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ABSTRACT

Optimal Control and Estimation Strategies for Nonlinear and Switched Systems

Mehdi Abedinpour Fallah

This dissertation includes two main parts. In the first part, the main contribution is

to use an inverse optimality approach to analytically solve the Hamilton-Jacobi-Bellman

equation of a third order nonlinear optimal control problem for which the dynamics are

affine and the cost is quadratic in the input. One special advantage of this work is that

the solution is directly obtained for the control input without finding a value function

first. However, the value function can be obtained after one solves for the control input

and it is shown to be at least a local Lyapunov function. Furthermore, the developed

controller is combined with a Continuous-Discrete Extended Kalman Filter (CDEKF) as

an approach to deal with noisy measurements and provide an estimate of the states for

feedback. The proposed technique is illustrated by its application to a path following

problem of a Wheeled Mobile Robot (WMR).

The main contribution of the second part of this thesis is the development of two

recursive state estimation algorithms for discrete-time piecewise affine (PWA) singular

systems with simulation evidence that the idea works for both uncorrelated and correlated

process and measurement noise. The proposed algorithms are derived based on successive

QR decompositions and Maximum Likelihood (ML) estimation theory. Numerical exam-

ples are presented for the case of a PWA system with an unknown input, transformed to a

PWA singular system.

iii



In the Name of Allah,

the Beneficent, the Merciful

iv



Dedicated to

my mother for her love and measureless support throughout my life

and to the memory of my father, Farhad.

v



ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to Dr. Luis Rodrigues, my

supervisor, for his encouragement, guidance, and support during my Master study. I am

very grateful to him for giving me the opportunity to join his research group at HYbrid

CONtrol Systems (HYCONS) Lab at Concordia University.

I would also like to thank all my friends and colleagues including Miad Moarref, Be-

hzad Samadi, Behnam Gholitabar, Nastaran Nayebpanah, Mohsen Zamani, Amin Zavieh,

Jamila Raouf, Gavin Kenelly, Camilo Ossa, Shahrouz Mirzaalizadeh, Scott Casselman,

Aboutaleb Haddadi, Neda Etebari, Solmaz Youssefi and Sina Kaynama who made my

stay in Montreal such an amazing and a rewarding experience.

Last but not least, I would like to say Thank you! to my beloved mother and sister

for their affection and support.

vi



TABLE OF CONTENTS

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Motivation and Related Work . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Inverse Optimal Control Problems . . . . . . . . . . . . . . . . . 1

1.1.2 State Estimation Algorithms for Piecewise Affine Singular Systems 4

1.2 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Thesis Outline and Publications . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 9

2.1 Maximum Likelihood Estimation Problem . . . . . . . . . . . . . . . . . 9

2.2 Continuous-Discrete Extended Kalman Filter . . . . . . . . . . . . . . . 10

3 Optimal Control of a Third Order System Using an Inverse Optimality Method 13

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Problem Definition and Solution . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Examples and Simulation Results . . . . . . . . . . . . . . . . . . . . . 20

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Estimation Algorithms for Piecewise Affine Singular Systems 32

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 An Estimation Algorithm for PWA Singular Systems with Uncorrelated Noise 33

4.2.1 Discrete-time PWA Singular Systems with Uncorrelated Noise . . 33

4.2.2 Algorithm Derivation . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.3 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 An Estimation Algorithm for PWA Singular Systems with Correlated Noise 41

vii



4.3.1 Discrete-time PWA Singular Systems with Correlated Noise . . . 42

4.3.2 Algorithm Derivation . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.3 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Conclusions 54

viii



LIST OF FIGURES

3.1 Schematic of the Wheeled Mobile Robot (WMR) . . . . . . . . . . . . . 22

3.2 Trajectories of WMR following path y= 0 . . . . . . . . . . . . . . . . . 23

3.3 Position y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Heading angle ψ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Angular Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Input Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.7 Trajectories of WMR following path y= 0 . . . . . . . . . . . . . . . . . 28
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Chapter 1

Introduction

This chapter includes the motivation and related work on the two topics of the thesis:

optimal control of a system based on an inverse optimality method and state estimation

algorithms for piecewise affine singular systems. Thesis contributions, outline and publi-

cations are also stated in this chapter.

1.1 Motivation and Related Work

This section consists of two subsections in which the motivation and related work for the

two parts of the thesis are presented.

1.1.1 Inverse Optimal Control Problems

Optimal control of nonlinear systems is one of the most challenging and difficult subjects

in control theory. The control approaches can be divided into two main categories: direct

optimal and inverse optimal control. In the direct nonlinear optimal control problem, a

controller is developed to minimize an a priori given cost function, which ultimately re-

sults in finding a solution to a Hamilton-Jacobi-Bellman (HJB) equation. This equation

is unfortunately hard to solve for a general nonlinear system. This obstacle motivated the

development of inverse optimal nonlinear control design methods [1]- [16]. In particular,
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reference [2] finds the dynamics that verify the Hamilton-Jacobi-Bellman equation given

the running cost and a value function. In [3] an analytical expression for a stabilizing

controller is obtained for feedback linearizable dynamics given the coordinate transfor-

mation that feedback linearizes the system, a control Lyapunov function obtained as the

solution of the Riccatti equation for the linearized dynamics and a bound on the decay

rate of the Lyapunov function. It is shown that the controller is optimal relative to a cost

involving a control penalty bias. Reference [6] uses Youngs inequality, which was used

before in [5] for the design of input-to-state stabilizing controllers, to find an analytical

expression for the solution to a class of nonlinear optimal control problems. An expres-

sion for the cost that makes the controller optimal was also found. However, there is no

indication as to what conditions must be verified such that the obtained cost is a sensible

cost, namely, such that it is non-negative. This is shown on a case-by-case basis in the

examples. In [10], an inverse optimal approach is applied to the autopilot design for the

pitch control of a longitudinal missile model. The stability, convergence and transient per-

formance are evaluated using numerical simulations with several levels of uncertainty in

the aerodynamics and the control effectiveness of the missile model. The robustness of the

control law to sensor noise and (unmodeled) actuator dynamics including rate, magnitude

and bandwidth limits is also examined. In [11] an optimal feedback controller for bilinear

systems is obtained that minimizes a quadratic cost function. This inverse optimal control

design is applied to the problem of the stabilization of an inverted pendulum on a cart

with horizontal and vertical movement. In [12], Nakamura’s inverse optimal controller is

applied to the magnetic levitation system. A hardware implementation of real-time chaos

stabilization by means of inverse optimal control is presented in [13], [14]

Furthermore, an interesting well known result is that using a control Lyapunov func-

tion (CLF), many control laws can be calculated which globally asymptotically stabilize

the system and can be inverse optimal relative to a meaningful cost functional not speci-

fied beforehand by the control designer. However, the main drawback of the CLF concept,

as a design tool, is that there is no systematic way to find a control Lyapunov function
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for general nonlinear systems [17]. Another well known result is that when the cost is

quadratic and the dynamics are affine in the input there is an explicit solution for the input

as a function of the derivatives of the value function. This fact will be used in this thesis

together with the structure of affine dynamics in the input to develop a method to solve the

Hamilton-Jacobi-Bellman equation for a class of third order systems.

Based on the concept of inverse optimality, a new solution method that can deter-

mine at the same time a controller and a sensible nonnegative cost rendering the controller

optimal was developed recently in [16]. In this method, the analytical solution for the con-

trol input is obtained directly, without needing to first assume or compute any coordinate

transformation, value function, or Lyapunov function. The value function and a Lyapunov

function can however be computed once the optimal control input has been found. It was

then applied in [19] to solve a specific class of nonlinear third order optimal control prob-

lems. This work presents an extension of the aforementioned work to optimal control

of a different third order nonlinear system, which does not in general fall in the class of

problems considered in [19].

The motivation for this work is that when designers are faced with a control engi-

neering problem and want to formulate it in the optimal control framework, the choice

of the most appropriate cost is a difficult task. However, quite often the following three

properties are required for the design:

1. The closed loop system should be asymptotically stable to a desired equilibrium

point

2. The system should have enough damping so that the trajectories do not take too long

to settle around the desired equilibrium point

3. The control energy should be penalized in the cost to avoid high control inputs that

can saturate actuators

The particular functions involved in the cost are not usually pre-defined, except possibly

the requirement on the control energy that is usually represented by a quadratic cost on the
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input. This work attempts to find a controller and a cost that together meet the requirements

1–3 and render the controller optimal relative to that cost. To that aim, the cost will be fixed

to be quadratic in the input and the state plus an unknown term that shall be determined.

The solution is based on the concept of inverse optimality. One special feature of this

method, as compared to other methods in the literature, is that the solution is obtained

directly for the control input without needing to assume or compute a value function first.

