Multiplayer Network Game Programming in MFC

-A Case Study of Video Poker

Li Zhang

A Major Report
In
Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science
Concordia University

Montreal, Quebec, Canada

April 2004

© Li Zhang, 2004

g

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-91154-3
Our file Notre référence
ISBN: 0-612-91154-3

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the
dissertation.

[Dot]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de ce manuscrit.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

11

Abstract

Multi-Player Network Game Programming

- A Case Study of video poker

Li Zhang

On-line multi-player games have become popular in recent years. In this report, we review
the techniques developed for improving networking game. We overview the feature of the
multip-player game for real-time reactive system in Internet environment. The VPNG
(Video Poker Networking Game) system is mainly responsible for multiple players playing
game online. This report describers the design and implementation of VPNG system. C++
has been chosen as the implementation platform because is can achieve capability. A
Client/Server model is used for this system. The key algorithms used are presented in

details as well as the interactions among the underlying objects.

1ii

Acknowledgement

I would like to express my deepest gratitude to my supervisor, Dr. Peter Grogono.
He gave me helpful guidance and advices all along the way.
Also, T would like to thank my family for the support during the years of my graduate

studies.

iv

Table Contents

Chapter 1 INtroduction.............c.occoeiriiiieriiiiniinieterereecteereereserereesresneseeeressenee

1.1 A Brief History of Computer Games

1.1.1 History of Computer Game............ceceevvreervemersuereererienesreseesueneens

1.1.2 History of Multiplayer Online Game..........cc.ceocereererrenenrerceereereeas

1.2 Status of Computer Game World

1.3 Purpose and Problem Statement

1.4 Report Outline

Chapter 2 Background and Related Technologyc.ccoooiiniiiiiiininnnnne.

2.1 Multiplayer Game Overview

2.2.1 Single-Machine Multiplayer Gamescccccoevvereierenrierecreecreennees
2.2.2 Local Multiplayer Games............coeveereerveereersveereesseessesseessessseseessens

2.2.3 Networked Multiplayer Gamescveeereeeererrereesieesseessesesnseesseens

2.2 Multiplayer Networking Game Programming Models

2.2.1 The Client / SErver MOdel......coovoveieriiiiiieiiiiiieveeeeessessssenveesesens
2.2.2 Peer-10 Pt MOMEl.....uuueeiiiiiiiiiiieeieeeeieeeeesecsiienttsess s sssseseesseeees
2.2.3 Host-Terminal Archite€CtUIEuuvevivvvreiiiiiveeeeeiirereercrsnresesessresessas

2.2.4 The Comparison of these Modelsccccevvervveenierninnennrnenceenneenen.

2.3 Multiplayer Networking Game Programming Feature

2.3.1 SyNChroniZation.......cecuerveerieenersressienreeresssesssessresseessessesssesssessasssees
2.3.2 Multiplayer Scalability........ccoccenerierririrerniennenniennienienieneeseesienees

2.3.3 RODUSINESS .. evveiiieeetiiiieieteeeeeteessssissasntesesssseseesssssassssssssossssssssssssenes

..................

..................

..................

..................

..................

..................

..................

..................

13

14

17

22

26

27

28

28

2.3.4 Area of Interest Managementcevveeveriveierreenrersensseessessnsesssessssssessessossosseses
2.3.5 Dead REChOMING.....ccvevviirriiriieiiiiintereeteeeeeree sttt e see st see s e es e sssesseesessesseans
2.3.6 Object SCalabilityccccevveveerrerririiererirteiereesertesesese st esres e snesesseseesanssnnennonns
2.3.7 Bandwidth Managementcccoceeevrreriiiecininnninennneneensrensessensesseses
2.3.8 FaITONESS....ccveeeieueerieiieeeentteeteesseseesresaresaseseesstssanesteessesaseessesanesssonsasssessnsesessns
2.3.9 PEISISEICE ... eeiurernrerererererenrerente e seerstesies st s sstesbe s sbesese s sbesesasesanessanesssaassnes
2.3.10 Rapid Database ACCESScoverrerierirerirrsersrerieessesseessesssesssesseesssessesssesssssosesses

2.3.11 Reliable, but fast protoCols........coevivierieninienininieerenresrenresseesiessesessesseesssesees

Chapter 3. Windows Sockets Network Programming..............ccccccoevvvvivvnivnininnniniiinnnnninninnn

3.1 Windows Sockets Concepts
3.2.1 What 1S SOCKEL......cotiiiriieiiitenteecteeeteeetrtee et s e saes v stesstesanssnassneasne
3.2.2 What is Windows SOCKEtcocieeuirienieiiiiiiieteteceeeeee et seee e
3.2.3 A S0cket Data TYPE ...c.evvvueiiriieiiereirienierereeireeseiesee et e set e seaessee e e e e s seneeenaee
3.2.4 USES OFf SOCKEL ..ottt ettt ae et ssaeseve s seesaes

3.2 Network Program Mechanics

3.2.1 OPEN @ SOCKELveieeeiieeereitenrtesieeetesstreseteesieessaee st e s st e s et esseesneeeneeeeaesseneens
3.2.2 Name the SOCKELcc.coiiiiiiiieieieeeetet ettt ettt s e e s s
3.2.3 Associate with Another SOCKetcoirveriiriiriicicctriceaees
3.2.4 Send and Receive Between SOCKEtS........cccevierievieriienieinienieneeeeeeeee e
3.2.5 ClOSE the SOCKEL....cccouviiiiiiiieiiiieierrtecete st s tes s eee e ssaresesenesesaresssesnesssssnanes

3.3 Sockets Programming Models

3.3.1 Windows Sockets Classes.......ceovvrruerrreniiirnienieeiieeite et ese e e e seeees
3.3.2 CSocket Programming Model.........ccccoceriinirnirneniniiecenieenireieneeeeeseesnens

3.4 Using Sockets with Archives

vi

33

33

35

38

38

38

38

38

39

39

39

39

40

42

44

35 How Sockets with Archives Work

Chapter 4. Video Poker Game................cccovviviririinccrnnncninnnnincnnennes

4.1 Rules of the Game

4.2 Basic Video Poker Hands

Chapter 5. VPNG System DeSigncccceevvirnieciiinninsinrenieneenenene

5.1 Description of the System

5.1.1 System Functionaliti€scccevvevceerrirercrererersiveeneeriennns

5.1.2 System Characteriesocueeeeverreerveniersenieeneenenen.

5.2 System Architecture

................................

5.4 Structure Model

5.4.1 Foundation Classes in MFCcoooovvieieieeeeeeeeeneeereeeeenenen.

5.4.2 Class Diagram of Server Subsystem

5.4.3 Class Diagram of Client Subsystem...........cccceeevcuvrenneee.

544 Classes Description in VPNG System

5.5 Behavioural Models

................................

................................

................................

................................

..

5.5.1 Sequence Diagramccceceevverirerirernruerereeeseeessessanseaenns

5.5.2 Activity Diagram.........cccoecevierieneeiiinsienieneeeese e

6.1 Pseudo code of VPNG System

................................

................................

6.1.1 Pseudo Code of Client Side€.....uueeereeeeeeevemevemereeeeeeeneeenenennns

6.1.2 Pseudo Code of Server Side...covvunvveeriiiiiiiiiiieeeeeneereeseenns

6.2 Interface

................................

6.2.1 Game Interface : SErver S1AE ...uuuueeieeeeeeeneneeeereeererenensasanes
6.2.2 Game Interface : Client Side......uuvveeeveerememeeerenererereneesenenes

Chapter 7 Conclusion & Future Workccococvevvvevenveennrnnninrccrnennne

................................

................................

44

50

50

51

54

54

54

54

56

57

57

58

58

59

71

71

72

74

74

79

83

7.1 Conclusion 95

7.2 Future Work 95
REFETCIICES ...ttt ettt et st be bbb o bt s st s b e b e srsesansnbess 98
Appendix A. Installation of Server and Client Applicationc..cccocoveniinniniiininenne 108
Appendix B. Setting up of Server and Client Application.................ccccoeveiiiiiiinnniniinnee 108
Appendix C. Procedures to run demo ApPpliCation................cccccoverreererreerrerecrenrerrnereneeenens 108
ApPpPendix D, GIOSSAIYc..ccooiiiiiiiiiiiiicictrt ettt 108

viii

Lists of Figures

Figure 1. Peer-to-peer startup protocol state diagram..........cocevvevevueiviiinncniiininninnnnnnns 19
Figure 2 Client-Server Programming Models............ccccceevinninininiinniiiiniiinnnn, 25
Figure 3 Windows Socket Classescccevererrerreerineeniinininiininiiiininniesnesssesesesesnes 41
Figure 4 The Architecture Diagram of the VPNG ... 56
Figure 5 Class Diagram of Server Subsystem.........cccceoerirceninriniiniininniiinnennin. 58
Figure 6 The Class Diagram of the Client Subsystemcccccocevininviinevnineniiniiinn. 59
Figure 7 The Sequence Diagram for Client Subsystem.........c.ccceceevvreevrninnninnnninenas 71
Figure 8 The Sequence Diagram for Server Subsystem ..., 72
Figure 9 The Activity Diagram of Client Subsystem..........ccceviviniiciivinincnnincnnnncaen 73
Figure 10 The Activity Diagram of Server Subsystem..........cccccooviviiiniinninninininininnn. 73
Figure 11 Objects in a Running SDI Applicationc..ccecievierieveievicinniinncneccncrrennennen 84
Figure 12 Setup one game Zroup ON SEIVETcoucvviruevriiiiniiniiiiiiiisiesiensssestesssersessessens 84
Figure 13 Interface for connection with playerscc.coceceveneeenninennininniiiinens 85
Figure 14 Interface When game 1S OVETcocuevieeiienieeienetiniieiiieeieeteceteeeesneeeearesanennes 85
Figure 15 Setup interface for player.........cooeeeevievenienirnenieiieicnteeecenenrener e 86
Figure 16 Interface of the first trun for player Mike.......cccccooeveniirninniniinniiicenne 87
Figure 17 Interface of first turn for player Lilian...........cccocoiiiiiniiiiiiniiiininiicniiencerenenene 87
Figure 18 Interface of first turn for player SOphiecocvevievioinviniiiriiciieccenen 88
Figure 19 Interface of second turn for player Mikecoocceriieviiniinciinienieecceeceeen, 89
Figure 20 Interface of second turn for player Lilian..........ccceeevveeiirininnninneniinicinenane. 89

ix

Figure 21 Interface of second turn for player Sophieccccceveveeererenrereerercieneereeneenens 89

Figure 22 Interface of third turn for player Mike........cccecvvvverrieniineeniennrenienieneeneeseenneens 90
Figure 23 Interface of third turn for player Lilian..........cccooevercnnncninncnnneeeccnen. 90
Figure 24 Interface of third turn for player Sophie........cccceveevevrevninenecnenenecerenceee 91
Figure 25 Interface of fourth turn of player MiKe......c.cooveeieviiniiniirenennenenniecseennienneeens 91
Figure 26 Interface of fourth turn for player Liliancccceeevereneerernrirenennsrenencennnenees 92
Figure 27 Interface of fourth turn for player Sophie........cccoeveenenierniiniiieieee, 92
Figure 28 Interface of last turn for player Mike.........ccccevvivvivivniincnnnncniicncncniine. 93
Figure 29 Interface of last turn for player Lilian..........cccccoeeevencnnoenecrnnninieeccecenenen. 93
Figure 30 Interface of last turn for player Sophie........ccccoovvvvinieninnnnniniininnicniens 94
List of Tables
Table 1 Setting Up Communication Between a Server and a Clientcccccoeeeveeencnes 47
Table 2 VPNG system Charactersccoceevererierierieneeceeenientesitneceteveseeeeesnesseees 55
Table 3 An example for total number of players on one Server........ccccceveeeeevercecevreenenans 56

Chapter 1 Introduction

Since the release of the first multiplayer computer game, the level of attention
game developers have devoted to the network aspect has dramatically increased
as games continue to grow in quality and complexity. The size and behavior of
the networks on which such games have been designed to run are also changing

rapidly, and games are becoming increasingly demanding in term of resource.

The purpose of this document is to overview multiplayer game and related
technology, to introduce the socket network programming , and to describe the of

VPNG (Video Poker Networking Game) system design and implementation.

1.1 A Brief History of Computer Games

1.1.1 History of Computer Game

Playing games on computers was first made possible by the introduction of
minicomputers in the late 1950s. Freed from the IBM punch card bureaucracy,
programmers for the first time were able to explore the possibilities opened up by
hands-on interaction with computers. Games were among the first programs
attempted by the original "hackers,” undergraduate members of MIT's Tech
Model Railroad Club. The result, in 1962, was the collaborative development of
the first computer game: Spacewar, a basic version of what would become the
Asteroids arcade game, played on a $120,000 DEC PDP-1. (Levy, 1984; Wilson,

1992; Laurel, 1993) Computer designer Brenda Laurel points out this early

recognition of the centrality of computer games as models of human-computer

interaction:

Why was Spacewar the "natural” thing to build with this new technology? Why
not a pie chart or an automated kaleidoscope or a desktop? Its designers
identified action as the key ingredient and conceived Spacewar as a game that
could provide a good balance between thinking and doing for its players. They
regarded the computer as a machine naturally suited for representing things that
you could see, control, and play with. Its interesting potential lay not in its ability
to perform calculations but in its capacity to represent action in which humans

could participate (Laurel, 1993, p. 1).

