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ABSTRACT 

 

The contributions of practice pattern, musical training, and development to motor 

sequence learning 

 

Tal Savion-Lemieux, Ph.D. 

Concordia University, 2010 

 

The overall goal of the present thesis was to look at a selection of factors that 

affect fine motor sequence learning both within and across days of practice. The objective 

of study 1 was to examine factors related to motor training, specifically how practice 

pattern (or organization of practice) affects learning and transfer of multiple motor 

sequences. The objective of studies 2 and 3 was to investigate factors related to 

individual characteristics, specifically musical experience and development (i.e. age). 

First, findings from all three papers support the progression of sequence learning across 

time, characterized by rapid within-session improvements and slower incremental 

improvements across days of practice. Importantly, findings have shown that both adults 

and children show consolidation, defined as significant improvements in or maintenance 

of performance between the last block of practice on the initial practice session and the 

first block on the second session, after a period of rest of 24 hours with no additional 

practice. Second, a robust dissociation was found between the two behavioural measures 

used to assess learning, accuracy and response synchronization. Learning of the stimulus-

response association, or finger-stimulus mapping, appeared to be a fast process, as 

significant improvements on the accuracy measure were often rapid and occurred within 

the first blocks of practice on day 1. This process seemed to require more effortful 

processing and attention initially; however, once the stimulus-response association was 

acquired, it seemed to be resistant to interference and transferrable to a novel sequence. 



 

iv 

In contrast, learning of the sensorimotor integration and timing elements of the task 

appeared to be a slower and more difficult process to learn, as significant improvements 

on this measure persisted across days of practice. This more procedural process seemed 

to be under less cognitive control, be more susceptible to interference, and rely more 

heavily on ongoing practice. Finally, results from studies 2 and 3 provide new evidence 

that there may be a sensitive period in childhood where enriched motor training, through 

musical practice, results in long-lasting benefits for motor performance later in life.   
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Chapter 1 

General Introduction 

Motor skill learning is a critical aspect of our everyday lives, as we acquire and 

retain an extensive array of motor skills throughout the lifespan. Motor skill learning is a 

complex internal process (that is often taken for granted) by which motor skills become 

effortlessly performed through constant practice and experience over time (Willingham, 

1998); it is a form of procedural learning, which refers to learning how to do what to do 

(Schmidt & Lee, 2005). For example, when first learning to play the piano, the ability to 

move the fingers across the keys (in coordination with reading the musical notes) is 

uncoordinated, but with repeated practice over time, this ability becomes more smooth, 

skillful, and refined. Since motor skills are ubiquitous in our everyday lives, considerable 

efforts have been made to determine the principal factors affecting their learning and 

retention. Such factors include, but are not limited to: amount of practice, distribution of 

practice, length of delay necessary for retention, contextual setting of learning (i.e. 

organization of practice), presence of interference, transfer of learning to other skills, as 

well as the effects of development and motor expertise on the learning of motor skills. 

Thus, the study of motor learning is centered around answering questions such as: “What 

factors affect learning?”; “How much practice is needed to show improvement over 

time?”; “How long can we retain a motor memory?”; “What is the best way to organize 

practice when faced with the task of learning multiple skills?”; “How generalizable and 

transferrable are learned motor skills?”; “Does motor learning capacity change across the 

lifespan?”; “Does musical training impact motor skill learning?”, etc.  
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The overall goal of the present thesis was to examine a selection of factors that 

affect motor learning, specifically fine motor sequence learning. Fine motor sequence 

learning refers to learning to make a series of defined fine motor movements, typically 

involving the fingers in coordination with the eyes (e.g., typing the alphabet and playing 

“Frère Jacques” on the piano). Surprisingly, most studies on sequence learning focus on 

either within-day or across-day learning, but relatively few look at both aspects together 

or in relation to each other. Given that learning is a dynamic process that occurs over 

time, all three experiments included in this thesis explored both within-day and across-

day changes. The objective of study 1 was to examine factors related to motor training, 

specifically how practice pattern affects learning and transfer of multiple motor 

sequences. The objective of studies 2 and 3 was to investigate factors related to 

individual characteristics, specifically experience and development (i.e. age, specifically 

childhood). Taken together, understanding the behavioural underpinnings of motor 

sequence learning is imperative for the development of practical theories that translate 

into essential applications in teaching and other learning environments (Schmidt & Lee, 

2005). 

Motor skill learning can be broken down into three behaviourally relevant stages 

(as referred to in the motor literature): early learning, late learning, and consolidation, 

which correspond to distinct points in the pattern of incremental changes observed in 

performance across sessions of practice (see Doyon and Benali, 2005; Karni, Meyer, 

Rey-Hipolito, Jezzard, Adams, Turner, & Ungerleider, 1998; Korman, Raz, Flash, & 

Karni, 2003, for reviews). The early learning stage is characterized by rapid 

improvements in performance, over relatively few trials, within the initial session of 
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practice (e.g., Karni & Sagi, 1993; Bapi, Miyapuram, Graydon, & Doya, 2006). The late 

learning stage is characterized by slower and more gradual gains in performance, 

occurring over multiple days of practice, which lead to a plateau in performance (e.g., 

Korman, Raz, Flash, & Karni, 2003; Karni, Meyer, Jezzard, Adams, Turner, & 

Ungerleider, 1995; Savion-Lemieux & Penhune, 2005). The consolidation stage is an 

intermediate stage (between the early learning and late learning stage) that occurs across 

the first two sessions of practice. Consolidation is a specific concept that is commonly 

defined as either a significant improvement in performance following a period of rest 

with no additional practice (over and above what would be expected with continued 

practice) or a maintenance in performance after a period of rest, both of which are 

disrupted by learning a similar motor skill within a consolidation window of four to six 

hours (Robertson, Pascual-Leone, & Miall, 2004). Consolidation can also be considered 

as the across-day transition from early to late learning. Consolidation is thought to be 

sleep-dependent (e.g., Walker, Brakefield, Seidman, Morgan, Hobson, & Stickgold, 

2003; Maquet, Schwartz, Passingham, & Frith, 2003). For example, Sejnowski and 

Destexhe (2000) have shown that spindle oscillations during the early stages of slow-

wave sleep are important for opening molecular gates required for synaptic plasticity. 

Sleep spindles have also shown to be enhanced after training on a motor task (Fogel et 

al., 2001, cited in Walker et al., 2002). Based on previous work from our laboratory, we 

have hypothesized that consolidation may be the first step in laying down long-term 

motor memory (Savion-Lemieux & Penhune, 2005). Finally, once a motor skill is well 

learned and consolidated (i.e. performance has reached asymptote), few declines in 

performance are noted, even after extended delays with no additional practice (e.g., 
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Hikosaka, Rand, Nakamura, Miyauchi, Kitaguchi, Sakai, Lu, Shimo, 2002; Korman et 

al., 2003; Savion-Lemieux & Penhune, 2005). Thus, it appears that motor skill learning is 

relatively permanent. It has been postulated that passage of time (or distribution of 

practice over several days) is essential for a maximum benefit of practice to be gained, as 

the time delay may allow for more time to process, encode, and consolidate the motor 

skill (Criscimagna-Hemminger and Shadmehr, 2008; Korman et al., 2003; Savion-

Lemieux & Penhune, 2005).    

 With the advent of neuroimaging technology, considerable support for the 

presence of separable stages of motor skill learning has been found. Functional imaging 

studies in adults have shown that different cortical and sub-cortical regions are 

preferentially recruited at the different stages of learning (Doyon and Benali, 2005; 

Doyon & Ungerleider, 2002; Hikosaka et al., 1999, 2002). For instance, it has been 

postulated that the cerebellum, rostral striatum, as well as motor, prefrontal, and parietal 

cortical regions are mainly active during early learning, while the caudal striatum, as well 

as motor and parietal cortical areas are involved in the later stage of learning (Doyon and 

Benali, 2005). This qualitative change from early to late learning is thought to be 

mediated through the consolidation stage. Crucially, following consolidation, activity in 

the striatum shifts from rostral to caudal regions and the cerebellum is no longer 

necessary for the production of skilled motor responses. Steele and Penhune (2010) 

recently found a functional connectivity between M1 and cerebellum in late learning that 

points to their interaction as a mechanism underlying the long-term representation and 

expression of a well-learned skill. Taken together, a growing body of evidence has 

demonstrated plastic neuronal changes in the adult human brain that are associated with 
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the behavioural changes observed with learning of a motor skill. There is evidence for 

both early rapid changes occurring over minutes or hours and for relatively slowly 

developing changes occurring over multiple days or weeks.  

 Various experimental paradigms have been employed to study motor learning. 

Typically, motor skill tasks highly maximize motor control and minimize decision 

making abilities (Schmidt, 1991). There are two types of motor skill learning paradigms: 

adaptation and sequencing. The main difference between the two types of paradigms is 

that adaptation tasks probe our ability to learn from and adapt to different environments, 

while sequencing tasks force us to form new ordered memories. Classic adaptation tasks 

include target pointing or reaching within a dynamic force field (e.g., Shadmehr & 

Brashers-Krug, 1997) and pointing or reaching under visuomotor rotation (e.g., Mattar & 

Ostry, 2006). In these tasks, participants are required to adapt their movements while the 

environment is being altered or perturbed. Classic sequencing tasks include sequential 

pointing and serial reaction time tasks (SRT) with either one or several fingers (e.g., 

Karni et al., 1998; Nissen and Bullemer, 1987; Thomas & Nelson, 2001). In these tasks, 

participants are required to reproduce a well ordered set of movements. For example, in 

the classic SRT a stimulus appears in one of several locations and participants are 

required to press a button that corresponds to the spatial location of the stimulus. 

Typically, the dependent measures of learning consist of number of errors and mean 

response time or movement velocity, as participants are asked to respond “as fast and 

accurately as possible”. Thus, reductions in dependent measures characteristically reflect 

enhanced performance. In the present thesis, we used sequencing tasks to investigate 

sequence learning within- and across multiple days of practice. In both the temporal 
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motor sequencing task (TMST) and the multi-finger sequencing task (MFST), 

participants had to synchronize their motor response with a visual stimulus, using one or 

four fingers (respectively) of the right hand. The main difference between our tasks and 

other sequencing tasks is that participants were instructed to synchronize their response 

with the visual stimulus. As such, participants were not instructed to respond “as fast as 

possible”. Learning was assessed by examining changes in accuracy and response 

synchronization over time. In all three experiments, accuracy required the association of 

the visual stimulus with the motor response, while response synchronization required 

fine-grained sensorimotor integration and timing (a more procedural component of the 

task).  

 One of the most important goals in the study of motor learning is to identify and 

understand which variables affect how individuals learn and retain motor skills. The 

current thesis was designed to examine a selection of factors that affect motor learning 

and retention. These factors were grouped into two broad categories. The first category 

encompassed factors related to how individuals are trained, such as amount, pattern (i.e. 

organization), and distribution of practice. The second category included factors that 

center around individual characteristics, such as experience and development (i.e. age, 

specifically childhood). Importantly, many studies in the literature focus on either within-

day or across-day learning, but relatively few look at both aspects together or in relation 

to each other.  

The first line of research in this thesis focused on examining factors related to 

how individuals are trained on motor sequences. The goal of this axis of research was to 

explore ways to optimize the organization or structure of practice. In a previous study, we 
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investigated the effect of amount of practice on motor learning and retention (Savion-

Lemieux & Penhune, 2005; Appendix A). In this study, we varied the amount of practice 

received over five consecutive days. Surprisingly, we found that total amount of practice 

per se did not affect motor learning and retention. Instead, we showed that distribution of 

practice over several days was a more influential factor. In other words, “passage of 

time”, or training over multiple sessions, even if minimal, was sufficient to trigger 

learning and retention. From this study, we postulated that learning and consolidation are 

ongoing processes mediated by factors such as distribution of practice, and that once a 

skill is consolidated it is well retained (even after a period of a year without practice), 

possibly reflecting motor cortical plasticity. Support for this hypothesis also came from 

studies that have shown that spaced practice over several days augments subsequent 

performance on motor tasks, relative to massed or continuous practice within a single 

training session (e.g., Baddely & Longman, 1978; Shea et al., 2000).  

It is worth noting that our study looked at how adults learned one motor sequence, 

whereas in real-life situations we are often faced with the challenge of learning multiple 

skills simultaneously. Therefore, other important factors to consider, besides the amount 

of practice, are the pattern of practice as well as the ability to transfer learning from one 

motor skill to another. Consequently, the first paper included in this thesis focused on the 

effect of practice pattern on motor learning, retention, and transfer. This work was fuelled 

by research on the contextual interference effect which postulates that when learning 

multiple skills, massing practice leads to better within-day acquisition, whereas random 

practice leads to better across-day consolidation and transfer (see Brady, 2004; Magill & 

Hall, 1990 for reviews). On day 1, participants were randomly assigned to the massed, 
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alternating, or random condition. The massed condition received blocks of sequence A 

followed by blocks of sequence B; the alternating condition received alternating blocks of 

A and B; and the random condition received blocks in which A and B were quasi-

randomly presented within each block. On day 2, all participants received one block of A 

and one of B (to test for consolidation) as well as one block of a novel sequence C (to test 

for transfer). We hypothesized that if the contextual interference effect is supported, 

participants in the Massed condition would perform better than participants in the two 

other conditions on the first day of learning, whereas participants in the Alternating and 

Random conditions would perform better at consolidation and on transfer to a novel 

motor sequence presented on day 2.  

The second line of research in this thesis focused on investigating how individual 

characteristics, such as musical training and developmental changes across childhood, 

affect motor sequence learning. The primary goal of this axis of research was to explore 

the possibility of a putative sensitive period for motor learning, similar to that observed 

for language acquisition. A sensitive period refers to a window of time in development 

during which “the effects of experience on the brain are unusually strong” (Knudsen, 

2004, p. 1412). For example, it has been shown that learning a second language is easier 

if a child is exposed to it before adolescence (e.g., Weber-Fox and Neville, 2001). 

Despite the widespread belief that early training is a precursor to expert motor 

performance (e.g., Michael Phelps started swimming at age 7 and Yo-Yo Ma started 

playing the cello at age 4), very little is known experimentally about this effect. A 

sensitive period in the motor domain would suggest that during a sensitive period in 

development, neural systems are particularly responsive to motor stimuli and are more 
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susceptible to change when stimulated. For instance, structural and functional 

neuroimaging studies in musicians have  shown that musical training can lead to neural 

changes, and that this neural plasticity is greater for musicians who began their training 

early in life (e.g., Elbert et al., 1995; Gaser and Schlaug, 2003; Schlaug et al., 1995). In a 

preliminary study using the TMST (Watanabe, 2003), we compared early- and late-

trained musicians matched for age, but not years of experience, and found that early-

trained musicians performed better than late-trained musicians on a timed visual-motor 

task. However, we also found a significant correlation between years of experience and 

performance, indicating that those who had played longer performed better. This 

suggested that the most important predictor of performance was not age at the start of 

training, but simple years of experience. Thus, in the second paper included in this thesis, 

the two groups of musicians were matched for years of musical experience, to control for 

differences in the total number of years of musical training. We hypothesized that if there 

was a putative sensitive period for motor learning, musical training early in life would 

lead to improved motor performance later in life.  

Another important factor to consider in the concept of a sensitive period in motor 

learning is the effect of development. Pediatric structural neuroimaging studies have 

found ongoing changes in brain systems important for motor learning (e.g., Paus et al., 

1999; Sowell et al., 1999, 2004; Mackie et al., 2007; Wilke et al., 2007), suggesting that 

maturational changes in the child brain coincide with and likely underlie changes in 

motor abilities across development. Surprisingly, there is a paucity of research on motor 

learning in children. Moreover, most developmental studies in the literature focused on 

the learning of basic motor skills (e.g., Badan et al., 2000), reaching (e.g., Takahashi et 
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al., 2003) and aiming (e.g., Contreras-Vidal et al., 2005), but very few have looked at 

sequence learning across days. Thus, the final paper in this thesis assessed motor 

sequence learning across two days in three samples of school-aged children aged 6, 8, 

and 10 and a control sample of adults. A two-year separation between the child 

participants was used in order to be able to identify any incremental changes that might 

occur. Although the design of this study did not allow us to directly evaluate the presence 

of a sensitive period in motor learning, it allowed us to assess the presence of a possible 

developmental progression in motor learning, which in turn will guide future 

investigations in this area (to be further addressed in the discussion section of this thesis).       

Taken together, the three behavioural experiments presented in this thesis provide 

an important window into the understanding of the behavioural sequels of motor 

sequence learning. Understanding motor learning at the behavioural level offers practical 

applications in various domains including, but not limited to, music and sports training as 

well as rehabilitation training after stroke or injury. Ultimately, understanding motor 

learning at the behavioural level helps to elucidate the bidirectional relationship between 

motor skill learning and brain plasticity, and facilitates the design of neuropsychological 

studies based on behavioural outcomes.   
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Chapter 2 

 

The Effect of Practice Pattern on the Acquisition, Consolidation and Transfer of Visual-

Motor Sequences 
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ABSTRACT 

The effect of practice pattern on the acquisition, consolidation and transfer of 

visual-motor sequences 

The contextual interference hypothesis proposes that when learning multiple skills, 

massing practice leads to better within-day acquisition, whereas random practice leads to 

better retention and transfer. In this experiment, we examined the effect of practice 

pattern on the learning, consolidation, and transfer of visual-motor sequences. On day 1, 

participants were randomly assigned to the massed, alternating, or random condition. On 

day 2, all participants were tested for consolidation and transfer. Learning was assessed 

by measuring changes in accuracy and response synchronization. We found that massed 

practice led to enhanced sensorimotor integration and timing (as measured by response 

synchronization), whereas random practice led to better stimulus-response association (as 

measured by accuracy). On day 2, all groups showed consolidation for both measures, as 

well as transfer for accuracy but not response synchronization. Overall, this pattern of 

results provides limited support for the contextual interference hypothesis. Our findings 

are consistent with differential encoding of specific domains of motor performance. We 

propose that learning of the stimulus-response association is a fast process that benefits 

from random practice because it requires the acquisition of this association in multiple 

contexts. Once the association is learned, it seems resistant to interference and 

transferrable to a novel sequence. In contrast, learning of the sensorimotor integration and 

timing is a slower process that benefits from blocked practice because practice in a single 

context allows fine-tuning of the response. Lastly, we postulate that learning that occurs 

in the context of interference can show consolidation. 
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Introduction 

In everyday life, a vast array of motor skills can be learned simultaneously. A 

central question in the study of motor learning is how to structure practice of multiple 

skills in order to facilitate learning and retention. For instance, when a pianist is faced 

with learning Rachmaninoff‟s four piano concertos, what is the optimal way to organize 

their practice sessions? Should she learn one concerto before proceeding to the next one, 

or alternatively, should she learn all four concertos concurrently? Previous work has 

shown that when more than one motor skill is learned in a single session, massed patterns 

of practice lead to better within-day acquisition, but random patterns of practice lead to 

better retention and transfer. This effect was first termed “contextual interference” by 

Battig in describing the results of verbal memory experiments (1972), and was then 

applied to the domain of motor learning by Shea and Morgan in 1979 (see Brady, 2008 

for reviews; Magill & Hall, 1990; Schmidt & Bjork, 1992). The current study examined 

the effect of three different practice patterns on visual-motor sequence learning over two 

consecutive days. The three practice patterns were tested: Massed, Random, and an 

intermediate Alternating condition in which blocks of the same sequence were alternated 

during practice.   

Many studies of motor sequence learning have looked at how a single novel 

sequence is acquired and retained over several training sessions (Doyon et al., 2002; 

Karni et al., 1998; Nissen & Bullemer, 1987; Savion-Lemieux & Penhune, 2005; Seidler 

et al., 2005; Willingham, 1998). Commonly, learning has been characterized by three 

stages that correspond to specific points in the pattern of incremental changes that occur 

while practicing a new sequence (Doyon, Penhune, & Ungerleider, 2003; Hikosaka et al., 
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1999; Karni, 1996; Korman, Raz, Flash, & Karni, 2003b; Willingham, 1998). Within the 

first training session, fast and significant improvements in performance are observed, 

typically over a relatively small number of practice trials. This stage is followed by 

slower and more gradual gains that take place over a number of days or weeks, leading to 

an eventual plateau in performance (Hikosaka, Nakamura, Sakai, & Nakahara, 2002; 

Karni et al., 1998; Korman et al., 2003b; Savion-Lemieux & Penhune, 2005). A third, 

intermediate stage, referred to as consolidation, has been the focus of much recent 

interest. This stage occurs between the first and second training sessions and is thought to 

be sleep-dependent (Brashers Krug, Shadmehr, & Bizzi, 1996; Criscimangna-Hemminger 

& Shadmehr, 2008; S Fischer, Nitschke, Melchert, Erdmann, & Born, 2005; Walker et 

al., 2003). Consolidation has been measured in a number of different ways (Krakauer & 

Shadmehr, 2006 for review; see Robertson, Pascual-Leone, & Miall, 2004). One is 

improvement in performance after a period of rest or a night of sleep, with no additional 

practice. Another is resistance to interference by learning of a second sequence or task. 