However, the value function can be obtained after one solves for the control input and it is

shown to be at least a local Lyapunov function.

1.1.2 State Estimation Algorithms for Piecewise Affine Singular Sys-

tems

Piecewise affine (PWA) systems represent a class of hybrid systems, which provide a

powerful modelling framework for complex dynamical systems involving nonlinear phe-

nomena [26], [27]. One of the motivations for studying PWA systems is that a broad

range of nonlinear systems that appear frequently in engineering applications are either

already PWA or can be accurately approximated by PWA systems. These include, but are

not limited to, dead-zones, saturations, relays and hysteresis. In recent years, consider-

able attention has been devoted to the state estimation problem of both continuous-time

and discrete-time PWA and hybrid systems, and a great number of results have been ob-

tained [28]- [40]. In particular, state observer design for general PWA systems was first

considered in [28] and later addressed for bimodal PWA systems in [29]- [32] and for fault

detection in [33], through deterministic approaches. Luenberger observers for switching

discrete-time linear systems were addressed in [34]. Another approach to state estimation

for discrete time hybrid systems, based on moving horizon estimation, was considered

in [36]. This approach is applicable to the general class of piecewise affine systems, but

it is computationally demanding (mixed integer quadratic programming problems have

to be solved online), which may be an obstacle for implementing it in applications with
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limited computational resources. In [38], a switching Kalman filter was proposed for the

state estimation problem of switched affine systems. In [39], an unscented Kalman filter

(UKF) was used for state estimation of an electronic throttle body (ETB) modeled as a

discrete time PWA system. The problem of set-membership estimation for discrete-time

PWA systems subject to unknown-but-bounded disturbances was addressed in [40]. A

maximum-likelihood Kalman filtering approach for switching discrete-time linear systems

was introduced in [41]- [42].

Singular systems, which are also referred to as descriptor and implicit systems, have

been attracting the attention of many researchers over recent decades due to their capacity

to preserve the structure of physical systems and to describe non-dynamic constraints and

impulsive behaviors [45], [46]. They find applications in economical systems, network

analysis, large scale systems [47], circuits [48], boundary control system [49], power net-

works, chemical processes, image modeling and robotics [46], [54]. In these models, the

state variables may be related algebraically, resulting in a more general class of systems.

Thus, a singular system model is described by a set of coupled differential equations and

algebraic equations, which incorporate information on the static as well as dynamic con-

straints of a real plant [55]. A number of control issues have been successfully extended to

descriptor systems and the related results have been reported, for instance, in [45], [46],

[50]- [53] and the references therein. The state estimation problem for singular systems

has been widely considered in the literature [56]- [63]. Most of these works present the

generalized Kalman filter as a solution for recursive state estimation problem. In partic-

ular, filtering and LQG problems for discrete-time stochastic singular systems have been

investigated in [56]. Gaussian descriptor systems have been treated in [57], where an op-

timal filter, according to the Maximum Likelihood (ML) criterion, has been presented.

The Kalman filtering problem for discrete-time descriptor systems is studied through a

deterministic approach in [58].

Recently, discrete-time PWA singular systems have been addressed in [64], where
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the stability and stabilization problems are discussed. However, to the best of our knowl-

edge, there has not been any research in the literature for state estimation of PWA singular

systems. This problem is important in both theory and practice and will be addressed in

this thesis with simulation evidence that the idea works. First, a recursive estimation al-

gorithm for discrete-time PWA stochastic singular systems will be developed, where our

derivation of the algorithm assumes that the process noise and measurement noise are

uncorrelated. Then we also note that in practical applications, the process noise and mea-

surement noise may be correlated. As an example given in [72], suppose that our system

is an airplane and winds are buffeting the plane. We are using an anemometer to measure

wind speed as an input to our estimation algorithm. Thus, the random gusts of wind affect

both the process (i.e.,the airplane dynamics) and the measurement (i.e.,the sensed wind

speed). In this case, there is a correlation between the process noise and the measurement

noise. Therefore, a second recursive estimation algorithm will be developed for discrete-

time PWA stochastic singular systems with correlated process and measurement noise.

The proposed algorithms are derived using successive QR decompositions and Maximum

Likelihood (ML) estimation theory. One special feature of these algorithms is that the

covariance matrix is determined from the computation of its square root and is always

guaranteed to be nonnegative.

1.2 Contributions of the Thesis

The main contributions of this thesis are the following:

• To propose an inverse optimality approach to analytically solve the Hamilton-Jacobi-

Bellman equation of a third order nonlinear optimal control problem for which the

dynamics are affine and the cost is quadratic in the input. One special advantage

of the proposed method is that the solution is directly obtained for the control input

without finding a value function first. However, the value function can be obtained
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after one solves for the control input and it is shown to be at least a local Lyapunov

function. Furthermore, the developed controller is combined with a Continuous-

Discrete Extended Kalman Filter (CDEKF) as an approach to deal with noisy mea-

surements and provide an estimate of the states for feedback. In particular, the

controller and observer are designed separately and then the estimated states are

included in the controller.

• To develop two recursive state estimation algorithms for discrete-time piecewise

affine (PWA) singular systems with simulation evidence that the idea works for both

uncorrelated and correlated process and measurement noise. The proposed algo-

rithms are derived based on successive QR decompositions and Maximum Likeli-

hood (ML) estimation theory. One special feature of these algorithms is that the

covariance matrix is determined from the computation of its square root and is al-

ways guaranteed to be nonnegative.

1.3 Thesis Outline and Publications

The rest of the thesis is organized as follows. Chapter 2 provides some preliminaries,

where the maximum likelihood estimation problem for a linear observation is studied, and

the algorithmic details of the Continuous-Discrete Extended Kalman Filter (CDEKF) are

described. Next, in chapter 3 a nonlinear optimal control problem for a third order sys-

tem is defined and solved using an inverse optimality method. The developed controller

is then combined with a Continuous-Discrete Extended Kalman Filter (CDEKF). More-

over, simulation results are illustrated for the combined observer-controller synthesis by

its application to a path following problem of a Wheeled Mobile Robot (WMR) in chap-

ter 3. Subsequently, chapter 4 presents a recursive estimation algorithm for discrete-time

PWA stochastic singular systems with uncorrelated process noise and measurement noise.

A second algorithm is also developed for discrete-time PWA stochastic singular systems
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with correlated process noise and measurement noise. A numerical example is also pre-

sented for each algorithm, where a system with an unknown input is transformed to a

singular system and the performance of the proposed algorithms are validated through

simulations. Finally, conclusions and future research directions are presented in chapter 5.

This thesis is mainly based on the following paper:

• Mehdi Abedinpour Fallah and Luis Rodrigues, ”Optimal Control of a Third Or-

der Nonlinear System Based on an Inverse Optimality Method”, American Control

Conference (ACC2011), San Francisco, California, USA, June 29–July 01, 2011,

pp. 900–904.
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Chapter 2

Preliminaries

This chapter of the dissertation includes two main sections. First, the maximum likelihood

estimation problem for a linear observation is studied , and then the algorithmic details of

the Continuous-Discrete Extended Kalman Filter (CDEKF) are described.

2.1 Maximum Likelihood Estimation Problem

In this section, we consider the maximum likelihood estimation problem of an unknown

vector x based on the measurement vector y for a linear observation of the form [67]

y= Hx+ν (2.1)

where H ∈ R
m×n, the measurement y and parameter vector x are known (observed) and

unknown, respectively. The noise ν ∼ N (0,R) represents a zero-mean Gaussian random

vector with covariance matrix R. The unknown vector x can be estimated from the mea-

surements if and only if matrix H is full column rank [66]. Given a conditional probability

density function fy|x(y | x) and a full column rank matrix H in (2.1), the Maximum Likeli-

hood (ML) estimated value for x, is chosen as [67], [68]

x̂ML(y) = argmax
x
fy|x(y | x) (2.2)

9



In practice it is often more convenient to work with the logarithm of the conditional density

function, that is,

x̂ML(y) = argmax
x

ln fy|x(y | x) (2.3)

It can be shown that for the Gaussian distributions x and y and a positive definite covariance

matrix R [67]

fy|x(y | x) =
1

(2π)n/2 |R|1/2 exp
(
−

1
2
[
(y−Hx)TR−1(y−Hx)

])
(2.4)

If H is full column rank, using (2.3) the ML estimate can be determined as

x̂ML(y) = argmin
x
(y−Hx)TR−1(y−Hx) (2.5)

which yields

x̂ML(y) = (HTR−1H)−1HTR−1y (2.6)

Notice that

b= E [x̂ML− x] = 0 (2.7)

such estimators are known as unbiased estimators. Moreover, the covariance of the esti-

mation error is given by [67]

Pe(x) = E
[
(x̂ML− x)(x̂ML− x)T

]
= (HTR−1H)−1 (2.8)

2.2 Continuous-Discrete Extended Kalman Filter

The Kalman filter addresses the general problem of trying to estimate the state x ∈ R
n

of a process that is governed by a linear stochastic equation. There are several different

versions of the Kalman filter. This section briefly describes what is called the Continuous-

Discrete Extended Kalman Filter, where the label Continuous refers to the fact that the

system dynamics are continuous, the label Discrete refers to the fact that the measurements

are taken at discrete times and the label Extended refers to the fact that linear Kalman filter

algorithm has been extended to a nonlinear model. The complete algorithm of CDEKF is

10



Table 2.1: Continuous-Discrete Extended Kalman Filter Algorithm
System model:

ẋ= f (x,u)+G w
zk = h(xk)+ vk
Initial Condition x(0)

Assumptions:
Knowledge of f , zk, u,
w∼ N (0,Q),
vk ∼ N (0,R),
x(0)∼ N (x̄0,P0),
x(0), w and zk are uncorrelated with each other.

