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ABSTRACT

Free vibration analysis of tapered composite beams

using hierarchical finite element method

Lin Chen

Compared with the conventional finite element method, hierarchical finite
element method has the advantages of using fewer elements and obtaining better
accuracy in the calculation of natural frequencies, buckling loads, displacements and
stresses. These advantages are also shown in the analysis for uniform or thickness-
tapered composite beams. In many of the existing works on the dynamic response, the
effect on the mechanical behavior of plies in the tapered composite beam caused by the
taper angle is ignored if the angle is small. In the present thesis, this effect is always
considered and quantified based on the three-dimensional ply stiffness analysis. The free
vibration response of tapered composite beam with different taper angles is studied. Also,
based on the ply stiffness analysis, the response of th¢ taper configuration and laminate
configuration on the stiffness and vibration response of the tapered beam are studied.
Because of the complicated mechanical behavior of the tapered composite beam and the
complexity of the analysis, no exact solution is available at present and therefore, Ritz
method and hierarchical finite element method have been used for the calculation of free
vibration response. The free vibration response of different types of tapered composite

beams with and without axial force are analyzed first using Ritz method. Then the
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developed hierarchical finite element formulation is applied to the same anaiysis. Both -
the classical laminate theory and first-order shear deformation theory are considered in
the analysis. The efficiency and accuracy of the developed formulation are established in
comparison with available solutions, where applicable, as well as with the results
obtained using Ritz method and conventional finite element formulation. Finally, a
detailed parametric study encompassing the influences of boundary conditions, laminate
configuration, taper angle, taper model and axial force on the natural frequencies of the
beam is performed. The NCT301 graphite-epoxy composite material is considered in the

study.
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Chapter 1

Introduction, Literature Survey and Scope of the Thesis

1.1 Dynamic analysis in mechanical design

Concern for vibration phenomena can have various motivations. Safety
considerations require that we identify situations that cause excessive motions, for they
will result in the generation of large stress. Even if a vibration does not damage a system,
it might be a source of physical discomfort.

There are two general types of vibration: free and forced. In the case of a free
vibration, there are no externally applied forces during vibration, but an external force
may have caused an initial displacement or velocity in the system. If the external force is
then removed, the body continues to vibrate because of the action of elasticity and mass.
Natural frequency, which is a property of an elastic system, is a frequency of the system
when it undergoes a free vibration without friction. If the frequency of exciting force gets
close to the frequency band of the natural frequencies of the structure, the mechanical
component experiences severe vibration due to resonance. The resonance will decrease
the lifetime of the structure and causes unpredictable failures. It is, therefore, essential to

carry out vibration analysis as an inherent part of mechanical design.



1.2 Composite materials and structures

A composite material consists of two or more materials of different nature but
with complementing mechanical properties and allows us to obtain a material that the
performance characteristics of which are greater than that of the components taken
separately [1]. The major reason for the success of composite materials is that no
homogeneous structural material can fulfill all the requirements for a given application.
Originally, structural composites were developed for the aerospace industry as they
offered attractive properties of stiffness and strength, compared to their weight. Thus,
they replaced previously used aluminum alloys, which also combined quite good
mechanical properties with low specific weight. Furthermore, fiber composites provide
the unique opportunity to simultaneously optimize structure configuration, material
make-up, fabrication process and structural integrity.

Today, composites have found their way into a much more wide range of
applications than simply the aerospace sector. Fiber reinforced composite materials are
the engineering materials which are most commonly used in modern industries and
composite beam is one of the most widely used structural elements. They are made by
stacking together many plies of fiber-reinforced layers in different orientations to achieve
the desired properties. Then these stacked layers are permanently bonded together under
heat and pressure using a hot press or autoclave. Some specific applications of composite
beams need to be stiff at one end and flexible at the other end. Such beams can be made

by dropping off some plies at discrete locations to reduce the stiffness of the beams. This



results in a tapered shape, which is to be discussed in the present thesis.

1.3 Finite element method

The finite element method (FEM) is one of the most powerful numerical
procedures for solving the mathematical problems of engineering and physics. Its
application ranges from static analysis of a simple component to a complicated fluid
flowing system. In FEM, any continuous quantity, such as temperature, pressure or
displacement, can be approximated by a discrete model composed of a set of piecewise
continuous functions defined over a finite number of subdomains. FEM has been widely
used and developed. Nowadays, some advanced formulations have been introduced,
among them is the hierarchical FEM (HFEM). In conventional FEM, a beam element is
modeled using two nodes at the ends where each node has two degrees of freedom.
Therefore, a large number of elements are needed to achieve an acceptable accuracy. In
HFEM, some polynomial or trigonometric terms are added to the displacement and
rotation functions in order to obtain extra degrees of freedom. Thus, the same accuracy
can be achieved by using much less number of elements. This results in rapid
convergence. The present thesis investigates the capability of the HFEM to provide the
desired accuracy and speed of convergence for free vibration analysis of tapered

composite beams.

1.4 Literature survey



In this section a comprehensive literature survey is presented on the vibration of
composite beams and on the application of the finite element method to composite
beams. Important works done on the dynamic analysis of uniform and thickness-tapered
composite beams by finite element methodologies have been chronicled. The majority of
works done on the HFEM analysis of beams and plates are limited to homogeneous
material or based on the Classical Laminate Theory (CLT). The works on the HFEM
analysis of composite beams are presented at the end, though the quantity of such works

is of course very limited.

1.4.1 Dynamic analysis of composite beams

Most of the analysis works on composites are limited to static analysis. At the
same time; the works on dynamic analysis of composite plates or shells have
concentrated on uniform laminates. Study on the dynamic analysis of tapered laminated
beams has been scarce despite their applicability in important structures.

Reddy [1] used virtual work principles, and variational methods to study the static
and dynamic response of laminated composite plates based on the classical and first-order
shear deformation theories of laminated plates. Whitney [2] derived the foundation in the
theory of uniform laminated anisotropic plates and beams, including the problems of
bending under transverse load, stability, and free-vibration. Bertholet [3] and Jones [4]
described the exact solutions for free vibrations of laminated composite beams.
Krishnaswamy et al [5] derived the governing equations of laminated composite beams

using the Hamilton’s principle and presented the analytical solutions. Noor [6] studied



the free vibration of simply supported symmetric laminated plate based on classical
laminate theory, which neglects the effects of the rotary inertia and shearing deformation.
Miller and Adams [7] studied the vibration characteristic of orthotropic fixed-free beams
based on the classical laminate theory. Teoh and Huang {8] made a theoretical analysis of
the vibration of fiber reinforced composite beams based on a Timoshenko beam theory.
Chen and Yang [9] carried out static and dynamic analysis of symmetrically laminated
beams. Chandrashekhara et al [10] presented the exact solutions for the free vibration of
symmetrically laminated composite beams with arbitrary boundary conditions. First-
order shear deformation and rotary inertia have been included in the analysis.
Abramovich [11] obtained exact solutions based on high-order shear deformation theory
for éymmetrical composite beams. Shear deformation and rotary inertia are included in
the analysis. Exact expressions for the frequency equation and mode shapes of composite
Timoshenko beams with cantilever end conditions are derived by Banerjee [12] in
explicit analytical form by using symbolic computation. He [13] also studied the free
vibration of Timoshenko beams with axial force. In Cortinez and Piovan’s [14] paper, a
theoretical model is developed for the dynamic analysis of composite thin-walled beams
with open or closed cross-sections. Hodges et al [15] studied the free vibration of
composite beams using exact integration method and mixed finite element method. They
discuss the influences of laminate configuration on the natural frequencies.

Reddy and Khdeir [16] dealt with the free vibration behavior of cross-ply
composite laminates under various boundary conditions considering the shear
deformation laminate theory. Chandrashekhara and Bangera [17] studied the free

vibration characteristics of laminated composite beams using a third order shear



deformation theory. Eisenberger et al [18] obtained the exact vibration frequencies of
generally laminated beams, considering the effect of rotary inertia and shear
deformations. They concluded that the effect of shear in laminated beams is more
significant than in homogenous beams, due to the fact that the ratio of extensional
stiffness to the transverse shear stiffness is high. Hjela and Teboub [19] used symbolic
computations to analyze generally orthotropic composite beams based on the first order
shear deformation theory. Singh and Abdelnassar [20] studied the forced vibration
response of composite beams considering a third order shear deformation theory. Zappe
and Lesiutre [21] used a smeared laminate model to study the dynamic analysis of
laminated beams including the effects of transverse shear and rotatory inertia.