The last is the ability to transfer learning to another sequence or task.  

Support for the presence of separable stages of motor learning comes from 

functional imaging studies showing that different cortical and subcortical regions are 

preferentially activated at different stages of learning (Doyon & Benali, 2005; Floyer-Lea 

& Matthews, 2005; Penhune & Doyon, 2002, 2005). For instance, it has been postulated 

that while the cerebellum, rostral striatum, as well as motor, prefrontal, and parietal 

cortical regions are mainly active during early learning, the caudal striatum, as well as 

motor and parietal cortical areas are involved in consolidation and the later stage of 

learning (Doyon & Benali, 2005). It has been suggested that distribution of practice over 
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time is important for a maximum benefit of practice to be gained, as the time delay 

allows for these neural changes to occur (Criscimangna-Hemminger & Shadmehr, 2008; 

Korman et al., 2003b; Savion-Lemieux & Penhune, 2005). This stage has been argued to 

be sleep-dependent, with a number of studies showing consolidation effects after a night 

of sleep compared with simple passage of time (Fischer, Hallschmid, Elsner, & Born, 

2002; Krakauer & Shadmehr, 2006; Robertson et al., 2004; Walker et al., 2003). 

Another important factor influencing how well a motor sequence is acquired and 

consolidated is the pattern of practice. This factor may be particularly relevant when 

learning more than one sequence, as is commonly the case in real-life situations. Early 

studies of verbal memory in the 1960s revealed that practice in which learning trials were 

presented in a blocked order, where all trials of one task are learned together before those 

of a second one are introduced, resulted in better within-day acquisition but poorer 

retention and transfer to a novel task, compared to practice in which learning trials were 

presented in a random order (Battig, 1966, 1972). This effect has been termed “contextual 

interference,” as it was postulated that high degrees of interference during initial learning 

enhance across-day retention and transfer of learned skills to a novel task (Battig, 1972; 

Magill & Hall, 1990). Potential factors contributing to the contextual interference effect 

include, but are not limited to, the task and the practice schedule (Magill & Hall, 1990; 

Schmidt & Bjork, 1992).  

Two principal theories have been put forward to explain the contextual 

interference effect: the elaboration hypothesis (Shea & Zimny, 1988; Shea & Zimny, 

1983) and the action plan reconstruction hypothesis (Lee & Magill, 1985). The 

elaboration hypothesis suggests that learning skills in a random fashion leads to more 
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elaborative processing and therefore more comprehensive and retrievable memories in 

the long term. The reconstruction hypothesis postulates that learning skills in a random 

manner requires the learner to actively reconstruct many action plans, which in turn leads 

to more effortful processing and a more permanent memory (for a more detailed review 

of the two hypotheses see, Brady, 2008). Support for this latter theory comes from an 

fMRI study of contextual interference on motor sequence learning (Cross, Schmitt, & 

Grafton, 2007). Their results showed that random practice slowed initial performance, but 

improved retention. Consistent with the proposed mechanisms underlying contextual 

interference, they showed that during acquisition, the random-practice group took more 

time to plan their movements, and showed greater activity in motor regions associated 

with movement planning and response selection.  

Since Shea and Morgan‟s original experiment (1979), numerous studies in the 

motor skill domain have investigated the contextual interference effect (see Brady, 2008 

for reviews; Magill & Hall, 1990). However, results have been somewhat inconclusive. 

As Brady (2004) noted in his meta-analytic study “the literature on contextual 

interference contains many studies performed with different groups, different tasks, small 

sample sizes, and low power, thus rendering generalizations based solely on probability 

misleading” (p. 117). In fact, many recent studies conducted in both laboratory (e.g., 

bimanual coordination, sequential aiming, pursuit-tracking) and applied settings (e.g., 

pistol-shooting, endoscopic surgery, volleyball; Keller, Li, Weiss, & Relyea, 2006; 

Kurahashi, Leming, Carnahan, & Dubrowski, 2008; Maslovat, Chua, Lee, & Franks, 

2004; Russell & Newell, 2007; Sekiya, 2006; Zetou, Michalopoulou, Giazitzi, & 

Kioumourtzoglou, 2007) have yielded inconsistent evidence. For example, Maslovat et 
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al. (2004) found that the random group outperformed the blocked group on the learning 

and retention of bimanual coordination patterns, and no group effects were found during 

the transfer test.    

The majority of studies looking at contextual interference have focused on the 

learning of gross motor skills, whereas very few studies have looked at fine motor skill 

learning. Studying contextual interference may be especially relevant in settings in which 

optimal performance of fine motor movement is required, such as playing a musical 

instrument. In addition, studies investigating the influence of contextual interference on 

motor learning have typically used an interference condition involving a high degree of 

contextual interference, in which three or more tasks are presented in an unsystematic or 

random order. However, many day-to-day fine motor tasks are not acquired in an 

unsystematic or random order, but rather are learned in a controlled and predictable 

manner (e.g., practicing the piano, learning to type). Therefore, in the present experiment 

we used the multi-finger sequencing task (MFST), a variant of the classical serial reaction 

time task (SRT; Nissen & Bullemer, 1987), to study the effect of the pattern of practice 

on fine motor sequence learning, across two consecutive days. In the MFST, participants 

had to reproduce sequences of key presses on an electronic keyboard, using four fingers 

of their right hand. The MFST is thought to be more naturalistic and similar to learning a 

tune on the piano. Two sequences were presented in a blocked, alternating, or random 

fashion on the first day of testing. On the second day, participants were either presented 

with the last block they practiced on Day 1 (to test for consolidation) or a novel transfer 

sequence. Given that recent research in both animals and humans has suggested that 

specific aspects of motor skill are learned and retained differently, and that learning of 
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these parameters may be sub-served by different brain networks (Ghilardi, Moisello, 

Silvestri, Ghez, & Krakauer, 2009; Hikosaka et al., 2002; Savion-Lemieux & Penhune, 

2005), we examined the effect of patterns of practice on two different aspects of 

performance. The first aspect is sequence accuracy, a component of the task that requires 

the association of the visual stimulus with the motor response. The second aspect is 

response synchronization, a more procedural component that requires fine-grained 

sensorimotor integration and timing. Overall, we hypothesized that if the contextual 

interference effect was operative, participants in the Massed condition would perform 

better than those in the two other conditions on the first day of learning, whereas 

participants in the Alternating and Random conditions would perform better at 

consolidation and transfer to Day 2.  

Method 

Participants 

The total sample was comprised of 81 healthy undergraduates (27 males and 54 

females). All participants were between the ages of 18 and 35 years. All participants were 

neurologically healthy and right-handed, as assessed using an adapted version of Crovitz 

and Zener‟s (1962) handedness questionnaire. Given that a previous study in our 

laboratory found behavioural differences in motor skill performance between adult 

musicians and non-musicians, participants in the present study were selected to have less 

than 3 years of musical training and experience, as measured using a modified version of 

the Global Index of Musical Training and Experience questionnaire (Watanabe, Savion-

Lemieux, & Penhune, 2007). Participants were requested to refrain from drinking alcohol 

prior to each testing session. Three additional participants were tested, but were excluded 
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from the final sample due to experimental error. The experimental protocol was approved 

by the Concordia University Human Research Ethics Committee, Montreal, Quebec. 

Participants provided written informed consent and were compensated for their time. 

Multi-finger sequence task and stimuli 

 The Multi-finger sequence task (MFST) is a variant of the classical Serial 

Reaction Time (SRT) task originally designed by Nissen and Bullemer (1987). In the 

MFST, participants reproduced 13-element sequences of key presses on a MIDI-

compatible electronic keyboard (Yamaha P-90), using four fingers of their right hand 

(i.e., index, middle, ring, and pinkie). Participants were cued to press one of the four 

marked keys by visual stimuli presented on the computer monitor (21-inch Sony 

Trinitron Multiscan G520 computer monitor, running at 100 Hz). The visual display 

consisted of four rectangular gray bars (11.5 cm X 3 cm) which remained on the screen 

for the entire duration of each trial. During a trial, the gray bars each turned red in a given 

order. The red illumination of a gray bar indicated that the corresponding key was to be 

pressed. The total inter-tap interval was 750 ms, during which the red bar was lit for 500 

ms and the interval between the end of one stimulus and the beginning of the next was 

250 ms. Additionally there was a 2000 ms delay between trials. 

 Each trial of the MFST consisted of a 13-element sequence and each block of 

practice included 12 trials. Three sequences were employed which were all designed to 

be of equal difficulty (sequence A: 1, 2, 4, 3, 1, 4, 2, 3, 2, 1, 3, 4, 1; sequence B: 2, 4, 1, 

3, 2, 1, 4, 3, 1, 2, 3, 4, 2; and sequence C; 3, 1, 4, 2, 1, 3, 4, 1, 2, 4, 3, 2, 3). In addition, 

the same key was never pressed twice in succession and the same transition between two 
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fingers never occurred twice consecutively. Breaks were provided between blocks to 

prevent fatigue and optimize performance.  

 A computer (Windows 2000) recorded all generated responses from the midi-

compatible electronic keyboard. In-house custom software written in C++ was used to 

create and control the presentation of the visual stimuli and automatically recorded the 

onset and offset of participants‟ key presses, which were subsequently used to calculate 

the indices of learning.      

Procedure 

 Testing included two learning sessions on two consecutive days, approximately 

24 hours apart. On Day 1, participants were randomly assigned to one of three conditions 

(Fig. 1): a massed condition (n = 23), an alternating condition (n = 24), or a random 

condition (n = 23). In the massed condition, participants received four blocks of sequence 

A followed by four blocks of sequence B. In the alternating condition, participants 

received eight alternating blocks of sequences A and B. In the random condition, 

participants received eight blocks in which both sequences A and B were quasi-randomly 

presented within each block. On Day 2, within each condition, participants were divided 

into two groups (with 11 to 12 participants per group). The groups received either: one 

block of sequence B followed by one block of sequence A (i.e. consolidation group); or 

one block of a novel sequence C (i.e., transfer group; Fig. 1). Of note, participants in the 

random condition received two blocks in which both sequences A and B were quasi-

randomly presented within each block. An additional control group was tested, in which 

11 participants received four blocks of only one sequence on Day 1, followed by one 

block of that same sequence on Day 2. This additional group was included to test for  
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Day 1   Day 2 
 
 

Massed condition   A A A A B B B B B A            (consolidation group; n = 12)  

    A A A A B B B B C            (transfer group; n = 11)  
 

      
 

Alternating condition  A B A B A B A B B A            (consolidation group; n = 12)  

         A B A B A B A B C            (transfer group; n = 12) 
     

 
 

Random condition             AB x 8 blocks  AB AB           (consolidation group; n = 12)  

    AB x 8 blocks  C             (transfer group; n = 11) 
 

 
 

Control group          A (or B) x 4  A (or B) (n = 11)  

 

Figure 1. Experimental design: A, B, and C represent three different thirteen key-press 

sequences. A and B were used during training and C only at transfer. A represents the 

first sequence learned and B the second sequence learned; the actual sequences were 

counter-balanced across participants.
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consolidation of one sequence without any interference. The order of sequence 

presentation was counterbalanced and on each testing day, participants were first 

familiarized with the electronic keyboard and the computer-generated stimuli.  

Participants were told that they would be learning different motor sequences, but 

they were not explicitly taught the sequences. They were asked to follow along with the 

stimuli as accurately as possible, by pressing the key that corresponded to the location of 

the red illuminated rectangular bar. In order to minimize anticipatory responses and 

maximize response synchronization, participants were also instructed to synchronize their 

response with the visual stimulus by waiting until the red bar illuminated. As such, 

participants were not instructed to respond “as fast as possible” as is typically the case in 

classical SRT studies (Nissen & Bullemer, 1987).  

Behavioural Measures 

 Learning was assessed by measuring changes in accuracy and response 

synchronization. Accuracy was scored individually, by calculating the percentage of 

correct key presses made for each sequence type (i.e., A, B, or C) within each trial and 

block. Response synchronization was calculated for correct key presses only; it 

characterized each participant‟s response time (ms) relative to the stimulus onset, 

averaged across trials and blocks of practice, for each sequence type. Anticipatory 

responses were included in the measure because previous studies have shown that 

anticipation increases with learning (Penhune & Doyon, 2002; Savion-Lemieux & 

Penhune, 2005). If response synchronization was a classic reaction time (RT) measure, 

anticipatory responses would be excluded as RT measures the time it takes the participant 

to make a response after the onset of the stimulus.  
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 As in previous experiments in our laboratory, accuracy represented a component 

of the task which requires the association of the visual stimulus with the motor response; 

whereas, response synchronization represented a more procedural component that 

requires fine-grained sensorimotor integration and timing. Dependent measures were 

individually averaged across trials for each sequence type within each block of practice 

on the MFST.  

Of note, participants in the random condition completed 6 trials of A and 6 trials 

of B within each block of practice. In order to analyze an equivalent number of A and B 

trials within each block (i.e. 12 trials) across all groups, the 6 trials of one sequence from 

one block were averaged with the 6 trials of the same sequence from the following block 

(e.g., 6 trials of A, Block 1 + 6 trials of A, block 2/12).  

Results 

Independent samples t-tests indicated no significant differences for average 

performance for sequences A and B collapsed across blocks on Day 1 (p > .211) for 

either behavioural measure, indicating that the sequences were of equal difficulty. 

Moreover, there were no significant differences between the sexes  for average 

performance for sequences A and B on Day 1, for either behavioural measure (p > .113), 

when randomly selecting an equal number of males and females; therefore, behavioural 

data were collapsed across this dimension.   

Analyses were conducted by day. For Day 1, the data were analyzed with 

repeated measures analyses of variance (ANOVAs; Greenhouse-Geiser correction), with 

Group as the between-subject factor and Block as the within-subject factor. Differences 

across the four blocks of A and across the four blocks of B were evaluated separately. 
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Using repeated measures ANOVAs (Greenhouse-Geiser correction), with Group as the 

between-subject factor and Block as the within-subject factor, we also assessed for 

consolidation of sequences B and A. For sequence B, we compared performance on the 

last block of B on Day 1 to the first block of B on Day 2 (free of across-day interference). 

For sequence A, we compared performance on the last block of A on Day 1 to the first 

block of A on Day 2 (in the context of within- and across-day interference). Using the 

same type of analyses for transfer, we compared performance on the last block of B on 

Day 1 to the first block of C on Day 2, when the sequence was novel and free of across-

day interference. Additionally, a one-way ANOVA was used to compare the percent 

change for each measure for both consolidation and transfer. This score was calculated by 

subtracting performance on Day 1 from performance on Day 2, and dividing the total by 

performance on Day 1 (i.e., for consolidation of B: first block of B on Day 2 – last block 

of B on Day 1/last block of B on Day 1; for consolidation of A: first block of A on Day 2 

– last block of A on Day 1/last block of A on Day 1; for transfer: first block of C on Day 

2 – last block of B on Day 1/last block of B on Day 1). Significant main effects and 

interactions were analyzed using pairwise comparisons, with Bonferroni adjustment for 

multiple comparisons. The α level was set at 0.05 for all statistical tests. Effect sizes were 

reported for all significant main effects and interactions, using partial eta square (η
2
). 

Day 1 

When comparing sequence A between the Massed, Alternating, and Random 

groups across the four blocks of practice on Day 1, for percent correct (Fig. 2), there was 

a significant main effect of Block F(2, 4) = 5.03, p = .008 (η
2 

= .070), such that block 1 

was significantly less accurate than block 2, p =.006. There was also a significant main 
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Figure 2. Acquisition of sequence A: Average accuracy data for the Massed, Alternating, 

and Random conditions across four blocks of acquisition on Day 1. 
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 effect of Group F(2, 67) = 3.78, p = .028 (η
2 

= .101), such that the Random group was 

significantly more accurate than the Alternating group  p = .034; the Alternating and 

Massed groups did not differ. There was no significant Block X Group interaction p = 

.471. For response synchronization (Fig. 3), there was a significant Block X Group 

interaction F(3.8, 126.99) = 4.34, p = .003 (η
2 

= .116). In line with our hypothesis, the 

Massed group showed significant improvements across all blocks of practice (p < .005), 

the Alternating group showed some significant improvements (specifically when 

comparing block 1 to blocks 2, 3, and 4; p < .058), but the Random group showed no 

significant improvements.  

When comparing sequence B between the Massed, Alternating, and Random 

groups across the four blocks of practice on Day 1, a similar pattern of results emerged. 

For percent correct (Fig. 4), there was a significant main effect of Group F(2, 67) = 4.52, 

p = .014 (η
2 

= .018), such that the Random group was significantly more accurate than the 

Alternating group p = .013, and the Alternating group and the Massed group did not 

differ. No significant main effect of Block or Block X Group interaction was found (p > 

.137). For response synchronization (Fig. 5), there was a significant Block X Group 

interaction F(4.89, 163.67) = 3.06, p = .012 (η
2 

= .084). Post hoc analyses revealed that 

the Massed and Alternating groups showed significant improvements when comparing 

block 1 to all other blocks (p < .031) and when comparing block 2 to block 4 (p = .001); 

whereas the Random group showed no significant improvements across blocks on this 

measure.  

Rate of change (Day 1) 
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Figure 3. Acquisition of sequence A: Average response synchronization data for the 

Massed, Alternating, and Random conditions across four blocks of acquisition on Day 1. 
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Figure 4. Acquisition of sequence B: Average accuracy data for the Massed, Alternating, 

and Random conditions across four blocks of acquisition on Day 1. 
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Figure 5. Acquisition of sequence B: Average response synchronization data for the 

Massed, Alternating, and Random conditions across four blocks of acquisition on Day 1.
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 An additional set of analyses was performed to quantify and compare the absolute 

rate of change between the first and last blocks of practice on Day 1, relative to the first 

block of practice on Day 1, for each sequence type and for each behavioural measure. To 

do this, the slope for each measure and sequence type was calculated and normalized to 

the first block of practice of the same sequence type. We used a one-way ANOVA, with 

Group (Massed, alternating, Random) as the between-subject factor and Bonferroni 

adjustment for multiple comparisons.  

When comparing rate of change for sequence A, for percent correct, there was no 

significant difference in rate of change between the Massed, Alternating, and Random 

groups p = .781. For response synchronization, there was a significant main effect of 

Group F(2, 69) = 5.318, p = .007, such that the Massed group showed the greatest rate of 

change compared to the other two groups (p < .078); the Alternating and Random groups 

did not differ from each other in their rate of change.    

When comparing rate of change for sequence B, for percent correct, there was no 

significant difference in rate of change between the Massed, Alternating, and Random 

groups p = .672. For response synchronization, there was a significant main effect of 

Group F(2, 69) = 5.231, p = .008, such that the Massed group showed a greater rate of 

change compared to the Random group p = .006; the other groups did not significantly 

differ from each other.    

We also compared the rate of change between sequences A and B, for each 

behavioural measure, using a 3 (Group) x 2 (Sequence Type) repeated measures 

ANOVA. Results indicated that for percent correct, there was a marginally significant 

main effect of Sequence Type F (1, 67) = 2.885, p = .094 (η
2 

= .041), such that there was 
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a greater rate of change for sequence A compared to sequence B. No other significant 

results were noted. For response synchronization, there were no significant main effects 

and no interaction.  

Finally, given the differential pattern of results found for accuracy and response 

synchronization on Day 1, we also compared the two measures to each other using a 3 

(Group) x 2 (Measure) repeated measures ANOVA (Greenhouse-Geiser correction) for 

each sequence type. Findings showed that for sequence A, there was a significant Group 

X Measure interaction F (2, 67) = 5.091, p = .009 (η
2 

= .132). Post hoc comparisons 

showed that all groups demonstrated significant differences in the rate of change between 

the two behavioural measures p < .001 (with greater changes on the response 

synchronization measure). For sequence B, the same pattern of results emerged such that 

there was a significant Group X Measure interaction F (2, 67) = 5.144, p = .008 (η
2 

= 

.133), with all groups showing significant differences in the rate of change between the 

two behavioural measures p < .02 (with greater changes on the response synchronization 

measure).    

Consolidation 

 When comparing performance on the last block of B on Day 1 to performance on 

the first block of B on Day 2, between the Massed, Alternating, Random, and Control 

groups, we found a similar pattern of results for both measures. For percent correct (Fig. 