Initialization:
x̂(0) = x̄0,
P(0) = P0.

Prediction:
Pick an output sample rate Tout , and the number of iterations N.
At each sample time Tout :
for i= 1 to N do {Propagate the equations.}
x̂= x̂+(ToutN ) f (x̂,u)
A= ∂ f

∂x |x=x̂
P= P+(ToutN )(AP+PAT +GQGT )
end for

Correction:
if a measurement has been received from sensor i then
{Measurement Update}
Hi = ∂hi

∂x |x=x̂
Ki = PHTi (Ri+HiPHTi )−1

P= (I−KiHi)P
x̂= x̂+Ki(zi−Hix̂)
end if

given in Table I using the notation from [73] and [74], where xk = x(tk) is the kth sample

of x, zk = z(tk) is the kth measurement, u is the control vector, w is a zero-mean Gaussian

process with covariance Q, and vk which is a zero-mean Gaussian random variable with

covariance R represents the measurement noise at time tk. The covariance R can usually be

estimated from sensor calibration, but the covarianceQ is generally unknown and therefore

becomes a system gain that can be tuned to improve the performance of the observer.

Moreover, A and H denote the Jacobians of f and h respectively. It is noted that in Table I

11



the prediction equations

˙̂x= f (x̂,u) (2.9)

Ṗ= AP+PAT +GQGT (2.10)

are approximated by Euler discrete propagation method between measurements. The ob-

jective of the Kalman filter is to reconstruct x for all time, given the measurement zk.
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Chapter 3

Optimal Control of a Third Order

System Using an Inverse Optimality

Method

3.1 Introduction

In this chapter, a nonlinear optimal control problem for a third order system is defined

and solved. The optimal control law is found using an inverse optimality approach to an-

alytically solve the Hamilton-Jacobi-Bellman equation of a third order nonlinear optimal

control problem for which the dynamics are affine and the cost is quadratic in the input.

The main idea was first proposed in [16] to solve a class of second order problems. It

was then applied in [19] to solve a class of nonlinear third order optimal control problems.

This chapter presents an extension of the aforementioned work to optimal control of a

different class of third order nonlinear systems, which does not in general fall in the class

of problems considered in [19]; for instance, see Example 3.3.1. One special advantage

of this work is that the solution is obtained directly for the control input without needing

to assume or compute a value function first. However, the value function can be obtained
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after one solves for the control input and it is shown to be at least a local Lyapunov func-

tion. Moreover, the developed controller will be combined with a Continuous-Discrete

Extended Kalman Filter (CDEKF) as an approach to deal with noisy measurements and

provide an estimate of the states for feedback. In particular, the controller and observer

are designed separately and then the estimated states are included in the controller.

The remainder of this chapter is organized as follows. First the optimal control

problem will be defined and solved. Then the technique will be applied to a path follow-

ing problem of a Wheeled Mobile Robot (WMR) using simulations performed in MAT-

LAB/Simulink. Next, adding a Kalman filter to the optimal controller is explained in a

simulation example. Finally, a summary section will close the chapter.

3.2 Problem Definition and Solution

In this section we define an optimal control problem for a class of third order systems.

The path following example of a Wheeled Mobile Robot (WMR) is the main motivation

for choosing this class of systems, see Example 3.3.2. So consider the following optimal

control problem

Problem 3.2.1.

V (x0) = inf
∫ ∞

0

{
q1x2

1 +q2x2
2 +q3x2

3 +Q(x)+ ru2} dt
s.t. ẋ1(t) = f (x2)

ẋ2(t) = d f (x2)+ x3

ẋ3(t) = bu

x(0) = x0 ,u ∈ U

(3.1)

where it is assumed that q1 ≥ 0,q2 ≥ 0,q3 > 0,b �= 0, r> 0, x(t) =
[
x1 x2 x3

]T
∈R

3 and

u ∈ R. The set U represents the allowable inputs, which are considered to be Lebesgue

integrable functions. The function f with bounded derivative f ′(x2) is assumed to be
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measurable, bounded on any compact set with f (0) = 0 and with a finite or at most a

countable set of zeros. The term

L(x1,x2,x3,u) = q1x2
1 +q2x2

2 +q3x2
3 +Q(x)+ ru2 (3.2)

is called the running cost.The problem is to find if possible a control u�, and a cost L of

the form (3.2) such that u� will be the optimal solution of (3.1) with finite cost and (3.2) is

nonnegative and has a minimum at x1 = x2 = x3 = u= 0.

If the function f is linear then from the Linear Quadratic Regulator theory [18] we

know that a solution of the form u = −k1x1 − k2x2 − k3x3 exists for the case Q(x) = 0.

Motivated by this result, we will search for solutions of the form u(x) = −k1x1 − k2x2 −

k3x3−kg(x2) where, for reasons that will become apparent in the proof of the main result,

g(x2) = f (x2). We start by presenting necessary conditions that the value function V must

verify for such a solution to exist.

Theorem 3.2.1. Assume that a control solution of the form

u(x) =−k1x1 − k2x2 − k3x3 − k f (x2) (3.3)

exists for problem 3.2.1 and that a classC1 functionV exists that verifies the corresponding

HJB equation

inf
u
H(x1,x2,x3,u,Vx1,Vx2,Vx3) = 0 (3.4)

where

H =q1x2
1 +q2x2

2 +q3x2
3 +Q(x)+ ru2

+Vx1 f (x2)+Vx2(d f (x2)+ x3)+Vx3(bu)
(3.5)

and

Vxi =
∂V
∂xi

, for i= 1,2,3. (3.6)
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and with boundary condition V (0) = 0. Then V must be of the form

V (x) = 2rb−1
(
k1x1x3 + k2x2x3 + k3

x2
3

2
+ kx3 f (x2)

)
+h(x1,x2) (3.7)

where h(x1,x2) is an arbitrary integration function of class C1 with

h(0,0) = 0 (3.8)

Proof. Consider the HJB equation (3.4) associated with (3.1). The necessary condition on

u to be a minimizer is

∂V
∂x3

=−2rb−1u(x) (3.9)

and therefore

V (x) =−2rb−1
∫
u(x)dx3 +h(x1,x2) (3.10)

where h(x1,x2) is an arbitrary integration function of x1 and x2. Searching for a solution

of the form u= u1(x1,x2)+u2(x3), expression (3.10) becomes

V (x) =−2rb−1x3u1(x1,x2)−2rb−1
∫
u2(x3)dx3 +h(x1,x2) (3.11)

Replacing

u1(x1,x2) =−k1x1 − k2x2 − k f (x2) (3.12)

u2(x3) =−k3x3 (3.13)

yields (3.7) after integration. From the boundary condition V (0) = 0 one obtains the con-

straint (3.8).

Remark 3.2.1. It is important that the value function has cross terms or otherwise, from

(3.9), the controller will only depend on x3, which will considerably limit the class of

systems for which a solution can be found.

