners with Memory, In proc.

of Selected Areas in Cryptography (SAC) 2005, LNCS 3897, pp. 36-50, Springer-

Verlag, 2005.

[67] E. Biham, L. Granboulan, and P.Q. Nguyen, Impossible Fault Analysis of RC4 and

Differential Fault Analysis of RC4, In proc. of Fast Software Encryption (FSE)

2005, LNCS 3557, pp. 359-367, Springer-Verlag, 2005.

[68] C. Giraud and A. Thillard, Piret and Quisquater’s DFA on AES Revisited, 2010.

Available at http://eprint.iacr.org/2010/440

[69] G. Piret and J.J. Quisquater, A Differential Fault Attack Technique against SPN

Structures, with Application to the AES and KHAZAD, In proc. of CHES 2003,

LNCS 2779, pp. 77-88, Springer-Verlag, 2003.

[70] C.H. Kim, Differential Fault Analysis against AES-192 and AES-256 with Minimal

Faults, In proc. of Fault Diagnosis and Tolerance in Cryptography (FDTC) 2010,

pp. 3-9, IEEE Computer Society, 2010.

[71] I. Koren and C. Krishna, Fault-Tolerant Systems, Morgan Kaufmann publisher,

USA, 2007.

[72] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri, Error Analysis and

Detection Procedures for a Hardware Implementation of the Advanced Encryption

Standard, IEEE Transactions on Computers, Vol. 52, pp. 492-505, 2003.

104

[73] B. Yang, K. Wu, and R. Karri, Scan based side channel attack on dedicated hard-

ware implementations of data encryption standard, In proc. of the International

Test Conference (ITC) 2004, pp. 339-344, IEEE Computer Society, 2004.

[74] M. Agrawal, S. Karmakar, D. Saha, and D. Mukhopadhyay, Scan Based Side

Channel Attacks on Stream Ciphers and Their Counter-Measures, In proc. of IN-

DOCRYPT 2008, LNCS 5365, pp. 226-238, Springer-Verlag, 2008.

[75] Y. Liu, K. Wu, and R. Karri, Scan-based attacks on linear feedback shift register

based stream ciphers, ACM Trans. Design Autom. Electr. Syst. 16(2): 20, 2011.

[76] G. Sengar, D. Mukhopadhyay, and D.R. Chowdhury, Secured flipped scan-chain

model for crypto-architecture, IEEE Trans. on CAD of Integrated Circuits and Sys-

tems 26(11), 2080-2084, 2007.

[77] P. Ekdahl and T. Johansson, A New Version of the Stream Cipher SNOW, In proc.

of Selected Areas in Cryptography (SAC) 2002, LNCS 2295, pp.47-61, Springer-

Verlag, 2002.

[78] R. Anderson, E. Biham, and L.R.Knudsen, Serpent: A proposal for the advanced

encryption standard, NIST AES Proposal, 1998.

[79] H. Ahmadi, T. Eghlidos, and S. Khazaei, Improved guess

and determine Attack on SOSEMANUK, 2006. Available at:

http://www.ecrypt.eu.org/stream/sosemanukp3.html

105

[80] Y. Tsunoo, T. Saito, M. Shigeri, T. Suzaki, H. Ahmadi, T. Eghlidos, and S. Khaz-

aei, Evaluation of SOSEMANUK with regard to guess-and-determine attacks, 2006.

Available at http://www.ecrypt.eu.org/stream/sosemanukp3.html

[81] J.-K. Lee, D.-H Lee, and S. Park, Cryptanalsyis of SOSEMANUK and SNOW 2.0

Using Linear Masks, In proc. of ASIACRYPT 2008, LNCS 5350, pp. 524-538,

Springer-Verlag, 2008.

[82] J.Y. Cho and M. Hermelin, Improved linear cryptanalysis of SOSEMANUK, In proc.

of Information, Security and Cryptology (ICISC) 2009, LNCS 5984, pp.101-117,

Springer-Verlag, 2010.

[83] D. Lin and G. Jie, Guess and Determine Attack on SOSEMANUK, In proc. of the

International Conference on Information Assurance and Security, Vol. 1, pp. 658-

661, 2009.

[84] X. Feng, J. Liu, Z. Zhou, C. Wu, and D. Feng, A Byte-Based Guess and Determine

Attack on SOSEMANUK, In proc. of ASIACRYPT 2010, LNCS 6477, pp. 146-157,

Springer-Verlag, 2010.

[85] M.O. Saarinen, Cryptanalysis of Hummingbird-1, In proc. of Fast

Software Encryption (FSE) 2011, to appear, 2011. Also available at:

http://eprint.iacr.org/2010/612.pdf

106

[86] Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 &

128-EIA3. Document 4: Design and Evaluation Report, EEA3 EIA3 Design Eval-

uation v1.1, August, 2010.

[87] Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 &

128-EIA3. Document 4: Design and Evaluation Report , EEA3 EIA3 Design Eval-

uation v1.3, January, 2011.

[88] First international workshop on ZUC algorithm, 2010. Available at

http://www.dacas.cn/zuc10/

[89] Z. Liu, L. Zhang, J. Jing, and W. Pan, Efficient Pipelined Stream Cipher ZUC

Algorithm in FPGA, In the first international workshop on ZUC algorithm, 2010.

Also available at www.dacas.cn/zuc10/pdf/zuc-08.pdf

[90] R. Nara, N. Togawa, M. Yanagisawa, and T. Ohtsuki, Scan-based attack against

elliptic curve cryptosystems, In Proc. of the 15th Asia and South Pacific Design

Automation Conference (ASP-DAC 2010), pp. 407-412, 2010.

[91] R. Nara, N. Togawa, M. Yanagisawa, and T. Ohtsuki, A scan-based attack based

on discriminators for AES cryptosystems, IEICE Transactions on Fundamentals of

Electronics, vol. E92-A, no.12, pp.3229-3237, 2009.

[92] Yang, b., Wu, K., Karri, R., Secure scan: a design-for-test architecture for crypto

chips, In proc. of the 42nd Annual Conference on Design Automation, pp. 135-140,

2005.

107

[93] National Institute of Standards and Technology, Information Technol-

ogy Laboratory, Cryptographic Hash Algorithm Competition. Available at:

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

108

