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ABSTRACT

A Study of the Effects of the Coefficients of Generalized
Bilinear Transformations in Design of Two-Dimensional

Variable Recursive Digital Filters

DENG CHEN BIN

Two-dimensional v ariable recursive digital filters are applied 1n signal p rocessing
and communication systems where the frequency-domain characteristics of digital filters
are required to be adjustable.

The main objective of this thesis is to propose a new technique of designing 2-D
recursive digital filters with variable characteristics. From a 1-D second order
Butterworth low-pass analog ladder structure, 2-D low-pass and high-pass digital filters
can be obtained through the application of double generalized bilinear transformations
when the coefficients o f the transformations are chosen in their s pecified ranges. And
when one or more these coefficients are changing, the resulting 2-D low-pass and
high-pass filters possess variable magnitude responses. Another two important types of
2-D digital filters, 2-D band-pass and band-elimination filters, can also be obtained by

properly combining a 2-D low-pass filter and a 2-D high-pass filter. When the
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coeflicients used to obtain the 2-D low-pass and high-pass filters are changeable, the
resulting 2-D band-pass and band-elimination filters also possess variable magnitude
characteristics. The manner how each coefficient of generalized bilinear transformation
affects each type of desiring 2-D recursive digital filters is investigated in detail.

Stability is always an important issue in 2-D recursive digital filter design. The
stability conditions of generalized bilinear transformation and the stability conditions of
the 2-D digital filters having a denominator with single degree of each variable are

discussed in detail here.



ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my thesis supervisor,
Dr. Venkat Ramachandran, for his valuable guidance and encouragement
through the course of this thesis, for his extremely careful, critical, and
thorough review of my work.

I would like to thank Dr. W. Zhu, Dr. C. S. Gargour and Dr. W.
Lynch for their helpful comments in the preparation of the thesis.

I would also thank my parents for encouragement and supports. I
am extremely grateful to my dear wife Dong Ming Wen for her

enormous support, encouragement, and understanding.



vi

To
my dear daughter Carol Jialu Deng

and my baby expected in June 2004



Table of Cantents vii

Table of Contents

LUSE OF FHGUIES Lottt ettt e e ek aa e e s e X1ii
LASt 0F TabIes ..ot XXV
List of Important SYmBols ... s XXvi
Chapter 1: Introdietion ........ioo oot ettt e as 1
LT GOETAL oottt s e e n e ettt beaa s 1
1.2 Overview of Very Strict Hurwitz Polynomial ......c.ovceeverciniivnineeecceeer s 6
1.2.1  Definition of Very Strict Hurwitz Polynomial ..o 6

1.2.2  Some Propertics Of VSHP ....coooiiiiiiiiiie et ee e 7

1.3 Review of Generation of VSHP ... 13
1.3.1 Using Terminated n-Port Gyrator Networks..........ccococveiivnnnnnicncinen, 13

1.3.2  Using the Properties of Positive Semi-definite Matrices.........ccocvevrivianenne. 14

1.3.3 Using the Properties of the Derivative of Even or Odd Parts of

Hurwitz Polynomial.. ......cocooiiiirininieien et 15

14 Review of symmetries of 2-D contours......cooevvvvevvnriiieiiccce e 15
1.4.1 Reflection Symmetry about @i OF @3 aXIS ..ooveeireiieiiriiiiiceeeerees e 16
1.4.2 Reflection Symimetry about Diagonal &=y ......ccocovvivvivvnncinniniiinnenn 16
1.4.3  Contro SYIIMIEIIY ..c.eerrieiieeiiesesrcons e e srerneseennestessene st sseaesssne s snsesesaensrans 17
1.4.4  Quadrantal Symmetry.......coooeivinee S OO USSP URROTRN 17
1.4.5  Diagonal SYMMEIIY ...ccovveriiiirenirinne i etssaee e seseaaasessessbennasessensassenns 17
1.4.6  Four-Fold Rotational Symmetry......ccocovnverivienecirienvcennereesessrssneannn 18

147 Octagonal SYMMELTY ....ccoooiiiiiiiiiniii s e asesn e eseneas 18



Table of Contents

wiii

1.4.8  Circular SYMIMETY ..o s
1.5 Review of generalized transformations ... srncreisesreeeenes
1.5.1 Definition for Generalized Bilinecar Transformation .......ccvvecvinnerenrrienen,
1.5.2  Stability Conditions for Generalized Bilinear Transformations................
1.5.3  The mapping relationship ..ot
1.6 Scope and Organization of The Thesis ...
Chapter 2: Two-Dimensional Low-Pass Filters........coccoiiiinccneccnnennnns
2.1 INEFOQUCHON c1errrieeie ettt et eer et e sms s e essereabs vt abaesr et nsansaeasnsens
2.2 Design Methods for 2-D Nonrecursive FIErs ....ococcveieionvvenneniinnenenene.
221 Windows Method. ..ot cer e s cenesncans
2.2.2  Transformation Method ........cccooieiiiiiniiniinccer e
2.2.3  Lmear Programming Method .......coverirnncininicesecese e
2.3 Design Methods for 2-D Recursive Filters.......ccooovvvniieniencnns e
2.4 The Second Order Butterworth Low-Pass Ladder Network .....cccoovvvveriicnn.

2.5 The 2-D Analog Transfer Function Obtained from Transformation of the
1-D Second Order Butterworth Prototype Filter

2.6 The Digital Transfer FUNCHON ......cooeiciiniiniiic st sne e

2.6.1 The Low-Pass Limits of the Coefficients of the Generalized Bilinear

T AL S T O TIIALIONIS 1ot ecee ettt eee et ee e e e e e e e aeeammeeaeeeeesranassearanaenaranerannsnsesnnes

2.6.2 2-D Low-Pass Digital Transfer Function bv Double Generalized

Bilnear TranS OrmmalIONS .ottt e e er et e e e e st eeseeaeeneneens

2.7 The Stability Conditions of the 2-D Digital Filter with Unity Degree

D O I I AL 0T e e e eeeeeesseeneeas et aneseaeeraeaaaessasssrereaeaessssasasnssensrnarteenesarasaraeeseaesen

2.8 Frequency Responses of 2-D Low-Pass FIers......ccocviiivncvcnieneccnnirnnnieninns

2.8.1 Frequency Response of the Resulting 2-I) Low-Pass Filter with

.
‘ariabie
O T SRS PPEN

2.8.2 Frequency Response of the Resulting 2-D Low-Pass Filter with

VAEIADIE K et vttt n et aeee s s e ressasa e s e s ase s ennene e ntras ennnesranaeen

................................................

19

19
19
21



Table of Contents ix

2.83 Frequency Response of the Resulting 2-D Low-Pass Filter with
VATTADIE 01 1evvevvinrisreecemeereireeiuisissessesssaresssasansassasstscortasaressnssnsensesennsessasnsnnes 45

2.84 Frequency Response of the Resulting 2-D Low-pass Filter with
VATIADIE (H12rieeiivrieiec i crre st e e cvbae s bt etara e s s s brsessaatraeetansrensrnnessaenas 47

2.8.5 Frequency Response of the Resulting 2-ID Low-Pass Filter with
Equal Variables a1 And @02 v vverecrenirenecorenesicereeeecreseeess e saesann 49

2.8.6  Frequency Response of the Resulting 2-D Low-Pass Filter with
FATEADIC f3)] vererurinerereieeee ettt est e ita e s e v s aveaeeaaressae s baassessasne et enarassansevsaesnnnnas 52

2.8.7 Frequency Response of the resulting 2-D Low-Pass Filter with
Variable So e 56
2.9 Summary and DISCUSSION ...oovciiiiiirecees vt eateese e e stbssaeer s e nesesssesaasebans 59
Chapter 3: Two-Dimensional High-Pass Filters ... 61
3.1 TINITOAUCTION 1ottt sttt bbbt e s sa s e e saeen e sasbasseesbensaenens 62
3.2 2-D Analog Transfer FUNCHOM ....ovviiiiiir et se e s sve e 63

3.3 The High-Pass Limits of the Coefficients of the Generalized Bilinear
TranS OTIIAtIONS .oevt ittt e 04
3.3.1 Generalized Bilinear Transformation Coefficients.........oovovroroeevnccrinnene 65
3.4 The Digital Transfer Function of 2-D High-Pass Filter ........occcoveenciiniiinnnnne 68

3.5 The Stability Conditions of 2-D Digital Filter with a Single Degree
Denominator for Each Variable ... 69
3.6 TFrequency Response of the 2-D High-Pass Digital Filters .....ccococcoiovviviininnnnn. 70

3.6.1 The Frequency Response of the Resulting 2-D High-Pass filter with
VaATTADIE KLt ettt e s et e an e te s e ransets e e nraesanaee e 70

3.6.2 Frequency Responses of the Resulting 2-D High Pass filter with
N ATTADIE it ettt ettt e e ettt e e s e entaaa s nntaea e erbenasans 73

3.6.3 Frequency Response of the Resulting 2-D High-Pass Filter with
VATTADLE 0L0 1 vveeiriiriee et crr it ettt e et e e e e s saas Lo bra e e e s et essssmranessennbenen 75

3.6.4 Frequency Response of the Resulting 2-D High Pass filters with

Vari 77
ariable )2 v eweanensonnrvesnuesersaansnessss shnsasssessastnssssssyetsrsinnsonnsssonenssnanssvhnubronessonnens



Table of Contents X

3.6.5 TFrequency Response of the Resulting 2-D High-Pass Filters with
Equal Variables 0o and 0oz cvoveevveneiiiiiniiie st e 79

3.6.6 Frequency Response of the Resulting 2-D High-Pass Filters with
VALTADIE 5] 1ovrvireeerrreereicece sttt ereses et ene s s 82

3.6.7 Frequency Response of The Resulting 2-D High Pass Filters with
VATTADIE [J)2 cveerererireneeiiireeeir et e s e st s aa e b e e s er e estaasasne e 85

3.6.8 Frequency Response for The Resulting 2-D High-Pass Filters with
Equal variable Lo oot on s s 88
3.7 Summary and DISCUSSION ..c..virieererseressraererresteeas s reeressessaseeasesinassnsensessassesss 91
Chapter 4: Two-Dimensional Band-Pass Filters.......ccoocooovii, 93
4.1 IOITOQUCHION 1etirertecir et ceieree e et e st e e eeseaas e s essnesnnenseaseneeenneseanesbennsens 94
4.2 The Algorithms of Filters Cascading.......oocverrinereieenn it 95
4.3 The Member Low-Pass FIer ... s e 98
4.4 The Member High Pass FIlfer ... 99
4.5 Stability of the 2-D Band-pass FIHEI....c..oovvnicenc s 100

4.6 Frequency Response of the Resulting 2-D Band-Pass Recursive Digital
FAIEETS 1ottt et et e s e st a e e r s e n e ne e s e e e cae s 100

4.6.1 Frequency Response of the resulting 2-D Band-Pass filter with
RV e T 1) OO TSROSO 101

4.6.2 Frequency Response of the resulting 2-D Band-Pass filter with
RV o151 [ o DRTU OO T OSSO PR OO RT RSP R U SRURRURRS RO 105

4.6.3 Frequency Response of the Resulting 2-D Band-Pass filter with
Equal Variables &1 and £ ..cocovveeerieeiecieccece s 108

4.6.4 Frequency Response of the Resulting 2-D Band-Pass Filter with
VATTABLE K3 vt ete et e e et s e et anea bt s st reaseabereanran 111

4.6.5 Frequency Response of the Resulting 2-D Band-Pass Filter with
VATIADIE Ky vveivieiieceeitieie e en e bt 115

4.6.6 Frequency Response of the Resulting 2-D Band-Pass Filter with
Equal Variables &3 and A4 covoeirionecicceccicn e 118



Table of Contents xi

4.6.7 Frequency Response of the Resulting 2-D Band-Pass Filter with

Equal Variables k1 and A3 .ccovvvvvniiii st 120

4.6.8 Frequency Response of the Resulting 2-D Band-Pass filter with

.
Variable o 125
I1a i) £ TS T T S P PN

4.6.9 Frequency Response of the resulting 2-D Band-Pass Filter with

VATIADIE 10 vverrreerieereereeeesseeasiesieneesssesiosrseseasssessresesnesvnanssesnsarasessesessonnn 127

4.6.10 Frequency Response of the Resulting 2-D Band-Pass filter with

variable QU3 vrnenarviasinetnsanasisaasors e eensaereerarratsrsenrisaronsanitibnaasayatracasasiiservosnverans 129

4.6.11 Frequency Response of the Resulting 2-D Band-Pass Filter with

VAT ADIE €05t osversiereseiccrbr s rcererr cnresersesasrecreanseeras s svasmnsnssenssssenssnsssaneons 131

4.6.12 Fréquency Response of the Resulting 2-D Band-Pass Filter with
VATIADIE )] ceevvirreririenreriensseaceiecereasaererareasereessesssassosensnesressessessassreessassasaenes 133

4.6.13 Frequency Response of the Resulting 2-D Band-Pass Filter with
VATTADIE S0 ov vttt e e 137

4.6.14 Frequency Response of the Resulting 2-D Band-Pass Filter With
VATTADIE £33 orevveeriie e eese e s ettt sne et s st en e s eaea 141

4.6.15 Frequency Response of the Resulting 2-D Band-Pass Filter with
VArIADIE o ereeieevtirerer s e st 145
4.7 Summary and DiSCUSSION .....ceerrii ittt nn e e 149
Chapter S: Two-Dimensional Band-Elimination Filters .........c..cccoveiivinicnnnen 151
5.1 Introduction,......; ................................................................................................. 152
5.2 The Algorithm of Parallel Combination of Two Filters ......cccccoivvviornicciininnnn 153
5.3 The Member Low-Pass Filter ... e 155
5.4 The Member High-Pass fIHEr ...c..oocoiiiiiicii e 156
5.5 Stability of the 2-D Band-Elimination FIIters .......ccccooevmviincriniiinnceenes 158
5.6 The Frequency Response of 2-D Band-Elimination FILers ..o, 159

5.6.1 Frequency Response of the 2-D Band-Elimination Filter with Equal

VATTADLES Ki'S voiivvireee it e et eeeettte s st asasseasanbeescoebbesets s ensnrearatsansennteserans 159

5.6.2  Frequency Response o f the R esulting 2 -D B and-Elimination F ilter



Table of Contents xii

WILH VAMTADIE 0] eeieriiirireeirrisiee it vintese e veseasseesssae s e s ssrmnten s ensetssensesens 166

5.6.3  Frequency Response o f the Resulting 2 -D B and-Elimination Filter
WIH VAHADIE (0. vvevrieieire v s e eeta ekt en et be s s rmaessreeesanes 168

5.6.4 Frequency Response o f the R esulting 2 -D B and-Elimination Filter
with Equal Variables ¢ and Qog.o e 170

3.6.5 Frequency Response o f the R esulting 2 -D B and-Elimination Filter
WD VATTADIE (03 vserrriereirisismeneecviiiresvecaeeeees e snsseenseesesnnnssaserssnresesnesnessnns 172

5.6.6  Frequency Response of the Resulting 2 -D B and-Elimination F ilter
WITH VALTADLE €00d-vrvrreeerrevnnnieeeireciteeterisees s vessnrrenssasseassresrsessseasassonsienennrens 174

5.6.7 Frequency R esponse o f the R esulting 2 -D B and-Elimination F ilter
with Equal Variables @3 and @ga..eeeevenrevrivinieninresrc e 176

5.6.8 Frequency Response of the R esulting 2 -D B and-Elimination F ilter

with Equal Absolute Values of Variables 04, .covecvivvieenivincnncn 178
5.6.9 Frequency Response of the R esulting 2 -D B and-Elimination Filter

WItH VAEID1E 078 cvvrveeeienrerieiiiiresete e eeaeveste st et se s s e e sse e se s esaene e 180

5.7 Summary and DiSCUSSION ...cecrirriveieirinie e eraesteesessresreseerrresseassesavssssessearsessssrees 184
Chapter 6: Conclusions and Directions for Future Research................ccccvvveenn. 186
0.1 CONCIUSIONS 11euviierieeiiretie it ecie ettt taes e e et e vnesreesrasasese s eaeereaesaeesaseanesaenssnseessesns 186
6.2 The Possible Directions of Future Research ......ocooveeviinnicviinicnccncen 191
BRI ETBIICES .ot n e are et eaaenne 193
APPENDIX: Program LIStIDG ...t 197
Al. Programs for Chapter 2: 2-D Low-Pass Filters .......ccccooornrvinnciccneccs 197
AZ. Programs for Chapter 3: 2-D High-Pass Filters ......ccooverrvenvccnncirnneeenns 215
A3. Programs for Chapter 4: 2-D Band-Pass FIRers.....coevievvinnnrncnccincnvnn 230

Ad4: Programs for Chapter 5: 2-D Band-Elimination Filters ... 232



List of Figures xiii

List of Figures

Figure 1.1  The multiplier X in the backward path (System I)....ccoooiiii 3
Figure 1.2 The Multiplier K in the forward path (System IT).....cccoiiiiiiiiiinan 4
Figure 2.1  The specifications of a typical 2-D low-pass filter ... 27
Figure 2.2  the Second order low-pass ladder network ... 32

Figure 2.3 The 1* order 2-D doubly-unity-terminated analog circuit with
Butterworth €lements ..o st O

R3]

Figure 2.4  The range of £, when the other coefficients are specified to be ky=1.0,
(Z{)ﬁ'*“-l.(), %2“-1‘0, ,301'::1.0, and ﬂ()gml.o .................................................... 40

Figure 2.5 The contour and 3-D magnitude plots of the resulting 2-D low-pass
filter with variable k; and the other coefficients fixed as k;=1.0,
Cl’m'-”—-—l,o, 0,’()25-*1.0, ﬂm =1.0 and ,302’:*1.0 .................................................. 42

Figure 2.6  The range of k, when the other coefficients are specified to be £;=1.0,
ot1=-1.0, =—1.0,001=1.0, and Fp=1.0 .ocoocrirviiiiiiniiineecee 43

Figure 2.7  The contour and 3-D magnitude plots of the resulting 2-D low-pass
filter with variable % and the other coefficients fixed as k=1.0,
6(()1::"‘—1.0, 02)2:“-—1.0, ﬁ()] =1.0 and /)?ogml.() .................................................. 44

Figure 2.8 The range of ay when the other coefficients are specified to be
=10, kgmﬂl.O, m)zml.O,ﬁoﬁl.O, and ,B()zwl.o ......................................... 45

Figure 2.9  The contour and 3-D magnitude plots of the resulting 2-D low-pass
filter with various g, and the other coefficients fixed as k;=1.0,

k1.0, z=—1.0, fo=1.0, and Bum=1.0 oo 46

Figure 2.10 The range of ay; when the other coefficients are specified to be



List of Figures xiv

Figure 2.11

Figure 2.12

Figure 2.13

Figure 2.14

Figure 2.15

Figure 2.16

Figure 2.17

Fignre 2.18

Figure 2.19

Figure 2.20

Figure 3.1

kr"‘“l .O, kf""‘-*-l.o, %1“‘”‘“1.0;/301“1 .0, and /))02*“1.0 ......................................... 47

The contour and 3-D magnitude plots of the resulting 2-D low-pass
filter with various @y, and the other coefficients fixed as ky=1.0,
ky=—1.0, co1=—1.0,517=1.0, and Loa=1.0 oo 48

The range of equal oy and oy when the other coefficients are
specified to be k1=1.0, k=1.0, Bor==1.0, and Lo2=1.0 orevvr i 49

The contour and 3-D magnitude plots of the resulting 2-D low-pass
filter with Equal variables @ and oy, and the other coefficients fixed
as kr“":],.o, kszOa ﬂmml.o, and /)’()2‘“1.0 ...................................................... 50

The contour and 3-D magnitude plots of the resulting 2-D low-pass
filter with equal variables @ and a; and other coefficients fixed as
k1=50.0, £2=50.0, Loi=1.0, and Sos=1.0..ccccoirierincircnnecrece e 51

The range of fy when the other coefficients are specified to be
klml‘O, kgml.o, (2’4)1’“‘*1.0, (102"”"‘-—1.0 and ‘B();f-“—l.o ......................................... 52
The contour and 3-D magnitude plots of the resulting 2-D low-pass
filter with variablef, and the other coeffictents fixed as 4=1.0,
/(231.0, CX{)1=°~1.0, 0[()2"-3“1.0 and ,8()2“1.0 ..................................................... 53

The contour and 3-D magnitude plots of the resulting 2-D low-pass
filter with variable k; and other coefficients fixed as k-=1.0, ap;=—1.0,
Gtoz;:*—l.o, ,601=0 and ﬂop_:l.o ....................................................................... 55

The range of fi; when the other coefficients are specified to be
k1:l.0, kgxl.O, CZ()1=-1.0, Q’ozz“l‘(), and ﬂ()}:l.() ........................................ 56

The contour and 3-D magnitude plots of the resulting 2-D low-pass
filter with variable fy and the other coecfficients fixed as k1=1.0,
kgml.o, 0!01**“1.0, 6!02%]..0, and ,[301*1.0 .................................................... 57

The contour and 3-D magnitude plots of the resulting 2-D low-pass
filter with variable k and the other coefficients fixed as k=1.0,

CZ()]"""""”*I.O, 0(02:"“'-*1.0, ,Bmm() and ﬁog“l.o ...................................................... 58

The Specifications of a typical 2-D high-pass digital filter in the



List of Figures 4%

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10

Figure 3.11

Figure 3.12

frequency domaim

The range of k; when the other coefficients are set to ky=1.0, og=1.0,
LY()Z”“'I .O, /J"Q{WML.O and /3();3"’"""“]..0 ................................................................. 70

The contour and 3-D magnitude plots of the resulting 2-D high-pass
filter with variable & and the other coefficients fixed as ky=1.0,
mnml.(), CZQQ“*‘*:I.O, ,301"“”“1.0 and ﬁ(}f”‘"*“l.o ................................................... 72

The range of k> with the other coefficients are set to h=1.0, ap1==1.0,
(Zog‘"”"“l.o, ,B(jn”‘ml 0 and ﬁoz’»’*‘wl.ﬂ .................................................................. 73

The contour and 3-D magnitude plots of the resulting 2-D high-pass
filter with variable %, and the other coefficients fixed as k;=1.0,
(2’01’-‘"1.01 O{szl.o, /3()1“““*1.0 and ,6()2"“”"'-}.40 ........................................ 74

The range of @y with the other coefficients are set to be ky=1.0,
kzml.o, (1{)1:1.0, Ll()f’l.(), ﬁo}m—l.o and ,B()zm“l.o ....................................... 75

The contour and 3-D magnitude plots of the resulting 2-D high-pass
filter with different values of o) and the other coefficients fixed as
k=10, k=1.0, a5;=1.0, Bor=—1.0 and Loo=—1.0. oot 76

The range of «y; when the other coefficients are set to be k=1.0,
kle.O, amnl.(), ,8()1::*—'1.0 and ,8033*1.0 ..................................................... 77

The contour and 3-D magnitude plots of the resulting 2-D high-pass
filter with variable ¢, and the other fixed coefficients k1=1.0, k=1.0,
21=1.0, Sor=1.0 and Bpa=—1.0. e eorereieeerecere e 78

The range of equal o and a; when the other coefficients are set to
be kr“’l.(), k;),:l.o, ﬂ()]mml.O and ﬂr_)zz—'l.o ................................................... 79

The contour and 3-D magnitude plots of the resulting 2-D high-pass
filter with equal variables o and a2 and the other coefficients fixed
as kr‘“‘"l.o, kf"l.(), ,[7’0‘]:——1.0 and ﬂoz‘*"wl.() ................................................... 80

The contour and 3-D magnitude plots of the resulting 2-D high-pass
filter with equal variables o and ¢, and other coefficients fixed as
k1==50.0, kgf«*——'S0.0, ,6()1'“'"“"*1.0 and f]()zm““l.o ................................................... 81



List of Figures xvi

Figure 3.13 The range of fy when the other coefficients are set to be k=1.0,
ky=1.0, apr=1.0, a03=1.0, and Syzm==1.0 1 eovriiiieceree e 82

Figure 3.14 The contour and 3-D magnitude plots of the resulting 2-D high-pass
filter with variable f) and the other coefficients fixed as k=1.0,
k=10, apr=21.0, =10, and Soy==1.0 oo 83

Figure 3.15 The contour and 3-D magnitude plots of the resulting 2-D high-pass
filters with variable k& and the other coefficients fixed as Ay=1.0,
amml.(), (.2’02"“"1.0, ,Bmm”()..ﬁand ,8()2""’%1.0 .................................................... 84

Figure 3.16 The range of fy; when the other coefficients set to be k=1.0, kr=1.0,
m);ml.(), a'of-”"-'l.o, and ,Bor“-’"-—-l e e s ar s 85

Figure 3.17 The contour and 3-D magnitude plots of the resulting 2-D high-pass
filter with variable fiy» and the other coefficients faxed as k=1.0,
kzm’l.o,, (2’()1”1.0, Ct'()g-'*“‘l.o, and ﬂm’"ml.o ...................................................... 80

Figure 3.18 The contour and 3-D magnitude plots of the resulting 2-D high-pass
filters with variable 4, and the other coefficients fixed as k=1.0,
k?‘:l,.o, (Xm”l.o, 0.’0231.0, and ﬂm’*‘"«*l.o ...................................................... 87

Figure 3.19 The range of equal 3y andfy; when the other coefficients are set to
be I1=1.0, 55=1.0, 001=1.0 and @oz=1.0 coovviioeeiiece e 88

Figure 3.20 The contour and 3-D magnitude plots of the resulting 2-D high-pass

filter with equal variables fp’s and the other coefficients fixed as
k=1.0, k=1.0, c01=1.0 and 1.0 e 89

Figure 3.21 The contour and 3-D magnitude plots of the resulting 2-D high-pass
filter with equal variable &;’s and the other fixed coefficients ag;=1.0

and O!Qz":"zl.o, ﬁm:() and ,602:-0 ..................................................................... 90

Figure4.1 Frequency Response Specifications of a Typical 2-D Recursive
Band-Pass Digital FIEEIS ..oovivioeriieicecnieece e e s 95

Figure4.2  2-D band-pass filter from the combination of 2-D low-pass and
high-pass filters (in Frequency Domain) ....cc.coccommiinnenoneienrncnnnennenn 96

Figure 4.3  The cascade of 2-D low-pass and high-pass filters.......ccovevmriennccnnicene. 97



List of Figures

xvil

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Figure 4.11

The contour and 3-D magnitude plots of the resulting 2-D band-pass
filter with variable & and the other fixed coefficients k»=1.0,
(1’()1’*':""1.0., {X(j);zm'“l.(), ﬁmml.o, ﬁozm]..o; k;ml.(), kf:l.o, 0503”‘:1.0,

41,0, fozen1.0 and Soam=1.0u it 103

the contour relations between the resulting 2-D band-pass filter and
its member filters with variable k; and the other coefficients fixed as
kﬂgml‘o, Cz’m”ml.o, %2”‘“1.0, ﬂmml.o, ﬂ()zml.o; kgml.O, kf"’l.o, aogml.O,

0047""-1.0, ,5()3:"1.0 and /304’::“] s 103

The contour and 3-D magnitude plots of the resulting 2-D band-pass
filter with variable k; and the other coefficients fixed as 4;=1.0,
ay1=-1.0, an=-1.0, Ln=1.0, ﬂozml.o; k=1.0, ks=1.0, a3=1.0,

(Xo:;ml.(), /303::‘*1.0 and [}()4*3:”10 ................................................................ 107

The contour relations between the 2-D band-pass filter and its
member filter with variable 4, and the other coefficients fixed as
k{ml.(), (&;1""’""1.0, 0@2%1.0, ,801::1,0, ,602:”:1.0; k;‘*l@, k4'“~'10, ()’(})3‘"‘"1.0,

m)q:-*l.(), /5())3*“1.0 and /)104*3“1.0 ................................................................ 108

The contour and 3-D magnitude plots of the resulting 2-D band-pass
filter with equal variables &; and %, and the other coefficients fixed as
am==~—1.0, CZ()Q’*‘*—I.O, /301:1.0, /3()2*"‘1.0; /Cg-’"'l,o, k4=:1.0, 0(()3:’"1,0,

095=1.0, Bp3=~1.0 and Sosm—1.0. ciiiiiniecre e 110

The contour relations between the 2-D band-pass filter and its the
Member filters with v ariable equal k) and k> and other ¢ oefficients
fixed as Of()]=-1.0, (2’02""““’1.0, ﬁm:l.O, ,802’“’].0; k3=1.0, ka,x}.o,

0,’03:1.0, Q’J)4=1.O, ,[303:——1.0 and ,304———-1.0 ................................................. 111

The contour and 3-D magnitude plots of the resulting 2-D band-pass
filter with variable k; and the other coefficients fixed as k=1.0,

kf:l.o, (/mz-1.0, &’ozx"l.o, ﬁ()l:"-"'l.o, ﬂogzl.(}; kf‘l.O, 0!0331.0,

&'04“1.0, ,603*‘-"1.0 and /304“»'—"-——1.0 ................................................................ 113

The contour relation between the 2-D band-pass filter and its member
filters with different values of k3 and the other coefficients fixed as
kr”‘l.o, kzml.(), Olmm-*l.o, 0(()2'***“1.0, ﬁm’-‘“l.o, ﬁogml.o; k4~":1.0, Clo_%ml..(),

ot47=1.0, fo3=—1.0 and foa=1.0..ccooimiii e 114



List of Figures

xvili

Figure 4.12

Figure 4.13

Figure 4.14

Figure 4.15

Figure 4.16

Figure 4.17

Figure 4.18

Figure 4.19

The contour and 3-D) magnitude plots of the resulting 2-D band-pass
filter with variable ks and the other coefficients fixed as k;=1.0,
k;}'“’“‘*‘l.(), ammml.(), 61’();2""*‘“1.0, /}01’”1.0, ,302"““51.0; kgml.(), (X{)f‘"l.o,

cto3=1.0, Loy=1.0 and Loa=1.0 i 116

The contour relation between the 2-D band-pass filter and its member
filter with different Values &y and the other coefficients fixed as
k=1.0, kr=1.0, ap1=~1.0, az==1.0, fy=1.0, Bor=1.0; k3=1.0, ap3=1.0,

=10, foz==1.0 and Los==1.0 i, 117

The contour and 3-D magnitude plots of the resulting 2-D band-pass
filter with equal variables k3 and ka4, and the other coefficients fixed as
k;ml.(), ksfﬁl.c}3 (2’01:“-"1.0, aof“m].o, ﬂmml.o? ﬂozﬁl.o; %3"*’*1.0,

4=1.0, fo3=1.0 and Boa1.0 i 119

The contour relation between the 2-D band-pass filter and its member
filter with different equal &3 and k4, and the other coefficients fixed as
klzl .0, /Cz'""l.(), ()!()1“’:'"1 .O’ (703:“—*] .0, /3()1*1.0, [}02:1.0; (X()_a“‘“l.o,

@4=1.0, Poa=1.0 and Soa=—1.0. i 120

The contour and 3-D magnitude plots of the resulting 2-D band-pass
filters with equal variables k) and k3 and the other coefficients fixed
as kp_”l.(), amm-l.O, a’()zm—-l.O, ,80131.0, ,602;‘:1.0; /(4:‘1.002)331.0,

D BN o . e ) SOOI 122

The contour relation between the 2-D band-pass filter and its member
filters with equal variables k; and k3 and the other coefficients fixed
as kzzl.O, ocm=w1.0, a’ozzul.o, ﬂm:—l.o, ,802“1.0; k421.0a03==1.0,

05()4=1.O, ﬁ()g,:‘-l.o and ﬂ04=——1.0 ................................................................ 122

The contour and 3-D magnitude plots of the resulting 2-D band-pass
filters with equal variables &; and %, and the other coefficients fixed
as k;’-’-l.o, CZ(H”-;-“LO, 05022"—“1.0, ,B01=1.O, ﬁogzl.O; k;zl.()om;;cl.(),

apa=1.0, Lo3=—1.0 and Los=—1.00 o 124

The contour relations between the 2-D band-pass filter and its
member filters with equal variables k; and ks and the other
coefficients fixed as k=1.0, o1=—1.0, r=~1.0, fo1=1.0, for=1.0;

/C3~=1.0(X03m1.0, 0&'()4*“51.0, ,[f()_'gm“l.() and ﬁoa,m*] et 125



List of Figures

Xix

Figure 4.20

Figure 4.21

Figure 4.22

Figure 4.23

Figure 4.24

Figure 4.25

Figure 4.26

Figure 4.27

The contour and 3-D magnitude plots of the resulting 2-D band-pass
filter with variable ap; and the other coefficients fixed as k=1.0,
k=10, ag==1.0, Bn=1.0, fu=1.0; ky=1.0, ks=1.0, 053=1.0, ga=1.0,

So3m1.0 ANA La7= 1.0 1o ettt 1

The contour relation between the 2-D band-pass filter and its member
filters with variable ¢y, and the other coefficients fixed as k=1.0,
/Cgml..(), Ol()gm-“l.o, ﬂ(}]ml.o, ﬂozml.o; k,gwl.(), kzr"‘l.o, 6803'“-"‘1.0, (1()4“""1.0,

20

/3()3““"1.0 and ﬂmm««l() .............................................................................. 127

The contour and 3-D magnitude plots of the resulting 2-D band-pass
filter with variable «y; and the other coefficients fixed as k=1.0,
k=10, op1=-1.0, fn=1.0, Poa=1.0; k=10, ks=1.0, 3+=1.0, ane=1.0,

ﬁog“‘"’%] .0 and [)’()4”’w L0 e e e e 128

The contour relation between the 2-D band-pass filter and its member
filters with variable «; and the other coefficients fixed as k;=1.0,
k=10, api=-1.0, fo1=1.0, Po=1.0; ky=1.0, ks=1.0, ap3=1.9, cs=1.0,

/503"“””"1 .0 and /)’04'”“’”"1 e e 129

The contour and 3-D magnitude plots of the resulting 2-D band-pass
filter with variable ay; and the other coefficients fixed as k=1.0,
kf"'*"l.o, Qf()l“-l.o, O.’Qf"’“-l.o, ,6013:1.0, ﬂog“l.o; k3=1.0., k4”~:1.0, (Z{)gml.o,

ﬂ03=—1.0 and ,3()4$—-1.0 .............................................................................. 130

The contour relation between the 2-D band-pass filter and its member
filter with variable «; and the other coefficients fixed as k=1.0,
k2=1.0, amr-:wl.o, 0(()2*‘-1.0, ,601=1.O, ,602;‘1.0; k331.0, k4=1‘0, OQ)4=1.0,

ﬁ03=—1.0 and ,3042—1.0 .............................................................................. 131

The contour and 3-D magnitude plots of the resulting 2-D band-pass
filter with variable g4 and the other coefficients fixed as k=1.0,
kzgl.O, 0(()1::*1.0, a02ﬂ~1.0, ,30121.0, ,80;_):}.0; 16321.0, k4$1.0, (10321.0,

ﬂm’w"«“l.o and ﬂ(mmwl.O .............................................................................. 132

The contour relations between the 2-D band-pass filter and its
member filters with different oys and other coefficients fixed as
ki=1.0, k7=1.0, agi=—1.0, apz=~1.0, fy=1.0, Bp=1.0; k3=1.0, ks=1.0,

05()3”"‘*1.0, ﬂog"w"ﬂ"l‘o and ,304:-—1.0 ................................................................ 133



List of Figures

XX

Figure 4.28

Figure 4.29

Figure 4.30

Figure 4.31

Figure 4.32

Figure 4.33

Figure 4.34

Figure 4.35

The contour and 3-D magnitude plots of the resulting 2-D band-pass

&’mz”ml.of, 0(();),%1.0\, ﬂ()zm].O; /63“‘””"1.0, k‘qml.o, 0!03::*'1.0, 6!()4”‘“1.0.,

So3=-1.0 and Soa=1.0 o 134

The contour relation between the 2-D band-pass filter and its member
filters with variable B and other coefficients fixed as A=1.0, k2=1.0,
=10, opr=1.0, ,8()2”“‘],,0; k=10, k1.0, o03=1.0, oe=1.0,

Borm=1.0 a0d Soa=—1.0 v e 1

The contour and 3-D magnitude plots of the resulting 2-D band-pass
filter with variable &, and other coefficients fixed as k>=1.0, ap1=-1.0,
()!02”**1.0, /3()1"*‘0.5, ﬂgz""‘-’l .O; kgml.o, ](‘4“:1.0, Cc’og”l.(), CX{);;““’"*‘:LO,