As computers became more accessible to university researchers through the
1960s, several genres of computer games emerged. Programmers developed
chess programs sophisticated enough to defeat humans. The first computer role-
playing game, Adventure, was written at Stanford in the 1960s: by typing short
phrases, you could control the adventures of a character trekking through a
magical landscape while solving puzzles. And in 1970 Scientific American
columnist Martin Gardner introduced Americans to LIFE, a simulation of cellular
growth patterns written by British mathematician John Conway. LIFE was the first
"software toy,” an addictively open-ended model of systemic development

designed to be endlessly tinkered with and enjoyed (Levy, 1984; Wilson, 1992).

The 1970s, of course, saw the birth of the video arcade, the home video game
system, and the personal computer. By the early 1980s, computer game
software production had become an industry (Wilson, 1992). And in the past
fifteen years, as personal computers' capacities have continued to exponentially
expand, computer games have continued to develop, offering increasingly
detailed graphics and sounds, growing opportunities for multiple-player
interaction via modems and on-line services, and ever-more sophisticated

simulation algorithms.

The world of computer games today ranges from arcade-style games
emphasizing hand-eye coordination, to role-playing games adding sound and
video to the Adventure formula, to simulation games in which players oversee the
growth and development of systems ranging from cities to galaxies to alternate
life-forms. Computer game publications divide the contemporary field into seven
genres: action/arcade, adventure, role-playing adventure, simulation, sports,
strategy, and war. Within these categories, of course, there remains much
overlap. An empire-building game like Civilization, for example, rests somewhere
between a wargame and a simulation, while many adventure games contain

arcade-style interludes.1

1.1.2 History of Multiplayer Online Game

This section gives a brief overview in the history of multiplayer online games.

1969

1980

1984

1987

1993

Rick Blomme wrote the famous Specewar. The first game that
worked on a remote network.

The first MUD (Multi User Dungeon) was released on ARPANet

(the basic of the Internet).

The beginning of commercial online gaming. Playing islands of
Kesmai for an hour cost about $12.

The first “ real” graphics-based MMOG Air Warrior was released.

ANet was becoming increassingly available to a wider audience

and was becoming known by the public as the Internet.

1993

1996

1996

1997

1999

The famous 3D game Doom by ID Software was released. The first
game which could be played over a network for up to four players.
ID software released Quake, which featured for the first time a built-
in internet-play capability.

3DO Company launched Mridian 59, the first commercial 3D
graphical MUD.

Origin launched Ultima Online. The first major MMORPG (Massive
Multiplayer online Online Role Playing Game). 50’000 players in the
first three months.

Verant Interactive launched Evrquest. The first 3D MMORPG.

1.2 Status of Computer Game World

The computer games have rapidly become a significant and expanding field of
entertainment industry and modern culture. Various conceptual and theoretical
models to understand games and how they work are being created, while the
games themselves are growing into new dimensions with their online and
multiplayer capabilities. The transition into the world of mobile gaming is creating

even more challenges and further possibilities.

The computer games are a relatively new innovation in the overall scheme of
things. They have been around in different forms since the beginning of
computers and in a lot of ways were essential in the route that computers have

taken in becoming a part of our every day lives.

The lack of research into network gaming was never a problem . Before Doom [1]
released in 1993, nearly all networked games were text based and used telnet or
similar protocols to transmit data from player to server and back. But even with
the advent of Doom, networked gaming was still confined to a small portion of the
population. However, in the last 5 years, with the growth of the Internet, this has
changed drastically. In the Internet environment, the vast majority of networked
gamers play card games, chess, checkers, and similar games. The genres of
games that have the most players, after parlor games, are First Person Shooters
(FPS) and Massively Multiplayer Online Role Playing Games (MMORPGSs),

followed closely by Real Time Strategy (RTS) games.

Since Doom, FPS have made up a large portion of networked gaming. In these

5

games, the player views the world through the perspective of this character (the
first person part) and is usually required to move around various locations slaying
monsters and other players, with an amalgamation of ranged weaponry found
along the way (the shooter part). On an average night, there are well over 10,000
servers for games using the Half-Life engine supporting over 40,000 gamers.

Other FPSs support slightly smaller user populations.

MMORPGs have been a rapidly growing field since Ultima Online's7 release in
1996. A MMORPG can be safely thought of as a graphical Multi-User Dungeon.8
All MMORPGs released thus far provide some mechanism for character
advancement, large areas of landmass to travel across, and other players to
interact with. The “big three,” Asheron's Call,9 Ultima Online,10 and

Everquest,11 claim to have nearly 1 million subscribers combined, and while only
a fifth of them login on any given day,12 these players consume a non-negligible
amount of bandwidth. In addition, several more MMORPGs have been released

in recent months,13 adding to this total.

The first RTS game was Dune 2,14 which was based loosely on the world from
the Frank Herbert series of novels. RTS games are generally characterized by
resource collection, unit construction, and battles that consist of large numbers of
animated soldiers standing a few feet apart going through the same animated
attack motion over and over. All of these actions happen continuously, unlike
earlier strategy games (most notably Civilization15 and various war games from

SSI and others) in which the player could take as much time as he or she needed

6

to plan his or her turn before pressing the process turn button. Since Dune 2,
there have been several more games released,16 each with their own variation
on the theme. Currently, the number of RTS fans playing Starcraft17 on an

average night numbers at least 20,000 players.18

1.3 Purpose and Problem Statement

The main goal of this major report is to describe the design VPNG and its
implementation. An environment for VPNG systems development based on
Microsoft Visual C++6.0. The main contributions of the report are:

¢ Overview the multiplayer network game and programming;

¢ Design and Implementation of the one multiplayer network game;

¢ Testing the implementation on the local network.

1.4 Report Outline

The major report is organized as follows: Chapter 2 overviews multiplayer
computer game, and introduces the models and features of multiplayer game.
Chapter 3 introduces the socket programming to implement multiplayer game.
Chapter 4 introduces the video poker game. The software architecture of VPNG
system , design and implementation are documented in Chapter 5 and Chapter

6. The conclusions and the future work are outlined in Chapter 7.

Chapter 2 Background and Related Technology

Computer and video gaming is an area which has recently seen a vry rapid
development. The gaming industry has evolved from single developers creating a
toy for teenager boys, to massive companies offering entertainment to all social
groups. The games offer an element of interactivity that allows the user to be the
lead character in the entertainment, rather than passively watching the product of

others.

Most modern games also include multiplayer options. Human opponents give the
games a social aspect. The internet has given the games a new opportunity for
expansion. The internet allows more players to play the same game than what
would be practical to gather in one location, it also promotes contact between

people with common interests.

2.1 Multiplayer Game Overview

As little as five years ago multi-player games were the exception rather than the
norm in the video game world. The thought of playing online with friends or
against them was something only talked or read about in computer magazines.

Today, virtually every new computer video game supports some sort of multiple

player-ability. If it doesn't, watch out. Fans will be up in arms that their new game

can't be played online with random people from the far off reaches of the globe.

The world of multi player games has exploded over the past couple years making
sites such as Microsoft's The Zone widely popular with thousands of potential

gamers ready and waiting to play the same game you want to.

It's tough to determine whether or not a new game that you buy will have the
same, better, or worse play-ability between stand-alone and multi-player
universes. A game such as Age of Empires 2: Age of Kings is excellent being
played alone, but many times the Al is either too hard, or too easy, making the
replay-ability of the game in very limited. Lets face it no one likes to get spanked
every time they play a game, and in the same respect a game that is won too
easy gets boring and dull. Taking this game and turning it loose on the Zone

opens up a whole new world.

Before you know it it's 3:00am and you're on your 5th game trying to send your
Persian War Elephants loose on the Turkish base while their janissaries and pike
men are slowly picking apart your village. Playing a real person, whether it is,
someone sitting next to you, or someone in Europe or Asia, makes the game
more fun. Knowing that there is someone on the other end of your conquest (no
matter how virtual and insignificant it may be) makes all the difference in the

world.

Almost every major web portal features online gaming, from Yahoo to MSN, and
the BBC to AOL. All these sites feature many games that are completely free of
charge, just download a small file and you're playing checkers, chess, or some

other puzzle game against some one.

For the really great multi player games like Age of Empires, Star Wars Galactic
Battlegrounds, Ashron's Call, or Ultima Online you will have to purchase the
game and then you're able to play. Ashron's Call, however charges a monthly
subscription fee to play online with thousands of other fantasy gamers. Whether
you want to play a quick game of checkers, a 2 hour game of Age of Empires, or
a complete campaign that may take weeks to finish or reach your goal, online
gaming is probably available for all of them. In any internet search engine just
type in "online games or "multi-player games" and it's sure to come up with
hundreds if not more matches. In the coming weeks make sure to check back for
reviews, links, top picks, screenshots, and additional articles that feature action

games that have multi-player capability.

For two games to participate in the same fame, it is crucially important that the
gamers agree on the current state the game is in. Otherwise, you may end up
talking to a person who is no longer present, or picking up an object the
opponent has already taken. If the state changes very rapidly, like in aircraft

simulators, ball games or combat scenes, this puts strong requirements on the

10

communication between the computers of two gamers. Today's Internet
Protocols are poorly adapted to this type of communications, which are required
to be both secure and extremely fast. Variations in the network bandwidth and
latency will also affect how the game is experienced. In order to be well received,
the game must offer the gamers a feeling of fair treatment, where everyone has

the same probability of success, no matter how their connection varies.

There are a few distinct flavors of multiplayer games, all of which require different
approaches. On one hand, there're games written for many players, but designed
to be played on a single machine. On the other, there are games written for local
play, or in general, game play across more than one machine with a local
connection not reliant on a network (like a null modem cable or dial-up modem
game). Finally, there are games which take place over large, wide-area networks.
I shall refer to these as single-machine, local, and networked multiplayer games,

respectively, from here on in.

In single-machine multiplayer games, the main game loop must call the engine to
process each player involved in the game; this includes getting input from them,
moving them, rendering their view, and computing any other logic associated
with them in the game. In a local multiplayer game, the game loop only needs to
process one player, the player on the machine which the game is running, then
send information about the player out to the other machines and accept

information about the other players (if needed) in return. Networked multiplayer

11

games are similar to local multiplayer games, but a client/server model is
generally used whereby each machine transmits its data to one server, then gets

information about other players back from the server.

2.2.1 Single-Machine Multiplayer Games

When designing single-machine multiplayer games, which are not very common
on PCs these days, The player must take into account several questions. The
most important of these would be, "How is each player going to be getting input
to the game?" and "How is each player going to see their character move, with

only one screen?".

Some common approaches include using two input devices, such as a joystick
and a keyboard, or sharing one input device, such as two people using one
keyboard (there would have to be seperate keys for every action for every player).
There have been a few more worthy approaches to the display problem. Most
single-machine-many-players-at-the-same-time games simply let players share
the same view. As a rule, this will work well only if the view isn't first person, and
only if (for 3D games) camera control is independent of player positions. In the
old side-scroller days, we sometimes saw split screens, wherein each player's
view was rendered on a different half of the screen. Split-screens are a big drag
on rendering time for any kind of game, and they definitely can make a game

cumbersome, but they do work.

12

About the most effective approach to the display and input problems associated
with one-machine mulitplayer games, at least for PCs, is to use a turn-based
system. Considering that they're still actually implemented, The tumn-based
systems have had the most luck over the ages. Turn-based systems work by
switching between player and player and allowing only one player to play at a

time.

Anyone that can write a single-player game and has an understanding of
scalable design knows enough to write a single-machine multiplayer game.
Single-machine multiplayer PC games are becoming progressively more extinct,
but it fit to note that old single-machine techniques aren't useless. Consoles, are

still very big on one-machine multiplayer.

2.2.2 Local Multiplayer Games

Local multiplayer games have been around for quite some time. Support for null-
modem play is still very common in today's games. On the contrary, direct
machine-to-machine modem connections are a lot less popular than they once
were, due to the fact that it gets a bit limiting facing the phone charges

associated with long-distance modem calls.

The architecture of a local multiplayer game is fairly simple. Each machine is
responsible for updating the game for one player. Each machine then stores the

changes in player state in a packet (a packet is data with a header to be

13

transmitted across a connection), which is sent to the other machines. The other
machines in the game use this data to update their game-state, and send out
information about their own players' movements, and the cycle continues.

Obviously, the specific implementation of this scheme is different between
different games: In realtime games, asynchronous packet transmission is a must,
and the game has to stay synchronized even if data packets are missed. In non-
realtime games, The players can rely on sending and receiving packets at a
definite time, and players also don't have to worry about overburdening their data

stream.