Few researchers have investigated tapered composite beams. Farghaly and
Gadelrab [22] studied the natural frequency of a one-span composite beam with a
stepwise variable cross-section. They concluded that in addition to the results obtained
for the conventional beams, the stiffness to mass ratio for the composite stepped
cantilever beam may give higher natural frequencies than those made of conventional
materials. Rao and Ganesan [23] investigated the harmonic response of tapered
composite beams using finite element method based on a higher order shear deformation
theory, considering uniaxial bending and ignoring the interlaminar shear stresses. Nabi
and Ganesan [24] developed a general finite element based on a first-order deformation
theory to study the free vibration characteristics of laminated composite beams. They also
conducted a parametric study on the influence of beam geometry and boundary
conditions on natural frequencies. Karabalis and Beskos [25] used finite element method

based on an exact flexural and axial stiffness matrix and approximate consistent mass and



geometric stiffness matrices to study a linearly tapered beam with constant width. Tong et
al [26] obtained an analytic solution for free and forced vibrations of stepped
Timoshenko beams. He, Hoa and Ganesan [27] presented a review of recent
developments in the analysis of tapered laminated composite structures with an emphasis
on interlaminar stress analysis and delamination analysis. Recently, Abd EL-Maksoud
[28] studied the dynamic analysis of uniform and mid-plane tapered composite beams by
using conventional and higher order finite element formulations. Zabihollah [29] presents
the vibration and buckling analysis of uniform and tapered composite beams using
conventional and advanced finite element methods based on the classical laminate theory

and the first-order shear deformation theory.

1.4.2 Hierarchical finite element method

The finite element method is a powerful tool for the analysis of structures. The
standard finite element method is to divide the domain of interest into a number of
smaller — although not necessarily identical — sub-domains called Finite Elements. The
solution is then approximated by locally admissible polynomial functions. Various
procedures have been developed to achieve more accuracy and rapid convergence of
solutions. Broadly these fall into two categories: The most common procedure is to
increase the number of elements while keeping the degfees of freedom of each element
fixed. This is termed as .the h-version of the finite element method, or simply the finite
element method. The other procedure involves keeping the mesh size constant and letting

the degree of the approximating polynomial to tend to infinity [30,31]. This approach is



better known as the p-version of the finite element method or the Hierarchical Finite
Element Method (HFEM).

Many researchers have applied conventional FEM to study the vibration of
beams. Cook [32], Zienkiewicz [33] and Reddy [34] investigated the vibration of Euler-
Bernoulli beams made of conventional materials. Similar works have been done on the
dynamic analysis of Timoshenko beams [35,36,37]. Some researchers extended the study
to tapered beams. Thomas and Dokumaci [38] treated the dynamic analysis of tapered
beams by using an internal node element considering the total deflection and bending
slope as the co-ordinates at the two terminal nodes and two internal nodes giving eight
degrees of freedom to the element. Thomas and Abbas [39] considered four degrees of
freedom per node and two nodes at the ends to obtain stiffness and mass matrices for
tapered beams based on the Euler-Bernoulli beam element. In this model, the deflection,
rotation, curvature and gradient of curvature are considered as degrees of freedom.
Cleghorn and Tabarrok [40] presented a finite element model for free vibration of
lineary-tapered Timoshenko beams.

Some research works have been carried out on the dynamic analysis of composite
beams or plates using conventional FEM. Shi et al [41] presented a finite element model
for higher order plate theories for the vibration analysis of composite beams and plates.
Ramtekkar et a/ [42] used a mixed finite element formulation to calculate the natural
frequencies of laminated beams. Rao and Ganesan [43] studied the natural frequencies of
tapered composite beams considering the shear deformation.

The works on the dynamic analysis of beams using HFEM are very few. With

regards to the HFEM, Han and Petyt [44, 45] used the popular Legendre polynomials in



the Rodrigues form to study the free and forced vibration of laminated rectangular plates.
They [46-50] also conducted the non-linear dynamic analysis of plates using HFEM.
West er al [51] discussed the limitations associated with the use of polynomials in
hierarchical versions because of the ill-conditioned higher order polynomials. Some
researchers preferred trigonometric functions to polynomial functions. Houmat [52]
investigated linear plate vibration by the HFEM and compared trigonometric shape
functions with Legendre polynomials. He concluded that trigonometric HFEM yields
better accuracy in some cases. Leung and Chan [53] and Krahula and Polhemus [54] used
the Fourier series to increase the internal degree of freedom. Barrette et al [55] presented
the vibration analysis of stiffened plates using hierarchical finite elements with a set of
local trigonometric interpolation functions. The trigonometric functions showed great
numerical stability. Recently, Nigam [56] used hierarchical finite element method to
investigate the static and dynamic response of uniform laminated composite beams. He
used both polynomial and trigonometric functions and compared the convergences and
accuracies. He found that the latter one performs better than the former one. Zabihollah
[29] extended Nigam’s work to tapered composite beams. He presented the vibration and
buckling analysis of uniform and tapered composite beams using conventional and
advanced finite element method based on the classical laminate theory and the first-order
shear deformation theory. He concluded that the advanced formulation gives more
accurate results by using fewer elements, which is a good advantage in terms of

computational expenses and discretization errors.



1.5 Objectives of the thesis

The objectives of the present thesis are, (1) to derive the formulations for tapered
laminates considering the effect on the stiffness of plies caused be the taper angle; (2) to
analyze the thickness-tapered composite beams for dynamic response using the
developed hierarchical finite element formulation based on both the Classical Laminate
Theory (CLT) and the First-order Shear Deformation Theory (FSDT); and, (3) to conduct
a detailed parametric study of tapered composite beams. Tapered composite beams with
axial forces are also considered.

The formulation using Ritz method and hierarchical finite element formulation are
developed. The formulations are analyzed for their performance in the dynamic analysis
of uniform and thickness-tapered composite beams based on both the classical laminate
theory and the first-order shear deformation theory. These formulations are then used to
analyze the free vibration response of tapered composite beams subjected to axial forces.
The hierarchical formulation gives more accurate results by using fewer elements
compared with the conventional FEM. Finally, a detailed parametric study of thickness-

tapered composite beams is conducted.

1.6 Layout of the thesis

The present chapter provided a brief introduction and literature survey on the

hierarchical finite element method and the dynamic analysis of uniform and tapered

composite beams.
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Chapter 2 provides the formulation of off-axis behavior of an arbitrary oblique ply
in a tapered composite beam. Then the formulations of elastic behavior of different
tapered beam models are developed considering the effect on the stiffness of plies due to
the taper angle.

In Chapter 3, formulation based on Ritz method and the hierarchical finite
element method are developed and applied to the dynamic analysis of uniform and
tapered composite beams based on the classical laminate theory and the first-order shear
deformation theory. The effect on the stiffness of plies due to the taper angle is
considered. Then a detailed comparison is made between the conventional and the
hierarchical finite element formulations.

Chapter 4 extends the analysis of Chapter 3 to uniform and tapered composite
beams. subjected to axial forces. Similar derivations, examples and comparisons are
given.

Chapter 5 is devoted to the parametric study, which includes the effects of the
boundary conditions, laminate configurations, taper angle, taper model and axial forces
on the natural frequencies of the tapered beams.

Chapter 6 brings the thesis to its end by providing an overall conclusion of the

present work and some recommendations for future work.
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Chapter 2

Mechanical Behavior of Tapered Laminated Composite Beam

2.1 Introduction

Composite structures are increasingly being used in a variety of structural
components in aerospace and automobile industries due to their high strength to weight
and stiffness to weight ratios. Interest in laminated beams as movable elements of
machines that have uniform and non-uniform configurations, and tapered and stepped
configurations, is growing as they are finding a number of applications in modern
industries, such as turbine blades, helicopter blades and robot arms. In this thesis, we will
consider tapered composite beams. In this chapter, the mechanical behavior of tapered
composite beam will be considered. For a composite beam with a small taper angle, the
effect of the tapered angle can be ignored. As the tapered angle increases, the effect is not
negligible. Then it is essential to develop the appropriate formulation for tapered

laminate.

2.2 Off-axis Behavior of Composite Ply
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2.2.1 Formulation of Off-axis Behavior
The tapered beam may have different configurations. First of all, a tapered beam

model without resin pocket is considered, as shown in Figure 2.1:

Figure 2.1 Tapered beam without resin pocket

This beam is constituted of different orthotropic layers at different orientations.

The reference coordinate system for the structure is xyz system, while the principal
directions of each layer are x,, x, and x,. We can derive the relation between the stress-

strain relations in the principal material directions and those in the reference system.
We take the tapered portion for our study object, called Model F (see Appendix),

as shown in Figure 2.2.

N

: i
exr
o

22
21
2 ply

Figure 2.2 Tapered beam Model F
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All the layers below the midline have a positive oblique angle « and the others

above the midline have a negative oblique angle —« .

The first step is to consider a layer of unidirectional material with principal

directions x,, x, and x, . We can characterize the elastic properties of this layer,

expressing them in a temporary reference coordinate system x'y'z'. The interpretation is

given in reference [2]. The principal axis x;, makes an angle € with axis x'. Axes x,and

z' are overlapped, as shown in Figure 2.3.

X2

— .

X1

Figure 2.3 Rotation of axes xx, to x'y'

In the principal x,x,x, coordinate system of each orthotropic ply, we have the

stress-strain relations from reference [2]:

(&) [S, S, S; 0 0
E Sy, S5 0 0
Jenl _ S, 0 0
Va3 Sus Sus
Vi A
Y2) [Sym

o O O O

0

Ses |

@.1)

where ¢, and o are the strain and stress in coordinate system x,x,x,. S; 1s the

14



corresponding compliance coefficient.