The main result is now stated in the next theorem.
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Theorem 3.2.2. If q1 ≥ 0, q2 ≥ 0, q3 > 0, b �= 0, r > 0,

Q(x) = r(k2
32 −2b−1k f ′(x2))x2

3 +2rk1k2x1x2 +2rk1k31x1x3

+2rk2k31x2x3 + rk(k−2k32d+2b−1d2 f ′(x2)) f 2
(3.14)

and if the gains

k1 =±

√
q1
r

(3.15)

k2 =±

√
q2
r

(3.16)

k3 =±

√
q3
r
+b−1

√
q2
q3

(3.17)

k = b−1
(√

q1
q3

+d
√
q2
q3

)
(3.18)

verify

(k2
32 −2b−1k f ′(x2))x2

3 + k(k−2k32d+2b−1d2 f ′(x2)) f 2 ≥ 0 (3.19)

with

k31 =±

√
q3
r
, k32 = b−1

√
q2
q3

(3.20)

then the control input (3.3) is a solution of the HJB equation (3.4) associated with (3.1)

with value function

V (x) = r
(√

k1(k−dk32)x1 +
√
k2k32x2 +

√
b−1k31x3

)2
+

+ rb−1k32x2
3 +2rb−1kx3 f (x2)+

− rb−1kd f 2(x2)+(2rkk32)
∫
f (x2)dx2 +α

(3.21)

where α is an integration constant verifying

α =−(2rkk32)

[∫
f (x2)dx2

]
x2=0

(3.22)

The function V is also a local Lyapunov function provided it is locally positive definite

in a region around the origin. Moreover, if V is globally positive definite and radi-

ally unbounded then it is a Lyapunov function. Finally, the trajectories will converge
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to one of the minimizers of L(x1,x2,x3,u(x1,x2,x3)), i.e, to a point (x1,x2,x3) such that

L(x1,x2,x3,u(x1,x2,x3)) = 0. If L(x1,x2,x3,u(x1,x2,x3)) is convex, then the trajectories

will converge to the origin for all initial conditions.

Proof. Using the results of theorem 1 and replacing

k3 = k31 + k32 (3.23)

the HJB equation (3.4) yields after rearranging

0 = (q1 − rk2
1)x2

1 +(q2 − rk2
2)x2

2 +(q3 − rk2
31 − rk2

32 +2rb−1k2

−2rk31k32 +2rb−1k f ′)x2
3 +Q(x)−2rk1k2x1x2

−2rk1k31x1x3 −2rk1k32x1x3 −2rk2k31x2x3 −2rk2k32x2x3

− rk2 f 2 −2rkk31x3 f −2rkk32x3 f +2rb−1k1x3 f

−2rkk1x1 f −2rkk2x2 f +
∂h
∂x1

f +
∂h
∂x2

x3 +2rb−1dk2x3 f

+2rb−1dk f ′ f x3 +
∂h
∂x2

d f

(3.24)

where the arguments of the functions were omitted for simplicity. Making

∂h
∂x2

= 2rk1k32x1 +2rk2k32x2 +2rkk32 f (x2)−2rb−1dk f ′ f (3.25)

and using (3.25) together with (3.15)-(3.18) and (3.20) in (3.24) and noting that (3.18) and

(3.20) can also be expressed as

kk31 −b−1k1 −b−1dk2 = 0

b−1k2 − k31k32 = 0
(3.26)

then the expression (3.24) can be written as

0 = (−rk2
32 +2rb−1k f ′)x2

3 +Q(x)−2rk1k2x1x2 −2rk1k31x1x3

−2rk2k31x2x3 − rk2 f 2 −2rkk1x1 f −2rkk2x2 f +
∂h
∂x1

f

+2rk2k32dx2 f +2rk1k32dx1 f +2rkk32d f 2

−2rb−1kd2 f ′ f 2

(3.27)
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Finally, adding and subtracting 2rk1k32x2 f (x2) to the right hand side of the above expres-

sion, making

∂h
∂x1

= 2rk1(k− k32d)x1 +2rk1k32x2 (3.28)

and choosing Q(x) as (3.14), one finds that all terms in (3.27) vanish and therefore the

HJB equation is verified. This is a sufficient condition for the control input (3.3) to be

a solution that minimizes the cost of problem 3.2.1 because the second derivative of the

Hamiltonian (3.5) with respect to u is equal to 2r > 0. The running cost is a sensible cost

because from (3.2), (3.15)-(3.18) and (3.20) it is given by

L= r(k1x1 + k2x2 + k31x3)
2 + r(k2

32 −2b−1k f ′(x2))x2
3

+ rk(k−2k32d+2b−1d2 f ′(x2)) f 2 + ru2
(3.29)

and it is non-negative with a minimun at x1 = x2 = x3 = u = 0 under the assumption

(3.19). Replacing (3.12)-(3.13), (3.23) and the integral of resulting expressions from (3.25)

and (3.28) in (3.11) yields the value function (3.21) after integration, considering (3.26).

Furthermore, the boundary condition V (x(∞)) = 0 yields (3.22). Observe that

V (x(0)) =
∫ ∞

0
L(x1,x2,x3,u�)dt =−[V (x(∞))−V (x(0))]

=−
∫ ∞

0
V̇ (x)dt

(3.30)

so when the optimal control law is used, L and −V̇ coincide. Hence,

V̇ =−L(x1,x2,x3,u�)≤ 0 (3.31)

which makesV a local Lyapunov function for the system if it is positive definite in a region

around the origin. If V is globally positive definite and radially unbounded then it is a

Lyapunov function. Finally, since the optimal cost (3.21) is finite for all initial conditions,

then the trajectories will converge to one of the minimizers of L(x1,x2,x3,u(x1,x2,x3))

because L≥ 0 and limt→∞L= 0 for integrability. If L is convex, then the trajectories must

converge to the origin because the origin is the only minimizer of L. This finishes the

proof.
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Remark 3.2.2. It is interesting that the square of the nonlinearity comes naturally as a

term in the cost, although this would be difficult to predict based on a general tendency to

always construct costs that have only quadratic terms on the state.

Remark 3.2.3. It is noted that by setting d = 0, this approach yields the results obtained

in [19]; for an instance, see Example 3.3.2.

3.3 Examples and Simulation Results

In this section, the effectiveness of the proposed method will be shown in several examples.

Example 3.3.1. Linear System

Consider a third order system with

b= d = 1 , f (x2) = x2 . (3.32)

and with equilibrium points at

x1 = constant , x2 = x3 = 0 . (3.33)

Assuming q1 = q3 = r = 1 and q2 = 9, yields the control input

u=−x1 −7x2 −4x3 (3.34)

and the running cost is given by

L(x1,x2,x3,u) = (x1 +3x2 + x3)
2 + x2

3 +u2 . (3.35)

It is noted that the running cost function (3.35) is strictly convex because its Hessian matrix

is positive definite as follows

�
2L(x) =

⎡
⎢⎢⎢⎢⎣

4 20 10

20 116 62

10 62 36

⎤
⎥⎥⎥⎥⎦> 0 . (3.36)
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The resulted value function is

V (x) = (x1 +3x2 + x3)
2 +12x2

2 +2x2
3 +(2x2 + x3)

2 (3.37)

which is positive definite and radially unbounded. Moreover, the derivative of the value

function is

V̇ (x) =− (x1 +3x2 + x3)
2 − x2

3 − (x1 +7x2 +4x3)
2

=xTNx= xT

⎡
⎢⎢⎢⎢⎣
−2 −10 −5

−10 −58 −31

−5 −31 −18

⎤
⎥⎥⎥⎥⎦x .

(3.38)

which is negative definite since N < 0. Therefore, the value function is a global

Lyapunov function, and the system is globally asymptotically stable.

Example 3.3.2. Path Following of a WMR

In this example, the developed controller is applied to a path following problem of a

WMR.

a) Dynamic Model: Fig.3.1 shows a schematic of the WMR, which is assumed to

be rigid and to be driven by a torque T to control the heading angle ψ which is measured

from the positive x-axis in the inertial frame. The forward velocity V0 = 1m/s is assumed

to be already made constant by the proper design of a cruise controller. The dynamic

model of the WMR is composed of two parts: kinematics and dynamics. The kinematics

equations are

ẏ=V0 sinψ

ψ̇ = ω
(3.39)

and the dynamics equation is

ω̇ =
1
I
T (3.40)

where T is the input torque generated by the DC motors. The moment of inertia of the

WMR with respect to the center of mass is I = 1kg.m2. It is desired that the WMR follows

the path y= 0.
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Figure 3.1: Schematic of the Wheeled Mobile Robot (WMR)

b) Controller Design and Simulation Results: The differential equations (3.39)

and (3.40) are cast in the form of Problem 3.2.1 with f (x2) = sin(x2), b= 1, d = 0, where

the states are defined by x1 = y, x2 = ψ and x3 = ω . If q1 = q3 = r = 1 and q2 = 4, then

the optimal controller is

u=−x1 −2x2 −3x3 − sin(x2) (3.41)

the running cost is

L= (x1 +2x2 + x3)
2 +(4−2cos(x2))x2

3 + sin2(x2)+u2 (3.42)

and the value function is

V (x) = (x1 +2x2 + x3)
2 +2x2

3 +2x3 sin(x2)−4cos(x2)+4 (3.43)

22



−8 −6 −4 −2 0 2 4 6 8
−2

0

2

4

6

8

10

12

14

16

18

y(m)

x(
m

)

(a)
(b)
(c)

Figure 3.2: Trajectories of WMR following path y= 0

Moreover, the derivative of the value function

V̇ =−(4−2cos(x2))x2
3 − (x1 +2x2 + x3)

2 − sin2(x2)

