
Taxonomy of Linux Kernel Vulnerability Solutions
Serguei A. Mokhov

Computer Security Laboratory
Concordia Institute for

Information Systems Engineering
Concordia University,

Montreal, Quebec, Canada
Email: mokhov@ciise.concordia.ca

Marc-André Laverdière
Computer Security Laboratory

Concordia Institute for
Information Systems Engineering

Concordia University,
Montreal, Quebec, Canada

Email: ma laver@ciise.concordia.ca

Djamel Benredjem
Computer Security Laboratory

Concordia Institute for
Information Systems Engineering

Concordia University,
Montreal, Quebec, Canada

Email: d benred@ciise.concordia.ca

Abstract—This paper presents the results of a case study on
software vulnerability solutions in the Linux kernel. Our major
contribution is the introduction of a classification of methods used
to solve vulnerabilities. Our research shows that precondition
validation, error handling, and redesign are the most used
methods in solving vulnerabilities in the Linux kernel. This
contribution is accompanied with statistics on the occurrence
of the different types of vulnerabilities and their solutions that
we observed during our case study, combined with example
source code patches. We also combine our findings with existing
programming guidelines to create the first security-oriented
coding guidelines for the Linux kernel.

Index Terms—Linux kernel, Software Vulnerabilities, Vulner-
ability Remedial, Vulnerability Solutions Taxonomy

I. MOTIVATION

Linux solutions for both servers and desktops are increasing
in popularity and notably so in the developing world as well as
virtualization. Today, systems running on the Linux operating
system kernel represent 12.7% of server market and estimated
3%-6% of desktop systems [32], [11]. As Linux is becom-
ing an important actor in the computing world, its security
becomes paramount. Similarly to other Unix and Unix-like
systems, there is a wide variety of software (desktop, shells,
services, etc.) that can be chosen by the administrator from
various vendors and the security of a Linux-based system thus
relies on the security of a wide set of applications, libraries,
programming languages, etc. However, what is unique to a
Linux system is the Linux kernel itself. Since the kernel
handles file and network operations, access control, resource
allocation, etc., its correct functioning is an important part of
the overall system security.

We performed this case study on the Linux kernel due to its
open-source nature, its popularity, and its development model.
This popularity has created a greater interest in scrutinizing the
source code for potential vulnerabilities, yielding substantial
amount of vulnerability reports to work from. Our study
examined the solutions to the vulnerabilities reported in 290
CVE (Common Vulnerabilities and Exposures referred to from
[21]) advisories, in the 2.4.x and 2.6.x version families. From
these solutions, we drew a classification scheme and computed
statistics related to the usage of these families of solutions.

Our major contribution is the classification of the security
solutions used for the improvement of the Linux kernel, and

C programs in general, as well as statistics on their relative
importance. We also introduce a new methodology to track
the patch solving a security issue based only on the contents
of the security advisory.

The paper is organized as follows: we examine previous
work that was done regarding Linux and C security in
Section II, followed by a description of the methodology
used in order to obtain the solutions to the vulnerabilities in
Section III. Afterwards, in Section IV, we show our results,
notably classification of the vulnerability solutions we define,
as well as statistics related to the occurrence of certain
vulnerabilities and their solutions in our data set. In Section V,
we illustrate the vulnerability solutions with patches from
our data set. In Section VI, we introduce our guidelines for
Linux kernel development based on our findings. Finally, in
Section VII, we conclude.

II. RELATED WORK

The security of Linux has been covered at many levels in the
IT industry. The level that drew the more ink so far has been
related to administrative tasks. For example, [12], [19] describe
the security features of Linux as well as how to properly con-
figure Linux-based systems. Other works approach the security
of Linux systems from the viewpoint of the programmer. For
example, Wheeler [33] explains proper coding practices in
both generic and language-specific cases. Furthermore, some
studies on the security of the Linux kernel done in the past
incorporated useful statistics on the preponderance of certain
types of software vulnerabilities [5], [25], [34].

The world of software vulnerabilities in C and C++ has been
extensively studied [26], [14], [33], etc. This literature will
often list various forms of software vulnerabilities, explain,
and illustrate them. They will also often propose a method
that can be used to remediate the vulnerability. When turning
to coding guidelines or code review guidelines [27], [29],
[20], [30], [1], [17], we see a need for simple and relevant
documentation. In some cases, we can find literature [12], [16]
that will describe how we can attack Linux systems as well
as countermeasures to such attacks.

The open-source community created some high-security
variants of Linux for environments requiring it. A first example
is the Linux Security Modules architecture [35], especially

known for SELinux [28], which implements strong security
policies, and LIDS [15], which offers intrusion detection ca-
pabilities. Another option available is Owl [23], a distribution
that ensures that the software included runs with minimal
privileges and fail-safe defaults which also offers a modified
version of the kernel.

However, as far as we know, there is no study that was done
on the techniques practically used by developers to remedy
Linux kernel vulnerabilities and their relative importance.