So here's a basic recepie for a local multiplayer game. First, the players establish
a connection to the other machine(s) in the game. This shouldn't be too hard,
considering that a phyisical one (such as a LAN or a null-modem cable, or a
direct phone line [modem]) must exist for game to be considered "local". Then,
the players somehow negotiate the initial setup of the game. Finally, the game
begins, and players begin the data-transfer process just described. Then, players

close the "connection”. It's conceptually simple.

2.2.3 Networked Multiplayer Games

Networked multiplayer games are conceptually the same as local-multiplayer
games, with a few exceptions. First of all, each machine in the game still handles
processing for the player using it. However, instead of sending packets out to all

of the other players in the game (or just the other player), in a networked game,

14

machines send packets to one central server and receive packets from the
server in return. The server is at the center of the game, storing all the game's
information and keeping things running. If turn-based systems are used
somehow, then the server is responsible for managing them. All the machines
connected to the game’'s server are called clients. This model in general is called
the client-server model of communication. Client-server is the communications

model used in the real world.

Networks implement communication protocols in order to give meaning and
structure to communications taking place on them. All communications on a
network are carried out according to a standard set of these protocols; if you are
to use a network effectively, then you must use its communications protocols.
The Internet has TCP/IP (Transmission Control Protocol/Internet Protocol) to
serve this purpose. TCP/IP is a family of protocols, both application-level (i.e.,
high-level, like FTP, HTTP, Gopher) and network-level protocols (such as IP,
ARP, ICMP). In TCP/IP, packets are constructed and routed through the network
to the appropriate machine, based upon the headers of these packets. The data-
area of these packets is the acceptable place for you to put your game's data
(you don't have to handle packets quite as was done above). The Internet
gaurantees that your packets will be sent to the correct machine, that is, the

machine running the server.

15

Client applications, or the version of the game that you would distribute to your
end-users (this program is often called the "client"), send TCP/IP packets to the
server, a program that dissects them and processes them; the server is a
program that runs on a machine identified by an IP address. The server listens to
a TCP/IP "port", where data comes in, and sends data back to its clients via

TCP/IP.

For the amateur, client/server based games can present a lot of problems, when
one tries to take them on from the ground up: First of all, you need a dedicated
machine with a dedicated IP to run the server. Next on the list, the machine has
to be able to actually run the server: Many commercial end-user operating
systems like Windows 95 don't ship with TCP/IP server implementations.

Fortunately, there are solutions such as Linux...

There's a lot involved in sending and processing a single packet of data in
networked games. Fortunately, in most operating systems, we've got access to
TCP/IP client implementations that allow us to avert the technicalities of low-level
Internet communication. With Winsock, for instance, it's possible to come up with
programs that do things like retrieve web pages from port 80 on any machine, in
about a page of code. High-level operating system APIs for Internet functions are
a blessing, not a hurdle, despite what the complaints may register. After all, is it

really practical to implement around thirty years of Internet yourself?

16

2.2 Multiplayer Networking Game Programming Models

In our scenario, there are two or more players involved in a game over a network.
This network may either be a LAN or the Internet. The players within the game
should experience essentially the same reality, thus if player A shoots at player B,
player B should see a shot incoming from player A’s position. Thus the game-
worlds should be synchronized in a sense that all players see each other’s
actions in exactly the same way. Hence, the coherence of our game reality is
preserved. There exist two popular models of game would synchronization. In a
peer-to-peer model, all the computers involved talk directly to all other computers.

In a client/server model, every computer talks only to the server.

When this protocol is active all clients communicate in a strictly peer-to-peer
manner. That is, there is no dedicated server (nor is there a client also acting as
server). During startup a client broadcasts a connect request to find other clients
that are already playing. If no other clients are found during this startup phase the
client decides that it is on its own and enters the game alone. Others can then
connect at any time later on. There cannot be more than four players in a single
game at any one time, though.Packets that transmit the current game-state to
other clients are sent to all other clients in a unicast fashion. Theoretically, it
would be ideal to use multicasting for this purpose, but in this way the underlying
network is not required to support any type of multicasting. Since the number of

clients for peer-to-peer play is limited to four, this is perfectly feasible.

17

The most demanding problem of the peer-to-peer protocol is the startup phase
(this part of the protocol is referred to as the startup protocol). Since there is no
server there are a lot of potential problems with race conditions when two or
more clients start up at approximately the same time. We have designed a quite
involved startup protocol to resolve all of these problems and achieve predictable

and consistent results in all cases.

Basically, in the peer-to-peer protocol clients find each other by broadcasting an
initial connect request (multiple times if necessary) and waiting whether they get
a reply by other clients that are currently running and therefore listening to such
connect requests. If after a certain amount of time no reply has been received a
client decides that it is alone in its world and enters without any further ado.

The following state diagram illustrates the peer-to-peer startup protocol using

pseudo-code to describe what is done in each state:

18

4 IMESIA0E
temecut >

NO CONKECTION

timeout = TMEOUT _COMNECT;
Add{Queve, Localbosth

COHRELT LODP

Broadeast [COMMECT, Quese};
Wait(RETRYWAIT_COMRECT);

no Aessage:
timaout e §

(e

SLOFREGUEST LOOP

00 Message
Send{ SLOT_REGUEST, temp_mastery tirveout > O
Wit{RETRYWAET_SLOTREQUESTY;

SLOTREQUEST LOGP STARTUR

Storeftenp_masteh n0 message

timeout « TIMEOUT _SUGTREQUEST;

store remate-payer table
{contained in packet}

LOST TEMPORARY MASTER.

BeplyTouens{ COMNECT _REPLY);
wi Locallost s Master

CONNECTION
ESTABLISHED

Figure 1. Peer-to-peer startup protocol state diagram

There are two fundamental approaches used here. First, conflicts of more than
one client starting up at approximately the same time (which means at least on
client is starting up during the startup phase of another client) are resolved by
comparing the clients' node addresses. Since these should be unique, in case of
conflict the client with the higher address wins. Second, clients that are starting
up always queue connect requests they receive by other clients. When a client
becomes the slave of another client that has just broadcast its connect request it
forwards its queue to that client. This is necessary to ensure no connect requests

get lost. Even though connect requests are sent multiple times if no reply has

19

been received, this alone is not sufficient to guarantee the entire request cannot
be lost when yielding to another client without queuing up requests and

forwarding them when necessary.

There are three major loops that are of importance to us here. Two of them are
shown in the state diagram above and are part of the startup protocol.
First, there is the connect-loop. Immediately after starting up a client enters this
loop. It will be exited if this client either yields to another client with higher status
(a client that is already connected, or a client also just starting up but with higher
node address), or a certain amount of time has elapsed in which no clients of
higher status have identified themselves. If this happens a client sends connect
replies to all queued clients of lower status and enters the game-loop (the third

loop, see below).

Second, there is the slot-request loop. A client enters this loop when it either
implicitly decides for itself that it is a slave (a connect request of a client with
higher node address has been received), or when it receives a SUBDUE_SLAVE
notification, thus explicitly becoming a slave. A client being in the slot-request
loop waits there until it receives a message by the master allocating a slot for the
client. Normally, it is guaranteed that this will always happen for clients being in
this loop; at least as long as the current (temporary) master doesn't crash in the

middle of the startup phase while another client is in its slot-request loop. If this

20

should happen, though, the client will time out, display an error message, and the

user has to issue another connect command.

Either way, after the startup phase a client will enter the game-loop. (This loop is
the actual game (playing, rendering, etc.), as far as the networking-code is
concerned.) There are two ways in which this is achieved. Most clients enter the
game-loop as slaves, that is, someone already running has assigned them a siot.
A client can also enter the game-loop as temporary master. Temporary in this
case means that there actually is no master/slave relation as soon as all clients
are in the game-loop. Nevertheless, during startup a temporary master is elected
who assigns a slot to itself and each of the slaves in order to ensure race
conditions cannot occur. After all slots have been assigned all clients are equal.

There is a very good reason not to retain the already established master/slave
relationship once everyone is in the game-loop. If the master exits another
master has to be reelected. First, this is not quite trivial to do in a fail-safe way,
and, second, there are all sorts of problems when clients try to start up while no

new master has been elected yet.

Clients in the game-loop react to connect requests they receive in the following
way. First, they look at their list of peers (including themselves) and establish a
unique ranking order using the node addresses. They then wait their rank
(starting with O) times a certain wait-interval. If they are not able to snoop a

connect reply of another client during this period, they will send a reply

21

themselves. This approach ensures that somebody will reply to the connect
request, even if clients that are still in the list have already exited without sending
a notification (i.e., crashed, or their host has been turned off without exiting). It
also ensures that there are no conflicts, since the replicated client list can only be
inconsistent with respect to crashed clients, but there cannot be clients that are
connected but not part of the list. Therefore, no two clients will try to reply at the

same time.

In essence, this approach amounts to some kind of dynamic master-reelection

protocol each time a new client tries to connect.

2.2.1 The Client / Server Model

In the Client-Server model, there is a dedicated computer that takes on the role
of a server. All clients connect to the server. All of the communication takes place
between clients and a server, as clients never talk to each other. The server
takes on the duties of the ‘host’, informing the clients of the joining and leaving
players. The server also authenticates players’ moves before sending them to
the other clients. Thus the scheme functions as follows. ‘ A player wants to move
forward. He sends the ‘forward’ command to the server. If the server allows the
move, it broadcasts that move to all other players. If the command is invalid, the

server messages the client and disallows the move.’

22

The advantages of the client-server approach are the improved security and
excellent scalability. The improved security is achieved because the server
validates all of the clients’ moves. The scalability is good because each client
only sees the up and down traffic from the server, which is essentially not
dependent on the total number of clients. Further scalability may be achieved
through load balancing, a principle that requires that you have a number of

servers each handling a portion of the total number of connected clients.

The disadvantages of the client-server model are the need for dedicated
hardware and reduced fault tolerance. The requirement for dedicated hardware is
the primary disadvantage of the client-server approach. The server requires a
very high bandwidth line, since it facilitates communication with all of the clients.
Also the fault tolerance is reduced, since if the main server becomes unavailable,

the game will stall.

In the online game context, a server refers to an entity that calculates and
simulates the game states based on the players’ actions, and a client refers to an

entity that renders and presents the game states to the user.

When a server runs the game simulation or when a client presents the game
state, they synchronize the events or states based on the time that they have

been generated.

23

To synchronize the game play and interaction amongst the users, the online
game system must take into account these latencies between the servers and

the clients.

« "Client-Server Architecture” describes a network architecture in which
each computer handles part of the processing work, but is designated as
either a "client” or a "server" with respect to each process. "Servers" are
shared, central computers which are dedicated to managing specific tasks
for a number of clients. For example, "file servers” are dedicated to storing
files, "print servers” are dedicated to printing, and "network servers" are
dedicated to routing network traffic. "Clients" are workstations on which
users run programs and applications. Clients rely on servers for resources,
such as files, devices, and even processing power, but process
independently of the servers. Client-server architecture can be used in any
sized network; the distinguishing characteristic of client-server architecture
is that all computers on the network participate in processing, but that
certain computers are dedicated to specific services or tasks and do no

other work.

o Client-Server Programming Models

24

Client-server programs split functions and processes between client and
server computers. In most cases, client-server programs create three

functional divisions of "work":

« Data Storage -- storage of data used by the program, typically in a large

database.

» Business Logic -- processes which do the "work", such as requesting

data, sorting data, returning data, processing data into reports.

o Data Presentation -- display and user interface.

The following diagram illustrates the design issue:

Server Computer Data Storage

B S
: ? | Business Logic

I

| n |

| |
Client Computer Data Presentation

Figure 2 Client-Server Programming Models

Almost all client-server models locate Data Storage on the server computer and
Data Presentation on the client. The difference between client-server models

depends on how the Business Logic is split up between client and server.

25

2.2.2 Peer-to Peer Model

In peer-to-peer model, all clients talk to all other clients. Thus, individual state
updates are transmitted to all the machines. Also, a single machine is designated
‘host’. The host is almost like a server, in that it keeps track of the players and
informs the other clients when a client joins or leaves the game. Here, however,
the similarity ends, as the host does not serve as a central connection point for
all the clients. The host is a required entity, so peer-to-peer games almost always
support host migration, which is a protocol that is commonly handled. ‘Host
migration’ automatically transfers the host responsibilities to another computer, in
the case that the active host disconnects or becomes unavailable. An illustration

of a typical peer-to-peer setup is following.

The advantage of the peer-to-peer method is that it is fault tolerant, easy to
implement and does not require any special hardware. Since there is no central
server to disrupt, if anything happens to one or more of the players, the rest will
not be affected. Thus, this system is very fault tolerant. Implementation is also
very simple as all clients are the same and there is no need for a specialized
stand-alone server. Also, since the server is not present, there is no need for any

special hardware.

The disadvantages of the peer-to-peer method are the high security risk and
scalability problems. The issue of the security risk comes in because the clients
are responsible for sending information about themselves to all other clients.