− (x1 +2x2 +3x3 + sin(x2))
2

(3.44)

is negative definite for x2 ∈ (−π,π). Therefore, the value function is a local Lyapunov

function in the largest invariant set contained in
{
(x1,x2,x3)∈R

3 | |x2|< π
}
∩
{
(x1,x2,x3)∈

R
3|V > 0} where > 0 stands for positive definite. Note that one cannot guarantee conver-

gence to the origin from any initial condition because L is not convex. Simulations were

performed using the optimal controller (3.41) for the following different initial conditions:

case (a): x0 = 0,y0 = 5, ψ0 =−π
2 and ω0 = 0

case (b): x0 = 2,y0 =−6, ψ0 =−π
2 and ω0 = 0

case (c): x0 = 5,y0 = 7, ψ0 =
π
6 and ω0 = 0

Convergence to the desired path is clearly seen in Fig.3.2. Moreover, Figures(3.3)-(3.5)

show the time variations of the position, heading angle and angular velocity. The input

signal is depicted in Fig.3.6.
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Figure 3.3: Position y

c) Adding Kalman Filter to the Optimal Control:

In practical applications with noisy sensor measurements, the necessary sensors for

full-state feedback may not always be available and using numerical differentiation to

obtain velocities can be problematic if position measurements are noisy. Therefore, here

we propose to use a Continuous-Discrete Extended Kalman Filter (CDEKF) as described

in section 2.2, to deal with the noisy measurements and to provide an estimate of the states

for feedback. In the combined observer-controller synthesis, the controller and observer

are designed separately. For example, suppose that we do not have any sensors available

to measure the third state ω in the path following problem. From the dynamic model of

the WMR the torque T is assumed to be the input while the commanded torque Tc comes

from the control law. Let eT = T −Tc denote the error between torque and commanded
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Figure 3.4: Heading angle ψ

torque. Then equations (3.39) and (3.40) with I = 1Kgm2 can be written as⎡
⎢⎢⎢⎢⎣
ẏ

ψ̇

ω̇

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

sinψ

ω

Tc

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

0

0

1

⎤
⎥⎥⎥⎥⎦eT (3.45)

Suppose that only the first two states of the robot are measured directly. Hence,

zk =

⎡
⎣yk

ψk

⎤
⎦+ vk (3.46)

and the Jacobian matrices are computed as

A=

⎡
⎢⎢⎢⎢⎣

0 cos ψ̂ 0

0 0 1

0 0 0

⎤
⎥⎥⎥⎥⎦ (3.47)

H =

⎡
⎣1 0 0

0 1 0

⎤
⎦ (3.48)
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Figure 3.5: Angular Velocity

The initial condition of CDEKF is selected as x0 =
[
5 π

2 0
]T

for the state vector and

P0 = I3 adds uncertainty to this choice, where I3 is a 3×3 identity matrix. Finally, Q and

R are chosen as

Q= 0.01 (3.49)

R=

⎡
⎣0.01 0

0 π
180

⎤
⎦ (3.50)

Including the estimated states in the control law (3.41) yields

û=−x̂1 −2x̂2 −3x̂3 − sin(x̂2) (3.51)

Simulations are performed using the controller (3.51) for the following different initial

conditions:

case (a): x0 = 0,y0 = 5, ψ0 =−π
2 and ω0 = 0

case (b): x0 = 2,y0 =−6, ψ0 =−π
2 and ω0 = 0
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Figure 3.6: Input Signal

case (c): x0 = 5,y0 = 7, ψ0 =
π
6 and ω0 = 0

The resulting path for the WMR using the optimal controller (3.51) is illustrated in

Fig.3.7. Moreover, Figures(3.8)-(3.10) show the time variations of the estimated position

ŷ, heading angle ψ̂ and angular velocity ω̂ . And finally, Figures(3.11)-(3.13) show the

true values and the CDEKF-estimates of the state variables. The simulation results verify

the good performance of the combined observer-controller synthesis.

3.4 Summary

The solution to a third order nonlinear optimal control problem has been presented in this

chapter extending an inverse optimality method originally developed for a class of sec-

ond order systems. The important feature of this approach is that the analytical solution

for the control input is obtained directly without needing to assume or compute a coor-

dinate transformation, value function or Lyapunov function. The value function and a
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Figure 3.7: Trajectories of WMR following path y= 0

Lyapunov function can however be computed after the control input has been found. The

controller was applied to a path following problem of a Wheeled Mobile Robot (WMR). A

Continuous-Discrete Extended Kalman Filter (CDEKF) was also designed to provide the

estimated states from noisy measurements for constructing the control law. The simulation

results verified the effectiveness of the method.
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Figure 3.8: Estimated Position ŷ
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Figure 3.9: Estimated Heading angle ψ̂
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Figure 3.10: Estimated Angular Velocity ω̂
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Figure 3.11: The true values and the estimates, case (a)
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Figure 3.12: The true values and the estimates, case (b)
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Figure 3.13: The true values and the estimates, case (c)
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Chapter 4

Estimation Algorithms for Piecewise

Affine Singular Systems

4.1 Introduction

The main contribution of this chapter is the development of two recursive state estimation

algorithms for discrete-time piecewise affine stochastic singular systems with simulation

evidence that the idea works. The proposed algorithms are derived based on successive QR

decompositions and Maximum Likelihood (ML) estimation theory. One special feature of

these methods is that the covariance matrix is determined from the computation of its

square root and is always guaranteed to be nonnegative. Two numerical examples are also

considered where a system with an unknown input is transformed to a singular system.

The simulation results illustrate the effectiveness of the proposed algorithms.

The remainder of this chapter is organized as follows. First, a recursive estimation

algorithm for discrete-time PWA stochastic singular systems with uncorrelated process

noise and measurement noise is developed. Then, a second algorithm is developed for

discrete-time PWA stochastic singular systems with correlated process noise and mea-

surement noise. A numerical example is also presented for each algorithm, where a sys-

tem with an unknown input is transformed to a singular system and the performance of the
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proposed algorithms are validated through simulations. Finally, a summary is given.

4.2 An Estimation Algorithm for PWA Singular Systems

with Uncorrelated Noise

This section presents the first recursive estimation algorithm for discrete-time PWA stochas-

tic singular systems, where the process noise and measurement noise are assumed to be

uncorrelated.

4.2.1 Discrete-time PWA Singular Systems with Uncorrelated Noise

The discrete-time PWA stochastic singular system considered in this section is a state-

based switched system described by the following dynamics⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Eσkx[k+1] = Aσkx[k]+aσk+Bσku[k]+Wσkw[k]

y[k+1] =Cσkx[k+1]+bσk+Vσkv[k]

∀x ∈ Rσk ,σk ∈ I = {1, ...,M}

(4.1)

where Eσk ∈R
q×n, Aσk ∈R

q×n, Bσk ∈R
q×m,Wσk ∈R

q×q,Cσk ∈R
p×n andVσk ∈R

p×p are

real matrices, x[k] ∈ R
n is the state vector, u[k] ∈ R

m is the control input and y[k] ∈ R
p is

the measured output.

The switching signal σk defines the system mode at the time instant k. The constant

vectors aσk and bσk are the affine terms for each affine model. Moreover, Rσk , σk ∈

{1, ...,M} is a polytopic partition of the state space defined as [26], [27]

Rσk =
{
x | Lσkx> 0

}
(4.2)

where Lσk =
[
Lσk lσk

]
,x=

⎡
⎣x

1

⎤
⎦.

Assumptions
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1. We assume that for every value of σ , the following matrices are full column rank
⎡
⎣Eσk

Cσk

⎤
⎦ (4.3)

⎡
⎣sEσk−Aσk

Cσk

⎤
⎦ (4.4)

where s is a complex variable.

2. It is assumed that q+ p≥ n,Vσk is invertible and the random vectors w[k]∼N (0, Iq)

and v[k]∼ N (0, Ip) represent independent Gaussian white noise vectors.

Remark 4.2.1. Condition 1) guarantees the existence of a unique solution to the state

estimation problem for each mode of the class of singular systems (4.1) with non-square

matrices Eσk and Aσk . It also corresponds to the assumption of regularity for systems in

that class (see [71] for more details).

4.2.2 Algorithm Derivation

In this section we develop a recursive estimation algorithm for discrete-time PWA singular

systems of the form (4.1). The estimation problem is to reconstruct the state x[k+ 1] at

time k+ 1 from the given input and output sequences and the estimated operation mode.

It is assumed that the state does not jump during the change of the operation mode.