III. APPROACH

In this section we summarize the methods we used to find
the remedial methods for given vulnerabilities. Over the course
of roughly two years as a part of the research course work,
master’s research work [24], and general interest we gathered
the statistics of common vulnerability solutions, taxonomy of
which we present in this paper, covering most Linux kernel
vulnerabilities from 2002 to 2007.

We used a spreadsheet program1 to keep track of vulnerabil-
ity numbers, version(s) of the Linux kernel, the classification
of the vulnerability, links to the solutions, notes on the
methodology used to obtain the solution, solution summaries,
and the vulnerability solutions’ classification in the comma-
separated values (CSV) format. This spreadsheet was then
processed using a Perl script which generated the statistical
information for the counts, tables, and the relevant graphs.

We will now look in more depth at the methodology
used to obtain our results. We first chose a reliable data
source for Linux software vulnerabilities and extracted relevant
vulnerability reports, then used the vulnerability reports as a
starting point to find the patch associated. In parallel and after
this last activity, we established a classification of the solution
types we observed and assigned one or more classification to
each of the patches found. We finally developed an automated
tool that extracted statistics from the data set we were using.

For the extraction of relevant vulnerabilities, we decided
to use the National Vulnerability Database (NVD) [4], [21]
for a list of vulnerabilities for its official nature, its compre-
hensive contents and integrated statistics capabilities [22]. We
extracted all the unique vulnerability numbers (the older style
of CAN – YYYY – NNNN and the current style of CVE –
YYYY – NNNN) for all 2.4 and 2.6 Linux kernel versions
using the NVD web interface. This gave us a relatively shortlist
of 290 advisories to investigate between years 2002 and 2007.

The second step of our research was to track the precise
patch that solved each vulnerability. This task was non-trivial,
as no comprehensive database kept track of this information
and that the Linux kernel bug-tracking system contained no
version 2.4 information and would rarely return any results
on CAN/CVE numbers. Thus, we needed to resort to other
methods to find patches we were seeking.

We tried to use, as much as possible, the information that
was provided directly in the advisory. Often, it included a

1Eventually we hope to migrate to a more flexible and accessible form to
manage this database and possible to make it available on-line.

link to the revision control systems (BitKeeper [2] and GIT
[36]), giving us directly the patch related to the problem.
Sometimes, the advisory would lead us to Linux vendors’
advisories and bug tracking systems that lead to a patch
addressing the vulnerability. The advisories would also refer
to Bugtraq [3] emails that announced the vulnerability, which
sometimes included a patch to the vulnerability. At other times,
the best information that we could find from the advisory was
the function name, source code file or driver affected, as well
as the vulnerable versions. This allowed us to search the patch
of the first unaffected version for this precise information and
find the solution to the security issue.

We also found that the vulnerability number, expressed
under the CAN/CVE schemes, could often be found in ven-
dors’ bug tracking systems, maintainer mailing lists, maintain-
ers’ management systems [8], enthusiasts’ websites [13] and
newsgroups [6]. This information often leads us, directly or
indirectly, to the patch for the given vulnerability.

The Linux kernel project, for each version, includes a
ChangeLog. The changelog sometimes would include the
CVE/CAN number, or have a comment that allowed us to
conclude that it was related to the vulnerability investigated.
The commit comment or GIT commit number was then
queried for in the BitKeeper [2] archives.

As we were finding the vulnerability solutions, we also
examined them and noted a summary of the code changes
we observed. Broad categories quickly emerged as we were
doing this activity, which we started allocating to solutions that
were matching said categories. In order to ensure reasonble
consistency and proper classification, the authors refined the
classification and each category’s definition, and then collec-
tively re-examined most of the patches to ensure that they were
correctly classified. Afterwards, we used the earlier mentioned
Perl script in order to regroup and count the occurrences of
each vulnerability and solution and generate all the statistical
figures and table present in the paper.

IV. RESULTS

In this section, we first summarize some information about
the nature of the vulnerabilities examined, then proceed to
describe our classification, to finally offer some statistics we
drew from our vulnerability solutions data.

A. Vulnerability Classification

We used the classification directly from CERT [4], which
was included in every vulnerability report. Most of the cat-
egories were defined in [5], which we took the freedom of
citing and expanding as follows:

Input Validation Error – “failure to recognize syntactically
incorrect input” from the interactive user or from a module,
process, or function. This category includes subcategories such
as buffer overflows and boundary condition errors; however,
due to a large number of vulnerabilities in these two subcat-
egories, we mention them separately.

Buffer Overflow – failure to ensure that a computation does
not write information outside the intended address space.

Boundary Condition Error – failure to ensure that the
acceptable domain or range of data is respected.

Access Validation Error – allowance of “an operation on an
object outside its access domain.”

Exceptional Condition Handling Error – “system failure
to handle an exceptional condition generated by a functional
module, device, or user input.”

Environmental Error – “an interaction in a specific environ-
ment between functionally correct modules.”