6), there was a significant main effect of Block F(1, 43) = 15.9, p < .001 (η
2 

= .270), 

indicating overall significant improvements across days regardless of group. A significant 

main effect of Block F(1, 43) = 7.66, p = .008 (η
2 

= .151) was also found for response 

synchronization (Fig. 7), with overall significant improvements across days. No other  
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Figure 6. Consolidation without Day 2 interference: Average accuracy data for the 

Massed, Alternating, Random, and Control conditions across the last block of B on Day 1 

and the first of B on Day 2.  
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Figure 7. Consolidation without Day 2 interference: Average response synchronization 

data for the Massed, Alternating, Random, and Control conditions across the last block of 

B on Day 1 and the first of B on Day 2. 



 

34 

significant main effect of Group or interactions were found for either measure (p > .175), 

suggesting overall consolidation of sequence B, free of between-day interference, 

regardless of practice pattern.  

 We also contrasted performance on sequence A on Day 2 to performance on the 

last block of practice on sequence A on Day 1, in order to look at consolidation of A in 

the context of interference from practice on sequence B, both within and across days. 

Overall, there was a significant main effect of Block for both percent correct (Fig. 8) F(1, 

43) = 8.24, p = .006 (η
2 

= .161) and response synchronization (Fig. 9) F(1, 43) = 10.56, p 

= .002 (η
2 

= .197), with post hoc analyses indicating general improvements on Day 2. No 

other significant main effects or interactions were found for both measures (p > .29), 

suggesting overall consolidation of sequence A, in the context of within- and between-

day interference, regardless of practice pattern.   

An additional set of analyses was performed to evaluate the percent change for 

each measure on consolidation of sequences B and A on Day 2. No significant results 

were found between sequence types for either behavioural measure.  

Transfer 

 We compared performance on the last block of B on Day 1 to the first block of C 

on Day 2, free of across-day interference, for the Massed, Alternating, and Random 

groups. For percent correct (Fig. 10), there was a marginally significant main effect of 

Block F(1, 31) = 3.12, p = .087 (η
2 

= .091), such that C was more accurate than B, 

indicating a certain degree of transfer. For response synchronization (Fig. 11), there was a 

significant main effect of Block F(1, 31) = 8.13, p = .008 (η
2 

= .208), this time showing 

better performance for B compared to C indicating a loss in performance and/or  
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Figure 8. Consolidation with interference: Average accuracy data for the Massed, 

Alternating, Random, and Control conditions across the last block of A on Day 1 and the 

first of A on Day 2. 
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Figure 9. Consolidation with interference: Average response synchronization data for the 

Massed, Alternating, Random, and Control conditions across the last block of A on Day 1 

and the first of A on Day 2. 
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Figure 10. Transfer: Average accuracy data for the Massed, Alternating, and Random 

conditions between the last block of B on Day 1 to the first block of C on Day 2. 
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Figure 11. Transfer: Average response synchronization data for the Massed, Alternating, 

and Random conditions between the last block of B on Day 1 to the first block of C on 

Day 2. 
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interference likely leading to negative transfer. No other significant main effects or 

interactions were found (p > .084; Fig. 11).  

An additional set of analyses was performed to evaluate the percent change of 

transfer from sequence B to sequence C for each measure. No significant differences 

were found between groups for either behavioural measure (p > .297).  

Discussion 

 

The current study was motivated by early research findings from the contextual 

interference literature, which demonstrated that high levels of contextual interference 

typically lead to poor within-day learning, but better across-day retention and transfer. 

Thus, in this experiment we looked at the effect of three practice patterns (Massed, 

Alternating, and Random) on the learning (within day), consolidation (across days), and 

transfer of visual-motor sequences. Overall, we found that on Day 1, for response 

synchronization, the Massed group showed the greatest improvements in performance 

across the blocks of practice whereas the Random group showed the least improvements. 

For response accuracy, surprisingly, the Random group performed better than the Massed 

and Alternating groups. In other words, massed practice led to enhanced sensorimotor 

integration and timing (as measured by response synchronization), whereas random 

practice led to better stimulus-response association (as measured by response accuracy). 

On Day 2, all groups showed consolidation of the sequences as evidenced by significant 

improvements in both accuracy and response synchronization between the last block of 

practice on Day 1 and the first block of practice on Day 2. Further, all groups showed 

transfer of learning to a novel sequence for response accuracy, but not response 

synchronization. Taken together, the overall pattern of results provides only partial 
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support for the contextual interference hypothesis, with enhanced performance for the 

Massed group on Day 1 for response synchronization, but not accuracy. Further, the 

Random group did not show better performance at consolidation or transfer. Our findings 

are consistent with differential encoding of specific domains of motor performance and 

we therefore suggest rethinking the contextual interference hypothesis to take into 

account different measures of learning. Moreover, given that all groups showed 

consolidation, we postulate that the learning that occurs in the context of interference can 

show consolidation, which is not entirely consistent with previous studies showing 

interference when a second sequence is learned immediately following the first (Brashers 

Krug et al., 1996; Walker et al., 2003). 

An interesting and novel finding that has not been previously reported in the 

contextual interference literature is the dissociation we found between the behavioural 

measures used to assess learning and transfer. In many laboratory studies looking at 

contextual interference from a motor skill perspective, participants are required to 

move/respond as rapidly as possible (e.g. Garcia, Moreno, Reina, Menayo, & Fuentes, 

2008; Seidler, 2004; Shea & Morgan, 1979). Thus, the dependent measure is often 

“response time”. In the present study, we broke down fine motor learning into two 

different components: accuracy, a component of the task that requires the association of 

the visual stimulus with the motor response, and response synchronization, a component 

that requires fine-grained sensorimotor integration and timing. Interestingly, we showed 

that practice pattern had a differential effect on the learning of these two measures, as we 

found that massed practice led to enhanced sensorimotor integration and timing, whereas 

random practice led to better stimulus-response association. We also showed transfer of 
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learning to a novel sequence for response accuracy but not response synchronization, 

regardless of practice pattern. Taken together, these results support the idea that different 

components of a motor skill are learned and transferred in different ways (Ghilardi et al., 

2009; Hikosaka et al., 1999; Savion-Lemieux & Penhune, 2005).  

Based on our findings, we propose that learning the stimulus-response 

association, or explicit ordering of the task, is a fast process that benefits from structuring 

initial practice in a random fashion, because it requires the participant to acquire the 

stimulus-response association in multiple contexts by flexibly switching between the two 

sequences. This process likely requires greater generalization of the stimulus-response 

association, as well as more effortful processing and attention. Moreover, once the 

association has been learned, it seems to be resistant to interference and transferrable to a 

novel sequence. This is consistent with the elaboration or reconstruction hypotheses of 

contextual interference, but also applies to acquisition. On the other hand, learning of the 

sensorimotor integration and timing, or dynamic elements of the task, is a slower process 

that benefits from structuring initial practice in a blocked fashion, possibly because 

practice in a single context allows for error-correction and fine-tuning of the response. 

Interestingly, this component of the task seems to be more resistant to transfer, because 

without a constant context, the fine timing of the response is difficult to acquire. One 

model that provides support for this dissociation is that of Hikosaka (1999, 2002). The 

authors propose that motor sequence skills are handled as two types of sequences when 

represented within the brain: one spatial and one motor. The spatial sequence, or explicit 

ordering of the task, requires a high level of attention, is learned quickly, can be 

identified by rapid improvements in accuracy, and is encoded in the loops between the 
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rostral basal ganglia (BG), prefrontal and parietal cortices, and the lateral cerebellum 

(CB). The motor sequence, or dynamic elements of the task, requires little attention, is 

learned more slowly, can be identified through improvements in synchronization, and is 

encoded between the loops in the caudal BG, motor cortex, and medial CB. Hikosaka‟s 

model can further be interpreted in light of the “elaboration” and “action plan 

reconstruction” hypotheses (Lee & Magill, 1985, respectively; Shea & Zimny, 1983), 

from the contextual interference literature. As Brady (2008) writes in his review, both 

hypotheses share a common characteristic, as they suggest that scheduling practice in a 

random fashion fosters cognitive processing that enhances encoding and thus transfer of 

the effects. Combining these views with Hikosaka et al.‟s model (1999, 2002), we would 

predict that a random practice pattern is advantageous when initially learning the 

stimulus-response component of the MFST because it is the one that requires greater 

cognitive control and attention. Moreover, when this component is learned in the context 

of multiple sequences, it is more readily transferrable to a novel sequence. In contrast, 

massed practice benefits learning of the sensorimotor integration and timing components 

of the MFST because these are the aspects that are under less cognitive control. These 

components appear to be slower to learn, and more difficult to maintain and transfer, 

requiring ongoing practice and limited interference. For example, both a novice and 

skilled pianist may be able to play the correct notes of one of Bach‟s preludes, but in 

order to be synchronous and in time requires ongoing practice.  

The classic design for testing the contextual interference effect focuses on the 

effects of practice pattern on tests of retention and transfer on the second day, as these 

phases best reflect the “permanence and adaptability” of sequence learning (Ste-Marie, 
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Clark, Findlay, & Latimer, 2004). Because of this, many experiments only compare 

retention and transfer across training condition, but do not compare them to final 

performance at acquisition. Thus, while studies often claim that random practice results 

in better Day 2 performance, this performance is not usually compared to performance at 

the end of acquisition. Therefore, in the present experiment, we were interested in 

comparing retention and transfer to the acquisition phase. This is also advantageous, 

because we can compare and discuss our retention results in the context of the motor 

consolidation literature. Consolidation has been defined and measured in several ways 

(Krakauer & Shadmehr, 2006; Robertson et al., 2004): improvements in performance 

after a period of rest or a night of sleep, with no additional practice; resistance from 

interference by learning of a second sequence or task; the ability to transfer learning to 

another sequence or task. Interestingly, we found no group differences for consolidation 

of either sequence B (free of across-day interference from practice on any sequence) or 

sequence A (in the context of within- and across-day interference from practice on 

sequence B). Thus, practice pattern did not have any effect on consolidation. This 

demonstrates that learning that occurs in the context of interference can show 

consolidation, which is not entirely consistent with previous studies showing a graded 

interference effect for consolidation (Brashers Krug et al., 1996; Walker et al., 2003). 

Similar findings have been reported by Criscimagna-Hemminger and Shadmehr (2008), 

who proposed that with either enough practice, or passage of time, motor memory 

becomes stable and less resistant to interference. Similarly, it has been shown that even in 

the early learning phase, if practice is adequate, long-lasting functional and neural 

changes occur that result in a stable, long-term memory of the motor skill (Baddeley & 
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Longman, 1978; Hauptmann & Karni, 2002; Ofen-Noy, Dudai, & Karni, 2003; Savion-

Lemieux & Penhune, 2005; C. Shea, Lai, Black, & Park, 2000). Thus it appears that in 

the present experiment the amount (48 trials of each sequence) and the distribution of 

practice over two days, regardless of the practice pattern, was sufficient to lead to general 

within-day and across-day improvements.  

In summary, the results of the present experiment present a new way of 

understanding the effect of practice pattern on the acquisition, consolidation, and transfer 

of visual-motor sequences. Overall, our results challenge the contextual interference 

hypothesis. We therefore suggest that the contextual interference effect be reconsidered at 

the behavioural measures level, such that each measure represents a component of 

sequence learning that can be differentially influenced by practice pattern. Based on the 

dissociation of our results for accuracy and response synchronization, we postulate that 

learning the stimulus-response association is a fast and transferrable process that benefits 

from learning in multiple contexts. On the other hand, learning of the sensorimotor 

integration and timing aspects of the task is a slow process that is more resistant to 

transfer and that is promoted by learning in a single context that allows fine-tuning of the 

response. Thus, when a pianist is faced with learning Rachmaninoff‟s four piano 

concertos, learning the association between the musical notes and which keys to hit could 

be accomplished while learning all four concertos simultaneously (given that the 

stimulus-response association is a fast and transferrable process); however, learning the 

sensorimotor integration and timing aspects of the concertos may require practicing one 

concerto at a time to allow fine-tuning of each piece. Finally, given that all groups 
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showed consolidation, we postulate that learning that occurs in the context of interference 

can show consolidation. 
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Chapter 3 

 

The effect of early musical training on adult performance: evidence for a sensitive period 

in motor learning 
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ABSTRACT 

The effect of early musical training on adult performance: evidence for a sensitive 

period in motor learning 

Developmental changes in the human brain coincide with and underlie changes in a wide 

range of motor and cognitive abilities. Neuroimaging studies have shown that musical 

training can result in structural and functional plasticity in the brains of musicians, and 

that this plasticity is greater for those who begin training early in life. However, previous 

studies have not controlled for differences between early- and late-trained musicians in 

the total number of years of musical training and experience. In the present experiment, 

we tested musicians who began training before and after the age of seven on learning of a 

timed motor sequence task. The groups were matched for years of musical experience, 

years of formal training and hours of current practice. Results showed that early-trained 

musicians performed better than late-trained musicians, and that this performance 

advantage persisted after five days of practice. Performance differences were greatest for 

a measure of response synchronization, suggesting that early training has its greatest 

effect on neural systems involved in sensorimotor integration and timing. These findings 

support the idea that there may be a sensitive period in childhood where enriched motor 

training through musical practice results in long-lasting benefits for performance later in 

life. These results are also consistent with the results of studies showing structural 

changes in motor-related regions of the brain in trained musicians that are specifically 

related to training early in life.  
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Introduction 

 

 Mozart began piano training at the age of three, Beethoven before the age of 

eight. Many music programs for children emphasize beginning training as early as 

possible in order to develop musical skill. However, very little is known about the real 

effects of early musical training on adult performance. Behavioural studies comparing 

early-trained (ET) and late-trained (LT) musicians have shown that early training is 

essential for the development of absolute or “perfect” pitch (Baharloo, Johnston, Service, 

Gitschier, & Freimer, 1998; Costa-Giomi, Gilmour, Siddell, & Lefebvre, 2001; Miyazaki 

& Rakowski, 2002). More recently, brain-imaging studies have shown structural and 

functional changes in the brain associated with musical training that are greater for those 

who began training early in life (Elbert, Pantev, Wienbruch, Rockstroh, & Taub, 1995; 

Gaser & Schlaug, 2003; Koeneke, Lutz, Wustenberg, & Jancke, 2004; Schlaug, Jancke, 

Huang, Staiger, & Steinmetz, 1995; Schneider et al., 2002). These findings suggest that 

there may be a critical or sensitive period for musical training, similar to that observed for 

language acquisition. However, previous studies have not controlled for differences 

between ET and LT musicians in the total number of years of musical training and 

experience. By definition, a musician who begins training early has more years of 

experience that one who begins later when both are the same age. Therefore, it is possible 

that the previously observed differences in performance and brain structure can be 

accounted for simply by the duration of musical training. Therefore, the present 

experiment examined the effect of musical training on performance of a rhythmic tapping 

task in ET and LT musicians who were matched for years of musical experience.  
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 Evidence for the effect of musical training on later perceptual skill comes from 

studies of musicians with absolute or perfect pitch. Baharloo et al. (1998) tested a large 

sample of 691 musicians. They found that of the 92 musicians in this sample who 

exhibited perfect pitch, 78% began training before the age of six. Similar results have 

been obtained by other groups (Costa-Giomi et al., 2001; Miyazaki & Rakowski, 2002) 

and it has been suggested that there may be a genetic component to the development of 

this skill (Baharloo et al., 1998).  

 Maturational changes in the human brain coincide with and underlie changes in a 

wide range of cognitive and motor abilities (Giedd et al., 1999; Paus, Zijdenbos, Worsley, 

& Collins, 1999). Recent studies have shown that early musical training can result in both 

structural and functional plasticity in auditory and motor regions of the brain (Elbert et 

al., 1995; Gaser & Schlaug, 2003; Koeneke et al., 2004). Elbert (1995) found that expert 

string players showed a larger cortical representation of the digits of the left hand. 

Further, he showed a strong correlation between the size of the digit representation and 

the age of start of musical training; with those who began earlier showing larger 

representations. Schlaug et al. (1995) reported a larger anterior corpus callosum in 

musicians compared with non-musicians, with musicians who began training before the 

age of seven showing a greater difference than those who began after the age of seven. In 

a recent study (Bengtsson et al., 2005) showed evidence for greater myelination in the 

right cortico-spinal tract of professionals, and that this difference was specifically related 

to the number of hours practiced in childhood (< 11 years). Taken together, these findings 

suggest that there may be a critical or sensitive period in development for the motor 

component of musical training.  
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 The concept of “critical” and “sensitive” periods in development is drawn from 

work showing that certain behaviours and their neural substrates do not develop normally 

if appropriate stimulation is not received during a restricted time period in development 

(Knudsen, 2004). During a sensitive period, neural systems are particularly responsive to 

relevant stimuli, and are more susceptible to change when stimulated. Critical periods are 

sensitive periods that have relatively abrupt onsets and offsets. The classic example of a 

critical period comes from the work of Hubel and Weisel who showed that if cats are 

deprived of vision to one eye during the first months after birth, they do not develop 

normal binocular vision, even when vision is restored to the deprived eye (Hubel & 

Wiesel, 1965). At the neural level, the pattern of cellular connectivity is altered and 

cannot be changed after the critical period has elapsed (Wiesel & Hubel, 1965). In 

contrast to a critical period, where a function cannot be acquired outside the specific 

developmental window, a sensitive period denotes a period of development where the 

ability to acquire a specific skill is enhanced compared to other developmental periods. 

An example of a sensitive period comes from experiments in owls, where spatial 

representation can be changed by altered sensory input early in life, but normal 

representation can be relearned later in life (Brainard & Knudsen, 1998).  

 Evidence for critical or sensitive periods in humans is drawn largely from the 

domain of language acquisition.  Single case studies of individuals chronically deprived 

of linguistic stimulation in early childhood have shown that these individuals fail to 

develop normal language even after intensive exposure (Curtiss, 1977). Further, studies 

of children with complete removal of the language-dominant left hemisphere revealed 

that as long as the removal occurred early, language could develop relatively normally. 
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These findings led Lenneberg (1967) to propose that there is a critical period for neural 

plasticity underlying language functions that extends from early infancy to puberty. This 

hypothesis has been adapted to the study of second-language acquisition to suggest that 

exposure to the second language during the sensitive period results in greater fluency 

than exposure after that time. This hypothesis has been supported by the results of a 

number of studies showing that second-language proficiency is greater in individuals who 

were exposed to the second language before age 11-13 (Johnson & Newport, 1989; 

Weber-Fox & Neville, 2001).  

 Surprisingly, there are no experimental studies looking at the effect of early motor 

training on adult performance, despite conventional wisdom and anecdotal evidence 

suggesting that early training is a prerequisite for excellence in many domains of skilled 

motor performance. Some suggestive evidence for the importance of motor experience 

early in life comes from recent studies of children confined to orphanages and later 

adopted into families in the UK and US. During their time in the orphanages, these 

children were highly restricted in terms of motor experience. Investigations of these 

children‟s motor abilities following adoption have shown subtle deficits in motor skills 

such as standing balance and fine motor coordination (Tober & Pollak, 2005). These 

results indicate that motor deprivation during a putative sensitive period for motor 

learning can result in long-lasting impairments. Based on this, we can hypothesize that 

enriched motor experience, such as musical training, during this sensitive period could 

result in lasting neural changes and improved motor performance later in life.  

 In the present experiment, we tested musicians who began training before and 

after the age of seven on a timed motor sequence task (TMST), which has been used in 
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several previous behavioural and neuroimaging studies (Penhune & Doyon, 2002, 2005; 

Savion-Lemieux & Penhune, 2005). This task requires participants to reproduce a 

temporally complex rhythmic motor sequence by tapping in synchrony with a series of 

visual stimuli (Figure 1). The use of this task is advantageous for two reasons. First, the 

tapped sequences are non-metrical, making them relatively difficult even for musicians, 

and requiring them to generalize from the more common metrical rhythms encountered in 

musical training. Second, the task requires synchronization of the motor response with a 

visual stimulus, again requiring generalization from the usual auditory-motor 

synchronization required in musical training.  

 As described above, none of the previous studies examining behavioral and neural 

differences between ET and LT musicians have controlled for differences between the 

groups in the total number of years of musical training and experience (Elbert et al., 

1995; Gaser & Schlaug, 2003; Koeneke et al., 2004; Schlaug et al., 1995; Schneider et 

al., 2002). In a preliminary study using the same task (Watanabe et al., 2007) we 

compared ET and LT musicians matched for age, but not years of experience, and found 

the predicted enhanced performance for ET musicians. However, we also found a 

significant correlation between years of experience and performance; indicating that 

those who had played longer performed better. This suggested that the most important 

predictor of performance was not age at the start of training, but simple years of 

experience. Therefore, for the present experiment we moved to a matched sample where 

subjects in the two groups were matched for years of musical experience, such that later 

starters had the same number of years of musical experience as those who started earlier. 