Suppose that given knowledge of the process up to and including step k, there is an

initial estimate for x[k] denoted by x̂[k]. We assume that the estimation error can be written

as e[k] = S(k)we[k] where we[k]∼ N (0, In) is a Gaussian white noise vector independent

of w[k] and v[k]. We can then write

x̂[k] = x[k]+S(k)we[k] (4.5)
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Hence,

E
[
(x̂− x)(x̂− x)T

]
= Pe = SST (4.6)

holds for the covariance of the estimation error if (4.5) is verified. Then substituting for

x[k] from relation (4.5) into the system equations (4.1) yields⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Eσkx[k+1] = Aσk x̂[k]+aσk−AσkS[k]we[k]+Bσku[k]+Wσkw[k]

y[k+1] =Cσkx[k+1]+bσk+Vσkv[k]

∀x̂ ∈ Rσk ,σk ∈ I = {1, ...,M}

(4.7)

where using (4.2) the operation mode σk is estimated by finding the polytopic region to

which x̂ belongs. Note that because the estimated and true values of x[k] might not be the

same, equations (4.7) and (4.1) are not equivalent. Stacking the noise vectors as

wo[k] =
[
wTe [k] wT [k] vT [k]

]T
∼ N (0, In+q+p) (4.8)

equation (4.7) can be rewritten as⎡
⎣Aσk x̂[k]

y[k+1]

⎤
⎦=

⎡
⎣Eσk

Cσk

⎤
⎦x[k+1]+

⎡
⎣−aσk

bσk

⎤
⎦+

⎡
⎣−Bσk

0

⎤
⎦u[k]

+

⎡
⎣AσkS[k] −Wσk 0

0 0 Vσk

⎤
⎦wo[k]

(4.9)

Note that according to equation (4.9), the unknown vector x[k+ 1] of the system can be

estimated if and only if the matrix (4.3) has full column rank. Performing the following

QR decomposition
[
AσkS[k] −Wσk

]
=
[
Rbσk 0

]
Qbσk (4.10)

transforms the matrix
[
AσkS[k] −Wσk

]
into the product of two matrices, where Rbσk ∈

R
q×q is an invertible triangular matrix and Qbσk ∈ R

(n+q)×(n+q) is an orthogonal matrix.

Then writing

Qbσk

⎡
⎣we[k]
w[k]

⎤
⎦=

⎡
⎣waσk [k]
wbσk [k]

⎤
⎦ (4.11)
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where

waσk [k] ∼ N (0, Iq)

wbσk [k] ∼ N (0, In) (4.12)

we have

[
AσkS[k] −Wσk

]⎡⎣we[k]
w[k]

⎤
⎦= Rbσkwaσk [k] (4.13)

Note that waσk [k] and wbσk [k] are independent of each other because Qbσk is an orthogonal

matrix and also we[k] and w[k] are independent of each other. So the equation (4.9) can be

written as
⎡
⎣Aσk x̂[k]

y[k+1]

⎤
⎦=

⎡
⎣Eσk

Cσk

⎤
⎦x[k+1]+

⎡
⎣−aσk

bσk

⎤
⎦+

⎡
⎣−Bσk

0

⎤
⎦u[k]+

⎡
⎣Rbσk 0

0 Vσk

⎤
⎦wcσk [k] (4.14)

where

wcσk [k] =

⎡
⎣waσk [k]
v[k]

⎤
⎦∼ N (0, Iq+p) (4.15)

Hence we get
⎡
⎣R−1

bσk 0

0 V−1
σk

⎤
⎦
⎡
⎣Aσk x̂[k]

y[k+1]

⎤
⎦=

⎡
⎣R−1

bσkEσk

V−1
σk Cσk

⎤
⎦x[k+1]+

⎡
⎣−R−1

bσkaσk

V−1
σk bσk

⎤
⎦

+

⎡
⎣−R−1

bσkBσk

0

⎤
⎦u[k]+wcσk [k]

(4.16)

Applying the following QR decomposition
⎡
⎣R−1

bσkEσk

V−1
σk Cσk

⎤
⎦= Qaσk

⎡
⎣Raσk

0

⎤
⎦ (4.17)

gives an invertible triangular matrix Raσk ∈R
n×n and an orthogonal matrixQaσk ∈R

(q+p)×(q+p).
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So replacing equation (4.17) in (4.16) yields⎡
⎣R−1

bσk 0

0 V−1
σk

⎤
⎦
⎡
⎣Aσk x̂[k]

y[k+1]

⎤
⎦= Qaσk

⎡
⎣Raσk

0

⎤
⎦x[k+1]+

⎡
⎣−R−1

bσkaσk

V−1
σk bσk

⎤
⎦

+

⎡
⎣−R−1

bσkBσk

0

⎤
⎦u[k]+wcσk [k]

(4.18)

which can be rewritten as⎡
⎣Aσk x̂[k]+aσk+Bσku[k]

y[k+1]−bσk

⎤
⎦=

⎡
⎣Rbσk 0

0 Vσk

⎤
⎦wcσk [k]

+

⎡
⎣Rbσk 0

0 Vσk

⎤
⎦Qaσk

⎡
⎣Raσk

0

⎤
⎦x[k+1]

(4.19)

If matrix (4.3) is full column rank, then the unknown vector x[k+ 1] of the obsevation

(4.19) can be estimated. Note that the rank of

⎡
⎣Eσk

Cσk

⎤
⎦ is equal to the rank of Raσk because

rank of the product of several matrices is equal to the minimum rank. So treating (4.19) as

an observation of the form (2.1) with

H =

⎡
⎣Rbσk 0

0 Vσk

⎤
⎦Qaσk

⎡
⎣Raσk

0

⎤
⎦ (4.20)

and noise covariance matrix

R=

⎡
⎣Rbσk 0

0 Vσk

⎤
⎦
⎡
⎣Rbσk 0

0 Vσk

⎤
⎦
T

(4.21)

and applying relations (2.6) and (2.8), x̂[k+1] and Pe[k+1] are found as

x̂[k+1] = Ξk

⎡
⎣Aσk x̂[k]+aσk+Bσku[k]

y[k+1]−bσk

⎤
⎦ (4.22)

Pe[k+1] = S[k+1]ST [k+1] = (RTaσkRaσk)
−1 (4.23)

where

Ξk =

⎡
⎣Raσk

0

⎤
⎦

†

QTaσk

⎡
⎣R−1

bσk 0

0 V−1
σk

⎤
⎦ (4.24)
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and † denotes the Moore-Penrose pseudoinverse of a matrix. Hence x̂[k] and S[k] can be

computed recursively. Assuming the matrix given by (4.3) is full column rank, the com-

plete operation of the proposed estimation method is summarized in Algorithm 1.

Problem 4.2.1. Given x̂[0], S[0] and y[k], estimate the state of a PWA singular system of

the form (4.1).

Solution Algorithm 1

• Initialization

x̂[0] = x̂0

S[0] = S0

• Iterative Step

– Estimate active operation mode σk ∈ {1, ...,M} based on the region to which

x̂[k] belongs. The regions are defined as

Rσk =
{
x̂ | Lσk x̂> 0

}

where Lσk =
[
Lσk lσk

]
, x̂=

⎡
⎣x̂

1

⎤
⎦.

– Given S[k], find Rbσk and Qbσk using
[
AσkS[k] −Wσk

]
=
[
Rbσk 0

]
Qbσk

– Given Rbσk , find Qaσk and Raσk using
⎡
⎣R−1

bσkEσk

V−1
σk Cσk

⎤
⎦= Qaσk

⎡
⎣Raσk

0

⎤
⎦
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– Given x̂[k], compute x̂[k+1] and S[k+1]

Ξk =

⎡
⎣Raσk

0

⎤
⎦

†

QTaσk

⎡
⎣R−1

bσk 0

0 V−1
σk

⎤
⎦

x̂[k+1] = Ξk

⎡
⎣Aσk x̂[k]+aσk+Bσku[k]

y[k+1]−bσk

⎤
⎦

S[k+1] = R−1
aσk

4.2.3 Numerical Example

This section presents some simulation results obtained by applying the proposed algorithm

1 on an unknown-input system modeled as a singular system. Consider the following

bimodal discrete-time PWA system taken from [40] and modified by adding an unknown

input signal d[k],
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x[k+1] = Aσkx[k]+aσk+D1d[k]+Ww[k]

y[k+1] =Cσkx[k+1]+bσk+D2d[k]+Vv[k]

σk ∈ I = {1,2}

(4.25)

with

A1 =

⎡
⎣0.7969 −0.2247

0.1798 0.9767

⎤
⎦ ,A2 =

⎡
⎣0.4969 −0.2247

0.0798 0.9767

⎤
⎦ (4.26)

a1 =

⎡
⎣0.2

0

⎤
⎦ ,a2 =

⎡
⎣0.6

0.2

⎤
⎦ (4.27)

C1 =C2 =

⎡
⎣0.2 0

0 1

⎤
⎦ (4.28)
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b1 =

⎡
⎣0

0

⎤
⎦ ,b2 =

⎡
⎣0.5

0

⎤
⎦ ,D1 =

⎡
⎣0.2

0.2

⎤
⎦ ,D2 =

⎡
⎣4

0

⎤
⎦ (4.29)

W =

⎡
⎣0.1 0

0 0.1

⎤
⎦ ,V =

⎡
⎣0.6 0

0 0.4

⎤
⎦ (4.30)

w[k]∼ N (0, I2), v[k]∼ N (0, I2) (4.31)

σk =

⎧⎪⎪⎨
⎪⎪⎩

1 i f x1 ≤ 1.4

2 i f x1 > 1.4
(4.32)

We want to use the algorithm 1 to estimate the value of the unknown input signal d[k].