Lfoz=~1.0 and 08710 e 1

The contour relation between the 2-D band-pass filter and its member
filters with variable k& and other coefficients fixed as k»=1.0,
O.’m""--*l.o, 0(02:-—1.0, ﬂ()x“O.S, ﬁozml.o; k:{»‘:l‘o, k»Fl.O, 0(03““1.0,

35

36

a’(m’-’:l.o, ﬂof“"*l.() and ,504:‘“-1.0 ................................................................ 137

The contour and 3-D magnitude plots of the resulting 2-D band-pass
filter with variable f, and other coefficients fixed as ky=1.0, k&=1.0,
0[()1’:-—1.0, C(oz-‘:**l.o, ﬂmml.o; kle.o, k.;xl.(), %331.0, CZQ.»;*].O,

Bo3m=1.0 and Boam—1.0 oo 138

The contour relation between the 2-D band-pass filter and its member
filters with variable fy; and other coefficients fixed as £=1.0, k2=1.0,
OCQ;”**LO, (onm——l.o, ,Bm=1.0; k3=1.0, k4=1.0, 0503:1.0, afo4=1.0,

,303;'-*1.0 and ,804:*1.0 .............................................................................. 139

The contour and 3-D magnitude plots of the resulting 2-D band-pass
filter with variable &k, and the other coefficients fixed as k=1.0,
m;r"-’ml.(), aogzml.(), [)’01:1.0, ﬁozzO.S; k3=1.0, k4"~‘1.0, CZQ3-"‘~1.0,

Q’()q.‘*':l.o, ,803‘"'“:--1.0 and ,8()4==-1.O ................................................................ 140

The contour relation between the 2-D band-pass filter and its member
filters with variable k» and the other coefficients fixed as &=1.0,
(Z()\"’*“’l.o, C&)z%l.(), ﬁmml.o, ﬁgzm().S; k3“1.0, kz;ml,.(), 06()3“1.0,

o5=1.0, fo3==—1.0 and Loa=1.0. v 141



List of Figures xxi

Figure 4.36

Figure 4.37

Figure 4,38

Figure 4.39

Figure 4.40

Figure 4.41

Figure 4,42

Figure 4.43

The contour and 3-D magnitude plots of the resulting 2-D band-pass
filter with variable fy; and the other coefficients fixed as ky=1.0,
k1.0, ap1==1.0, app=-1.0, ﬂoxml.(), Lo=1.0; ks=1.0, ke=1.0, aps=1.0,
6,1’0435“1.0, and /3()4'”‘“‘”1 0 e et e bbb e sy s a ey e s e bansenaan 142

The contour relation of the 2-D band-pass filter and its member filters
with variable fy; and other coefficients fixed as £=1.0, ky=1.0,
oq)lm~],.0, aozml.o, [j’mml‘o, /3()2‘“1.0; kgml.(), k4”-‘-‘1.0, 0’{)3*1,0,
2710, and Foam=T1.0 i 14

The contour and 3-D magnitude plots of the resulting 2-D band-pass
filter with variable %3 and the other coefficients fixed as k;=1.0,

]Cz’-””l.o, CX()]”W]..O, Qog“““LO, /fg;ml.(), /302”0.5’, AwlO, 64)3"*31.0,
N W N et 1 N O s S 144

The contour relation of the 2-D band-pass filter with its member
filters with at different k3 and the other coefficients fixed as £=1.0,
kz"-‘l.(), amm—l.(), (Z(_)zm"—l.O, [)’mml.(), &)3“0.5; kgml,.O, (/1’()331.0,
4510, Fo3=0.5 and Sos=—1.0. oot 145

The contour and 3-D magnitude plots of the resulting 2-D band-pass
filter with variable fy and the other coefficients fixed as ky=1.0,
kgml.(), C&nx——l.o, ciyr=—1.0, ,601:‘“1.0, ﬁOzml.O; k3“’~“1.0, ks=1.0, 0(03*":1.0,
CZQ4~"'~1.0, and ,303""—"“1.0 ............................................................................... 146

The contour relation of the 2-D band-pass filter and its member filters
with different fos and the other coefficients fixed as k=1.0, k,=1.0,
an=—1.0, ap=-1.0, fu=1.0, Bu=1.0; k=10, k=10, apu=1.0,
O!()f:l.o, alldﬁm:--l.o ................................................................................ 147

The contour and 3-D magnitude plots of the resulting 2-D band-pass
filter with variable ks and the other coefficients fixed as k1=1.0,
ky=1.0, ay1=—1.0, ap=1.0, /3();“1.0, ﬂozml.o; k331.0, o3=1.0,
a04===1.0, ,803’-”-*-—1.0 and ,B()‘;mw().S ................................................................ 148

The contour relation of the 2-D band-pass and its member filters with
different values of &, and other coefficients fixed as k) = 1.0, £>=1.0,
6(01”*1.0, o™ ”1.0, ﬂm:l.o, /3()2”1.0,’ kjml.O, ag3m1.0, 6).’()4"":1.0,'
ﬂmm ~1.0and /}04""“" o st a et re et e re s ve e a s e e ensarranes 149



List of Figures xxit

Figare 5.1  The specifications of a typical 2-D band-elimination digital filter in
frequency dOmMBIN .....cvic e e 153

Figure 5.2  The possible 2-D band-elimination filter by parallel combination of a
Jow-pass and a high-pass filter ..., 154

Figure 5.3 The frequency responses of the member filters with coefficients
k=1.0, k2=1.0, op1=—-1.0, cga=-1.0, for=1.0, foz=1.0; k3=1.0, ks=1.0,
3=1.0,004=1.0, Boz=—1.0 and Soa=1.0 e, 160

Figure 5.4  The frequency response of the resulting 2-D band-elimination filter
with the coefficients k=1.0, k=10, a=1.0, @y=~1.0, fn=1.0,
Lor=1.0; ky=1.0, ks=1.0, t3=1.0, ctpa=1.0, LSos=—1.0 and Loa==1.0.......... 161

Figure 5.5 The frequency responses of the member filters with coefficients
k;ms.(), kng.O, CZ()}T-—*LO, 0‘0;3“”‘--1.0, ﬂOl”’"l-O: ﬂggml.o; kgwl.(), /64”1.0,
=10, ca=1.0, Bos=1.0 and Sog==1.0 v 163

Figure 5.6  The frequency response of the Resulting 2-D band-elimination filter
with the coefficients k=5.0, k2=5.0, ap=-1.0, ar=1.0, fn=1.0,
,802:-*1.0; k}‘“SO, kAmS.O, 0503’41.0, p4=1.0, ,8()3:—*1.0 and ,[))()4”"1 O, 163

Figure 5.7 The contour and 3-D magnitude plots of the 2-D band-elimination
filter with equal variables ks (i=1, 2, 3, 4) and the other coefficients
fixed as ap=-1.0, ap=1.0, =10, [o=1.0; k:=5.0, k=5.0,
0(0331.0, 050431.0, ﬁof‘——'].o and [304:—-1.0 ................................................. 165

Figure 5.8 The contour relation between the resulting 2-D band-elimination
filter and its member filters with equal variables &/s (i=1, 2, 3, 4) and
the other coefficients fixed as op1=-1.0, a>=—1.0, Sn;=1.0, Loz = 1.0;
0(0321.0, (Io‘;:z:l.():. ﬂ();m*‘l.o and ﬁo4~“—'~«1.0 ................................................. 165

Figure 5.9 The contour and 3-D magnitude plots of the resulting 2-D
band-elimination filter with variable o and the other coefficients
kﬁS.O, kzmi(), G!szl.(), ﬂmml.o, /302*'“"1.0; k3m1.0, k4ml.0, %3*1.0,
ctpa=1.0, Lo3==1.0 and Soa=—1.0 cccvrrorreeeeee e 167

Figure 5.10 The contour relation between the resulting 2-D band-climination filter
and its member filters with variable ¢ and the other coefficients



List of Figures

xxiii

Figure 5.11

Figure 5.12

Figure 5.13

Figure 5.14

Figure 5.15

6(()3*'““”1.0, a’onﬁ“‘l.o, /J’og*‘*"‘ml 0 and ﬁgaml OO UURURT RO 168

The contour and 3-D magnitude plots of the resulting 2-D
band-climination filter with variable ay; and the other coefficients
fixed as £;=5.0, k2=5.0, cp=-1.0, for=1.0, for=1.0; ky=1.0, k1.0,

&033'"’1.0, 6!{)4“‘1 .0, ,603-”:‘"-"1‘0 and /304‘“-'-1“0 .................................................. 169

The contour relation between the Resulting 2-D band-elimination filter
and its member filters with varable ag and the other coefficients
fixed as kﬁ"S.O, Agwso, 023;’"“"'“—1.0,, /3()1::1.0, %2‘“1.0; /\Tf"lo, kﬁ:l.O,

05=1.0, 20s=1.0, Bor==1.0 ANA Fod==1.0 ccrererersrrererereerreerserrereemsenmeereerenn 170

The contour and 3-D magnitude plots of the resulting 2-D
band-elimination Filter with equal variables o) and an and the other
coefficients fixed as k;=5.0, k=5.0, Bn=1.0, for=1.0; ky=1.0, ks=1.0,

(15()3"‘*1.0, %4*1.0, ,6'()3‘*’“1.0 and /B():;—'-"“l e 171

The contour relation between the resulting 2-D band-elimination filter
and its member filters with equal variables ), and o, and the other
coefficients fixed as k;=35.0, £=5.0, f0=1.0, fui=1.0; k3=1.0, ky=1.0,

0503;""'1.0, pa=1.0, ﬁo3w-1.0 and ﬂ()4w~1.0 ................................................... 172

The contour and 3-D magnitude plots of the resulting 2-D
band-elimination filter with variable «o; and the other coefficients
fixed as k1=5.0, k225.0, CX()]’*’LO, 6&)23"1.0, ﬁmxl.O, ,8()2:“1.0; k;zl.O,

k4=1.0, Q‘oqxl.o, ,B()3:’-—1.0 and ﬂof“*l.o ..................................................... 173

Figure 5.16 The contour relation between the resulting 2-D band-elimination filter

Figure 5.17

and its member filters with variable g, and the other coefficients fixed
as k1=5.0, kg““S.O, amx——l.O, caz,2=—~l.0, ﬂm-":l.o, ,[302:1.0; k_*,-"""l.(), 16421.0,

&0431.0, /5’()3*'*1.0 and ﬂm‘—‘*—-l,o ................................................................. 174

The contour and 3-D magnitude plots of the resulting 2-D
band-elimination filter with variable o and the other coefficients
fixed as k}mS.O, kgr-S.O, 0{2)1""’““1.0, Q’ozm‘-l.o, ﬁmﬁl.o, ﬂog‘ml.(); 1C3m1.0,

ko,xl.o, 0!03“1.0, ,[)’03:—“"--1.0 and ﬂof—"-*—l‘() ..................................................... 175

Figure 5.18 The contour relation between the resulting 2-D band-elimination filter

and its member filters with vanable a4 and the other coefficients fixed
as kﬁf-‘S.O, kzmS.O, O((){*"‘“*LO, thz’-’**l.o, ,60]”'“—"'1.05 ,803‘:“10, /('3*1.0j 164“"‘“‘1.0,



List of Figures

xxiv

Cl’mml.(), /9’03=~=-1.0 and /}04“**1.0 .................................................................

Figure 5.19 The contour and 3-D magnitude plots of the resulting 2-D
band-elimination filter with variable equal c: and oa, and the other
coefficients fixed as ky=3.0, k=5.0, @=-1.0, a=-1.0, Po1=1.0,

ﬂ(mml.(); k;ml‘o, kﬁl.(),, ﬁr};;mwl‘o and ﬂo;;’:—-*l.o .........................................

Figure 5.20 The contour relation between the resulting 2-D band-elimination filter
and its member filters with variable equal ap; and o4, and the other
coefficients fixed as k=3.0, £=5.0, ay=-1.0, ar=-1.0, Lor=1.0,

Por=1.0; k3=1.0, ka=1.0, Sos=—1.0 and So4==1.0cvcvvrvrrieeeeirvceeereese,

Figure 5.21 The contour and 3-D magnitude plots of the resulting 2-D
band-elimination filter with equal absolute values of variable s and
the other coefficients fixed as k;=5.0, k>=5.0, fn1=1.0, Bo;=1.0; k3=1.0,

e I i | B i O S

Figure 5.22 The contour relation between the resulting 2-D band-elimination filter
and 1ts member filters with equal absolute values of variables a,’s and
the other coefficients fixed as £,=5.0, k2=5.0, f01=1.0, Box=1.0; ky=1.0,

/C4m1.0, /5'03”"”%1.0 and /304”-*1.0 ...................................................................

Figure 5.23 The contour and 3-D magnitude plots of the resulting 2-D
band-elimination filter with variable S and the other coefficients
fixed as k1=5.0, k2=5.0, c=—1.0, ctp=1.0, B>=1.0; k3=1.0, ks=1.0,

0103::1.0, CZ()4$1.0, ﬁ03=-1.0 and /304“*1.0 ...................................................

Figure 5.24 The contour relation between the resulting2-D band-elimination filter
and its member filters with variable £y and the other coefficients fixed
as k]*S.O, kgnS.O, 6301::“*1.0, 0(()2:—1.0, ,802*’1.0; k331.0, k4:1.0, 04)3—"—‘1.0

K

004710 So3==1.0 and Bos==1.0 1o

Figure 5.25 The contour and 3-D magnitude plots of the resulting 2-D
band-elimination filters with variable f’s (I=2, 3, 4) and the other
coeflicients fixed as the specified Values ........c.ocovveeeeeeeoeeceeeeeeesren oo,

Figure 5.26 The contour relation between the resulting 2-D band-elimination filter
and its member filters with variables fy’s (I=2, 3, 4) and other
coetficients fixed to the specified values

....................................................

176

177

178

180

181

182



List of Tables ixXv

List of Tables

Table 4.1 The logical relation of the frequency responses between the
resulting 2-D band-ass filter and its Member Filters .......ccoccoovvevicnnennn. 96

Table 5.1 The logical relation of the frequency response between the
resulting 2-D band-climinating filter and its member filters...........c.oo...e. 154



List of Important Symbols xxvi

List of Important Symbols

Go1, Gin

Pots Boz

Hy(z1,25)
Hy(z1,22)
Na(z1,22)
Di(zy,22)
K

2

Z~domain parameter in first and second dimensions
Laplace domain parameter in first and second dimensions

Frequencies in radians in the discrete domain in first and second
dimensions

Band-effect coefficients of the generalized bilinear transformations in
the first and second dimensions (also k; and k4 for high-pass filters in
Chapters 4 and 5)

Gain-effect coefficients of the generalized bilinear transformations in
the first and second dimensions (also a3 and a4 for high-pass filters
in Chapters 4 and 5)

Polarity-effect coefficients of the generalized bilinear transformations
in the first and second dimensions (also fy; and fys for high-pass
filters in Chapters 4 and 5)

Frequency responses of 2-D digital filters

Frequency responses of 2-D analog filters

Nominator of 2-D digital transfer functions

Denominator of 2-D digital transfer functions

Adjustable Multiplier in the forward or backward paths

Summation



List of Important Symbols xxvif

Al For all values

[c1, €2] The range from ¢, to ¢; and includes the two end-points ¢, and ¢, (¢,
and ¢, are constants)

(c1, ¢2) The range from ¢; to ¢; but does not include the two end-points ¢; and
¢z (¢y and ¢ are constants)

n Products of

& Belongs to



Chapter 1

Introduction
—e

1.1 General

In recent years, considerable attention is being paid to two-dimensional (2-D)
digital filter design and applications, as these are widely used in the telecommunication
and radar systems, image processing and other applications where two-dimensional array
data are used [1, 2, 3].

Just as in the case of 1-D digital filters, 2-D digital filters can be classified into two
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main groups, nonrecursive digital filters, also called FIR (Finite Impulse Response)
filters, and recursive digital filters, also called IIR (Infinite Impulse Response) filters [2,
3,4,5,6].

A nonrecursive digital filter is one for which the sample of the output can be
computed as a linear combination of a finite number of samples of the input. The transfer

function of a causal 2-D nonrecursive digital filter can be described as

Ny -

Hiz,2)=3> 4,212 (L1)

el
where A;’s are real coefficients. As in the case of 1-D digital filters, the main properties
of 2-D nonrecursive digital filter are its inherent stability and the linear phase features. It
can be designed to approximate a required frequency response and can be modified by a
linear phase term. It is also possible to have symmetries present in the impulse response
[7,8,9].

On the other hand, for a 2-D recursive digital filter, the output of the filter is

obtained by a suitable combination of a finite number of input samples and a number of

past output samples. A typical 2-D recursive filter has the transfer function

H(z,,z,) = 200 (1.2)

J i
ZXAUZI 2

i=0 j=0
where 4, =1, 4, and B, arereal coefficients.

A main issue in 2-D recursive filter design is its stability. A recursive digital system
is said to be stable, if its output is well behaved for all bounded inputs. The most
commonly used stability criterion is the bounded-input bounded-output (BIBO) rule. A
system is stable in BIBO sense if for any bounded input sequence, the output sequence is
bounded {10, 11, 12, 13].

Recently, 2-D filters with variable characteristics are widely applied to signal

processing and c ommunication sy stems where t he frequency-domain ¢ haracteristics o f
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digital filters are required to be adjustable. Many researchers have started to study the
properties of such filters. These could be variable magnitude response, phase response
and group delay. To achieve the variable characteristics, some of the coefficients of the
digital transfer functions should be changeable. However, the stability conditions have to
be satisfied alwavs [14].

Most of the existing design methods for 2-D filters with variable characteristics are
based on frequency transformations [15, 16, 17, 18, 19, 20]. By such methods, 2-D
low-pass, high-pass, band-pass and band-elimiation filters with variable cut-off
frequencies could be obtained. However, if more detailed and complicated specifications
are given, these methods are not applicable due to the intrinsic constraints of frequency
transformations.

Another popular method to design 2-D recursive digital filters having variable
characteristics is adding adjustable multipliers to a stable analog filter to form a new
filtering system. In this method, in connection with a stable filter H(z,, z2), we can add a
multiplier K in the feedback path as shown m Figure 1.1, or add the multiplier X in the

forward path as shown in Figure 1.2 [21].

4

' H,(z,,z,)
\Z/ ¢ V(z,,z,) .Y(z:zz)

X(z;, z3) Utz), z)

Figure 1.1 The multiplier X in the backward path (System 1)
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Viz,,z2,) U(z,z,)
‘Fld (21’2‘2)

5> -»

X(z,,z,) Y(z,2,)
Figure 1.2 The Multiplier X in the forward path (System 1)

From Figure 1.1, we can derive the transfer function for System [ as
Y(z,,z,)=V(z,,z,) , (1.3a)
Uzy,2,) = X(21,2,) - K -V(z,,2,) (1.3b)
V(z,,z,)=U(z,2,) - H,(z,,2,) (1.3c)

Therefore, the transfer function for System 1 is obtained as

: Y(z,,z, H,(z,,z,)

H\(z),2,) = Grzs) e (1.4a)

X(z,,z,) 1+KH,(z,,z,)
Here, if the generating filter Hd(z1, z2) is expressed as

N (z,,z,

Hd(zuz.’):md( pZ) (1.4b)
D,(z,,2;)

then the transfer function for System I becomes
H/(z,2;)= No(z,2) (1.4¢)

Dy(z,,2,)+K-N(z,,z,)

For this system, one can get variable frequency response by changing the value of
the multiplier K, and this should be bounded by the stable conditions for the system.
In Figure 1.2, the following relationships can be obtained

Y(z,,2,) =U(z,,z,) (1.52)

V(.Zxazz):U(zlnzz)'][d(znzz) (lsb)
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Y(z,,2,) =K [X(z,.2,)~V(z,,2,)] (1.5¢)
So the transfer function for the System Il in Figure 1.2 is

Y(z,,z.

H,(z,,2,) = ) i K (1.6)
X(z,,z,) 1+K-H,(z,z,)

#

Also assuming the generating filter H,(z,,z,) is given by (1.4b), the transfer

function for System II can be written as

K- -Dy(z,z,)
D,(z,z,)+ K -Ny(z,,z,)

H,(z,z,)= (1.7)

From this transfer function also, we can get variable characteristics for the system
by changing the value of the multiplier K. The values of the K should be bounded by the
stability conditions of the system.

However, for the systems in Figure 1.1 and 1.2, the drawbacks are obvious. Firstly,
as the range of X 1s limited, sometimes it is impossible to get the desired characteristics
by only adjusting one parameter. Secondly, the determination of the stable boundaries of
the multiplier K becomes very complex as the degrees of the variables in H(z, z5)
increase. Hence, it may be preferable to have a system in which several sections are
cascaded, each section having unity degree in each variable [21]. Thirdly, the structures
in Figure 1.1 and 1.2 can easily lead to delay-free loops if the coefficients are chosen
improperly.

So, we need to investigate new methods, which can give 2-D digital filters having
variable characteristics with more freedom.

One of the frequently used methods of designing a 2-D recursive digital filter is to
start from a corresponding 2-D analog filter and then apply the well-known bilinear

transformations [22]

Pl D (1.8}

This method could give rise to problems in stability as it has been demonstrated in
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[23]. However, this can be overcome by a special class of 2-variable analog polynomials
called Very Strict Hurwitz Polynomial (VSHP). In what follows, a brief review of such

polynomials, and their properties and some methods of generation are discussed [22].

1.2 Overview of Very Strict Hurwitz Polynomial

1.2.1  Definition of Very Strict Hurwitz Polynomial

It is well known that a 1-D analog filter system with the transfer function

N, (s)

H (5) =
=0

(1.9)

1s guaranteed to be stable, if the denominator of the transfer function Dy(s) 1s a Strictly
Hurwitz Polynomial (SHP), which contains all its zeros strictly in the left-half of s-plane.

However, for the 2-D analog filter system with the transfer function

_N,(s,,5,)

H (5,5, s
o152 D,.(s;.s,)

(1.10)

where the denominator D,(s;, s) is SHP, cannot always guarantee the stability, as it may
contain the non-essential singularity of the second kind. That is, the denominator

becomes zero at two points §1=/ @y and s,=7 @y, but not in their neighborhoods [22, 23].
In fact, there are four types of 2-variable Hurwitz Polynomials, which are different
from each other only in the region of analyticity [24].

Definition 1.1 A Polynomial Dy(sy, s2) is said to be a Broad Sense Hurwitz Polynomial

(BHP), if --—~(-1——-~—)- has no singularities in the region
a Sl?SZ-

{(51,5,) | Re(s,) > O,Re(s,) > 0,5, | < o0,

5,| < 0}
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Definition 1.2 A Polynomial D,(s1, s2) is said to be a Narrow Sense Hurwitz Polynomial

(NHP), 1f e has no singularities in the region

(55,) | Re(s,) > 0, Refs,) > 0L, < o,

$,] < oo}
A(s,.8,) [ Re(s)) = 0,Re(s,) > 0.1, € o0,] 5, | 0}

w{(s,,95,) | Re(s,) > 0,Re(s,) = 0,15, |< oo,

5, IS oo}

Definition 1.3 A Polynomial Dy(sy, 52) is a Strictly Hurwitz Polynomial (SHP), if it has

no zeros in the regions

{(s,,5.) | Re(s,) 2 0,Re(s,) 2 0,]5, [< 0,] 5. j< o0}

Definition 1.4 A polynomial Dy(s, s57) is a Very Strictly Hurwitz Polynomial (VSHP), if

the polynomial does not have zeros in the regions

1(s,,5,) | Re(s,) 2 0,Re(s,) 2 0,] 5, [< 0,] 5,

< o0
From these definitions, we can see that a VSHP is required to be necessarily a SHP.
From the two-dimensional digital filter design experience, to get a guaranteed stable

digital filter from the well-known bilinear transformations described in (1.8), the 2-D

analog transfer function is required to have a 2-variable VSHP as its denominator.

1.2.2  Some Properties of VSHP [22, 24]

Our discussion for the properties of VSHP is based on the following definition of

2-D analog transfer function

N(s.,8,) .
H(s,s,) = —~12= (1.1DH
: D(s,,5,)

where
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N(s;,8,) =3 > Bysisi (1.11a)
fal) fol)
koot o

D(s;,8,)= 3 D Aysisi (1.11b)
{al) fu0

Property 1.1 H(s,,s,) does not possess singularities in the closed right half of the

(s,,5,) biplane defined as {(s,,s,) | Re(s,) = 0,Re(s,) 2 0,

5| £ 0], < o0} , if and only if
D(s,,s,) isa VSHP.

This property is obtained easily from the definition of VSHP.

Property 1.2 If D(s,,5,)=D(s,.5,) D,(s,s,) 1s a VSHP, the necessary and

sufficient condition is both D, (s,,s,) and D,(s,,s,) are VSHPs.

Proof:

As D(s,,s,) and D,(s,,s,) are VSHPs, D (s,s,) and D,(s,,s,) have no
singular  points in  the closed half plane of  (s,,s,) -plane

{(s1,5,) | Re(s,) 2 0,Re(s,) 2 0,

S[lﬁcc,’sz{ﬁoo}. Also  D(s,,s,) 1is the product of
Dy (sy,5,) and D,(s,,s,), so D(s,,s,) would not have any singular points in the

closed right half plane of (s,,s,)-plane, i.e. D(s,,s,) isa VSHP.

D(s,,s,) isa VSHP.

Suppose that D, (s,,s,) is not a VSHP, then there exists some points in the closed
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right half plane of the (s,.s,)-plane {(s,,s,)

S0},

Re(s;) 2 0,Re(s,) 2 0.]s,| € o0,]s,

such that D, (s,,s,) equalsto zero. So D(s,,s,) will be zero at those points too, it will
contradict our assumption that D(s,,s,) isa VSHP, so D,(s,,s,) mustbe a VSHP.

Similarly, we can prove that D,(s,,s,) must be a VSHP,

Propertv 1.3 If D(s,,s.) is a VSHP, then ?Q%;LQLZ and Qp«%ﬁﬂ are also
; | )
VSHPs.
Proof:
We can write D(s,,s.) in the following form
D(s,5,) = A4,(5)87 + A, (s,)s77 + .0+ A (5,)s, + 4,(5,) (1.12a)
and D(s,,5,) =B, (8,)s7 + B,_,(s)s5" + -+ B,(5,)s, + B, (s,) (1.12b)

For any point §, in the open half of s,-plane {s, |Re(s,) >0,

§,|<oo}, (1.12a) is

anm ™ order SHP with respecttos, including s, < 0. According to Lucas’ theorem,

dD(s,.5,)

; is also a (m-1)" order SHP of s, including M <, Now we need to check
ds,

the behavior at |s,| = 0.

Differentiating (1.12b) with respect to s, we have

CD((':“ ! =B,(5,)s) +B,,(s,)s;7 +---+ B/(s,)s, + By(s,) (1.13)
el

Since (1.13) is known to be a SHP,

uaD (SI ? 52 )
8&1 N et

L

is also a SHP.
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For s, —» o0, we can get

DG LB (1.14)
s, ' 0

As B, (s)is a SHP of s, it has no zeros in the closed right-half of s, ~ plane

s, |Re(s,) 2 0,ls,] < 0} . So (1.14) will not be undeterminable. We can get the conclusion
i ) 1

that 22U05) o vsup.

és,
aD(s,.s,)
s,

4

Similarly, we can prove that 1s also VSHP.
Propertv_1.4 When we express D(s,,s,) as (1.12a) and (1.12b), then both

4(5,),i=012,--m and B,(s;),j=0L2,---,m are SHPsof s,-and s, -respectively.

Proof:
In (1.12a), since D(sy, 53) is a VSHP, from Property 1.3, Ay(s;) is a SHP in s;, which
is obtained by setting s\= 0. Differentiating (1.12a) partially with respect to s, and putting

s, =0, we get 4(s,) is a SHP in s,, since, from Property 1.3, we know that

QQS;SJ—EJ 1s a VSHP. By continuing this process, it is established that all the
Js,
polynomials 4,(s2), i=0,1,2,------ ,m are SHPsin s,.

Using the same method, by successive differentiation with respect to s,, and then
putting s, =0, it can be proven that all the polynomials B (s,), j=0,1,2,-+- 0 are

SHPs in s,.
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Propertv 1.5 1f areal 2-variable VSHP can be written as  D(s,,5,) = sz 5151, then

i) jm0

d,d. >0 foralliandj.

mn

Proof:

The VSHP can be written in the compact form

D(Sxasz):X‘A;(Sz)S: (1.15a)
-

and  D(s,s,) =Y B,(s)s] (1.15b)
J=0

From Property 1.4, both A4(s),(F=0]1,---- ;m) and B(s,), (j=0l- JH)

are one-variable SHP’s.

For the one-variable SHP 4, (s,) = Zd,,y.s{ , the coefficients need to be positive or
=

d, d >0, forall j=012,--- -1

mnt mj

And for the one-variable SHP B, (s,) = Za’l_js{ , the coefficients need to be positive

i=0

or d .d.>0

mi
So, d,,d,; >0, foralliand;.

Property 1.5 1s proved.

Property 1.6 If we express D(s,,s,) as (1.12a) and (1.12b), each of the functions

A(s . . . . " .
(55) , Im=1,2,00 ,m, 1s a minimum reactive positive real function in s;. Also each
A4 (83)
: j Sr) . . P . i .
of the functions —+——, j=1,2,---- .11, 18 a minimum reactive positive real functions
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inS1.

Proof:

Dividing both sides of (1.12a) by 4,,(s,), we have

L p(ssy) = e8] et A(S) s, +“hls:) (1.16)
Am (52 ) Am (Sl ) ‘4m (52 ) "4171 (SZ )

For any specified s, intherangeof Re(s,)z0,(1.16)isa SHPin s,, which

means that it has all its zeros in the open left half of the s, plane. Let &

(i=123, ,m ) be its zeros. Then we have

AO(SE) — ﬁ(_é‘)

/1"1(52) Jual

A (S”}) m m .
and L2l o (=5 ) 1.
Am(SZ) tzwl: H !

Ji
So, we have

Al(sz)z e ___L
4,(s,) :Z.l:( 51')

As Re(0,) <0, Re[—é—(ﬁ—)—} >0 forall Re(s,)20.So we get the conclusion that

Sy

14 AN « v .. . .
jj({i-% is strict positive real function. In addition, from Property 1.5, 4,(s,) and
IACHS

A, (s,)

A(s,) are SHPs without any missing coefficients. So —%-2%is also minimum reactive
A,(s;)
. < s Ax (S’) ) .
function. In a similar manner, we can show that -1~-T~—)~ ([=1,2, i) are
AL (s,
i W2

minimum reactive positive real functions in s,.
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B.(s)
L (f=1,2,m ) are
FEACT

Using the similar procedure, we can prove that

minimum reactive positive real functions in ;.

1.3 Review of Generation of VSHP

When VSHP is used in the denominator of a 2-D analog transfer function, it is
guaranteed that the resulting 2-D digital bilinear transfer function obtained through the
application of the well-known bilinear transformation is stable. Therefore, VSHP is
highly useful in 2-D digital filter design. We can first generate a 2-variable Very Strictly
Hurwitz Polynomial (VSHP) using its various properties, and assign the generated VSHP
to the denominator of the 2-D analog transfer function, then obtain the digital transfer
function through double bilinear transformations. Here we review some methods, which

are used to generate VSHP.

1.3.1 Using Terminated n-Port Gyrator Networks [25]

Fora n-port gyrator network, its p orts are terminated by c apacitances. Insuch a

case, the overall admittance matrix will be

W g5 s SR
~ &5 Hsy 813 &

A=|-g, — 8 Hs & sn (1.17)
_“gln _‘gzn ”gzu e /’ln_

The determinant of the matrix 4 can be expressed as

D, = 2 ﬂ,lA,[%« Z My 4, Ai[i;le'*””*” My pts - g, (nis odd) (1.18a)

15in 1€ <iy<iycn

A

or D, =|

n

+ Z/Ui, H;, A’i‘z'z ’ + Zluil M ‘Aililzj,i,. l +

Yhy<iy<n Vsdy ey <fy<iyan
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b o, (riseven)  (1.18h)
where ;A,W‘ is the determinant of the sub-matrix of A obtained by deleting both 7,

and i," rows and columns; the same holds for {AJM{ . ’1

Tiiyiaty

, etc.

By making some of the 4/’s equal to s1, and some of x's equal to s,, under certain

conditions, (1.18a) and (1.18b) will yield two-variable VSHPs.

1.3.2  Using the Properties of Positive Semi-definite Matrices [26]

In this case, we first define three nxn square matrices 4, &, and G as

. -y

ty ap diy
dy, ay s,
A= (1.19)
h_aln a.‘]n ann B
_,u, 0
H,y
H= iy (1.20)
L 0 H, |
0 g £13 &y ]
—&n 0 &3 g
G= —~ & ~&n 0 & n (1.21)
L= & ~ &2 ~ 83, 0 |

where: 4 is a general symmetrical # x n square matrix
Ais an n x n diagonal matrix
G is an n x n skew-symmetric matrix

These matrices 4, ¢z and G are physically realizable.
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Now, we define a matrix € as:
C= A/JAT + (7, (1.22)
whose determinant is written as

M = det(C) (1.23)

Then, the polynomial A, thatis defined as

M,=M+3k, Qf‘i (1.24)
= o

is a two-variable VSHP when some of the p;'s are properly made equal to s, and some of the p's

equal to &,

1.3.3 Using the Properties of the Derivative of Even or Odd Parts of Hurwitz

Polynomial [27, 28]
Form (1.19) and (1.20), one can obtain an n™ order polynomial M , Aas
M, =det[ul + 4] (1.25)
From the diagonal expansion of the determinant of matrix, M, can be written as

(1.18a) and (1.18b). We can observe that M, is the odd (even) part of a n-variable

oM,/
Hurwitz polynomial when n is odd (even), So —-—-ﬁg’ff& is a reactance function.
Therefore,
M=M, + ZK,.(-@Q) (1.26)
= o

is a n-variable Hurwitz Polynomial.

Assigning some of g’s to s) and some to be s, and ensuring the conditions of

two-variable VSHP, a two-variable VSHP could be generated from (1.26).
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1.4 Review of symmetries of 2-D contours [8,9, 10]

Two and high dimensional systems possess different types of symmetries. For
analog s-domain systems and discrete z-domain systems, extensive studies have been
made regarding the various symmetries in their respective two-dimensional polynomials
and functions. The symmetry proprieties of 2-D contour are very important in 2-D digital
filter design, as it can largely reduce the complexity and hence the computation efforts.

Mathematically, for a function f{x,y) (where x and y being real coefficients) would
have a unique value at each specified pair of values of x and y if the function is defined at
the region. These may be represented by a three dimensional object having (x, y) plane as
the base and the value of f{x,y) at cach point in the plane as the height.

Most of the applications require that 2-D digital filter shall have certain symmetry
in their magnitude response. Therefore, they usually have some symmetric properties in

their two-dimensional contour plots.

1.4.1 Reflection Symmetry about w; or w; axis

For the 2-D contour to have reflection symmetry about w; or @, axis, the
two-variable transfer function H( @, @,) should satisfy the following conditions:

Reflection symmetry about @, axis:
H(w,0,)=H(o,,~0,) Vo, w,) (1.27)
Reflection symmetry about @, axis:

H{o,,0,)=H(~0,,o,) Viw,,w,) (1.28)

14.2 Reflection Symmetry about the Diagonal oy = o,

In 2-> contour plot, in order that the contour plot has reflection symmetry about the

diagonal @y=w;, the two variables transfer function H(w;, @y) has to meet the following
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condition:
H(w,,0,)= H(w,,0,) V(w,,0,;) (1.29)

For the same reason, for the 2-D contour to have reflection symmetry about o=@,

diagonal, the transfer function shall have the relation

H{o,0,)=H(-0,,~0,) Y(w,,w,) (1.30)

1.4.3 Centro Symmetry

For two-variable functions, twofold rotational symmetry (rotation by 7z radians) is
called centro-symmetry. For the 2-D contour to have centro-symmetry, the two variables

transfer function satisfies the following condition:

Ho,0,)=H(-o,,~0,) Yo, 0,) (L35

1.4.4 Quadrantal Symmetry

In 2-D digital filter systems, for the contour to have quadrantal symmetry, the

system transfer function should meet the following condition:
H(w,0.)=H(~0,,0,)= H®,,~0,) = H-0,,~0,) Yo, 0,) (1.32)

For the system which possesses quadrantal symmetry, it is only necessary to
consider the magnitude response in the first quadrant, because we can easily get the

responses in the second, the third and fourth quadrants in (@), @;)-plane using the

syminetry property.