We also controlled years of formal musical training and hours of current practice.  
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PRACTICE SEQUENCES:

LEARNING SEQUENCES:

OR
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Figure 1. (A) Experimental setup. Stimulus sequences were made up of ten white 

squares, which appeared at the center of the computer screen. Participants responded by 

tapping on a single key of the computer mouse. (B) Stimulus sequences in the practice 

and learning conditions. Each square in the sequences appeared for either a short (250 

ms) or long duration (750 ms), represented by the short or long line lengths. The ISI was 

constant (500 ms). Practice sequences consisted of four trials of three sequences: all 

short, all long, and a simple mixture. For the learning condition, sequences were made up 

of five long and five short elements. Participants were tested on only one of the two 

possible learning sequences.   
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Methods 

Participants 

Participants were thirty young, healthy, right-handed practicing musicians 

between 17.8 and 36.8 years of age (17 women and 13 men, M = 24.9 years, SD = 5.3) 

and ten non-musicians between 19.3 and 33.4 years of age (5 men and 5 women, M = 

26.2 years, SD = 5.1) tested for a previous study using the same protocol (Savion-

Lemieux and Penhune, 2005). All participants were recruited from the undergraduate 

student population of Concordia University. Musicians were recruited from the 

Department of Music and from the Montreal-area population. All participants were right-

handed as assessed by a handedness questionnaire adapted from Crovitz and Zener 

(1962). None of the participants had a history of neurological disorders.  

For the purposes of this study, a practicing musician was operationally defined as 

an individual who was currently practicing music and had at least four years of musical 

experience (range: 7.5-26.0 years). Musical experience was defined as the ability to play 

a musical instrument or sing, acquired through formal and practical training. The 

participants were predominantly piano and string players. Two of the musicians identified 

voice as their current primary musical focus, but both had extensive instrumental training 

and experience (15 years of guitar; 12 years of piano) and both currently practiced these 

instruments, although not to the same degree as voice. Similarly, a number of other 

musicians in the sample had played several instruments over their careers and some 

continued to play a secondary instrument throughout their careers.  

Musicians were divided into two groups: early trained musicians (ET; n=15, 9 

women and 6 men) who began training before the age of seven and late-trained musicians 
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(LT; n=14, 8 women and 6 men) who began training after the age of seven. The age at 

which musicians began training, the number of years of experience, the amount of formal 

training and the number of hours per week currently practiced were assessed using a 

modified version of the Global Index of Musical Training and Experience (Penhune et 

al., 1999; see supplementary material). Musicians in the two groups were individually 

matched for years of musical experience and formal training. Years of experience were 

defined as the total number of years of musical training. Years of formal training were 

defined as the total number of years spent in formal training (e.g., lessons). Both groups 

of musicians were compared to a group of non-musician controls who had been tested for 

a previous experiment using the same protocol (Savion-Lemieux & Penhune, 2005). 

These individuals were selected to have less than three years of musical training or 

experience and were not currently practicing music. All subjects were right-handed with 

no history of neurological or psychiatric disorder. The experimental protocol was 

approved by the Concordia University Human Research Ethics Committee, Montreal, 

Canada. Participants gave informed consent and were compensated for their time. 

Stimuli 

The TMST used in this experiment required participants to reproduce a 

temporally complex rhythmic motor sequence by tapping in synchrony with a series of 

visual stimuli using a single key on a computer mouse (Figure 1). The stimuli were ten-

element visual sequences consisting of a series of white squares (3 cm
2
) presented 

sequentially in the centre of the dark grey background of a computer screen (21-inch 

Sony Multiscan G500 monitor, 100Hz). Two different sequences designed to be of equal 

difficulty were used in this study. Each participant was tested on only one of the two 
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possible sequences, which were counterbalanced across participants. Each sequence was 

composed of five long (750ms) and five short (250 ms) elements, with a constant inter-

stimulus interval (500 ms). The sequences were constructed to have no more than two 

repeating elements as well as seven transitions from short to long elements. This results 

in sequences that are temporally regular, but do not conform to a standard musical 

rhythm. The elements of each sequence can be grouped into a series of intervals of three 

and five beats (3:5 ratio) based on the beat unit of 250 ms underlying both the stimuli and 

the inter-stimulus intervals. As these intervals do not represent a simple integer ratio (i.e., 

division of the intervals yielding an integer value), the sequences represent non-metrical 

rhythms (Essens, 1986; Essens and Povel, 1985). The presentation of each sequence was 

cued by a small white square (1 cm
2
) that appeared in the middle of the screen. Each 

block of practice on the TMST contained 12 presentations of the same sequence and 

lasted 132 s.  

Participants performed the TMST using a desktop computer that recorded all 

generated responses (Intel Pentium III 800-MHz computer, Windows 2000 Professional).  

Customized Media Control Functions (MCF) software (Digivox, Montreal, Canada) 

controlled the presentation of the visual stimuli as well as automatically recorded 

participants‟ key-press and release durations, which were subsequently used to calculate 

two indices of learning: accuracy of reproduction and percent asynchrony of responses 

with target stimuli (described in detail below).  

Procedure 

At the beginning of each testing session, before performing the TMST, 

participants completed a baseline practice task. This task consisted of three simple ten-
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element sequences that were made up of either all long, all short or a simple mixture 

(Figure 1). Participants were instructed to press and hold the mouse key down at the onset 

of each stimulus in the sequence, and to release it each time the stimulus disappeared. All 

participants used the index finger of the right hand. The experimenter provided feedback 

to ensure that the participant understood and learned the motor skill required for the 

study. 

Once the baseline task was completed on Day 1, participants were explicitly 

trained to reproduce one of two TMST sequences to a criterion of three consecutive 

correct repetitions. After the initial training, no further feedback was provided to the 

individual. Participants then performed three blocks of their assigned TMST sequence. 

Participants were seated 57 cm away from the computer monitor and short breaks were 

provided between blocks of practice to prevent fatigue and optimize performance. Upon 

completion of the last block of trials, participants were asked whether they used any 

strategy to learn the TMST and instructed not to practice their assigned sequence in 

between test sessions. On each of the four consecutive days (Day 2 – Day 5), participants 

returned to the laboratory to perform the baseline task, review their assigned TMST by 

reproducing one to two trials of the sequence, and complete three blocks of trials.  

Behavioural measures 

 The learning of motor skill tasks, such as the serial reaction time task (SRT), is 

typically assessed by reductions in reaction time to individual elements of the motor 

sequence. That is, faster responses correspond to improved performance. However, 

performance is measured on the TMST by requiring participants to synchronize their 

responses as precisely as possible with the presented stimuli. Therefore, learning of the 
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TMST was assessed by examining changes in two different variables: accuracy of 

responses and synchrony of responses with target stimuli. These measures examined 

learning of two different aspects of the task. Accuracy reflects learning of the more 

explicit component of the task – encoding of the correct order of short and long durations 

in the sequence. However, it still requires the participant to make a relatively accurate 

motor response – within 2SD of his/her baseline. Response asynchrony reflects the ability 

to precisely time key-press and key-release responses relative to the visual stimuli. 

Performance of the learned sequences was scored individually by using each 

participant‟s average short and long responses from the practice sequences for each day 

of training (Penhune and Doyon, 2002). The first step in scoring was to calculate the 

average and SD for each participant‟s long and short responses on the simple practice 

sequences (Fig 1). Responses on the simple practice sequences that were greater than 

2SD from the mean were excluded. The average was then recalculated, and the 

recalculated average ± 2SD was used as the upper and lower limit for accurate response 

on the learned sequences. This means that as subjects became more accurate and less 

variable with practice, the criteria for scoring their performance became more stringent. 

The percent of correctly reproduced elements was calculated for each trial and the 

measure of asynchrony was calculated on correct responses only. This was done so that 

measures of accuracy and asynchrony were not contaminated by gross errors. Percent 

response asynchrony (PASY) measured the percent difference between onset and offset 

of stimuli and the onset and offset of participant‟s key-press responses.  

Data analysis 
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 All behavioural measures were averaged across blocks of trials and days of 

practice. The data were assessed using repeated-measures analysis of variance (ANOVA) 

with Greenhouse-Geiser correction, with Group as the between-subjects factor and Block 

or Day as within-subjects factors. Percent correct and PASY measures were analyzed 

separately. Significant differences across days for the two groups were analyzed using 

tests of simple main effects with Bonferroni correction for multiple comparisons. 

Results 

Analysis of demographic data (Table 1) showed that the ET and LT musician 

groups were well matched, with no significant differences in the total number of years of 

musical experience, the number of years of formal training, or the number of hours per 

week they currently practiced. As predicted, the groups were significantly different in 

terms of the age of start of musical training and in current age. No significant correlations 

were found between age and any of the behavioural measures of performance. Repeated 

measures ANOVAs revealed no significant differences in either percent correct or 

percent response asynchrony between the two different sequences used in the learning 

trials, and no significant differences between the sexes. Therefore, behavioural data were 

collapsed across these dimensions. Data for the two vocalists was examined separately, 

and it was found that these musicians‟ performance did not differ significantly from the 

mean of their groups on any behavioral variable. 

 For percent correct (Figure 2, panel A), a repeated measures ANOVA showed no 

significant main effect of group, but a significant main effect of day, (F(4, 108) = 18.8, p 

<.001), indicating improved performance across groups for the five days of training.  
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Table 1. Measures of musical training and experience 

Group Age Age of onset 

Years of 

experience 

Formal 

training 

Current: 

hours/wk 

ET: Early 

Starters (<7yr) 
22.1 (+3.4) 5.9 (+0.9) 14.8 (+4.3) 7.7 (+4.2) 11.8 (+9.0) 

LT: Late 

starters (>7yr) 
27.5 (+5.6) 11.4 (+2.7) 13.7 (+4.0) 6.3 (+3.7) 13.4 (+12.4) 

T-test p <.01 p <.001 n.s. n.s. n.s. 

Non-

musicians 
26.2     
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Figure 2. (A) Average percent correct and percent response asynchrony (PASY) data for 

ET, LT, and NM (non-musicians) groups across 5 days of learning. For percent correct, 

ET musicians performed better than LT musicians only on Day 1; and only ET musicians 

performed better than NM overall. For PASY, ET musicians performed better than LT 

musicians overall and specifically on Days 2-5. Both ET and LT musicians performed 

better than NM for this measure. (B) Box and whisker plots for ET, LT, and NM groups. 

For PASY, ET musicians performed better than both LT and NM groups. Although the 

ET and LT groups differ on average, of note is the considerable overlap in individual 

performance.   
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Post-hoc planned comparisons between groups across days of learning revealed a 

marginally significant difference between groups only on Day 1 (p<.09). Although there 

was no significant interaction, planned comparisons examining changes in performance 

across days for the two groups showed that LT musicians showed significant 

improvement between Day 1 and Day 2 (p<.01); whereas ET musicians showed only 

marginally significant gains between Day 1 and 3 (p<.09) and Day 1 and 4 (p<.07). In a 

separate analysis, both groups were compared with non-musicians (Figure 2, panel B). In 

this comparison, only ET musicians showed overall better performance (ANOVA DAY 1-5:  

F(2, 36) = 3.2, p <.05; Planned comparison, ET vs. NM, p<.05). 

 For percent response asynchrony, a significant main effect of group was found (F(1, 

27) = 3.95, p = 0.056), such that ET musicians performed better than LT musicians across 

the five days of learning (Figure 2, panel A). Post-hoc tests of simple main effect showed 

that ET musicians performed better than LT musicians on Days 2-4 (p<.05) and remained 

marginally significantly different on Day 5 (p<.07). In addition a main effect of day was 

observed, such that both groups improved across days of learning (F(4, 108) = 45.9, p 

<.001). No significant Day x Group interaction was observed; however, post hoc pair-

wise comparisons indicated that both groups show significant improvement between Day 

1 and 2 (ET=p<.001; LT=p<.008), and between Days 2 and 3 (ET=p<.03; LT=p<.004), 

but that only LT musicians continued to show improvements between Days 3 and 4 

(LT=p<.005). Neither group showed improvement between Days 4 and 5. In a separate 

analysis, when the two groups were compared with non-musicians (Figure 2, panel B) 

both ET and LT musicians showed overall better performance (F(2, 36) = 7.4, p <.01; ET 

vs. NM, p<.01, LT vs. NM, p<.05). 
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Discussion 

 The results of this experiment show that ET musicians showed better performance 

on a novel rhythmic tapping task than LT musicians with similar levels of training and 

experience. For the more global measure, ET musicians performed better LT musicians 

only on Day 1, and both groups improved across days of practice. In contrast, for the 

measure of response synchronization, both groups started out at the same level and 

showed similar improvements with practice. However, from Day 2 onward, ET musicians 

showed better performance than LT musicians and this persisted after five days of 

practice. These findings support the idea that there may be a sensitive period in childhood 

where enriched motor training through musical practice results in long-lasting benefits 

for performance later in life. Performance differences were greatest for the measure of 

response synchronization, suggesting that early training has its greatest effect on neural 

systems involved in sensorimotor integration and timing. This is consistent with evidence 

for age-specific developmental changes in motor performance, and age-specific changes 

in brain regions important for motor control. It is also consistent with the results of 

studies showing structural changes in motor-related regions of the brain in trained 

musicians. Importantly, because the task required synchronization with a visual stimulus, 

these results show that the effects of early training can be generalized to novel motor 

tasks. Finally, while the ET and LT musicians differed on average, there was 

considerable overlap in performance between the two groups. This indicates that early 

training is not the only factor affecting adult performance. Other potential factors that 

might contribute to the enhanced performance of ET musicians are:  individual 

differences in early ability, motivation, and family support for musical training.  
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 The results of this experiment suggest that there may be a sensitive period in brain 

development where musical training can have long-term effects on motor performance 

that can be generalized to novel motor tasks. Maturational changes in the human brain are 

greatest in childhood, but continue into early adulthood. Following birth, the number of 

synapses and therefore the volume of grey matter continues to increase for between 3 and 

15 months, depending on the region of the brain (Huttenlocher & Dabholkar, 1997). Once 

this peak is reached, the number of synapses decreases through the process of pruning, 

which is thought to underlie experience-dependent specialization. In contrast, the amount 

of white matter increases throughout development. Therefore, although the total size of 

the brain does not change substantially after the age of five, the amount of white matter 

increases until sometime around age 20 (Casey, Giedd, & Thomas, 2000). Over the last 

ten years, a number of studies using structural MRI techniques have examined 

developmental changes in the volume and proportion of grey and white matter in the 

brain. The results of these studies have shown that increases in white matter volume are 

age- and region-specific, with sensory and motor regions showing increases earlier, and 

frontal and temporal-parietal association areas later (Casey et al., 2000; Sowell et al., 

2004).  Increasing white matter volume measured by MRI is thought to correspond to 

increasing number of neuronal axons, greater diameter of axons, or greater thickness of 

the myelin sheath that surrounds them.  A number of studies have shown increases in the 

white matter concentration of the cortico-spinal track and corpus callosum between 

childhood and late adolescence (Barnea-Goraly et al., 2005; Paus et al., 1999). It has been 

hypothesized that these increases may underlie decreases in nerve conduction time that 

are observed with development and might be related to behavioural phenomena such as 
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decreasing reaction times and increasing motor speed associated with the improvement of 

fine motor skills across early childhood. A recent study (Bengtsson et al., 2005) 

examined white matter structure in professional pianists and non-musicians and showed 

evidence for greater myelination in the right cortico-spinal tract of musicians, and that 

this difference was specifically related to the number of hours practiced in childhood (< 

11 years).  

 These changes in brain development during childhood are paralleled by changes 

in motor performance.  Children show increasing speed in simple reaction time and 

repetitive finger tapping (Garvey et al., 2003). Motor evoked potentials show decreasing 

conduction times and increasing inhibition between the hemispheres (ages 10-13). At the 

same time, mirror movements, which are relatively common in children up to the age of 

6-7, decrease. It appears likely that motor development depends on the maturation of 

multiple central and peripheral control mechanisms. A recent study of sequential finger 

pointing in 6-11 year-old children showed a discontinuity in performance around the age 

of 6-7 (Badan, Hauert, & Mounoud, 2000). Their data show that at that age, when the 

task is easy, children can utilize strategies that are more typical of older children, but that 

when the task is hard, they perform more similarly to younger children.  

 Taken together with the results of the current study, the above evidence suggests 

that enriched motor learning experienced during the period where neural and behavioural 

systems are immature appears to induce lasting enhancement in performance. As 

described in the Introduction, during a sensitive period neural systems are particularly 

sensitive to relevant stimuli, and are more susceptible to change when stimulated. In a 

recent review of the neural mechanisms underlying sensitive periods, Knudsen described 
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evidence of synaptic changes at the cellular level that indicate that a sensitive period can 

be opened by experience (2004). Further, he suggests that intensive experience that 

occurs early in a sensitive period has a unique advantage, because sculpting of circuits by 

experience early in a sensitive period will shape the way those circuits respond to 

additional experience later in the sensitive period and beyond. For example, early 

plasticity in motor implementation and sensorimotor integration may lay down highly 

tuned circuits that can later be further optimized by learning mechanisms that remain 

plastic throughout life. This is consistent with the results of our study which show that ET 

musicians continued to improve on the measure of response synchronization, and to out-

perform the LT musicians across five days of practice. Further support for enhanced 

plasticity comes from a recent study of tactile discrimination in professional pianists 

(Ragert, Schmidt, Altenmuller, & Dinse, 2004). This study showed that not only did 

pianists have lower sensory discrimination thresholds compared to non-pianists, but that 

with additional training, pianists were able to improve those thresholds to a greater 

degree than non-pianists. 

 In the present study, ET musicians showed specific enhancement of their ability 

to learn to synchronize their motor responses to a rhythmic visual sequence. Current 

theories of motor control maintain that learning and sensorimotor integration are based on 

error-correction and predictive control mechanisms that have been linked to the 

cerebellum. Both neurophysiological studies in animals and neuroimaging studies in 

humans have demonstrated cerebellar involvement in tasks requiring motor learning 

(Doyon et al., 2003; Karni et al., 1995; Kleim et al., 2002; Toni, Krams, Turner, & 

Passingham, 1998); timing (Ivry, Spencer, Zelaznik, & Diedrichsen, 2003; Schubotz, 
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Friederici, & von Cramon, 2000) and sensorimotor integration (Bower, 1995; Gao, 

Parsons, Bower, Xiong, & Fox, 1996). Further, structural changes in the cerebellum have 

been shown to occur with learning of a novel task (Kleim et al., 2004). Neuroimaging 

studies from our lab, using the same task, have shown engagement of the cerebellum 

during learning (Penhune & Doyon, 2003, 2005). It is possible that in ET musicians, 

intensive early experience with tasks requiring motor learning, timing and sensorimotor 

integration results in preferential enhancement of cerebellar circuits. Evidence for 

cerebellar plasticity in musicians comes from a structural MRI study showing 

enlargement of the cerebellum that was correlated with lifetime practice in male keyboard 

players (Hutchinson et al., 2002). Cerebellum, along with the hippocampus, maintains a 

high degree of plasticity throughout life. Early training may simply enhance the 

cerebellum‟s ability to integrate the sensory and motor information required for learning. 