Configuration Error – “a system utility installed with incor-
rect setup parameters.”

Race Condition – “an error during a timing window between
two operations.”

Design Error – improper design of the security mechanism
or implementation not satisfying the design.

Nonstandard – errors not matching any other description or
“unknown” errors per CERT.

B. Remedial Classification

While gathering and observing our data, we established
13 categories of solutions that were used by Linux kernel
maintainers, which classify, define, and illustrate as follows:

Change of Data Types refers to the use of more appropriate
data types (such as unsigned instead of signed) or non-static
when necessary.

Precondition Validation refers to ensuring that an opera-
tion’s set of preconditions are met before proceeding with
its execution. This is typically done by checking for a valid
variable values and range and returning an error code if the
conditions are not met. Additionally, this may include the
improvement of an existing precondition check, for example
by correcting an existing boundary, or adding a missing
upper/lower one.

Ensuring Atomicity refers to code modifications that guar-
antee non-concurrent execution of critical sections, typically
by adding locks, semaphores, etc.

Error Handling adds or improves the verification and han-
dling of error conditions. This is typically done by checking
the return value of a function call or adding statements
in previously existing error handling code. Please note that
error handling is most easily distinguished from precondition
validation by the fact that it typically occurs within the body
of the function, whereas precondition validation occurs at the
beginning of a function.

Zeroing Memory is about ensuring that selected memory
contents are overwritten by filling zero values.

Freeing Resources guarantees that resources such as mem-
ory and timers are being freed after usage.

Input Validation is the practice of validating or modifying
input data in order to ensure it complies with a safety policy.

Capability Validation allows the execution of an operation
only after a successful access control check.

Fail-Safe Default Initialization is the setting of a guaranteed
safe value for variables before an operation requiring its use.
This includes the assignment of a default value at declaration
time and ensuring null-termination of strings.

TABLE I
VULNERABILITY TYPE DISTRIBUTION

Vulnerability Types Count %
Design Error 91 28.35
Input Validation Error 55 17.13
Exceptional Condition Handling
Error

37 11.53

Buffer Overflow 30 9.35
Boundary Condition Error 29 9.03
Race Condition 25 7.79
Access Validation Error 18 5.61
Nonstandard 15 4.67
Not classified 11 3.43
Environmental Error 6 1.87
Configuration Error 4 1.25
Total 321 100.00

Protection Domain Enforcement guarantees that the data
operated on, or the execution flow, is in the appropriate
security domain. For example, the programmer can change a
kernel reference to a buffer in the user space, which is unsafe,
to a copy into the kernel space.

Redesign is often significant code changes, from refactoring
to the change of a provider package, including the introduction
of new or modification of the existing APIs.

Other solution that could not fit elsewhere in our classi-
fication and that was not observed enough (twice or less)
to deduce a category. It includes adding function pointers
in function tables, changing a buffer size, safe casting, safer
pointer arithmetic, error reporting, loop termination, low-level
assembly corrections, etc.

Unresolved are flaws to which a solution was not available
yet at the time when the statistics was gathered.

C. Statistical Analysis

Of the 321 vulnerabilities to date2 we found 339 solu-
tions. We saw that design error, input validation error, and
exceptional condition handling error were dominating the
errors at the root of the vulnerability advisories (Table I). A
corresponding diagram is in Figure 1.

In our analysis, we observed that precondition validation,
error handling, and redesign were dominating the solutions
(see Table II and the corresponding diagram in Figure 2). The
numbers purposefully do not match the number of advisories
evaluated (here 290 CVEs), as one advisory can contain multi-
ple vulnerabilities, each potentially showing multiple methods
used together to remedy it.

The additional statistics in Figure 3 lists counts of number
of vulnerabilities in the kernel for 2.4, then for 2.6, and
vulnerabilities that spanned across both branches.

V. EXAMPLE PATCHES

In this section, we illustrate each remedial method via a
patch. The patch file format is a standard way to represent
changes between two versions of the file [18].

2End of November 2007.

Fig. 1. Sorted Vulnerability Types Observed

A. Change of Data Types

In many cases, the data type used was not appropriate for
the data representation needed or the concurrency scenario.

Fig. 2. Sorted Solution Types

TABLE II
VULNERABILITY SOLUTION DISTRIBUTION

Remedial Types Count %
Precondition Validation 83 24.48
Error Handling 62 18.29
Redesign 61 17.99
Fail-Safe Default Initialization 26 7.67
Other 22 6.49
Change of Data Types 16 4.72
Zeroing Memory 15 4.42
Ensuring Atomicity 14 4.13
Input Validation 12 3.54
Protection Domain Enforcement 10 2.95
Capability Validation 8 2.36
Freeing Resources 6 1.77
Unresolved 4 1.18
Total 339 100.00

Fig. 3. Number of Vulnerabilities Found Per Kernel Branch

Typically, the change is from signed to unsigned types, or from
static to non-static. The Listing 1 shows how a vulnerability
was remedied by making a variable non-static, avoiding its
sharing between threads.