1.4.5 Diagonal Symmetry

In 2-D digital filter system, if the contour has a reflection symmetry with respect to
the line of wy=w, and w=—w; simultaneously, it is said the contour possesses Diagonal

Symmetry (also called fourfold reflection symmetry). For the contour plot to possess
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Diagonal Symmetry, the system transfer function has to meet the following condition:

H(w,,0)=H(o,,0,)=H(~-0,~0,) = H(~0,,0,) V(w,,w,) (1.33)

1.4.6 Four-Fold Rotational Symmetry

The magnitude response of a 2-D filter system has the property of the four-fold

rotational symmetry (Rotation 90°), the transfer function of the system satisfies the

following relationships:

Hw,,0,)=H(~0,,0,)= H(-0,~0,)=H(w,~0,) Y(w,,w,) (1.34)

1.4.7 Octagonal Symmetry

When the two-dimensional contour of the filter possesses quadrantal symmetry and
diagonal symmetry simultaneously, we say the 2-D system has Octagonal Symmetry, The

condition for Octagonal Symmetry for the two-dimensional filter transfer function is:

H(w,w,) = H(o,,w)=H(~0,,0,)
=H(~w,,0,)=H(-0,,~0,)
=H(~0,,0,)= H(~0,,~0,)
=H(~w,,~0,)= H(w,~o,)

=H(w, ~o,), Y(w,,w,) (1.35)

1.4.8 Circular Symmetry

If the 2-D contour satisfies the general equation of circle, we say the filter possesses

circular symmetry. The condition of the circular symmetry is:
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I C, ol +w; =R}

H(w,,w,)=1 : : (1.36)
\CN? @+ =R,

where Ci, i=1,2, ...... , 1 are constants, and constitute different magnitudes.

1.5 Review of generalized transformations

As has been mentioned earlier, one of familiar approaches to design a digital filter
is to start from an analog prototype, get the transfer function in analog domain, then
apply the bilinear transformation, w hich has o ne-to-one m apping r elationship b etween
analog and discrete domains. Thus, starting from the analog transfer function, one can get
the discrete transfer function for the digital filter.

In general, we can use the well-known double bilinear transformation given in (1.8)
to build the mapping relationship for 2-D filter systems. However, if one needs to design
the 2-D digital filter having different characteristics, it is necessary to introduce
changeable coefficients in the double bilinear transformations. A new generalized

bilinear transformation i3 needed here.

1.5.1 Definition for Generalized Bilinear Transformation [29, 30]

To get variable characteristics in digital filters, we would like to have one or more
changeable coefficients in the discrete transfer function. One of the methods is to change
the coefficients in the bilinear transformations to get different mappings.

A generalized bilinear transformation of this type can be defined as

o g At

, i=12 1.37
i i z, + ,ﬂOi ( )

which can be applied to the analog prototype filter to get the discrete transfer

function for the digital filters. It is important that the stability of the resulting discrete
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transfer function be ensured.

1.5.2 Stability Conditions for Generalized Bilinear Transformation [29]
We have to get first the stability conditions for the bilinear transformation (1.37),

which we will employ. Here we first consider the first dimension only.

Lheorem 1.1: When £y > 0, the condition for stability for the generalized bilinear

transformation applied to an analog transfer function are:

GREMES (1.38a)
() |By] <1 (1.38Db)
(iii) o, - B, <0 (1.38c)
Proof:
Letting: s, =0, + jo, (1.39a)
Z = Uy + v, (1.39b)

and substituting (1.39) into the generalized bilinear transformation (1.37), we can get:

2,2
o, =k (] + v )+ (ag, + By +ay B
i T3
(u, + B, +v

(1.40a)

v -y,
(01 e I(IBOI 01)

™M 7 3 (14Ob)
(uy + Boy)” +v;

For the purpose of stability, it is required that the imaginary axis of s;-plane or o=0

be mapped to the inner or on the unity circle in the discrete z)-dimension,
Ro=ul v €1 (1.41)

Letting: u, =, cos¢ (1.42a)
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v, = sing (1.42b)

"12 + (g + By ) cosg +ay, By, =0 (1.43)

The roots of equation (1.43) are given by

(g + B )cos g E (g, + fy)} 08§~ dery B,
i = 5 (1.44)

The magnitude of the roots should not be greater than unity. The roots have their

maximum values at ¢ = £z, giving
iy = tay, (1.45a)

Ky =Efy (1.45b)
Thus, 1t 1s proved that
lom] <1 (1.46a)
1P <1 (1.46b)
Also for the stability purpose, the unity circle in the discrete domain should be
mapped to the closed left of s,-plane. That requires ¢y <0 for r; = 0, hence from (1.40a),
we can get
1o <0 fork; >0 (1.46¢)
or  anfy =0 fork; <0 (1.46d)
Without loss of generality, we can assume &, to be positive, then ¢z and [y should
be of opposite signs. Therefore, Theorem 1.1 is proved.
The results obtained here can be extended to the second dimension. The theorem

can be applied in 1-D and 2-D cases.

1.5.3 The mapping relationship [29]

For the imaginary axis in s;-plane or ¢, =0, from (1.40a), we have
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uy +vp (2, + Boy + ety - By =0 (147)
Re-write (1.47) as
IR 149

Equation (1.48) represents a circle centered at (- 20 2 A ,0) with radius R = I ;
121

That is to say, the imaginary axis in s;-plane is mapped to the circle in the z;-plane, and
the left-half plane of s;-plane is mapped to the inner of the circle, and the right-half plane
of si-plane 1s mapped to the outside of the circle.

The second dimension has the same mapping relationship.

1.6  Scope and Organization of The Thesis

The objective of the thesis is to develop a new approach for the design for a 2-D
digital filter, which has variable magnitude characteristics in the frequency domain. This
approach is based on the generalized bilinear transformation method. To get the digital
filter whose characteristics are changeable, one or more of the coefficients of the digital
transfer function should be variable. The generalized double bilinear transformation is
one of the methods that can introduce variable coefficients into the transfer function of
the resulting digital filters.

In Chapter 2, design methods for 2-D nonrecursive and recursive digital filter are
first introduced. Then from the second order Butterworth low-pass ladder structure, the
values of the inductor and the capacitor are calculated. Using these values, we build a
first order doubly-unity-terminated low-pass ladder by setting the inductor as s;-variable
and the capacitor as the s;-variable. The analog transfer function of the new circuit is
obtained. Then the d ouble generalized b ilinear transformation is applied to the analog
transfer function to get its digital counterpart. Also in this chapter, the stability condition

for the 2-D digital transfer function with denominator of unity degree of z; and z, are
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considered. Using the links between the stability conditions and the coefficients of the
double generalized bilinear transformations, we get the conditions for each of these
coefficients, while the other coefficients are set to specified values. The effect of each
coefficient on the resulting 2-D low pass digital filter’s magnitude response is studied in
detail. |

The 2-D high-pass digital filters having variable magnitude characteristics are
studied in Chapter 3. Starting from the same analog transfer function as in Chapter 2,
different sets of coefficients in the double generalized bilinear transformation are chosen
to obtain 2-D high-pass digital filter. The coefficients are constrained by the stability
condition for digital filters introduced in Chapter 2. The manner in which coefficients of
the double gencralized bilinear transformation affects the digital filters” magnitude
characteristics is also studied in detail.

In Chapter 4, the 2-D band-pass filter, which is formed by cascading a 2-D low-pass
filter and a 2-D high-pass filter, is investigated. The low-pass and high-pass filter can be
the ones we investigated in Chapters 2 and 3 respectively. When one or more coefficients
of the bilinear transformations are changing, the resulting 2-D low-pass filter or
high-pass filter has variable magnitude response, so does the resulting 2-D band-pass
filter. Of course, all the coefficients should be constrained by the stability conditions. The
relationship of the stability between the resulting 2-D band-pass filter and its two
member filters are obtained here. The manner in which each coefficient affects the
frequency response of the resulting band-pass filter is investigated in detail, and the
simulation results are given.

In Chapter 5, another filter, 2-D band-elimination filter, is investigated. By
connecting a 2-D low-pass filter and a 2-D high-pass filter in parallel, it is possible to
obtain a 2-D band-elimination filter. When the low-pass and high-pass filters are
designed by the double generalized bilinear transformations, and when one or more

coefficients are changing, the resulting 2-D low-pass and high-pass filters have variable
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magnitude characteristics, and hence does the resulting 2-D band-elimination filter. How
the stability of the two member filters affect the stability of the resulting 2-D
band-elimination filter is discussed in Chapter 5, along with other behaviors of the
resulting band-elimination filter.

The summary, conclusions and the directions for future research work are given in

Chapter 6.



Chapter 2

Two-Dimensional Low-Pass Filters

Depending on the frequency requirements to be met, in general, filters are classified
into five main groups: low-pass, high-pass, band-pass, band-elimination, and all-pass
filters. We first study the 2-D low-pass filters in this chapter. In section 2.1, we give a
brief definition for this type of filters, as well as its typical specifications in both
mathematical and graphical forms. In section 2.2, we briefly review the well-known 2-D
nonrecursive filter design methods, such as the Windows method, the frequency

transformation method, and the linear programming method. In section 2.3, we review

25
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the 2-D recursive digital filter design based on the double bilinear transformations
method. In sections 2.4 and 2.5, starting from a second order Butterworth low-pass ladder
network, we obtain the values for the inductor and the capacitor, and then form a 2-D first
order d oubly-unity-terminated n etwork by setting the 1nductor in the s ;-dimension and
the capacitor in the s;-dimension. The analog transfer function for the resulting 2-D
circuit is also obtained here. The digital transfer function for 2-D low-pass filter obtained
from its analog counterpart through the double generalized bilinear transformation is
obtained in section 2.6, as well as the limits of each coefficient. The stability conditions
for the digital transfer function with unity degree denominator are got in section 2.7, The
manner how each coefficient affects the resulting filter’s magnitude response is studied in

this section 2.8. The summary and discussion are given in section 2.9,

2.1 Introduction

Low-pass filters stop the signal components at high frequencies, but pass the
components at low frequencies. The description for a typical 2-D low- pass digital filter

can be expressed as [2, 4]

L o, <,
H(w,,o,) = (2.1) -
lO, w, <ko,.| <z

where:
w,, (i = 1,2) are the pass-band boundaries in z, and z,-dimensions, respectively
o, (i=1,2)are the stop-band boundaries in z, and z,-dimensions, respectively
The frequency ranges between @, and @, is transition band.

The specification of a typical 2-D low-pass filter is illustrated in Figure 2.1.
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[35]

0y

ke
i

—x 0 n

2] Pass Band [ Stop Band
(] Transition Band

Figure 2.1 The specification for a typical 2-D low-pass filter

The methods used for 2-D nonrecursive filter design are different from those used

for recursive digital filter design. We first give a brief review of some of the design

methods for these two kinds of filters.

2.2 Design Methods for 2-D Nonrecursive Filters

Nonrecursive filters are also called Finite Impulse R esponse ( FIR) Filters, w hich
have their transfer function resulting from a finite-duration impulse response sequence.
The output of a 2-D nonrecursive filter at point (m, n) can be computed as a linear
combination of a finite pumber of input samples. The main properties of a 2-D

nonrecursive filter are its inherent stability and linear phase feature [2, 4, 5].
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There are s everal m ethods, such as Windows methods, frequency transformation,

and linear programming, that can be used in 2-D nonrecursive filters design.

2.2.1 Windows Method [31]

The 2-D nonrecursive (FIR) filters could be designed using the extension of the 1-D
technique. No essential modifications to the method need be made to accommodate the
increase in dimensionality. In this method, an ideal impulse response is multiplied by a
window function, which has finite support determined by the filter specifications. We can
denote the ideal impulse response and the frequency response of the ideal filter as i(m, n)
and (@, @), respectively. The filter being designed would have impulses i(m, n) and
the frequency responses H(w;, @,). Then, according to this method, the designed filter

and the ideal filter have the following relationship

h(m,n) = i(m,n)w(m,n), (2.2)

x oo

where w(m, n) is the array of the window function, which has the same support region as
the desired filter.

We can use 2-D convolution of the frequency response for the ideal filter [{w;, @)
with the frequency transformation for the window function, W(an, @»), to get the 2-D

digital filter’s frequency response. Specifically,

a7

1 - |
H(a)l,wz)x»(—i;? [ [1e. py¥ (0 - a,0, - Bdadp (2.3)

)

From the physical meaning of convolution, the desired filter frequency response is
obtained just as the window frequency transformations W sweap the ideal frequency
response.

There are many well-known 1-D window functions; it is very convenient to convert
them to the 2-D case. There are two main ways to do this conversion depending on the

region it supports. For circular support region, we can use the rotated formulation
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w(m, n) = w(\/ m* +n)

or write in the form in the frequency domain

W(w,,0,) =W (o} +o?)

(2.4)

(2.5)

For a square or rectangular region, we can use the so-called Cartesian formulation to

achieve the conversion
w(m,n) = w, (m)w, (1)
or in frequency domain:

W(w,,@,) =W (o)W,(®,),

(2.6)

(2.7)

where w; and wy are 1-D window functions, and W, and W, are their Fourier

transformations.

2.2.2  Transformation Method (2, 4]

Another method to design 2-D nonrecursive filter is through the transformation of a

1-D design. This approach requires less computational work than window-method; it is

especially useful in the design of high order 2-D zero phase nonrecursive filters.

For 1-D zero phase nonrecursive filter, the impulse response must be of odd length.

The frequency response for the filter over the range of [-, N] can be written as

N
H(w)=h(0)+Y_h(n)(e™ +e™)

n=l

N
= Z a(n)cos(wn)
pes)
where,
h(), -
a(n) = n=0
2h(n), n>0

In the above equation, using the following transformation

(2.9)
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cos@ = Acosw, + Beosw, +Ccosw, cosw, +D (2.10)

where, A, B, C and D are free parameters, it is possible to get a 2-D transfer function
as:
N N

H(w,,®,)= Z Za(m, n)cos{(ma, )cos(nm,) (2.11)

ml) sl

Equation (2.11) could be a transfer function for a 2-D nonrecursive digital filter.

2.2.3 Linear Programming Method [2, 4]

Another approach to design 2-D nonrecursive filter is using linear programming
method. Some optimization techniques are employed in this method; the realizable 2-D
filter is determined by comparing with the design specifications, and the one with
minimum error is chosen.

This method requires heavy computational work compared with the window and
transformation methods, and the result is not unique. But we can design a filter with any

magnitude specifications.

2.3 Design Methods for 2-D Recursive Filters [2, 4, 6]

A recursive filter is one, which can be expressed in the form of a difference equation
of the input and output samples with finite orders. Unlike the nonrecursive case, the
design of 2-D recursive filter is more complex than the design of a 1-D one. The main
reason is the stability consideration. Stability test gets more complex as the order of the

filter increases.

To design a 2-D recursive digital filter expressed in the following equation
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where, A, =1, 4, and B, arereal coefficients.

i o

The main work now is to choose the coefficients of 4; and B, to approximate the
frequency response of the desire one, and the coefficients should make the realizable
filter stable.

A popular method to design a 2-D recursive digital filter is starting from an analog
prototype filter, getting the analog transfer function, and then applying the double bilinear
transformations to the analog transfer function to design the digital filter. If we assign a
VSHP as the denominator of the analog transfer function, we can always obtain a stable
digital transfer function, if the well-known bilinear transformation 1s used. However,
when the double generalized bilinear transformations are applied to the analog transfer
function with VSHP denominator, additional stability conditions need to be introduced to
guarantee the stability of the resulting digital filter. Undoubtedly, the analog transfer
function with a VSHP denominator is always necessary in the situations to obtain stable

digital filters by the well-known bilinear transformation or generalized bilinear

transformation.

2.4 Second Order Butterworth Low-Pass Ladder Network

Now we begin to design 2-D low-pass filter. First we need to choose the analog
prototype. Here we consider a second order 1-D low-pass ladder network with an

inductor in the series arm and a capacitor in the shunt arm, which is shown in Figure 2.2

[32].
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4
14 ont

Figure 2.2 Second order low-pass ladder network

Form Figure 2.2, the short-circuit output admittance in a single-variable case is

_LCys* +1

}]22 v
C,s

(2.13)

If we need to make the ladder network as a filter with Butterworth response, the

transfer function for the filter need to have the following relationship [32]

T($)T(=s) = mllm (2.14)

The poles of (2.14) are the roots of
B ()B (=s)=1+(=1)"s" =0 (2.15)
where B, (s) 1s said to be the Butterworth Polynomial.

The MATLAB® function butterPolynomial.m (All the M files can be found in the
appendix) is used to calculate the coefficients for the n™ order Butterworth Polynomials.
From butterPolynomial.m, we have the second Butterworh polynomial

B,(s)=s" +1414s5+1 (2.16)

so, the electronic elements, the inductor and the capacitor, in the ladder network have the

following relationship
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L, =1.0
.17
C,=1414
Solving Equation (2.17), the values of the inductor and capacitor are:
L, =0.707
(2.18)
C, =1414

Now we can use the values to form the 2-ID circuit network, and get the 2-D analog

transfer function for our further investigation.

2.5 The 2-D Analog Transfer Function Obtained from
Transformation of the 1-D Second Order Butterworth
Prototype Filter

We can create a 2-D analog filter system by setting the inductor as the s;-variable
and the capacitor as variable sp-variable, and specify them to be the values of the
elements that we obtained in section 2.4 [33]. The resulting 2-D doubly-unity-terminated

circuit is shown in Figure 2.3.

L;=0.707
s L
R}z] L [
1 1,
1 i
= —— v
v IosC, T ’
Hl .o Q?

L
&

Figure 2.3  The 1¥ order 2-D doubly-terminated analog circuit with Butterworth elements

In Figure 2.3, the voltage and the currents are associated by the following equations
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Vo= IR, +5,,) + 1, (2.19)
5,0,
1 |
V=1 ——= LR, (2.20)
e
I=1+1, (2.21)

As a result, we can obtain the voltage transfer function in continuous form for the

2-D circuit network in Figure 2.3 as

H (s,,s )“"VO = :
U (14+0.707s, (14145, +1) + 1

i

= ! (2.22)
8,8, +0.707s, +1.414s, +2
Obviously, the denominator
D, (s,,8,) =35, +0.707s, +1.414s, + 2. (2.23)

is a VSHP of a single degree in each variable.
Till now, we have obtained the 2-D analog transfer function that represents a 2-D

analog low-pass filter.

2.6 The Digital Transfer Function

2.6.1 The Low-Pass Limits for the Coefficients of the Generalized Bilinear

Transformations

In the previous section, we have obtained the 2-D analog transfer function for the
circuit in Figure 2.3. But under what conditions will it result in a 2-D low-pass digital
filter by double generalized bilinear transformation? Here, we need to solve the problem

first. As we mentioned before, when &; > 0 (i=1, 2), it is possible to obtain stable digital
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transfer function when ay and By (=1, 2) are in the range of || < 1.0 and |G, £ 1.0
Here we investigate the situation in the first dimension..

For the n™ order 1-D low-pass ladder network, which has » branches with one
inductor in each series arm and one capacitor in each shunt arm, the voltage transfer

function can be written as the following equation [32]

K
n 4 ] ny el A +
N aﬂ_,lS a”_‘zS als CZO

T(s) = (2.24)

For D(s)= Z“i‘si to be a VSHP, a,(i=0,1,---,n~1) should be nonnegative real
tex(}
coefficients, and a, = 0.

Applying the generalized bilinear transformation (1.37) of the first dimension to

equation (2.24), we can get the digital transfer function as:

F[(Z!) = s n n-1 (Z¥ + Il[i)ll) " (225)
ki(zy +ag) +a, k7 (2 +a,) (2 + Boy) +-ag(z + )

The frequency response of (2.25) is

(G*Wl + ﬁ( )
H(wl) = i - jey n kn—l - joy a~le - jon - jwy n
He™ ™ +ay)" +a, k(@ v ay) T (e F By )+ tag(e + B)

(2.26)

The gains of low-pass filters at zero radians should be the highest, while the gains at
7 radians should be the lowest or zero.

In Equation (2.26), the magnitude responses have the mentioned propertics as a
low-pass filter, if and only if when fo; is positive or 0 < fy; < 1.0. Also, as we mentioned
before, to guarantee stable transformation, when &,>0, ay need to have opposite sign as
[Foi. That means that a should be negative or —1.0 £ ae £ 0.

The results are effective for the second dimension also.

So, to satisty the conditions of obtaining 2-D low-pass digital filters, the coefficients

of the double generalized bilinear transformations should meet the following
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requirements
() k>0, i=12 (2.27a)
(i) -1.0<¢, 20, i=12 (2.27b)
{(iii) 0< B, £1.0, i=12 (2.27¢)

With these constraints, we can obtain a 2-D low-pass digital filter from its analog

counterpart by the application of the double generalized bilinear transformations.

2.6.2 2-D Low-Pass Digital Transfer Function from Double Generalized Bilinear

Transformation

Applving double generalized bilinear transformation (1.37) with the low-pass
coefficient constrains (2.27a ~ 2.27¢) to the 2-D analog transfer function (2.22), the 2-D
transfer function of a low-pass digital filter in discrete domain can be expressed as

- N,(z,2,)

H](szv - 3
( D,(z,,z2,)

(2.28)

where, N (z,,2,)=1z2,2, + Bz, + Bozs + BoPu (2.29a)
D,(z,,z,) = (kk, +0.707k, +1.414k, + 2)z,z,
+(k ko, +0.707k B, +1.414k, a0, +20,,)z,
+ (k ke, +0.707k e« +1.414K, 58, +28,,)z,
+(kkyay 0, +0.707k 2y, By, +1.414k,,, 3,

+2 B0 P (2.29b)

We can express the denominator Dgz), z2) in the general form of 2-variable

polynomial with unity degree for each variable

D (z,,2,) = a,z2,z, + 4,2, + Ay 2z, + ag, (2.30)
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where, a,, = kk, +0.707k, +1.414k, +2 (2.31a)
a,, =k ko, +0.707k f + LAk ap, + 23, (2.31b)
g = ko, +0.707ka, + 1,414k, B, + 23, (2.31¢)
Uy = ksl +0.707k a0, oy + 1,414k, 0, By + 2 B0y Boa (2.31d)

The MATLAB® function lowPass.m (refer to the APPENDIX) can be employed to
obtain the contour and 3-D magnitude plots of the resulting 2-D low-pass digital filters
with the transfer function (2.28). In this function, it is made certain that stability
conditions are satisfied. As the changeable coefficients of the double generalized bilinear
transformations can change the stabilitv of the resulting 2-D digital filters, it is necessary

to introduce additional stability constraints in the discrete domain.

2.7 The Stability Conditions of the 2-D Digital Filter with

Unity Degree Denominator

Starting from a 2-D analog transfer function with a VHSP as its denominator,
applying the well-known used bilinear transformation (1.8) will always result in 2-D
stable digital filter. However, when the generalized bilinear transformation is applied, it
has to be ensured that the resulting 2-D digital filter is always stable.

The two-variable polynomial with the form (2.30) is unity degree for each variable
z; and z,, while the overall term z,z; has a degree of 2.

The inverse generalized bilinear transformation (1.37) is

z S Busizhen g, (2.32)
k. —s,
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. 1 e " :
Applymng (2.32) to i)MTW? , where Dy(zy, z2) is given by (2.30), we can obtain
PARSERSY

D, (5,,8,) = (B By, = @10 Bor — Ao Py +g9)8,3,
+ (=g @y, Porky + gk, By + agky g, ~ Apoks )S,
+ (—ay Qo) By + ity + g K, By = Gk )5,

+(ay, oy &k ky — a0k k, - agagkk, + agkik,) (2.33)

In order that D, (s, s2) is a Very Strictly Hurwitz Polynomial (VSHP), the necessary

and sufficient condition is each polynomial coefficient needs to be positive [22, 29]. This

gives
@y, B Poy = ooy = APy + gy > 0 (2.34a)
=, Qo Porkey + @k, Boy + ag kag, —agk, >0 (2.35a)
=y, 0y Bk, + 1ok oy +agik, By — agky >0 (2.36a)
a0,k k, = age ki, —agonkik, +agkk, >0 (2.37a)

As a stable generalized bilinear transformation requires & > 0 and k; > 0, the

stability conditions in (2.34a)-(2.37a) become:

a;; By By — 40Py "a;nﬁoz + g, >0 (2.34)
=y oy Py + Uy Py + Aoy — gy >0 (2.35)
~ 3,0y Py + 10y + g By — gy >0 (2.36)
Q) Xy — Uyl = ey @y + gy > 0 (2.37)

From these relationships, MATLAB® functions k/LPRange.m, kZLPRange.m,
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AlLPRange.m, A2LPRange.m, BILPRange.m and B2LPRange.m are used to compute the
ranges for k), k3, ayy, ceoz, Por and Sy, from which can result in stable low-pass filter
system when the other coefficients are specified. These MATLAB® functions take the
coefficients of the double generalized bilinear transformations, except the one we are
considering the range in the function, as their input arguments, and retumn the stable range

of that coefficient which we intend to study.

2.8 Frequency Responses of the 2-D Low-Pass Filters

The MATLAB® function JowPass.m is used to obtain the contour and 3-D
magnitude response plots of the resulting 2-D digital filters. With the input coefficients of
the generalized bilinear transformations, we can obtain the contour and 3-D magnitude
plots of the resulting 2-D digital filters. In this function, the stability problem is first
treated to make sure that the 2-D low-pass filter is stable with these input arguments.

To investigate the manner in which each coefficient of generalized bilinear
transformation affects the magnitude response of the resulting 2-D low-pass digital filters,
we change the value of the deserving coefficient or coefficients while fixing the other
coefficients to the specified values. That can separate the effects from the other
coefficients. We know from the previous sections that it is possible to obtain 2-D
low-pass filters when the coefficients are in their low-pass limits: k>0, —1.0ay;:< 0 and
0<5,21.0, (i = 1, 2). In the following, we study in detail the effect caused by each

coefficient to the frequency responses of the resulting 2-D low-pass filter.

2.8.1 Frequency Response of the Resulting 2-D Low-Pass Filters with Variable &,

To study the manner how k; affects the frequency response bebaviours of the

resulting 2-D low-pass filter and how the effect of £ is different from the effect of the
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other coefficients, we change the values of &y, while fixing the other coefficients of the
generalized bilinear transformation to be k=1.0, ay=-1.0, anp=-1.0, fn=1.0, and
Por=1.0. The MATLAB® function k/LPRange.m is used to compute the stable range of
ky with the other specified coefficients. Figure 2.4 is the range obtained from the function,

here we use k; = 1000 to simulate the situation of k; ~»cc,

01 1000
ky
Figure 2.4 The range of &y when the other coefficients are specified to be k2=1.0, ag1=-1.0. ag=~1.0,

Por=1.0, and Syr=1.0.

From Figure 2.4, we can see that any value of k; in the range of k; > 0 canresultin a
stable 2-D low-pass digital filter when the other ones are set to unity with proper signs.
The contour and 3-D magnitude response plots for the filter with the representative

values of k,=0.1, k=1.0, £,=5.0, k;=10.0, and £=50.0 are given in Figure 2.5.
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Figure 2.5 The contour and 3-D magnitude plots of the resulting 2-D low-pass filter with variable
k; and the other coefficients fixed as &y=1.0, du=-1.0, ¢=-1.0, f; 1.0 and Fyy=1.0.

It can be seen that the coefficient &y mainly affects the bandwidth of the pass-band in
w-dimension. As k; increases, the pass-band in w;-dimension of the filter becomes
compact, from almost all-pass in lower boundary of 4 to almost all-stop in very large k).
However, the pass band and transition band in w»-dimension remain unchanged. Another
phenomena can be observed is that as & varies from 0.1 to 50.0, the symmetric axis of
ellipse-like magnitude contour curves rotates from 6 = 0 radians to almost € = n/2

radians with respect to @;-axis.

The coefficient k; has no effects on the gains in the pass-band and stop-band, and it

does not affect the filters’ polarity properties.

2.8.2 Frequency Response of the 2-D Low-Pass Filter with Variable k,

Figure 2.6 is the result of the range of &, obtained from the MATLAB® function
k2LPRange.m, while the other coefficients are set to be k4=1.0, ay=-1.0, apr=-1.0,

For=1.0, and fyz=1.0. Here we still use &y = 1000 to stimulate the situation of &y — 0.



Chapter 2 Two-Dimensional Low-Pass Filters 43

0.1 1000
ks

Figure 2.6  The range of k, when the other coefficients are specified to be 4,=1.0, ay=1.0,
c==1.0, for=1.0, and SByy=1.0.

Figure 2.6 indicates that any value of &, in the range of &, >0 can result in a stable
2-D low-pass filter, when the other coefficients were set to be unity with proper signs.
Figure 2.7 is the contour and 3-D magnitude plots for the 2-D low-pass filters with

different k; and the other coefficients are £=1.0, ay=~1.0 ay=-1.0, £n=1.0 and fp=1.0.
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Figure 2.7  The contour and 3-D magnitude plots of the resulting 2-D low-pass filter with variable
k, and the other coefficients fixed as k;=1.0, ap=~1.0, ap=-1.0, fp;=1.0, and Bp=1.0

The coefficient k» mainly affects the magnitude characteristics in the ap-dimension.
When k; increases from 0.1, the lower boundary, to 50.0, the pass-band in @p-dimension
changes from almost all-pass to almost all-stop, while the pair of pass-band and
stop-band in @ -dimension remains unchanged. The symmetrical axis for the ellipse-like
contour curves rotates from the position of almost @=n/2 radians to the position of 6=0
radians.

The coefficient k; has no effect on the gains of the pass-band of the 2-D low-pass
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filter, as well as its polarity.

2.8.3 Frequency Response of the Resulting 2-D Low-Pass Filter with Variable oy

Using the MATLAB® function alLPRange.m, we can get the stable range of
with the other specified coefficients of the double generalized bilinear transformation.
Generally, there exist many combinations for the coefficients. In order to make the
problem simple without loss of generality, we specify the other coefficients to be unity
with proper signs, when studying the effect of apion the magnitude. Figure 2.8 is the
range of o which make the system stable when the other coefficients are specified as

/qml.O, kzm'l.U, (X()zz~—l.(), ,80]”1.0? and ﬂ(;)z"‘::l,g.

2471

Figure 2.8 The range of oy, when the other coefficients are specified to be £=1.0, £>=1.0, ap;=~1.0,
ﬁ”]:,_l .0, and /30331.0.

Any value of ¢ in the range of —1.0<a< 0 can result in a stable 2-D low-pass
digital filter. The contour and 3-D magnitude response plots of the resulting 2-D low-pass
filter with representative values of ¢g;’s are given in Figure 2.9. As we have obtained the
frequency responses of the resulting 2-D low-pass filter with ap=—1.0 and other unity
coefficients in section 2.8.1, here we only give the results of the two cases for oy =-0.5

and ¢=0.
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Figure 2,9  The contour and 3-D magnitude plots of the resulting 2-D low-pass filter with variable
¢ty and the other coefficients fixed as £,=1.0, k;=1.0, ¢p= 1.0, fn=1.0, and Fyp= 1.0

It can be seen that the coefficient ¢y mainly affects the gain of the pass-band of the
resulting 2 -D low-pass filter. S pecifying the other coefficients to be unity with proper
signs, and when ¢, changes from the lower boundary ot 1.0 to the upper boundary of 9,
the gain in the pass-band decreases from 0.5 to about 0.4.

The low-pass coefficient g can also affect the bandwidth of pass-band in

oy -dimension. As o increases from the lower boundary of ~1.0 to the upper boundary of
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0, the pass-band with respect to an becomes slightly larger. For the symmetrical axis for
the ellipse-like curves, the angle of the axis to the horizontal axis (w) axis) gets smaller as

o1 increases in the range of ~1.0 < o 0.

2.8.4 Frequency Response of the Resulting 2- Low-Pass Filter with Variable a;

The MATLAB® function ¢2LPRange.m is employed to compute the range of oy,
which meets the stability requirements with the other specified coefficients. The other
coefficients, which are in the range defined in (2.27), can have many possible
combinations, and these different combinations may have different requirements for the
coefficient ay, in order that the resulting condition is stable. The MATLAB® function
a2lPRange.m takes the combinations of the other coefficients as its input arguments, and
outputs the stable range of wy in plot form. Here to make the problem simple without
loss of generality, we set them to be =1.0, k1.0, a1=—1.0, fp1=1.0 and £s»=1.0. It can
be verified from the function aZLPRange.m that all the o’s in the range of —1.0<apn< 0

could make the resulting filters stable. The range of ay; is given in Figure 2.10.

247]

Figure 2.10 The range of @y when the other coefficients are specified to be 4 =1.0, k=10,
(Xm:‘—l.o, ﬁ()[ :‘:1.0, and ,[)’()g =10,

Any g, in the range of —1.0< <0 can result in a stable 2-D low-pass filter when
the other coefficients are set to be k=1.0, k=10, on=-1.0, By=1.0 and Fy=1.0. The

magnitude response behaviors of the resulting 2-D low-pass digital filter with the
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representative values of og’s are given in Figure 2.11. Here again, we do not give the

results with cgr=—1.0.
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Figure 2.11  The contour and 3-D magnitude plots of the resulting 2-D low-pass filter with variable
g and the other coefficients fixed as k;=1.0, k&=1.0, ap1=—1.0, fp;=1.0 and f,=1.0

The coefficient oy also affects the gain in the pass-band of the resulting 2-D
low-pass filter. When ayg, changes from its lower boundary of —-1.0 to the upper boundary

of 0, the gain decreases from 0.5 to about 0.4.

And also au has little effect on the bandwidth of the pass-band in @,-dimension.
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When app is increasing in the region of ~1.05wps 0, the pass-band in wz-dimension
becomes larger. For the symmetrical axis, it rotates from a smaller angle to a bigger one.
Compared with the effects of & and k; on the bandwidth of the pass-band, the
effects of ay and o2 are very small. But ay; and a play an important role in view of
their effects on the gain of pass-band. Therefore we define g and apy gain-effect

coefficients, and & and k; band-effect coefficients.

2.8.5 Frequency Response of the Resulting 2-D Low-Pass Filter with Equal

Variables oy and oy

From the last two sections, both o and o affect the gain at the pass-band areas.
Now we study the joint effect of an, and oe.

Still, the other coefficients are set to be £=1.0, k»=1.0, fy=1.0, and fp=1.0, while
the values of oy and o are changing. Figure 2.12 shows the stable ranges of ao and

&2,

- e

-1 0
oy = o

Figure 2.12 The range of equal ap; and ag; when the other coefficients are specified to be £,=1.0,
kg“’l.o, ,301:1.0, and ﬂ()f:l.()

When we choose equal values of ap; and ap; in the range of [-1.0, 0] and specify the
other coefficients to be k) = 1.0, &, = 1.0, fo; = 1.0, and Sy, = 1.0, the resulting 2-D
low-pass filter is stable. Figure 2.13 is the contour and 3-D magnitude plots of the

resulting 2-D low-pass filter at oy=ag=-0.5 and am=ep=0.
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Figure 2.13 The contour and 3-D magnitude plots of the resulting 2-D low-pass filter with equal
variables @, and @, and the other fixed coefficient: £=1.0, k&»=1.0, fn=1.0 and
,8()2:1.0.

The effect on the gain of pass-band portions becomes more pronounced when we
change the two coefficients, ay1 and a2, simultaneously than the e ffect c aused by the
individual variation of o or apr. When the values of agy and ag; change from their
lower boundary to their upper boundary, the gain of the pass-bands decreases from 0.5 to

about (.3.

The pass-band area becomes enlarged in both the @ and @; dimensions, but the



Chapter 2 Two-Dimensional Low-Pass Filters 51

effect is very slight.
Both the effects on the gain and the bandwidth of the pass-band can be enlarged

when we choose large values of &; (7=1,2). Figure 2.14 shows the enlargement. Here we

use 50.0 for ky and 4> to illustrate the situation of larger values.
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Figure 2.14 The conwur and 3-D magnitude plots of the resulting 2-D low-pass filter with equal

variable equal ¢ and ey and the other coefficient fixed as £,=5.0, £&=5.0, fy;=1.0 and
,&)2”1.0

Compared with the situation when £=5.0, ky=5.0, an=-1.0, az=1.0, fn=1.0 and



Chapter 2 Two-Dimensional Low-Pass Filters 52

Por=1.0, the filter in Figure 2.14 has very smaller gain, which decreases from 0.5 to about
5%x107 and 1.5%10™ when the values of @ and @y increase from —1.0 to -0.5 and 0,
respectively.

And also, we can compare the filters in Figure 2.13 and 2.14. With the same values
of ¢ and apy, the filter with bigger values of k; and k; has smaller gain and smaller
bandwidth of pass-band. However, the effect on the gain of pass-band is more effective

than the effect on bandwidth.