Equation 2.1 can be expressed as
le2}=[s{e=} 2.2)
The stresses in the reference x'y'z' coordinate system can be expressed with

respect to stresses in x,x,x, coordinates as:

-

o, cos* 6 sind 0 0 0 2cosfsind |[o,]
o, sin’@ cos’d 0 O 0 —2c0s8sinf || Oy,
o, | 0 0 1 0 0 0 Jom
Typ 0 0 0 cos@ —sinf 0 Ty [
Ty 0 0 0 sind cosé 0 Ty3
(Zey] |—cos@sin@ cos@sind 0 0 0 cos’@—sin’@ |7, |
2.3)
. Thatis:
{o'}=[1,, 10} | 2.4)

where @ is defined in Figure 2.3. {o'} is the stress vector in coordinate system

123

x'y'z'. [ng] is the stress transformation matrix due to angle & and {0' }is the stress
vector in coordinate system x;x,x, .

Similarly, we have the expression of the strains:

(e.] | cos*@ sin’@ 0 O 0 cosOsind |[ & )
£, sin® @ cos’d 0 O 0 —cosfsin@ || &,
Je|_ 0 0 1 0 0 0 J& |
Vye 0 0 0 cos@ -—sinf 0 Va3
Vir 0 0 0 sin@ cosd@ 0 Ns
Vey) |—2cos@sin@ 2cosfsind 0 0 0 cos’ @ —sin*0 |{ ;)
2.5)
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This can be expressed as:
{e}=[r.Je™) 26)
Likewise, [T, ] is the strain transformation matrix due to angle 8. And we have

the relations [2]:
[, 1" =z, 2.7)

1 T
71" =I,] 238)
Substituting Equations 2.2 and 2.4 into Equation 2.6, we can get the relation

between stresses and strains in the reference coordinate system x'y'z':
! -1
{e}=[L,]Is][T, "o} 2.9)
Considering that, the strain-stress relation in x'y'z' coordinate system can be
written as
e1=ls1{o" (2.10)
Thus the compliance matrix in x'y'z' system can be expressed by:

[s1=[Z ] s] T, " 2.11)

The compliance matrix can be written in the form:

Sll SIIZ S13 O O Sl'é

S;Z S;B O 0 S26

S, 0 0 &S
ol 3 ' P (2.12)

[ ] S44 S45 0

S, 0

| sym S:% ]
Similarly,

{ot=[r,] [C] T, ] {e} (2.13)
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The stiffness matrix is:
[Cl=T,][c][z,]" (2.14)
It has the same form as [].

Hereafter, we can consider this layer, having an orientation &, in another

reference coordinate system xyz. The axis x' has an angle o with axis x while axes '

and y are overlapped, as shown in Figure 2.4:

& A (94

Figure 2.4 Rotation of axes x'y' to xy

In the coordinate system xyz, the direction cosines can be written as:

Table 2.1 Direction Cosines

x’ y’ z’
X cosa 0 sina
y 0 1 0
z -sina 0 cosx

Note that, all the layers below the midline have a positive oblique angle  and
the others above the midline have a negative oblique angle —«.

From the above table, we can get the stress relations between these two coordinate
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systems:

o, cos’ a 0 sin‘a 0 2cosasina 0 c.
o, 0 1 0 0 0 0 o,
40', [ _ sin® & 0 cos’a 0 —2cosasina 0 o,
Ty, - 0 0 0 cosa 0 —sina { Ty ?
T, ~cosasinae 0 cosasina 0 cos’a —sin’ & 0 Tpp
Ty) | 0 0 0 sinx 0 cosa ||Try]
(2.15)

It can be written as:
to}=Ir. o'} (2.16)
where {0'} is the stress vector in coordinate system xyz . [Taa] is the stress

transformation matrix due to taper angle « .

Similarly, the strain relations are:

(e.] | cos’a 0 sin’ & 0 cosasina 0o l|[e&, ]
£, 0 1 0 0 0 0 £,
< & | _ sin’ & 0 cos’a 0 —cosasing 0 < &, ?
Yy 0 0 0 cosa 0 —sina ||y
Vi —2cosasina 0 2cosasina 0 cos’a —sin*«a 0 Vr
Vo) | 0 0 0 sina 0 cosa ||Vuy
2.17)

It is abbreviated as:
e} =Ir.Jie @.18)
Likewise, {8} is the strain vector in coordinate system xyz . [Tm] is the strain

transformation matrix due to angle « , and we have the relations:

[z.I'=Ir.J (2.19)
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[Z..I'=[z.[ (2.20)
Substituting Equations 2.10 and 2.16 into Equation 2.18, we can get:

e}=Ir. ]I e} =[S e} (2.21)
Then, the compliance matrix in the reference coordinate system xyz can be

written as:
[Sl=[7.] s T 2.22)

It can be written in the form:

S ‘§|2 3—13 514 37‘15 51 6
_22 S—zs §24 §25 S-ze
[g] — _33 ‘?34 %5 gss (2.23)
44 Pas P
-ss §56
| sym _66 |

Similarly, we can get the stiffness matrix in the reference coordinate system xyz
as following:

Cl=lz.]lc] I 2.24)

[-] has the same form as [§ ] Each term of [Zf ] can be nonzero.

With the notations:

p =cosa
g =sina

The expanded compliance coefficients are:

Sy =p'Sy+2pq* S +q* Sy +p*q" S (2.25)

512 = ple'2 +q2S;3 (2.26)
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8, =0'¢’S;, +(p* +¢° )i, + p*¢*S} - P8,

S = al- S5~ 4*Sis + p*Sys)

5 = pal-207S, +2(p* ~ ¢2)S}, +24°S + (p* — 4 )5,
S = p(p*S) + 473 +47S}s)

S,, =8,

Sy =q"Sy, +p*Sy,

Sy = _qS:.ZG

‘§25 = ZPQ(_ S1'2 + Sés)

S :PS;G

§33 = q4S;1 +2p2q2S1'3 +p4S;3 +p2q2S;5
r 2a 2 2a

Si4 :_Q(q Set+D S+ p S4s)

‘§35 = pQI_ 2q251‘1 __2(p2 "qz)S;z +2p2S;3 _(p2 ’—qz)S; J

Si6 = p(qzs;s +p2S;6 _qZSclts)

§44 = pzS:m +q2S;6

Ss = p124°S;~ 247 +(p* — )5, |

Sis = pQ(S:M - S:s )

2

Sis =408, ~8p*q*S,, +4p*q*S), +(p* - ¢* ] S
‘§56 = Q[_ 217251'6 +2p2S3'6 + (p2 -q :sz
'§66 = qZS:M +pZS;6

The stiffness coefficients are;

20

(2.27)
(2.28)
(2.29)
(2.30)
(2.31)
(2.32)
(2.33)
(2.34)
(2.35)
(2.36)
(2.37)
(2.38)
(2.39)
(2.40)
(2.41)
(2.42)
(2.43)
(2.44)

(2.45)



C,=p'C,+2p’q’Cy, +q'C,, +4p*¢*C,,
6'12 = p2C1'2 + 42C;3

Cis = P°¢°Cpy +(p* +q*)C)s + p?q°CL, - 4p*q*Cy

Cu= Q(” p2C1‘6 - qzcala + 2p2C;5)

Cs = pal- p°C, +(p* - 42 )Ciy + 4°Cly + 2(p* — 47 )i |

Cis :p(pZC{«s +q2C2;6 +2q2C;5)

Cou =—4Cy

Cys = pa(-C, +Cy)

Cy = PCi

Gy =¢*Cl,+2p°q*Cly + p*Cyy +4p°q°Cs

Cs =—qlg’Cly + P*Ci +2p7Ci)

Cys = pal-4°C, - (p* - qz)Cis + p*C = 2(p* ~ ¢*)Cis
Cys = Pla°Cis + P*Cis ~24°Cy )

Ca = P*Ciu+q°Cy

Cis = Pa°Cls~4*Cls +(p* =47 )i |

Cus =pQ(C:14 _Cés)

- ' ) ' 2
Cys = P’4°Ciy ~2p°¢°Cpy + p’q*Cyy +(p? -¢?f €,
aﬁ:ql_pzcl'6+pzcg6+(p2—q2 f'tSJ
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(2.46)
(2.47)
(2.48)
(2.49)
(2.50)
(2.51)
(2.52)
(2.53)
(2.54)
(2.55)
(2.56)
(2.57)
(2.58)
(2.59)
(2.60)
(2.61)
(2.62)

(2.63)

(2.64)

(2.65)



Co =4°Ciu+ P°C (2.66)
Note that every term in matrices [§ ] and [flmay be nonzero.

Substituting Equations 2.9 and 2.16 into Equation 2.18, we can get:
-1 -1 rd
(e} =01 [, [S] 2] [, o} = [STfe) (2.67)
Thus, the compliance matrix in the reference coordinate system xyz can be
expressed by the compliance matrix in the principal coordinate system x,x,x, and the

transformation matrices:

[S]=[7.] 7] ST [, ' [7. T (2.68)
Similarly,
[cl=[r..] [T, el I, [T I | (2.69)

Because the expression of §,.j expressed by §; is too long and difficult to

simplify, it is not convenient to present it here. Instead, an example is given in section

22.2.