26

Thus, there is no external validation mechanism and if a client were hacked, it
could send erroneous information to the rest of the clients, which they would take
it at face value. Hence, in a game, the cheater could talk through walls, get
infinite health, etc. Yet, the biggest disadvantages of peer-to-peer networking

lies in scalability problems.

o "Peer-to-Peer Architecture" describes a type of network in which a
number of workstations are connected together, but in which no computer
is dedicated as a "server". Instead, each workstation can be (and usually
is) both "client" and "server", depending on the task involved (for example,
Workstation A may be connected to a printer and act as the "print server"
for the other workstations, while Workstation B may be connected to a
modem and act as the "communications server" for the others). Peer-to-
peer networks are usually small (under 25 workstations) and do not offer
the solid performance in larger installations or under heavy network traffic

loads.

2.2.3 Host-Terminal Architecture

Host-Terminal Architecture” describes a type of network in which a central
computer (the "host") is connected to a number of workstations ("terminals"), and
in which the host handles all processing. Terminals are used to input data into
the host and to review reports, but the terminals are "dumb” in the sense that the

workstations do not participate in processing work. Host-terminal architecture is
27

suited to both large and small networks; the distinguishing characteristic is that a

single, central computer handles the processing work.
2.2.4 The Comparison of these Models

The two approaches are both valid but on different scales. If the game world will
consist of only a few players, then a peer-to-peer model is an acceptable method
for synchronizing the game world. For example, Microsoft's Age of Empires uses
the peer-to-peer networking scheme, but limits the number of active players to
four. How ever, if there is a possibility of a moderate to large amount of players
being present in the game-world at the same time then the client —server model
should be used. It should also be noted that the peer-to-peer model is much less
secure, so if the security is a factor then the model should be chosen acoordingly.
An excellent example of the client-server approach is the ID software\s Quake lil,
which is a fast-paced 3D shooter that allows up to forty clients to participate in a

single game.

2.3 Multiplayer Networking Game Programming Feature

The multiplayer game networking offers a wide variety of technological
challenges. For some of the following points satisfactory solutions already exist,
others are currently subject to research, while others again are likely candidates

for future activities. For all of these problems, it must be kept in mind that the

28

solution of one problem should not complicate others, by introducing significant

lag, extra processing or similar overhead.

2.3.1 Synchronization

Agreement on the time variable is an imperative in order to obtain a share state.
For cases where the Network Time Protocol (NTP) is not applicable, due to
firewalls or use of other networks than Internet, the games have to be considered
to be developed a synchronization routine giving a precision on the order of the

system clock.

2.3.2 Multiplayer Scalability

How many players can a game support? For a peer-to-peer game,
communication demands scale as the number of players squared. With a server
it scales linearly. In both cases, there is an upper limit on how many players can
be supported. How can this limit be extended, or ideally, by distributed computing,

be avoided entirely?

2.3.3 Robustness

With many players connected to a game using different connection types and
hardware, it is unavoidable that some client connection will have a substandard
performance, due to high latency, low bandwidth orhigh packet loss rates. In

such case, it is important that as few of the other players as possible are affected

29

by this will have big troubles id only one client connection is poor. We hope to
reduce the problem, so that only the players directly interacting with the

substandard connection are affected.

2.3.4 Area of Interest Management

The Area of Interest defines a selection mechanism for what information a player
needs to have , thus reducing the total bandwidth requirement in a relatively
predictable way. For massive multiplayer games this may be a prerequisite for a
functioning business model, as gaming companies operate with a limit on what

bandwidth they can spent on each player and still earn money.

2.3.5 Dead Rechoning

Dead Reckoning is concerned with how to predict behaviour for situations where
the actual information updates have not yes arrived due to network latency or
bandwidth limitations. Dead Reckoning is essential to offering clients a feeling of

immediate response to their actions.

2.3.6 Object Scalability

The world covers an enormous range of length scales. From huge planetary
systems to the planet surface, to landscape features, cities, houses, down to
details on the furniture and even further. If all the system should be as detailed

as the finest resolution, it would include enormous amounts of data. Dynamic

30

terrain generation through a fractal routine with a known seed is one partial

answer to a part of this, there may be others.

2.3.7 Bandwidth Management

Bandwidth is a limiting factor in many respects. Due to the heterogeneous nature
of the Internet, clients cannot be expected to meet any quaranteed bandwidth
requirements. If the game can dynmically adapt to the available bandwidth, the
players can get a better gaming experience without excluding those with poor

lines.

2.3.8 Faireness

Fairess is of course a very subjective concept, it is often possible to define
serveral, mutually exclusive interpretations of what is “ fair ” in a given situation.
Still, for computer game, giving the users a perception of faire treatment is
essential to keeping customers, even when no gambling is involved. For auctions,
or other types of interactions with economic consequences, fairness is an
absolute requirement. In some cases this may be as little as giving the customer
relevent information on how poor his connection is, in other cases it may be

necessary to adapt the game to the slowest player.

2.3.9 Persistence

31

No one ever restated the World Wide Web. It would be impossible, but due to the
way Web made, it is not necessary. When creating a truly massive multiplayer
world, where people can log on the off as they please, the same flexibility is
needed. Code must be downloaded while the game is running, to be able to
introduce new functionality without asking all players to log off and restart the

system.

2.3.10 Rapid Database Access

For huge worlds, database can be as bad a bottlenect as the netwoek bandwidth.
Rapid, secure and flexible database access is therefore a primary concern in the

development of larger game-world.

2.3.11 Reliable, but fast protocols

On the Internet, the most commonly used transport protocols are UDP, for repid,
unreliable communications, and TCP, for reliable communications with virtually
no upper limit on latency. This means you have to build your own protocol if you
need all the messages, but cannot afford to wait for them. The Direct Play

Protocol from Microsoft has attempted to solve some of these problems.

32

Chapter 3. Windows Sockets Network Programming

3.1 Windows Sockets Concepts

3.2.1 What is Socket

The basic building block for communication is the socket. A socket is an endpoint
of communication to which a name may be bound. Each socket in use has a type
and an associated process. Sockets exist within communication domains. A
communication domain is an abstraction introduced to bundle common
properties of threads communicating through sockets. Sockets normally
exchange data only with sockets in the same domain (it may be possible to cross
domain boundaries, but only if some translation process is performed). The
Windows Sockets facilities support a single communication domain: the Internet
domain, which is used by processes which communicate using the Internet
Protocol Suite. (Future versions of this specification may include additional

domains.)

Sockets are typed according to the communication properties visible to a user.
Applications are presumed to communicate only between sockets of the same
type, although there is nothing that prevents communication between sockets of
different types should the underlying communication protocols support this.

Two types of sockets currently are available to a user. A stream socket provides
for the bi-directional, reliable, sequenced, and unduplicated flow of data without

record boundaries.
33

A datagram socket supports bi-directional flow of data which is not promised to
be sequenced, reliable, or unduplicated. That is, a process receiving messages
on a datagram socket may find messages duplicated, and, possibly, in an order
different from the order in which it was sent. An important characteristic of a
datagram socket is that record boundaries in data are preserved. Datagram
sockets closely model the facilities found in many contemporary packet switched

networks such as Ethernet.

What is a socket application?

A socket interface was first provided with Berkeley UNIX (BSD) in the eighties. It
was designed as a network interprocess communication (IPC) mechanism for the
built-in TCP/IP. A socket defines a bi-directional end point for combination

between processes.

A socket has three primary components:
¢ The interface to which it is bound
e The port number to which it will send or receive data

¢ The type of socket--either stream or datagram

In TCP/IP, the interface is the IP address of the host. The port number is the
software process address. In IPX/SPX, the interface is the combination of the
IPX network ID and the MAC address of the network interface. The port number
is the software process address (IPX socket number).

34

A server application listens on a well-known port over all installed network
interfaces. A client generally initiates communication from a specific interface

from any available port.

3.2.2 What is Windows Socket

A socket is a communication endpoint — an object through which a Windows
Sockets application sends or receives packets of data across a network. A
socket has a type and is associated with a running process, and it may have a
name. Currently, sockets generally exchange data only with other sockets in the
same "communication domain," which uses the Internet Protocol Suite.
Both kinds of sockets are bidirectional; they are data flows that can be
communicated in both directions simultaneously (full-duplex).
Two socket types are available:

o Stream sockets
Stream sockets provide for a data flow without record boundaries: a stream of
bytes. Streams are guaranteed to be delivered and to be correctly sequenced
and unduplicated.

o Datagram sockets
Datagram sockets support a record-oriented data flow that is not guaranteed to

be delivered and may not be sequenced as sent or unduplicated.

35

Windows Sockets 2 (Winsock) enables programmers to create advanced Internet,
intranet, and other network-capable applications to transmit application data
across the wire, independent of the network protocol being used. With Winsock,
programmers are provided access to advanced Microsoft® Windows®
networking capabilities such as multicast and Quality of Service (QOS).

Winsock follows the Windows Open System Architecture (WOSA) model; it
defines a standard service provider interface (SPI) between the application
programming interface (API), with its exported functions and the protocol stacks.
It uses the sockets paradigm that was first popularized by Berkeley Software
Distribution (BSD) UNIX. It was later adapted for Windows in Windows Sockets
1.1, with which Windows Sockets 2 applications are backward compatible.
Winsock programming previously centered around TCP/IP. Some programming
practices that worked with TCP/IP do not work with every protocol. As a result,
the Windows Sockets 2 API adds functions where necessary to handle several

protocols.

What is Windows Sockets

The Windows Sockets specification defines a network programming interface for
Microsoft Windows which is based on the "socket" paradigm popularized in the
Berkeley Software Distribution (BSD) from the University of California at Berkeley.
It encompasses both familiar Berkeley socket style routines and a set of
Windows-specific extensions designed to allow the programmer to take

advantage of the message-driven nature of Windows.

36

The Windows Sockets Specification is intended to provide a single API to which
application developers can program and multiple network software vendors can
conform. Furthermore, in the context of a particular version of Microsoft Windows,
it defines a binary interface (ABI) such that an application written to the Windows
Sockets API can work with a conformant protocol implementation from any
network software vendor. This specification thus defines the library calls and
associated semantics to which an application developer can program and which

a network software vendor can implement.

Network software which conforms to this Windows Sockets specification will be
considered "Windows Sockets Compliant”. Suppliers of interfaces which are
"Windows Sockets Compliant” shall be referred to as "Windows Sockets
Suppliers". To be Windows Sockets Compliant, a vendor must implement 100%

of this Windows Sockets specification.

Applications which are capable of operating with any "Windows Sockets
Compliant" protocol implementation will be considered as having a "Windows
Sockets Interface" and will be referred to as "Windows Sockets Applications”.

This version of the Windows Sockets specification defines and documents the
use of the API in conjunction with the Internet Protocol Suite (IPS, generally
referred to as TCP/IP). Specifically, all Windows Sockets implementations

support both stream (TCP) and datagram (UDP) sockets.

37

While the use of this API with alternative protocol stacks is not precluded (and is
expected to be the subject of future revisions of the specification), such usage is

beyond the scope of this version of the specification.

3.2.3 A Socket Data Type

Each MFC socket object encapsulates a handle to a Windows Sockets object.
The data type of this handle is SOCKET. A SOCKET handle is analogous to the
HWND for a window. MFC socket classes provide operations on the
encapsulated handle.

The SOCKET data type is described in detail in the Win32 SDK. See the topic

Socket Data Type and Error Values under Windows Sockets.

3.2.4 Uses of Socket

Sockets are highly useful in at least three communications contexts:
o Client/Server models
¢ Peer-to-peer scenarios, such as chat applications
e Making remote procedure calls (RPC) by having the receiving application

interpret a message as a function call

3.2 Network Program Mechanics

3.2.1 Open a Socket

socket()

3.2.2 Name the Socket
¢ Name the Socket

38

sockaddr Structure

sockaddr_in Structure

Port Numbers

Local IP Address

What's in a Socket Name?
bind()

e (Client Socket Name is Optional

3.2.3 Associate with Another Socket

e How a Server Prepares for an Association
listen()

¢ How a Client Initiates an Association
connect()

¢ How a Server Completes an Association
accept()

3.2.4 Send and Receive Between Sockets

¢ Sending Data on a "connected" Socket
send()

¢ Sending Data on an "unconnected" Socket
sendto()

e Receiving Data
recv()
recvfrom()

3.2.5 Close the Socket

e closesocket()
¢ shutdown()

3.3 Sockets Programming Models

The two MFC Windows Sockets programming models are supported by the

following classes:

39

MFC supplies two classes to support programming network applications with the

Windows Sockets API. Class CAsyncSocket encapsulates the Windows Sockets

API| one-for-one, giving advanced network programmers the most power and

flexibility. Class CSocket provides a simplified interface for serializing data to and

from a CArchive object.