 The results of this study show convincing group differences in performance for 

ET and LT musicians. This conclusion is strengthened by the fact that the groups were 

matched for years of experience, formal training and current practice. However, there 

were also clear individual differences in performance, and not all ET musicians 

performed better than LT musicians. Therefore, it is likely that there are other factors that 

we did not control that contribute to the observed differences between the groups. The 

most important of these is early motor ability. Early ability may be potentially related to 

two factors:  1) genetically determined differences in central and peripheral motor 

control, or general cognitive abilities such as sustained attention; and 2) individual 

differences in motivation or environment. Evidence from studies of musicians with 

absolute pitch show that there may be a genetic contribution to this ability (Baharloo et 
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al., 1998; Zatorre, 2003), although it cannot be developed without training. Similarly, a 

genetic predisposition for earlier development of motor skills or sustained attention 

abilities could underlie ET musicians‟ tendency to start training earlier and to obtain 

greater benefit from practice. Importantly, motivation can strongly affect learning and 

plasticity, as demonstrated by experiments in which auditory learning is enhanced by 

reward or survival saliency (Beitel, Schreiner, Cheung, Wang, & Merzenich, 2003; 

Knudsen, 2004). Therefore, children with greater intrinsic motivation or with greater 

family motivation may begin earlier and learn better. Finally, environmental factors such 

as access to musical training and family support for persistence in musical training could 

also play important roles. In the future, studies examining matched groups of early- and 

late- starting children undergoing the same type of musical training will shed light on the 

contributions of these factors.  
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Chapter 4 

 

Developmental contributions to motor sequence learning 
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ABSTRACT 

Developmental contributions to motor sequence learning 

Little is known about how children acquire new motor sequences. In particular, it is not 

clear if the same learning progression observed in adults is also present in childhood nor 

whether motor skills are acquired in a similar fashion across development. In the present 

study we used the multi-finger sequencing task (MFST), a variant of the serial reaction 

time (SRT) task, to study motor sequence learning, across two consecutive days, in three 

cross sectional samples of children aged 6, 8, and 10 years, and a control sample of 

adults. In the MFST, participants reproduced 10-element sequences of key presses on an 

electronic keyboard, using four fingers of the right hand. Each block of practice included 

ten intermixed trials of a Repeated (REP) sequence and four trials of Random (RAN) 

sequences. Performance was assessed by examining changes in accuracy, a more explicit 

component of the task that requires the association of the visual stimulus with the motor 

response, and response synchronization, a more procedural component that requires fine-

grained sensorimotor integration and timing. Additionally, participants completed 

Recognition and Recall tests, to further assess explicit knowledge of the repeated 

sequence. Overall, results showed a developmental progression in motor sequence 

learning within and across days of practice. Interestingly, the two behavioural measures 

showed different developmental trajectories. For accuracy, differences were greatest for 

the two youngest groups early in learning, and these groups also showed the greatest rate 

of improvement. However, by the end of Day 2, only the six year-olds still lagged behind 

all other groups. For response synchronization, all child groups differed from adults early 

in learning, but both child and adult groups showed similar rates of improvement across 
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blocks of practice. By the end of Day 2, 10 year-olds reached adult levels of performance, 

whereas 6 and 8 year-olds did not. Taken together, the dissociation observed with our two 

behavioural measures of sequence learning is consistent with the hypothesis that accuracy 

or finger-stimulus association may rely on cortical pathways that show the greatest 

maturation between ages 6 and 10; whereas motor timing and sensorimotor integration 

may rely on subcortical pathways that continue to develop into young adulthood. Despite 

developmental differences across blocks of practice on both behavioural measures, there 

were no significant group differences for either the Recognition or Recall tests. We 

suggest that explicit knowledge of the MFST is not directly linked to task performance, 

thus challenging the implicit-explicit distinction in pediatric SRT studies assessing the 

developmental invariance model. 
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Introduction 

Motor skills are ubiquitous in everyday life. While certain skills, such as walking, 

are largely innate, most, such as writing and playing the piano, are acquired through 

practice. In the past decade, numerous studies have investigated the behavioural and 

neural underpinnings of motor skill learning in adults (For review, see: Doyon & Benali, 

2005; Hikosaka et al., 2002; Krakauer & Shadmehr, 2006; Robertson et al., 2004); 

however, very little is known about how children acquire new motor skills. Recent 

evidence from pediatric structural neuroimaging research shows ongoing changes in brain 

systems important for motor learning (Barnea-Goraly et al., 2005; Gogtay et al., 2004; 

Mackie et al., 2007; Paus et al., 1999; Sowell, Thompson, Holmes, Jernigan, & Toga, 

1999; Sowell et al., 2004; Wilke, Krageloh-Mann, & Holland, 2007). Thus, maturational 

changes in the brain coincide with and likely underlie changes in motor abilities across 

development. Findings from our laboratory indicate that there may be a sensitive period 

for motor learning, during which the effects of practice in early childhood may lead to a 

greater degree of plasticity (Watanabe et al., 2007). In light of these results and given the 

paucity of research on motor skill learning in children, the overall goal of the present 

study was to examine developmental contributions to motor sequence learning, across 

multiple days of practice, in three cross-sectional samples of school-aged children, aged 

6, 8, and 10, and a control sample of adults. Another objective was to take an exploratory 

approach to assessing the existence of a possible sensitive period for motor learning. A 

variant of the serial reaction time (SRT) paradigm was used to assess learning of both 

implicit and explicit components of the task (Nissen & Bullemer, 1987). This allowed us 

to evaluate the developmental invariance model which postulates that while implicit 
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learning develops early and is relatively invariant across childhood, explicit learning 

shows greater changes over time (Reber, 1993). 

Numerous studies on motor sequence learning in adults have consistently 

identified three stages of learning, corresponding to distinct points in the pattern of 

incremental changes during acquisition of a new task (Doyon & Benali, 2005; Hikosaka 

et al., 2002; Karni et al., 1998; Korman, Raz, Flash, & Karni, 2003a; Krakauer & 

Shadmehr, 2006). The first stage occurs within the initial session, where rapid 

improvements in performance are observed over relatively few trials. The second, 

intermediate stage, referred to as consolidation, occurs between the first and second 

practice sessions. Consolidation has been defined in two ways:  first, as significant “off-

line” gains in performance following a period of rest with no additional practice; and 

second, freedom from interference by learning of a second sequence (For review see 

Krakauer & Shadmehr, 2006). This stage has been argued to be sleep-dependent (Stefan 

Fischer et al., 2002; Krakauer & Shadmehr, 2006; Robertson et al., 2004; Walker et al., 

2003). The third stage occurs throughout the remaining sessions (days or weeks) where 

slower and more gradual gains eventually lead to plateau in performance (Doyon & 

Benali, 2005; Hikosaka et al., 2002; Karni et al., 1998; Korman et al., 2003b; Savion-

Lemieux & Penhune, 2005). It has been hypothesized that distribution of practice over 

time is essential for a maximum benefit of practice to be gained, as the time delay allows 

for plastic changes in the neural representation of the sequence (Korman et al., 2003a; 

Savion-Lemieux & Penhune, 2005). Support for the presence of separable stages of 

motor learning comes from functional imaging studies in adults showing that different 

cortical and subcortical regions are preferentially activated at different stages of learning 
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(Doyon & Benali, 2005; Hikosaka et al., 1999). For instance, it has been proposed that 

while the cerebellum, rostral striatum, as well as motor, prefrontal, and parietal cortical 

regions are primarily active during early learning, the caudal striatum, as well as motor 

and parietal cortical areas are involved in consolidation and the later stage of learning 

(Doyon & Benali, 2005).  

Despite the explosion of research on motor sequence learning in adults, very little 

is known about how children acquire new motor sequences. In particular, it is not clear if 

the same stages of learning observed in adults are present in childhood, nor whether the 

pattern of learning is the same across development. A large number of developmental 

studies have focused on the acquisition of  basic motor skills, such as pointing (Badan et 

al., 2000; Ferrel, Bard, & Fleury, 2001), reaching (Kuhtz-Buschbeck, Stolze, Johnk, 

Boczek-Funcke, & Illert, 1998; Takahashi et al., 2003) and aiming (Contreras-Vidal, Bo, 

Boudreau, & Clark, 2005; Smits-Engelsman, Sugden, & Duysens, 2006). Overall, these 

findings indicate that with age basic motor skills are performed with better dexterity, less 

variability, as well as increased speed and accuracy. However, fewer studies have looked 

at more fine motor skills, such as finger sequencing (Badan et al., 2000; De Guise & 

Lassonde, 2001; Dorfberger, Adi-Japha, & Karni, 2007; Ferrel et al., 2001; Meulemans, 

Van der Linden, & Perruchet, 1998; Thomas et al., 2004; Thomas & Nelson, 2001). 

Moreover, the majority of these studies have investigated motor learning within a single 

training session. Overall, findings indicate that with practice there are significant within-

day improvements in performance, as evidenced by increases in accuracy and decreases 

in reaction time. However, there is an absence of reliable developmental differences 

(Meulemans et al., 1998). Furthermore, to our knowledge, only one study has looked at 
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motor sequence learning in children across multiple consecutive days (Dorfberger et al., 

2007). Their results revealed similar learning gains for adults and children aged 9, 12, 

and 17 when trained on a single sequence but differential off-line gains for the youngest 

groups. In sum, less is known about the developmental progression of motor sequence 

learning in childhood. Therefore, the main goal of this study was to assess motor 

sequence learning, within and across two consecutive days of practice, in younger 

children aged 6, 8, and 10 years. 

Although the changes in children‟s ability to learn and perform motor skills across 

development are obvious, the specific changes in underlying brain structure are only 

beginning to be understood. Evidence from pediatric neuroimaging studies indicates that 

the brain continues to develop into middle childhood and adolescence, and that these 

maturational changes coincide with the development of motor abilities (Barnea-Goraly et 

al., 2005; Gogtay et al., 2004; Mackie et al., 2007; Paus et al., 1999; Sowell et al., 1999; 

Sowell et al., 2004; Wilke et al., 2007). In particular, these studies show that global grey 

matter volume increases up until the age of approximately 6-10 and then decreases 

thereafter (Gogtay et al., 2004; Sowell et al., 2004; Wilke et al., 2007). The decrease in 

grey matter is paralleled by global increases in white matter. Studies have shown 

increases in the white matter concentration of the cortico-spinal system between 

childhood and late adolescence (Barnea-Goraly et al., 2005; Paus et al., 1999; Wilke et 

al., 2007). It has been hypothesized that these increases may underlie decreases in nerve 

conduction time that are observed with development. Furthermore, a recent functional 

neuroimaging study, comparing children‟s and adults‟ performance on a motor sequence-

learning task, results indicated that while subcortical regions were mainly recruited in 
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children, adults predominantly recruited cortical regions (Thomas et al., 2004). It was 

hypothesized that these age-related findings underlie age differences in motor response 

execution. Taken together, plastic modulations in the brain related to development 

parallel developmental changes in motor abilities throughout childhood.  

A central theme in the developmental literature on motor sequence learning 

revolves around Reber‟s developmental invariance theory (1993) which suggests that 

implicit learning develops early and is relatively invariant across childhood, as it is 

subserved by more evolutionarily primitive, subcortical structures that reach maturity 

earlier in development (i.e. basal ganglia); whereas explicit learning shows greater 

changes over time, as it involves more cortical structures which continue to develop 

across childhood. Although, as described above, recent pediatric neuroimaging studies 

have shown developmental changes throughout the brain well into adolescence, the 

understanding of the dissociation between implicit and explicit learning across childhood 

is still a hot topic of debate amongst developmental cognitive scientists. The SRT task, 

first introduced by Nissen and Bullemer (1987), is one of the most commonly used 

paradigms to study implicit and explicit sequence learning. In the SRT task, a stimulus 

appears in one of several locations and participants are required to respond as quickly and 

accurately as possible by pressing a button, which corresponds to the spatial location of 

the stimulus. A fixed, repeating sequence, and random sequences are presented in either a 

blocked or intermixed fashion. Implicit learning is measured by enhancements in 

performance on the fixed repeating sequence when compared to the random sequence; 

explicit learning is typically assessed by a recognition and recall test, measuring the 

participants‟ awareness of the fixed sequence. Developmental studies using the SRT 
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paradigm have found mixed results regarding age-related differences in implicit and 

explicit learning. While one study has found evidence for the developmental invariance 

model (Meulemans et al., 1998), other studies have showed age-related differences in 

explicit rather than implicit learning (Thomas & Nelson, 2001) and have proposed that 

both systems develop in parallel across childhood (Thomas et al., 2004). Interestingly, it 

has been proposed that performance on the SRT is independent of the explicit knowledge 

of the repeating sequence (Seger, 1997). Thus, it could be argued that the method of 

contrasting explicit recall and implicit sequence learning may not fully measure all 

aspects of implicit and explicit learning. In the present experiment, we suggest that 

implicit and explicit learning on the SRT task can be assessed at both the task and the 

measures level. As such, in our view, accuracy assesses a more explicit component of the 

task that requires association of the visual stimulus with the motor response, whereas 

response synchronization assesses a more implicit or procedural component, that requires 

fine-grained sensorimotor integration and timing.  

In other domains of skill acquisition, such as gross motor development and 

language learning, there is evidence suggesting that there may be sensitive periods for 

optimal learning of specific skills. Knudsen defines the notion of sensitive period as “a 

broad term that applies whenever the effects of experience on the brain are unusually 

strong during a limited period in development… during which certain capacities are 

readily shaped or altered by experience” (Knudsen, 2004, p.1412). Evidence for sensitive 

periods in humans is mostly drawn from the field of language acquisition where results 

suggest that second-language proficiency is greater in individuals who were exposed to 

the second language before puberty (Johnson & Newport, 1989; Weber-Fox & Neville, 
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2001). In the motor domain, the issue of sensitive periods is rarely discussed. Results 

from a study on orphan children who were highly limited in terms of their motor 

experiences in early childhood, found subtle impairments in their gross and fine motor 

skills, suggesting that motor deprivation during a sensitive period can lead to long-lasting 

motor deficits (Tober & Pollak, 2005). Furthermore, behavioural and neuroimaging 

studies with trained adult musicians have shown that experience-driven plasticity can 

interact with maturational plasticity to produce differential changes in brain structure in 

individuals with early-musical training (Schlaug, 2001). A recent behavioural study from 

our laboratory (Watanabe et al., 2007) has found that musicians who began their training 

before the age of 7 performed significantly better on a timed motor sequence task, 

compared to those who began their training after the age of 7. Taken together, these 

results suggest that there may be a sensitive period in childhood for optimal learning of 

motor skills. Thus, in the present experiment we took an exploratory approach to 

evaluating the existence of a possible sensitive period for motor learning. 

In the current study, we used the multi-finger sequencing task (MFST), a variant 

of the SRT task, to study motor sequence learning, across two consecutive days, in three 

cross sectional samples of children aged 6, 8, and 10 years, and a control sample of 

adults. In the MFST, participants had to “catch an animal”, appearing in one of four 

locations on a computer screen, by pressing the corresponding key on an electronic 

keyboard using one of four fingers of the right hand. This task is thought to be more 

naturalistic and similar to learning a tune on the piano. Performance was assessed by 

exploring changes in accuracy, a more explicit component of the task that requires the 

association of the visual stimulus with the motor response, and response synchronization, 
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a more procedural component that requires fine-grained sensorimotor integration and 

timing. Additionally, at the end of the second session, participants‟ completed recognition 

and recall tests, to further assess explicit knowledge of the repeated sequence. Overall, 

we hypothesized that there would be a developmental progression in motor sequence 

learning both within and across sessions of practice. Moreover, if there is a sensitive 

period in motor learning, we expected the greatest incremental behavioural changes to 

occur between the two youngest groups. Finally, if the invariance theory is supported, we 

predicted that children and adults would show similar performance on the more implicit 

measures, whereas they would show developmental differences on the more explicit 

measures.  

Method 

Participants 

The final sample consisted of 53 right-handed and neurologically healthy 

participants (28 males and 25 females). Three cross-sectional groups of children, aged 6 

(n = 13; M = 6 years, 5 months; range = 6 years, 0 to 9 months), 8 (n = 12; M = 8 years, 7 

months; range = 8 years, 3 to 8 months), and 10 years (n = 13; M = 10 years, 3 months; 

range 10 years, 2 to 9 months) were recruited. A fourth comparison group of university 

undergraduates (n = 15; M = 24 years, 5 months; range = 20 to 34 years) was recruited. 

All groups scored in the Average to Above Average range on the Vocabulary and Digit 

Span subtests of the Wechsler Intelligence Scale for Children – 4
th

 edition (WISC-IV; 

Psychological Corporation, 2003; Child participants) or Wechsler Intelligence Scale for 

Adults – 3
rd

 edition (WAIS-III: Psychological Corporation, 1997; Adult participants), 

indicating that they were well matched based on these cognitive measures.  
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Given that a recent study in our laboratory found behavioural differences in motor 

skill performance between adult musicians and non-musicians, adult participants in the 

present study were selected to have less than three years of musical training and 

experience, as assessed using a modified version of the Global Index of Musical Training 

and Experience questionnaire (Watanabe et al., 2007). For Child participants, musical 

training and experience was assessed using a child version of the questionnaire, but 

information was not used to exclude participants. Participants with a known history of 

Learning Disabilities (n = 3) or a confidence index above 60 on the Continuous 

Performance Test – II (CPT-II; MHS, 2004; indicating that performance better matched 

an Attention Deficit Hyperactivity Disorder profile than a non-clinical profile; n = 6), 

were excluded from the final sample, based on previous developmental studies showing 

that these disorders are associated with motor learning impairments (Kooistra, Crawford, 

Dewey, Cantell, & Kaplan, 2005; O'Driscoll et al., 2005; Pitcher, Piek, & Hay, 2003). 

Additionally, seven participants were excluded due to experimental error or data 

collected from only one session.  

The experimental protocol was approved by the Concordia University Human 

Research Ethics Committee and the Lower Canada College Board of Governors, 

Montreal, Québec. A parent provided written informed consent, and the Child gave 

verbal assent on each testing session. Adult participants provided written informed 

consent.  

Multi-Finger Sequence Task and Stimuli 

The MFST is a variant of the task used by Thomas and Nelson (2001) which was 

based on Nissen and Bullimer‟s (1987) classical SRT task. In the MFST, participants 
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reproduced 10-element sequences of key presses on a MIDI-compatible electronic 

keyboard (M-Audio O2, 25 keys), using four fingers of the right hand (i.e., index, middle, 

ring, and pinkie; Fig 1). Participants were cued to press one of the four marked keys by a 

visual stimulus presented in the middle of a computer screen (19-inch LCD Samsung). 

The visual display consisted of four horizontally oriented coloured frames (5 cm
2
), which 

remained on the screen for the entire duration of each trial. The visual cue for each finger 

movement was a cartoon animal (4.5 cm
2
) that appeared sequentially in one of the 

frames. The cue for Familiarization trials was “Bubbles the Fish” and for Learning trials 

was “Rolly the Hamster.” The cue duration was 600 ms, with a 400 ms inter-stimulus 

interval, for a total inter-tap interval of 1000 ms.  

Participants were told that they would be playing a computer game where they 

have to “catch Rolly the Hamster” by pressing the key that corresponded to its location. 

In order to minimize anticipatory responses and maximize response synchronization, 

participants were instructed to synchronize their response with the visual stimulus by 

waiting until the animal appeared in the frame before catching it. Adult and Child 

participants completed the same task and received the same instructions. 

Each trial of the MFST consisted of a 10-element sequence and each block of 

practice included 14 trials, of which 10 were a Repeated (REP) sequence and 4 were 

Random (RAN) sequences. The REP and RAN sequences were designed to be of equal 

difficulty. For instance, the same key was never pressed twice in succession, the same 

transition between two fingers (e.g., index to pinkie) never occurred twice consecutively, 

at least one transition between the fingers occurred within each block, and the number of 

finger transitions was counterbalanced across blocks. Performance on the RAN  
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Figure 1. Experimental setup. 
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sequences was used to compare learning of the REP sequence, in order to examine 

“sequence-specific” learning in relation to a more global or general learning of the task. 

The blocks were quasi-randomly designed, such that the REP and RAN sequences were 

differently intermittently spaced within each block of practice. The blocks followed 

similar rules of presentation, such that they never started or ended with a RAN sequence 

and two RAN sequences never appeared consecutively. There was a 1300 ms delay 

between trials and each block of practice lasted 2 min and 48 s. At the end of each block, 

a brief animation (i.e. “Rolly the Hamster” dancing) was displayed on the screen, as a 

reward to help the children maintain attention. Breaks were provided between blocks to 

prevent fatigue and optimize performance.  

Prior to practice on the MFST, there was a Familiarization phase which consisted 

of two simple and predictable sequences (i.e., sequence A: index, middle, ring, pinkie; 

sequence B: pinkie, ring, middle, index). Each trial consisted of a 4-element sequence 

and each familiarization block included 15 trials, of which participants observed the first 

3 and completed 12. At the end of each block, a brief animation (i.e. “Bubbles the Fish” 

swimming) was displayed on the screen. Overall, Adult and 10-year-old participants 

completed 4 familiarization blocks (two of each order). Some children in the two 

youngest groups required additional familiarization blocks (three of each order), in order 

to ensure that they were able to coordinate all four fingers of their right hand and follow 

the target stimulus by looking at the computer screen while moving their fingers.  

At the end of the MFST on Day 2, participants completed a Recognition and 

Recall test. In the Recognition test, participants were shown three MFST sequences and 

were asked to identify which of the three sequences corresponded to the REP sequence. 
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In the Recall test, participants were asked to reproduce the REP sequence on the 

keyboard, with no visual stimulus to guide them.  

A Toshiba laptop (Windows XP) recorded all generated responses from the midi-

compatible electronic keyboard. In-house custom software written in C++ was used to 

create and control the presentation of the visual stimuli and automatically recorded the 

onset and offset of participants‟ key presses, which were subsequently used to calculate 

the indices of learning.  

Procedure 

Child participants were recruited at a local private elementary school. Prior to 

testing, a letter and consent form were sent to all parents of grades 1, 3, and 5 students. 

Parents who signed the consent form were contacted by a research assistant to complete a 

brief telephone interview. If the child met research criteria, they were tested at the school 

on two consecutive days, approximately 24 hours apart. Adults were recruited by word of 

mouth at Concordia University and were tested in the laboratory. 

On Day 1, participants completed the Familiarization phase, 3 blocks of practice 

on the MFST, the Vocabulary and Digit Span subtests of the WISC-IV or WAIS-III 

(refs), as well as a modified version of the Edinburgh Handedness Inventory (Oldfield, 

1971). On Day 2, participants again completed the Familiarization phase, followed by 2 

blocks of the MFST, as well as the Recall and Recognition tests. Finally, participants 

completed the CPT-II (MHS, 2004), an attention test used clinically to identify response 

patterns (in children and adults) that match an Attention Deficit Hyperactivity profile. At 

the end, Children received a prize and Adults were compensated for their time.          