B. Safe Casting

Some casting operations, such as integer promotions, are
generated automatically by the compiler. In some cases, the
casting can be inappropriate, especially when working on
legacy code for new 64-bit platforms. The maintainer must
sometimes add explicit casts and variables of the appropriate
type in order to ensure that the data will be of the appropriate
form. The listing 2 shows how a vulnerability was remedied
by using a reference to the desired value of a safe data type,
instead of relying on the compiler to correctly cast the pointer
dereference.

{
enum ip_nat_manip_type maniptype,
const struct ip_conntrack *conntrack)
{

- static u_int16_t port, *portptr;
+ static u_int16_t port;
+ u_int16_t *portptr;

unsigned int range_size, min, i;

if (maniptype == IP_NAT_MANIP_SRC)
}

}

Listing 1. Example of Change of Data Type by Removing Static Assignment
for CVE – 2005 – 3275

if (!state->pri_unat_loc)
state->pri_unat_loc = &state->sw->ar_unat;

/* register off. is a multiple of 8, so the
least 3 bits (type) are 0 */

- s[dst+1] = (*state->pri_unat_loc - s[dst]) |
UNW_NAT_MEMSTK;

+ s[dst+1] = ((unsigned long) state->pri_unat_loc
- s[dst]) | UNW_NAT_MEMSTK;
break;

case UNW_INSN_SETNAT_TYPE:

Listing 2. Example of Safe Casting Remedial to CVE – 2004 – 0447

C. Precondition Validation

Any function typically has a few implicit and/or explicit
preconditions for its proper operation. These preconditions
are not always validated, leaving room for potential vulner-
abilities. A programmer must thus make those preconditions
explicit and ensure that they are validated before the function’s
body is executed. The Listing 3 shows how a vulnerability was
remedied by ensuring the validity of the len parameter.

if (!len)
return addr;

+ if ((addr + len) > TASK_SIZE || (addr + len) <
addr)

+ return -EINVAL;

Listing 3. Example of Improved Precondition Validation for CVE – 2004 –
0003

D. Ensuring Atomicity

Some code must be inherently thread-safe, because of the
nature of operating systems requiring concurrent execution of
certain functions. As such, a maintainer must ensure proper
locking of critical sections before executing them (or merely
obtaining a reference to sensitive data structures), as well as
ensuring the proper management of timers when some are
involved. The Listing 4 shows how a vulnerability can be
remedied by ensuring the locking of a data structure before
manipulating it through a pointer.

E. Error Handling

In many cases, the error status of some functions is not
checked, or the handling of the error is not appropriate in

struct ebt_chainstack *cs;
struct ebt_entries *chaininfo;
char *base;

- struct ebt_table_info *private = table->private;
+ struct ebt_table_info *private;

read_lock_bh(&table->lock);
+ private = table->private;

cb_base = COUNTER_BASE(private->counters, private
->nentries, cpu_number_map(smp_processor_id())
);

if (private->chainstack)

Listing 4. Example of Atomicity Guarantee for CVE – 2005 – 3110

context. Programmers must thus ensure that the good coding
practice of validating all function return values, as well as
the error handling schemes and other error conditions specific
to the context. The Listing 5 shows how an error condition
requires the freeing of memory and the communication of an
error status to the caller.

int syscall32_setup_pages(struct linux_b
int npages = (VSYSCALL32_END - VSYSCALL32_BASE) >>

PAGE_SHIFT;
struct vm_area_struct *vma;
struct mm_struct *mm = current->mm;
+ int ret;

vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL
);

if (!vma)
@@ -78,7 +79,11 @@ int syscall32_setup_pages(struct

linux_b
vma->vm_mm = mm;
down_write(&mm->mmap_sem);

- insert_vm_struct(mm, vma);
+ if ((ret = insert_vm_struct(mm, vma))) {
+ up_write(&mm->mmap_sem);
+ kmem_cache_free(vm_area_cachep, vma);
+ return ret;
+ }

mm->total_vm += npages;
up_write(&mm->mmap_sem);
return 0;

Listing 5. Example of Improved Error Handling for CVE – 2005 – 2617

F. Zeroing Memory

Some sensitive information can be left in the memory
from previous kernel operations, allowing possible private data
leaks. A maintainer should preventively ensure that memory
contents are wiped before using in the context where it can be
read by a user process, normally by filling the memory seg-
ment with zero values. The Listing 6 shows how a disclosure
vulnerability was solved by a few calls to memset.