2.8.6 Frequency Response of the Resulting 2-D Low-Pass Filter with Variable £y

The MATALB® function b/LPRange.m is used to calculate the stable range of f
when the other coefficients are specified. There are many choices for these coefficients.
Here, for the sake of convenience, while changing the value of fy we still set these
coefficients to be unity with proper signs. specifically, ki=1.0, k»=1.0, cg;=—1.0, a=-1.0,
and fy=1.0. We can check from Figure 2.15 that any value of fy in the range of

0<Bn<1.0 can result in stable 2-D low-pass filter.

s

0 S 1

Figure 2.15 The range of B when the other coefficients are specified to be k=1.0, & =1.0,
oy =—1.0, oy=—1.0, and Gy =1.0.

Figure 2.16 gives the contour and 3-D magnitude response plots of the resulting 2-D
low-pass filter with different values of f;; when the other coetfficients are set to be £;=1.0,

/’&')“10, ammml.(), yy = - .O, and ,[)’02 = 1.0,
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Figure 2.16  The contour and 3-D magnitude plots of the resulting 2-I) low-pass filter with variable
for and the other coefficients fixed as k=1.0, k=1.0, ¢g;=-1.0, a;=-1.0, and B, = 1.0
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~]?frf:m:x the results, it can be seen that the main effect from Sy is that there exists a
non-zero gain at the stop-band portions when Sy does not equal 1.0, In addition, it results
in different pass-band ranges of the filter in @;-dimension and the symmetrical axis of the
contour rotates from a large angle to a small one, when the value of fy; increases. In fact,
the non-zero gain at stop-band of the 2-D low-pass filter will affect the filter’s polarity,
from low-pass filter to high-pass one, so we also define fy and Sy polarity-effect
coefficients.

For the nonzero gain at the stop-band in high frequencies, it is possible to reduce it
without changing the value of fo;. From the previous results, both the coefficients &y and
oy can affect the magnitude response in @-dimension. As the effect of ¢ is small, here
we consider only the reduction of the non-zero gain by increasing the value of k. Figure
2.17 is the contour and 3-D magnitude plots of the resulting 2-D low-pass filter with
different values of ki but other coefficients remaining the same setting as in Figure 2.16

(a), ie.: kf“*"l.o, O‘.’m”——-l.o, (2’()2”“1.0, ,8()1$0, and [f()zml.o.
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Figure 2.17 The contour and 3-D magnitude plots of the resulting 2-D low-pass filter with variable
k) and the other coefficients fixed as =10, qy;=-1.0, a =~1.0, Sy =0, and Fp=1.0

Figure 2.17 indicates that with a large value of k;, we can have a small gain at
stop-band in @-domension, but the cost is to lose the bandwidth in the pass-band. But
even with k; as large as 50.0, the gain at stop-band becomes almost zero, but it is still not
absolutely zero. Some kinds of optimization techniques need to be introduced to balance

the gain and loss, and to control the gain inside the design specifications.
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2.8.7 Frequency Response of the Resulting 2-D Low-Pass Filter with Variable £,

The MATLAB® function b2LPRange.nm is used to compute the stable ranges for fp
with specified ky, ks, co1, ooy and Sy In this function, it takes the coefficients other than
[z at its input arguments, after checking the ranges for these coefficients, then scan the
stable range for gz, and plot the output. For the same reason mentioned before, here we
still let k=1.0, k=1.0, cg1=-1.0, apr=-1.0 and fyp=1.0, From the MATLAB® function
b2LPRange.m, it can be checked that any value of £y in the range of 0 € fy £ 1.0 can
result in a stable 2-D low-pass filter when the other coefficients are set to the specified

values. The result is illustrated in Figure 2.18.

. ARG R
0 1

P

Figure 2,18 The range of £ when the other coefficients are specified to be &1=1.0, k=10, ap=—1.0,
6502:’“'1,0, and ﬂm:l .0.

The various frequency responses of the resulting 2-D low-pass digital filters caused

by different values of f; are given in Figure 2.19.
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Figure 2.19  The contour and 3-D magnitude plots of the resulting 2-D low-pass Filter with variable
Doz and the other coefficients fixed as k;=1.0, k>=1.0, ap =—1.0, ap>=—1.0 and Ln=1.0

The parameter fo; could lead to a 2-D low-pass filter with variable magnitude
response. A bigger value of S, produces a wider bandwidth in the pass-band of the filter
in @ -dimension, and the symmetrical axis angle also changes in opposite direction as
that caused by fo).

Nonzero gain at stop-band in @;-dimension exists when Bgp#1.0. The non-zero gain

can be reduced by increasing the value of k;. The simulation results are given in Figure

2.20 with different values of k.
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The gain in the stop-band of the resulting 2-D low-pass filter is reduced by
increasing the values of k; with the tradeoff considering the bandwidth of the pass-band
in @y-dimension. How to balance the degree of gain reduction and the pass-band
bandwidth loss should be determined by the design specifications and the optimization
techniques. We can get optimum combination for k, and Sy to meet the design

specifications, although the combination would not be unique.

2.9 Summary and Discussion

In this chapter, we have introduced the procedure for the design of 2-D low-pass
discrete filters by double generslized bilinear transformations. The manner how each
coefficient of the double generalized bilinear transformation affects the magnitude
response behavior of the resulting 2-D low-pass filter has been studied in detail also.

From the second order 1-D Butterworth low-pass ladder network, we have formed a
first-order 2-D doubly-un%ty-terminated circuit network. And then the 2-D analog transfer
function is obtained. The 2-D discrete transfer function has been derived from the analog
transfer function by double generalized bilinear transformations when the coefficients are
in their specified ranges to get low-pass filters. When one or more coefficients o fthe
double bilinear transformations are changing, the resulting 2-D low-pass filter has
variable magnitude characteristics.

Stability is always the most important issue in 2-D recursive digital filter design.
The stability conditions have been obtained for the resulting 2-D digital filter with a unity
degree denominator for each variable. Using the link between the stability conditions and
the coefficients of double generalized bilinear transformations, we have got the stable
range for each coefficient when the other ones are specified. Also, whenever we try to

obtain the magnitude response for a 2-D low-pass filter, these conditions need be

satisfied.
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The coeflicients of k;, oy and foy only affect the magnitude response in
w~-dimension. while the coefficients of ky, @y and fy, only affect the behaviors of the
magnitude response in ap-dimension. Depending on the main effects caused by each
group of coefficients on the magnitude response, we define &’s (i = 1, 2) as band-effect
coefficients, aps (i = 1, 2) as gain-effect coefficients, and Boi's (i = 1, 2) as
polarity-effect coefficients. Larger values of 4’s compact the bandwidth of the
pass-band in their corresponding dimension. Although oy and Boi also affect the
bandwidths o f the p ass-bands, the main e ffects caused b y ap’s ateonthe gainofthe
pass-bands and f;’s determine whether the resulting filter is either a low-pass filter or a
high-pass filter when /s is in its negative half or in its positive half, The effect of Po’s
appears in the 2-D low-pass filter as the non-zero gain of the stop-band when they have
values other than ~1.0. The larger the distance from ~1.0, the bigger the non-zero gain.
For ay/’s, the larger absolute values can result in bigger gains in the pass-bands.

This chapter is an important work towards the study of the variable magnitude
characteristics of 2-D recursive filters by double generalized bilinear transformations.
Also, from the results presented in this chapter, using the symmetric prosperities of 2-D
low-pass filters and the optimization techniques, it should be possible to design 2-D

low-pass filters having variable magnitude characteristics.
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Two-Dimensional High-Pass Filters
%

In this chapter, another important type of 2-D filter, 2-D high-pass filter, is
investigated. In section 3.1, we give a brief definition for 2-D high-pass filter, as well as
the typical specifications in mathematical and plot forms. In section 3.2, the 2-D analog
transfer function 1s obtained from the 1-D analog Butterworth low-pass prototype. The
ranges of the coefficients, which can result in 2-D high-pass filter from the obtained 2-D
analog transfer function by generalized bilinear transformation, are given in section 3.3.

The digital transfer function of 2-I) high-pass digital TIR filter is given in section 3.4. In

61
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section 3.5, we mainly consider the stability of the resulting 2-D high-pass filter with a
unity degree denominator for each variable. In section 3.6, the frequency response of the
resulting 2-D high-pass filter, as well as the manner how each coefficient of the
generalized bilinear transformations affects the behaviour of the frequency response of
the 2-D high-pass filter is studied. The summary and some useful conclusions are given

in section 3.7.

3.1 Introduction

In contract to the low-pass filters, the high-pass filters pass the signal components
with high frequencies, but attenuate the ones at low frequencies. High-pass filters have a
bigger gain for the high frequency signals and a smaller gain for the low frequency

signals. A 2-D high-pass filter can be described as [2, 4]

JO, O<lo,|<o,

H(w,,»,)= l (3.1)
1,

o, <lo|sx

where:
@, (i=12)arethepassbandsin z, and z,-dimensions, respectively
@, (1=12)arethestopbandsin z, and z,-dimensions, respectively
The frequency range between @, and @, is the ansition band.

The typical specifications of 2-D high-pass digital filters in the frequency domain

are given in Figure 3.1.
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-R

bra

0

-~

Pass Band [T 1 Transition Band 1 Stop Band

Figure 3.1  The Specifications of a typical 2-D digital high-pass filter in the frequency domain

3.2 2-D Analog Transfer Function
We have obtained in Chapter 2 the analog transfer function of the first order 2-D

circuit network shown in Figure 2.3 as given by -

H,(s,,8,)= —L—/i’— = !
Y (14+0.707s)(1.414s, < 1) +1
- L (3.2)
5,8, +0.707s, +1.414s, ~ 2
(3.3)

The denominator of (3.2) is
D, (8),5,) =55, +0.707s, +1.414s, + 2,

which is a Very Strictly Hurwitz Polynomial (VSHP) and constitutes a single degree in
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each variable obviously.

3.3 The High-Pass Limits of the Coefficients of the
Generalized Bilinear Transformations

Itiseasy toprove that equation (3.2) is the transfer fiunction ofa 2-D low-pass
analog filter.

To get the frequency response of the 2-D analog filter given by (3.2), let

8 = jo, (3.4a)
5, = jw,. (3.4b)
We obtain
o 1 i
H,(jo, jo,)= (3.5)

=00, +0.7070,j +1.4140, 7 + 2

At some specified frequency points, we can get the magnitude of the filter as

H,(j0,j@,)=C, (3.62)
H,(jo,, j0)=C, (3.6b)
H,(j0,j0)=C, (3.6¢)
H,(joo, jo,)=0 (3.6d)
H,(jo,, jo)=0 (3.6¢)
H,(jeo, joo) =0 | (3.6)

where Cy, (3, and (5 are nonzero constants.
As we mentioned in Chapter 2, from a 2-D analog low-pass transfer function, we
can obtain 2-D low-pass digital filter by double bilinear transformations with specified

ranges for its coefficients. Now, we need to determine the ranges of the coefficients of
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double linear transformations to obtain 2-D digital high-pass filters from 2-D low-pass

transfer functions.

3.3.1 Generalized Bilinear Transformation Coefficients

In order to get the general results, for the 2-D analog low-pass filter with a
denominator with single degree for each variable, we have the following general form

H (s,5,)= ad 3.7

AppSy8, a5, +ay,s, +a,

where K 1s a positive constant.
Here, we consider the transfer function with a denominator with unity degree of z;
and z,, and the overall degree is two with 2125, 50 a;120 in equation (3.7).
From the properties of VSHP, all the coefficients of the denominator, @y, a9, ap
and ago must be positive.
We apply double generalized bilinear transformations (1.37) to (3.7) to obtain the
digital transfer function. The resulting 2-D transfer function in the discrete domain can be

expressed as

N, (z,,z,
H,(z),2,) = No(z.2,) (3.8)
Dy(z,,2,)
where
Nd(ZI,ZZ)::(Z] +/3m )(Z: +/}()2:) (39&)

Dy(z),z,) = aykh, (2, + ay Wz, +ay,) + a ke, (2, + o, )z, + Ber)

ok (z, +ay Nz + By) + Ago(z) + Py Nz, + B) (3.9b)

The stability conditions require that the denominator of (3.8) cannot be zero at any

points in the s;-s; plane including the origin and the infinity.

D,(z,,z,)#0, for all z; and z. (3.10)
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To get the frequency response for the resulting digital filter, letting
z me ™ (3.11a)

z, =g/ (3.12b)
the digital transfer function (3.8) becomes

Nolor,0,)

H (o,0,)= b‘,(a),,wz) (3.13)
where:
N o,0,)= (7" + B, e + B,) (3.14a)
Dy(@,0,)=aykk, (e’ +ay, e +a,)
+agk (e +ay, e+ B,)
+ aOIkz(e”-i”” + By e %+ oy )
+ g (€7 + B e + By) (3.14b)

To determine the ranges of the coefficients of the double generalized bilinear

transfer functions, we investigate the different ranges of that £y and .

) fBu=-lorfp=-1
When we choose the coefficient fy=—1 or =1 or both equal to —1.0, we have
the following reiation‘shib from (3.14a)
N, (0,,)= N, (@,0)=N,0,0)=0 (3.15)
As a result, the magnitudes of the digital filter are zero at the points (0,a,), (@1,0),

and (0,0) in w-@, plane, since the denominator is not zero at any time. So, we have

\H,(0.0,)

=|H  (0,,0)|=|H,(0,0)|=0 (3.16)

It is easy to confirm that the filter will have the maximum magnitude at oy =ay= +n

(Radians)
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So we can obtain 2-D high-pass filter when fyi=fo=—1. And when k>0 (=1, 2),

possible to obtain 2-D high-pass digital filter from 2-I) analog low-pass transfer function

by generalized bilinear transformations with the constraints on the coefficients.

(i) k>0, i=12 (3.17a)
() 05a, 1.0, =12 (3.17b)
0
(i) B, =-1.0, =12 (3.17¢)
N

i) Py and Sy, are in their negative parts

When we choose —1.0 < Bo; < 0 and ~1.0 < Bp2 < 0, then oy and o2 would be
nonnegative to meet the stability conditions. And the filter will have maximum
magnitude at o = £n (radians) and 0, = +n (radians), and the filter will not have zero
magnitude at @,=0 (radians) or w;=0 (radians). But it is still possible to obtain high-pass
filter with nonzero and small gain in low frequency region, if the values of fy; and S,

and other coefficients are properly chosen.

iii) Py and [y, are in their positive parts

We have known from Chapter 2 that when we choose the values of f£; and Foz in
their posttive parts, 2-D low-pass filters will be achieved.

It can be concluded that to obtain 2-D recursive digital high-pass filters from 2-D
analog low-pass transfer functions, the coefficients of double generalized bilinear

transformations should satisfy

G k>0, i=12 (3.18a)
() 0<a, <10, =12 (3.18b)

(i)  -1.0<8,<0, i=12 (3.18¢)
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3.4 The Digital Transfer Function of 2-D High-Pass Filter

Applying the double generalized bilinear transformations (1.37) to the 2-D analog
low-pass transfer function in (3.2), the digital transfer function for the resulting 2-D

high-pass filter can be obtained. Specifically,

H, (7 = ) (3.19)
D“,(Z) ’Z:l)
where,
Nz, z)=z2,+ Bz, + Bz, + BB (3.20a)

Dy(z,2,) = (kk, +0.707k, +1.414k, + 2)z,z,
+(k koo, +0.707k By + 1414k, +2 8,0z,
+(kkya, +0.707k i, +1.414k, 8, +25,))z,
+ (ko0 +0.707ka, B, +1.414k.e,, 5,

+ 25, 8y,) (3.20b)

For convenience, Dz, z;) could be written in the general form of 2-variable

polynomial with single degree in each variable

D(z,,z,)=a,z,z,+a,,z,+a,z, +a, (3.21)
where,

ay = kk, +0.707k, +1.414k, +2 (3.22a)

yy =k kyory, +0.707k, f, +1.414k, 00, + 23, (3.22b)

ag =k ko, +0.707ka, +1.414k, 8, + 28, (3.22¢)

gy = ik, ot oo, +0.707k g, fy, + 1414k, By, +2 By Bos (3.22d)
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When we choose the coefficients of the double generalized bilinear transformations
in the ranges defined in Equation (3.18a) - (3.18c¢), the transfer function (3.19) represents
a 2-D high-pass digital filter. And when one or more coefficients are changing, the
resulting 2-D high-pass digital filter has various magnitude characteristics. The
MATLAB® function highPass.m (see Appendix) is employed to obtain the contour and
3-D magnitude response plots for the resulting 2-D high-pass filters. In the function, we
take the values of all the coefficients as the input arguments, and the function returns the
contour and 3-D magnitude response plots for the 2-D high-pass filter with the specified
coefficients. Of course, the stability is first tested for each combination of these
coefficients in the function.

As the changeable coefficients may affect the stability of the resulting 2-D
high-pass filter, additional stability test criteria need to be introduced to test the stability

of the resulting 2-D high-pass filter in discrete domain.

3.5 The Stability Conditions of 2-D Digital Filter with a
Single Degree Denominator for Each Variable

In Chapter 2, we have already got the stability conditions for 2-D recursive digital
transfer function with the unity degree denominators with the general form

Dy(zy,2)) = a,5,2, + a2, + Ay, z, + dy, (3.23)

The stability conditions are

ay, Boy By = tho By = @ B + @y > 0 (3.24)
= Ay Py + a1 By + 0010y = gy >0 (3.25)
= Ay Gy, Py + Q0 + Ay, By, — gy > 0 (3.26)

A3 0y iy — Aoy = gy Gy + Gy > 0 (3.27)
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where a1, @, do1 and age should be evaluated in the ranges specified in Equations
(3.24)-(3.27) to meet the stability requirements. And also the coefficients of the double
generalized bilinear transformations should first meet the conditions given in Equations
(3.17 a)- (3.17¢).

The MATLAB® functions klHPRange.m, k2ZHPRange.m, alHPRange.m,
a2HPRange.m, b1 HPRange.m and b2HP Range.m are used to determine the ranges of &y,

ka, a1, o, Poy and P, respectively, when the other coefficients are specified.

3.6 Frequency Response of the 2-D High-Pass Digital Filters

The MATLAB® function highPass.m is employed to plot the magnitude contour

and 3-D magnitude response of the resulting 2-D high-pass.

3.6.1 Frequency Response of the Resulting 2-D High-Pass Filter with Variable &

When the other coefficients are fixed, that is £=1.0, ap1=1.0, apy=1.0. fy;=-1.0 and
Poo=—1.0, the range of % can be determined using the MATLAB® function
k1HPRange.m. The result is shown in Figure 3.2. Here we still use 1000 to represent the

infinite value of k;.

0.1 k 1000

Figure 3.2, The range of k) when the other coefficients are set 10 A=1.0. @;=10, ap=1.0,
ﬂmm“] .0 and ﬂ()ggml.o

From Figure 3.2, it is obvious that any value of &) in the range of (0, +e) could

result in stable 2-D high-pass digital filters when the other coefficients are set to be
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ky=1.0, an=1.0, apx=1.0, fioy=-1.0 and for=—1.0. The contour and 3-D magnitude plots

of the resulting 2-D high-pass filters with different values of & are given in Figure 3.3.
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Figure 3.3 The contour and 3-D magnitude plots of the resulting 2-D high-pass filter with variable
ky and the other coefficients fixed as /7=1.0, 2=1.0, ¢;=1.0, foy=-1.0 and Bp=—1.0

When the value of & changes, the resulting 2-D high-pass filter has variable
magnitude responses. The coefficient k) mainly affects the bandwidth in the pass-band of
the resulting filter in @-dimension. When k& increases from the lower boundary of
slightly greater than zero to a higher value, the pass-band in @;-dimension becomes
smaller, and the stop-band becomes wider. The value of k; does not affect the bandwidth
of the pass-band in @,-dimension.

In general, the first- and the third-quadrants have bigger pass-band areas than the

second- and the fourth- quadrants.
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3.6.2 Frequency Responses of the Resulting 2-D High-Pass filter with Variable &;

can be computed by the MATLAB® function k2HPRange.m. The output of the function

k2HP Range.m with the mentioned specified coefficients is shown in Figure 3.4,

0.1 o 1000

Figure 3.4  The range of ky when the other coefficients are set to be &=1.0. a=1.0, a=1.0,
fror=-1.0 and for=~1.0

Obviously, from Figure 3.4, any value of %4- in the range of (0, +o) can result in a
stable 2-D high-pass digital filter when the other coefficients of bilinear transformations
are fixed to be unity with proper signs.

The contour and 3-D magnitude response plots of the resulting 2-D high-pass filter

with different values of &, are given in Figure 3.5.
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(o kg =10.0

d k=500

Figure 3.5 The contour and 3-D magnitude plots of the resulting 2-D high-pass filter with variable
ky and the other coefficients fixed as k1=1.0, a=1.0, 2=1.0, fy;=-1.0 and Bp=~1.0
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Changing the value of ki, we can obtain different magnitude responses of the
resulting 2-D high-pass filter in @ dimension. When k; changes from the lower
boundary of slightly greater than 0 to higher values, the pass-band of the filter in w,
dimension become smaller. whilé the stop band in @, dimension becomes wide.

On the other hand, the changing values of k; have no any effect on the behaviours

of the resulting 2-D high-pass filter in @ dimension.

3.6.3 Frequency Response of the Resulting 2-D High-Pass Filter with Variable o

When the other coefficients are set to the specified values, the range for ay; can be
computed using the MATLAB® function al/ HPRange.m. As in the previous sections, we
still fixed the other coefficients other than oy to the specified values, say k=1.0, k=1.0,

a21.0, Bor=—1.0 and fy>=~1.0. The range of «; is indicated in Figure 3.6.

Gy

Figure 3.6  The range of ay when the other coefficients are fixed as &=1.0, k=10, op=1.0,
,801:‘"‘1.0 and ﬂ03:—1.0

Any value of ay; in the range of [0, 1.0] can produce a stable 2-D high-pass filter
when the other coefficients are set to be £1=1.0, k=1.0, ap=1.0, fpy= ~1.0 and By=~1.0.
The contour and 3-D magnitude plots of the resulting 2-D high-pass filter with

o01=0 and a4;=0.5 are given in Figure 3.7 a and b, respectively.
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Figure 3.7  The contour and 3-D magnitude plots of the resulting 2-D high-pass filter with variable
o and the other coefficients fixed as k1=1.0, k=1.0, ay=1.0, Fy=-1.0 and Sy=—1.0

From figure 3.7, it can be observed that oy only affects the behaviors of the
resulting filter in @, dimension. When the value of ay; changes from the lower boundary
of 0 to the upper boundary of 1.0, the pass-band in @, dimension becomes slight smaller,
but the stop-band remains almost unchanged; as a result, the transition band becomes
wider with the increase of the value of op;.

As the allowable variation range of ag; is limited, the effect of «g; on the behavior

of the resulting 2-D recursive digital filter is small. In practice, ay could be used to
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adjust the pass-band in @, dimension slightly.
However, the main effect of a lies in the gain in the pass-band of the resulting
2-D high-pass filters. The bigger the value of apy, the larger the gain is. So, similar to the

case of 2-D low-pass filter, we define ay, as the gain-effect coefficient.

3.6.4 Frequency Response of the Resulting 2-D High-Pass filter with Variable

When we change the value of ap; to demonstrate the variable magnitude response
for the resulting 2-D high-pass filter, we can let the other coefficients be unity with
proper signs, specifically k=1.0, k»=1.0, c1=1.0, for=-1.0 and fy=-1.0. The range of

iy, is shown in Figure 3.8.

-

0 I
oz

Figure 3.8  The range of @ when the other coefficients are set to be k=1.0, k=1.0, ayn=1.0,
Sor==1.0 and fpz=-1.0

From Figure 3.8, we can observe that any value of ay; in the range of [0, 1.0], with
other coefficients set to unity with proper signs, could result in a stable 2-D high-pass
filter. The contour and 3-D magnitude response plots of the resulting 2-D high-pass filter

with =0 and ay=0.3 are given in Figure 3.9.
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Figure 3.9 The contour and 3-D magnitude plots of the resulting 2-D high-pass filter with
variable ay; and the other coefficients fixed as £=1.0, 5=1.0, y=1.0, Bo;=—1.0 and
Bo=-1.0

It is obvious that ag; mainly affects the gain in the pass-band of the resuiting 2-D
high-pass filter. When we choose the value of ay; as the lower bound zero, the gain in the
pass-band of the filter is about 0.38, while the gain is 0.5 when a; reaches the biggest
value 1.0, ‘

The changing value of ayg also affects the bandwidth of the pass-band in

dimension. As the value of o increases from zero to 1.0, the bandwidth of the pass-band
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in @, dimension becormnes smaller. However, as the range of oy is limited, the effect on

the bandwidth of the pass-band is small.

3.6.5 Frequency Response of the Resulting 2-D High-Pass Filter with Equal
Variables oy and ay;

In section 3.6.3 and 3.6.4, we investigated the manner in which how ¢ and ¢y
individually affect the magnitude response of the resulting 2-D high-pass filter
respectively. Both the coefficients mainly affect the gains of the pass-bands of the
resulting filter, although they also have slight effect on the bandwidth of the pass-bands.
In this section, we will investigate the combined effect from the two coefficients.

As in the previous subsection, the other coefficients other than ¢y and e, which
have changing values, are fixed to the specified values, say k=1.0, &=1.0, fy=~1.0, and
Po=1.0. The values of og and g are kept to have equal values while changing their

values. Figure 3.10 is the range of ¢ and iy when the other ones are set to the specified

values.

. - .

Q 1

1 =y

Figure 3.10  The range of equal «01 and «02 when the other coefficients are set to be k=1.0,
kv""] .0, ﬂm"‘*l 0 and ﬂoz"*—l.o

Any value of equal oy and oy in the range of [0, 1.0] can result in a stable 2-D
high-pass filter when the other coefficients are set to be k=1.0, k=10, fin=-1.0, and

Poo=1.0. The contvour and 3-D magnitude plots of the resulting 2-D high-pass filter with
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do1=0oy=0 and ap1=0e;=0.5 are given in Figure 3.11.
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Figure 3.11  The contour and 3-D magnitude plots of the resulting 2-D high-pass filter with equal

variables @ and o, and the other coefficients fixed as k=10, ky=1.0, By=-1.0 and
Por=—1.0

The effect on the gain in the pass-band of the resulting 2-D high-pass filter becomes
more pronounced, when the two coefficients, ag; and 2, are changing simultaneously.
When their values change from the lower bound 0 to the upper one 1.0, the gain in the
pass-bands increases from 0.3 to 0.5, while when we only change one of the coefficients,

the minimum value of the gain is about 0.4. As shown above, changing ¢ and o



Chapter 3 Two-Dimensional High-Pass Filters &1

implies changing the bandwidth of the pass-band in @ and @» dimensions, respectively.
The effects of ayy and ap; on the gain and bandwidth of the pass-band could be
amplified by increasing the values of &’s (i=1,2). The simulation results are given in

Figure 3.12.
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Figure 3.12 The contour and 3-D magnitude plots of the resulting 2-D high-pass filter with equal

variables ay; and a,; and the other coefficients fixed as 5,=50.0, k;=50.0, fy=~1.0 and
Po=-1.0

Comparing the two filters in Figure 3.11 and Figure 3.12, we can find that the filter

with bigger &;’s has the smaller gain in the pass-band even if the values of a; and oy, are

the same.
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The effects of a1 and o, on the bandwidth are clear when we compare the plots of

the filter with cpr=0=1.0, ay=0=0.5 and those with oy =01y=0 at k;=ky=50.0.

3.6.6 Frequency Response of the Resulting 2-D High-Pass Filters with Variable P

The MATLAB® function b/HPRange.m is employed to obtain the range of Por.
when the other coefficients are fixed. Here. we still set the other coefficients to be k=10,
k=10, c=1.0, a2=1.0 and Sp=~1.0, when the value of Sy is changing. The range of

For is given in Figure 3.13.
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Figure 3.13  The range of fy when the other coefficients are set to be k=1.0, k=10, ag=1.0,
eyp=1.0 and fy=~1.0

From Figure 3.13, we can see that any value of Sy in the range of [-1.0, 0] is
possible in designing a 2-D high-pass filter, when the other coefficients are set to be unity

with proper signs. The contour and 3-D magnitude response plots are illustrated in Figure

3.14.
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Figure 3.14  The contour and 3-D magnitude plots of the resulting 2-D high-pass filter with variable
For and the other coefficients fixed as &;=1.0, k=1.0, ¢y =1.0, agp=1.0 and By=-1.0

From Figure 3.14, we can clearly observe that when By#~1.0, the gain of the
stop-band of the resulting 2-D high-pass filter in @, dimension is nonzero, and even this
gain can be half of the one of the pass-band when Por = 0. From Chapter 2, we know
that when the value of £y is in its positive part, the resulting filter will become a
low-pass one. That is why we get non-zero gain at the stop-band when f; is chosen as a
value other than -1.0. Because of the polarity change, we define fy; and By, as
polarity-effect coefficients.

Like the case of the low-pass filter, we can deal with the non-zero gain caused by
Por in the stop-band of @, dimension properly. Although from the mathematical point of
view, we cannot obtain absolute zero gain at @; = 0 radians unless we choose Por =~1, it
is still possible to make the gain small enough to meet the design specifications by
increasing the value of k. Figure 3.15 shows the reduced gain as &, increases. In Figure

3.15, we have used the same values as in Figure 3.14 (b) except that A is changed to 5.0,

10.0, and 50.0.
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Figure 3.15 The contour and 3-D magnitude plots of the resulting 2-D high-pass filter with variable
k, and the other coefficients fixed as 41,0, ay;=1.0, aw=1.0, Bo=-0.5 and Fy=~1.0
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By increasing the value of £y, it is possible to reduce the nonzero gain in stop-band
of the resulting 2-D high-pass filter caused by fo1. The price is the sacrifice of bandwidth
of the pass-band in w~dimension. The proper values of Sy and & should be determined
by the design specifications and optimization techniques, and the combination of £ and

k) could not be unique to meet the design specifications.

3.6.7 Frequency Response for the Resulting 2-D High-Pass Filter with Variable 5,

Using the same procedure in section 3.6.6, we can investigate the variable
magnitude behavior of the resulting 2-D high-pass filter caused by variable fy. The
stability is always the most important issue in 2-D recursive filter design. The
MATLAB® function b2HPRange.m is used to obtain the range of fy, when the other
coefficients are specified. Figure 3.16 indicates the range of Sy, when the other

coefficients are chosen to be unity with proper signs.

Figure 3.16  The range of fy when the other coefficients set to be k;=1.0, /:=1.0, a;=1.0, at;=1.0
and ﬂ;;»*wl.O

From Figure 3.16, any value of f in the range of [-1.0, 0] can make the resulting
2-D high-pass filter system stable, when the other coefficients are set to be ky=1.0, k=1.0,
a0 =1.0, app=1.0 and fy;=1.0.

The contour and 3-D magnitude response plots of the resulting 2-D high-pass filter

with different values of Sy, are illustrated in Figure 3.17.
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Figure 3.17 The contour and 3-D magnitude plots of the resulting 2-D high-pass filter with variable
Pz and the other coefficients fixed as 4=1.0, &=1.0, 2,=1.0, a=1.0 and Sor=—1.0

The same phenomena as in the previous section are found here. When Loz 1s chosen
to be a value other than ~1.0, the gain of the stop-band in a,-dimension will not be zero.

To reduce the non-zero gain, we can increase the value of k. Although we cannot
get a zero gain, we still can make the value small enough to meet the design
specifications. The contour and 3-D magnitude response plots with &z =5.0, 10.0 and 50.0

are given in Figure 3.18.
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From Figure 3.18, increasing the value of k; could really reduce the nonzero gain in
stop-band of the resulting 2-D high-pass filter when Sy, is not chosen as ~1.0. However,
increasing the value of k; reduces the bandwidth of the pass-band in the second
dimension. How to balance the gain and the loss needs to use optimization techniques

and should subject to the constraints required by the design specifications.

3.6.8 Frequency Response of the Resulting 2-D High Pass Filters with Equal
Variables Sy and

The coefficients fy; and f%; mainly affect the gains of the stop-bands in their
corresponding dimensions. The resulting 2-D high-pass filter always has a zero gain at
the origin (0,0) in @~w; plane, when one of the two coefficients is ~1.0.

Now we intend to investigate the combined effect from the two coefficients. As in
the previous subsections, we keep the other coefficients unchanged when we change Sy
and [y, simultaneously to obtain variable magnitude responses.

Figure 3.19 is the range of the equally fy’s when the other coefficients are specified

to be unity with proper signs.

— . BRI

-1 Por=Po: 0

Figure 3.19  The range of equal By and f,; when the other coefficients are set to be 5=1.0, k=10,
o01=1.0 and @p=1.0

Figure 3.20 are the contour and 3-D magnitude plots of the resulting 2-D high-pass

filter with equal variables f,’s, which are in the range specified in F igure 3.19.
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Figure 3.20  The contour and 3-D magnitude plots of the resulting 2-D high-pass filter with equal
variables f,s and the other coefficients fixed as k=1.0, /»=1.0, 041=1.0 and a;=1.0

From Figure 3.20, it is observed that when the two coefficients have values other
than 1.0, the gain at the point (0, 0) is no longer zero. The bigger the distance of the two
coefficients from 1.0, the larger the gain is. To reduce the non-zero gain, as is the
experience from the previous sections, we need to increase the values of &’s at the same
time. Figure 3.21 is the contour and magnitude response plots of the resulting filter with

larger &;’s, while keeping the other coefficients the same in Figure 3.20.
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Figure 3.21 The contour and-3-D magnitude plots of the resulting 2-I) high-pass filter with equal
variables &’s and the other coefficients fixed as a,=1.0, @=1.0, fy=0 and LFoa=0
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Increasing ks can really reduce the non-zero gain caused by the values of fy's
other than -1.0. The price is the loss of bandwidth of the pass-band portions. The
optimum values of ks and f/’s could be determined by the design specification and

proper optimization techniques.

3.7 Summary and Discussion

In this chapter, the variable magnitude responses of 2-D high-pass digital filters are
investigated in detail.

Starting from the same point as in Chapter 2, and using the same 1-D Butterworth
prototype analog filter, we obtain 2-D digital filters through the double generalized
bilinear transformations with high-pass coefficients limits. When we choose the values of
ks (=1, 2) in the range of (0, +), ay;'s  (7=1, 2) in the range of [0, 1.0], and fy’s
(1=1, 2) in the range of [-1.0, 0], it 1s possible to obtain 2-D high-pass filters from a 2-D
low-pass Butterworth ladder structure through the double generalized bilinear
transformations.

The stability conditions of 2-D recursive digital filter with single degree for each
variable are still effective. We use these conditions to determine the range of each
coefficient, and we also use them as stability test criterion in our 2 -D high-pass filter
design procedure.

As the generalized bilinear transformation‘ coefficients are changeable, the
characteristics of the resulting 2-D high-pass filter are variable. The manner how each
coefficient affects ihe magnitude behavior of the resulting 2-D high-pass digital filter has
been investigated in detail.

Just asinthe case of2-D low-pass filters, the coefficients k,’s (1= 1, 2) mainly
affect the bandwidth of the pass-band portions in their corresponding dimensions. As the

values of ks increase, the pass-bands of the resulting filter contract to their center
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frequency of kr Radians, When 4;’s are at their lower boundaries of slightly bigger than

zero, the resulting 2-D high-~pass filter can pass all the signal components except the ones
5 gh-f

resulting filter only passes the signal components with @;= +n radians and @, = %x
radians, but block the others.

Although ap;’s (i = 1, 2) also affect the bandwidth of the pass-bands of the resulting
2-D high-pass filter slightly, the main effect from these coefficients lies in the gain of the
pass-band portions. The bigger the values of a’s, the larger the gain is. The effect on the
gain at the pass-band portions is cumulative. The gain reduces more considerably when
the values of the two coefficients decrease simultaneously than only one of the two
decreases. And the effects of ap;’s can be enlarged by increasing the value of &/’s.

The effect of By’s (i = 1, 2) are mainly on the gain of the stop-band of the resulting
2-D high-pass digital filters, although they also affect the bandwidth o f the p ass-band
slightly. When fy’s have values other than the lower boundary of —1.0, there are
non-zero gains at the stop-band portions. The non-zero gains increase as /)’s increase in
their stability range, and the biggest non-zero gain happens at their upper boundary, zero.

This chapter is useful in designing 2-D high-pass filters with variable magnitude
response characteristics. It can be served as the start points to design 2-D high-pass

digital filters through the application of double generalized bilinear transformation.