Behavioural measures 
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To score the MFST data, a 1000 ms response window was created to identify the 

key press responses that corresponded to each visual stimulus (Fig 2). The window 

included 100 ms before the stimulus onset, to allow for anticipatory responses, and ended 

300 ms after the stimulus offset, to allow for delayed responses. Only the first key 

pressed within each window was scored.  

Learning was assessed by investigating changes in accuracy and response 

synchronization. Accuracy was scored individually, by calculating the percentage of 

correct key presses made for each trial, averaged across the two sequence types (REP and 

RAN) within each block of practice. Response synchronization was calculated for correct 

key presses only; it characterized each participant‟s response time (ms) relative to the 

stimulus onset, averaged across trials and blocks of practice, for each sequence type. In 

this experiment, accuracy represented a more explicit component of the task, which 

requires the association of the visual stimulus with the motor response. Response 

synchronization represented a more procedural component that requires fine-grained 

sensorimotor integration and timing. Dependent measures were individually averaged 

across trials for each sequence type (REP and RAN) within each block of practice on the 

MFST. For the Recognition test, the number of participants who correctly identified the 

REP sequence was calculated for each group. For the Recall test, the mean percentage of 

correct key presses was calculated for each group; only the first ten key presses were 

scored and analyzed. 

Results 

 Independent samples t-tests indicated no significant differences between the sexes 

on Day 1 mean performance, when averaging REP trials across all blocks of practice, for  
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Figure 2. Scoring method for accuracy and response synchronization of key presses.
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either behavioural measures (p > .165). Similarly, when comparing children with and 

without piano training, no significant differences were found on either behavioural 

measure (p > .576), indicating that piano training in the Child groups did not influence 

performance on the MFST. Therefore, behavioural data were collapsed across these 

dimensions. 

Two types of analyses were conducted with the data. The first type assessed 

“sequence-specific” learning, by comparing performance on the REP and RAN 

sequences. In order to analyze an equivalent number of REP and RAN trials within each 

block of practice, all 4 RAN trials were averaged and compared with the average of the 

first, fourth, seventh, and last REP trials in each block. The data were analyzed with 

repeated measures analyses of variance (ANOVAs; Greenhouse-Geiser correction), with 

Group as the between-subject factor and Sequence Type and Block as the within-subject 

factors. The second type of analysis evaluated a more global or general learning of the 

task, by comparing performance on the REP trials only. All 10 REP trials were averaged 

for each block of practice. The data were analyzed with repeated measures analysis of 

variance (ANOVAs; Greenhouse-Geiser correction), with Group as the between-subject 

factor and Block as the within-subject factors. For both types of analyses, differences 

across the three blocks of practice on Day 1 (early-learning), across the last block of 

practice on Day 1 and the first block of practice on Day 2 (consolidation), and across the 

two blocks of practice on Day 2 (late-learning), were evaluated. Significant main effects 

and interactions were analyzed using pairwise comparisons, with Bonferroni adjustment 

for multiple comparisons. The α level was set at 0.05 for all statistical tests.    

REP vs. RAN: Day 1 
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 When comparing percent correct, on the REP and RAN sequences, between the 

groups across the three blocks of practice on Day 1 (Fig 3), there was a significant main 

effect of Sequence Type F (1, 49) = 10.833, p = .002 indicating that the REP sequence 

was performed more accurately than the RAN sequences (M REP = 79.1%, M  RAN = 

76.3%). A significant main effect of Block F (1.7, 83.32) = 33.032, p < .001 was also 

found, such that overall Block 1 was significantly less accurate than Blocks 2 & 3 (p < 

.001). As predicted, there was a significant main effect of Group F (3, 49) = 51.69, p < 

.001. Post hoc planned comparisons revealed that the Adult and 10-year-old groups did 

not significantly differ (p = .318), whereas the two youngest groups were significantly 

different from each other and from the Adults and 10-year-olds (p < .001). There was 

also a significant Block X Group interaction F (5.1, 83.32) = 5.462, p < .001. Post hoc 

comparisons revealed that on all blocks, groups were significantly different from each 

other (p < .016), except the Adults and 10-year-olds (p > .064), suggesting that their level 

of accuracy was similar from the beginning. When looking at performance across blocks 

within each group, post hoc analyses revealed that Adults showed no significant 

improvements across blocks (p > 1.00), whereas 10 year-olds showed significant 

improvements between Blocks 1 and 2 (p = .05), and 8-year-olds and 6-year-olds showed 

significant improvements when comparing Block 1 to the other two blocks (p < .001). 

This pattern of results indicates that, on this measure, Adults were performing at ceiling 

whereas the Child groups showed within-day learning. Finally, no significant Sequence 

Type X Block, Sequence X Group, and Sequence Type X Block X Group interactions 

were found (p > .058) for percent correct. 
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Figure 3. Average accuracy data for all groups across five blocks of practice for matched 

REP (four trials per block) and RAN sequences (four trials per block).
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   For response synchronization (Fig 4), a similar pattern of results was observed. 

There was a significant main effect of Sequence Type F (1, 49) = 70.487, p < .001 

indicating that key press responses were more synchronous on the REP sequence than the 

RAN sequences (M  REP = 514.763 ms, M  RAN = 550.517 ms). There was also a 

significant main effect of Block F (1.81, 88.75) = 51.017, p < .001, such that there were 

significant improvements in response synchronization across the three blocks of practice 

(p < .001). As expected, there was a significant main effect of Group F (3, 49) = 15.312, 

p < .001. Post hoc planned comparisons revealed that Adults performed significantly 

more synchronously than all child groups (p > .005). Moreover, 10-year-olds‟ responses 

were significantly more synchronized than 6-year-olds‟ responses (p = .041). There was 

also a significant Sequence Type X Block interaction F (1.88, 92.31) = 4.916, p = .011, 

with post hoc analyses indicating that overall key presses were significantly faster on the 

REP sequence on all blocks (p < .002), suggesting an early emergence of “sequence-

specific” learning. Lastly, there was a significant Block X Group interaction F (5.43, 

88.75) = 2.735, p = .021, such that overall Adults were significantly faster than Children 

on all blocks (p < .006). Interestingly, by Block 3, Adults and 10-year-olds showed no 

significant differences in performance (p = .132), indicating that by the end of Day 1, 10-

year-olds reached Adult level of performance. When looking at performance across 

blocks within each group, only the Child groups showed improvements in performance (p 

< .06), indicating that the Adults were performing at ceiling whereas the Child groups 

showed within-day learning. No significant Sequence Type X Group and Sequence Type 

X Block X Group interactions were found (p > .110).   

REP vs. RAN: Consolidation 
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Figure 4. Average response synchronization data for all groups across five blocks of 

practice for matched REP (four trials per block) and RAN sequences (four trials per 

block).
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When comparing group performance, on the REP and RAN sequences, across the last 

block of practice on Day 1 and the first block on Day 2 for percent correct (Fig 3), a 

significant main effect of Sequence Type F (1, 49) = 8.991, p = .004 was found, such that 

the REP sequence was performed more accurately than the RAN sequences (M REP = 

85.2%, M RAN = 82.3%). There was also a significant main effect of Block F (1, 49) = 

12.39, p = .001, indicating overall consolidation. As predicted, there was a significant 

main effect of Group F (3, 49) = 31.309, p < .001. Post hoc planned comparisons 

revealed that 6-year-olds made significantly more errors than all groups (p < .001), and 8-

year-olds, but not 10-year-olds, were significantly less accurate than Adults (p < .001, p = 

.426, respectively). Lastly, there was a significant Block X Group interaction F (3, 49) = 

4.129, p = .011. Post hoc planned comparisons revealed that only 8-year-olds and 6-year-

olds showed significant improvements in performance between the two blocks (p < .002). 

No significant Sequence Type X Block, Sequence Type X Group, and Sequence Type X 

Block X Group interactions were observed (p > .137).  

 For response synchronization (Fig 4), overall performance on the REP sequence 

was more synchronous than on the RAN sequences F (1, 49) = 66.089, p < .001 (M  REP 

= 480.713 ms, M RAN = 520.997 ms). Furthermore, there were significant improvements 

in response synchronization across the two blocks of practice F (1, 49) = 22.769, p < 

.001, indicating overall consolidation. Lastly, there was a significant main effect of 

Group F (3, 49) = 11.028, p < .001, where planned comparisons showed that Adults were 

significantly more synchronous than all Child groups (p < .05). Moreover, 10-year-olds 

significantly differed from 6-year-olds (p = .051). No significant interactions were noted 

(p > .346). 
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REP vs. RAN: Day 2 

When comparing group accuracy, on the REP and RAN sequences, across the two 

blocks of practice on Day 2 (Fig 3), there was a significant main effect of Sequence Type 

F (1, 49) = 32.667, p < .001, such that overall the REP sequence was performed more 

accurately than the RAN ones (M  REP = 88.8%, M RAN = 83.3%). There was also a 

significant Sequence Type X Block interaction F (1, 49) = 13.703, p = .001. Post hoc 

analyses comparing performance on each sequence type across the two blocks indicated 

significant improvements on the REP sequence (p = .002), but marginally significant 

decrements on the RAN sequences (p = .059). As expected, there was a significant main 

effect of Group F (3, 49) = 18.357, p < .001, such that 6-year-olds were significantly less 

accurate than all groups (p < .004) and 8-year-olds were significantly less accurate than 

Adults (p = .013). Finally, there was a significant Sequence Type X Group interaction F 

(3, 49) = 5.519, p = .002, such that only the 6-year-old and 8-year-old groups showed 

sequence-specific learning (p < .023). No other significant interactions were found.    

 For response synchronization (Fig 4), there was a significant main effect of 

Sequence Type F (1, 49) = 111.082, p < .001, such that the REP sequence was more 

synchronously performed than the RAN sequences (M  REP = 464.952 ms, M RAN = 

518.088 ms). Moreover, there was a significant Sequence Type X Block interaction F (1, 

49) = 24.6, p < .001. Post hoc analyses revealed significant improvements on the REP 

sequence, but significant decrements in performance on the RAN sequences (p < .001). 

No other interactions were observed (p > .231). There was also a significant main effect 

of Group F (3, 49) = 10.552, p < .001, such that Adults were significantly more 

synchronous than all Child groups (p < .036), but the Child groups did not differ from 
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each other (p > .093). No other significant interactions were found. 

REP: Day 1 

Having established that sequence-specific learning occurred for the task, we took 

advantage of the added power of additional trials by comparing performance across 

groups for the REP sequences only. The results of these analyses largely confirmed the 

results comparing performance on the REP and RAN sequences, such that overall, there 

was a developmental progression in motor sequence learning within and across blocks of 

practice, and there was a differential pattern of results for percent correct and response 

synchronization.  

For percent correct, across the three blocks of practice on Day 1 (Fig 5), there was 

a significant main effect of Block F (2, 92.58) = 43.336, p < .001, such that overall there 

were significant improvements in performance across all blocks (p < .046). Furthermore, 

there was a significant main effect of Group F (3, 49) = 42.963, p < .001. Post hoc 

analyses revealed that only the Adult and 10-year-old groups did not significantly differ 

(p = .181), indicating that by Day 1, 10-year-olds reached Adult level of performance on 

this measure. Finally, there was a significant Block X Group interaction F (6, 92.58) = 

7.221, p < .001, such that only 8-year-olds and 6-year-olds showed significant 

improvements across blocks of practice (p < .058). 

For response synchronization (Fig 6), there was a significant main effect of Block 

F (1.81, 88.67) = 56.173, p < .001, such that overall there were significant improvements 

in performance across all blocks (p < .009). Moreover, there was a significant main effect 

of Group F (3, 49) = 11.562, p < .001, such that Adults were significantly faster than all 

Child groups (p < .011). Lastly, there was a significant Block  
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Figure 5. Average accuracy data for all groups across five blocks of practice for all REP 

trials (14 trials per block). 
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Figure 6. Average response synchronization data for all groups across five blocks of 

practice for all REP trials (14 trials per block). 
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X Group interaction F (5.43, 88.67) = 2.689, p = .023. Post hoc analyses revealed that 

Adults reached ceiling in performance by Block 2, 10-year-olds showed significant 

improvements across all blocks (p < .007), and 8-year-olds and 6-year-olds showed 

significant improvements between Block 1 and Blocks 2 and 3 (p < .001), but not 

between Blocks 2 and 3 (p > .440).  

REP: Consolidation 

When comparing percent correct between the groups across the last block of 

practice on Day 1 and the first block on Day 2 (Fig 5), results indicated overall 

consolidation F (1, 49) = 15.445, p < .001. There was also a significant main effect of 

Group F (3, 49) = 24.135, p < .001, such that 6-year-olds made significantly more errors 

than all groups (p < .003), and 8-year-olds made significantly more errors than Adults (p 

= .001). Finally, there was a significant Block X Group interaction F (3, 49) = 6.647, p = 

.001, with post hoc comparisons indicating that only 8-year-olds and 6-year-olds showed 

significant improvements across the two blocks (p < .002), suggesting that Adults and 10-

year-olds reached ceiling in performance on this measure.   

 For response synchronization (Fig 6), a similar pattern of results emerged, such 

that overall there were significant improvements across the two blocks of practice F (1, 

49) = 8.126, p = .006. A significant main effect of Group F (3, 49) = 9.473, p < .001, 

revealed that Adults were significantly faster than the two youngest Child groups (p < 

.009), and 10-year-olds were marginally faster than the 6-year-olds (p = .068) but not the 

8-year-olds (p = 1.00), indicating that by Day 2, 8-year-olds reached 10-year-olds‟ level 

of performance. No significant Block X Group interaction was observed (p = .275).     

REP: Day 2 
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 When comparing percent correct between the groups across the two blocks of 

practice on Day 2 (Fig 5), there was a significant main effect of Block F (1, 49) = 13.431, 

p = .001, indicating improvements in performance across blocks. Moreover, there was a 

significant main effect of Group F (3, 49) = 15.78, p < .001, such that 6-year-olds were 

significantly less accurate than all other groups (p < .014), and 8-year-olds were 

significantly less accurate than Adults (p = .014) but not 10-year-olds (p = .945), 

indicating that by Day 2, 8-year-olds reached 10-year-olds‟ level of performance. No 

significant Block X Group interaction was observed (p = .275).  

 For response synchronization (Fig 6), there was a significant main effect of Block 

F (1, 49) = 42.495, p < .001, revealing significant improvements across the two blocks of 

practice. Moreover, there was a significant main effect of Group F (3, 49) = 7.156, p < 

.001, such that only the Adults were significantly faster than the two youngest Child 

groups (p < .024). Lastly, there was a significant Block X Group interaction F (3, 49) = 

4.444, p = .008, with post hoc analyses indicating that all Child groups showed continued 

improvements across the two blocks of practice (p < .001).           

Comparison of the rate of change between accuracy and response synchronization 

 Given the differential pattern of results found for accuracy and response 

synchronization, an additional analysis was performed to quantify and compare the 

absolute rate of change between the first and last blocks of practice, relative to the first 

block of practice, for both behavioural measures (Fig 7). To do this, the slope for each 

measure was calculated and normalized to the first block of practice. This allowed us to 

compare the two measures to each other using a repeated measures ANOVA 

(Greenhouse-Geiser correction), with Group as the between-subject factor and Measure  
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Figure 7. Comparison of rate of change between the first and last blocks of practice, 

relative to the first block of practice, for accuracy and response synchronization for all 

groups. 
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as the within-subject factors. Significant main effects and interactions were analyzed 

using pairwise comparisons, with Bonferroni adjustment for multiple comparisons. 

Results indicated that there was a significant Measure X Group interaction F (3, 49) = 

14.394, p < .001. Post hoc comparisons looking at group differences for each measure 

revealed that for percent correct, the rate of change was similar for Adults and 10-year-

olds, and these two groups differed from the two youngest groups (p < .027) who did not 

differ from each other (p > .05). When comparing both measures for each group, we 

found that there were no significant differences in the rate of change for percent correct 

and response synchronization, for the two oldest groups, likely driven by a ceiling effect. 

However, we found that the two youngest groups showed significant differences in the 

rate of change for the two measures, such that the rate of change was greater for percent 

correct than response synchronization (p < .05).   

Recognition and Recall Tests 

In order to compare the number of participants who correctly identified the REP 

sequence on the Recognition test, a Chi-square analysis was employed. For the Recall 

test, a one-way ANOVA was used to compare the mean percentage of correct key presses 

between the groups. Surprisingly, despite consistent significant group differences across 

blocks of practice for both percent correct and response synchronization, there were no 

significant group differences for either the Recognition (Fig 8) or Recall tests (Fig 9; p > 

.05).  

Correlations with Neuropsychological Measures 

 To assess the association between an overall measure of performance on the 

MFST (using an average of all REP trials, across the five blocks of practice, for percent  
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Figure 8. Recognition data for 6-year-olds, 8-year-olds, 10-year-olds, and Adults. 

Recognition data are the percent of participants who correctly identified the REP 

sequence from a three alternative forced choice.  
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Figure 9. Recall data for 6-year-olds, 8-year-olds, 10-year-olds, and Adults. Recall data 

show the average percent of correctly produced key-presses from the first 10 responses 

on the explicit recall test.
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correct) and neuropsychological measures administered, two-tailed Pearson correlations 

were performed by group. Overall, no significant correlations were found between 

overall performance on the MFST and the Vocabulary and Digit Span subtests of the 

Wechsler Intelligence Scales (p > .05). Additionally, no significant correlations were 

found between overall performance on the MFST and absolute span (as calculated based 

on the maximum number of correctly recalled numbers on the Digit Forward subtest of 

the Wechsler Intelligence Scales) and d‟ (a sensitivity index of CPT performance, 

computed on the basis of the ability to discriminate between target and false alarm 

stimuli; p > .05).      

Discussion 

The main goal of the current experiment was to examine developmental 

differences in motor sequence learning, across two days of practice, in three cross-

sectional samples of children, aged 6, 8, and 10 years, and a control sample of adults. 

Overall, our results showed a developmental progression in motor sequence learning 

within and across days of practice. Interestingly, the two behavioural measures, accuracy 

and response synchronization, showed different developmental trajectories. For percent 

correct, which measures explicit stimulus-response association, differences were greatest 

for the two youngest groups early in learning, and these groups also showed the greatest 

rate of improvement across all blocks of practice. By the end of Day 2, only the six year-

olds still lagged behind all other groups. For response synchronization, which measures 

implicit sensorimotor integration and timing, all child groups differed from adults early in 

learning, but both child and adult groups showed similar rates of improvement across 

blocks of practice. By the end of Day 2, 10 year-olds reached adult levels of performance, 
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whereas 6 and 8 year-olds did not. We postulate that this differential pattern of results is 

consistent with the idea that brain systems required for stimulus response association 

develop earlier than those involved in fine-grained sensorimotor integration and timing. 

Despite developmental differences across blocks of practice on both behavioural 

measures, there were no significant group differences for either the Recognition or Recall 

tests. We suggest that explicit knowledge of the MFST is not directly linked to task 

performance, thus challenging the implicit-explicit distinction in pediatric SRT studies 

assessing the developmental invariance model (Meulemans et al., 1998; Thomas et al., 

2004; Thomas & Nelson, 2001).  

The first goal of this study was to assess developmental differences in motor 

sequence learning within and across days of practice. In contrast to the abundant 

literature on the progression of motor sequence learning in adults, to our knowledge, only 

one child study to date has looked at motor sequence learning within the context of 

multiple days of practice (Dorfberger et al., 2007). In that study, the authors compared 

performance on a finger-to-thumb opposition sequence task in 9, 12, and 17-year-olds, 

within an initial training session as well as following 24-hours, 48-hours, and 6-weeks 

post-training intervals. Overall, results indicated that all age groups showed significant 

within- and across-session improvements in performance. The rate of learning did not 

differ among the groups and was similar to that reported for adults. Moreover, gains were 

observed in both speed and accuracy. In the present study, we used a somewhat similar 

design but our groups were comprised of younger children. We specifically chose to 

examine cross-sectional samples of school-aged children, between the ages of 6 and 10 

years, as this age range parallels the most significant changes in brain regions related to 
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motor learning (Barnea-Goraly et al., 2005; Gogtay et al., 2004; Mackie et al., 2007; Paus 

et al., 1999; Sowell et al., 1999; Sowell et al., 2004; Wilke et al., 2007). Thus, we 

hypothesized that there would be a developmental progression in sequence learning both 

within and across days of practice. In line with our hypothesis, overall we found that the 

degree and rate of learning was greatest for the two youngest groups. Accordingly, 

distribution of practice, over two days appeared to benefit most 6 and 8-year-olds, who 

showed both significant within-day gains and consolidation (as evidenced by “off-line” 

improvements between the last block of practice on Day 1 and the first block on Day 2). 