G. Freeing Resources

Some security vulnerabilities can occur due to memory
leaks or unreleased resources such as timers. A maintainer
must ensure that good programming practices regarding re-
source management are enforced. Listing 7 shows how a denial
of service condition was remedied by removing memory leaks.

goto fail;
}
kaddr = kmap_atomic(page, KM_USER0);

+ memset(kaddr, 0, chunk_size);
de = (struct ext2_dir_entry_2 *)kaddr;
de->name_len = 1;
de->rec_len = cpu_to_le16(EXT2_DIR_REC_LEN(1));

Listing 6. Example of Zeroing Memory to Solve Data Leaks in CVE –
2004 – 0685

kenter("{%d}", key->serial);

key_put(rka->target_key);
+ kfree(rka);

} /* end request_key_auth_destroy() */

Listing 7. Example of Remediation of Memory Leaks for CVE – 2005 – 3119

H. Input Validation

Input validation consists of validating or modifying input
data in order to ensure it complies with a safety policy by
either truncation or filtering. A maintainer should ensure that
all data going through a security boundary, notably all data
coming directly from a user, is validated for correctness.
The Listing 8 shows how input validation capabilities were
not fully used for a bridge forwarding functions, allowing a
vulnerability, and how it was simply solved by ensuring a
specific subset of traffic for filtering.

struct net_bridge *br = p->br;
unsigned char *buf;

+ /* insert into forwarding database after filtering
to avoid spoofing */

+ br_fdb_update(p->br, p, eth_hdr(skb)->h_source);
+
/* need at least the 802 and STP headers */
if (!pskb_may_pull(skb, sizeof(header)+1) ||

memcmp(skb->data, header, sizeof(header)))

Listing 8. Example of Improved Input Validation Remediating CVE – 2005 –
3272

I. Capability Validation

In some cases, it is necessary to validate the executing
principal’s rights in an access control matrix. This is a special
case of precondition validation which we considered worthy to
mention separately. The Listing 9 shows how a simple check
remedies a security vulnerability.

J. Fail-Safe Default Initialization

Relying on default initialization performed by the
compiler can be tricky at best, especially when a
simple compile option can disable the feature overall
(see for example the -Wuninitialized and
-Wmissing-field-initializers options in GCC[7]).
Furthermore, the default initialization may not be to a value
that we need for our context. As such, maintainers should
ensure that critical variables are assigned to known safe

do_kdgkb_ioctl(int cmd, struct kbsentry
int i, j, k;
int ret;

+ if (!capable(CAP_SYS_TTY_CONFIG))
+ return -EPERM;
+

kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
if (!kbs) {
ret = -ENOMEM;

Listing 9. Example of Capability Validation Solving CVE – 2005 – 3257

values, or that strings are guaranteed to be zero-terminated.
Listing 10 shows how setting a pointer to NULL remedied a
denial of service vulnerability.

size_t array_size;

/* set an arbitrary limit to prevent arithmetic
overflow */

- if (size > MAX_DIRECTIO_SIZE)
+ if (size > MAX_DIRECTIO_SIZE) {
+ *pages = NULL;

return -EFBIG;
+ }

page_count = (user_addr + size + PAGE_SIZE - 1) >>
PAGE_SHIFT;

page_count -= user_addr >> PAGE_SHIFT;

Listing 10. Example of Fail-Safe Default Initialization Remediating CVE –
2005 – 0207

K. Protection Domain Enforcement

In the case of the Linux kernel, the data operated on can be
either in user space or in kernel space. The kernel implements
this differentiation by copying data between kernel and user
space as needed, hereby ensuring that the information is not
altered during an operation. Listing 11 shows an example of
this, where the call copy_to_user was added with error
handling.

L. Redesign

The option to redesign often requires major code changes,
as functions are added or removed (or have their signatures
changed), that new options appear or disappear, etc. A main-
tainer can improve the security of a system by changing a weak
module by another which is safer (and adjusting interfaces if
necessary), remove some dangerous options, etc. The Listing
12 shows how a dangerous option needed to be removed from
the code.

M. Other

Other methods were not encountered in a frequency allow-
ing us to classify them into category for themselves. Thus, the
“Other” category of improvements. The Listing 13 shows a
vulnerability solved by changing default file permissions.

case VIDIOCSWIN:
{
- struct video_window *vw = (struct video_window *)

arg;
- DBG("VIDIOCSWIN %d x %d\n", vw->width, vw->height

);
+ struct video_window vw;

- if (vw->width != 320 || vw->height != 240)
+ if (copy_from_user(&vw, arg, sizeof(vw)))
+ {

retval = -EFAULT;
+ break;
+ }
+
+ DBG("VIDIOCSWIN %d x %d\n", vw->width, vw->height

);

+ if (vw.width != 320 || vw.height != 240)
+ retval = -EFAULT;

break;
}

Listing 11. Example of Protection Domain Enforcement Remediating CVE –
2004 – 0075

- sctp_lock_sock(sk);
-
- switch (optname) {
- case SCTP_SOCKOPT_DEBUG_NAME:
- /* BUG! we don’t ever seem to free this memory. --

jgrimm */
- if (NULL == (tmp = kmalloc(optlen + 1, GFP_KERNEL)

)) {
- retval = -ENOMEM;
- goto out_unlock;
- }
-
- if (copy_from_user(tmp, optval, optlen)){
- retval = -EFAULT;
- goto out_unlock;
- }
- tmp[optlen] = ’\000’;
- sctp_sk(sk)->ep->debug_name = tmp;
- break;
+ sctp_lock_sock(sk);