3.3.1 Windows Sockets Classes

CAsyncSocket

This class encapsulates the Windows Sockets API. CAsyncSocket is for
programmers who know network programming and want the flexibility of
programming directly to the sockets API but also want the convenience of
callback functions for notification of network events. Other than packaging
sockets in object-oriented form for use in C++, the only additional
abstraction this class supplies is converting certain socket-related

Windows messages into callbacks.

o CSocket
This class, derived from CAsyncSocket, supplies a higher-level
abstraction for working with sockets via an MFC CArchive object. Using a
socket with an archive greatly resembles using MFC’s file serialization
protocol. This makes it easier to use than the CAsyncSocket model.
CSocket inherits many member functions from CAsyncSocket that

encapsulate Windows Sockets APIs; you will have to use some of these

40

functions and understand sockets programming generally. But CSocket
manages many aspects of the communication that you would have to do
yourself using either the raw API or class CAsyncSocket. Most important,
CSocket provides blocking (with background processing of Windows

messages), which is essential to the synchronous operation of CArchive.

Figure 3 Windows Socket Classes
Class CSocket derives from CAsyncSocket and inherits its encapsulation of the
Windows Sockets API. A CSocket object represents a higher level of abstraction
of the Windows Sockets API than that of a CAsyncSocket object. CSocket
works with classes CSocketFile and CArchive to manage the sending and

receiving of data.

A CSocket object also provides blocking, which is essential to the synchronous
operation of CArchive. Blocking functions, such as Receive, Send,
ReceiveFrom, SendTo, and Accept (all inherited from CAsyncSocket), do not
return a WSAEWOULDBLOCK error in CSocket. Instead, these functions wait
until the operation completes. Additionally, the original call will terminate with the
error WSAEINTR if CancelBlockingCall is called while one of these functions is

blocking.
41

To use a CSocket object, call the constructor, then call Create to create the
underlying SOCKET handle (type SOCKET). The default parameters of Create
create a stream socket, but if you are not using the socket with a CArchive
object, you can specify a parameter to create a datagram socket instead, or bind
to a specific port to create a server socket. Connect to a client socket using
Connect on the client side and Accept on the server side. Then create a
CSocketFile object and associate it to the CSocket object in the CSocketFile
constructor. Next, create a CArchive object for sending and one for receiving
data (as needed), then associate them with the CSocketFile object in the
CArchive constructor. When communications are complete, destroy the
CArchive, CSocketFile, and CSocket objects. The SOCKET data type is
described in the article Windows Sockets: Background in Visual C++

Programmer’s Guide.

3.3.2 CSocket Programming Model

Using a CSocket object involves creating and associating together several MFC
class objects. In the general procedure below, each step is taken by both the
server socket and the client socket, except for step 3, in which each socket type
requires a different action.

At run time, the server application usually starts first to be ready and "listening”
when the client application seeks a connection. If the server is not ready when
the client tries to connect, you typically require the user application to try

connecting again later.

42

To set up communication between a server socket and a client socket
Construct a CSocket object.

Use the object to create the underlying SOCKET handle.

For a CSocket client object, you should normally use the default parameters to
Create, unless you need a datagram socket. For a CSocket server object, you
must specify a port in the Create call.

If the socket is a client, call CAsyncSocket::Connect to connect the socket object
to a server socket.

-or-

If the socket is a server, call CAsyncSocket::Listen to begin listening for connect
attempts from a client. Upon receiving a connection request, accept it by calling

CAsyncSocket::Accept.

Create a CSocketFile object, associating the CSocket object with it.

Create a CArchive object for either loading (receiving) or storing (sending) data.
The archive is associated with the CSocketFile object.

Keep in mind that CArchive does not work with datagram sockets.

Use the CArchive object to pass data between the client and server sockets.
Keep in mind that a given CArchive object moves data in one direction only:
either for loading (receiving) or storing (sending). In some cases, you will use two
CArchive objects: one for sending data, the other for receiving

acknowledgments.

43

After accepting a connection and setting up the archive, you can perform such
tasks as validating passwords.

Destroy the archive, socket file, and socket objects.

3.4 Using Sockets with Archives

Class CSocket supplies socket support at a higher level of abstraction than does
class CAsyncSocket. CSocket uses a version of the MFC serialization protocol
to pass data to and from a socket object via an MFC CArchive object. CSocket
provides blocking (while managing background processing of Windows
messages) and gives you access to CArchive, which manages many aspects of
the communication that you would have to do yourself using either the raw API or

class CAsyncSocket.

If you are writing an MFC client program to communicate with established (non-
MFC) servers, don’t send C++ objects via the archive. Unless the serveris an
MFC application that understands the kinds of objects you want to send, it won't

be able to receive and deserialize your objects.

3.5 How Sockets with Archives Work

This section explains how a CSocket object, a CSocketFile object, and a
CArchive object are combined to simplify sending and receiving data via a

Windows socket.

44

The article Windows Sockets: Example of Sockets Using Archives presents the
PacketSerialize function. The archive object in the PacketSerialize example
works much like an archive object passed to an MFC Serialize function. The
essential difference is that for sockets, the archive is attached not to a standard
CFile object (typically associated with a disk file) but to a CSocketFile object.
Rather than connecting to a disk file, the CSocketFile object connects to a

CSocket object.

A CArchive object manages a buffer. When the buffer of a storing (sending)
archive is full, an associated CFile object writes out the buffer's contents.
Flushing the buffer of an archive attached to a socket is equivalent to sending a
message. When the buffer of a loading (receiving) archive is full, the CFile object

stops reading until the buffer is available again.

Class CSocketFile derives from CFile, but it doesn’t support CFile member
functions such as the positioning functions (Seek, GetLength, SetLength, and
so on), the locking functions (LockRange, UnlockRange), or the GetPosition
function. All the CSocketFile object must do is write or read sequences of bytes
to or from the associated CSocket object. Because a file is not involved,
operations such as Seek and GetPosition make no sense. CSocketFile is
derived from CFile, so it would normally inherit all of these member functions. To
prevent this, the unsupported CFile member functions are overridden in

CSocketFile to throw a CNotSupportedException.

45

The CSocketFile object calls member functions of its CSocket object to send or

receive data.

The following figure shows the relationships among these objects on both sides

of the communication.

Up to the point of constructing a CSocketFile object, the following sequence is
accurate (with a few parameter differences) for both CAsyncSocket and
CSocket. From that point on, the sequence is strictly for CSocket. The following
table illustrates the sequence of operations for setting up communication

between a client and a server.

46

Table 1 Setting Up Communication Between a Server and a Client

1. Where nPort is a port number.

2. The server must always specify a port so clients can connect. The Create call
sometimes also specifies an address. On the client side, use the default
parameters, which ask MFC to use any available port.

3. Where nPort is a port number and strAddr is a machine address or an Internet
Protocol (IP) address.

4. Machine addresses can take several forms: "ftp.microsoft.com”,
"microsoft.com"”. IP addresses use the "dotted number" form "127.54.67.32". The
Connect function checks to see if the address is a dotted number (although it
does not check to ensure the number is a valid machine on the network). If not,
Connect assumes a machine name of one of the other forms.

5. When you call Accept on the server side, you pass a reference to a new
socket object. You must construct this object first, but do not call Create for it.

Keep in mind that if this socket object goes out of scope, the connection closes.
47

MFC connects the new object to a SOCKET handle. You can construct the
socket on the stack, as shown, or on the heap.

6. The archive and the socket file are closed when they go out of scope. The
socket object's destructor also calls the Close member function for the socket
object when the object goes out of scope or is deleted.

Additional Notes About the Sequence.

The sequence of calls shown in the preceding table is for a stream socket.
Datagram sockets, which are connectionless, do not require the
CAsyncSocket::Connect, Listen, and Accept calls (although you can optionally
use Connect). Instead, if you are using class CAsyncSocket, datagram sockets
use the CAsyncSocket::SendTo and ReceiveFrom member functions. (If you
use Connect with a datagram socket, you use Send and Receive.) Because
CArchive does not work with datagrams, do not use CSocket with an archive if

the socket is a datagram.

CSocketFile does not support all of CFile's functionality; CFile members such as
Seek, which make no sense for a socket communication, are unavailable.
Because of this, some default MFC Serialize functions are not compatible with
CSocketFile. This is particularly true of the CEditView class. You should not try
to serialize CEditView data through a CArchive object attached to a

CSocketFile object using CEditView::SerializeRaw; use CEditView::Serialize

48

instead (not documented). The SerializeRaw function expects the file object to

have functions, such as Seek, that CSocketFile does not support.

49

Chapter 4. Video Poker Game

4.1 Rules of the Game

Video Poker is a mixture of Stud Poker and a slot mahcine with a few wild cards
thrown in. It's fasr, almost like playing Stud, and player has got a huge range of
options. You can choose Jacks or Better, Deuces wild, all American, Joker Poker
or a number of other variations. Each game has its own personality and rewards

a particular kind of play.

Also, Video Poker is played between 2 —10 people. The player can play anything
from 1 through 5 cards, with the payoffs improving at the high end of the scale.
The players are dealt five cards in the first hand. When the players receive his
first hand, choose the cards to hold or dicard. The cards he discard are replaced
with new ones. So, if player knows his Poker hands and take the time to learn his

game, video Poker can be fast, fun, and rewarding.
Objective: As with all forms of Poker, the player would like to get the best hand

possible. The payoffs are dependent on the values of the hand players are

holding.

50

Betting: Betting is pretty straighforward in Video Poker. The player can typically
choose $0.25, $0.50, $1, or $5 games. And the bets are 1x, 2x, 3x, 4x, or 5x
(Max Bet) .So if player is playing a $1 game, he can place bets of $1, $2, $2, $4,

or $5.

Payoff: The first thing to note is that the game face shows the players for each
betting level. Invariably playing Max Bet pays off better, overall, than any of the
lower multiples. Smart players pick the betting level they are comfortable with

and choose their game accordingly.

4.2 Basic Video Poker Hands

A poker hand consists of 5 cards. The Ace is considered the highest card,
followed by Kings, Queens, Jacks, etc. The various poker hands are describered

below from highest to lowest.

Royal Flush
This is a combination of the following cards of the same suit: Ace, King, Queen,

Jack and Ten.

Example: ?Q # &» & &

Straight Flush

51

This is a combination of five cards of the same suit in sequence.

v v v |v

3
»

Example:

Four of a Kind

This is a combination of four cards of the same denomination.

* [o (¢ ¥ [+

Example:

Full House
This is a combination of three cards of the same denomination, and two cards of

another denomination.

Example: &» v » & -

Flush

This is a combination of five cards of the same suit.

Example: ‘?ﬁ % &» o i

Straight

This is a combination of five cards of any denomination in sequence.

K Q 3 8

Example: ?& & s 4 A 4 L 2

52

Three of a Kind
This is a combination of three cards of the same denomination, and any two

other cards.

e o] o] (o] M B

Two Pairs

This is a combination of two pairs and any other card.

Example: ?b $ &» $

One Pair:

If two of the five cards are of the same values, it is a one pair.

Example: pf&, QQ ?& r;:I m

No pair:
The lowest hand, containing 5 separate cards that do not match up to create any

of the hands.

Example: ?l» ?Q F;] m m

53

Chapter 5. VPNG System Design

In this chapter, the system architecture and detail design of VPNG are presented.

5.1 Description of the System

5.1.1 System Functionalities

The inputs to this system are:
1. The amount of money players want to bet,

2. Betting or passing for the turn by players,

The system output are:
1. The balance of the players.
2. Cards’s status of all players except the first turn.

3. Inthe last turn, all cards show up to all players.

VPNG system provides the following functionalities:
¢ Display historical information for each game player
o Display game records for each game player
¢ Display multiple game groups

e Calculate the result for each turn and display the results.

5.1.2 System Characteries

54

Because of the total 52 cards and 5 cards for each player, the number of the
game players is limited to maximum 10. One player can play this game by
his/herself without betting and win. At least two game players can play with

betting and win.

Characters Minimum | Maximum | Note

No. Players 1 10

No. Game Groups | 1 Unlimit Actually, this is
depending on the
system limitation

Amount of money | $0.00 $1000.00

for betting

Table 2 VPNG system characters
The number of game group means how many group of players can be running on
this server. Therefore, the number of players on this server is equal to sum of
(number of players for each group).

For example, there are 5 groups and each group have different players as

following.
Group No. Players
0 5
1 3
2 4
3 6
4 10

55

Total 28

Table 3 An example for total number of players on one server

5.2 System Architecture
VPNG system is based on a client /server model. VPNG system is divided two

subsystems: Client Subsystem and Server Subsystem.

Client Server

CArchive CSocketFile CSocket CSocket CSocketFile - CArchive

k
Sending Data Receiving Data
CArchive -CSocketFile CSocket CSocket CSocketFile CArchive
I ‘ Network
Receiving Data Sending Data

Figure 4 The Architecture Diagram of the VPNG

56

5.4 Structure Model

5.4.1 Foundation Classes in MFC

The CDocument class provides the basic functionality for user-defined document
classes. A document represents the unit of data that the user typically opens with
the File Open command and saves with the File Save command. Users interact
with a document through the CView object(s) associated with it; A view renders
an image of the document in a frame window and interprets user input as
operations on the document. A document can have multiple views associated
with it. When the user opens a window on a document, the framework creates a
view and attaches it to the document. The document template specifies what

type of view and frame window are used to display each type of document.