Surprisingly, 10-year-olds performed more similarly to Adults than to the other child 

groups, suggesting an incremental change in motor performance and control likely related 

to more mature motor pathways.  

Contrary to Dorfberger et al. (2007), we found a differential pattern of results for 

the two behavioural measures of learning. For accuracy, 10-year-olds reached Adults‟ 

level of performance by the end of Day 1, demonstrating early ceiling on this measure. 

The two youngest groups showed improvements within Day 1 and across Days 1 and 2, 

but 8-year-olds reached 10-year-olds‟ level of performance by Day 2, whereas 6-year-

olds continued to show significant gains in accuracy on Day 2. For response 

synchronization, all groups continued to show significant improvements in performance 

within and across Days 1 and 2. Moreover, additional analyses comparing the rate of 

change between the two behavioural measures confirmed that learning on the more global 

measure (i.e. percent correct) showed relatively rapid changes, particularly for the two 

youngest groups, whereas learning on the more procedural measure (i.e. response 

synchronization) showed slower changes that did not differ across groups. Thus, we 
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hypothesize that the greater rate of change observed for the accuracy measure, 

particularly for the 6 and 8 year-olds, likely reflects rapid learning of the explicit 

stimulus-response association. In other words, we postulate that accuracy, a more global 

component of the task, represents a measure of finger-stimulus mapping, and/or finger 

individuation and is more sensitive to rapid changes in younger children. In contrast, we 

hypothesize that synchronization is a more difficult parameter of motor control to learn 

and maintain, as it requires ongoing practice and relies heavily on sensorimotor 

integration and timing. Previous studies have proposed that different parameters of a 

motor sequence are likely to be acquired in separate but interacting systems (Hikosaka et 

al., 1999; Hikosaka et al., 2002; Savion-Lemieux & Penhune, 2005).  

In the present study, the developmental differences found for the two parameters 

of sequence learning are consistent with age-related changes in motor ability and the 

extended maturational timeline of motor pathways in the brain. Findings from recent 

structural neuroimaging studies have demonstrated age and region-specific changes in 

grey and white matter densities, with primary sensory and motor regions developing 

earlier, and frontal and  temporal-parietal association areas later (Gogtay et al., 2004; 

Paus et al., 2001; Paus et al., 1999; Sowell et al., 2004; Wilke et al., 2007). In particular, 

these studies show that global grey matter volume increases up until the age of 

approximately 6-10 and then decreases thereafter (Gogtay et al., 2004; Sowell et al., 

2004; Wilke et al., 2007). This decrease in grey matter is mirrored by and is partially the 

result of concurrent global increases in white matter. More specifically, studies have 

shown increases in the white matter concentration of the cortico-spinal system between 

childhood and late adolescence (Barnea-Goraly et al., 2005; Paus et al., 1999; Wilke et 



 

107 

al., 2007). It has been hypothesized that these increases may underlie decreases in nerve 

conduction time that are observed with development, and might be related to behavioural 

phenomena such as decreasing reaction times and increasing motor control associated 

with the improvement of fine motor skills across early childhood (Garvey et al., 2003). In 

addition to changes in cortical motor pathways, structural imaging studies have also 

shown changes in the white-matter pathways of the striatum and in the total volume of 

the cerebellum that continue into late adolescence (Barnea-Goraly et al., 2005; Mackie et 

al., 2007; Sowell et al., 1999). Taken together, the dissociation observed between our two 

behavioural measures of sequence learning is consistent with the hypothesis that accuracy 

or finger-stimulus association may rely predominantly on cortical maturation that occurs 

between ages 6 and 10; whereas motor timing and sensorimotor integration may rely on 

the maturation of white matter pathways that continue to develop into young adulthood.  

 Notably, our study involved coordination of four fingers of the right hand, similar 

to playing a sequence on the piano. An interesting observation made while testing the 

younger participants is that when asked to move one finger in response to the visual 

stimulus, at times, they appeared to produce simultaneous motion in neighbouring 

fingers. The younger child groups also required more familiarization trials before 

beginning the task, in order to learn the association between their fingers and the stimulus 

locations. Previous studies have shown that involuntary movements and poor 

performance of hand movements are normal features in young children (Denckla, 1973; 

Garvey et al., 2003; Wolff, Gunnoe, & Cohen, 1993). For example, a recent study that 

examined the cortical correlates of neuromotor development in healthy children has 

shown that as children got older (i.e. 10 years old), their finger speeds got faster and they 
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exhibited fewer mirror movements (Garvey et al., 2003), indicating better motor control. 

It was suggested that this developmental change in motor control parallels the 

maturational changes observed in the motor cortex and the cortico-spinal tract. 

Surprisingly, to our knowledge, there are numerous studies on fine motor control abilities 

in adults, such as determining the nature of interdependency between fingers during force 

production tasks (Hager-Ross & Schieber, 2000; Lang & Schieber, 2004; Reilly & 

Hammond, 2000, 2006; Slobounov, Chiang, Johnston, & Ray, 2002), but relatively little 

is known about developmental changes in these fine motor control abilities in children. 

Thus, future studies could explore this phenomenon in children in order to better 

understand the relationship between motor performance and motor control across 

development.  

In the current study, we chose to employ the same task for all groups, in order to 

compare group differences across a common paradigm. Given that we observed 

continued improvements on the response synchronization measure; that there were no 

significant correlations between our neuropsychological measures and performance on 

the task; and that no group differences were found on the Recognition and Recall tests, 

we can conclude that the task was appropriate for all ages. However, there were ceiling 

effects for the accuracy measure in Adults and 10-year-olds. Thus, it is not clear if the 

different rates of learning on both behavioural measures would be more similar if all 

groups started at the same level of performance. We are currently collecting data for a 

new study comparing motor sequence learning in children and adults using the same 

paradigm, but in which the speed of the task will be individually adjusted in order for all 

participants to begin testing at similar levels of accuracy.  
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  One of the most predominant themes in the developmental literature on motor 

sequence learning revolves around Reber‟s developmental invariance model, which 

postulates that implicit learning is invariant across childhood, given its reliance on 

ontogenically older brain areas such as the basal ganglia and cerebellum (1993). For 

instance, Meulemans et al. (1998) assessed implicit learning of the SRT in 6 and 10 year 

olds, as well as adults and found that children and adults showed similar sequence-

specific learning levels (i.e., larger discrepancy in reaction times between performance on 

the repeating-sequence trials and the random-sequence trials, when comparing the first 

and last block of practice), thus supporting the idea that implicit learning mechanisms are 

present early in development. However, these findings have been challenged by more 

recent functional neuroimaging findings, which demonstrated parallel developments in 

implicit and explicit learning systems, as evidenced by both age-related and learning-

related changes in neural activity (Thomas et al., 2004).  

 In the present study, we reported global sequence-specific learning effects (as 

demonstrated by significant main effects of Sequence Type across all points of 

comparison and for both behavioural measures). Notably, at the end of Day 2, there were 

significant improvements on the repeating sequence but decrements on the random 

sequences, providing further evidence for sequence-specific learning. We hypothesize 

that this dissociation in performance between the repeating and random sequences 

emerged primarily due to interference or negative transfer effects, as once performance of 

the predictable repeating sequence became more effortless, it interfered with performance 

of the unpredictable random sequences. In contrast, when comparing performance on the 

Recognition and Recall tests, at the end of Day 2, we found no evidence of age-related 
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differences in explicit learning, as all groups performed similarly on these tests. 

Interestingly, it is not the case that Adults and 10 year olds, who demonstrated ceiling 

effects on the accuracy measure, showed enhanced explicit knowledge of the repeating 

sequence, indicating that the sequence was acquired largely implicitly. It appears that 

performance on this task is independent of the explicit knowledge of the repeating 

sequence, thus challenging the validity of the implicit-explicit distinction assessed in 

several SRT pediatric studies (Meulemans et al., 1998; Reber, 1993; Thomas et al., 2004; 

Thomas & Nelson, 2001). Similar findings were reported by Seger (1997), who showed 

that performance on two independent forms of implicit learning did not depend on 

explicit knowledge.  

 Given the lack of association between implicit learning, as measured by 

performance on the motor task, and explicit knowledge of the sequence, as measured by 

the Recall and Recognition tests, we propose a different and novel approach for assessing 

implicit and explicit learning. In our view, rather than considering overall performance on 

the task as a form of implicit learning and recall or recognition of the repeating sequence 

as a form of explicit learning, we propose to evaluate the implicit-explicit distinction at 

the behavioural measures level. Thus, we suggest that accuracy represents a measure of 

more explicit stimulus-response association, whereas response synchronization represents 

a more implicit measure of fine-grained sensorimotor integration and timing.  

The last objective of the present study was to take an exploratory approach to 

evaluating the existence of a possible sensitive period for motor learning, based on 

previous findings that demonstrated that musical training before the age of seven 

enhanced adult motor performance (Watanabe et al., 2007). Overall, we found that 10-
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year-olds reached ceiling in accuracy by the end of Day 1, whereas the two youngest 

child groups continued to improve across blocks; however, all child groups benefited 

from continued practice on the synchronization measure. This differential pattern of 

results provides partial support for discontinuity in performance between the ages of 8 

and 10, with respect to the more explicit measure of learning, but not the more implicit 

measure. We hypothesize that this pattern of results is consistent with the idea that brain 

systems required for finger-stimulus association develop earlier (i.e. between the ages of 

6 and 10 years) than those involved in fine-grained sensorimotor integration and timing 

which continue to develop into young adulthood.  

In summary, the results of this experiment present a new way of assessing 

developmental changes in motor sequence learning using a modified SRT paradigm. The 

MFST offers a more naturalistic approach to study motor sequence learning that is 

similar to playing the piano or typing. Overall, our results challenge the implicit-explicit 

distinction in pediatric SRT studies assessing the validity of the developmental invariance 

model. Based on our differential pattern of results for accuracy and synchronization, we 

propose that implicit and explicit learning should be considered at the behavioural 

measures level, such that each measure represents an implicit or explicit component of 

sequence-learning. The finding that accuracy was poorer for two youngest child groups is 

consistent with the hypothesis that basic motor control of the fingers may rely 

predominantly on cortical maturation that occurs earlier in development. In contrast, the 

finding that response synchronization shows similar, ongoing changes for all groups 

suggests that motor timing and sensorimotor integration may rely on the maturation of 

white matter pathways that continue to develop into young adulthood.  
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Chapter 5 

General Discussion 

The purpose of the present dissertation was to investigate the effect of a selection 

of factors on fine motor sequence learning both within and across days of practice. 

Specifically, three studies were conducted to investigate factors related to how 

individuals are trained, namely contextual setting of learning (i.e. organization of 

practice), and factors related to individual characteristics, namely musical training and 

development. Ultimately, the goal of these studies was to explore ways to optimize motor 

sequence learning, as sequence learning is a significant part of our daily lives. 

The first paper (Savion-Lemieux & Penhune, 2010) investigated the effect of 

three practice patterns (i.e., massed, alternating, and random) on the learning and transfer 

of motor sequences. The main goal of this experiment was to assess the “contextual 

interference” hypothesis, which suggests that when more than one skill is learned in a 

single session, massed patterns of practice lead to better within-day acquisition, but 

random patterns of practice lead to better retention and transfer. Overall, results provided 

only partial support for the contextual interference hypothesis: on day 1, massed practice 

led to enhanced sensorimotor integration and timing (as measured by response 

synchronization), whereas random practice led to better stimulus-response association (as 

measured by accuracy). On day 2, all groups showed consolidation for both measures, as 

well as transfer for accuracy but not response synchronization. These findings are 

consistent with differential encoding of specific domains of motor performance. We 

postulated that learning of the stimulus-response association is a fast process that benefits 

from random practice because it requires the acquisition of this association in multiple 
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contexts. We further postulated that once the association is learned, it seems resistant to 

interference and is transferrable to a novel sequence. In contrast, learning of the 

sensorimotor integration and timing is a slower process that benefits from blocked 

practice because practice in a single context allows fine-tuning of the response.  

The second paper (Watanabe, Savion-Lemieux, & Penhune, 2007) examined the 

effect of musical training on adult motor performance. In this experiment, we tested 

musicians who began training before and after the age of seven. This is the first study in 

the literature where the groups were matched for years of musical experience, years of 

formal training, and hours of current practice. The main goal of this experiment was to 

evaluate the existence of a putative sensitive period in motor learning, similar to that 

observed for language acquisition. Overall, results showed that early-trained musicians 

performed better than late-trained musicians, and that this performance advantage 

persisted after five days of practice. Performance differences were greatest for response 

synchronization, suggesting that early training has its greatest effect on neural systems 

involved in sensorimotor integration and timing. These findings supported the idea that 

there may be a sensitive period in childhood where enriched motor training through 

musical practice results in long-lasting benefits for performance later in life. These results 

are also consistent with the results of studies showing structural changes in motor-related 

regions of the brain in trained musicians that are specifically related to training early in 

life. 

 The final paper (Savion-Lemieux, Bailey, & Penhune, 2009) looked at the effect 

of development on motor sequence learning. In this experiment, we tested three cross 

sectional samples of children aged 6, 8, and 10 years, and a control sample of adults, 
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across two consecutive days. The main goal of this experiment was to take a 

developmental approach to studying motor sequence learning. Furthermore, we 

hypothesized that if there were a sensitive period for motor learning, we would predict 

that children‟s ability to learn motor skills might change across development. Overall, 

findings showed a developmental progression in motor sequence learning within and 

across days of practice. Interestingly, the two behavioural measures showed different 

developmental trajectories. For accuracy, 6 and 8 year-olds performed more poorly early 

in learning but showed the greatest rate of improvement with practice. By the end of Day 

2, only the 6 year-olds still lagged behind all other groups. For response synchronization, 

all child groups differed from adults early in learning, but both child and adult groups 

showed similar rates of improvement across blocks of practice. By the end of Day 2, 10 

year-olds reached adult levels of performance, whereas 6 and 8 year-olds did not. This 

pattern of results suggests that accuracy or finger-stimulus association may rely on 

cortical pathways that show the greatest maturation between ages 6 and 10; whereas 

motor timing and sensorimotor integration may rely on subcortical pathways that 

continue to develop into young adulthood.  

 Together, the findings from the three papers presented in this dissertation shed 

light on the behavioural underpinnings of fine motor sequence learning. Importantly, this 

body of research offers insight into the progression of motor sequence learning both 

within and across days of practice. Surprisingly, very few studies to date have taken an 

across-day approach to the study of motor sequence learning. Moreover, results from all 

three experiments suggest that motor sequences are not represented as unitary 

components, but rather learned and encoded in different forms. This multi-faceted 
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representation provides important implications for motor training in various domains. 

Finally, there is some preliminary evidence to suggest the existence of a putative 

sensitive period in motor learning, similar to that observed in language acquisition.  

Contributions  

 While many studies have looked at motor learning at different stages, fewer have 

taken an across-day approach to examine how motor learning changes across time in the 

same group of participants. Overall, findings from all three papers in this dissertation 

support the progression of sequence learning across time, characterized by rapid within-

session improvements and slower incremental improvements across days of practice. 

Importantly, we have shown that both adults and children show consolidation, defined as 

significant improvements in or maintenance of performance between the last block of 

practice on the initial practice session and the first block on the second session, after a 

period of rest of 24 hours with no additional practice. Interestingly, we (Savion-Lemieux 

and Penhune, 2005) and others (Baddely & Longman, 1978; (Doyon et al., 2009; 

Hauptmann & Karni, 2002; Ofen-Noy et al., 2003; Shea et al., 2000; Walker, Brakefield, 

Morgan, Hobson, & Stickgold, 2002) have shown that even minimal amounts of practice 

spread over time are sufficient to induce consolidation of a motor sequence. Together, 

these results indicate that distribution of practice, or passage of time, is essential for a 

maximum benefit of practice to be gained, as the time delay allows for consolidation of 

learning. In a recent study, Steele and Penhune (2010) presented evidence for the role of 

the primary motor cortex (M1) in motor sequence consolidation. Greater activity in this 

region during the first block of learning on day 1 predicted greater improvements 

between days 1 and 2. Evidence for the role of M1 in consolidation also comes from 
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repetitive transcranial magnetic stimulation studies that have shown that stimulation of 

M1 soon after the initial session of practice disrupted motor sequence consolidation 

(Baraduc, Lang, Rothwell, & Wolpert, 2004; Hotermans, Peigneux, de Noordhout, 

Moonen, & Maquet, 2008; Muellbacher et al., 2002), whereas direct stimulation of M1 

facilitated sequence consolidation (Reis et al., 2009). Consolidation-related processes 

have been linked to sleep-dependent mechanisms (e.g., Landsness et al., 2009). For 

instance, Sejnowski and Destexhe (2000) have shown that spindle oscillations during the 

early stages of slow-wave sleep are important for opening molecular gates required for 

synaptic plasticity (Fogel & Jacob, 2001; cited in Walker et al., 2002). Sleep spindles 

have also been shown to be involved in the offline consolidation of a new sequence of 

finger movements known to be sleep dependent (e.g., Morin et al., 2008). Taken together, 

it appears that optimal learning requires distribution of practice over days, and that 

consolidation, mediated by factors such as sleep, may reflect the most dramatic step of an 

ongoing process, mediated by motor cortical plasticity. Thus, the proverb “practice makes 

perfect” implies that repetition over time, even if minimal, yields optimal results.  

 While distribution of practice over time promoted fine motor sequence learning 

globally, a robust dissociation was found, in all three papers, between the two 

behavioural measures used to assess learning. In our papers, we broke down fine motor 

sequence learning into two different components: accuracy, a more explicit component of 

the task that requires the association of the visual stimulus with the motor response, and 

synchronization, a more procedural component that requires fine-grained sensorimotor 

integration and timing. Overall, our results show that these two components are learned 

and consolidated differently. On one hand, learning of the stimulus-response association, 
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or finger-stimulus mapping, appeared to be a fast process, as significant improvements on 

the accuracy measure were often rapid and occurred within the first blocks of practice on 

day 1. This more explicit process seemed to require more effortful processing and 

attention initially; however, once the stimulus-response association was acquired, it 

seemed to be resistant to interference and transferrable to a novel sequence. On the other 

hand, learning of the sensorimotor integration and timing elements of the task appeared to 

be a slower and more difficult process to learn, as significant improvements on this 

measure persisted across days of practice. This more procedural process seemed to be 

under less cognitive control, be more susceptible to interference, and rely heavily on 

ongoing practice. Furthermore, given the differences observed on the synchronization 

measure between the musician groups in study 2 and the child groups in study 3, we 

hypothesized that synchronization may rely on brain systems that develop later.  

Interestingly, the dissociation we found is in line with a model put forward by 

Hikosaka and colleagues (2002). In their model, the authors propose that motor sequence 

skills are handled as two types of sequences: one spatial and one motor. The spatial 

sequence requires a high level of attention, is learned quickly, can be identified by rapid 

improvements in accuracy, and is encoded in loops between the rostral basal ganglia, 

prefrontal and parietal cortices, and the lateral cerebellum. Alternatively, the motor 

sequence requires little attention, is learned more slowly, can be identified through 

improvements in speed, and is encoded between the loops in the caudal basal ganglia, 

motor cortex, and medial cerebellum. Similarly, Steele and Penhune (2010)  found 

evidence for two different sets of brain networks that optimize each component of 

learning. According to their findings, the left primary motor cortex and right cerebellar 
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region were positively correlated with improvements in synchronization, whereas 

enhancements in accuracy were correlated with increases in specific hippocampus, 

Brodmann, and putamen regions. Taken together, there is growing evidence to suggest 

that motor sequences are acquired in separate but interacting systems that are 

characterized by unique behavioural and neural signatures. Furthermore, our results 

suggest that different factors differentially influence each component of learning. This 

multi-faceted view provides a new window into our understanding of motor sequence 

learning and offers important implications for teaching sequencing skills in disciplines 

such as sports and musical training, as well as in physical rehabilitation. 

Perhaps the most novel contribution of this dissertation pertains to the notion of a 

putative sensitive period in motor learning. A sensitive period is defined as “a broad term 

that applies whenever the effects of experience on the brain are unusually strong during a 

limited period in development…during which certain capacities are readily shaped or 

altered by experience” (Knudsen, 2004, p. 1412). In other words, a sensitive period 

denotes a time window when sensory experience has a greater influence on behavioural 

and cortical development. Alternatively, a critical period refers to a more rigid 

developmental window, readily influenced by genes, in which a function cannot be 

acquired outside it. A classic example of a critical period comes from the work of Hubel 

and Wiesel (1965) who demonstrated that if cats are deprived of vision to one eye during 

a short period after birth, they do not develop normal binocular vision, even when vision 

is restored to the deprived eye. They have shown that the deprivation of vision to one eye 

during the “critical period” after birth permanently altered the neural circuitry of the cats. 