Therefore, defining the augmented state x̄[k] =
[
xT [k] dT [k]

]T
then the previous system

may be transformed into the following singular form⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ex̄[k+1] = Ăσk x̄[k]+aσk+Ww[k]

y[k+1] = C̆σk x̄[k+1]+bσk+Vv[k]

σk ∈ I = {1,2}

(4.33)

where E =
[
I2 02×1

]
, Ăσk =

[
Aσk D1

]
and C̆σk =

[
Cσk D2

]
. Note that since the ma-

trices

⎡
⎣ E
C̆σk

⎤
⎦ have full column rank, then the state of the singular system (4.33) can be

estimated. If we choose x̄[0] =
[
4.8 −9 2.5

]T
as the initial condition for the real sys-

tem together with ¯̂x[0] =
[
0 0 0

]T
and S[0] = diag [0.1,0.1,10] as the initial conditions

for the estimator, then the simulation results based on the proposed algorithm are shown

in Figures4.1–4.4 which also verify the good performance of the proposed algorithm. In

particular, the unknown input signal d[k] with the following expression

d[k] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2.5 k ≤ 70

−2sin(0.3k) 70 < k ≤ 150

3 150 < k

(4.34)
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Figure 4.1: Unknown input and its estimate

is well estimated as depicted in Figure 4.1.

4.3 An Estimation Algorithm for PWA Singular Systems

with Correlated Noise

This section presents the second recursive estimation algorithm for discrete-time PWA

stochastic singular systems, where the process noise and measurement noise are assumed

to be correlated.
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Figure 4.2: The true value of state x1[k] and its estimate

4.3.1 Discrete-time PWA Singular Systems with Correlated Noise

The discrete-time PWA stochastic singular system considered in this section is a state-

based switched system described by the following dynamics
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Eσkx[k+1] = Aσkx[k]+aσk+Bσku[k]+η pσk [k]

y[k+1] =Cσkx[k+1]+bσk+ηmσk [k]

∀x ∈ Rσk ,σk ∈ I = {1, ...,M}

(4.35)

where Eσk ∈R
q×n, Aσk ∈R

q×n, Bσk ∈R
q×m,Cσk ∈R

p×n are real matrices, x[k]∈R
n

is the state vector, u[k] ∈R
m is the control input and y[k] ∈R

p is the measured output. The

random vectors η pσk [k] and ηmσk [k] represent the correlated process and measurement noise,
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Figure 4.3: The true value of state x2[k] and its estimate

respectively, which can be modeled by

η pσk [k] =
[
Wσk Nσk

]⎡⎣w[k]
v[k]

⎤
⎦

ηmσk [k] =
[
NTσk Vσk

]⎡⎣w[k]
v[k]

⎤
⎦

(4.36)

where Wσk ∈ R
q×q, Vσk ∈ R

p×p and Nσk ∈ R
q×p are real matrices, w[k] ∼ N (0, Iq) and

v[k]∼ N (0, Ip) are Gaussian white noise vectors.

The switching signal σk defines the system mode at the time instant k. The constant

vectors aσk and bσk are the affine terms for each affine model. Moreover, Rσk , σk ∈

{1, ...,M} is a polytopic partition of the state space defined as (4.2).

Assumptions:

1. Assumptions (4.3) and (4.4) hold.
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Figure 4.4: The true switching signal σk and its estimate

2. It is assumed that q+ p≥ n, and also
⎡
⎣Wσk Nσk

NTσk Vσk

⎤
⎦ (4.37)

has full rank. Moreover, the random vectors w[k] ∼ N (0, Iq) and v[k] ∼ N (0, Ip)

represent Gaussian white noise vectors.

4.3.2 Algorithm Derivation

In this section we develop a recursive estimation algorithm for discrete-time PWA singular

systems of the form (4.35). The estimation problem is to reconstruct the state x[k+ 1] at

time k+ 1 from the given input and output sequences and the estimated operation mode.

It is assumed that the state does not jump during the change of the operation mode.

Suppose that given knowledge of the process up to and including step k, there is an

initial estimate for x[k] denoted by x̂[k]. As before, we assume that the estimation error can
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be written as e[k] = S(k)we[k] where we[k] ∼ N (0, In) is a Gaussian white noise vector

independent of w[k] and v[k]. Substituting (4.36) and x[k] from relation (4.5) into (4.35)

and using x̂ to determine the region of operation yields

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Eσkx[k+1] = Aσk x̂[k]+aσk−AσkS[k]we[k]

+Bσku[k]+Wσkw[k]+Nσkv[k]

y[k+1] =Cσkx[k+1]+bσk+NTσkw[k]+Vσkv[k]

∀x̂ ∈ Rσk ,σk ∈ I = {1, ...,M}

(4.38)

Then stacking the noise vectors as

wo[k] =
[
wTe [k] wT [k] vT [k]

]T
∼ N (0, In+q+p) (4.39)

equation (4.38) can be rewritten as⎡
⎣Aσk x̂[k]

y[k+1]

⎤
⎦=

⎡
⎣Eσk

Cσk

⎤
⎦x[k+1]+

⎡
⎣−aσk

bσk

⎤
⎦+

⎡
⎣−Bσk

0

⎤
⎦u[k]

+

⎡
⎣AσkS[k] −Wσk −Nσk

0 NTσk Vσk

⎤
⎦wo[k]

(4.40)

According to equation (4.40), the unknown vector of the system can be estimated if and

only if the following matrix ⎡
⎣Eσk

Cσk

⎤
⎦ (4.41)

is full column rank. Performing the following QR decomposition⎡
⎣AσkS[k] −Wσk −Nσk

0 NTσk Vσk

⎤
⎦=

[
Rbσk 0

]
Qbσk (4.42)

yields the triangular matrix Rbσk ∈R
(q+p)×(q+p) and the orthogonal matrixQbσk ∈R

(q+p+n)×(q+p+n)

. Then writing

Qbσkwo[k] =

⎡
⎣waσk [k]
wbσk [k]

⎤
⎦ (4.43)
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where

waσk [k]∼ N (0, Iq+p)

wbσk [k]∼ N (0, In)
(4.44)

the equation (4.40) can be rewritten as⎡
⎣Aσk x̂[k]

y[k+1]

⎤
⎦=

⎡
⎣Eσk

Cσk

⎤
⎦x[k+1]+

⎡
⎣−aσk

bσk

⎤
⎦+

⎡
⎣−Bσk

0

⎤
⎦u[k]

+Rbσkwaσk [k]

(4.45)

Hence we get

R−1
bσk

⎡
⎣Aσk x̂[k]

y[k+1]

⎤
⎦= R−1

bσk

⎡
⎣Eσk

Cσk

⎤
⎦x[k+1]

+R−1
bσk

⎡
⎣−aσk

bσk

⎤
⎦+R−1

bσk

⎡
⎣−Bσk

0

⎤
⎦u[k]+waσk [k]

(4.46)

Applying the following QR decomposition

R−1
bσk

⎡
⎣Eσk

Cσk

⎤
⎦= Qaσk

⎡
⎣Raσk

0

⎤
⎦ (4.47)

gives an invertible triangular matrix Raσk ∈R
n×n and an orthogonal matrixQaσk ∈R

(q+p)×(q+p).

So replacing equation (4.47) in (4.46) yields

R−1
bσk

⎡
⎣Aσk x̂[k]

y[k+1]

⎤
⎦= Qaσk

⎡
⎣Raσk

0

⎤
⎦x[k+1]

+R−1
bσk

⎡
⎣−aσk

bσk

⎤
⎦+R−1

bσk

⎡
⎣−Bσk

0

⎤
⎦u[k]+waσk [k]

(4.48)

which can be rewritten as⎡
⎣Aσk x̂[k]+aσk+Bσku[k]

y[k+1]−bσk

⎤
⎦= Rbσkwaσk [k]

+RbσkQaσk

⎡
⎣Raσk

0

⎤
⎦x[k+1]

(4.49)
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If matrix (4.41) is full column rank, then the unknown vector of the obsevation (4.49) can

be estimated (note that the rank of the product of a few matrices is equal to the minimum

rank). So treating (4.49) as an observation of the form (2.1) with

H = RbσkQaσk

⎡
⎣Raσk

0

⎤
⎦ (4.50)

and noise covariance matrix

R= RbσkR
T
bσk (4.51)

and applying relations (2.6) and (2.8), x̂[k+1] and Pe[k+1] are found as

x̂[k+1] = Ξk

⎡
⎣Aσk x̂[k]+aσk+Bσku[k]

y[k+1]−bσk

⎤
⎦ (4.52)

and

Pe[k+1] = S[k+1]ST [k+1] = (RTaσkRaσk)
−1 (4.53)

where

Ξk =

⎡
⎣Raσk

0

⎤
⎦

†

QTaσkR
−1
bσk

(4.54)

Hence x̂[k] and S[k] can be computed recursively. Assuming the unknown vector of the

singular system (4.35) can be estimated, the complete operation of the proposed estima-

tion method is summarized in Algorithm 2.