CEditView object is a type of view class that provides the functionality of a
Windows edit control and can be used to implement simple text-editor
functionality. The CEditView class provides the following additional functions:

print , find and replace.

A CString object consists of a variable-length sequence of characters. CString
provides functions and operators using a syntax similar to that of Basic.
Concatenation and comparison operators, together with simplified memory

management.

57

The CStringList class supports lists of CString objects. All comparisons are done
by value, meaning that the characters in the string are compared instead of the

addresses of the strings.

5.4.2 Class Diagram of Server Subsystem

The class CServerDoc is derived from Cdocument. The class diagram shown in

Figure 11 illustrates the classes and their relationships in the context of VPNG.

..................... =

~ cClientsocket -

T —

Figure 5 Class Diagram of Server Subsystem

5.4.3 Class Diagram of Client Subsystem

58

The aim of the class hierarchy implemented is to create at least one unique class

for every client. This provides a high level of customization.

% Chocument
sene e

h—.

L3

CChatDog

CBitmapButton

Figure 6 The Class Diagram of the Client Subsystem

5.4.4 Classes Description in VPNG System

Class definition:

enum CardSuit {club, diamond, heart, spade};
enum CardFace{two, three, four, five, six, seven, eight,
nine, ten, jack, queen, king, ace};

class Card

{
59

public:
Card(){}
Card(const CardFace &f, const CardSuit &s);
~Card();
CardFace GetFace() const;
CardSuit GetSuit() const;
void SetFace(const CardFace &f);
void SetSuit(const CardSuit &s);
bool isNextFaceOf(const Card &c);
//bool isNextS
CString getStringOutput();
private:
CardFace Face;
CardSuit Suit;
35
bool operator==(const Card &cl, const Card &c2);

bool operator<(const Card &c1, const Card &c2);

class deck

#include "card.h"

class Deck
{
public:
Deck();
void Shuffle();
void Sort();
void Arrange();

Card GetCard(int i)const;

void SetCard(int i, const Card &c);

60

void SwapCards(int i, int j);
private:

Card Cards[52];

class hand

#include "card.h"
enum Rank { nothing, Onepair, TwoPair, ThreeOfAKind,
" Straight, Flush, FullHouse, FourOfAkind, StraightFlush};

class Hand {
public:
Hand(){}
Card GetCard(int i) const {return Cards[i-1];}
void SetCard(int i, const Card &c){Cards[i-1]=c;}
void Sort();
void SwapCards(int 1, int j);
Rank Quality() const;
CardFace getOnePairFace() const;
CardFace gettwoPairFace() const;
CardFace getThreeofAKindFace() const;
CardFace getFullHouseFace() const;
CardFace getFourOfAkindFace() const;
bool HasOnePair() const;
bool HasTwoPair() const;
bool HasThreeofAKind() const;
bool HasStraight() const;
bool HasFlush() const;

bool HasFullHouse() const;

61

bool HasFourOfAKind() const;
bool HasStraightFlush() const;
private:

Card Cards[5];
35
/fauxiliary operators
bool operator==(const Hand &a, const Hand &b);
bool operator<(const Hand &a, const Hand &b);
ostream& operator<<(ostream &sout, const Hand &b);

CString outputRankStrName(Rank r);

class playingRecord
{

public:
CString winner;
CString suit;
int win;
int money;

I3

class Record

{
public:
int turn;
CString borP;
IR

class Player

{
62

public:
Player();

virtual ~Player();

list<Record> resultList;
int betUnit;

int money;

CString Name;

CString cards;

bool hasPut;

Hand hand;
¥
class CChatDoc : public CDocument

{

protected: // create from serialization only

CChatDoc();

DECLARE_DYNCREATE(CChatDoc)

/I Attributes

public:
BOOL m_bAutoChat;
CString m_strHandle;
CChatSocket* m_pSocket;
CSocketFile* m_pFile;
CArchive* m_pArchiveln;
CArchive* m_pArchiveOut;
bool firstTime;

bool secondturn;

63

int betUnit;

int total;

int balance;

int turn;

list<CString> dispInfoList;
list<playingRecord> playingRecordList;
list<Player> myPlayerList;

CString result;

// Operations
public:
BOOL ComnectSocket(LPCTSTR IpszHandle, LPCTSTR lpszAddress, UINT nPort);
void ProcessPendingRead();
void SendMsg(CString& strText);
void ReceiveMsg();
void DisplayMsg(LPCTSTR lpszText);

BOOL isDeplicated(list<Player> plist, CString str);

// Overrides
// ClassWizard generated virtual function overrides
IH{{AFX_VIRTUAL(CChatDoc)
public:
virtual BOOL OnNewDocument();
virtual void DeleteContents();

//}}AFX_VIRTUAL

// Tmplementation
public:

CString getPlayingRecord();
64

void restMessage();

BOOL repeatRecord(list<Record> reList,int turn);

void changeDeck(CString &str);

int getTurn(CString &str);

int toInteger(CString &string);

void getPlayerInfo(CString & str);

CString toString(int num);

bool isStringDeplicated(list<CString> plist, CString str);

virtual ~CChatDoc();

virtual void Serialize(CArchive& ar); // overridden for document i/o
#ifdef DEBUG

virtual void AssertValid() const;

virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions

protected:
I {{AFX_MSG(CChatDoc)
/fafx_msg void OnGameAnothergame();
I1}YAFX_MSG
DECLARE_MESSAGE_MAP()

};

class CChatView : public CView
{

protected: // create from serialization only

CChatView();

65

DECLARE_DYNCREATE(CChatView)

// Attributes

public:
CChatDoc* GetDocument();
CSpinButtonCtrl m_upDown;

CEdit m_buddyEdit;

CEdit m_balance;
CListCtrl m_listView;
CImageList m_smalllmageList;
CImageList m_largelmageList;
CButton m_smallButton;
CButton m_largeButton;
CButton m_listButton;
CButton m_reportButton;
//CBitmapButton b1, b2,b3,b4, bS;
CRichEditCtrl m_richEdit;
int index;
UINT m_uiTimer;
list<Player> playerList;

// Operations

public:
void Message(LPCTSTR lpszMessage);

/! Overrides
// ClassWizard generated virtual function overrides
H{{AFX_VIRTUAL(CChatView)
public:

virtual void OnDraw(CDC* pDC); // overridden to draw this view
66

protected:
virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
/I}}AFX VIRTUAL

// Implementation
public:
int getIndex(CString& str);
void displayCard(CString& cardNameStr, int n);
void creatButton();
BOOL OnNotify(WPARAM wParam, LPARAM IParam, LRESULT* pResult);
virtual ~CChatView();
#ifdef DEBUG
virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;

#endif

protected:
void CreateUpDownCitrl();
void CreateListView();
/Ivoid CreateTreeView();
void CreateRichEdit();

CString toString(int num);

// Generated message map functions

protected:
1{{AFX_ MSG(CChatView)
afx_msg int OnCreate(LPCREATESTRUCT IpCreateStruct);
afx_msg void OnGameBetting();

afx_msg void OnGamePassing();

67

afx_msg void OnGameAnothergame();
afx_msg void OnGameChangebetunit();
afx_msg void OnTimer(UINT nIDEvent);
1/} }AFX_MSG

DECLARE MESSAGE MAP()

#ifndef DEBUG // debug version in chatvw.cpp
inline CChatDoc* CChatView::GetDocument()
{ return (CChatDoc*)m_pDocument; }

#endif

Server side class:
The card, deck, hand is same, below show the server doc and server view class

phototype

class CServerDoc : public CDocument

{

protected: // create from serialization only
CServerDoc();
DECLARE DYNCREATE(CServerDoc)

// Attributes

public:
CListeningSocket* m_pSocket;
CStringList m_msgList;
CPtrList m_connectionList;
int max;//total player number
int num,;
int step;
int total;
Deck deck;
bool ready;
bool sdisp;
bool isBegin;
bool isfinished;
bool afterleft;

68

CString cardlist;

CString dispInfo;
list<Player> myPlayerList;
list<CString> dispInfoList;
list<CString> playerList_a;

/I Operations
public:
void UpdateClients();
void ProcessPendingAccept();
void ProcessPendingRead(CClientSocket* pSocket);
CMsg* AssembleMsg(CClientSocket* pSocket);
CMsg* ReadMsg(CClientSocket* pSocket);
void SendMsg(CClientSocket* pSocket, CMsg* pMsg);
void CloseSocket(CClientSocket* pSocket);
void Message(LPCTSTR IpszMessage);
CString toString(int num);
CString getPlayerName(CString msg);
CString getCommand(CString msg);
bool isRepeat(CStringList& csl, CString cstr);
int toInteger(CString string);

// Overrides
// ClassWizard generated virtual function overrides
/I{{AFX_VIRTUAL(CServerDoc)
public:
virtual BOOL OnNewDocument();
virtual void DeleteContents();
//}}AFX_VIRTUAL

// Implementation
public:
bool isDeplicated(list<Player> plist, CString str);
bool isStringDeplicated(list<CString> plist, CString str);
void cardIni();
virtual ~CServerDoc();
virtual void Serialize(CArchive& ar); // overridden for document i/o
#ifdef DEBUG
virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions

69

protected:
I {{AFX_ MSG(CServerDoc)
afx_msg void OnGameAnothergame();
/I}}AFX MSG
afx_msg void OnUpdateMessages(CCmdUI* pCmdUI);
afx_msg void OnUpdateConnections(CCmdUI* pCmdUI);
DECLARE MESSAGE MAP()

35

class CServerView : public CEditView

{

protected: // create from serialization only
CServerView();
DECLARE DYNCREATE(CServerView)

// Attributes
public:
CServerDoc* GetDocument();

// Operations
public:
void Message(LPCTSTR lpszMessage);

// Overrides
/I ClassWizard generated virtual function overrides
/I{{AFX_VIRTUAL(CServerView)
public;
virtual void OnDraw(CDC* pDC); // overridden to draw this view
protected:
/[}}AFX VIRTUAL

// Implementation
public:
virtual ~CServerView();
#ifdef DEBUG
virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;
#endif

protected:
// Generated message map functions

protected:
/1 {{AFX_ MSG(CServerView)

// NOTE - the ClassWizard will add and remove member functions here.
//' DO NOT EDIT what you see in these blocks of generated code !

70

/}YAFX_MSG
DECLARE MESSAGE MAP()

35
#ifndef DEBUG // debug version in srvrvw.cpp
inline CServerDoc* CServerView::GetDocument()

{ return (CServerDoc*)m_pDocument; }
#endif

5.5 Behavioural Models

5.5.1 Sequence Diagram

. create Interface “ D
Initidization
; 4 connect to sener |
|
; 1 retum play ir'rfor'matim:]_‘J
| 4

T ‘T getPalying infomation H

<]

{ [display playing information |

|

|

|

T T

Figure 7 The Sequence Diagram for Client Subsystem

71

x

. sener
. create()

create()

read Message
assemble Message 9

processing Message

p—

corrtinue playing

|

decode ;)Iaying information

create mes sage package

f
—i

sending Information Package

|

. A

Figure 8 The Sequence Diagram for Server Subsystem

5.5.2 Activity Diagram

connestto
sener:

fa
N -
. 7{ parmeter

""""""""""""""""""""""""" “ connect in another address
;
,succ%sful connection }K\ N
g -
(i display.
| Information _— no gonnect
\ information
\
betting / Passing pushed
\ Il //s*
_ get interface -~ exit game %
Infor > 2 \@

72

|
|
|
|
|
|
|

CCl ién—tg ockét

Figure 9 The Activity Diagram of Client Subsystem

{ waitlr)
<olient £
__d;_'-__,.,/

{ accepting)
bt aeliont f‘
[

-~ connection list |

wailing for message:
from client

i yes
i

dounting the e n=num y ©display
{ Batting numbsen. [T : o result

Figure 10 The Activity Diagram of Server Subsystem

73

Chapter 6. VPNG System Implementation

This chapter describes key algorithms used in VPNG. The whole process can be
divided up into two main algorithms; they are used in the client side and server

side.