+ switch (optname) {
case SCTP_SOCKOPT_BINDX_ADD:

Listing 12. Example of Redesign by Removal of Option for CVE – 2004 –
2013

MODULE_PARM_DESC(debug, "Enable debug output");

module_param_named(cards_limit, drm_cards_limit,
int, 0444);

-module_param_named(debug, drm_debug, int, 0666);
+module_param_named(debug, drm_debug, int, 0600);

drm_head_t **drm_heads;
struct drm_sysfs_class *drm_class;

Listing 13. Example of Other Solution: Changing Default File Permissions
for CVE – 2005 – 3179

VI. SECURE SYSTEM SOFTWARE CODING GUIDELINES

We are going to use the knowledge acquired in this study
in order to summarize and improve existing secure coding
checklists and guidelines [1], [14], [30], [17], [26], [27], [29],
[33], [20] and apply them to kernel and system software
development. Although those guidelines will overlap greatly
with existing guidelines and common programmer knowledge,
this contribution remains the first set of general guidelines for
Linux kernel development specifically.

A. System Software Design Guidelines

A wide spectrum of errors is classified as design errors. The
solutions here range over different aspects of validation, error
handling, and redesign. Therefore, it is difficult to provide
a checklist in this category other than suggest more formal
approach to the system software development process with
requirements, design, and extensive unit and acceptance testing
versus just mere code hacking. Every module shall have its
security requirements listed and documented and every patch
to that module has to be always checked against those require-
ments prior application. A good example of a failure to do so is
a replacement of a broken cryptoloop implementation with
another, similarly broken package (see CVE-2004-2135 and
CVE-2004-2136). Additionally, the coding conventions that
exist as well as mandatory comments for non-trivial pieces
of code should be enforced. Linus Torvalds provided such
guidelines for Linux [30], but there still a lot of code that dis-
obey them or is undocumented. It would be advisable for the
developer community to gradually and systematically re-read
and re-document each module/unit as it is being maintained
combined with automated documentation generators (such as
Doxygen [31]).

Finally, it is beneficial to maintain unit tests for all modules.
One typical organization is having a separate tree hierarchy
mimicking the original source code tree to include the unit
tests. Another organization is to have the tests in the same
hierarchy, but using a naming convention allowing to easily
distinguish the tests from the implementation. Integration
and regression testing helps the system at large to avoid
situation where a small change in one module triggers a large
failure somewhere else while not surfacing right away to the
developers.

B. General Code Guidelines

As we have seen, the vast majority of errors simply come
from the lack of validation of input, parameters, and return
values that go in and out to functions through parameters or
environment. Thus, at all cases an error handling of return
values from system calls and alike must be performed (see
Listing 5), a check and sanitization of all input arguments
(see Listing 8) and environment variables for validity prior
use, proper initialization to trusted values (such as in Listing
10) and so on. These guidelines seem obvious, but surprising
even at the kernel level are not always followed, where it is a
must.

Next, we need to consider termination conditions (e.g. loop
termination) as well as code reachability. In some cases, loop
termination conditions need to be added to ensure that a loop
terminates after a finite number of iterations. One form of
never-ending loops is seen in infinite recursion, which should
be guarded against. Finally, we need to ensure that all paths
of the code are reachable (something that can be ignored, as
show in Listing 13).

Further, there are many boundary errors related to signness
or data type size errors. Expected signness should always
be documented for every function or variable and conversion
macros to check and convert types from signed and unsigned
should be used to avoid or detect integer overflows and the
like. Unsigned variables should be used instead of signed ones
whenever possible.

Additionally, unit testing can catch a lot of such errors,
and static analysis tools [9], [10], [25] can be an useful
complements. Ultimately, one of the most useful tools remains
self and peer review.

C. Privileged Code Guidelines

The privileged code should be kept as short as possible
[20]. Such code typically raises privileges to perform certain
task (e.g. I/O) and then has to drop the privileges right after
according to the least privilege principle. In the kernel, such
code paths are typically in the device drivers. The danger here
is that often the privileged code executes on behalf of untrusted
user-level application (e.g. via system calls to read/write files
or spawn processes), and as such has access to many system
resources the application would not. Thus, if an application
could circumvent the system code while in privileged mode,
it could gain unauthorized access. Therefore, the time window
where the privileges are raised, should be as short as possible.

Furthermore, it is essential that the data operated on be a
copy of the data supplied by the user, and not a reference to
it, as this could allow a malicious user to transform it during
the processing (as illustrated in Listing 11). Finally, privileged
operations need to filter input in order to avoid exploitation
and increase of privilege through tainted variables.