Chapter 4

Two-Dimensional Band-Pass Filters

In this chapter, a class of 2-D band-pass filters that are based on the cascade
connection of 2-D low-pass and high-pass filters, are investigated. In section 4.1, a brief
introduction of this kind of filters, including the typical specifications in mathematical
and graphic forms, are given. In section 4.2, from the analysis of the specifications, a 2-D
band-pass filter could be obtained from a cascade connection of a 2-D low-pass filter and
a 2-D high-pass filter. Based on the results from Chapters 2 and 3, the constituent 2-D
low-pass and high-pass filters are treated in sections 4.3 and 4.4, respectively. The

93
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stability of 2-D band-pass filter obtained through filters cascading is consider in section
4.5. The manner in which how each coefficient and the combination of some coefficients
affect the magnitude responses of the resulting 2-D band-pass filter is investigated in

section 4.6 in detail. Summary and discussion are given in section 4.7.

4.1 Introduction

The 2-D band-pass digital filters are another widely used 2-D filters. These filters
pass the signal components within a specified frequency range, but block the signals with
frequencies higher and lower than the specified frequency ranges.

A typical 2-D band-pass recursive digital filter has the specifications in the

frequency domain

0, CRESC
H(w,w,) =11, o, <o <o, “.1)
0, w,, <lo|s7

where:
wip1 and wipa, (1 =1, 2), are pass-bands in z; and z,-dimension, respectively
wis) and @iy, (i =1, 2), are stop-bands in z; and z;-dimension, respectively

The region between the pass-bands and stop-bands are transition bands

The specifications could be plotted as in Figure 4.1.
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Figure 4.1
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Frequency Response Specifications of a typical 2-D band-pass digital Filter

4.2 The Algorithms of Filters Cascading

Now, we consider a cascade-connection filter of the 2-D low-pass and high-pass

filters obtained in Chapters 2 and 3, respectively, in order to achieve a 2-D band-pass

filter.

To examine the frequency responses of these three types of 2-D filters clearly, the

frequency domain specifications of these filters are plotted in Figure 4.2, in which the

pass-bands of the low-pass and high-pass filters are shaded, and their intersection

represents the pass-band of the resulting 2-D band-pass filter. The logical relations,

which are listed in Table 4.1, of the frequency responses of the three types of filters can

also be obtained from Figure 4.2.
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Passband of the High Pass Filter

Passband of the Low Pass Filter

- Passhand of the Band Pass Filter

Figure 4.2 2-D band-pass filter from the cascade combination of 2-D low-pass and high-pass
filters (in Frequency Domain)

Table 4.1 The logical relation of the frequency responses of the resulting 2-D band-ass filter with
its Member Filters. (where, “1” represents the pass-band, “0” represents stop-band.)

2-D low-pass filter | 2-D high-pass filter | The resulting 2-D band-pass filter
(A) (B) (©)
1 1 1
l 0 0
0 1 0
0 0 0

The logical relations in Table 4.1 can be expressed as the following mathematical

equation,

H(w,0,)=H (0,0,)H,(0,0,). (4.2)
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Equation (4.2) can be realized by cascading a 2-D low-pass filter with a 2-D
high-pass filter as shown in Figure 4.3, in which the signals may pass the 2-D low-pass
filter first, and then the output goes through the high-pass filter as depicted in (), or the

signals pass the high-pass filter and then the low-pass one as shown in (b).
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Figure 4.3 The cascade combinations of 2-D low-pass and high-pass filters

If the identical low-pass and high-pass filters are employed in both (a) and (b), it is
easy to verify that the two systems in Figure 4.3 (a) and (b) give the identical results, as
the order of the multiplication operation does not make different.

The low-pass and high-pas filters (herein called as member low-pass filter and
member high-pass filter) in Figure 4.3 can be designed using the generalized bilinear

transformation methods introduced in Chapters 2 and 3. When one or more coefficients
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of the double generalized bilinear transformations are changing, the resulting 2-D
band-pass filter possesses variable magnitude characteristics.

The transfer functions of the two member filters are first given in the following

sections.

4.3 The Member Low-Pass Filter

Starting from the same Butterworth analog ladder network discussed in Chapter 2,

the transfer function of the 2-D analog filter in Figure 2.3 is given as

V
[1:1(3l731)m4:: :
Yy (1+0.707s, ) (1.414s, +1)+1

1

= 4.3
5,8, =0.707s, +1.414s, + 2 (:3)

Applying the double generalized bilinear transformations (1.37) with proper

low-pass coefficients; the digital transfer function of the resulting 2-D low-pass filter is

obtained as

_N,iz,z)

H, (z,z,)= 4.4
»(21:22) D,(z,z,) 44

where: N, (z,z,) = 2.z, + Bz, + Bz, + Bufa (4.5a) -
D, (z),2,) = (kk, + 0707k, +1.414k, + 2)z,z,
+ ko, +0.707k By, + 1414k, +20,,)z,
+ (ko + 0707k, +1.414k, 8, +20,,)7,
+ (ko ey, +0.707k ey, B, +1.414k,0,, B,

+ 26, ) (4.5b)

And the coefficients are constrained by the following inequalities,
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(i) k>0, i=12 (4.6)
() -1.0%a, <0, i=12 (4.6b)
(i) 0<pB, <10, i=12 (4.6c)

The denominator (4.5b) of the digital transfer function can be written in the general
form of two-variable polynomial which has single degree for each variable and degree
two for the multiplication of z,z2, specifically,

Dy (z,,2,) = an2,2, + 4,2, + 0y T, +dy, (4.7)

The member filter should also meet the stability conditions introduced in Chapter 2.

4.4 The Member High-Pass Filter

From the same 2-D analog low-pass ladder network introduced in Chapter 2, the
2-D high-pass filters can be obtained by double generalized bilinear transformation (1.37)
with proper high-pass limits. The detailed procedures have been given in Chapter 3. To
identify from the low-pass ones, we use the subscription “3” and “4” to replace “1” and

“2” which we used in Chapter 3. The digital transfer function of the member high-pass

filter can be expressed as

Lo (21525) ‘
Hh,)(~l,~2)— (q’ 3 (4.8)
where, N, (z,2,)=2zz,+ Baazy + Bz, + B Pos (4.92)

,D,,p (z,,z,) = (kk, +0.707k, +1.414k, + 2)z,z,
+ (ky kg, + 0707k, B, + 1414k, +25,,)z,
+ (kikyoy, +0.707k 00, +1.414k, 6,5 +20,,)z,

- (ks +0.707h,000, oy +1.418k,0,, B,
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+ 2080 50) 5 (4.9b)
with the coefficients satisfying
(1) k>0, i=34 (4.102)
By 0=, <10, i=34 (4.10b)
(i) -1.0<pB, <0, i=34 (4.10c)

The demominator (4.9b) can be written in the general form of two-variable

polynomial, which has single degree for each variable and the overall degree is two.
D (2,,2,) = by 2,2y + b2y + 0y, 2y + by 4.1

Of course, the 2-D high-pass filter with the transfer function (4.8) should meet the

stability conditions introduced i Chapter 3.

4.5  Stability of the 2-D Band-Pass Filter

Stability is of critical importance in 2-D recursive digital filter design. As the 2-D
band-pass filter that we investigate here is the result of cascading two other filters, the
stability of the overall system is guaranteed by the stability of both member low-pass and
high-pass filters. The consideration for the stability of the overall system is equivalent to
the consideration for the stability of each subsystem.

The stability conditions of the member low-pass and high-pass filters have been

presented in Chapters 2 and 3, respectively.

4.6 The Frequency Response of the Resulting 2-D Band-Pass

Recursive Digital Filters

The MATAB® function bandPass.m (please refer to the APPENDIX for detail) is
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employed to obtain the contour and 3-I> magnitude plots of the resulting 2-D band-pass
filter, as well as the contour relations between the overall 2-D band-pass filter and its
member filters.

As mentioned earlier, starting from the same 2-D analog low-pass ladder network,
the m ember low-pass and high-pass filters can b e obtained through the application o f
double generalized bilinear transformations. If one and more the coefficients are
changing, the member low-pass or high-pass filters have variable characteristics, and so
does the resulting 2-D band-pass filter. Each coefficient has different contribution to the
magnitude characteristics of the resulting 2-D band-pass filter. Below we begin to
investigate the effect on the magnitude responses from each coefficient or their

combinations.

4.6.1 Frequency Response of the Resulting 2-D Band-Pass filter with Variable &;

From Chapter 2, the coefficient k; mainly affects the bandwidth of the pass-band of
the 2-D low-pass filter in @y-dimension. As the value of &; increases, the pass-band
becomes small in @-dimension, while the one in w;-dimension remains unchanged. As a
result, the shape and the symmetric axis of the pass-band portions of the resulting 2-D
low-pass filter also change. When the filter is cascaded with a 2-D high-pass filter to
yield a 2-D band-pass filter, the overlapping areas of the pass-bands of the two member
filters will also change, so we will obtain a 2-D band-pass filter having variable
magnitude responses.

To make the problem simple without loss of generality, we set the other coefficients
to be unity with proper signs, while changing the value of the 4 to obtain variable
magnitude responses.

With the specified coefficients, the high-pass filter is stable, and the low-pass filter
is stable if & has any value In the range of (0, +w). Thus we obtain a stable 2-D

band-pass filter.
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Figure 4.4 is the frequency response of the resulting 2-D band-pass filter with
variable k1. Figure 4.5 is the contour relations between the resulting 2-D band-pass filter
and its member filters. We use solid lines to represent the iso-potential contours of the
2-D band-pass filter, and dot-dash-lines and dash-lines to represent the contours of the

member high-pass filter and the member low-pass filter, respectively.
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Figure 4.4 The contour and 3-D magnitude plots of the resulting 2-D band-pass filter with variable
ki and the other coefficients fixed as k=1.0, cpi=~1.0, cy=~1.0, By=1.0, Lu=1.0;
k1.0, ky=1.0, tny==1.0, a=1.0, [’mx—-l() and ,3()4“‘“1 0
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As the value of k increases, the center frequency of the pass-band of the resulting

2-D band-pass filter moves from a higher frequency to a lower one in @-dimension. The
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gain in the pass-bands decreases as the value of &) increases. That is because the
changing value of % caused the band-width of the pass-band of the member low-pass
filter has variable magnitude responses, and in turn it causes the resulting 2-D band-pass
filter has variable magnitude responses. When the value of 4 increases while fixing the
other coefficients, the pass-band of the member low-pass filter moves near the center
frequency of zero Radians, and the magnitude responses of the member high-pas filter
and the responses of the member low-pass filter in @;-dimension remain unchanged. As a
result, the overlap areas of pass-bands of the two member filters moves from a high
frequency to a low frequency. That causes the center frequency of the pass-bands of the
resulting 2-D band-pass filter to move. At the same time, as the pass-band of the member
low-pass filter contracts to the center frequency of zero Radian, the overlapping portions
also become small, and even only have overlaps between the transition-bands of the two
member filters. That is why the gains of the pass-bands of the resulting 2-D band-pass

filter reduce as k&, increases.

4.6.2 Frequency Response of the Resulting 2-D Band-Pass Filter with Variable &,

From the results obtained in Chapter 2, the low-pass coefficient k, mainly affects the
bandwidth of the pass-band of the resulting 2-D low-pass filter in a»-dimension. As the
value of &, increases, the pass-band of the resulting 2-D low-pass filter becomes compact.
When the 2-D low-pass filter with variable k; is cascaded with a 2-D high-pass filter with
specified coefficients, the resulting 2-D band-pass filter possesses variable magnitude
responses.

Similar to the previous discussions, when the value of &; is changing, we set the
other coefficients to be unity with proper signs. Specifically, k=1.0, ap=-1.0, agy=-1.0,
Bor=1.0, f=1.0; k3=1.0, ks=1.0, o3=1.0, ops =1.0, foy=-1.0 and fos=~1.0. The 2-D
high-pass filter with these coefficients is stable, and the 2-D low-pass filter is also stable

if the value of ky is positive. As a result, the 2-D band-pass filter is stable when k; is
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positive. The contour and 3-D magnitude plots of the 2-D band-pass filter with different
values of ky are illustrated in Figure 4.6, In Figure 4.7, the contour relations between the

overall 2-D band-pass filter with variable &, and its member filters are given.
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The contour and 3-D magniude plots of the resulting 2-D band-pass filter with

variable &, and the other coefficients fixed as 4=1.0, ay=~1.0, &y=~1.0, =10,
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Figure 4.7 The comour relations between the 2-D band-pass filter and its member filters with
different values of % and the other coefficients fixed as 4;=1.0, ay=~1.0, @p=-1.0,
/)’(}f""l,o. ,&;,Zml.(); k;g“l.o, /\'4”1.0. 6(03‘”‘1,0, amml.(), ﬁ)gm ~1.0 and /))04” -1.0

From Figure 4.7 and the plots that we have got for the situation of k»=1.0 in the
previous section, we can see that as &, increases, the center frequencies of the pass-bands
move from high frequency to low ones in w,-dimension, and the gains of the pass-band
portions decrease. It is noted that the pass-band of the member low-pass filter compacts
as k, increases, while the pass-band of the member high-pass filter remains unchanged.
That in turn decreases the overlap areas of the pass or transition bands of the two filters.
As a result, the overall band-pass filter obtained from the cascade of the two member

filters will have variable magnitude responses.

4.6.3 Frequency Response of the Resulting 2-D Band-Pass filter with Equal
Variables & and &k,

From Chapter 2, w hen the coefficients k, and &, change simultaneously but w ith
equal values, the bandwidth of the pass-band change in both @, and @r-dimensions, so
the shape of the pass-band portion will also change.

To investigate the variation of the magnitude response caused by variables &, and ks,
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we set the other coefficients to be unity with proper signs, letting ¢p=—1.0, agr=-1.0,

filter is stable, and the low-pass filter 1s also sable when %, and k; are positive, so is the
overall 2-D band-pass filter.

Figure 4.8 is the contour and 3-D magnitude response plots of the resulting 2-D
band-pass filter with different values of equal &y and k. Figure 4.9 indicates the contour

relations between the resulting 2-D band-~pass filter and its member filters.
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Figure 4.9 The contour relations between the 2-D band-pass filter and its the member filters with
variable equally &, and k; and other coefficients fixed as ag=-1.0, aw=-1.0, fn=1.0,
/ﬁ)g*‘LO; k;,xl.O, /'\’42—'1.0, Zy=1.0, 0’4}431.0, &334.0 and ,34)4"‘"1 .0

When £ and 2 have equal values and increase simultaneously, the center frequency
of the pass-band moves from a higher frequency to a lower one in both @- and
on-dimensions, and the gains of the pass-bands also decrease. In fact, when k; and k; are
big enough (bigger than 5.0), there is no overlap between the pass-bands of the two
filters. However, the overall system still has the identical magnitude responses as the
ones of 2-D band-pass filters, but the gains in pass-band portions decrease dramatically.
When ky=k;=5.0, the highest gain is only 0.03, and when the values of 4; and &, become
greater than 50.0, the gains are in their 10™s, which is too small to be implemented as a
filter. The reason that we still investigate big k; and £, is to obtain the behaviours of the

magnitude responses.

4.6.4 Frequency Response of the Resulting 2-D Band-Pass Filter with Variable &;

From Chapter 3, we know that the high-pass coefficient k3 (known as &, in Chapter
3) mainly affects the bandwidth of the pass-band of the 2-D high-pass filter. When the
value of ky increases, the pass-band is contracted to +7 Radians. If we employ the

high-pass filter cascaded with a 2-D low-pass filter, the resulting 2 -D b and-pass filter
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possesses variable magnitude characteristics.

To investigate the variable behaviours of the resulting 2-I band-pass filter caused
by the changing values of ks, we set the other coefficients to be unity with proper signs.
The 2-D low-pass filter with the specified coefficients is stable, and the 2-D high-pass
filter is stable if k3 is positive, so is the resulting overall 2-D band-pass filter.

The contour and 3-D magnitude plots of the resulting 2-D band-pass filter with
different values of k3 are illustrated in Figure 4.10, and the contour relation between the

resulting 2-D band-pass filter and its member filters is given in Figure 4.11.
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Figure 4.11  The contour relation between the 2-I) band-pass filter and its member filters with
different values of & and the other coefficients fixed as kby=1.0, k=10, ay=-1.0,
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When the value o f k5 increases, the pass-bands o f the high-pass filter contract to
their center frequency of £z radians in @y-dimension. The resulting 2-D band-pass filter
obtained from the cascading of the high-pass filter and a low-pass filter with fixed
coefficients has variable magnitude response. With the increase of k3, the contracting
bandwidth pushes the overlapping areas between the pass-bands of the two filters move
from lower frequency to higher frequency, and the overlapping areas become smaller. As
a result, the center frequencies o f the p ass-bands o f t he resulting 2 -D band-pass filter
move from lower frequency to higher ones in w;-dimension. At the same time, the gains
of the pass-bands decrease due to the smaller or no overlap of the pass-bands of the two
member filters. When there is no overlap occurring in the pass-bands of the two member
filters, the pass-band of the 2-D band-pass filter is achieved from the overlapping of the

transition bands of the two member filters.
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4.6.5 Frequency Response of the Resulting 2-D Band-Pass Filter with Variable &,

The high-pass coefficient ks (known as k; in Chapter 3) mainly affects the
magnitude response of the 2-D high-pass filter in @,-dimension. The resulting 2-D
band-pass filter, which has the response of the cascade of a 2-D high-pass filter with
variable &y and a low-pass filter, has variable magnitude responses also

In order to investigate the manner how the variable ky affects the magnitude
responses of the resulting 2-D band-pass filter, the other coefficients than k4, which has
variable value, are fixed to be unity with proper signs using the same methods as
discussed before, specifically, k1=1.0, k=1.0, £=1.0, w=-1.0, ap=-1.0, Lu=1.0,
For=1.0, ag3=1.0, apa=1.0, Soy=-1.0, and fos=—1.0. It is easy to verify that the resulting
2-D band-pass filter is table if &4 is chosen to be positive.

The contour and 3-D magnitude plots are given in Figure 4.12, and the contour
relations between the resulting 2-D band-pass filter and its member filters is indicated in

Figure 4.13.
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The contour and 3-D magnitude plots of the resulting 2-D band-pass filters with

variable k4 and the other coefficients fixed as k=1.0, k=10, au=-1.0, aup=-1.0,
Por=1.0, Bor=1.0; ks=1.0, ags=1.0, te=1.0, fos=—1.0 and fy=~1.0
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Figure 4.13 The contour relation between the 2-D band-pass filter and its member filters with
different values of k, and the other coefficients fixed as k&, = 1.0, &y = 1.0, @y, = ~1.0,
Uy = ~1.0, /Jg;ﬁl.(), ﬂ()g = 1.0 ks = 1.0, oy = 1.0, apy =1.0, [)’03 = —1.0 and /7,()4 =10

Changing value of k& makes the move of the center frequency of the pass-band in
en-dimension, and reduces the gains of the pass-bands of the resulting 2 -D band-pass

filter. The bigger the value of &y, the higher the center frequency in w,-dimension, and the

smaller the gain.
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4.6.6 Frequency Responses of the Resulting 2-D Band-Pass Filter with Equal

Variables k; and &,

Figure 4.14 and Figure 4.15 shown the simulation results of the 2-D band-pass filter
with equal variables k3 and ks, which have the same values at any time, and the other
fixed coefficients: ki==1.0, ky=1.0, c1=-1.0, apr=~1.0, fu1=1.0, fn=1.0; a57=1.0, cs=1.0,
Soy=—1.0, fos=—1.0. The 2-D band-pass filter is stable, if kz and k4 are positive.
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Figure 4.14  The contour and 3-D magnitude plots of the resulting 2-D band-pass filters with equal
variables ki and ks, and the other coefficients fixed as k=1.0, k=10, a=-1.0,
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@y

. ky=ky=10.0 d. ks=ky=50.0

Figure 4.15 The contour relation between the 2-D band-pass filter and its member filiers with
different choices of k3 and k., and other coefficients fixed as k=1.0, k=10, a=-—1.0,
Oﬁqgm”l.o, [)’()1’”1.0, /3()2‘:1.0; (103;:‘31.0, (er«'l.(), ﬁagm -1.0 and ,6’04’-%1.0

4.6.7 Frequency Responses of the Resulting 2-D Band-Pass Filter with Equal
Variable k; and k3

From the previous sections, we know that both k; and k3 affect the center frequency
of the pass-band of the resulting 2-D band-pass filter in w,-dimension, as well as its gain.
When we increase the values of k; and ks, the movements of the direction of the center
frequencies are reversed. Now we want to investigate the joint effects of the two
coefficients.

The other coefficients are set to be unity with proper signs as before, specifically,
k=10, a=1.0, apy=1.0, f01=1.0, fo>=1.0; ks=1.0, o3=1.0, aws=1.0, Bpy=1.0, and
Poa=1.0. The resulting 2-D band-pass is stable when & and k3 are positive.

Figure 4.16 is the frequency response plots of the resulting 2-D band-pass filter, and
Figure 4.17 is the contour relations between the overall 2-D band-pass filter and its

member filters.
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Figure 4.16  The contour and 3-D magnitude plots of the resulting 2-D band-pass filter with equal
variables & and k3 and the other coefficients fixed as 4=1.0, ap=~1.0, eg=-1.0,
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Figure 4.17 The contour relation of the resulting band-pass filter and its member filters with equal
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When &) and k3 have equal values and change simultaneously, the center frequencies
of the pass-band of the resulting 2-D band-pass filter remain unchanged. As the values of
ki and k3 increase, the bandwidths of the pass-bands contract to their center frequencies
first, and then enlarge when the values become large enough. The reason is that when k,
and k; are small, the pass-band of the resulting overall 2-D band-pass filter is the overlap
of the pass-bands of the two member filters, while the pass-bands become the
overlapping of the transition bands when the values of k; and £ are big enough.

The gain in the pass-band decreases dramatically with the increase of k; and k3. The
filter with big ki and £z is difficult to implement, as the gain is too small. In fact, the
band-pass filter resulting from the overlapping of the transition bands of the member
filters ¢ annot b e used in practical application due to the fact that the transition b ands
cannot be determined easily.

It is readily seen that the effect of k; and 4; is the same as the effect caused by £; and
ks, except that the effect of k> and £y is in @;-dimension. The simulation results are given

in Figure 4.18 and 4.19.
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Figure 4.18 The contour and 3-D magnitude plots of the resulting 2-D band-pass filters with equal
variables k.and ky and the other coefficients fixed as &=1.0, a=-1.0, cp=~1.0,
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Figure 4.19  The contour relation between the resulting 2-D band-pass filter and its member filters
with variable equal %4 and k. and the other coefficients fixed as k,=1.0, ay=-1.0,
c&_,2=~1.0, /3{)1:1.0, [1’03:1.0; kgml.O, 07433*1.0,, (104’*:1.0, ,003==-1.0 and /))04 = 1.0

4.6.8 Frequency Response of the Resulting 2-D Band-Pass filter with Variable oy,

The low-pass coefficient o mainly affects the gain in the pass-band of the resulting
low-pass filter, and slightly affects the bandwidth of the pass-band. When the low-pass
filter with variable oy 1s employed to obtain the 2-D band-pass filter with a high—pass
filter, the resulting 2-D band-pass filter will also possess variable magnitude responses.

To study the variable magnitude behaviour, we change the values of ¢ in its stable
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range, while k eeping the other coeflicients to be unity with p roper signs, specifically,

and fye=—1.0. The overall band-pass flter is verified to be stable when o has any value
in the range of [~1.0, 0].

Figure 4.20 is the contour and 3-D magnitude response plots for the resulting 2-D
band-pass filters with different values of ay. Figure 4.21 shows the contour relation

between the resulting 2-D band-pass filter and its member filters.
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Figure 4.20  The contour and 3-D magnitude plots of the resulting 2-D band-pass filter with
variable ap and the other coefficients fixed as k=1.0, k=1.0, ayu=-1.0, fo=1.0,
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Figure 4.21 The contour relation between the resulting 2-D band-pass filter and its member filters
with variable o and the other coefficients fixed as &y=1.0, k=10, cpy= -1.0, Fo=1.0,
ﬂog"”‘“‘i 0. k;;»“«“"l.O, ]C4:1.O, 0,'03“:10., %431.0, 18032 -1.0 and ﬁ(j).:’“"’ -1.0

When the coefficient o increases from its lower boundary of 1.0 to the upper
boundary of one, the pass-band of the resulting 2-D band-pass filter is enlarging. That is
because the band-pass of the low-pass filter enlarges, so overlapping areas becomes
larger.

The gain in the resulting 2-D band-pass almost remains unchanged. The reason is
that the gain in the resulting 2-D band-pass filter is determined by the overlapping of the

pass-bands or the transition bands of its member filters.

4.6.9 Frequency Response of the Resulting 2-D Band-Pass Filter with Variable ay;

The low-pass coefficient ; affects the gain in the pass-band of the resulting 2-D
low-pass filter too, and it also slightly affects the bandwidth of the pass-band. As a result,
the overall band-pass filter, resulting from the cascade of the low-pass filter and a
high-pass filter, will also have variable magnitude characteristics.

The other coefficients than iy are still set to be k=1.0, k=10, ky=1.0, ks=1.0,

o =—1.0, fn=1.0, Lo=1.0, a3=1.0, ae=1.0, By3=—1.0, and fpsa=-1.0 as in the previous



Chapter 4 ‘[wo-Dimensional Band-Pass Filters 128

subsections. From the results of the previous chapters and the stability conditions in this

chapter, the overall 2-D band-pass filter is stable when ay; is in the range of [~1.0, 0].
Figure 4.22 illustrates the contour and 3-D magnitude plots of the resulting 2-D

band-pass digital filter with variable ag;. Figure 4.23 shows the contour relation between

the resulting 2-D band pass filter with variable oy, and its member filters.
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Figure 4.22  The contour and 3-D maguitude plots of the resuiting 2-D band-pass filter with variable
tyy and the other coefficients fixed as =10, k=10, w=1.0, f=1.0, fu=1.0;
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Figure 4.23 The contour relation between the 2-D band-pass filter and its member filters with
variableay; and the other coefficients fixed as 4=1.0, A&=10, ay=1.0, fy=1.10,
ﬁoz*]O‘ k;ml.O, k4=1.0, %}321.0. Q{r)‘;:l.o, ,&}33‘“‘"1.0 and ,B()L;:“] 0

Changing the value of ay affects the bandwidth of the pass-bands of the resulting
2-D band-pass filter. When oy has a small value, the bandwidth is compact. That is
because the bandwidth of the member low-pass filter has a narrow bandwidth with a
small a; in an-dimension. That, in turn, affects the overlapping of the pass-bands of the
two member filters.

Changing the value of ay; does not affect the gains of the resulting 2-D band-pass

filter, which is different from the effect in the case of 2-D low-pass filter.

4.6.10 Frequency Response of the Resulting 2-D Band-Pass filter with variable a3

The high-pass coefficient a3 (known as ag; in Chapter 3) mainly affects the gain in
the pass-band of the resulting 2-D high-pass filter, and also it slightly affects the
bandwidth in the pass~band of the 2-D high-pass filter in «,-dimension. When the
high-pass filter with variablecy; is cascaded with a low-pass filter, no matter whether the
filter possesses fixed or variable magnitude responses, to form a 2-D band-pass filter, the
overall 2-D band-pass filter has variable magnitude behaviours.

To investigate the manner how 3 affects the magnitude behaviour of the resulting
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2-D band-pass filter, we set the other coefficients to the specified values, letting 4=1.0,

Soa=—1.0. Tt is easy to verify that the resulting 2-D band-pass filter is stable with ay; in
the range of [0, 1.0].
Figure 4.24 is the contour and 3-D magnitude response plots of the resulting 2-D

band-pass filter with different values of . Figure 4.25 is the contour relation between

the resulting 2-D band-pass filter and its member filters.
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Figure 4.24 The contour and 3-D magnitude plots of the resulting 2-D band-pass filter with variable
a3 and the other coefficients fixed as k=1.0, &=1.0, a=1.0, ay1.0, f=1.0,
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Figure 4.25 The contour relation between the 2-D band-pass filter and its member filters with
variable ¢ and the other coefficients fixed as k=1.0, k=10, 0y=~1.0, og=-1.0,
ﬂ()f’“l,o, ﬂggml.O; kf—l.(), 1\74"“"*'1 0« 03‘)4*"“1 .O, /}03*’3“1.0 and /,?Q.;m—~l.0

When the high-pass coefficient o; increases from its lower boundary, 0, to its upper
boundary, 1.0, the pass-band of the high-pass filter becomes compact in @;. As a result,
the resulting 2-D band-pass filter, the combination of the high-pass filter and a low-pass
one, has compacting pass-bands, and the angle of their symmetry axis also becomes

bigger.

The effect on the gains of the resulting 2-D band-pass filter is small.

4.6.11 Frequency Response of the Resulting 2-D Band-Pass Filter with Variable a4

The effect of the high-pass coefficient a4 is mainly on the gains of the resulting
high-pass filter. When the high-pass filter is cascaded with a low-pass one, the overall
system is a 2-D band-pass filter with variable magnitude response, which is caused by
the variation of s,

We still fix the other coefficients to be unity with proper signs, that is, &;=1.0,
k=10, an=-1.0, apy=1.0, for=1.0, for=1.0; k=1.0, ks=1.0, c03=1.0, fpz=1.0, and
Soa=—1.0. The resulting 2-D band-pass filter is stable if a4 takes a value in [0, 1.0].
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Figure 4.26 shows the simulation results for the contour and 3-D magnitude
response of the resulting 2-I band-pass filter with different values of au. Figure 4.27 is

the contour relation of the resulting 2-D band-pass filter and its member filters.
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Figure 4.26 The contour and 3-D magnitude plots of the resulting 2-D band-pass filter with variable
ttos and the other coefficients fixed as ky=1.0, k1.0, oy=-1.0, ary=-1.0, fo=-1.0,
Po=—1.0; ky=1.0, k1.0, ct3=1.0, foz=-1.0 and fog=—1.0
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Figure 4.27 The contour relation between the 2-D band-pass filter and its member filters with
different values of ay and the other coefficients fixed as &=1.0, k=10, ap=-1.0,
toy==1.0, for=1.0, By=1.0) k=10, k4= 1.0, ot3=1.0, fyz=-1.0 and fou=-~1.0

The high-pass coefficient a4 affects the bandwidth of the pass-band of the resulting
2-D band-pass filter slightly. It has very slight effect on the gain of the pass-bands as it is
in the case of 2-D high-pass filter. The main reason is that the gains in the pass-band of

the band-pass filter mainly depend on the overlapping of the pass-bands of the two

member filters.

4.6.12 Frequency Response of the Resulting 2-D Band-Pass Filter with Variable 5,

The effect of low-pass coefficient fy is mainly on the gain of the stop-band in
an-dimension. When fy has values other than 1.0, the resulting 2-D low-pass filter has a
non-zero gain in the stop-band, and the value of the gain depends on the distance of the
value of fy from 1.0. The larger the distance, the bigger the nonzero gain is. Of course,
the value of f also affects the bandwidth of the pass-band, but the effect is very limited.

When the low-pass filter with variable £ is cascaded with a high-pass filter to form
a 2-D band-pass filter, the resulting filter will also have variable magnitude responses.

The same procedures are used here to investigate the effect of the variable fy; as
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which used in the investigations in the previous subsections. The other coefficients than
Lor are still set to be unity with proper signs. Form Chapters 2 and 3, the high-pass filte
is stable, and the low-pass filter is stable for any fyn e [0, 1.0], and therefore, the
resulting 2-D band-pass filter is stable.

Figure 4.28 shows the result of the frequency responses of the resulting 2-D
band-pass filter with different representative values of fy. Figure 4.29 depicts the

contour relation between the resulting 2-D band-pass filter and its member filters.
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Figure 428 The contour and 3-D magnitude plots of the resulting 2-D band-pass filter with
variable By and the other coefficients fixed as k=1.0, k=10, ap=~1.0, aw=-1.0,
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g
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Figure 4.29 The contour relation between the 2-D band-pass filter and its member filters with
variable [y and the other coefficients fixed as k=1.0, £=1.0, dy;=-1.0, ea=~1.0,

The low-pass coefficient f; mainly affects the gain in the stop-bands of the
resulting 2-D band-pass filter at high frequencies in @-dimension. The resulting 2-D
band-pass has zero gains in the stop-band of high-frequency range only when f;;=1.0.

From Chapter 2, increasing &, can reduce the non-zero gains caused by fy in the
case of fy#-1.0. Figure 4.30 and Figure 4.31 indicate the reduction of the non-zero gains

in stop-bands in high frequencies of the resulting 2-D band-pass filter.

ad. I’Cg = 5.0
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Figure 430  The contour and 3-D magnitude plots of the resulting 2-D band-pass filter with

variable k; and the other coefficients fixed as k=1.0, an=-1.0, ap=-1.0, fn=0.5,
ﬁ02=1‘0; k3=1.0, k4=1.0, (lo3=1.0. 0(()4:1.0, ,603:—1.0 and ﬂofz -1.0

2. du}
.y lei
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Figure 4.31  The contour relation between the
resulting 2-D band-pasg filter
and its member filters with
variable &, and the other
coefficients fixed as Jfy=1.0,
Om=-1.0, ap=1.0, Bo=0.5,
Lor=1.0y ky=1.0, ky=1.0,
3 =1.0, tpy=1.0, fo=1.0 and
Fos=~1.0

Increasing 4y can also reduce the non-zero gains in the stop-bands in the high

frequencies in oy-dimension, but the effect is very small.

4.6.13 Freguency Response of the Resulting 2-D Band-Pass Filter with Variable £,

The low-pass coefficient fy; mainly affects the gains of stop-bands of the member
low-pass filter in @,-dimension. Only when f; is chosen as 1.0, the upper boundary, the
resulting low-pass filter has zero-gain at stop-bands.

When the low-pass filter is employed with a fixed high-pass filter to form a 2-D
system, which has the same frequency response as a 2-D band-pass filter, the overall
system has variable magnitude responses.

We specify the other coefficients to be unity with proper signs, i.e. k;=1.0, k=1.0,
o1==1.0, apy=1.0, fui=1.0; kz=1.0, ks=1.0, cp3=1.0, ap4=1.0, fpz=-1.0, and fya=-1.0. It
is easy to check that the 2-D band-pass filter is stable when fy; is chosen between 0 and

1.0.

The contour and 3-D magnitude plots of the resulting 2-D band-pass filter with

different values of By are given in Figure 4.32. Figure 4.33 illustrated the contour

relation between the 2-D resulting band-pass filter and its member filters.
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Figure 4.32  The contour and 3-D magnitude plots of the resulting 2-D band-pass filter with variable
Boz and the other coefficients fixed as k=1.0, k=1.0, @y =-1.0, ap=-1.0. By;=1.0;
1\3331.0, k;;:l.O, 0(03=1.O, ao4zl.0, ﬂmx'—'LO and ﬂ(Mx-'I.O



Chapter 4 Two-Dimensional Band-Pass Filters 139

o fet
g U

a4
ay {2}

a. ﬂgg = b. ﬂ();‘;"‘ 0.5

Figure 433 The contour relation between the 2-D band-pass filter and its member filters with
variable [y and the other coefficients fixed as k;=1.0, ky=1.0, ey =~1.0. t=-1.0,
Por=1.0; k=10, k=10, ap3=1.0, 2t4=1.0, Byz=~1.0 and fpy=~1.0

The low-pass coefficient Sy also causes the resulting 2-D band-pass filter to have
non-zero gains in the stop-bands in high frequency regions in @»-dimension. if k; does
not have the value 1.0. Increasing k; can reduce the non-zero gains. Figure 4.34 and

Figure 4.35 illustrate the reduction.

@,

a. k? = 5.0
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Figure 4.34  The contour and 3-D magnitude plots of the resulting 2-D band-pass filter with
variable k; and the other coefficients fixed as k5=1.0, ay=-1.0, ap=—1.0, f;=1.0,
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b. ky = 10.0
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Figure 4.35 The contour relation between the
resulting 2 -D b and-pass filter and
its member filters with variable &,
and the other coefficients fixed as
F=1.0,  ayg=-1.0, =10,
Bor=1.0, Bor=0.5; k=10, ky=1.0,
=10, =10, Foz= ~1.0 and
oy ~1.0

WTEETEE 8 m 5 02 04 08 08 4
@, (7

¢ ky =500

Increasing 4; can really reduce the non-zero gains caused by in the case of fy=1.0.

However, the reduction 1s non-remarkable.

4.6.14 Frequency Response of the Resulting 2-D Band Pass Filter with Variable S

The high-pass coefficient fo; (known as fy in Chapter 3) causes the resulting 2-D
high-pass filter to have non-zero gains at stop-bands in w,-dimension. The high-pass
filter can be employed as a member filter to form a 2-D band-pass filter. It is clear that
the resulting 2-D band-pass filter has variable magnitude responses if the member
high-pass filter has variable f;.