6.1 Pseudo code of VPNG System

6.1.1 Pseudo Code of Client Side

Client side;

Create Client()

Begin:

Read in the connection information;

Connect to the server;

If successful, initial the client parameters;

Else ask user provide new server address and conent again;

End

Process Pending Read ()
Begin:
Listening the socket
{
if socket is not empty

Receive Message ();

74

else return;

End

Receive Message ()

Begin:

Read messages from socket archive file;

If the message is not empty;

Put all messages into the display information list;
Put the display information list point to the messages that belong to current turn
and preview turn;

For the point to current position to the end;

From the message that the pointer point to;

Get player information ();

Display Message ();

End

Get player information ()
Begin:
Get the turn from the message and put into k;
If itis a new turn (k>turn);
Update the turn value;

If it is command join;

75

Get the player name;
If the player is new player;
Create his profile;
And add it into the players data list;
End if;
If it is command betting;
Get the player name;
Get the betting money;
Find the player in the player profile;
Update his profile;
End if;
If it is command passing;
Get the player name;
Find the player in the player profile;
Update his profile;
End if;
If it is running result;
For every running record;
Get the player name;
Get the user’s betting money;
Get the player’s playing record;
Find the player in the player profile;

Update his profile;

76

End if;
If it is final result;

Get the winner's information;
If the winner is the current player;

The player balance =total betting — the player betting;
else the player balance= — the player betting;
Get the user’s betting money;

Get the player’s playing record;

Find the player in the player profile;

Update his profile;

Update the player's balance;

End if;

End;

Display Message ()
Begin:

For every user create his title;

For every user’s playing record;
Display in rich test field;

For every player's hands;

If it is not current player, show first card as a deck;

Else finding image to show the card;

End

77

Other functions in the window message loop:
Socket checking ()
Begin
If some information coming
Active Process Pending Read();

End

Betting button clicked ()

Begin
If Betting button is clicked
Reset the timer;
Reading the current betting money;
Send the message;
End

Passing button clicked ()

Begin
If passing button is clicked
Reset the timer;
Send the message;
End

On timer triggered ()

Begin

78

Disconnect to the server;

End

6.1.2 Pseudo Code of Server Side

Server sides

Create listening Socket()

Begin:
Lunch the initialization Dialog;
If the confirm button of the dialog is pushed;
Read in the initialization parameters;
Create the server listening socket;

End

Process Pending Accept ()
Begin:
If client request coming and the number of client < max
Create a client socket;
Put the socket into the connection list;

End

Process Pending Read ()
Begin:

79

Read message from a client socket;
If the socket to be opened
Close and delete the socket;
Update clients ();
End

Update clients ()

Begin:
For every client socket in the connection list;
Read the message from it to a Message object;
Assemble and process the message from a client();
Put the message into a new message,;

Display the message in the server ();

Send the message to every client ();

End

Assemble and process the message from a client ()
Begin:
Read the message list from the client socket;
For every message from the list;
Get player name and put into name;
Get command and put into the command;

If the command is “has just joined the game”

80

Create a client side message for it;
If it is new one;
Put the client message into the display information list;
End if
If the player is new
Create a profile for him and add into the player list
End if
End if;
If the command is “Pass”
Create a client side message for it;
If it is new one;
Put the client message into the display information list;
End if
Fid the player in the player list
Update his profile from the player list;
Add his profile to the temp playing player list
End if;
If the command is “has just left the game”
Create a client side message for it;
If it is new one;
Put the client message into the display information list;
End if

Fid the player in the player list

81

Delete his profile to the player list;
Delete his profile to the temp playing player list
End if;
If the command is betting
Create a client side message for it;
If it is new one;
Put the client message into the display information list;
End if
Read in the betting money;
Fid the player in the player list
Update his profile from the player list;
Add his profile to the temp playing player list
End if;
If all the user finish a turn of betting/passing;
Set ready to be true;
Turn number increase one;
End if
If it is fifth turn
Distribute the fifth hand to every client;
Decide who is winner;
Create a client side final result message for it;
If it is new one;

Put the client message into the display information list;

82

End if
End if
If ready is true
Distribute hands for a new turn;
Create a client side result message for it;
If it is new one;
Put the client message into the display information list;
End if
End if
Clear the message list;
Add all messages from display information list into the message list

End

6.2 Interface

The VPNG system is implemented with Visual C++ and MFC. Microsoft
Foundation Class Library (MFC) framework is based largely on a few major
classes and several Visual C++ tools. Some of the classes encapsulate a large

portion of the Win32 application programming interface (API).

&3

| Application Object]

l Document Template l
| Document |
T Main F rame Window
| Toolbar J
I[; View |
Arrows show directions | Status Bar |
of communication flow.

Figure 11 Objects in a Running SD! Application

6.2.1 Game Interface : Server Side

The function of server subsystem is like game controller which can decides how
many players play it for this time game. For example, Mike, Lilian and Sophie
decide to play Video Poker Game on Intranet or Internet by MSN chat and email.
The 3 of players is input into below interface on server and choose the Game

Group is “0”.

Discussion

Figure 12 Setup one game group on server

During the execution of the game, the interface of server is displaying all

information from each player.

84

Untitled - chatsryr

Mike:has just joined the game
at turn #F1*

Lilian:has just joined the game
at turn #1*

Sophie:has just joined the game
at turn #1*

AT turn #1 beginning®

Mike : 85 . & invest money : 0

Lilian : JC , & invest rmoney 1 0

Sophie > 45, & invest money =0
Total Money: O

Figure 13 Interface for connection with players

345, & invest money = O
Total: Money:: 0
Add in: $200+at turn- ¥1
n:Add in $B00+ at turn #1
:Add in $600+ at turn #1

The turn of -#1: is finished. The result is like below: @
ike ::85.,.35 .. & invest money : 200

Lilian :“JC ; 3C';- & invest money ;. 800

Sophie : 45, 2C , & invest money:: 600
Total Money: 1600

Mike:Add:in:$100+at turn #2

Lilian:Add in $600+at turn #2

Sophie;Add in $900+ at turn #2

The turn of #2 is finished. The result is like below: @
Mike : BS , 3S , 9C. , & inveéstmoney : 300
Lilian : JC', 3C , QH | & invest money 1400
Sophie ; 45, 2C , 4C., & invest money - 1500
Total Money: 3200
Mike:Add in $ 500+at turn #3
Lilian:Add in $600+avturn:#3
Sophie:Add in $900+at:turn: #3

The turn of #2 is finished. The result is like below: ®

Mike : 85, 38, 9C | AD , & invest money : 800

Lilian : JC, 3C, QH , DH , & invest money : 2000

Sophie : 4S5 ,°2C , 4C [KD, & invest money : 2400
Total Money: 5200

Mike:Pass at turn #4%

Lilian:Add'in $300+at turn #4

Sophie:Add in:$900+at turn. #4

The turn of #4 is finished. The result is like below: ®

Mike : BS, 35, 5C, AD, 10C , &twotal bet: 800

Lilian : JC, 3C , QH , 9H, 7C ., &total ber: 2300

Sophie : 48 , 2C, 4C , KD, 25 , &total bet: 3300

«<The winner is : Sophie. His hand is: TwoPair, his winning is: 6400

Figure 14 Interface when game is over

85

6.2.2 Game Interface : Client Side

When the players, for example, Mike, Lilian and Sophie decided to play a Video
Poker Game together, they will run Setup interface of VPNG system on client

side, enter his/her name, server name and group / channel number.

Figure 15 Setup interface for player

Then the interface “chatter” will be poped up on each clinet side. For the first turn,
the card only show up to the player who is runing on his/her side and hide the
others. Each game player start to bet or pass this turn depending on the situation

skill, and experience.

86

Player: Mike , Total Betting.is: 0. Playing:
Playes: Lilian , Total Betting is: 0, Playing:
Playes: Sophie , Total Betting is: 0, Fiaying:

Figure 16 Interface of the first trun for player Mike

Playing Record. ‘of .Lilian

Player: Mike , Total Betting is: 0 Playing:
Player: Lilian ., Total Betting is: 0,.Playing:
Player. Sophie , Total Betting is: 0, Playing:

Figure 17 Interface of first turn for player Lilian

87

ntitied - chatter

Playing Record of Sophie

Money

H Y

v v

Player: Mike , Total Betting is: 0, Playing:
Player: Lilian , Total Betting is: 0, Playing:
Player: Sophie , Total Betting is; 8, Playing:

Figure 18 Interface of first turn for player Sophie
From the second tumn to end, all cards will show up to every players. The game

players then decide to bet or pass this turn. The current balance will be displayed.

Player: Mike ; Total Betling is: 200, Playing: 200,
Player: Lilian , Total Betting is: 800, Playing: 800,
Player: Sophie , Total Betting is: 600, Playing: 600,

38

Figure 19 Interface of second turn for player Mike

Playing Record .of Lilian

Player: Mike ; Total Betting Is: 200, Playing: 200,
Player: Lilian., Total Betting is: 800, Playing: 800,
Player: Sophie, Total Betting Is: 600; Piaying: 600,

—

A
St

—
Sely

7

——

Figure 20 Interface of second turn for player Lilian

Playing Record .of Sophle

Player. Mike , Total Betting is: 200, Playing: 200,
Player: Lillan , Total Betting is: 800, Playing: 800,
Player: Sophic , Total Betting is: 600, Playing: 600,

Figure 21 Interface of second turn for player Sophie

89

Playing Record of Mike

Player. Mike , Total Betting Is: 300, Playing: 200, 108,
Player: Lillan , Total Bening [a:- 1400, Playing: 800, 600,
Player. Sophie , Total Betting Is: 1500, Playing: 600, 900,

Figure 22 Interface of third turn for player Mike

Playlng Record - of - Lillan

%] Money.

D Balance ‘

Player: Mike: ; Total Betting is: 300, Playing: 200, 100,
Player: Lilian ;. Total Betting is:-1400. Playing: 660, 600,
Player: Sophie , Total Betting Is; 1500, Playing: 600, 300,

Figure 23 Interface of third turn for player Lilian

90

Player: Mike , Total Betting Is: 300, Playing: 200, 108,
Ptayer. Lilian , Total Betting is: 1400, Playing: 800, 600,
Player. Sophie , Total Betting is: 1500, Playing: 600, 900,

Playing Record of Mike

D Balance

Player: Mike , Total Betting is: 800, Playing: 200, 100, 500,
Player: Lilian , Total Betting is: 2009, Playing: 800, 600, : 600,
Player: Sophie , Total Betling is: 2400, Piaying: 600, 900, 900,

Figure 25 Interface of fourth turn of player Mike

91

Player: Mike , Total Betting is: 808, Playing: 200, 100, 500,
Player: Lillan , Total Betting is: 2000, Playing: 800, 600, 600,
Player. Sophie , Total Betting is: 2400, Playing: 600, 300, 900,

Playing Record of Sophie

Player: Mike , Total Betting is: 800, Playing: 200, 100, 500,
Player: Lilian , Total Betting 18: 2000, Playing: 800, 608, 600,
Player: Sophie , Total Betting is: 2400, Playing: 600, 900, 900,

Figure 27 Interface of fourth turn for player Sophie

92

Piaying Record of Mike

0 ey

- alance B 4

Bln ?Q_L 319__
2% & | HY Y
2 Krsm
g b
o .
el v ?

Player: Mike , Total Betting is: 800, Playing: 200, 100, 500, Pass,
Player: Lilian , Total Betting is: 2300, Playing: 800, 600, 600, 300,
Player: Sophie , Total Betting is: 3300, Playing: 600, 900, 300, 900,
Sorry, you lose game, the winner is Sophie His hand is TwePair,

and you lose 800 :
'Yaur balanee is : -800

Figure 28 Interface of last turn for player Mike

Finally, all cards will displayed to every game players. The total amount of
balance for every game player will be displayed. The winner and the reason will

also displayed.

Playing Record of Lilian

Maney

8 J 4
Balance ladh & | adh & |
3 A 3 2)
9! A 4
A e @ | [EEe |
lags| las| 2o
s *-!;,
O
vel | vl v 3

Player: Mike , Total Betting is: 800, Playing: 200, 100, 500, Pass,
Player: Lillan , Total Bening is: 2300, Playing: 800, 600, 600, 300,
Player: Sophie , Total Betting is: 3300, Playing: 600, 900, 9080, 300,
Sorry, you losie game, the winner is Sophic His hand is TwoPair,

and you lose 2300

Your balance is : -2300

Figure 29 Interface of last turn for player Lilian
93

@ Money

Balam:e ;_Q_L
3 & s & |
A 9 K
4 299 | LErEE
‘:&: .4.;!. P
¥ &S
vy | v} 2

Player: Mike , Total Betting is: 800, Playing: 200, 100, 500, Pass,
Player: Lilian , Total Betting is: 2300, Playing: 800, 600, 6500, 300,
Player: Sophie , Total Betting is: 3300, Playing: 600, 900, 900, 900,
iCongratulation, you win the game, and your hand is TwoPair, and you win
3100

'Your balance is : 3100

Figure 30 Interface of last turn for player Sophie

94

Chapter 7 Conclusion & Future Work

7.1 Conclusion

The amount of research devoted to network games is lacking, even if the
popularity of network games is growing. We intended to fill some of this
knowledge gap with a study on how games behave over the Internet, and provide

a means of facilitating future research.

The report presents concepts related to multiplayer network game and multiplay
network game programming. It presents a Video Poker game based on
client/server architecture. This architecture takes advantage that has been shown
to provide better services to clients and extends it to a system which changes at
a very high rate. It also describes a new synchronization mechanism to provide

efficient consistency between clients and server.
Our research is also useful for the design of non game related application, such

as webcasts and online events with large numbers of viewers, community

websites.