Similarly, in humans, studies of congenitally deaf children who received cochlear 
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implants after a critical window (around age 3-4) never developed normal cortical 

responses to auditory stimuli (see Kral & Eggermont, 2007; Sharma, Nash, & Dorman, 

2009 for reviews). Until recently, most of the evidence for sensitive periods in humans 

was drawn from the domain of language acquisition. Classic early examples of a sensitive 

period came from single case studies of individuals who were chronically deprived of 

linguistic stimulation in early childhood and who failed to develop normal language, even 

after intensive exposure (Curtiss, 1977). With respect to second-language acquisition, it 

has been shown that individuals who are exposed to a second language before age 11-13 

develop greater proficiency than those who are exposed later in life (Johnson & Newport, 

1989; Weber-Fox & Neville, 2001). Our results from studies 2 and 3, combined with 

results from various neuroimaging studies in musical training, provide new evidence that 

there may be a sensitive period in childhood where enriched motor training, through 

musical practice, results in long-lasting benefits for motor performance later in life. First, 

neuroimaging studies have shown that musicians who begin training early in childhood 

show greater structural and functional plasticity in auditory and motor regions of the 

brain compared to those who start later (e.g., Elbert et al., 1995; Schlaug et al., 1995). For 

example, Schlaug and colleagues (1995) reported that musicians had a larger anterior 

corpus callosum than non-musicians did, and that those who began training before age 

seven showed a greater difference than those who began after age seven. More recently, 

professional pianists were shown to have greater density of white matter in motor 

pathways, and that density was relative to the number of hours they had practiced before 

age eleven (Bengtsson, 2005). Second, in study 2, we found that musicians who began 

training before age seven showed better synchronization than musicians who began 
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training after age seven (after accounting for number of years of training and experience). 

Finally, in study 3, we found a developmental progression in motor sequence learning, 

such that 6-year-olds consistently performed more poorly than 8- and 10- year-olds, 

particularly on the measure of response synchronization. Together, these sets of findings 

suggest that enriched musical experience early in childhood, when neural systems are 

immature, can induce long-lasting changes in adult motor performance, particularly for 

sensorimotor integration and timing We hypothesize that early plasticity in sensorimotor 

integration may lay down highly tuned circuits that can later be further optimized by 

learning mechanisms that remain plastic throughout life. Thus, early training may 

enhance the cerebellum‟s ability to integrate the sensory and motor information required 

for learning. The notion of a sensitive period in the motor domain offers exciting 

applications for music training. It can certainly help explain the ingenuity behind musical 

masters such as Mozart and Yo-Yo Ma. Importantly, longitudinal designs, looking at 

ability and brain development would need to be conducted to further examine the 

possibility of a sensitive period in motor performance. For example, longitudinal studies 

of children beginning training before and after the putative sensitive period would need to 

be conducted. Importantly, behavioural tasks with norms for different ages will need to 

be developed to assess whether potential performance changes in children who begin 

training early differ from expected maturational changes. Moreover, longitudinal studies 

could also extend to other types of motor training, such as sports, to see if the sensitive 

period hypothesis extends to motor domains other than music.  

   Future directions 

 Though results from this dissertation are a step in the right direction, future 
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research is required to clarify the complex interactions between the variables involved in 

the process of motor sequence learning. One limitation of this dissertation is that the 

analyses employed focused on group differences while overlooking individual 

differences. While individual differences in sequence learning were sometimes noted 

when testing participants (e.g., not all early-trained musicians performed better than late-

trained musicians did), these differences were obscured by the repeated measures 

analyses employed. An interesting line of research for future studies would be to look at 

individual differences in the rate of learning between individuals by plotting individual 

performance curves. Such an analysis would allow for a better understanding of 

individual variability and its meaning. Moreover, individual differences could be used as 

predictors for later learning as well as predictors for structural and/or functional neural 

differences.      

We specifically selected patterns of practice, musical training, and development 

as the factors of focus, but it is imperative to note that numerous other factors may have 

contributed to our results. For instance, genetic, personality, and environmental factors 

may have played a pivotal role in the differences found in study 2 between the early-

trained and late-trained musicians. Perhaps early-trained musicians had a genetic 

predisposition for earlier development of motor skills which may have intensified their 

motivation to start training earlier or obtain greater benefit from practice. Moreover, 

children with greater intrinsic motivation, greater family support, and/or exposure to 

musical training in the home may be more inclined to start training at an early age. 

Similarly, cognitive factors may have accounted for some of the developmental 

differences reported in study 3. Although we did not find significant correlations between 
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an overall measure of motor performance and a small collection of neuropsychological 

measures (i.e., Vocabulary and Digit Span on the Wechsler Intelligence Scales and a CPT 

measure), one might speculate, for example, based on the literature on executive function 

development (e.g., Best, Miller, & Jones, 2009; Brocki & Bohlin, 2004) that perhaps a 

more comprehensive battery of cognitive measures (e.g., intelligence, executive control, 

and memory abilities) paired with more sophisticated statistical analyses (e.g., regression 

and HLM) may help clarify the different developmental trajectories noted in motor 

learning. In sum, future research taking into account genetic, personality, environmental, 

and cognitive factors would further to help unravel the underpinnings of motor sequence 

learning.  

While this dissertation focused solely on motor learning, it is important to 

highlight the contribution of motor control to the study of motor learning. Because it is 

difficult to study the motor system as a whole (Schmidt & Lee, 2005), motor learning and 

motor control are often studied in isolation and are treated as independent concepts. 

However, these two concepts are not mutually exclusive and should be more often 

studied in relation to each other. For example, in study 3, an interesting observation was 

made while testing the younger participants; when asked to move one finger in response 

to the visual stimulus, at times, they appeared to produce simultaneous motion in 

neighbouring fingers. This observation was accidental and could not be further 

investigated. We hypothesized that the developmental changes observed in motor control 

most likely parallel the maturational changes noted in the motor cortex and the cortico-

spinal tract. However, surprisingly, to our knowledge, little was known about the 

developmental changes in fine motor control ability in children. Thus, future studies 
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should investigate the relationship between motor control and motor learning across 

development. With the advent of motion-capture technology, it would be interesting to 

couple motor learning paradigms with real-time tracking of finger or limb movements in 

order to explore the relationship between motor learning and changes in movement 

kinematics that occur with learning. These types of experimental designs could be 

extended to studying individuals across the lifespan (to look at the relationship between 

age, learning, and motor control), as well as clinical populations with motor impairments 

such as patients with stroke, children with global developmental delays, Attention Deficit 

Hyperactivity Disorder, or cerebral palsy, and adults with Parkinson‟s disease, 

Huntington‟s disease, or damage to the cerebellum or frontal areas. 

Taken together, results from this dissertation offer important new information on 

the effect of practice pattern, musical training, and development on fine motor sequence 

learning. Overall, we found that optimal learning requires distribution of practice over 

time, that synchronization is a more difficult parameter to learn and maintain, and that 

there may be a putative sensitive period for motor learning, similar to that observed for 

language acquisition. Ultimately, understanding motor learning at the behavioural level 

helps to elucidate the bidirectional relationship between motor skill learning and brain 

plasticity, and facilitates the design of neuropsychological studies based on behavioural 

outcomes. Future investigations should thus focus on elucidating the neural basis of fine 

motor sequence learning. Finally, unraveling the behavioural and neural underpinnings of 

motor sequence learning would offer exciting applications in areas such as music, sport, 

and industry, as well as in clinical practice (e.g., the rehabilitation of skills after injury or 

stroke). 
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LABORATORY FOR MOTOR LEARNING AND NEURAL PLASTICITY 

CONSENT FORM TO PARTICIPATE IN RESEARCH 

 

Title of project: The Effect of Practice Pattern on the Acquisition, Short-Term Retention and Transfer of 

Multi-Finger Sequences 

 

Researchers: Dr. Virginia Penhune (Principal Investigator), Tal Savion-Lemieux (Graduate Student), 

Anthony Hopley (Research Assistant) 

     

This is to state that I agree to participate in a program of research being conducted in the Laboratory for 

Motor Skill Learning and Neural Plasticity in the Department of Psychology at Concordia University. 

 

A. PURPOSE 

The purpose of this study is to advance our knowledge of how we learn precise motor skills, similar to 

playing the piano. In the future, this knowledge may be beneficial in settings in which optimal learning of 

fine motor skills is important, including expert music performance and motor rehabilitation. 

 

B. PROCEDURES 

This experiment includes 2 testing sessions. The first session lasts approximately 45 minutes. In this 

session, you will learn to reproduce two sequences of key-presses on an electronic keyboard. You will do 

this by following along with a visual stimulus presented to you on the computer. You will then be asked to 

practice the sequences for approximately 30 minutes. On the following day, you will be asked to return to 

the laboratory and practice the sequences for approximately 15 minutes. It is very important that you refrain 

from practicing the sequence between sessions. It is also very important that you refrain from drinking 

alcohol 24 hours prior to each testing session. On each day, you will be asked a series of questions about 

the quality and quantity of your sleep the night before. If you were recruited through the participant pool, 

you will receive two participant pool credits for participating in this research study. If you were not 

recruited through the participant pool, you will be compensated for your time and willingness to contribute 

to this research study.  

 

Advantages and disadvantages:  Participation in this study has no personal benefits. On a long term basis, 

the study may help us gain knowledge about motor skill learning. There are no physical risks associated 

with participation in this experiment. The only disadvantage of participation is the time you will spend 

doing the test and traveling to and from the laboratory. The investigator may end the study at any time for 

purely scientific reasons. In this case, compensation will be made for the part of the study completed. 

 

C. CONDITIONS OF PARTICIPATION 

 

I understand that my participation is entirely voluntary and that I am free to withdraw my consent and 

discontinue my participation at anytime without negative consequences. I further understand that all 

records and test results of this study will be kept strictly confidential. No one but the experimenters will 

have access to any information about me or my performance. In addition, my name will not be used in any 

report or publication.  

 

I HAVE CAREFULLY STUDIED THE ABOVE AND UNDERSTAND THIS AGREEMENT. I FREELY 

CONSENT AND VOLUNTARILY AGREE TO PARTICIPATE IN THIS STUDY. 

 

             

Name 

 

             

Signature         Date 

 

             

Witness‟ Signature        Date 
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For further information about this study either before or after it is completed, please feel free to 

contact: 

Dr. Virginia Penhune 848-2424 x 7535 (vpenhune@vax2.concordia.ca) and/or her associates at 848-

2424 x 7567. If you have questions about your rights as a research participant, please contact Adela 

Reid, Research Ethics and Compliance Officer, Concordia University, at 514-848-2424 x7481 or by 

email at Adela.Reid@concordia.ca. 
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155 

LABORATORY FOR MOTOR LEARNING AND NEURAL PLASTICITY 

CONSENT FORM TO PARTICIPATE IN RESEARCH 

 

Title of project:  Neuronal Basis of Human Motor Skill Retention  

Researchers:  Dr. Virginia Penhune 

  Donald Watanabe 

  Tal Savion-Lemieux 

  Nicole Lalonde 

     

This is to state that I agree to participate in a program of research being conducted in the Laboratory for 

Motor Skill Learning and Neural Plasticity in the Department of Psychology at Concordia University. 

 

A. PURPOSE 

The purpose of this study is to advance our knowledge of how the brain learns precise motor skills, similar 

to playing the piano. In the future, this knowledge may also increase our understanding of brain disorders 

resulting from disease or injury. 

 

B. PROCEDURES 

This experiment includes 6 testing sessions. The first session lasts approximately 30 minutes. In this 

session, you will be taught to make a sequence of finger taps in time with a visual stimulus presented on the 

computer. You will be asked to reproduce the sequence by tapping in synchrony with the visual stimulus 

using a single mouse key. You will then be asked to practice this sequence for approximately 15 minutes. 

On the following 5 days, you will be asked to return to the lab and practice the same sequence for 

approximately 15 minutes. It is very important that you refrain from practicing the sequence between 

sessions. It is also very important that you refrain from drinking alcohol 24 hours prior to each testing 

session. You will be compensated $20 for your time and willingness to contribute to this research study.  

 

Advantages and disadvantages:  Participation in this study has no personal benefits. On a long term basis, 

the study may help us gain knowledge about brain functioning. There are no physical risks associated with 

participation in this experiment. The only disadvantage of participation is the time you will spend doing the 

test and traveling to and from the laboratory. The investigator may end the study at any time for purely 

scientific reasons. In this case, compensation will be made for the part of the study completed. 

 

C. CONDITIONS OF PARTICIPATION 

 

I understand that my participation is entirely voluntary and that I am free to withdraw my consent and 

discontinue my participation at anytime without negative consequences. I further understand that all 

records and test results of this study will be kept strictly confidential. No one but the experimenters will 

have access to any information about me or my performance. In addition, my name will not be used in any 

report or publication.  

 

I HAVE CAREFULLY STUDIED THE ABOVE AND UNDERSTAND THIS AGREEMENT. I FREELY 

CONSENT AND VOLUNTARILY AGREE TO PARTICIPATE IN THIS STUDY. 

 

      

Name 

 

______________________________________________________________________________________ 

Signature        Date 

 

______________________________________________________________________________________ 

Witness signature        Date 

  

For further information about this study either before or after it is completed, please feel free to 

contact: Dr. Virginia Penhune at 848-7535 (vpenhune@vax2.concordia.ca) 
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CONSENT FORM TO PARTICIPATE IN RESEARCH (ADULT FORM) 

 

Title of project:  Developmental contributions to motor skill learning  

Researchers:  Virginia Penhune, Ph.D. (principle investigator) 

   Tal Savion-Lemieux, Ph.D. Candidate (graduate student) 

   Andrea Ming-Si Lee (undergraduate student) 

   Jennifer Anne Bailey (undergraduate student) 

 

     This is to state that I agree to participate in a program of research being conducted in the Laboratory for 

Motor Learning and Neural Plasticity in the Department of Psychology at Concordia University. 

 

A. PURPOSE 

 

     I have been informed that the purpose of this study is to advance our knowledge of how precise motor 

skills, similar to playing the piano, are learned and retained across the life-span.  

 

B. PROCEDURES   

 

     This experiment includes two consecutive lab visits (24 hours apart). Each visit will last approximately 

one hour. In the first visit, I will play a computer learning game using an electronic keyboard. In this 

learning game, I will be instructed to “catch the animal” (appearing in one of four squares presented next to 

one another in a row on a computer) as quickly and accurately as possible, by pressing one of four keys on 

an electronic keyboard using four fingers of the right hand. I will be asked to asked to play this computer 

learning game for approximately 25 minutes (breaks will be provided to prevent fatigue and boredom). I 

will also be asked to give definition of words and remember series of numbers. In the second visit, I will be 

asked to play the same computer learning game as on the first visit for 25 minutes. I will also be asked to 

complete another computer activity. On this activity, letters will be presented on a computer screen and I 

will have to press as quickly as I can the space bar after each letter presentation, except the letter X. At the 

end of the second visit, I will be compensated $5 and will be offered a small prize for my time and 

willingness to contribute to this research study. 

 

Advantages and disadvantages: Participation in this study has no personal benefits. There are no physical 

risks associated with participation in this experiment. Breaks will be provided to prevent fatigue and 

boredom. The only disadvantage of participation is the time you will spend doing the test and travelling to 

and from the laboratory. The investigator may end the study at any time for purely scientific reasons. In this 

case, compensation will be made for the part of the study completed.       

 

C. CONDITIONS OF PARTICIPATION 

 

I understand that my participation in this study is entirely voluntary and that I am free to withdraw my 

consent and discontinue participation at anytime without negative consequences. I further understand that 

all records and test results of this study will be kept strictly confidential. No one but the experimenters will 

have access to any information about me or my performance. In addition, my name will not be used in any 

report or publication. 

 

I HAVE CAREFULLY STUDIED THE ABOVE AND UNDERSTAND THIS AGREEMENT. I FREELY 

CONSENT AND VOLUNTARILY AGREE TO PARTICIPATE IN THIS STUDY. 

 

Name (please print): __________________________________________ 

  

Signature: __________________________________________ Date: __________________ 

 

Witness‟ Signature: ___________________________________ Date: __________________  
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For further information about this study either before or after it is completed, please feel free to contact Dr. 

Virginia Penhune at 514-848-2424 x. 7535 or by email vpenhune@vax2.concordia.ca, or Tal Savion-

Lemieux at 514-848-2424 x. 7567 or by email t_savion@alcor.concordia.ca. 

 

If at any time you have questions about your rights as a research participant, please contact Adela Reid, 

Research Ethics and Compliance Officer, Concordia University, at 514-848-2424 x. 7481 or by email 

Adela.Reid@concordia.ca. 



 

159 

CONSENT FORM TO PARTICIPATE IN RESEARCH (Parent Version) 
 

Title of project:  Developmental contributions to motor skill learning  

Researchers:  Virginia Penhune, Ph.D. (principle investigator) 

   Tal Savion-Lemieux, M.A. (graduate student) 

   Andrea Ming-Si Lee (undergraduate student) 
 

     This is to state that I agree to participate in a program of research being conducted in the Laboratory for 

Motor Learning and Neural Plasticity in the Department of Psychology at Concordia University. 
 

A. PURPOSE 
 

     I have been informed that the purpose of this study is to advance our knowledge of how precise motor 

skills, similar to playing the piano, are learned and retained across development. Results of this experiment 

will also allow us to evaluate the existence of a possible “sensitive” or “critical” period for motor learning 

in childhood, similar to that observed for learning a language. 
 

B. PROCEDURES   
 

     This experiment includes two consecutive lab visits (24 hours apart). Each visit will last approximately 

two hours. In the first visit, my child will learn, by trial and error, to reproduce a sequence of key presses 

on an electronic keyboard using four fingers of the right hand. My child will be cued to press one of four 

keys by a visual stimulus presented on the computer screen. The visual stimulus consists of an animal 

appearing in one of four rectangular coloured bars presented sequentially (next to one another in a row) on 

a computer screen. My child will be instructed to “catch the animal” as quickly and accurately as possible. 

The animal will jump from one bar to another until a sequence of ten key presses has been completed. My 

child will be asked to practice this sequence for approximately 20 minutes (frequent breaks will be 

provided to prevent fatigue and boredom). My child will then be asked to complete several other activities 

including: copying geometrical designs on a paper with a pencil; re-creating a design from a booklet using 

red-and-white blocks while being timed; and giving definitions of words. In the second visit, my child will 

be asked to play the same “catch the animal” game as on the first visit for 20 minutes. My child will then be 

asked to complete several other activities including: pressing on the space bar after letters are presented at 

varying speeds, except when the letter „X‟ appears; repeating numbers in either the same or reverse order as 

presented aloud by the experimenter; and recalling numbers in ascending order and letters in alphabetical 

order from a sequence of numbers and letters read aloud by the experimenter.  

     My child will be given a small toy at the end of each lab visit. In addition, I will be compensated 

$40.00, at the end of the second visit, for my time and willingness to contribute to this research study. 
 

Advantages and disadvantages: Participation in this study has no personal benefits. There are no physical 

risks associated with participation in this experiment. Frequent breaks and snacks will be provided to your 

child to prevent fatigue and boredom. The only disadvantage of participation is the time that your child will 

spend doing the test and travelling to and from the laboratory. The investigator may end the study at any 

time for purely scientific reasons. In this case, compensation will be made for the part of the study 

completed.       
 

C. CONDITIONS OF PARTICIPATION 
 

I understand that my child‟s participation in this study is entirely voluntary and that I am free to withdraw 

my consent for myself and my child and discontinue participation at anytime without negative 

consequences. I further understand that all records and test results of this study will be kept strictly 

confidential. No one but the experimenters will have access to any information about my child or my 

child‟s performance. In addition, my child‟s name will not be used in any report or publication. 
 

I HAVE CAREFULLY STUDIED THE ABOVE AND UNDERSTAND THIS AGREEMENT. I FREELY 

CONSENT AND VOLUNTARILY AGREE TO HAVE MY CHILD PARTICIPATE IN THIS STUDY. 
 

Child Name (please print): ______________________________________ 
  

Parent‟s Name (please print): ____________________________________ 
 

Parent‟s Signature: ____________________________________________    Date: ___________________ 
 

Witness‟ Signature: ___________________________________________     Date: ___________________ 
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For further information about this study either before or after it is completed, please feel free to contact Dr. 

Virginia Penhune at 514-848-2424 x. 7535 or by email vpenhune@vax2.concordia.ca, or Tal Savion-

Lemieux at 514-848-2424 x. 7567 or by email t_savion@alcor.concordia.ca. 
 

If at any time you have questions about your rights and your child‟s rights as a research participant, please 

contact Adela Reid, Research Ethics and Compliance Officer, Concordia University, at 514-848-2424 x. 

7481 or by email Adela.Reid@concordia.ca. 
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