Problem 4.3.1. Given x̂[0], S[0] and y[k], estimate the state of a PWA singular system of

the form (4.35).

Solution Algorithm 2

• Initialization

x̂[0] = x̂0
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S[0] = S0

• Iterative Step

– Estimate active operation mode σk ∈ {1, ...,M} based on the region to which

x̂[k] belongs. The regions are defined as

Rσk =
{
x̂ | Lσk x̂> 0

}

where Lσk =
[
Lσk lσk

]
, x̂=

⎡
⎣x̂

1

⎤
⎦.

– Given S[k], find Rbσk and Qbσk using
⎡
⎣AσkS[k] −Wσk −Nσk

0 NTσk Vσk

⎤
⎦=

[
Rbσk 0

]
Qbσk

– Given Rbσk , find Qaσk and Raσk using

R−1
bσk

⎡
⎣Eσk

Cσk

⎤
⎦= Qaσk

⎡
⎣Raσk

0

⎤
⎦

– Given x̂[k], compute x̂[k+1] and S[k+1]

Ξk =

⎡
⎣Raσk

0

⎤
⎦

†

QTaσkR
−1
bσk

x̂[k+1] = Ξk

⎡
⎣Aσk x̂[k]+aσk+Bσku[k]

y[k+1]−bσk

⎤
⎦

S[k+1] = R−1
aσk
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Remark 4.3.1. It is noted that in addition to addressing the correlated process and mea-

surement noise, the derived Algorithm 2 is different from Algorithm 1 even if we set the

correlation matrix Nσk to zero. The difference comes from the fact that the condition that

the matrix Vσk be invertible is released here. Moreover, the QR decompositions are per-

formed differently in these two algorithms. However, the computational burden of the

latter algorithm is more than the former since the QR decompositions are performed on

larger matrices.

4.3.3 Numerical Example

This section presents some simulation results obtained by applying the proposed algorithm

2 on an unknown-input system modeled as a singular system. Consider the following

bimodal discrete-time PWA system taken from [40] and modified by adding an unknown

input signal d[k] and also by applying correlated process and measurement noise,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x[k+1] = Aσkx[k]+aσk+D1d[k]+Ww[k]+Nv[k]

y[k+1] =Cσkx[k+1]+bσk+D2d[k]+NTw[k]+Vv[k]

σk ∈ I = {1,2}

(4.55)

with

A1 =

⎡
⎣0.7969 −0.2247

0.1798 0.9767

⎤
⎦ ,A2 =

⎡
⎣0.4969 −0.2247

0.0798 0.9767

⎤
⎦ (4.56)

a1 =

⎡
⎣0.2

0

⎤
⎦ ,a2 =

⎡
⎣0.6

0.2

⎤
⎦ (4.57)

C1 =C2 =

⎡
⎣0.2 0

0 1

⎤
⎦ (4.58)
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b1 =

⎡
⎣0

0

⎤
⎦ ,b2 =

⎡
⎣0.5

0

⎤
⎦ ,D1 =

⎡
⎣0.2

0.2

⎤
⎦ ,D2 =

⎡
⎣4

0

⎤
⎦ (4.59)

W =

⎡
⎣0.1 0

0 0.1

⎤
⎦ ,V =

⎡
⎣0.6 0

0 0.4

⎤
⎦ ,N =

⎡
⎣0.1 0.3

0.2 0.4

⎤
⎦ (4.60)

w[k]∼ N (0, I2), v[k]∼ N (0, I2) (4.61)

σk =

⎧⎪⎪⎨
⎪⎪⎩

1 i f x1 ≤ 1.4

2 i f x1 > 1.4
(4.62)

We want to use the algorithm 2 to estimate the value of the unknown input signal d[k].

Therefore, defining the augmented state x̄[k] =
[
xT [k] dT [k]

]T
then the previous system

may be transformed into the following singular form⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ex̄[k+1] = Ăσk x̄[k]+aσk+Ww[k]+Nv[k]

y[k+1] = C̆σk x̄[k+1]+bσk+NTw[k]+Vv[k]

σk ∈ I = {1,2}

(4.63)

where E =
[
I2 02×1

]
, Ăσk =

[
Aσk D1

]
and C̆σk =

[
Cσk D2

]
. Note that since the ma-

trices

⎡
⎣ E
C̆σk

⎤
⎦ have full column rank, then the state of the singular system (4.63) can be

estimated. If we choose x̄[0] =
[
4.8 −9 2.5

]T
as the initial condition for the real sys-

tem together with ¯̂x[0] =
[
0 0 0

]T
and S[0] = diag [0.1,0.1,10] as the initial conditions

for the estimator, then the simulation results based on the proposed algorithm are shown

in Figures4.5–4.8 which also verify the good performance of the proposed algorithm. In

particular, the unknown input signal d[k] with the following expression

d[k] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sin(0.1k) k ≤ 70

1.3cos(0.1k) 70 < k ≤ 150

2.5 150 < k

(4.64)
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Figure 4.5: Unknown input and its estimate

is well estimated as depicted in Figure 4.5.

4.4 Summary

In this chapter two recursive estimation algorithms were proposed for discrete-time piece-

wise affine stochastic singular systems with simulation evidence that the idea works. The

first algorithm was derived for systems with uncorrelated process noise and measurement

noise, while the second one was derived for systems with correlated process and measure-

ment noise. A maximum-likelihood (ML)-based estimation method was derived employ-

ing successive QR decompositions. As an important feature of this method, the covariance

matrix is computed iteratively from its square root which always leads to nonnegative val-

ues. Finally, numerical simulations were presented on the case of a discrete-time PWA

stochastic system with an unknown input, modeled as a singular system.
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Chapter 5

Conclusions

In this chapter the contributions of the thesis are summarized and the conclusions from this

research and potential future work are discussed. Chapter 2 reviews some preliminaries to

be used in the following chapters. First, the maximum likelihood estimation problem for a

linear observation is studied , and then the algorithmic details of the Continuous-Discrete

Extended Kalman Filter (CDEKF) are described.

In Chapter 3, the solution to a third order nonlinear optimal control problem has

been presented using the concept of inverse optimality. In this method, the Hamilton-

Jacobi-Bellman equation is analytically solved for a class of third order nonlinear optimal

control problems for which the dynamics are affine and the cost is quadratic in the input.

One important feature of this approach is that the analytical solution for the control input

is obtained directly without needing to assume or compute a coordinate transformation,

value function or Lyapunov function. The value function and a Lyapunov function can

however be computed after the control input has been found. The controller was applied

to a path following problem of a Wheeled Mobile Robot (WMR). A Continuous-Discrete

Extended Kalman Filter (CDEKF) was also designed to provide the estimated states from

noisy measurements for constructing the control law. The simulation results verified the

good performance of the combined observer-controller synthesis. Noting that the neces-

sary sensors for full-state feedback may not always be available, for example, the angular
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velocity ω in the path following problem of WMR might not be available, motivates us to

investigate output feedback inverse optimal controllers as another remedy to this problem.

Furthermore, the proposed method can potentially be extended to higher order systems

assuming that the dynamics are affine and the cost is quadratic in the input.

In Chapter 4, two recursive estimation algorithms were proposed for discrete-time

piecewise affine stochastic singular systems with simulation evidence that the idea works.

The first algorithm was derived for systems with uncorrelated process noise and measure-

ment noise, and then the second one was derived for systems with correlated process and

measurement noise. A maximum-likelihood (ML)-based estimation method was derived

employing successive QR decompositions. As an important feature of this method, the

covariance matrix is computed iteratively from its square root which always leads to non-

negative values. Finally, numerical simulations were presented for the case of a discrete-

time PWA stochastic system with an unknown input, modeled as a singular system. In this

research work the active operation mode is determined based on the estimated state x̂[k],

where the condition governing the jump is deterministic. Extending the current work to

consider stochastic jump from one mode to another (such as with multiple model filters)

can be addressed in the future.
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