The other coefficients other than fy; are still set to be unity with proper signs, that is,
k=10, k=10, an=-1.0, az=~1.0, f1=1.0; k5=1.0, ks = 1.0, a3=1.0, 4=1.0, Boz=—1.0,
and fos=1.0. Choosing any value in [~1.0, 0] for f3;, the resulting 2-D band-pass filter
is stable.

The contour and 3-D magnitude plots of the resulting 2-D band-pass filter are

illustrated in Figure 4.36. The contour relation between the resulting 2-D band-pass filter

and its member filters is shown in Figure 4.37.
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Figure 436  The contour and 3-D magnitude plots of the resulting 2-D band-pass filter with
variable fo; and the other coefficients fixed as k=1.0, k=1.0, ay=-1.0, @p=-1.0,
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a. /3{)3 s () 5 b. ,803 = ()

Figure 4.37 The contour relation of the resulting 2-I) band-pass filter and its member filters with
variable Sy and the other coefficients fixed as &y=1.0, k:=1.0, ay=~1.0, dgyp=-1.0,
ﬁo;”*’"’l.o, /302“‘:1.0; k3"’“"’1‘0, kq;‘* 1.0, amml 0, (22;)4“”:1 .0, and /jy; = 1.0

The resulting 2-D band-pass filter, which is formed by the cascading of
fixed-characteristic Jow-pass filter and the high-pass filter with variable [, has non-zero
gain in the low frequency stop-bands, unless f; is equal to —1.0. In Chapter 3, we found
that increasing ks can reduce the non-zero gains at stop-band of the high-pass filter. Here,
we also need to 1nvestigate the e ffect on the gains o f the stop-band by increasing the

value of k;. The simulation results are illustrated in F igure 4.38 and Figure 4.39.
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Figure 4.38

The contour and 3-D magnitude plots of the resulting 2-D band-pass filter with
variable k; and the other coefficients fixed as k=1.0, &=1.0, an=-1.0, tp=1.0,
ﬁmxl.o, ﬁ()g“lo, 1(4"':1.0, (Xm;“l.o, m;ﬁl.(), [1’()3 = -().5 and [)’04 = -0
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{1

Figure 4.39 The contour relation of the 2-D
band-pass filter with its member
filters with different values of k;
and the other coefficients fixed
as k=10, k=10, ag=-1.0,
a=-1.0,  fu=10, fp=1.0
k=10,  aw=1.0, u=1.0,
Soz=—0.5 and fy=~1.0

Although increasing k3 can reduce the non-zero gains of the stop-band in the low

frequency parts in o-dimension, the effect is limited.

4.6.15 Frequency Response of the Resulting 2-D Band-Pass Filter with Variable f.

The high-pass coefficient fys (known as f; in Chapter 3) mainly affects the gains at
the stop-bands of the resulting 2-D high-pass filter in @,-dimension. As a result, the 2-D
band-pass filter, formed by cascading the high-pass filter with a low-pass filter, will have
variable frequency responses also.

Similarly, the other coefficients are fixed to be unity with proper signs, i. e., k;=1.0,
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k=10, aor=—=1.0, 09r==1.0, Bor=1.0, Bo=1.0; k3=1.0, ke=1.0, ct3==1.0, ao=1.0, and
Loz=-1.0. The 2-D band-pass filter is stable if the value for Poa is chosen between ~1.0
and 0.

Figure 4.40 gives the contour and 3-D magnitude plots of the resulting 2-D

band-pass filter with fo=—0.5 and 0. Figure 4.41 is the contour relation between the

resulting 2-D band-pass filter and its member filters.
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Figure 440  The contour and 3-D magnitude plots of the resulting 2-D band-pass filter with
variable fyy and the other coefficient fixed as k&;=1.0, k=10, agy=-1.0, oga=~1.0,
Por=1.0, Bu=1.0; ky=1.0, ky=1.0, ay=1.0, a4 =1.0, and Sy = ~1.0
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Figure 4.41  The contour relation of the 2-D band-pass filter and its member filters with different
values of fos and the other coefficients fixed as k=1.0, ky=1.0, or=~1.0, car=-1.0,
Por=1.0, fy=1.0; £5=1.0, ky=1.0, 3=1.0, a4=1.0, and Sy ~1.0

The gain in the low-frequency stop-band in @,-dimension is non-zero, if fys has a
value other than -1.0, and the value of the non-zero gain depends on the distance of the
actual value of k4 from ~1.0. The larger the distance, the bigger the non-zero gain is.

Figure 4.42 and Figure 4.43 show the gain reduction caused by increasing the values

of k4 when S is fixed at -0.5.
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Figure 4.43  The contour relation of the 2.D
band-pass and its member filters
with different values of &y and the
other coefficients fixed as ky, = 1.0,
k=10, ay=-1.0, =10,
Lor=1.0, for=1.0; k3=1.0, ep:=1.0,
tos=1.0, f=-1.0 and fyy=-0.5

e. ky=50.0

Increasing the value of ks can reduce the non-zero gain caused by fs in the case of

[Sos#~1.0, but the effect is limited.

4.7 Summary and Discussion

In summary, the cascade of a 2-D low-pass filter and a 2-D high-pass filter could
obtain the identical frequency responses as a 2-D band-pass filter. When the 2-D
low-pass and high-pass filters are designed from their analog prototype filters through
the application of the double generalized bilinear transformations, changing coefficients
causes the resulting 2-D low-pass and high-pass filters to have variable magnitude
response, which we have investigated in Chapters 2 and 3 in detail, and therefore, lead to
2-D band-pass filters with variable magnitude characteristics.

The cascade combination enhances the stability of the overall system. The stability
of each subsystem guaranteed the stability of the overall 2-D band-pass filtering system.
As such the stability of the 2-D band-pass filter is equivalent to the stability for each
individual subsystem.

As the characteristics of the resulting 2-D band-pass filter is mainly determined by

the overlapping areas of the pass-bands of the two member filters, the coefficients &;'s
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(=1, 2, 3, 4) play the most important role in 2-D band-pass filter design. They not only
affect the bandwidth of the pass-bands as they did in the cases of low-pass and high-pass
filters, but also move the center frequency of the pass-bands. Briefly speaking, £ and k;
move the center frequencies in wy-dimension n opposite directions, whereas &; and k4
move the center frequencies in an-dimension in the same manners. And also, %'s
determine the gains of the pass-bands of the resulting 2»1“) band-pass filter.

The coefficients a,’s (7=1, 2, 3, 4) no longer affect the gains of pass-bands as they
did in the cases of 2-D low-pass and high-pass filters. The coefficients fy's (=1, 2, 3, 4)
still affect the gans of the stop-bands and increasing &;’s (=1, 2, 3, 4) do not effectively
reduce the non-zero gains.

This chapter is just the first step towards the study of the 2-D band-pass filter
formed by a cascade combination of 2-D low-pass and high-pass filters. Modern signal
processing technology needs to use this feature to obtain user-specific variable

magnitude response in frequency domain to enhance signal quality.



Chapter 5

Two-Dimensional Band-Elimination Filters

In this chapter, another type of combination-based filter, 2-D band-elimination filter,
is studied. In section 5.1, a brief definition of 2-D band-elimination filter is given in both
mathematical and graphical forms. The algorithm of parallel combination of a 2-D
low-pass filter and a 2-D high-pass filter, which could result in the same frequency
response of a 2-D band-elimination filter, is studied in section 5.2. The transfer functions

of the member low-pass and high-pass filters, which are obtained from the same analog

151
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™

prototype by double generalized bilinear transformations, are given in sections 5.3 and
5.4, respectively. The extended stability conditions of the resulting 2-D band-elimination
are studied in section 5.5. The frequency response of the 2-I) band-elimination filter, as
well as the manner how each coefficient affects the magnitude response is given in

section 5.6. The summary and discussion are given in section 5.7.

5.1 Introduction

The band-elimination filters stop the signal components within a specified range of
frequencies, while passing the signal components within lower and higher frequency
regions. That is to say, the signals with low and high frequencies have a very high gain,
but the signal components in the specified frequency band or range have a very low gain.
A typical 2-D band-eliminating digital filter has a specification in the form as[2, 4]

0, |o|zae,
H(w,0,)=11, o, <|<o,, (5.1
0, w,<p|<x
where:
Wiy and @y, (i =1, 2), are pass bands in z; and z3-dimension, respectively
w;s; and @z, (1 =1, 2), are stop bands in z; and z,-dimension, respectively

The specification of the typical 2-D band-elimination filter in frequency domain is

given in Figure 5.1.
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Figure 5.1 The specification for a typical 2-D band-elimination digital filter

5.2 The Algorithm of Parallel Combination of Two Filters

From Figure 5.1, it is obvious that a typical 2-D band-elimination digital filter has
the pass-band of a typical 2-D low-pass filter illustrated in Figure 2.1 and the pass-band
of a typical 2-D high-pass digital filter illustrated in Figure 3.1 simultaneously.

From Figure 5.1, we can also build the logical relations, which are listed in Table 5.1,
between the frequency response of a typical 2-D band-elimination filter and the

frequency response of a typical 2-D low-pass filter and a typical 2-D high-pass filter.
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Table 5.1

The logical relation of the Frequency response between the 2-D band-eliminating digital
filter and the frequency responses of the 2-D low-pass and 2-D high-pass filters. (where,
“17 represents the pass-band, “0” represents stop-band.)

2-D 2-D The resulting
low-pass filter high-pass filter 2-D band-elimination filter
(A) (B) (C)
1 0 1
0 1 1
1 1 1
0 0 0

The frequency response of the 2-D band-elimination filter (C) is the sum of
frequency responses of the two member filters, i.e.,
Hw,0,)=H (0,,0,)+H,(0,,0,) (5.2)
Equation (5.2) can be achieved by a parallel combination of a 2-D low-pass filter

and a 2-D high-pass filter as shown in Figure 5.2.

Hyelwn, @)

Hifwr, w2)

4

X(zp, 22 Yz 2y

]‘l’,‘m(’ﬁ)l, (4']2)

Figure 5.2 The possible 2-D band-elimination filter by parallel combination of a low-pass and a

high-pass filter
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From the above discussion, we can draw the conclusion that through parallel
combination of a 2-ID low-pass filter and a 2-D high-~pass filter. the overall system has the
identical frequency response of a 2-D band-elimination filter. We call the 2-D low-pass
and high-pass filters as member low-pass filter and member high-pass filter, respectively.
These member filters can be designed from the same analog prototype through the
application of the double generalized bilinear transformations by the methods introduced
in Chapters 2 and 3. When one or more of coefficients of the double generalized bilinear
transformations are changing, the member filters have variable magnitude responses, and ,
in tum, the resulting 2-D band-elimination filter may possesses variable magnitude
characteristics.

Below, we first briefly introduce the transfer functions of the two member filters.

5.3 The Member Low-Pass Filter

From Chapter 2, the 2-D analog transfer function of the circuit network in Figure 2.3
can be written as

Nn(sl’sz)_ 1

H,(s,,5,) = =
T D(s,s)  (1+0.707s5)(1.414s, + 1) +1

1
5,5, +0.707s, +1.414s. +2

(5.3)

The denominator
D, (s,,8,) =55, +0.707s, +1.4145, +2 (5.4)
is a VSHP and has a single degree for each variable.
Applying the double generalized bilinear transformation (1.37) to Equation (5.4),
and constraining all the coefficients to low-pass limits, we can obtain the transfer

function of the resulting 2-D low-pass digital filter as
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N, (z.2,) ,
H,(z,z2,) = W.’L.j}m;m.. (5.5)

where, N, (z,,2,)= 2,2, + Bo,2, + B2, + By P (5.6a)
D, (z),z,) = (kk, +0.707k, +1.414k, + 2)z,z,
+(kpkyog, +0.707k, By, +1.414k,a, +213,,)z,
+(kkyog +0.707k ex,, +1.414k, B, +28,,)z,
+{kkoga, +0.707kay, B, +1.414%,a,, B,

+2 8y Bi) (5.6b)
It is evident that the denominator (5.7) is a 2-variable polynomial, which has single
degree for each variable, but the overall degree is 2. we can write it in the general form,
Dy (z,2,) = 2,2, a2, +dy,z, +ay, (5.7)

The 2-D low-pass filter can be obtained when the coefficients of the double bilinear

transformation meet the low-pass limits

k>0, i=12 (5.82)
~1.0<a, <0, i=12 (5.8b)
0< B, 1.0, i=12 (5.8¢)

The ranges of the coefficients should also be constrained by the stability conditions

of the 2-D digital filter with denominator of single degree for each variable.

5.4  The Member High-Pass filter

Applying double bilinear transformation (1.37) with high-pass limits to the analog
transfer function (5.6), the discrete transfer function of 2-D high-pass filter can be

obtained,
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- Nh'}(zl’g:)
H,,(2,,2,) = oo (5.9
Z)hp (“"l 3 )
where:
th (zi,z,) =22, + Bz, + Boszy + By P (5.10a)

D, (z,2,) = (kyky +0.707k; +1.414k, + 2)z,z,
+(k ko, +0.707k; f, + 1414k oy, +2,,)z,
+(kok o, + 0707k, +1.4144,8,, +28,,)z,
+(kkaga,, + 0707k, By, +1.414k o, B,

+200:80) (5.10b)

The denominator (5.11b) is a 2-variable polynomial, which has a single degree for

cach variable and the overall degree is 2. It can be rewritten as the general form:
D,,p(z,,zz)--—-*bnz,:s2 +by,z, + by 2, + by, (5.11)

To identify the high-pass coefficients from the low-pass ones, we use the

subscriptions “3” and “4” to replace “1™ and “2”, and the coefficients should meet the

high-pass limits

k>0, i=34 (5.12a)
0<a, <1.0, i=34 (5.12b)
-1.05f, <0, i=34 (5.12¢)

The coefficients should also satisfy the requirements of the stability conditions for
2-D digital filter with a denominator of 2-variable that has single degree for each variable

zy and z; and the overall degree of the term 2,25 is 2.
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5.5 Stability of the 2-D Band-Elimination Filters

Stability is always an important problem in 2-D recursive digital filter design. The
most common stability criterion is so called the Bounded-Input Bounded-Out (BIBO)
criterion. A system is table in BIBO sense if every bounded input sequence produces a
bounded output sequence.

As the 2-D band-elimination filter system is a parallel combination of a 2-D
low-pass filter and a 2-D high-pass filter, we need to examine the stability issue in terms
of the relationship between the resulting 2-D band-elimination filter and the two member
filters.

Assuming that both the low-pass and high-pass filters are stable in BIBO sense, then
the following relations exist:

N el

Z Z%iz»,* (”p"g)leA <o 5.1
i ié"’ig(fl,,nz)t’:SB < 0 (5.14)

The impulse rzsponse of the overall 2-D band-elimination system can be expressed
as

Se = z Z‘hc(”n”z) = i i'h/,(n],nz)'klzg(nl,nz)

e ] Ry et Py zomt)

"

e 3 Shinmi+ S Shonn

Ty Py Bt Jiy 5ot Py el

=8, +8, <@ (5.15)

It is evident that the overall 2-D band-elimination filter system is stable if the two
subsystems are stable. The stability of the two individual subsystems shall be the
sufficient conditions o f the stability o f the o verall system. So the consideration o fthe

stability for the overall system is equivalent to considering the stability for the two
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subsystems.

The stability of 2-D low-pass and high-pass recursive digital filters should be
determined not only by the selection of the coefficients used in the generalized bilinear
transformation, but also by the stability condition for the digital filters.

The stability conditions of 2-D low-pass and high-pass filters with denominators in
which each variable has single degree and their mutilation degree is two are given in
Chapters 2 and 3, respectively.

After solving the stability problem of the overall 2-D band-elimination filter, we
need to examine the frequency response of the resulting 2-D band-elimination filter, as

well as the effect of each coefficient on the magnitude characteristics.

5.6 The Frequency Response of 2-D Band-Elimination Filters

The MATLAB® function bandElimination.m is employed to plot the frequency
response of the 2-D band-elimination filter resulting from the parallel combination of a

2-D low-pass filter and a 2-D high-pass filter.

5.6.1 Frequency Response of the Resulting 2-D Band-Elimination Filter with

Variable Coefficient ks

We first consider the situation when all the coefficients of the double bilinear
transformation are set to be unity with proper signs, specifically, k;=1.0, &, =1.0,
=10, co=1.0, f=1.0, f=1.0; k=1.0, k=10, a3=1.0, og4=1.0, By=—1.0 and
Pos=1.0. From Chapters 2 and 3, both the low-pass and high-pass filters with the
specified coefficients are stable, so the resulting 2-D band-elimination filter is also stable.

Figure 5.3 shows the contour and 3-I) magnitude plots of the member low-pass and
member high-pass filters. The contour and 3-D magnitude plots of the resulting 2-D

band-elimination filter, as well as the contour relation between it and its member filters
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are illustrated in Figure 5.4.
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b. Member high-pass filter
Figure 53  The frequency responses of the member filters with coefficients £=1.0, k=10,
a1=—1.0, ¢r=-1.0, foi=1.0, B=1.0; k5=1.0, ks=1.0, a3=1.0, %¢=1.0, Bp;=—-1.0 and

Fos=1.0.
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Figure 5.4  The frequency response of
the resulting 2-D
band-elimination filter with
the coefficients fixed as
k=10, k=10, ap=-1.0,
r™-1.0, for=1.0, Lor=1.0;
k=10, k=10,  ap=1.0,
o=1.0,  fiy=-1.0  and
Fo=-1.0.

o {7}

@, [}

¢. Contour relation

Form Figure 5.4, the parallel combination of the two member filters with unit
coefficients with proper signs is difficult to be implemented as a 2-D band-elimination
filter. The main reason is that there exist overlapping parts between the pass-bands or the
transition-bands of the two member filters. As a result, when a series of signals pass the
system, the signal components with very low frequencies will pass the system through the
low-pass filter path, the components with very high frequencies will pass the system
through the high-pass filter path, and the signals with the overlapping frequencies will
pass both the two filters simultaneously. As a result, the signal components passing
through the low-pass filter are amplified by the gain of the low-pass filter, the signals
passing the high-pass filter have the gain of the high-pass filter, and the signal in the
overlapping frequency ranges are amplified by the sum of the gains at the overlapping
ranges of both the low-pass and high-pass filters. In 2-D band-elimination filters design
through the parallel combination of a low-pass filter and a high-pass filter, the pass-band
or transition-band overlapping is another important issue, which needs to be considered
carefully.

The results of the previous chapters show that increasing the values of coefficients
of &’s (i = 1, 2, 3, 4) makes the pass-bands contract to their center frequencies in their

specified frequency domains. Increasing the values of &y and k3 tunes the pass-bands and
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£

the transition bands of the two filters apart from each other in w-dimension, and the
bigger values of k; and k4 make the pass-bands and the transition bands of the two filters
apart from each other in w;-dimension.

In the following example, the values of &y, k2, k3 and &4 are increased from 1.0 to 5.0,
while keeping the other coefficients unchanged, i.e., k1=5.0, k=3.0, ¢o=~1.0, ap=1.0,
Por=L.0, for=1.0; k3=5.0, k4==5.0, c3=1.0, as=1.0, fo3=1.0 and Sys=1.0. From the
previous chapters, we know that both the low-pass and high-pass filters are stable, and so
is the resulting 2-D band-elimination filter.

The contour and 3-D magnitude plots of the low-pass and high-pass filters are given
in Figure 5.5. Figure 5.6 is the frequency response of the resulting 2-D band-elimination

filter.

0B ne U4 02 0 ga 04 08 Q8 1

a. Member low-pass filter
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Figure 5.6 Frequency response of the
2-D
filter
coefficients fixed
ky=5.0, k=350,
r=-1.0, toy=-1.0,
Pa=1.0, fp=1.0; ky=5.0,
k=50, apn=1.0, ag=1.0,
Pos=~1.0 and Foy=—1.0

resulting
band-elimination
with
as
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When the values of k&, k3, k3, and k¢ are big enough to tune the pass-bands or
transition bands of the two member filters apart from each other, by the parallel
combination of the two systems, it is possible to implement the same frequency response
as a 2-D band-elimination filter, which has both the pass-bands of the two member filter
as its pass-bands, and the other portions as its stop-bands. These properties can be
checked for other combination of k;’s. Figure 5.7 illusirates the frequency response of the
resulting 2-D band-elimination filter with different equal %;’s. One can refer to Chapters 2
and 3 for the frequency response plots of the member filters. Figure 5.8 is the contour

relations between the resulting 2-D band-elimination filter and its member filters.
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To avoid the interference from the overlapping of the two member filters’
pass-bands or transition-bands, the remaining investigations are based on the basic
coefficients setting as £=5.0 (=1, 2, 3, 4), and the other coefficients are set to be unity

with proper signs.

5.6.2 Frequency Response of the Resulting 2-D Band-Elimination Filter with

Variable o

In Chapter 2, we obtained the results that the low-pass coefficient ay; mainly affects
the pass-band gain of the resulting 2-D low-pass filter. When the low-pass filter with
variable o is used as a member filter to form a 2-D band-elimination filter with another
high-pass filter, the resulting 2-D band-elimination filter also possesses variable
magnitude characteristics.

The other coefficients are set to the specified values £=5.0, &=5.0, a=—1.0,
Lor=1.0, Bor=1.0; k3=5.0, ks=5.0, apz= 1.0, cs=1.0, fo3=—1.0 and [os=—1.0. Here to avoid
the interference between the two member filters, we set k=5.0, (i=1, 2, 3, 4), which are
different from the basic setting used in the other chapters. We have already known that
the resulting high-pass filter is stable, and the resulting 2-D low-pass filter is stable when
we choose ay in [~1.0, 0]. So the resulting 2-D band-elimination filter is stable when oy
is chosen in [-1.0, 0]

he contour and 3-D magnitude plot of the resulting 2-D band-elimination filter oy
are illustrated in Figure 5.9. The contour relation between it and its member filters are

shown in Figure 5.10.
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Figure 5.9 The contour and 3-D magnitude plots of the resulting 2-D band-elimination filter with
variable oy; and the other coefficients fixed as k=5.0, k=50, cr=-1.0, By=1.0,
P=1.05 k3=5.0, k=5.0, a0y=1.0, 004=1.0, Bus=-1.0 and foy=—1.0
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Figure 5.10 The contour relation between the resulting 2-D band-elimination filter and its member
filters with variable g and the other coefficients fixed as 4=5.0, k)=5.0, ap=~1.0,
Lor=1.0, Boa=1.0; k3=5.0, ks=5.0, a31.0, ttp4=1.0, fos=—1.0, fos=—1.0

The low-pass coefficient «y; mainly affects the gain in the low-frequency parts of
the pass-band of the resulting 2-D band-elimination filter, but has no any effect on the
high frequency parts. As o changes from the lower boundary ~1.0 to the upper
boundary of zero, the gain becomes small. It also affects the bandwidth of the low

frequency parts pass-band slightly.

5.6.3 Frequency Response of the Resulting 2-D Band-Elimination Filter with
Variable a;

The low-pass coefficient oy also affects the gain in the pass-band of the resulting
2-D low-pass filter, so it will affect the magnitude response of the 2-D band-elimination
filter resulting from parallel combination of the low-pass and the high-pass filters.

Here we set the other coefficients to £=5.0, k=5.0, apz=1.0, fi=1.0, fp=1.0;
ks=5.0, ks=5.0, 005=1.0, @4=1.0, foz=1.0 and fo=-1.0. It is easy to verify that the
resulting 2-D band-elimination filter is stable when g is chosen as any value in the

range of [-1.0, 0].
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Figure 5.11 and 5.12 illustrate the simulation results of the resulting 2-D filter with

the specified coefficients and variable o at oy = 0.5 and oy = 0.
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Figure 5.11  The contour and 3-D magnitude plots of the resulting 2-D band-elimination filter with
variable ¢, and the other coefficients fixed as £=5.0, k=50, ay=-1.0, fo=1.0,
[=1.0; k3=5.0, k=5.0, ap:=1.0, ¢4=1.0, fo3=~1.0, foy=1.0
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Figure 5.12  The contour relation between the resulting 2-D band-elimination filter and its member
filters with variable @y, and the other coefficients fixed as k=30, k=5.0, g=1.0,
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The low-pass coefficient o, also affects the gain in the low-frequency parts of the
pass-band of the resulting 2-D band-elimination filter. The smaller the value of ty, the
bigger the gain is. The coefficient ¢y, has no any effect on the gains of the high frequency
part of the pass-bands. Also it affects the bandwidth of the low-frequency part of the

pass-band in m,-dimension slightly.

5.6.4 Frequency Response of the Resulting 2-D Band-Elimination Filter with

Equal Variable ap; and oy,

From sections 5.1.2 and 5.1.3, both the two coefficients a1 and gy affect the gain in
the low-frequency part of the pass-band of the resulting 2-D band-elimination filter. The
gain has its maximum value only when the two coefficients have the values equal to —~1.0.
Now we want to investigate the joint effect of the two coefficients.

Changing the values of the two coefficients simultancously and keeping then
equally, the values of the other coefficients are fixed as unit with proper signs, i.e., k1=5.0,

k2=3.0, fin=1.0, fo=1.0; ks=5.0, ks=5.0, 293=1.0, ct0s=1.0, fo3=—1.0 and fop=—1.0. The
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resulting 2-I band-elimination filter is stable when the two coefficients are changing in
the range of [-1.0, 0].
Figure 5.13 and 5.14 are the simulation results of the resulting 2-D band-elimination

filter with different values of ) and ags.
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Figure 5.13  The contour and 3-D magnitude plots of the resulting 2-D band-elimination filter with
¢qual variables ay; and ay and the other coefficients fixed as ky=5.0, k=50, fo=1.0,
Por=1.0; k5=5.0, ke=5.0, 007=1.0, ctpy=1.0, foy=—1.0, fog=1.0.
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Figure 5.14 The contour relation between the resulting 2-D band-elimination filter and its member
filters with equal variables ay and &, and the other coefficients fixed as 4;=5.0, k;=5.0,
For=1.0, for=1.0; k3=5.0, £4=5.0, =10, atoy=1.0, By=-1.0, fos=1.0

The effect on the gain in the low-frequency part of the pass-band of the resulting
2-D band-elimination filter becomes pronounced when the values of the two coefficients,

oy and o, are changing simultaneously.

5.6.5 Frequency Response of the Resulting 2-D Band-Flimination Filter with

Variable o3

We have already known that the high-pass coefficient g3 (known as @ in Chapter
3) affects the frequency response of the resulting 2-D high-pass filter, so it in turn affects
the magnitude response of the 2-D band-elimination filter resulting from the parallel
connection of the high-pass and low-pass filters.

Similarly, the other coefficients are still fixed to unit with proper signs, specifically,
ki=5.0, kp=5.0, api=~1.0, agy=—1.0, for=1.0, fp=1.0; ks=5.0, k=5.0, apa=1.0, foz=—1.0
and fys=-1.0. The resulting 2-D band-elimination filter is stable when ¢y; varies in the
range of [0, 1.0].

Figure 5.15 and 5.16 are the frequency response of the resulting 2-D
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band-elimination filter with ¢t;=0 and @3=0.5.

From X, ’ meemeseeed e S
T S \mew
0s - 4%~ ol
odl 7N ! bl %\ '
02b rd //:,:M\\\:\\\ g03e \{ N
- e W“\\\j - 2 / % Hi
‘} 9 e - o > %‘ ) i AN
N I gl ey ‘ 3
0.2t I Wi e 4 R Y
N . N
04 . ’M’f’ﬁ%:'
e AN 2 ,
i,&g 2IEIE . i 4] ey I
B e et R s
P T
g e— : : PR : AT - k o ns
B8 @6 Aa 02 0 03 04 BE 08 1 i
& fe® 1 e
a =0
p— ; ZAEE ey
S e
08¢ b o8~ B '-‘:"“\
BEP L I
04 / 4 G4 '0’\‘&\}\(‘\‘\}‘ .
o2 ~ N “ ElR “‘z\“\“\\‘i‘\‘% :
® </ 5 . A
4 AKX \
02 o~ ~. 1 VR i ‘l;l":”‘#l“‘.‘\s\\\'\\f\\\
e PR (A 1751;5@-«:‘{&
a4 1 S 0’:’%5,;{,;:‘%,;% "
- IR Oy
a5k | 1 B s .
as” Rl Tt
BB /——""’— 07 e X o
e N 05 g P
08 D& 44 B2 0 02 04 08 BBt . P
ot 2t 2,

b, 3 = 0.5

Figure 5.15 The contour and 3-D magnitude plots of the resulting 2-D band-elimination filter with
variable a3 and the other coefficients fixed as k;=5.0, k=5.0, tlor==1.0, ot;=~1.0,
Por=1.0, Bu==1.0; ky=5.0, kg=5.0, ets=1.0, fos=—1.0, fog=—1.0
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Figure 5.16 The contour relation between the resulting 2-I) band-elimination filter and its member
filters with variable ¢, and other coefficients fixed as k=35.0, k:=5.0, ap=~1.0,
or=—1.0, ﬂm‘“‘l.o, ﬁole 05 £5=5.0, k5.0, ane=1.0, /}033* 1.0, [}(}4"":”‘”1.0

The high-pass coefficient on; mainly affects the gain in the high-frequency part of
the pass-band of the resulting 2-D band-elimination filter. When ; is changing in its

stable range of [0, 1.0], the gain increases, and it has the biggest value at ¢:=1.0.

5.6.6 Frequency Response of the Resulting 2-D Band-Elimination Filter with

Variable oy

From Chapter 3, we know that the ligh-pass coefficient aps (known as ay in
Chapter 3) mainly affects the magnitude response of the resulting 2-D high-pass filter.
When the high-pass filter with variable ap4 is parallel connected with a 2-D low-pass
filter, the resulting system is a possible 2-D band-elimination filter system with variable
magnitude response.

To study how o4 affects the magnitude response of the resulting 2-D
band-elimination filter, the same methods as discussed in the previous section are used.
The other coefficients are set to the specified values, say, £,=5.0, k=5.0, y=-1.0,

Ct’()zm'*l.O, ﬂmml.O, ﬁoz“l.o; /CgWS.O, /C4~"-‘~5.0, G:'ngl.o, [7’93;%1.0, /304‘”*-1,0. The resulting
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2-D band-elimination is guaranteed to be stable when o4 is chosen in [0, 1.0], as the
member low-pass filter is stable and the member high-pass filter is stable with any a4 in

[0, 1.01.

Figure 5.17 is the contour and 3-D magnitude plots of the resulting 2-D

band-elimination filter with cns=0 and ¢p4==0.5. Figure 5.18 shows the contour relation

between the band-elimination filter and its two member filters.
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Figure 5.17 The contour and 3-D wmagnitude plots of the resulting 2-D band-elimination filter with
variable gy and the other coefficients fixed as £=5.0, =50, co=-1.0, qp=1.0,
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Figure 5.18 The contour relation between the resulting 2-D band-elimination filter and its member
filters with variable ¢y and the other coefficients fixed as £=5.0, k=5.0, ay=~1.0,
Ly 10, ﬁm*“'l.o, /302'3:1 ,O; kﬁS.O, kﬁS‘O, (1()3“"1.0, /3()3“’”‘“1.0, ﬂ()_;ﬂ'“ 1.0

The high-pass coefficient o, also affects the gain of the high-frequency part of the
pass-bands of the resulting 2-D band-elimination filter. T he filter has the biggest gain
when oy is at its upper bound, 1.0, and the smallest gain when oy, is at its lower bound,
0. And also it has slight effect on the bandwidth in the high-frequency part of the

pass-band of the resulting 2-D band-elimination filter.

5.6.7 The Frequency Response of the Resulting 2-D Band-Elimination Filter with

Variable o3 and oy

Both the coefficients a3 and o affect the gain in the high-frequency part of
pass-band of the resulting 2-D band-elimination filter. Now we want to investigate the
combined effects on the magnitude response from the two coefficients.

While setting the other coefficients to be £=5.0, k=3.0, ap=1.0, ap=1.0,
Bon=1.0, [oy=1.0; k3=5.0, k4=5.0, fo3=~1.0, fos=—1.0, we change the values of g3 and opq
but keep them equal. The resulting 2-D band-elimination filter is guaranteed to be stable

when we choose the values of ay3 and apa 1n [0, 1.0].
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o

Figure 5.19 is the contour and 3-D magnitude response of the resulting 2-D

band-elimination filter, and Figure 5.20 is the contour relation between

the

band-elimination filter and its member filters.
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Figure 5.19  The contour and 3-D magnitude plots of the resulting 2-D band-elimination filter with

equal variables ap; and a4 and the other coefficients fixed as k;=5.0, ky=53.0, ay=-1.0,
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Figure 5.20 The contour relation between the resulting 2-D band-elimination filter and its member
filters with equal variables ay; and w4 and the other coefficients fixed as k,;=5.0, £=5.0,
ty==1.0, ttop=-1.0, fy=1.0, Lor=1.0; ky=3.0, ky=5.0, Soy=-1.0, Lo=1.0

The effect on the gains of the high-frequency parts of the pass-bands of the resulting
2-D band-elimination filter from the two high-pass coefficients op; and e is

pronounced.

5.6.8 Frequency Response of the Resulting 2-D Band-Elimination Filter with
Equal Absolute Values of ay;’s

The coefficients o p’s (i=1, 2, 3, 4) mainly affect the gains in their corresponding
part of the pass-bands. From the previous sections, it is easy to draw the conclusion that
only when all the 4 coefficients have equal absolute values, the gains in both the
low-frequency and high-frequency parts have the same values. Otherwise, if one or two
low pass coefficients have smaller absolute values than the high-pass coefficients, the
low-frequency part of the pass-band has smaller gain, and vice versa.

Also from the previous sections, we know that the coefficients ag’s (i=1, 2, 3, 4)
also affect the bandwidth of their corresponding part of pass-band. When the effects of

the coefficients enlarge the pass-bands of the two member filters simultaneously, it is
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possible to have overlapping between the pass-bands of the two filters. That, in turn,
makes the implementation of the 2-D band-elimination filter difficult. Figure 5.21 and

Figure 5.22 show these situations.
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Figwre 5.21 The contour and 3-D magnitude plots of the resulting 2-I) band-elimination filter with
equal absolute values of ap’s and other coefficients fixed as ky=5.0, £,=5.0. f=1.0,
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Figure 5.22  The contour relation between the resulting 2-D band-elimination filter and its member
filters with e qual absolute values of ¢ /’s and the o ther c oefficients fixed as & ,=5.0,
kzx"f)‘.()? ,[}()[:’“":1.0, ﬁozml 05 /\"3:35.0., k4m5.0, /)’()37':“"1.0, /j{)f‘*’"‘l 0

5.6.9 Frequency Responses of the Resulting 2-D Band-Elimination Filter with
Variable f,'s

From Chapter 2, the low-pass coefficient £ mainly affects the gain in the stop-band
of the resulting 2-D low-pass filter in @;-dimension. Emploving this low-pass filter with
another high-pass filter to form a 2-D-band-elimination filter, the resulting filter has
variable magnitude response.

We specify the other coefficients as k1=5.0, k;=5.0, ¢5=—1.0, apy=1.0, Sor=1.0;
k3=5.0, ks=5.0, a3=1.0, p=1.0, fo3=1.0, Bos=—1.0. The resulting 2-D band-elimination
filter is stable when £ is changing in the range of [0, 1.0].

The contour and 3-D magnitude response of the resulting 2-D band-elimination

filter are 1llustrated in Figufe 5.23 and 5.24.
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Figure 5.23 The contour and 3-D magnitude plots of the resulting 2-D band-elimination filter with
variable [y and the other coefficients fixed as £=5.0, &=3.0, an;=~1.0, ap=-1.0,
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Figure 5.24 The contour relation between the resulting2-D band-elimination filter and its member
filters with variable /4, and the other coefficients fixed as k,=5.0, k,=5.0, & =—1.0,
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From Figures 5.23 and 5.24, when the coefficient B¢ is changing, the frequency

response of the resulting 2-D band-elimination is just the sum of the frequency response

of its two member filters.

From the previous studies, it can be concluded that the other fy’s (i=2, 3, 4) will

have the same results. Figures 5.25 and 5.26 are the frequency responses of the resulting

2-D band-ehmination filter with variable fy’s (i=2, 3, 4). Here, we choose the absolute

values of fy’s (=2, 3, 4) to be 0.5.
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3.7 Summary and Discussion

A 2-D band-elimination filter can be obtained from a parallel combination of a 2-D
low-pass filter and a 2-D high-pass filter, both of which are obtained from the same
analog prototype analog filter through double bilinear transformation using the methods
demonstrated n Chapters 2 and 3. When one or more of the bilinear transformation
coefficients are changing, the resulting 2-D band-elimination filter has variable
magnitude responses.