D. Concurrent/Parallel Code Guidelines

System software, such as an operating system, should al-
ways be developed with concurrency in mind. The improper
coding typically results in race conditions. The race conditions
are possible where there is a more than one execution context
(of a process or a thread) is attempting to access a shared
resource (e.g. device, variable or a data structure, as illus-
trated by Listing 1). Thus, whenever dealing with global/static
variables or states, acquiring proper locks or semaphores prior
entry to a critical section of code and releasing them right after
leaving it should be maintained. The use of static variables in
functions should be avoided (or at least carefully analyzed)
and local variables referring to a lockable data structure or
part thereof should be initialized only after the lock has been
obtained (see Listing 4). The critical section code in the code,
just like privileged section code, should be as small as possible

to avoid lock contention and slowdown (due to serialization
of concurrency). The critical section code must be small and
thoroughly documented with expected execution scenarios to
increase confidence that it is deadlock- and starvation-free.
For this task some formal methods can be used, deadlock
avoidance, detection, or preemption algorithms should be
implemented. The latter, however, typically degrade system
performance, but could be enabled as part of the debug mode.

Another way to improve concurrency and reduce locking
overhead is to use copies of kernel data structures or make
them immutable where possible throughout the code as no
locking or mutexes are needed for immutable or copied data
structures.

E. Performance Coding Guidelines
While coding for performance is a noble goal, it has to be

justified in some cases as overly-optimized code can lower
maintainability and be prone to security bugs. In general, it
is not acceptable to remove precondition validation and error
handling checks for the sake of saving a few CPU cycles.

It is important to remember that many performance issues
are better resolved through profiling and proper design. For
example, on single-threaded uniprocessor machines, spinlocks
relying on busy-waiting should be avoided in favor of sleep-
waiting primitives.

In some cases, performance issues related to long recursions
become security issues (denial of service). Recursions should
be replaced by bounded iterative solutions. Such a solution
will increase performance and avoid a security issue.

F. Resource Management Code Guidelines
This category deals with resource leaks as in forgetting

to free unused ones as well as privileged information leaks
that migrates from kernel memory to user memory. Typically,
all explicitly dynamically allocated resources (e.g. memory,
timers, file descriptors, etc.) should be freed explicitly. If
the allocation and deallocation happen in the same function,
then allocation and deallocation statements (e.g. kalloc()
and kfree() or open() and close()) shall used right
away as if they were types of brackets while programming.
One example can be seen in Listing 7. When this is not the
case, proper documentation is a must, and conversion from
raw resource management (allocation/deallocation) to more
abstract resource management (i.e. using reference counts)
should be considered. When code is reviewed, we need to
ensure that the resources are deallocated only once in all code
branches, a task particularly suited for static analysis tools.

Another type of erroneous resource management sometimes
enables sensitive information leakage by the kernel (as show
in Listing 6). This typically occurs when data structures are
not zeroed by default.

G. Debug/Log Code Guidelines
Assertions and debug macros are good tools for in-place

debugging and shall always be used extensively. They don’t
result in performance penalty when compiled with the de-
bug macros and assertions disabled. Debug/logging should

be useful and traceable to the code for debug and auditing
purposes. The debug information should include timestamps,
UIDs, PIDs, creation/destruction of processes and files.

VII. CONCLUSION

During our case study, we have found that the practices used
by the Linux kernel development team to improve the security
are the error handling, redesign, precondition validation, fail-
safe default initialization, change of data types, ensuring
atomicity, zeroing memory, input validation, protection domain
enforcement, capability validation, freeing resources, unre-
solved, and other.

We also computed the relative frequencies of occurrence of
each type of vulnerability solution. As our survey found, it is
clear that a lot (about 40%) of vulnerabilities were remedied
with error handling and precondition validation, which can
be easily found and corrected in an audit review. We hope
that this conclusion will aid developers of system software to
implement proper methodologies and programming guidelines
that will prevent many vulnerabilities in the future. The
examples and guidelines we offer in this paper could also be
furthered for training maintainers in detecting and properly
correcting security vulnerabilities.

VIII. ACKNOWLEDGMENTS

We would like to thank Dr. Mourad Debbabi for his guid-
ance in assisting with this topic and this paper reaching the
publication stage, Dr. Chadi Assi for his efforts in this work
as the initial project topic in his Operating Systems Security
class and the Linux Kernel Hackers who collaborated with us:
Simon ‘Horms’ Horman, Eric W. Biederman, Nikos Ntarmos,
Linus Torvalds, Andrew Morton, Greg K.-H.

REFERENCES

[1] AusCERT. Secure unix programming checklist, 1996. http://www.
auscert.org.au/render.html?it=1975.

[2] BitKeeper. Bitkeeper, 2005. http://linux.bkbits.net/.
[3] Bugtraq. Bugtraq, 2005. http://groups.google.ca/group/mailing.unix.

bugtraq and http://www.securityfocus.com/archive/1.
[4] CERT. Cert advisories, 2005. http://www.us-cert.gov/cas/techalerts/

index.html.
[5] Shuo Chen, Zbigniew Kalbarczyk, Jun Xu, Ravishankar, and K. Iyer. A

data-driven finite state machine model for analyzing security vulnera-
bilities. In 2003 International Conference on Dependable Systems and
Networks (DSN’03), page 605. IEEE, 2003.