For plane stress assumption, we have the following stress-strain relationship:

gx Sll ‘§12 5’13 ‘§14 STIS S—’IG O.X
Y §22 §23 A-S—;24 E 25 ‘§ 26 G)’
¢ Fl= _33 %4 %5 %G X 0 > (2.70)
Ve w Sis Si || 0
Yz ‘§55 §56 0
V) [ SYym .§66_ kTXy)

Condensing out ¢,, 7,, and y ,, the reduced Equation is:

&, S, *?_12 %6 o,
£, r= N Y o, (2.71)
Y sym Ses Ty
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Note that, because S,,, S5, Sy, Sz5, Sy, and Sy, are nonzero, o,, o,, and 7,

have some contributions to ¢, y,,, and y,,. That means &

zz

s ¥,.» and ¥, can be

nonzero although o and 7, are zero. This differs from the behavior of uniform

2z % 2—yz 2
laminated plate. For a uniform laminated plate, each ply is parallel to the middle plane,

and its principal axis x, and the axis z of the reference coordinate system are

overlapped. As a direct consequence of this some terms of [§ } are zero, i.e., S, Sis 5

Sy S35, S, and 5. Then, if plane stress state is assumed, ¢, 7,,, and y,, must be

ZEro.

Inverting the reduced stiffness matrix, we can get the reduced compliance matrix

as below:
Gx Ql _QIZ _—_Q—_l6 gx
O,r= On Oxhe y (2.72)
Txy sym Q66 }/xy

2.2.2 Example Applications
Example 2.1 Off-axis behavior of a ply

A tapered composite beam with the configuration shown in Figure 2.5 is
constituted by graphite-epoxy plies (NCT301). The properties of this unidirectional
composite material are given in Table 2.2.

This tapered beam has ply configurations [(+ 30)12] and [i 30/30]S at the left

S

and right ends respectively. The layer number drops from forty-eight to six. The length of
the beam is L=0.0366m . The individual ply thickness ¢=0.0001524m and the

individual ply height in z direction is 4 =0.000152986 m . The taper angle of this beam
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is @ =5°. We consider the 13" ply and its orientation is 6 = 30°. Figure 2.5 shows the

left part of this beam.

Table 2.2 Material Properties of NCT301

E, 144 GPa

E,, E, 12.14 GPa

Vors Vi 0.017
Composite Vo 0.458

G,, G, |4.48GPa

G,, 3.2 GPa

D 1660.8 kg/m’

E 3.93 GPa

Resin v 0.37
G 1.034 GPa
o, 1000 kg/m’
z

XYy

| |

(x &(
— 13th\ayer §

Figure 2.5 An oblique ply in a tapered laminate

After two transformations, the compliance and stiffness matrices of this layer in

coordinate system xyz are given below:
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5132 —-260.0 -111.7 -19.15 1063  604.0
881.0 —2862 —3.728 —4.626 42.62
_ 828.2 -6.634 -50.73 -309.3 .
[5]= TPa
2889 393.3 143.5
2428 —126.8
| sym 1261 |
869.5 295.8 58.02 36.01 —64.21 —422.7]
229.1 67.05 11.93 -20.16 -136.3
. 154.8 2662 1.197  8.000
Ic]= GPa
37.19 —8.758 —22.69
4737  37.48
| sym 294.6 |

Note that, none of these terms is zero. This differs from the matrices for the

uniform composite beam. The material property is similar to that of anisotropic material

but symmetric.

The reduced stiffness matrix for the ply is:

7434 2370 -364.0
[0]= 189.3 —119.9 |GPa
sym 257.6

2.3 Elastic Behavior of Tapered Composite Laminate

2.3.1 Formulation of Elastic Behavior

For a thin plate, because the magnitudes of the stresses acting on the surface

parallel to the middle plane are much smaller than the bending stresses, an approximate

state of plane stress exists.
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For a tapered composite beam as shown in Figure 2.2, some basic assumptions are
imposed:

1. The beam is constructed of an arbitrary number of layers of orthotropic sheets
bonded together. However, the orthotropic axes of material symmetry of an individual
layer need not coincide with the xyz axes of the beam.

2. The beam is thin, i.e., the thickness A is much smaller than the length L and
width b .

3. Small deformation is assumed.

4. In order to include in-plane force effects, nonlinear terms in the equations of
motion involving products of stress and slope are retained. All other nonlinear terms are
neglected.

5. Transverse shear strains y,, and y,, are negligible.

6. In-plane displacements u# and v are linear functions of the z coordinate.
7. The transverse strain &, is negligible.
8. Each ply obeys Hooke’s law.

9. Rotary inertia moments are negligible.

10. There are no body forces.

11. Transverse shear stresses 7,, and z,, vanish on the surfaces z=+H/2.

In this thesis, Classical Laminate Theory (CLT) is applied to tapered composite

beam. CLT has been introduced in reference [2].

CLT uses a first-order model. From assumption 5, y,, and y,, are zero, then the

displacements u, v and w can be written as:
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u(xy,z)= u"(x,y)—zm (2.73)

Ox

v(x,y,z) =’ (x,y)— z Q@ (2.74)
Y

w(x,y,z) =w’ (x,y) ‘ (2.75)

where, u, v and w are displacements in x, y and z directions respectively. u°,

v’ and w° are the displacements of an arbitrary point in the mid-plane.

The expression for the strain field in xyz coordinate system is

e, (x3.2) = € (xy)+ 26 (xy) (2.76)
e, (xyz)=e(xy)+zk2(x) (2.77)
Yy (£3,2) = 4, + 25, (2.78)
g, =0
Y. =0
Y =0

where, €7, € and y, are the strains of an arbitrary point in the mid-plane. «7,

x, and x; are the curvatures of the mid-plane.

Substituting Equations 2.76 to 2.78 into Equation 2.72, we can get the stress field:

Ux Qll QlZ Q16 E; +ZK:
g, = On Ou [j € +2x; (2.79)
Txy Sy m Q66 ’)Cy +z K.:y

The force resultants, N, Ny , ny and moment resultants M, , M i Mxy are

defined as: -
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Nx H ax O-x
N, = [4io,1dz=) [ {0, tdz (2.80)
N 2 k=l 2kl
xy Xy Txy
(Mx H o, o,
M, = B, o, zdz = f o, zdz (2.81)
M 5 ho) 2k
U Thy Ty

where, n is the number of layers at a certain section. It varies within the tapered

domain.

Finally, as in the case of uniform plate, we can get the following equation:

{ﬁ} ZB zﬂ{x} 2.82)

where,
H o .

Ay =} Oydz (2.83)
2
H —

By = % Oyzdz (2.84)
2
H —

D, = [30,z%dz (2.85)
2

withi,j=1,2, 6

2.3.2 Elastic Behavior of Tapered Beam Model F

2.3.2.1 Formulation of Elastic Behavior of Tapered Beam Model F
Because some plies drop off regularly, none of 4, B or D matrices are

continuous within the whole tapered length. But they are continuous within each small
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domain, and we can express them by continuous functions of x within each small domain.

15
14
13]
12
11

j— l]

©
—~ N W Ao g
=

—NW R WV X

ply

Figure 2.6 Discretization for taper Model F

For the above example, suppose that there are 2M layers dropped above or below
the mid-plane, there will be M small domains. At each section, we can integrate from the

bottom to top to get 4, B and D matrices.

ZZN- 1 \

ZN+m+1\

ZN—m/
Zi ]
2 /

Figure 2.7 The m" domain of Model F
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For the m™ domain shown in Figure 2.7, the stretching stiffness coefficient can be

integrated as:

H N
4;= zﬁ 4z
2
N-m___ 2N - Nem+l 2=
= ijk(zk —Zk—1)+ ZQz'jk (Zk _Zk*1)+ f Q"J'N—m+1dz + f Q"J'N+mdz
k=1 k=N+m+l Nem
N—m___ 2N —_ — ZN-m =7
=30, -n)r Y0,G-a )+ [ O, .4+ [0, & @50
k=1 k=N+m+1 o
N-m__ 2N — -
= ijk(zk _Zk—1)+ ZQijk(Zk _Zk-1)_QijN_m+1ZN"" _Q"J'NMIZN‘”'
k=1 k=N+m+l
N-m__ 2N _ —
= h ka + QIJ - (QijN—m+1 + QijN+m )ZN_'"
k=1 k=N+m+1

,j=1,2,6
where, ¢ is the thickness of individual ply and /4 is the height of individual ply in
z direction. « is the tapered angle and is defined in Section 2.2.1. The relation between
h and t is:

t
cosx

h:

The coordinate of the top surface of the k" ply can be expressed by a function of
x as following:
Z, =xtana+h(k~N)

(N - R)h
L

tana =

where, N and R are half layer numbers at the left and right ends respectively.