7.2 Future Work

95

Despite the number of tasks we accomplished, there are always a number of
opportunities for improvement. Choices were made throughout the project that
required discarding options. A few possibilities work are introduced in this section.
Finally, there was a rather large set of topics that while interesting and useful,

were outside the scope of our particular project.

There were three tasks yet need to be completed. We wanted to work a bit more
on them so they would be as polished as the rest of the project. First, we could
improve the interface of game since it should be easy to learn and use. However,
a lot of MFC work could be needed while MFC is not popular tools currently in

game development.

Second, we were able to design a basic structure for a client/server game and
partially implement it. However, the functionality for playing this game on Internet
has not yet been fully implemented. This could become fully functional.

Third, we should do more testing work to debug the system. There are some

bugs to be fixed in this system.

There were several areas that while within the scope of the project, we lacked
the time or resources to pursue. For example, we can add chating function to
game in order to the players can talk each other during game playing. Also, when
only one game player access the server and send a request to setup the game
for his/her, he /she can play game hisself/herself without any win or lose.

Nobody like to play game without and result. If the VPNG system could be added

96

a function which any player can player with server , that could be more
interesting. However, there are a lot of coding work on server subsystem since

some algorithms even Artificial Intelligence knowledge and algorithms could be

needed.

97

References

[1] QuakeCon game web site: http://www.idsoftware.com/

[2] Ted Friedman "Making Sense of Software: Computer Games and Interactive

Textuality”, http://www.duke.edu/~tlove/simcity.htm

[3] Bong-Jun Ko, Dan Rubenstein, and Kang-won Lee, “Dynamic Server
Selection for large Scale Interactive Online Games (Work-in-Progress paper)

http://www.nyman-workshop.org/2003/papers/Dynamic server selection for large

scale interactive online games.pdf

[4] J. Orwant, EGGG:Automatedprogramming for game generation,

http://www.research.ibm.com/journal/sj/393/part2/orwant.pdf

[5] Lars Aarhus, Knut Holmqvist, and Martin Kirkengen, Generalized TwoTier
Relevance Filtering of Computer Game Update Events,

http://www2.nr.no/dart/projects/qgisa/download/gisa-aocim-netgames2002.pdf

[6] Semion S. Bezrukov, Methods for Multiplayer Gameworld synchronization,

http://www.cs.umd.edu/Honors/reports/Semion/MethodsXforXMultiplayerXGame

World XSynchronization.doc

98

[7] Knut Hakon T. Merch, Cheating in Online Games —Threats and Solutions
Version 1.0, Januar 2003, Note DART/01/03

http://www2.nr.no/dart/projects/gisa/download/Cheating in Online Games.pdf

[8] Ghita Kouadri Mostéfaoui and Soraya Kouadri Mostéfaoui , Java Shared
Data Toolkit for Multi-Player Networked Games ,

http://diuf.unifr.ch/~kouadrim/publications/JSDTpaper.pdf

[9] Programming FORUM NOKIA Version 1.0; October 29, 2003Java™
Multi-Player MIDP Game

http://ncsp.forum.nokia.com/downloads/nokia/documents/Multi Player MIDP_Ga

me Programming v1 O en.pdf

[10] SUMEA - Game Developer Point of View ,Nokia Developer Hub - Technical
Day for Java (August 20, 2003) presentation

http://ncsp.forum.nokia.com/download/?asset id=437;ref=ncspsupport

[11] Wu chang Feng, Wu chi Feng, On the Geographic Distribution of Online
Game Servers and Players

http://www.cse.oqi.edu/sysl/projects/cstrike/netgames03 _geo.pdf

99

[12] Wu-chang Feng, Francis Chang, Wu-chi Feng, Jonathan Walpole,

"Provisioning On-line Games: A Traffic Analysis of a Busy Counter-Strike Server”,

in Proceedings of the Internet Measurement Workshop, November 2002.

http://www.cse.ogi.edu/sysl/projects/cstrike/CSE-02-005.pdf

[13] Eric Cronin Burton Filstrup Anthony Kurc, Electrical Engineering and
Computer Science Department, University of Michigan, Ann Arbor, Ml 48109-
2122, A Distributed Multiplayer Game Server System,

fecronin, bfilstru,tkurcg@eecs.umich.edu , May 4, 2001

http://warriors.eecs.umich.edu/games/papers/quakefinal.pdf

[14] Eric Cronin Burton Filstrup Anthony R. Kurc Sugih Jamin_Electrical
Engineering and Computer Science Department University of Michigan Ann
Arbor, Ml 481092122, An Efficient Synchronization Mechanism for Mirrored
Game Architectures

http://warriors.eecs.umich.edu/games/papers/netgames02-tss.pdf

[15] Eric Cronin, Anthony R. Kurc, Burton Filstrup and Sugih Jamin_
(fecronin, tkurc,bfilstru,jaming@eecs.umich.edu), Electrical Engineering and
Computer Science Department University of Michigan, An E_cient
Synchronization Mechanism for Mirrored Game Architectures
(Extended Version)

http://warriors.eecs.umich.edu/games/papers/mtap-tss.pdf

100

[16] Eric Cronin Burton Filstrup Sugih Jamin, Electrical Engineering and
Computer Science Department, University of Michigan, Ann Arbor, Ml 48109-
2122, Cheat-Proofing Dead Reckoned Multiplayer Games (Extended
Abstract)

http://warriors.eecs.umich.edu/games/papers/adcog03-cheat.pdf

[17] Aditya Mohan, Maurice Herlihy, Department of Computer Science,
Brown University, PO BOX 1910, Department of Computer Science,
Providence, Rl 02912 USA,Peer-to-Peer Multiplayer Gaming using Arrow
Multicast: Peer-to-Peer Quake

http://www.cse.msu.edu/icdcs/posters/final/12_s.pdf

[18] Debanjan Saha Sambit Sahu Anees Shaikh, Network Services and Software
IBM TJ Watson Research Center, Hawthorne, NY 10598, A Service Platform

for OnLine Games

http://www.research.ibm.com/people/a/aashaikh/papers/netgames03.pdf

[19] D. Saha, S. Sahu, and A. Shaikh, Proc. of NetGames 2003 Workshop, May
2003.A Service Platform for On-Line Distributed Games,

http://www.research.ibm.com/people/a/aashaikh/papers/netgames03.pdf

101

[20] A. Acharya, A. Shaikh, and R. Tewari, Proc. Open Signaling for ATM, the
Internet, and Mobile Networks (OPENSIG 2000) Workshop, Invited talk, October
2000. Local and Wide-Area Server Selection: Techniques and Challenges

http://www.research.ibm.com/people/a/aashaikh/papers/opensig2000.pdf

[21] Ahmed Abdelkhalek, Angelos Bilas, and Andreas Moshovos
Department of Electrical and Computer Engineering, University of Toronto
Behavior and Performance of Interactive Multi{player Game Servers

http://www.eecqg.toronto.edu/~moshovos/research/quake ispass00.pdf

[22] Paulo Guedes_ Daniel Julin, Writing a Client-Server Application in C++

http://citeseer.nj.nec.com/cache/papers/cs/186/ftp:zSzzSzftp.cs.cuhk.hkzSzpubz

Szmach3zSzsrczSzmach uszSzsrczSzdoczSzusenix-czPzzPz-

92.pdf/guedes92writing.pdf

[23] Albert Parent, Amr Hafez, and Dan Keefe, BGS Systems Inc.
Comparative Performance Analysis of Client-Server Applications
developed in Java and C++

http://www.bmc.com/offers/performance/whitepapers/docs/1997/comparative _per

f analysis clientserver apps java c.pdf

102

[24] Jered Wierzbicki, The Essentials of Multiplayer Games
or, "Some categorization, problems, solutions, general stuff about multiplayer-
games”

http://www.gamedev.net/reference/articles/article722.asp

[25] David Michael, Designing for Online Communities

http://www.gamedev.net/reference/articles/article889.asp

[26] Yanna Vogiazou, Research Proposal
Presence Based Massively Multiplayer Games:Exploration of a new
concept

http://kmi.open.ac.uk/publications/papers/kmi-tr-123.pdf

[27] Tobias Baumann ,Why do we play multiplayer games?
An analyse of today’s goals and ideas behind multiplayer online games.
2003,

http://www.the2ndsky.ch/inquiry/T.B. Study (Why do we play multiplayer

games).pdf

[28] Dave LaPointe Josh, Analyzing and Simulating Network Game Traffic,
December 19, 2001

http://www.cs.wpi.edu/~claypool/mgp/net-game/game.pdf

103

[29]Amund Tveit, @yvind Rein, Jargen V. Iversen and Mihhail Matskin. Scalable
Agent-Based Simulation of Players in Massively Multiplayer Online Games.
In Proceedings of the 8th Scandinavian Conference on Artificial Intelligence

(SCAI'03), Frontiers in Atrtificial Intelligence and Applications, 10S Press, Bergen,

Norway, November, 2003.

http://www.abiody.com/people/amund/publications/2003/zereal. pdf

[30] Amund Tveit and Gisle B. Tveit. Game Usage Mining: Information
Gathering for Knowledge Discovery in Massive Multiplayer Games. In
Proceedings of the 3rd International Conference on Internet Computing, CSREA

Press, Las Vegas, USA, June 2002, pp. 636-642.

http://abiody.com/gamemining/publications/2002/GameUsageMining.pdf

[31] Yahn W. Bernier, Latency Compensating Methods in Client/Server In-

game Protocol Design and Optimization,

http://www.gdconf.com/archives/2001/bernier.doc

[32] Lov Pater, Multiplayer Gaming Popularity, Feb, 2003.

hitp://www.planetblackandwhite.com/features/articles/staff/iovpater/mpex.shtml

[33] Massive multiplayer online games:

104

Ultima Online by Origin Systems, 1997

http://www.ultimaonline.com/, Feb 2003

Everquest by Verant Interactive, 1999

http://everquest.station.sony.com/, Feb 2003

Dark Age of Camelot by Mythic Entertainment, 2001

http://www.darkageofcamelot.com/, Feb 2003
Asherons Call 2 by Turbine Entertainment,2002

http://www.asheronscall2.com, Feb 2003

[34] FPS and other multiplayer online games:
Half-Life by Value Software, 1998

http://www.half-life.com, Feb 2003

Counter-Strike a Half-life Modification by the CS team, 1999 till today

http://www.counter-strike.net, Feb 2003

Unreal Tournament 2003 by Epic Games, 1999

http://www.unrealtournament.com, Feb 2003

Diablo 2 and Warcaft 3 by Blizzard Entertainment, 2000 and 2002

http://www.blizzard.com/diablo2/, Feb 2003

http://www.blizzard.com/war3/, Feb 2003

Battlefield 1942 by DICE, 2002

http://www.battlefield1942.com, Feb 2003

105

[35] Briam “Beej” Hall, Beej's Guide to Network Programming

http://www.ecst.csuchico.edu/~beej/quide/net/bagnet.pdf

[36] Winsock Programmer’s FAQ,http://tangentsoft.net/wskfaq/

[37] Jim Frost, Windows Sockets: A Quick And Dirty Primer, Last modified
December 31, 1999

http://world.std.com/~jimf/papers/sockets/winsock.html

[38] Online MSDN: http://msdn.microsoft.com/

[39] Windows Sockets 2 Application Programming Interface-An Interface for
Transparent Network Programming Under Micooft Windows, Revision 2.2.2,
Augest 6, 1997.

ftp://ftp.microsoft.com/bussys/winsock/winsock2/WSAPI22.DOC

[40] WinSock 2 Information, December 5, 1998

hitp://www.sockets.com/winsock2.htm#Docs

[41] Windows Sockets, An Open Interface for Network Programming Under
Microsoft Windows, version 1.1, 20 January 1993

http://www.cs.concordia.ca/~comp445/labs/webpage/winsock.htm

106

[42] WinSock 2 Information,http://www.sockets.com/winsock2.htm

[43] Francis Chang, Wu-chang Feng, "Modeling Player Session Times of On-
line Games", in Proceedings of NetGames 2003, May 2003,

hitp://www.cse.odi.edu/sysl/projects/cstrike/netgames03 _flow.pdf

107

Appendix A. Installation of Server and Client Application
Appendix B. Setting up of Server and Client Application
Appendix C. Procedures to run demo Application

Appendix D. Glossary

FPS
RPG
MMOG
MMORPG
MUD
MFC
VPNG
BSD
IPS
QoS
WOSA
SPI
AP
RPC
TCP
FTP

LAN

First Person Shooter game

Role Playing Game

Massive Multiplayer Online Game
Massive Multiplayer Online Role Playing Game
Multi User Dungeon

Microsoft Foundation Class Library
Video Poker Networking Game
Berkeley Software Distribution
Internet Protocol Suite

Quality of Service

Windows Open system Architecture
Service Provider Interface
Application Programming Interface
Remote Procedure Calls
Transmission Control Protocol
Internet file Transfer Protocol

Local Area Network

108

UDP
IP
ARP
ICMP

HTTP

User Datagram Protocol

Internet Procotol

Address Resolution Protocol
Internet Control Message Protocol

Hypertest Transfer Procotol

109