[6] Various Contributors. Linux Kernel Mailing List Archives via Google.
2005. http://groups.google.com/groups?q=linux+kernel.

[7] Various Contributors and GNU Project. GNU Compiler Collection
(GCC). Free Software Foundation, Inc., 1988-2005. http://gcc.gnu.org/
onlinedocs/gcc/.

[8] Debian. The debian’s svn repository, 2005. http://svn.debian.org/wsvn/
kernel/.

[9] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem. Check-
ing system rules using system-specific, programmer-written compiler
extensions. In Proceedings of OSDI 2000. Usenix, 2000.

[10] David Evans and David Larochelle. Improving security using extensible
lightweight static analysis. IEEE Software, Jan/Feb 2002.

[11] Steve Hamm. Linux inc. BusinessWeek Online, 01 2001. http://www.
businessweek.com/magazine/content/05 05/b3918001 mz001.htm.

[12] Brian Hatch, James Lee, and George Kurtz. Hacking Exposed Linux,
2nd Edition. McGraw-Hill Osborne Media, 2002.

[13] Simon Horman. Ultra monkey: Kernel security bug database, 2005.
http://www.ultramonkey.org/bugs/cve/.

[14] M. Howard and D. LeBlanc. Writing Secure Code, 2nd edition.
Microsoft Press, 2002.

[15] Xie Huagang. Lids: Linux intrusion detection system. http://www.lids.
org/.

[16] Jack Koziol, David Litchfield, Dave Aitel, Chris Anley, Sinan ”noir”
Eren, Neel Mehta, and Riley Hassell. The Shellcoder’s Handbook :
Discovering and Exploiting Security Holes. John Wiley & Sons, 2004.

[17] Macadamian. Macadamian’s code review checklist. http:
//www.macadamian.com/index.php?option=com content&task=
view&id=27&Itemid=31.

[18] D. Mackenzie, P. Eggert, and R. Stallman. Comparing and Merging
Files. Free Software Foundation, 2002. http://www.gnu.org/software/
diffutils/manual/ps/diff.ps.gz.

[19] Scott Mann, Ellen Mitchell, and Mitchell Krell. Linux System Security.
Pearson Education, 2002.

[20] Sun Microsystems. Security code guidelines, 2000. http://java.sun.com/
security/seccodeguide.html.

[21] NIST. National vulnerability database, 2005. http://nvd.nist.gov/.
[22] NIST. National vulnerability database statistics, 2005. http://nvd.nist.

gov/statistics.cfm.
[23] OpenWall. Openwall gnu/*/linux (owl) - a security-enhanced server

platform. http://www.openwall.com/Owl/.
[24] Marc-André Laverdiére Papineau. Towards Systematic Software Se-

curity Hardening. Master’s thesis, Concordia Institute for Information
Systems Engineering, Concordia University, August 2007.

[25] B. Schwarz, Hao Chen, D. Wagner, J. Lin, Wei Tu, G. Morrison,
and J. West. Model checking an entire linux distribution for security
violations. In Proceedings of the 21st Annual Computer Security
Applications Conference, pages 13–22. IEEE, 2005.

[26] R. Seacord. Secure Coding in C and C++. SEI Series. Addison-Wesley,
2005.

[27] Adam Shostack. Security code review guidelines, 2004. http://www.
homeport.org/∼adam/review.html.

[28] Stephen Smalley, Chris Vance, and Wayne Salamon. Implementing
selinux as a linux security module. http://www.nsa.gov/selinux/papers/
module.pdf.

[29] Visual Studio Team System. Guidelines for writing secure code. http:
//msdn2.microsoft.com/en-us/library/ms182020.aspx.

[30] Linus Torvalds. Linux kernel coding style. http://www.llnl.gov/linux/
slurm/coding style.pdf.

[31] Dimitri van Heesch. doxygen Manual for version 1.4.6. Doxygen, 2004.
ftp://ftp.stack.nl/pub/users/dimitri/doxygen manual-1.4.6.pdf.zip.

[32] Steven J. Vaughan-Nichols. Linux server market share keeps growing.
Linux-Watch Online, May 2007. http://www.linux-watch.com/news/
NS5369154346.html.

[33] D. Wheeler. Unix and linux secure coding howto, 2003.
[34] R. Wita and Y. Teng-Amnuay. Vulnerability profile for linux. In Pro-

ceedings of the 19th International Conference on Advanced Information
Networking and Applications, pages 953–958. IEEE, 2005.

[35] C. Wright, C. Cowan, J. Morris, S. Smalley, and G. Kroah-hartman.
Linux security modules: General security support for the linux kernel,
2002.

[36] Chris Wright. OOPS Linux Kernel Security Patches in the GIT
Repository. 2005. http://www.kernel.org/git/?p=linux/kernel/git/chrisw/
stable-queue.git;a=tree.