Similarly,
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By = |% Qyzdz
2
55 VaY N+m+l T
:% ;Qu/( (Zk - Zk 1) NZHMQ{M( Zk 1) fN_m QI’J’N—mHZdZ + .[:‘ Qij.Nerde
1% . e
:E 2 Qijk (Zk Zk 1) 2, ]%;ngyk( Z,f_l)+ fN‘m QijN__m“ZdZ_*' l: QiijZdz
=%{g_"jk(2’f s . g:n%uk(zk Zi- 1) Qi P +Q'j~+mz§/-m]
1) - B
= El: £ ijk( Zk l) . %ngyk( Z,f_l)— (QijN_m+1 — Q’,J_Nﬂn)zlzv_m]
(2.87)
,j=1,2,6
The bending stiffness coefficient is:
H
D= [40¢
2
N-m__ N _
=§ . yk(zli - Z:—l)+§k ;Zguk(ZZ )+ fN Oy 2odz+ f"""” 0,,. 2°d
1 ANFo) 2y ZN-m =
=§ £ z‘jk(z ~z. 1) 3, g;,,g""( k=1 ) fN_’ Ot 2dz+_[ Qme
1| & — .
=_3—,:; ijk(Zi _Zk l) . Nzﬂn+Qlyk(Zk zk 1) QyN ,,,HZ?»/ -m _QijN_,_mZil—m}
1] =m_ . _
- SI: k=1 Uk (Zz - Zk 1) e NZQ]”k(Z" Zk l) (Q"J'N—m+1 + QijN+m )Z?v—mil
(2.88)
,j=1,2,6

A, B and D matrices differ from domain to domain. For each small domain,
every nonzero term of A is linear function of x, of B is quadratic, and of D is cubic.

For plane stress assumption, we have the strain-stress relation:
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&, S §12 ‘?16 Oy
& 1= S o, (2.89)
}/xy Sym 66 Txy

Now, recall the expressions of these six compliance coefficients from Equations
2.25 to 2.45. We can find that all of these six coefficients are even functions of « . That
means for symmetric laminate, both the upper and lower symmetric sub-laminates have
the same compliance matrix, even though their tapered angles are o and -«

respectively. We invert the compliance matrix to get stiffness matrix:

o, én glz gé &y
O, (= On Okl € y (2.90)
z-)cy sym Q66 }/xy

We can expect that both the upper and lower sub-laminates have the same
stiffness matrix, just like that of the uniform laminate.
Therefore, for each section of a tapered symmetric laminate, 4, B and D

matrices have similar forms for a #0 or a =0. A,.j s B,.j and D,.j are also zeros in the

case of a # 0 if they are zeros in the case of & =0. For any tapered symmetric laminate,

A#0, B=0, D=0, just like those of the uniform laminate.

N, 4, A4, Ag||& M, Dy, o D || KX
Nyot=|4, 4, Aslie ¢, (M, =|Dy, Dy Dyiixy (2.91)
N,, Ag Ay A ||V i’y M Xy Dy D,y Dg K;y

Note that, 4;, B, and D; are functions of x. They differ from the constant

coefficients 4.

;> B; and D, for a uniform plate.

In addition, for other models, 4, B and D matrices are similar.

In this thesis, we limit our discussion to symmetric laminate.
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2.3.2.2 Example Applications
Example 2.2 Elastic behavior of Model I beam

A Model F composite beam as shown in Figure 2.5 is made up of NCT301
graphite-epoxy. Its mechanical properties are shown in Table 2.2.

The geometric properties of the beam are: length L = 0.03048 m ; individual ply
thickness ¢ =0.0001524 m. There are 32 and 28 plies at the left and right ends of the
laminate and the configurations are [(0/90)g]s and [(0/90)7]s respectively. The taper angle
a =1.146°.

There are four layers that are dropped, so there will be four small domains and in
each domain, the 4, B and D matrices are different. These four domains are
0~0.00762 m, 0.00762 ~ 0.01524 m, 0.01524 ~ 0.02286 m, 0.02286 ~ 0.03048 m.

The four 4 matrices are

377.976 —487.196x
11.9710-98.2418x
0

417.798-5713.20x
11.9701-98.1325x
0

338.154-487.196x
11.9718 -98.2418x
0

11.9710-98.2418x
382.118~5780.97x
0

11.9701-98.1325x
341.781-487.383x
0

11.9718-98.2418x
422.455-5780.97x
0
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0
0
21.8507-179.236x

0
0
21.8505-179.207x

0
0
21.8509-179.236x

MN -m™

MN -m™

MN -m™



457.620-5713.20x 11.9693-98.1325x 0
11.9693-98.1325x 301.444-487.383x 0 MN -m™
0 0 21.8503-179.207x

Ag, A, A, and A, are zeros because of the 0/90 configuration. This is as same

as that of the uniform plate. The other terms in 4 matrix are linear functions because of

the tapered shape.

The values of 4,, corresponding to the four 4 matrices are plotted in Figure 2.8.

Figure 2.8 Coefficient A,, of tapered composite beam

As can be seen, these four straight lines have different slopes and intercepts. In

each domain, the line is straight because two layers are dropped off and the other layers
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are kept. Segment one and three have the same slope, because in both domains the
dropped layers have same orientations. So do segment two and four.
All the four B matrices are zero because of symmetry.

The four D matrices are

809 —19412x +151251x* — 64986x° 24 — 584x + 4790x% —13104x°
24 - 584x +4790x* —=13104x° 698 —17659x +152908x2 — 771103x?
0 0 43 —1066x +8744x% - 23908x*

809 —19533x +167186x% — 762062x> 24 —584x + 4790x* - 13090x°
24 — 584x +4790x> ~13089x3 697 —17536x +136767x2 — 65010x>
0 0 43 -1066x + 8744x ~23904x°

24 - 584x +4791x* —13104x> 700 -18028x +169050x ~ 771103x*
0 0 43 -1066x +8744x* - 23908x>

815-20141x+183121x% —762062x° 24 — 584x + 4790x* — 13090x°
24 — 584x +4790x —13089x* 691 —16921x +120626x* — 65010x°
0 0 43 -1066x + 8744x -23904x*

{806 —~19048x +135316x* — 64986x> 24 - 584x + 4791x* —-13104x> }

D, D,,, D, and Dy, are also zeros because of the 0/90 configuration. This is as
same as that of the uniform plate. The other terms in D matrix ‘are cubic functions
because of the tapered shape.

The values of D, corresponding to the four D matrices are plotted in Figure 2.9.

As can be seen from this figure, the entire curve looks like a straight line. In fact,

each line is curved but the curvatures are very small as can be seen from the matrices.

That is because of the small tapered angle. The curvature increases along with the tapered
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angle.

Figure 2.9 Coefficient D,, of tapered composite beam

2.3.3 Elastic Behavior of Tapered Beam Models A, B, C, D, and M
In this thesis, we will also discuss the elastic behavior of other tapered beam
models as well as Model F. In Zabihollah’s thesis [29], he has done a similar work for

different models but ignored the effect on the stiffness coefficients caused by the tapered

angle o .

2.3.3.1 Formulation of Elastic Behavior of Tapered Beam Meodels A, B, C, D, and M

Following the same procedure as in the previous section, we can derive the
formulations for the other models A, B, C, D and M (see Appendix).

Model M (Mid-plane) is shown in Figure 2.10.
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ply

Figure 2.10 Discretization for taper Model M

As can be seen, the first part has a block of resin and differs from the others. We
need to integrate from the bottom to top including the resin pocket. Thus, this part is

integrated individually. That is:

When m =1,
D, = [, 0,7

1 N_Mi 3 Neml =
=§k=lQij,((Zk—z,(“l) 3k NZH;%Uk(Zk z,(1 [ 0,,7d oo
~1 20y 30, ) [ D,
:é[ k:lné""‘(zi_z" ‘) . g;ﬁ%w((zk z,)- 2@,72;3\,_,,,]

where z, and N are defined in the previous section for taper Model F.
When m=23,..M , the bending stiffness coefficients are as same as that of the

taper model without resin, Model F. The integration is given by Equation 2.88.
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Model C (Overlapped) is shown in Figure 2.11. Every part has a resin pocket.

— N W hlno g
B

ply

Figure 2.11 Discretization for taper Model C

Similar to the first part of Model M, all the bending stiffness coefficients are:

It

=N+m+l1 (2.93)

Il
Whr W= W=
R~ H
h £
N
oW
|
N
rw
-
+
W
==

where z, and N are as same as those defined in the previous section for taper

Model F.

Model A is shown in Figure 2.12. For this model, D, is a continuous cubic
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function of x throughout the whole beam because there is only one big resin pocket. We

do not need to divide the beam into M parts.

8
7
6
- 5 X
81 4
7} 3
ol 2
resin/s 1
4
3
2
1 ply

Figure 2.12 Discretization for taper Model A

H —
Dy=\% l.izzdz
2

1& - 1 2N _ e |

:EZ ijk(zl3 _ZZ—I)+§ ZQJik(ZZ -z [ Q,,2°dz (2.94)
k=1 k=2N-R+1 R

11 & — 2N o

- E[Z Uk (Zi B ZZ"I)+ Z Qs (ZI:: - 22—1)‘” Zer'Z;:|
k=1 k=2N-R+1

where z, .and N are as same as. those defined in the previous section for taper

Model F.

Model B is shown in Figure 2.13.
This type of taper model differs from the previous models. The external layers are

kept and the internal layers are dropped off one by one. Meanwhile, each part has a resin
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pocket. Therefore, we need to integrate from bottom to top including three parts, resin,

oblique and horizontal plies.

8
7
10 6
9 5 X
8 4
7 3
6 2
51 1
resin/4
3
2
1

Figure 2.13 Discretization for taper Model B

The expression of bending stiffness coefficient differs from domain to domain.