The stability 1s always the most important issue in 2-D recursive digital filter design.
For the 2-D band-elimination filter system resulting from the parallel combination of two
member low-pass and high-pass filters, the overall band-elimination system is guaranteed
to be stable when both the member filters are stable.

Another important problem in 2-D band-elimination filter is the intérface of the
pass-bands of the two member filters. When the pass-bands of the two member filters
have overlapping areas, sometimes even the overlapping areas only occur at the transition
bands, the resulting 2-D band-elimination filter becomes difficult to implement.

The coefficients ks (i=1, 2, 3, 4) are the main factors that affects the bandwidth in

the pass-bands of the member low-pass and high-pass filters. In the design of 2-D
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band-elimination filters, we should pay more attention in choosing the values of these
coefficients. The coefficients ap’s (i=1, 2, 3, 4) and fy’s (=1, 2, 3, 4) also affect the
bandwidth of the pass-bands of the member filter slightly. Improperly choosing the
values of the these coefficients also changes the overlapping relation between the
pass-bands of the two member filters, and, it in turn, makés the implementation of the
2-D band-climination filters difficult.

When the pass-bands or the transition-bands of the two member filters are tuned
apart from each other successfully, the frequency response of the 2-D band-elimination
filter is just the sum of the responses of the two member filters. The resulting 2-D
band-elimination has both the pass-bands of the two member filters as its pass-band
portions, and the other areas as its stop-band portions.

The manner each coefficient affects the magnitude response of the resulting 2-D
band-elimination filter 1s just the same as the manner in which it affects the member

low-pass or high-pass filter unless the coefficient causes the pass-bands interface between

the two member filters.



Chapter 6

Conclusions and Directions of Future

Research

6.1 Conclusions

In this thesis, a technique for designing 2-D digital filters having variable magnitude

characteristics has been proposed. Through double generalized bilinear transformations,

186
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2-D low-pass digital filter and high-pass digital filter can be achieved from the same
prototype analog filter. If one or more coefficients of the double generalized bilinear
transformations are changing, the resulting 2-D low-pass and high-pass filters have
variable frequency responses. T hrough a proper combination o f the 2-D low-pass and
high-pass filters, 2-D band-pass and 2-D band-elimination filters with variable magnitude
characteristics ¢ an also be o btained. T he m anner in w hich e ach ¢ oefficient a ffects t he
magnitude response of each 2-D digital filter has also been investigated in this thesis.

In Chapter 2, 2-D variable recursive low-pass digital filter has been investigated.
Starting from a 2™ order 1-D Butterworth low-pass analog ladder network, the value of
each electronic element has been determined. By assigning the inductor as the sy-variable
and the capacitor as the s;-variable, the doubly-unity-terminated 2-D 1% order analog
network could be formed, and then the analog transfer function of the 2-D analog
network has been obtained. Through the application of double generalized bilinear
transformations to the 2-D analog transfer function, the 2-D digital transfer function has
been derived with the coefficients of the double generalized bilinear transformation in
their low-pass stable ranges: 0 <k <o, 1.0 < ; <0, 0 < P £ 1.0 (i =1, 2), the 2-D
low-pass digital filter with variable magnitude characteristics has been obtained. In
addition, these coefficients also need to meet the stability conditions of 2-D digital filter
with a single degree 2-variable denominator. The coefficient & controls the pass-band
width of the resulting 2-D low-pass filter in ;-dimension. When the value of ky is
chosen near its lower boundary, the filter passes almost all the signal components of the
frequency range in @;-dimension, except those with very high frequencies close to +n
rad. As the value of k; increases, the pass-band of the filter becomes narrower till only
the signal components with the lowest frequency of 0 radian is passed. Changing the
value of kj, one can obtain almost all the required pass~bahd(s) width in @-dimension
determined by the design specifications. The same phenomenon is observed for the

coefficient k2, which controls the pass-band width for the 2-D low-pass filter in
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ar-dimension. The pass-band gain is controlled by the coefficients o and oo, The
larger the absolute values of oy and oy, the bigger the gain is, and the effect from the
two coefficients is additive. The stop-band gain is controlled by the values of the
coefficients fy and Sy, When the value of fy or By is not equal to 1.0, the upper
boundary of the coefficients, there is a non-zero gain in the stop-band in @ or
ar-dimension respectively. The non-zero gain in the stop-bands could be reduced by
increasing the value k&, or k;, depending on the occurrence of the non-zero gain. The price
of the reduction is losing pass-band width in its corresponding dimension. How to
balance the gain reduction and the bandwidth loss should be determined by optimization
techniques and the design specifications.

A 2-D high-pass filter with variable magnitude characteristics has been studied in
Chapter 3. From the same analog prototype filter, 2-D high-pass filter could be obtained
through the application of double generalized bilinear transformations with the
coefficient ranges: £’s > 0, 0Say;’s<1.0, —1.0=Pp’s<0 (=1, 2). and the coefficients should
also satisfy the additional requirements for stable high-pass digital filter. When one or
more ¢ oefficients are ¢ hanging in their specified ranges d etermined b y b oth high-pass
limits and the stability conditions of 2-D digital filters, the resulting 2-D high-pass filter
has variable magnitude responses. The manner in which how each coefficient affects the
magnitude characteristics has been investigated in this chapter. The coefficients k) and &
control the pass-band width of the resulting 2-D high-pass filter in @y~ and
ar-dimensions, respectively. The larger the values of k; and k;, the narrower the
pass-band width is. The pass-band gain of the 2-D high-pass filter is controlled by the
values of the coefficients oy and ag;. The large values of o, and ay; lead to big
pass-band gain, and the effect of the two coefficients on the gains is additive. The
coefficients [y and Sy control the stop-band gain in their corresponding dimensions, @,
and ¢@». There are non-zero gains at the stop-bands in @ and @»-dimensions unless S

and foy are equal to —1.0. These properties are useful in the design of 2-D variable
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high-pass digital filters.

From the results obtained in Chapters 2 and 3, we can classify the coefficients of the
double generalized bilinear transformation as three groups: the bandwidth-effect
coefficients ks (r =1, 2), the pass-band gain-effect or simply gain-effect coefficients
ap’s (i = 1, 2), and the polarity-effect coefficients Sy’s (i =1, 2). The polarity-effect
property is reflected as non-zero stop-band gains when the two coefficients are changing
in the low-pass or high-pass limits.

The 2-D band-pass filters have been investigated in Chapter 4. The cascade
combination of a 2-D low-pass filter and a 2-D high-pass filter gives a 2-D band-pass
filter. When the member low-pass and high-pass filters are designed from the same
analog prototype filter by double generalized bilinear transformations with the
procedures described in Chapters 2 and 3, and when one or more coefficients are
changing, the resulting 2-D band-pass filter possesses variable magnitude characteristics.
The stability of the member low-pass and high-pass filters guarantees the stability of the
resulting 2-D band-pass filter. As the frequency responses of the resulting 2-D band-pass
fiiter i s obtained from the multiplication o f the response o f the m ember 1ow-pass and
high-pass filters in frequency domain, the pass-band overlapping is important in the
implementations of the 2-D band-pass filter. The manner in which each coefficient
affects the magnitude responses of the resulting 2-D band-pass filter has been studied in
detail. The coefficients ks (i = 1, 2, 3, 4) mainly affect the location of the center
frequencies of pass-bands in their specified dimensions, as well as the pass-band gains.
When &’s (i = 1, 2, 3, 4) are changing, the corresponding low-pass or high-pass filters
have changing pass-band areas. That in turm makes the overlapping areas of the
pass-bands of the two member filter changing. As a result, the coefficients &y and k3
move the center frequencies of the pass-bands of the 2-D band-pass filter in

a-dimension in opposite directions, and the coefficients ky and 4; move the center

frequencies of the pass-bands of the resulting 2-D band-pass filter in @,-dimension in
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opposite directions. The gain-change is caused by the transition-band overlapping. When
the overlapping area between the two member filters are changing to transition-bands,
the gain in the transition-bands decrease dramatically, and so do the 2-D band-pass filter
pass-band gains, which are the multiplication of the gains of the two member filters.

In Chapter 5, another type of combination-based filter, 2-D band-elimination filter,
has been studied. By a parallel combination a 2-D low-pass filter and a 2-D high-pass
filter, a 2-D band-elimination filter can be realized if the coefficients of the member
filters are properly chosen. We can design the two member filters starting from the same
analog pretotype filter by the double generalized bilinear transformations, and the
resulting 2-D band-elimination filter possesses variable characteristics when one or more
the coefficients are changing. The stability of the overall 2-D band-elimination filter is
guaranteed by the stability of the two member filters. An important issue in 2-D
band-elimination filter design is the interference between the two member filters. To
make the resulting 2-D band-elimination filter easily implementable, the pass-bands or
transition-bands of the two member filters need to be tuned apart from each other.
Otherwise, the implementation becomes difficult. From the results of Chapters 2 and 3,
the pass-band width of the member filters are controlled by the coefficients &’s (i = 1, 2,
3, 4). Increasing the values of &;’s can tune the pass-bands of the two member filters apart.
Having avoided the interference problem, the resulting 2-D band-elimination filter has
the pass-bands of the two member filters as its pass-bands, and the other portions as its
stop-bands. The coefficients ay’s (i = 1, 2, 3, 4) mainly affect the gains of the
low-frequency pass-bands or high-frequency pass-bands which they are corresponding to.
Small absolute values of ag or o lead to a small low-frequency pass-bands gains.
Small values of ap3 and op4 cause the high-frequency pass-bands to have small gains.
The coefficients fy’s (i = 1, 2, 3, 4) have the same effects as they have in the low-pass
and high-pass filter cases.

Through double generalized bilinear transformations, we can actually obtain 2-D
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digital filters with variable characteristics, and also we have introduced more changeable
coefficients into our design. We thus have more freedom to design 2-D variable digital
filters, including 2-D low-pass, 2-D high-pass, 2-D band-pass, and 2-D band-elimination
filters, to meet the design specifications. Another benefit of double generalized bilinear
transformation method is that we can design the 2-D low-pass and high-pass filters from

the same analog prototype filter. That can largely simplify the design work.

6.2 Possible Directions of Future Research

In this thesis, we have used the Butterworth low-pass analog filter as our design
staring point. Butterworth filter is a frequently-used analog prototype filter, which has the
maximally flat magnitude. When the analog high-pass filters are used as our prototype
filters, the coefficients of double generalized bilinear transformation should have
different ranges as we used in this thesis o obtain 2-D low-pass and high-pass filters.

Beside Butterworth prototype analog filters, sometimes, we need to implement 2-D
filters that have other properties. Then, other prototypes, such as Chebyshev and Inverse
Chebyshev analog filters, need to be employed. These prototype analog filters have
different value and combination requirements for the electronic elements. This may lead
to other requirements fér the coefficients of generalized bilinear transformations to
obtain stable 2-D recursive digital filters.

The determination of the coefficients for stability requirement becomes complex as
the order of the filters increases. However, we can still use other combination filters to
achieve the specifications, which are more complex than its first counterpart, and at the
same time it can reduce the work tw determine the stable ranges. The different
combination methods could be the possible future research direction.

In this thesis, we have investigated the effects of each coefficient on the magnitude

response of the 2-D low-pass, high-pass, band-pass filter, and band-elimination filters.
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These are the first step to design 2-D recursive digital filters with variable characteristics.
In future research, we can use methods to determine the exact value for each coefficient
to achieve specified design specifications. To meet the design specifications, the
combination of all these coefficients might have many possibilities. How to determine
the optimum coefficient combinations and how to balance the optimization and the
computation loads are also the other possible research direction.

In the process of designing 2-D recursive digital filters, the techniques of
optimization are always interesting, especially when we use the double generalized
bilinear transformations, where many coefficients need to be treated. Effectively using
the optimization techniques can not only save computer time, but also get more accurate
results.

As introduced in Chapter 1, every 2-D digital filter has some kinds of symmetry in
its contour plot. In design, one can use the symmetrical properties properly and
effectively and thereby dramatically reduce and simplify the design work.

The above type of 2-D digital filters can be possible be used in noise suppression by

cascading several sections suitably. This has to be explored future.



References

[5]

16]

7]

Spryos G. Tzafestas, “Multidimensional Systems: Techniques and Applications”,
Amrcel Dekker. Inc. 1986

J. 8. Lim, “Two-dimensional Signal and Image Processing”, Prentice Hall Inc. 1990

D.E. Dudgeon and R, M, Mersereau, “Multidimensional Digital Signal Processing”,
Englewood Cliffs, NJ: Prentice Hall Inc., 1984

T.W.Parksand C. S. Burrus, “Digital Filter Design”, John Wiley & Sons Inc.,
1987

A. Antoniou, “Design Filters: Analysis, D esign and A pplications”, M cGraw-Hill
Inc., 1993

Alan V. Oppenheim, Ronald W. Schafer and John R. Buck, “Discrete-Time Signal
Processing” (Second Edition), Prentice-Hall Inc., 1998

M. N. S. Swamy, P. Karivaratha Rajan, “Symmetry in Two-Dimensional Filters and
Its Application”, in Multidimensional Systems: Techniques and Applications

(Edited by S, G, Tzafestas). New York: Marcel Dekkar, 1986, Chapter 9.

193



Reference 194

(8]

[9]

[10]

[11]

[14]

[13]

[16]

[17]

Haric Reddy, I-Hung Khoo, P. K. Rajan and Allenr Stubberud, “Symmetry in the
Frequency Response of Two-dimensional {y;, y,} Complex Plane Discrete-time
Systems,” Processing of IEEE, (Part V), pp. 66-69, 1998

V. Rajaravivarma, P. K. Rajan and H. C. Reddy, “Symmetry Study on 2-D Complex
Analog and Digital Filter Functions,” Multidimensional Systems and Signal
Processing, Vol. 2, pp. 161-187, 1991.

Brian T. O’Connor and Thomas S. Huang, “Stability of General Two-dimensional
Recursive Digital Filters,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, ASSP-26, No. 6, pp.550-560, Dec. 1978

John L. Shanks, Sven Treitel, and James H. Justice, “Stability and Synthesis of
Two-dimensional Recursive Filters,” I[EEE Transactions on Audio and
Electroacoustics, AU-20, No. 2, pp. 115-128, June 1972

Thomas S. Huang, “Stability of Two-dimensional Recursive Filters,” IEEE
Transactions on Audio and Electroacoustics, AU-20, No. 2, pp 284-286, June 1972

Dennis Goodman, “An Alternate Proof o f Huang’s T heorem on Stability,” / EEE

Transactions on Acoustics, Speech, and Signal Processing, ASSP-24, No. 5, pp.
426-427, Oct. 1976

C. S. Gargour and V. Ramachandran, “Generation of Stable 2-D Transfer Function
Having Variable Magnitude Characterisitcs”, Multidimensional Systems: Signal

FProcessing and Modeling Techniques, Academic Press Inc. Vol. 69, pp. 255-297,
1995

C. S. Gargour and V. Ramachandran, “Design of 2-D Low Pass Digital Filter
Having Varaible Magnitude Characteristics”, IEEE International Symposium on
Circuits and Systems, vol. 3 of 6, pp. 1424-1427, San Diego, CA, May 10-13, 1992

T. B. Deng, “Design of Linear Phase Variable 2-D Digital Filters Using
Real-Complex Decomposition”, IEEE Transaction on Circuits and Systems, Vol. 45,
PP. 330-339, March 1998

James H. McClellan, “The Design of Two-Dimensional Digital Filters by
Transformations”, Proceeding of 7" Annual Princeton Coefference on Information
Sciences and Systems, pp. 247-251, 1973



Reference 195

[18]

(21]

[26]

A. V. Oppenheim, W. F. G. Mechklenbrauker and R. M. Mersereau, *Variable cutoff
linear phase digital filters,” IEEE Transactions on Circuits System, vol. 23, Pp-
199-203, April 1976

S. S. Abuja and S. C. Dutta Roy. “Variable-cutoff two-dimensional lowpass FIR
digital filters,” Electron. Letter, vol. 14, no. 14, pp. 422-423, July 1978

S. K. Mitra, Y. Neuvo, and H. Roivaninen, “Design of Recursive Digital Filters
with Variable Characteristics,” Journal of Circuit Theory Applications, vol. 18, PD-
107-119, 1990

C. 8. Gargour, V, Ramachandran and Ravi P. Ramachandran, “An Alternative
Approach for Obtaining 2-D Discrete Filter Having Variable Magnitude and
Contour Characteristics by Cascading Sections Each Having Unity Degree in Each
Variable”, ISCAS 2001, Sydney, Australia, May 2001

V. Ramachandran and C. S. Gargour, “Generation of Very Strict Hurwitz
Polynomials and Applications to 2-D Filter Design”, Multidimensional System:
Signal Processing and Modeling Techniques, Academic Press Inc., Vol. 69, pp.
211-254, 1995

D. Goodman, “Some Difficulties with Double Bilinear Transformation in 2-D
Digital Filter Design”, Proceeding of IEEE, Vol. 63, pp. 905-914, June 1978

P. K. Rajan, H. C. Reddy, M. N. S. Swamy and V. Ramachandran, “Generation of
Two-Dimensional Digital Functions Without Nonessential Singularities of the
Second Kind”, IEEE Transactions on Acoustics, Speech, and Signal Processing,
Vol. ASSP-28, No. 2, April 1980, pp. 216-223.

V. Ramachandran and M. Ahmadi, “Design of 2-D Stable Recursive Filters by
Generation of VSHP Using Terminated n-Port Gyrator Networks”, Journal of the
Franklin Institute, Vol. 316, No. 5, pp. 373-380, November 1983

M. A. Abiri, V, Ramachandran and M. Ahmadi, “An Alternative Approach in
Generating a Z2-variable Very Strictly Hurwitz Polynomial (VSHP) and its
Application”, Journal of the Franklin Institute, Vol. 324, No. 2, pp. 187-203, 1987

V. Ramachandran and M. Ahmadi, “Design of 2-D Stable Analog and Recursive
Digital Filters Using Properties of the Derivative of Even or Odd Parts of Hurwitz
Polynomials™, Journal of the Franklin Institute, Vol. 315, No. 4, pp. 259-267, April
1983



Reference 196

[28]

[29]

[30]

(31]

[32]

[33]

M. Ahmadi, S. Golikeri, V. Ramachandran, “A New Method for The Design of
2-Dimensional Stable Recursive Digital Filters Stisfying Preseribed Magnitude and
Group Delay Response™, Ascoustics, Speech, and Signal Processing, IEEE
Internation Conference on, ICASSP'83, Vol. 8, pp. 399-402, April 1983.

C. S. Gargour, V. Ramachandran, R. Ramachandran and F. Awad, “Variable
Magnitude Characteristics of 1-D IR Discrete Filters by a Generalized Bilinear
Transformation”, pp. 1270-1273, Proceeding of 43 IEEE Midwest Symp. On
Circuits and Systems, Lansing MI, August 8-11, 2000

C. S. Gargour, V. Ramachandran, Ravi P. Ramachandran, “Modification of filter
responses by the generalized bilinear transformations and the inverse bilinear
transformations”, pp. 2043 -2046, Electrical and Computer Engineering, 2003.
IEEE CCECE 2003, Canadian Conference on, Volume: 3, May 4-7, 2003

Thomas S. Huang, “Two-Dimensional Windows”, IEEE Transactions on Audio and
electroacoustics, AU-20, no.1, pp. 260-269, May 1978

M. E. Van Valkenburg, “Analog Filter Design”, Holt, Rinehart and Winston, 1982
M. N. S. Swamy and Hamath C. Reddy, “Two-variable Analog Ladders With
Applications”, in Multidimensional Systems: Techniques and Applications (Edited
by S, G, Tzafestas). New York: Marcel Dekkar, 1986, Chapter 6.

J. Little and C. Moler, “MATLAB”, Sherborn, MA: The MathWorks.

J. O. Eklundh, “A Fast Computer Method for Matrix Transposing”, IEEE
Transactions On Computers, C-21(July 1972), 801-3



APPENDIX

Program Listing

Al. Programs for Chapter 2: 2-D Low-Pass Filters

function Den = ButterPolynomial (n)

Y Den=ButterPolynomial (n) takes the order of the ButterWorth Polynomial and
% returns the ButterWorth coefficients for the nth order ButterWorth Polynomial
% in Ix(n+1} array

[¢) A

% n -~ The order of the Butterworth Polynomial

%

% © Chen Bin Deng ~ May 2003

% Last Revision: July 2003

% Check the order of the ButterWorth Polynomial is legal
if n <=0

error (‘the order of the ButterWorth polynomial should greater than one’);
end

% Caleulate the Poles of nth order ButterWorth Polynomial B(ny*B(-n)
all_poles=roots([(-1)"n, zeros(1,2*n-1),1]);

% For system to be stable, choose all the poles in the left close half to be the pole for B(n)

poles=all_poles(find(real(all_poles)<0));

Form the Denominator polynomial with all the chosen poles

Den=poly(poles);

%  Qutput the coefficients of the nth order ButterWorth Polynomial
fprintf{"The cofficients for %d order ButterWorth polynomial are:', n);
fori=1:1m+1

fprintf("n a(%%d)=%6.2£.",i-1,Den(1));
end

197
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%  Write the nth order Butter Worth Polynomail
fprintf ("n \n The ButterWorth Polynomial is:\n'");
fprintf (Brn=%4£+ Den(1));
for i=2m

fprintt (%41*s %A+, Den(i),i-1);
end
fprintf (Ved £*s%d' Den(n+1),n);

% RS L T U end Of‘Buttgrpolynonxial T I R R X TR S AT L S0 W B ST N U e
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function k1LPRange (alph01, beltall. k2, alph02, belta02)

% function kiLPRange (alph01, belta0l. k2, alph02, belta02) uses the coefficients of
%  the double generalized bilinear transformations, except k1, to get the stable range
%  for the coefficient k1 when the others are with specificed values.

o  Attention: all the inputs need to meet the reqivements to get a two-dimensional Low
% Pass filter:

% ~1.0 <= alphQ] <=0, 0 <= beltall <= 1.0;
% ~1.0 <= alph02 <=0, 0 <= beltal2 <= 1.0, k2 >

% The function output the stable range of ki in the form of plot. Here we use 1000 to
% simulate infinite.

4

% See also k2LPRange, al LPRange. a2LPRange, b1LPRange, b2LPRange, klHPRange
%

% @ Chen Bin Deng, May 2003

% Last Revision:  August, 2003

9% Check to see if the resulted filter is Low Pass one
if belta01 >0 & belta02 >0
button = questdlg('ls the desire fiiter a low pass filter?', ...
Filter Type Dialog','Yes', No', No');
switch button
case 'Yes',
case 'No',
error('Please reinput the coefficients belta01& belta02 to get high pass one! );
end
else

error ('Low Pass filter requires both belta01 and belta02 to be positive! Try again’);
end

% Make sure the coefficients could get stable double generalized bilinear transformation
itk2 <=0

error('’k2 could cause unstable transformation, please check it!");
end

if alph01>0 | alph01 < ~1.0
ervor{'The value of alph01 will cause the transformation unstable, try again!');

end

if alph02>0 | alph02 < -1.0
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error{"The value of alph02 will cause the transformation unstable, try again !");
end
if beltall > 1.0

error{The value of  belta0l will cause the transformation unstable, try again 1");
end
if belta02 > 1.0

errori’The mput of belta02 will cause the transformation unstable, try again !");
end

-
4

compute the stable range of k1 from 0 to 100 in the step of 0.1
k1=0;

w=1;
while k1 <= 100
kI=k1+0.1;
a = unityStable (k1, alph01, belta01, k2, alph02, belta02);
if a === |
x(ny=kl,
n=nts
end
end

% Plot the stable range of k1
y=ones(1,length(x));
figure (1), subplot(211),stem(x,y,"."), axis ([-100,max(x)+0.5, 0, 5]);
xlabel(k_1"),set(gea,xtick’,[min(x),max(x)], 'ytick’,[0]); box off
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function alLPRange (k1, belta01, k2, alph02, belta02)

%

% function alLPRange (k1, beltaQl, k2, alph02, belta02) input the coefficients of

% the double generalized bilinear transformations, except kl, to get the stable range
% for the coefficient k1 when the others are with specificed values.

%

% Attention: all the inputs need to meet the reqirements to get a two-dimensional Low
% Puass filter:

% kl > 0, 0<=beltall<=].0;
% -1.0<=alph02<=(), Q<=beltal2<=].0; 0<k2

% The function output the stable range of kI in the form of plot. Here we use 100 to
% simulate infinite.

%

% See also kILPRange, k2LPRange, a2LPRange, b1LPRange, b2LPRange, lowPass
%

% ©® Chen Bin Deng, May 2003

% Last Revision:  August, 2003
%

% Confirm the desired two-dimensional filter is a Low Pass one
if beltall > 0 & beltad2 > 0
button = questdlg('Is the desire filter a low pass filter?", ...
'Filter Type Dialog',"Yes', No',No'");
switch button
case 'Yes',
case No',
error('Please reinput the coefficients of belta01 and belta02');
end
else

error ('Low Pass filter requires both belta01 and belta02 to be positive! Try again’);

end
% Test if the coefficients could result in stable double generalized bilinear transformation
ikl <=0
error('k2 could cause unstable transformation, please check it!");
end
ifk2 <=0

error(’k2 could cause unstable transformation, please check it!");
end
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b2

02

0()

end

if alph02:-0 | alph02 < -1.0

error("The input of alph02 could cause the transformation unstable, please check it I';
end

if belta0l > 1.0

error("The input of belta01 could cause the transformation unstable, please check it !I');
end

if belta02 > 1.0

error("The input of belta02 could cause the transformation unstable, please check it !');
end

initial alphQ] and n
alph01=-1.0;
n=1;

Compute the stable range for alph01, scan from -1.0 to 0 with step of 0.001
while alph01 <= 0.001
Use the criterion for the system with unity degree denominator to test the system stability
a = unityStable(k1, alph01, belta01, k2, alph02, belta02);
if a ===
x(n)=alph01;
m=n+l;
end
alph01=alph01+0.001;

% Plot the stable range of alph01

y=ones(1,length(x));
figure (1), subplot (211), stem(x,y."."), axis ([min(x)-0.25,max(x)+0.25, 0, 5]);
xiabel(“alpha_{01}"),set(gea,'xtick’,[min(x),max(x)], 'ytick',[0]);box off
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function bILPRange (k1, alph01, k2,alph02, belta02)

Junction bILPRange (kl, alph01, k2,alph02, belta02) takes the coefficients of
the double bilinear transformations, except belta0l, as the inputs. and outputs
the ranges for belta01, when the others take the specified values, with plot form.

Call format: bILPRange (ki, alph01, k2, alph02, belta()2)

First, the input coefficients should be in the ranges for getting stable bilinear
transformation:

k1 >0, -1.0 <= alph0l <= 0;
k2 >0, -1.0 <= qlphQ] <=1, ) <= belta02 <=].0

Second, all the coefficients should meet the requirements for getting stable
two-dimensional digital filters with unity degree denominator for z1 and z2.

Also see: k1LPRange, alLPRange, k2LPRange, a2LPRange, b2LPRange

© Chen Bin Den, April 2003
Last Revision: September 2003

Test the stability of the double generalized bilinear transformation
ifkl <=0
error('k2 will cause unstable transformation, please check it!");
end

if alph01>0 | alphO1 < -1.0

error('1alph01 will cause the transformation unstable, please check it !');
end

ifk2 <=0

error('k2 will cause unstable transformation, please check it!");
end '

if alph02>0 | alph02 < -1.0

error("alph02 could cause the transformation unstable, please check it 1');
end ‘

if belta02 > 1.0 | beltad2 < 0

error(‘belta02 could cause the transformation unstable, please check it 1),
end
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% end of bilinear transformation stability test

belta01=0;
=1

% Scan the stable range for belta0l from 0 to 1.0 with the step or 0.001
while belta01 <= 1.0

% Calculate the coefficients for the denominator polynomial
all=k1*k2+0.707*k1+1.414%k2+2;
al0=k1*k2*alph02+0.707*k1*belta02-+1.414*¥k2*alph02-+2 *beltal2;
a0 1=k1*k2*alph01+0.707*k] *alph01+1.414*k2*belta0 1+2*belta0dl
a00=k | *k2*alph01*alph02+0.707*k1 *alph0 1 *belta02 ...

+1.414*k2*alph02*belta0 1+2*belta0l *belta02:

% 1o test the stability with the criterion for two-dimensional digital iransfer function

% with unity degree denominator
ql =all*belta01*beltall ~ al0*beltall ~ a01*beltad2 + a00);
q2 = ~all*alph02¥belta01 + al0*belta0l + a01*alph02 - a00;
q3 = ~all*alph01*belta02 + alO*alph01 + a0 1 *beltald2 ~ a00;
g4 = all*alph01*alph02 - alO*alph01 ~ a01*alph02 + a00;
ql>0&q2>0&q3>0&q4>0

x(n)=beltal1;
=n+l;
end
beltal1=belta01+0.001;
end

% Plot the stable range for belta0l
y=ones( 1, length{x));

figure (1), subplot(211),stem(x.y,"."), axis ([min(x)~0.25, max(x)+0.25, 0, 5});
xlabel("beta_{01}"),set{gea,'xtick’,[min(x),max(x)], 'ytick',[0]);box off;

% ======epd of bILPRange ======
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function k2LPRange (kl1, alph01, belta0 1, alph02, belta2)

%

% function k2LPRange (alph01, beltaOl. k2, alph02. belta02) uses the coefficients of
% the double generalized bilinear transformations, except k2, to get the stable range
% for the cocfficient k2 when the others are with specificed values.

% Attention: all the inputs need to meet the reqirements to get a two-dimensional Low
% Pass filter:

%% ki > 0, -1.0<=alph0]<=0, O<=belta0]<=10;
% -1.0<=alph(2<=0, <=beltaQ2<=].0

% The function output the stable range of k2 in the form of plot. Here we use 1000 to
% simulate infinite.

%
L1 74

%6 See also k1LPRange, alLPRange, a2LPRange, biLPRange, b2LPRange, kl HPRange

% @ Chen Bin Deng, May 2003
% Last Revision:  August, 2003

% Check to see if the resulted filter is Low Pass one
1f belta0l >0 & belta02 >0
button = questdlg('ls the desire filter a low pass filter?', ...
'Filter Type Dialog',"Yes','No',No");
switch button
case "Yes',
case 'No',
error('Please reinput the coefficients of belta01 and belta02");
end
else

error ('Low Pass filter requires both belta01 and belta02 to be positive! Try again);
end

% Check the other coefficients to meet the stability conditions
if kl <=

error(’kl could cause unstable transformation, please check it and try again!’);
end

if alph01>0 | alph01 < -1.0

error("The input of alph01 could cause the transformation unstable, please check it I');
end

if alph02>>0 | alph02 < -1.0

error("The input of alph02 could cause the transformation unstable, please check it I');
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end

if belta01 > 1.0

error("The input of belta01 could cause the transformation unstable, please check it 1");

end

if belta02 > 1.0

error("The input of belta02 could cause the transformation unstable, please check it 1');

end

% compute the stable range of kI from 0 to 1000 in the step of 0.1
k2=0;
n=1;
while k2 <= le+3
k2=k2+0.1;

% calculate the coefficient of the denominator of the transf function with the form:
% DNzl z2)= all*z]¥22 + al0%] + a0l*22 + a0l
all=k1*k2+0.707*k1+1.414*k2+2;
alO=k1*k2*aiph02+0.707*k1 *belta02-+1.414*k2 *alph02-+2*belta(2;
a0 l=k1*k2*alph01+0.707*k1 *alph01+1.414*k2*belta01+2*beltal1;
a00=k1*k2*alph01*alph02-0.707*k1 *alph01*belta02 ...
+1.414*¥k2*alph02*bela0d 1+2*belta0d1*belta02;

% Use the stability criterion with unity z1 and z2 to determine the stability for all specified coe.

ql =all*belta01*belta0l — al0*beltadl — 201 *belta02+a00;
g2 = —all*alph02*belta0l ~ al0*belta0l + a01*alph02 — a00;
q3 = —all*alph01*belta02 — al0*alphO1 + a01*belta02 —a00;
g4 = all*alph01*alph02 ~ al0*alph01 ~ a01*alph02 + a00;
ifql>0&q2>0&q3>0&q4>0

x(n)=k2;

n=n+1;
end

end

%  Plot the stable range of k2

y=ones(1length(x));

figure (1), subplot (211), stem(x,y,"."), axis ([min(x)-100,max(x), 0, 51);
xlabel(k_2".set(gea,'xtick’,[min(x),max(x)], 'ytick',[0]);box off
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function a2l.PRange (k1, alphO1, belta01, k2, belta02)

%
%
9 ¢4

%

%

Junction a2LPRange (kl, alph01, belta0l, k2, belta02) takes the coefficients, except
alph02, of the double generalized bilineur transformations as its inputs, and determine
the range of alph02 which can make the resulted two-dimensional digital filter to be a
stable one when the others are given.

To employ a stable double bilinear trunsformation, the coefficient should meet the
Jollowing requirements:
k1 >0, -1.0 <= qlphQ] <=0, 0 <= beltal)] <=].0
k2 >0, -1.0 <= alph02 <= 0, ( <= belta()2 <=1.0
For the two-dimensional digital filter with transfer function having unity degree
denominator
D(zl, z2)=all*z]*%z2 + al0%z] + a0l*z2 + a00
The conditions are:
all*beltall *belta0l - al0*beltall - a0l*beltad? + al > ()
~al*alph02*beltall + al0*belta0l + a0l *alph02 - a00 > 0
-all™alph01*belta02 + al0*alph01 + a0l *beltal)? - a0l) > 0
all*alphO1*alph02 - al0*alph01 - a01*alph02 + a00 > 0

Also see: alLPRange, klLPRange, blLPRange, k2LPRange, b2LPRange

@ Chen Bin Deng.  March 2003
Last Reversion:  September 2003

Test the stability of the double generalized bilinear transformation
ifkl <=0

error('k2 will cause unstable transformation, please check it!");
end

it belta01 > 1.0 | belta0l < 0

error('belta0l could cause the transformation unstable, please check it I);
end

if alph01>0 | alph01 < -1.0

error('lalph01 will cause the transformation unstable, please check it !);
end

if k2 <=

error('k2 will cause unstable transformation, please check it!'):;
end
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if belta02 » 1.0 | belta02 < 0

error('belta02 could cause the transformation unstable, please check it 1);
end

% end of bilinear transformation stability test

% initial k and n;
alph02=-1.0;
n=1;

%  Scan the stability ranges for alph02 from -1.0 to 0 with the step 0f 0.001
while alph02 <= 0.001

o
T

Compute the coefficients for the unity degree denominator polynomial
all=k1¥k2+0.707*k]+1.414%k2+2;
al0=k1¥k2*alph02+0.707*k1 *belta02+1.414*k2*alph02+2*belta02;
a01=k1¥k2*alph01+0.707*k1 *alph01+1.414*k2*beltald 1 +2*beltall;
a00=k1*k2*alph01*alph02+0.707*k 1 *alph01*belta02 ...

+1.414*k2*alph02*belta0 1+2*beltad1 *belta02;

% Test the stability per the stability criterion for unitv degree denominator
gql=all*belta0]*belta0l-a10%belta0l-a01*belta02+a00;
g2=-al1*alph02*belta01-+al0*belta01+a01*alph02-a00;
g3=-all*alph01*belta02+al0*alph01+a01*belta02-a00;
g4=all*alph01*alph02-a10*alph01-a01*alph02-+a00;
if q1>0 & q2>0 & 93>0 & q4>0

x(n)=alph02;
n=n+1;
end
alph02=alph02+0.001
end

% Plot the stability ranges for alph(2
y=ones(1,length(x));
figure (1), subplot(211),stem(x,y,"."), axis ([min(x)-0.25,max(x)+0.25, 0, 5]);
xlabel(\alpha_{02}",set(gea, xtick’,[min(x),max(x)], 'ytick’,[0]);box off;
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function b2LPRange (kl, alph01, belta0l, k2. alph02)

2%
%%

%

%

Sfunction b2LPRange (k1, alph01.belta0l, k2,alph02, ) takes the coefficients. except

belta02, of the double bilinear transformations, except belta0l, as the inputs.
And outputs the ranges of  belta0l, when the others take the specified values,
with plot form.