H —
— 12 2
Dl.j = w9z dz
2
1& — 1 2N=R-m
. 3
~§Z ijk( -z 1) Zka( -z 1) Zka( Zk—l)
k=1 =Rem+1 3 k=aNoret
Rem g3 ZR S g
+ f  z°dz + 0 .z°dz
R ¥ ZR+m 4
2N-R-m

—ijk( zk 1) Zka( z,::_l)+ ZQQ.(Z;+m —-z; )j|

k=1 k=R+m+1 k=2N-R+1
- (2.95)
where, for the external oblique layers, the height of individual ply is

7
cosS

h=

z, =xtana~t(N-R)+h(k-R), 1<k <R
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«(N -R)
L

tang =

For the internal horizontal layers,

z,=t{k—N), R<k<N

Model D is shown in Figure 2.14.

1 . 2 | .. _ M
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i‘;‘\

—
[

—_
\Nwhmc\\xoo\oo

Lol S JRFS I -N LV R W e ]
o)

ply

b

resin

Figure 2.14 Discretization for taper Model D

The expression of D; is a little more complicated than the others.

mor,_ _ s 3 J R
[(Qijz,,_l + Qif'zzv-zn+2 XZZn—l T Zyn2 )]'*’5 ZQ,, (Zk —Zk—l)

n=1 k=2m+1
2

n=] k=2m+1
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2N=2m
= = 3 3 = (3 .3 = (.3 3
[(Qijzn_l + QijZN_Z,HZXZZn—] T Zap-2 >]+ ZQy (Zk - Zk—1)+ 2Qrij(zzm - Z2m~l)}

(2.96)



where, for the external tapered layers,

t
cosax

h=

Z,,, =xtana +t(1—N)+h(n—-1)

Zypy =25, ,—h,1<n<m

(N - R)(\/szz(N —RP+ 1 - 2L)
t*(N-R) -I’

tanga =

For the internal horizontal layers,

z, =tlk=N), 2m+1<k <2N -2m

For the horizontal and tapered layers adjacent to the resin,
z,, =t(2m—N)

Zyny = xtana +#(1~ N)+ h(m —1)

2.3.3.2 Example Applications
In this section, we will present an example to show the bending stiffness

coefficients of different taper models.

Example 2.3 Bending stiffness coefficient of tapered composite beam

A tapered composite beam is made up of NCT301 graphite-epoxy. Its mechanical
properties are shown in Table 2.2.

The geometric properties of the beam are: length L = 0.03048 m ; individual ply
thickness ¢ =0.0001524 m. There are thirty-two plies at the left end and sixteen plies at

the right end. Sixteen layers are dropped. The configuration of both ends are [(0/90)s]s
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and [(0/90)4]s respectively.
There are sixteen layers that are dropped, so there are totally eight small domains.

Tables 2.3 and 2.4 give the first two bending stiffness coefficients D,, of different taper

models.

Table 2.3 D,, of the first domain for different taper models

Taper Model 1** domain

A 684.692 —28321.8x +311354x* —194743x

732.371—28285.8x +310860x* —194276x°

784.346 —37649.3x + 583372x* —194743x°

784.364 —37663.5x + 587092x” —520273x°

B
C
D 794.875—9849.63x +100489x° —193811x°
F
M

784.346 —37649.3x + 583372x% —194743x°

Table 2.4 D,, of the second domain for different taper models

Taper Model 2" domain

684.692 —28321.8x +311354x* —194743x%

730.084 — 28285.8x + 310860x* —194276x>

782.138 —36903.9x + 518158x> —194743x*

804.611-17038.7x +165505x* —193811x’

784.662 —37897.8x + 648585x” — 5900250x

Zl ool w >

784.662 —37897.8x + 648585x* ~ 5900250x"

As can be seen from the above table, the expressions of D,; of Model A are same
in the first two domains and they should be the same throughout the whole beam. Within
the first domain, Models C and M have the same D,,, because these two models have the
same physical configurations within this domain. Furthermore, their D, is very close to

that of Model F. That is because the only difference is that in Model F, the dropped-off

part is laminate while in Models C and M it is resin. Model D has the largest value of
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The coefficients throughout the whole beam are plotted in Figures 2.15 and 2.16.
In Figure 2.15, the line of Model A is a real continuous curve, because throughout

the whole beam, D,, is always the same cubic function of x as given in tables 2.3 and 2.4.

This is due to the fact that the dropped part is the big resin pocket and is isotropic. The
lines of Models C, F and M seem to be also continuous curves but in fact, their curvatures
differ from interval to interval, as revealed in tables 2.3 and 2.4. Moreover, these three
lines seem overlapped but they are not (tables 2.3 and 2.4). They are \}ery close because
the dropped parts, resin or plies, are at the center of the beam. The effect caused by the
dropped-off resin or laminate at the center of the beam is small compared with other

parts. This effect is negligible.

—&——Model A
-~ -~ Model C
~ - - — Model F

— - % - -Model M

Figure 2.15 D, of Models A, C, F, and M
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In Figure 2.16, Models B and D give interesting discontinuous segments. That is
because the plies are not dropped-off regularly but are cut at the sections suddenly, not

like the other models. For model B, the discontinuities at sections 1, 3>, 5 and 7 are
smaller than that at sections 2, 4, and 6. This is because the dropped-off plies within
domains 1, 3, 5, and 7 have 90° orientation while the dropped-off plies within domains
2, 4, and 6 have 0° orientation. The bending stiffness coefficient of 0° orientation ply is
much larger than that of 90° orientation ply. For a 0° orientation ply, the major
contribution to D, is given by fiber while for a 90° orientation ply, the major
contribution is given by resin. The segment of model D is a good contrast. The

discontinuities decrease regularly, because all the dropped plies have 90° orientation.

800
600 |
Model D
E
&
g 400 Model B
kS
3
N
200 -
0 T T T N — T T T T o
0 0.00381 0.00762 0.01143 0.01524 0.01905 0.02286 0.02667 0.03048
x (m)

Figure 2.16 D,, of Models B and D



At x=0.00381m, the dropped-off plies of both models B and D have 90°
orientation, but obviously the discontinuity of model D is larger than that of Model B.
This is because the dropped-off ply of model D is near the top edge while that of model B
is at the middle. The contribution of a ply near the edge is larger than that of the internal
ones.

Moreover, the discontinuities of both Models B and D vanish near the left end of
the beam because the dropped plies are very close to the mid-plane. Then they contribute

a little to the bending stiffness.

24 Conclusion

In this chapter, we have derived the formulations for tapered laminates. The
stiffness and compliance matrices differ from that of uniform beam. Each term of these
matrices can be nonzero. Then we derived the 4, B and D matrices of tapered plate and
examples have been given for beams with different configurations. The elastic properties
of different models differ from each other; some are continuous while the others are
segments. These various properties affect the behavior of tapered composite beam. In the

following chapters, we will study the free vibration of tapered composite beam.
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Chapter 3

Free Vibration Analysis of Tapered Laminated Composite Beam

3.1 Introduction

Beams are widely used in civil, mechanical and aerospace structures. In the thesis,
we limit our study to laminated composite beam. According to various length-to-height
ratios of beams, we apply Classical Laminate Theory (CLT) or First-order Shear
Deformation Theory (FSDT). The former accounts for bending moment effects on
stresses and deformations. Transverse shear forces are recovered from equilibrium but
their effect on beam deformations is neglected. Its fundamental assumption is that cross-
sections remain plane and normal to the deformed longitudinal axis. The rotation occurs
about a neutral axis that passes through the centroid of the cross-section. Meanwhile, the
FSDT corrects the classical beam theory by including first-order shear deformation
effects. In this theory, cross-sections remain plane and rotate about the same neutral axis
as the Euler-Bernoulli model, but do not remain normal to the deformed longitudinal
axis. The deviation from normality is produced by a transverse shear that is assumed to
be constant over the cross-section.

These two theories are based on the assumptions of small deformations and linear
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elastic isotropic material behavior. In addition, both models neglect changes in
dimensions of the cross-sections as the beam deforms.

In this chapter, we will derive the formulations based on CLT and FSDT for
vibration of tapered laminated beam, using both Ritz method and Hierarchical Finite
Element Method (HFEM). Then some examples using Ritz method, conventional FEM
and HFEM will be given. The exact solutions of these examples will be presented if

available.

3.2 Formulation based on Classical Laminate Theory

3.2.1 Solution using Ritz method and based on CLT
In this section, we will derive the formulations for Ritz method based on the
classical laminate theory and then give some examples, including uniform and tapered

composite beams.

3.2.1.1 Formulation using Ritz method based on CLT

The Ritz method provides a convenient method for obtaining approximate
solutions to boundary value problems. This approach is equally applicable to bending,
buckling, and free vibration analysis. For the free vibration problem without external
forces, the governing energy condition can be written as:

N=U+T (3.1)

where U is the strain energy and T is the kinetic energy.

The strain energy of an elastic solid written in Cartesian coordinates can be
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explained as following:
1
U= 5 J' I j(o-xg)c +0,E,+0,6 +T,7, +T.7. +T7y )dxdydz 3.2)
Taking into account the basic assumptions of laminated plate theory as discussed
in Chapter 2, ie., o, =7, =7, =0, the right-hand side of Equation 3.2 has three terms

left:

1
v =—2— IJI(GISX + O-ygy + Twyxy )ixdydz (3.3)
For pure bending of a beam, €, and y,, are ignored, only ¢, is nonzero. The

displacements u, v and w from Equations 2.73 to 2.75 can be written as:

u(xy,z)=—z av;(x) 34
x

v(x, y,z) =0

w(x,y,z) = w(x) 3.9)

For one-dimensional problem, from Equations 3.4 and 3.5, the strain and stress

are given by:

O*w
£ =— 3.6
* Z o’ (3-6)
— — O*w
o, =€, :"an?' (3.7)
2
The strain energy can be further simplified to:
v=1 [ [ [o&.drdydz (3.8)

2

Substituting Equations 3.6 and 3.7 into Equation 3.8 yields:
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1 — O*w o*w
U= 5 J'J‘J-(— Q”Z ‘ax—Z](— z axz jdXdde
2
=— ”jQ“ ( ] dxdydz (3.9)
52
_J: bD“(ax2 J dx
The kinetic energy of an elastic body in terms of an xyz coordinate system is of

the form [1]:

{5 A2 ) o

where p is the density of the material at a point (x, y,z). In the case of pure

bending based on the classical laminate theory, substituting Equations 3.4 and 3.5 into

Equation 3.10, the kinetic energy can be written as:

== I”p[( (Mt} [Z:vjz}dadydz (3.11)

We have assumed that the rotary inertia terms are negligible, thus the first term in

kinetic energy 7 can be ignored:

fj: ( ]dxdz (3.12)

where b is the constant width of the beam:.
For free vibration, time can be removed from the above equation by considering

harmonic displacement field of the form:
w(x,t) =W (x)e™ (3.13)

where @ is the natural frequency of vibration and W is the magnitude of
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vibration. Thus,

T= % f?iﬁ _[ pb[Mdedz

" o
- L[ [ poliome Ve (3.14)
2
N bw’ dxd:
2 _[jl; Jj LPow Z

For uniform composite beam, there is only one kind of material and its density is
constant. But some other models, i.e. models A, B, C, D, and M, consist of two parts, i.e.,

laminate and resin as shown in Figure 3.1.

Model C Model B

Figure 3.1 Tapered beam models, A, B, C, and D

Therefore, the kinetic energy is expressed by:

2

T= —“’7 “b(p,H, + p,H W dx (3.15)
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where

p, —-- Density of laminate (constant)

H, --- Total height of laminate (can be discontinuous functions of x)

p, —-- Density of resin (constant)

H _ --- Total height of resin (can be discontinuous functions of x)

Note that, H, and H, can be linear functions of x and their expressions can vary

from domain to domain.

Thus, for free vibration without external force, the stationary value is:

2
1 ¢ o*w @* ¢
M=U+T=- [ bD”(—ax—zj a,'x-7 Jj b(p,H, + p,H, W dx (3.16)

In Ritz method, a solution is sought in the form:
N

W(x)=> cg, . (3.17)
i=l

where ¢, is undetermined coefficient, and ¢, is the interpolation function
satisfying the boundary conditions and is known.
Substituting Equation 3.17 into Equation 3.16 leads to a minimization problem

relative to the undetermined coefficients. Then we can impose the stationary condition:

ol

—=0 3.18
" (3.18)

For the formulation presented here, IT is always quadratic in the undetermined
coefficients c¢;. We can get a set of N linear simultaneous equations. Expressing these

N equations in a matrix form, we have:

]~ [Mc}=0 (3.19)
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For free vibration problem, Equation 3.19 leads to a classic eigenvalue problem.

That is, the free vibration frequencies are chosen such that the determinants of the

coefficients ¢; vanish.

3.2.1.2 Example applications

In this section, we will apply Ritz method to a uniform laminated composite beam
with different boundary conditions. Then, a tapered laminated composite beam with these

boundary conditions is presented.

Example 3.1 vibration of a simply supported uniform composite beam using Ritz
method

A uniform composite beam with both ends simply supported as shown in Figure
3.2 is made up of NCT301 graphite-epoxy. Its mechanical properties are shown in Table

2.2.

Figure 3.2 Simply supported uniform composite beam

The geometric properties of the beam are: length L =0.3048 m ; individual ply

thickness ¢ = 0.0001524 m. There are 32 plies in the laminate and the configuration of
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the laminate is [(0/90)s]s. The laminate thickness of A =0.0048768 m is obtained by
multiplying the number of plies, 32 in this case, with the ply thickness, i.e. 0.0001524m .

The exact solution is given by [2]

2 2 D
@, =" L” p—[‘{‘ (3.20)

For this uniform composite beam, the bending stiffness coefficient is
Dy, =817.127 N.m

Substituting the value of D), into Equation 3.20 yields the natural frequencies of

the beam. The first four exact natural frequencies are calculated as:

=1067.06 rad/sec

o T \/ 817.127
' 0.3048” V1660.8x0.0001524x 32

w, = 4268.24 rad/sec
@, =9603.53 rad/sec
@, =17072.9 rad/sec

In this example, both polynomial and trigonometric interpolation functions are
assumed for displacement W . Every polynomial or trigonometric term satisfies the
simply supported boundary conditions.

At first, polynomial interpolation functions are given to W :
N . .

W——-Zcix’(L-x) (3.21)
i=1

Table 3.1 gives the calculated natural frequencies of this simply supported

composite beam using the above polynomial interpolation functions:
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Table 3.1 Natural frequencies of uniform composite beam described in Example 3.1 using
polynomial interpolation functions

1R* 2R 3R 4R SR Exact
o, 1184.35 1184.35 1067.38 1067.38 1067.06 1067.06
@, 5427.37 5427.37 4286.31 4286.31 4268.24
@, 14251.0 14251.0 9766.84 9603.53
@, 298423 29842.3 17072.9

*1R means W has one interpolation term.

As can be seen from Table 3.1, the natural frequencies converge to the exact

solution rapidly.

Then, trigonometric interpolation functions are assumed for the displacement:

N «
=Y, sin’—f‘— (3.22)

i=1
Table 3.2 gives the calculated natural frequencies using the above trigonometric

interpolation functions:

Table 3.2 Natural frequencies of uniform composite beam described in Example 3.1 using
trigonometric interpolation functions

IR 2R 3R 4R SR Exact
@, 1067.06 1067.06 1067.06 1067.06 1067.06 1067.06
@, 4268.24 4268.24 4268.24 4268.24 4268.24
@, 9603.53 9603.53 9603.53 9603.53
@, 17072.9 17072.9 17072.9

Table 3.2 shows perfect accuracy, even when W has only one interpolation term.
The result gives the exact solution. This is because of the trigonometric function. The
exact solution comes from solving the governing differential equation by assuming

harmonic vibration:

iot _» ¢

T
sin— 3.23
7 (3.23)

w=c,e
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which is similar to what assumed for w in Ritz method.

Example 3.2 vibration of a fixed-fixed uniform composite beam using Ritz method

The same uniform composite beam in Example 3.1 with both ends fixed is shown

in Figure 3.3.

NG

ANN AN

Figure 3.3 Fixed-fixed uniform composite beam

The exact solution is given by [2]:

k2 Dll

j— 1

@ =7 o (3.24)

The first four coefficients k; are:
k, =4.7300407, k, =7.8532046, k, =10.995608 , k, =14.137166.

In order to satisfy the boundary condition, we ‘assume the displacement function

as:

N ) x
W => cx'(L—x)sin - (3.25)

i=1

Table 3.3 gives the results.
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Table 3.3 Natural frequencies of uniform composite beam described in Example 3.2

IR 2R 3R 4R SR Exact
o, 2423.49 2423.49 2418.97 2418.97 2418.90 2418.90
@, 6689.91 6689.91 6668.34 6668.34 6667.80
@y 13403.9 13403.9 13080.1 13071.6
@, 23079.8 23079.9 21607.9

The convergence of the natural frequencies of this fixed-fixed composite beam is
similar to that of the simply supported beam obtained by using polynomial interpolation
functions (Table 3.1). The convergence is fast but not as perfect as that of the simply

supported beam obtained by using trigonometric interpolation functions (Table 3.2.).

Example 3.3 vibration of a fixed-free uniform composite beam using Ritz method
The same uniform composite beam in Example 3.1 with one end fixed and

another end free is shown in Figure 3.4.

AN
4

Figure 3.4 Fixed-free uniform composite beam.

The exact solution is given by [2]:

, _

w; =k—"2 51— (3.26)
L\ pH

where,

k, =1.8751038, k, =4.6940911, k, = 7.8547574, k, =10.995541
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The displacement function is assumed as:

—

i=

Table 3.4 gives the result.

3.27)

Table 3.4 Natural frequencies of uniform composite beam described in Example 3.3

IR 2R 3R 4R 5R Exact
@, 483.508 381.944 380.251 380.137 380.136 380.136
@, 3763.17 2403.78 2395.61 2382.34 2382.27
@, 12773.3 6848.76 6837.21 6670.44
o, 30445.0 13895.0 13071.4

From the above three examples, we can see that Ritz method shows rapid

convergence to the exact solutions. These results are used to compare the results from

hierarchical finite element method. The following is the application of Ritz method to

tapered composite beam.

Example 3.4 vibration of a simply supported tapered composite beam using Ritz

method

A tapered composite beam made up of NCT301 graphite-epoxy has configuration

of Model F. Both of its ends are simply supported as shown in Figure 3.5. Its mechanical

properties are shown in Table 2.2.