First, to get stabel double bilinear transformation, the coefficients should be bounded
as:

ki1 >0, -1.0 <= alphQ] <=0, 0 <= belta0] <= ].0
k2 > 0, -1.0 <= qalph0] <= 0, <= belta02 <= ].0

And for the two-dimensional digital filter with transfer function having unity degree
denominator

D(zl, z2)=all*z1%z2 + al0%z] + a0l %22 + a0
The conditions are:

all*beltall *beltall —al0*beltall ~ a0l *beltad2 + al) > 0
-all*alph02*belta0] + al0*beltall + a0l *alph02 - a0 > 0
~all*alph01*belta02 + al0*ulph0] + a0l *belta(2 — a0 > 0
all*alphQ1*alph02 ~al0*alph0] —a0l*alph02 + a0 > 0

Also see: kILPRange, alLPRange, k2LPRange, a2LPRange, b1LPRange

© Chen Bin Den, April 2003
Last Revision: September 2003

Test the stability of the double generalized bilinear transformation
ifkl <=0

error('’k2 will cause unstable transformation, please check it!’);
end

if alph01>0 | alph01 < -1.0

error('1alphO1 will cause the transformation unstable, please check it I');
end

if beltaOl > 1.0 | belta01 < 0

error('beltall could cause the transformation unstable, please check it 1');
end

k2 <=0

error(’k2 will cause unstable transformation, please check it!");
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end

if alph02>0 | alph02 < -1.0
error('alph02 could cause the transformation unstable, please check it I);

end

% end of bilinear transformation stability test

%  Scan the stability ranges for belta02 from 0 ro 1.0 with the step 0f 0.001
belta(2=(;
n=1;
while belta02 <= 1.001
all=k1*k2+0.707%k1+1.414*k2+2;
al0=k1*k2*alph02-+0.707*k 1 *belta02+1.414*k2 *alph02-+2*belta02;
a01=k1*k2*alph01+0.707*k1*alph01+1.414*k2*belta01+2*beltall ;
a00=k1*k2*alph01*alph02+0.707*k 1 *alph01*belta02 ...
+1.414*k2*alph02*belta01+2*belta0 1 *beltad?2;
ql=all*belta01*belta0l-a10*beltad1-a01*beltad2+a00;
q2=-al1*alph02*belta01-+al0*belta0l+a01*alph02-a00;
q3=-al1*alph01*belta02+a10*alph01+a01*belta02-a00;
qd=all*alph01*alph02-a10*alph01-a01*alph02+a00;
if q1>0 & q2>0 & ¢3>0 & g4>0
x(n)=belta02;
n=n+l;
end
belta02=belta02+0.001
end

% Plot the stable ranges of belta02
y=ones(1,length(x));
figure (1), subplot(211), stem(x.y,."), axis ([min(x)-0.25, max(x)+0.25, 0, 10]);
xlabel("beta_{02}"),set(gca, xtick’,[min(x),max(x)], 'ytick’,[0]);box off
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funetion key = unityStable (k1, alph01, belta01, k2, alph02, belta02)

%  function key = unityStable (k1, alph01, belta0l, k2, alph02, belta02) takes the coefficients
% of the double generalized Bilinear Transformation as its inputs, and do the stahility test
%  for the system with denominator of this form:

% D(zl,z2)= all*z1*22 + al0*:z] + aOl*22 + a00

%

% The stability criterion:

% all*belta0l*belta0l —al(*beltall ~all*beltal? + a0l > 0
% ~all*alph02*belta0l + al0*beltall + a0l *alph02 - a00 > 0
% ~a I *alphQ1*beltal)2 + al 0*alph01 + a0l *beltal)? —a00 > 0
% all*alph0]*alph02 —al0%alph01 ~a0l*alph02 + a0 >0
%

% The inputs: )

% ki, alphl}l, beltaOl - coefficients of sl ~» zl

% k2, alph02, belta02 -- coefficients of 2 -» z2

% The outputs:

% “1" - the system is stable

% 07 - the system is unstable

%

% @ Chen Bin Deng, May 2003

% Last Reversion:  July 2003

% calculate the coefficients of the denominator of the transfer function
all=k1*k2+0.707*k1+1.414*k2+2;
al0=k1*k2*alph02+0.707*k1%belta02+1.414*k2*alph02+2*belta02;
a01=k1*k2*alph01+0.707*k1*alph01+1.414*k2*belta0 [+2*beltal1;
a00=k1*k2*alph01*alph02+0.707*k1 *alph01*belta0?2 ...

. +1.414*k2*alph02*belta01+2*belta01*belta0d?;

%  Check the stability for the system
gl=all*belta0l*beltall-a10*belta01-a01*beltad2+a00;
g2=-al1*alph02*beltal1+al0*beltal 1+a01*alph02-a00;
g3=-al 1*alph01*belta02+al 0*alph01+a0 1 *belta02-a00;
géd=all*alph01*alph02-al0*alph01-a01*alph02+a00;
ifql>0&q2>0&q3>0&gd>0

key=1;
else

key =0;
end

Of o oo s con o o 0 2 e @nd qunitysl‘able IR LI SN G O D N S TR T N R I TR T TR B 2 et



Appendix Al Programs for Chapter 2: 2.1 Low-Pass Filters 212

function hip = lowPass (c1, ¢2)

% function hlp = lowPass (cl, ¢2) takes the coefficients of the double Generalized Bilinear

% transformation as its inpui, after testing the stability for the resulted two-dimensional sysiem,
% and then plots the contour curve and the 3-D magnitude for the resulted two-dimensional
Low %  Pass digital filter.

%

% Input arguments

% el = [kl alph0l1, belta0l]

% ¢2 = [k2, alph02, belta02]

% where, kI, alph01. beltaQl are the coefficients of the bilinear transformation for the first

%  dimension

(174

70 2’1 “+ alphO]
% R e I
% zl + beltaOl

% and k2, alph02, belta02 are the coefficients of the bilinear transformation for the second
% dimension

% z2 + alph(2

% R Y e ——

% 22 + beltu(2

%

% Also see: highPass, bandPass, bandStop, unityStable,

% k1LPRange, all.PRange, blLPRange, k2LPRange, a2LPRange, b2LPRunge
%

% @ Chen Bin Deng, May 2003

% Last Reversion:  September 2003

% Define the girds
[wl,w2]=meshgrid(-pi:2¥pi/256:pi, -pi:2*pi/256:pi);

% Determine the polarity of the filter is a Low Puass one.
ifcl(3)>0&c2(3)>0
button = questdlg('Is the desire filter a low pass filter?', ...
Tilter Type Dialog',"Yes', No','No');
switch button
case "Yes',
case 'No',
error{"The result will be Low Pass filter! try again!");
end
else

error ("Low Pass filter requires positive belta01 and belta02!");
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4} 4

()0

%

end

Test the stability of the double generalized bilinear transformation
if c1(1) <=

error('k1 will cause unstable transformation, please check it!");
end

ifel(@y01el(2)<-1.0

error('alph01 will cause the transformation unstable, please check it 1),
end

ifel(3)>1.0{cl(3)<0

error('belta01 could cause the transformation unstable, please check it M,
end

if c2(1) <=0

error('k2 will cause unstable transformation. please check ity
end

if c2(2)>0 | €2(2) < -1.0

error(‘alph02 could cause the transformation unstable, please check it 1');
end

ifc2(3)> 1.0 c2(3) <0

error('belta01 could cause the transformation unstable, please check it !');
end

Call the function UNITYSTABLE to Check the stability for the system per the condition of the

digital filter with unity degree denominator
a=unityStable (¢1(1),c 1{2),c1(3),c2(1),c2(2),c2(3));
ifa==0
error ("The system with the set of coefficients is unstable!");
end

Compute frequency response for the desired two-dimensional Low Pass filter
for n=1:length(w1)
for m=1:length(w1)
dd(nm)=((exp(-j*w1(n,m))}+c1(3))+c1(1)*0.707* (exp(-*wl(n,m))+c1 ...
*(e2(1)*LA14%(exp(4*w2(n,m)+e2(2))+(exp(4*w2(n,m)}+c2(3)))...
Hexp(§*wl{nm)yte1(3)*(exp(-*w2(n,m))+c2(3));
nd(n,m)=(exp(-j*w1l(n,m))+c 1(3))*(exp(*w2(n,m))+c2(3));



Appendix Al Programs for Chapter 2: 2-D Low-Pass Filters

214

e
SN

¢4

end
end
hlp = nd./dd;

Plot the contour and 3-D magnitude response for the two-dimensional digital filter
Hipw=abs(hlp);

figure(1),contour(w1/pi,w2/pi,Hlpw,3);

xlabel("omega_1 (\pi)).ylabel("omega 2 (\pi));
figure(2),mesh(w1/pi,w2/pi,Hlpw);

xlabel("omega_1  (p1)),ylabel("omega 2  (\pi)"),zlabel(' Amplitude”;
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A2. Programs for Chapter 3: 2-D High-Pass Filters

function k1HPRange (alphO1, belta01, k2, alph02, belta02)

%

%  function kIHPRange (alph01, belta0l, k2, alph02, belta02) takes the coefficients, except ki,
% of the double generalized bilinear transformations as the input arguments, and returns the

% stable ranges of kI that can make the system a high pass filter and stable with the inputted
% coefficients.

1o get stable double generalized bilinear transformations, for two-dimensional high pass
digital filter got from the analog low pass transfer function by bilinear transformation, the
coefficients are bounded as

k1 >0, 0<=alph() <= 1.0, -1.0 <= belta0l <= 0;

k2> 0,0 <= alph02<= 1.0, -1.0 <= belta02 <= ().

o To guarantee the resulted system to be stable. the digital transfer function should meei the
%  stability requirements

%

%  For 2-D digital filters having transfer functions with unity degree denominators
% Dzl.z2) = all*z]*z2 + al0*:z] + a0l*z2 + a00

%  Use the function UNITYSTABLE to test the stability.

%

% Also see: al HPRange, b1 HPRange, k2HPRange, a2HPRange, b2HPRange, unityStable.m

) © Chen Bin Deng, May 2003
%% Last Reversion:  Sep. 2003

% Check the polarit of the desirved two-dimensional filter
if belta0l <0 & belta02 <0
button = questdlg('ls the desire filter a high pass filter?, ...
Filter Type Dialog','Yes', No', No");
switch button
case 'Yes',
case 'No',
error("This function cannot treat low pass filter problems!");
end
else

error ('High Pass filter requires negative belta01 and belta02";
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end

0% Test the stability of the bilinear transformations for two-dimensional High Pass filter
ifk2 <=0

error("The input of k2 could causc unstable transformation, please check it!";
end

if alph01<0 | alph01 > 1.0

error("The input of alph01 could cause unstable transformations, please check it I');
end

if alph02 <0 | alph02 > 1.0

errordlg("The input of alph02 could cause unstable transformation, please check it I');
error ("alph02 is not correct');
end

if belta01 < -1.0 | belta0l >0

error("The input of belta01 could cause the transformation unstable, please check it 1');

end

if belta2 < -1.0

error{"The input of belta02 could cause the transformation unstable, please check it !');
end

% scan the stable range for ki from 0 to 1000 with step 0f 0.1
% here we sue 1000 to stimulate infinite

k1=0;
n=lm=1;
while k1 <= 1e3
ki=k1+0.1;
a = unityStable (k1,alph01, beltad1, k2, alph02, beltad2);
if g ===
x(n) = ki;
n=q+l;
end
end

% plot the stable range for kl

v=ones(1,length(x));

figure (1), subplot(211),stem(x,y,""), axis ([-100,max(x)+0.5, 0, 5]);
xlabel(k_1"),set(gea,'xtick’,[min(x),max(x)], 'ytick',[0]); box off
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==mammwnas end of kKIHPRange ==
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function al HPRange (k1, belta01, k2, alph02, belta02)

%
Y (£
%

%

()()

0, h
%
9 (4]

(274

%
%

JSunction al HPRange (kl, belta0l, k2. alph02, belta(2) takes the coefficients, except alph0!,
of the double generalized bilinear iransformations as the input arguments, and returns the

stable ranges of alph01 that can make the system a high pass filter and stable with the
inpuited coefficients.

To get stable double generalized bilinear transformations, of 2-D high pass digital filter
obtained from the analog low pass transfer function through the application of
double generalized bilinear transformation, the coefficients are should be bounded as
ki >0, 0 <=alphQl <= 1.0, -1.0 <= belta0l] <= (),
k2 > 0,0 <= alph02 <= 1.0, -1.0 <= belta02 <= (.

To guarantee the resulted 2-D digital filter system to be stable. the digital transfer function
should meet the stability requirements of the 2-Dl digital filter having  transfer functions
with unity degree denominator
D(z1,z2) = all*z1¥:2 + al0%2] + a0l*z2 + a0l
the stable conditions are:
all*belta0l*beltaQl - al0*beltall - a0l *beltal2 + a0l > 0
~all*alph02*belta0] + al0*beltall + a0l *alph02 -~ a00 > 0
~all*alph01*belta02 + al0*alph01 + a0l *beltal? - a00 > 0
all*alph01*alph02 - al0*alph01 - a0l *alph02 + a00 > 0

See also: kIHPRange, bl HPRange, k2HPRange, a2HPRange, b2HPRange, unityStable

© Chen Bin Deng, May 2003
Last Reversion: Sep. 2003

% Check the polarity of the desired two-dimensional filter
if beltaO1 <0 & belta02 < 0

els

end

button = questdlg('ls the desire filter a high pass filter?', ...
TFilter Type Dialog',"Yes','No','No');
switch button
case 'Yey',
case 'No',
error('Can not use this function to treat low pass filter problems!");
end

error ('High Pass filter requires negative belta0!l and belta02! Try again');
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% Check the conditions forstable double bilinear transfarmation
ifkl <=0

error("The input of k1 could cause unstable transformation, please check it!");
end

ifk2 <=0

error("The input of k2 could cause unstable transformation, please check it
end

.
3

1f alph02 < 0 | alph02 > 1.0

error("The input of alph02 could cause unstable transformation, please check it I");
end

if belta0l < -1.0 | belta01 > 0

error("The input of belta1 could cause unstable transformation, please check it 1)
end

if belta02 < -1.0 | belta02 > 0

?

error("The input of beltad2 could cause the transformation unstable. please check it I');

end

% Scan the stable range for alph01 from 0 to 1.0 with the step of 0.001
alph01=0;
n=1;
while alph01 <= 1.0
a = unityStable (k1, alphO1, belta01, k2, alph02, belta02);
if a ==
x(n)=alph01;
n=n+1;
end
alph01=alph01+0.001;
end

% plot the stale ranges for alph01

=ones( 1 length(x));
figure (1), subplot (2,1,1), stem(x,y,."), axis ([min(x)-0.25,max(x)+0.25, 0, 51);
xlabel(“alpha_{01}'),set(gea, xtick’,[min(x),max(x)}, 'ytick'.[0]);box off
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function b1HPRange (k1, alphO1, k2, alph02, belta02)

% function blHPRange (kl, alph01, k2, alph02, beltu(2) takes the coefficients, except belta(l,
% of the double generalized bilinear transformarions as the input arguments, and returns the
%  stable runges of beltaQl that can make the system a high pass filter and stable with the
inputted coefficients.

% To get stable double generalized bilinear transformations, for two-dimensional high pass
% digiwal filter got from the analog low pass transfer function by bilinear transformation, the
% coefficients are bounded as

% kI >0, 0 <= alph01 <= 1.0, -1.0 <= belta0l <= 0;
% k2> 0, 0 <= alph02 <= 1.0, -1.0 <= belta02 <= 0,
%

a7

Yo To guarantee the resulting system to be stable, the digital transfer function should meet the
Yo  stability requirements

% For the two-dimensional digital transfer funcrion with unity degree denominator

% D(z1,z2) = all*z1*22 + al0*:] + a0l *22 + a00

%  Use the function unityStable to test the stabilirv of the resulted systems

%  See also: kIHPRange, al HPRange, kZHPRange, a2HPRange, b2HPRange, unityStable

% ©@ Chen Bin Deng, May 2003
% Last Reversion: Sep. 2003

% Check the polarity of the desired two-dimensional filter
if belta02 <0
button = questdlg('ls the desire filter a high pass filter?, ...
Filter Type Dialog','Yes','No','No');
switch button
case 'Yes',
case 'No',
error('This function annot treat low pass filter problems!");
end
else

error ('High Pass filter requires negative belta01 and belta02");

end

% Test the stability of the bilinear transformations for two-dimensional High Pass filter
ifkl <= ¢

error('The input of k1 could cause unstable transformation, please check it!");



Appendix A2 Programs for Chapter 3: 2-D High-Pass Filters

mn

end

ifk2 <=0
error("The input of k2 could cause unstable transformation, please check "),

end

it alph01<0 | alph01 > 1.0

error('The input of alphO1 could cause unstable transformations, please check it M,
end

if alph02 <0 | alph02 > 1.0
errordlg("The input of alph02 could cause unstable transformation, please check it 1");
error ('alph02 is not correct”);

end

if belta02 < -1.0 | beltad2 > 0

error("The input of belta02 could cause the transformation unstable, please check it R
end

%6 Scan the stable ranges for belta02 from -1.0 to 0 with a step of 0.001
beltal1= ~1.0;

n=1;
while belta0l <= le-6
a = unityStable (k1, alph01, belta01, k2, alph02, belta02);
ifa==
x(n)=belta01;
n=n+1;
end
beita01=belta01+0.001;
end

% Plot the stable ranges for belta01

y=ones( 1,length(x));

figure (1), subplot(2,1,1),stem(x,y,"), axis ([min(x) - 0.25,max(x)+0.25, 0, 51,
xlabel(\beta_{01}"),set(gea,xtick',[ min(x),max(x)], 'ytick',|0]):box off;
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function k2HPRange (k1, alph01, belta01, k2, alph02, belta02)

% fimction k2HPRange (k1, alph01, beltu0l, k2, alph02, belta02) takes the coefficients, except
% k2, of the double generalized bilinear transformations as the input arguments, and returns
the

% stable ranges of k2 that can make the system a stable high pass filter stable with the inputed

% coefficients.
%
% To get stable double generalized bilinear transformations, for a 2-D high pass digital filter

% obtained from the analog low pass transfer function by bilinear transformation,
% the coefficients are bounded as

% ki >0, 0<=qalph0l <= 1.0, -1.0 <= beltaQl <= 0,
% k2 > 0,0 <= alph02 <= 1.0, -1.0 <= beltal2 <= (.

% To guarantee the resulting system to be stable, the digital transfer function should meer the
% stability requirements. For the 2-D digital transfer function with unity degree denominator
% D(zl,z2) = all*z]*z2 + al0%2] + a0l*z2 + a00

% Use the function unityStable to test the stability of the resulted svstems

%

% Also see: al HPRange, b1 HPRange, k2HPRange, a2ZHPRange, b2HPRange, unityStable

% ©  Chen Bin Deng, May 2003
% Last Reversion: Sep. 2003
o

% Check the polarit of the desired two-dimensional filter

if belta0l <0 & beltad2 <0
button = questdlg('Is the desire filter a high pass filter?', ...
Filter Type Dialog',"Yes', No','No");
switch button
case 'Yes',
case "No',
error("This function annot treat low pass filter problems!");
end
else
error ("High Pass filter requires negative belta0l and belta02");
end

% Check the input arguments
ifkl <=0

error("The input of k1 could cause unstable transformation, please check it!");
end
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if alph01<0 | alph01 > 1.0

error(*The input of alph01 could cause unstable transformations, please check it !");
end

if belta0l < -1.0 | belta0l >0

error("The input of belta01 could cause the transformation unstable, please check it 1");
end

if alph02 <0 | alph02 > 1.0

errordlg("The input of alph02 could cause unstable transformation, please check it 1;
error ("alph02 is not correct');
end

if belta02 < -1.0

error("The input of belta02 could cause the transformation unstable, please check it I');
end

% scan the stable range for k2 from 0 to 1000 with step O0f 0.1, we sue 1000 to stimulate infinite

k2=0;
=1 me=;
while k2 <= 1e+3
k2=k2+0.1;
a = unityStable (k1, alph01, belta01, k2, alph02, belta02);
ifa==
x(n)=k2;
n=n+l1;
end
end

% plot the stable range of k2

y=ones{1,length(x));

figure (1), subplot (2,1,1), stem(x,y,"."), axis ([min(x)-100,max(x), 0, 51);
xlabel(’k_2".zet(gea,'xtick’,[min(x),max(x)], 'ytick',[0]);box off

p mmmemzanss end of K2HPRange ==mmmsmmme
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function aZHPRange (k1, alph01, belta01, k2, belta02)

o function k2HPRange (k1. alphQ1, belta0l, k2, belta02) takes the coefficients, except alph()2,
5 of the double generalized bilinear transformations as the input arguments, and returns the
% stable ranges of alph02 that can make the system a high pass filter and stable with the

% inputted coefficients.

%

% The conditions of stable double generalized bilinear transformation:

%o kl>0,0<=alph0] <= ].0,-1.0 <= belta] <= (;

% k2> 0, 0 <= alph02 <= 1.0, -1.0 <= beltall <= ().

%

% To guarantee the resulting system o be stable, the digital transfer function should meet the
0

% stability requirements. For the two-dimensional digital transfer function with unity
% degree denominator

% D(z1,22) = all*z]*22 + al0%z] + a0l*z2 + a00

%  Use the function unityStable to test the stability of the resulted systems

% Also see: kI HPRange, al HPRange, bl HPRange, k2HPRange, a2HPRange, b2HPRange,
% unityStable

% ©  Chen Bin Deng, May 2003
% Last Reversion. Sep. 2003

% Check the polarity of the desiring two-dimensional filter
if belta0l <0 & belta02 <0
button = questdlg('ls the desire filter a high pass filter?, ...
'Filter Type Dialog,'Yes', No', No");
switch button
case 'Yes',
case 'No/,
error("This function annot treat low pass filter problems!’);
end
else

error ('High Pass filter requires negative belta0l and belta02";
end

% Check the input arguments
ifkl <=0

error{"The input of k1 could cause unstable transformation, please check it!");
end
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if alph01<0 | alph01 > 1.0

error("The input of alph01 could cause unstable transformations, please check it !');
end '

if beltadl < -1.0 | belta0l >0

error("The input of belta01 could cause the transformation unstable, please check it 'y

end

1f k2 <=

ervor("The input of k2 could cause unstable transformation, please check it!";
end

if belta02 < 1.0 | belta02 >0

error("The input of belta02 could cause the transformation unstable, please check it !');

end

% scan the stable range for alph02 from 0 to 1.0 with a step of 0.001
alph(2=0;
n=1;
while alph02 <= 1e0
a = unityStable (k1, alph01, belta01, k2, alph02, belta02);
ifa==
x(n)=alph02;
n=n+1;
end

alph02=alph02+0.001;
end

% plot the stabel range for alph02

y = ones (1, length(x));

figure (1), subplot(211),stem(x,y,"."), axis ([min(x)-0.25,max(x)+0.25, 0, 5]);
xlabel(\alpha_{02}"),set(gea, stick’,[min(x),max(x)], 'ytick’,[0]);box off:

Yo mmmmmmmwmmm end of a2HPRange — =s==mwmmwmes
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function b2HPRange (k1, alph01, belta01.k2, alph02)

% function b2ZHPRange (kI, alph01, belta0l,k2, alphQ2) takes the coefficients, except belta02,
% of the double generalized bilinear transformations as the input arguments, and returns the
% stable ranges of belta02 that can make the system a high pass filier and stable with

%  the inputted coefficients.

5

% The conditions of a stable double generalized bilinear transformation of 2-D high-pass filter:
% k1> 0, 0 <= alphQl <= 1.0, -1.0 <= beltaQl <= 0;

% k2> 0, 0 <=alph02 <= 1.0, -1.0 <= belta02 <= (.

To guarantee the resulted system to be stable. the digital transfer function should meet the
% stability requirements

% For the two-dimensional digital transfer function with unity degree denominator
% D122} = all*z] %22 + al0%z] + all*22 + a0
%  Use the function unityStable to test the stability of the resulted svstems

% Also see: ki HPRange, al HPRange, b2HPRange, k2ZHPRange, a2HPRange. unityStable

% ©  Chen Bin Deng, May 2003
% Last Reversion: Sep. 2003

% Check the polarit of the desired two-dimensional filter
if belta01 <0
button = questdlg('ls the desire filter a high pass filter?, ...
TFilter Type Dialog',"Yes','No',No');
switch button
case "Yes',
case No',
error("This function annot treat low pass filter problems!");
end
else
error ('High Pass filter requires negative belta0l and belta02"):
end

% Check the input arguments
ifkl <=0

error{'The input of k1 could cause unstable transformation, please check it!");
end

if alph01<0 | alph01 > 1.0
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error("The input of alph01 could cause unstable transformations, please check it 1');
end

if belta0l < -1.0 | belta01 >0

error("The input of beltadl could cause the transformation unstable, please check it I');

end

ifk2 <=0

error("The input of k2 could cause unstable transformation, please check it!");
end

if alph02 <0 | alph02 > 1.0
errordlg("The input of alph02 could cause unstable transtormation, please check it 1"):;
errvor ("alph02 is not correct”);

end

% Scan the stable range for belta02 from -1.0 to O with the step 0f 0.001
belta02 = -1.0;
n=1;
while beltad2 <= le-6
a = unityStable (k1, alph01, belta01, k2, alph02, belta02};
fa===1
x{n)=belta0d?2;
n=n+l;
end
belta02=belta02+0.001;
end

% plot the stable range for belta02

y=ones{1,length{x});

figure (1), subplot(211), stem(x,y,"."), axis ([min(x)-0.25, max{x)+0.25, 0, 10]);
xlabel("beta_{02}"),set(gea, xtick!,[min(x),max(x)], 'ytick',[0]); box off
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function hhp = highPass (c1, ¢2)

Sunction hhp = highPass (¢1, ¢2) takes the coefficients of the double Generalized
% Bilinear transformation as its input arguments, after testing the stability for the
%  resulted two-dimensional system. and then plots the contour curve and the

%  3-D magnitude for the resulted two-dimensional High Pass digital filter.

Input arguments

%% cl=[kl, alph0l, beltali]

% c2=[k2, alph02, belta02]

% where., k1, alph01, beltaOl are the coefficients of the bilinear transformation
Y% for the first dimension '

% zl + alph01

% §1 —me > f] e

% zl + belta01

% and k2, alph02, belta02 are the coefficients of the bilinear transformation
% for the second dimension

% z2 + alph02

% Rl A —

5 22 + belta0?2

% For high pass bilinear transformation, the coefficients should be bounded
% k1 >0, 0 <=alph0] <= 1.0, -1.0 <= beltaQl <= 0;
% k2> 0,0 <=alph02 <= 1.0, -1.0 <= belta(2 <= 0;

% Also see: lowPass, bandPass, bandStop, unityStable,
% klIHPRange, alHPRange, bl1HPRunge, k2HPRange, a2HPRange, b2HPRange

% © Chen Bin Deng, May 2003

% Last Reversion:  September 2003

% Define the girds
[wl,w2]=meshgrid(-pi:2*pi/256:pi, -pi:2*p1/256:pi);

% Check the polarity of the 2-D filter
ifel(3)<0&c2(3)<0
button = questdlg('ls the desire filter a high pass filter?', ...
'Filter Type Dialog',"Yes',No",'No');
switch button
case 'Yes',
case No',
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error("This function only treat the problems of2-D high pass filter!");
end
else

error {'2-D High Pass filter requires negative belta01 and belta02!');
end

% Test the stability of high pass double generalized bilinear transformation
ifel(l) <=0

error{"The input k! will cause unstable transformation, please check it!');
end

ifel(2) <0]el(2)> 1.0

error("The input alph01 will cause the transformation unstable, please check 1t !');
end

ifcl(3)<-1.0]c1(3) >0

error{"The mput belta0l could cause the transformation unstable, please check it !");
end

ife2(1) <=0

error("The input k2 will cause unstable transformation, please check 1t!");
end

if¢2(2)<0}c2(2)> 1.0

error("The input alph02 could cause the transformation unstable, please check it !");
end

if c2(3) <-1.0 | c2(3) > 0

error{"The input belta01 could cause the transformation unstable, please check it 1');
end

% Test the stability for the 2-D high pass filter with a unity degree denominator
a = unityStable (c1(1), c1(2), ¢1(3), c2(1), €2(2), e2(3));
ifa==0
error ("The system with this set of coefficients is unstable!");
end

% Compute frequency response for the resulting 2-I high-pass filter
puie jrequency resp 3t gh-p
for n=1:length(w1)
for m=1.length(wl)

dd(n,my=((exp(-j*w1l(nm))+c1(3))+c1(1)*0.707*(exp(-; *wil{n,m))+c1(2)))...
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*(e2(1)* 1 414%(exp(-*w2(o,m)+c2(2))Hexp(«1* w2 (n,m))Hc2(3)N)...
Hexp(-j*wl(nm)+e1(3))*(exp(-*w2(n,m))+c2(3));
nd(n,m)=(exp(-*wli(nm))+c1(3))*(exp(-j*w2(n,m))+c2(3));
end
end
hhp=nd./dd;
Hwhp=abs(hhp);

% plot the contour curve and 3-D magnitude response for the resulted 2-D high pass filter
figure( ),contour(w1/pi,w2/pi,Hwhp, 3)xlabel("omega 1 (\p1)).ylabel(Momega 2 (pi));
figure(2),mesh(w1/pi,w2/pi,Hwhp), xlabel(“omega_1 (\pi)), ylabel("omega 2 (\p1)",
zlabel(’ Amplitude");

Yy sz end of highPass.m =
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A3. Programs for Chapter 4: 2-D Band-Pass Filters

function bandPass (Ip, hp)

%

%  function bandPass (Ip, hp) takes the 2-D low pass and 2-D high pass generalized

%  bilinear transformation coefficients as its input arguments, and cascading connect

%  these two member filter fogether, and resulted a 2-D band Stop filter. Plot the contour
%  and 3-D magnitude response for the resulted 2-D Band Pass filter.

%

Y% Input arguments:

% ip = [ki, alph0l, belta0l, k2, alph(2, belta2;

% hp = [k3, alph03, belta03, k4, alph04, belta04]

%  where the coefficients are the generalized bilinear transformation

% ztalph

% L D

%% z+helta

%  and the coefficients with subscript "1" is the low pass coefficients in Ist domian
% the coefficients with subscript "2" is the low pass coefficients in 2nd dimension
%

the coefficients with subscript "3" is the high pass coefficients in Ist dimension

% the coefficients with subscript "4" is the high pass coefficients in 2nd dimension

%
% Also see: lowPass, highPass, kilLPRange, alLPRagne, a2LPrange, k2LPRange, bILPRange

% b2LPRange, kl1HPRange, k2HPRange, al HPRange, a2HPRange, b1 HPRange,
% b2HPRange, unityStabel

%

% © Chen Bin Deng, June 2003
% Last Reversion: Sep. 2003

% define the grid
[wil,w2l=meshgrid(-pi:2*pi/256:pi, -p1:2*pi/256:p1);

el =[lp(1), Ip(2), Ip(3)};
c2 = {Ip(4), Ip(5), Ip(6)];
¢3 = [hp(1), hp(2), hp(3)];
cd = [hp(4), hp(5), hp(6)];

% call the function lowPass to form the member lpw pass filter filter
hip = lowPass (¢1,c2);

figure(2),mesh{w1/pi,w2/pi,abs (hip));
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xlabel("omega_1 (\pi)),ylabel(omega 2 (\pi)").zlabel( Amplitude');

button = questdlg('ls frequency response of the low pass filter correct?', ...
Member Low Pags filter Dialog','Yes','No','No"),

switch button

case 'Yes',

case No',
error{'Modify the coefficients for the member low-pass filter and try again!");

end

% call the function highPass to form the member high pass filter

hhp = highPass (¢3,c4);

figure (3), contour (w1/pi, w2/pi, abs (hhp), 3); xlabel("omega_1 (\pi)),ylabel(Momega_2 (\pi)");

figure(4),mesh(w1/pi,w2/pi,abs(hhp));

xlabel("omega_1 (\pi)),ylabel("omega 2 (ipi)),zlabel( Amplitude’);

button = questdlg('ls frequency response of the high pass filter correct?', ...
‘Member High Pass filter Dialog',"Yes',"No','No");

switch button

case 'Yes',

case 'No',
error('Modify the coefficients for member high-pass filter and try again!");

end

% Compute the frequency response for the resulted Band Pass filter

hbp = hlp.*hhp; Hwbp = abs (hbp);

% Plot the contour curve and the 3-D magnitude response
tigure(5),contour(w1/p1,w2/pi, Hwbp,3); xlabel("omega_1 (\p1)),ylabel("omega_2 ( pi));
figure(6),mesh(w1/pi,w2/pi, Hwbp);

xlabel("omega_1 (\p1)),ylabel("omega_ 2 (\pi)'),zlabel( Amplitude");
figure(7),contour(w 1/p1,w2/pi,abs(hlp),3,r--"); hold on,

contour{w1/pi,w2/pi,abs (hhp),3,'b:");

contour(w1/pi,w2/pi, Hwbp,3,'k-");

xlabel(Momega 1 (p1)),ylabel("omega_2 (\pi)');hold off,

%  wemmemmsws o end of bandPass semsmseesmrs
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Ad4. Programs for Chapter 5: 2-D Band-Elimination Filter

function bandElimination (Ip, hp)
07
PAt]

% function bandElimination (Ip, hp) takes the 2-D low-pass and 2-D high-pass generalized

%  bilinear transformation coefficients as its input avguments, and paralle! combination of

%  these two member filter together, and resulting a 2-D band-elimination filter. Plot the
contour

474

%% and 3-D magnitude response plots for the resulting 2-D band-elimination filter.
174
7]

%  Input arguments.

% Ip = [kl, alph01, beltaGl, k2, alph02, belta02]

% hp = [k3, alph03, belta03, k4, alph04, belta(4]

%  whenre the coefficients are the generalized bilinear transformation

% z+alph

%% § e f e

% z+belta

%  and the coefficients with subscript "1" is the low pass coefficients in Ist domian

% the coefficients with subscript "2" is the low pass coefficients in 2nd dimension
% the coefficients with subscript "3" is the high pass coefficients in 1st dimension
Y the coefficients with subscript "4" is the high pass coefficients in 2nd dimension
00

% Also see: lowPass, highPass, bandPass kl1LPRange, alLPRagne, a2l Prange, k2LPRange,
% bILPRange, b2LPRange, kIHPRange, k2ZHPRange, al HPRange, a2HPRange,
% blHPRange, b2HPRange, unityStabel

%

% ©  Chen Bin Deng, June 2003

% Last Reversion: Sep. 2003

% define the grid
[w1,w2]=meshgrid(-pi:2*¥p/256:pi1, -pi:2*pi/256:pi);
cl = [Ip(1), In(2), Ip(3)];

¢2 = [Ip(4), Ip(5), Ip(6)};

¢3 = [hp(1), hp(2), hp(3)};

¢4 = [hp(4), hp(3), hp(6)};

% call the function lowPass to form the member Ipw pass filter filter

hlp = lowPass (c1,¢2);

figure (1), contour (w1/pi, w2/p1, abs (hlp), 3); xlabel("omega_1 (\pi)),ylabel("omega_2 (\pi)");
figure(2),mesh(w1/pi.w2/pi,abs (hip));
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xlabel("omega_1 (\pi))ylabel("omega 2 (\pi)"),zlabel(' Amplitude");

button = questdlg('ls frequency response of the low pass filter correct?’, ...
Member Low Pass filter Dialog’."Yes', No','No™:

switch button

case 'Yes',

case 'No',
error('Modify the coefficients for the member low-pass filter and try again!");

end

% call the function highPFass to form the member high pass filter
hhp = highPass (c3,c4);
figure (3), contour (w1/pi, w2/pi, abs (hhp), 3); xlabel("omega_1 (\pi)),ylabel("omega_2 (\pi)");
figure(4),mesh(wl/pi,w2/piabs(hhp));
xlabel(“omega_1 (pi)),ylabel(Momega_2 (\pi)'),zlabel(' Amplitude");
button = questdig('Is frequency response of the high pass filter correct?', ...
"™Member High Pass filter Dialog',Yes','No’, No'"):
switch button
case 'Yes',
case ‘No',
error('Modify the coefficients for member high-pass filter and try again!);
end

%  Compute the frequency response for the resulted Band Pass filter
hbp = hlp.+hhp; Hwbp = abs (hbp);

% Plot the contour curve and the 3-D magnitude response
figure(5),contour(w1/pi,w2/pi,Hwbp,3);

xlabel("omega 1 (\p1)),ylabel(Momega 2 (\p1));
figure(6),mesh(w1/pi,w2/pi,Hwbp);

xlabel("omega 1 (\pi)),ylabel(Momega_2 (pi)),zlabel(’ Amplitude';
figure(7),contour(w1/pi,w2/pi,abs(hlp),3,r--");hold on.
contour(w1/pi,w2/pi,abs (hhp),3,b:");
contour(w1/pi,w2/pi,Hwbp,3,'k-);

xlabel(“omega_1 (pi)),ylabel("omega_2 (\p1)');hold off,

== end of bandElimination  smmsmsm s