X

s R

Figure 3.5 Simply supported tapered composite beam
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The geometric properties of the beam are: length L =0.3048 m ; individual ply
thickness 7 = 0.0001524 m . There arc 32 plies at the left end and 30 plies at the right end.
Two layers are dropped off. The configuration of both ends are [(0/90)3]s and [(0/90),/0]s
respectively. The height of each ply in z direction is 4 =0.00015240001905m . It is
almost as same as the thickness ¢ =0.0001524 m, because the tapered angle is only
a =0.02865°. The bending stiffness coefficient is a cubic function of x throughout the
entire length:

D,, =817.122 - 490.366x + 95.5097x*> —1.01515x°

For this example, we also use both polynomial and trigonometric interpolation
functions to calculate the frequencies. The interpolation functions are as same as
Equations 3.21 and 3.22 respectively.

Table 3.5 gives the natural frequencies of the tapered composite beam using‘

polynomial functions.

Table 3.5 Natural frequencies of tapered composite beam described in Example 3.4 using
polynomial interpolation functions

IR 2R 3R 4R 5R 10R
o, 1149.23 1147.61 1035.07 1034.86 1034.57 1034.57
@, 5268.50 5256.77 4157.93 4156.02 4138.85
@5 13837.4 13795.3 9476.08 9312.21
@, 28984.7 28873.8 16554.8

The results have little difference from that of the uniform beam case and the
convergence is similar. That is reasonable because the tapered angle is so small. So far,
we do not know the exact solution for this example. But from this table, it seems we can

expect we have got a very good approximate solution. The same example will be
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evaluated by finite element method.

Now trigonometric interpolation function is assumed for W, as given by Equation

3.22. Table 3.6 gives the natural frequencies.

Table 3.6 Natural frequencies of tapered composite beam described in Example 3.4 using

trigonometric interpolation functions

1R 2R 3R 4R SR 10R
@, 1035.11 1034.57 1034.57 1034.57 1034.57 1034.57
@, 4141.38 4138.88 4138.87 4138.85 4138.85
@, 9318.52 9312.28 9312.28 9312.21
@, 16567.2 16555.0 16554.8

As can be seen the convergence is still very fast, but the results from low order
displacement functions are not close to that from high order displacement function,
unlike the case of the uniform composite beam. That is because the taper angle results in

a cubic D,,. Few trigonometric terms can not accurately describe the real displacement.

When more terms are used in the displacement function, more accurate values of

frequencies are obtained in the vibration analysis.

Example 3.5 vibration of a fixed-fixed tapered composite beam using Ritz method
The same tapered composite beam of Example 3.4 is fixed at both ends as shown

in Figure 3.6.

AN\ ANNN
=

AN\

Figure 3.6 Fixed-fixed tapered composite beam
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The displacement is assumed as same as Equation 3.25 according to the boundary
condition: Table 3.7 gives similar convergence to that of the uniform composite beam

case.

Table 3.7 Natural frequencies of tapered composite beam described in Example 3.5

1R 2R 3R 4R SR 10R
@, 2352.03 2350.12 2345.55 2345.55 2345.48 2345.48
@, 6492.74 6486.00 6465.99 6465.87 6465.36
W, 13010.5 12991.4 12684.1 12674.7
@, 22407.5 22360.1 20951.8

Example 3.6 vibration of a fixed-free tapered composite beam using Ritz method
The boundary condition is changed to fixed-free for the same composite beam in

Example 3.4, as shown in Figure 3.7, and the displacement is assumed as same as

Equation 3.27.

NN E N
=

Figure 3.7 Fixed-free tapered composite beam

Table 3.8 Natural frequencies of tapered composite beam described in Example 3.6

IR 2R 3R 4R 5R 10R
o, 474.298 384.175 383.279 383.118 383.116 383.116
@, 3576.78 2354.46 2351.89 2337.84 | 2337.67
@, 12030.9 6662.19 6661.60 6494.73
@, 28580.9 13497.7 12701.4
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Because this beam is unidirectionally tapered, we can expect that changing the
boundary condition to free-fixed should change the natural frequency. Then it is

necessary to give a free-fixed boundary condition example.

Example 3.7 vibration of a free-fixed tapered composite beam using Ritz method
The boundary condition is changed to free-fixed as shown in Figure 3.8 for the

same composite beam in Example 3.4, and the displacement is assumed as:

.
ANNAN\N
™=

Figure 3.8 Free-fixed tapered composite beam

Table 3.9 Natural frequencies of tapered composite beam described in Example 3.7

1R 2R 3R 4R SR 10R
o, 464.205 357.165 354.543 354.483 354.483 354.483
w, 3725.11 2310.04 2293.80 2282.60 2282.56
@, 12752.6 6629.56 6594.42 6441.69
o, 30487.6 13474.2 12648.3

From the above examples, we can say that Ritz method has good convergence and
converges to the exact solution for uniform beam. It even shows perfect accuracy for the
simply supported uniform composite beam by using trigonometric interpolation
functions. In addition, it seems also to converge to a very good approximate solution for
tapered laminated beam. In the following, the hierarchical finite element method is used

for the same examples. Then we can compare the results from both methods.
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3.2.2 Solution using Hierarchical Finite Element Method and based on CLT
In this section, first we will derive the formulations for HFEM based on the

classical laminate theory and then verify the same examples given in the previous section.

3.2.2.1 Formulation using HFEM based on CLT

In the previous section, we have already derived the stationary value (Equation
3.16) based on the classical laminate theory:

From Hamilton’s principle, the governing equations of motion and the proper

boundary conditions are determined from the variational equations [1]:

S=0 (3.28)
wd ow o [
o= [ bD,, o d - [ blo,H, + p,H, Jwéwdx =0 (3.29)
2
[D, Z"d N - * [ (o H, + p,H, wowdx =0 (3.30)

In the formulation of the finite element model using the conventional formulation,
we assumed a cubic displacement function for W. In the hierarchical formulation, we
modify the approximating function by adding trigonometric or polynomial functions [1].

In this thesis, we assume the displacement function as:

W=c +cx+ex’ +cx +Zcm n%"i n=1,2,3... (3.31)

n=1 e
It is imperative to mention here why we add some trigonometric terms into the
displacement function. If the polynomial terms are used by themselves they will be

sufficient to describe the displacement and the rotation of the beam cross-section within
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the element. The additional trigonometric sine term allows for better description of the
transverse displacement and the rotation of the beam cross-section within the element.
Inter-element compatibility is achieved by matching the generalized co-ordinates at the
element end nodes. All of the hierarchical terms should be zero at the coordinates of the
two nodes of each element.

Equation 3.31 may be written as:

W=l:1 x x* X sinlE sin % ... sinﬂ} $ =[x
x(n+4)

e e e

(Crra ] (n+a}a
(3.32)

The rotation is the once differential of transverse displacement:

l [ [ l l

27 2mx nr nnx] c,
e e e e e e

9:[0 1 2x 3x° l£cos—— Zeos== ... cos—

\nt4 ) (ned

= [Ke ]{C}
(3.33)

In local coordinate system, the nodal displacements and rotations are:
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o [t 0 0 0 0 0 0 A
W, C.
0 01 0 0o Z il ’
1 : L, [, )
W, 1L 2 P 0 0 0 ¢
{u}=492> _lo 1 21, 3 —lf 311 (—1)"”1—7 ‘C4f
Al e e e CS
p 00 0 0 1 0 0
C,
N 00 0 0 0 1 0 N
A V ' c
\ "1(n+4)<1 _O 0 0 O 0 0 0 1 d(n+4>((n+4) \“n+d ) (n+4)<l
=[x, Je}
(3.34)

In finite element method, the transverse displacement is then expressed by

interpolation functions and nodal displacements:

(3w,
91
W2
o
welvy vy Ny oNp Ny N e Nl - v Jiu}
1
AZ
\A’U (n+4)<l
(3.35)
Substituting Equations 3.32 and 3.34 into Equation 3.35 yields:
v =[x, I&.I" (3.36)

The expanded interpolation functions are:
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w X x
N, =1—372—+2 3
w 2x* X
]\/v2 =X- [e +'ZZ-
. %2 e
N3 :3—[2-.—21_3
x> X
N =——+—
34 L2 (3.37)
2
N;"=——+m§ +sin—
le le le
2 3
Ny = 217DC 327;C ——22;? +sin
2 3
N2, =P ey 2P [y R sin M
\ le le le le
Using the notation:
d2 w
v]- 215 (338)

dx*

Equation 3.19 can be written as:

[ [ D,V v hiv -0 [ (0,8, + .8, )[NW]T[NW]dx]{u} =0 (3.39)
That is:
[&]- w?[mfu} =0 (3.40)

where [K] is the stiffness matrix and [M ] is the mass matrix.
[K]= [ D [v [ [ Jax (3.41)

= [ (o,#, + o, V"] [V , G
Note that, each element could include several domains and each domain could
have different D,,, H,, and H, . Therefore, [K] and [M ] should be the sum of

integrations in each domain.
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As same as in Ritz method, solving the eigenvalue problem ‘[K ]— a)z[M ] =0, we

can get the natural frequencies.

3.2.2.2 Example applications

Now we can check Examples 3.1 to 3.7 using HFEM instead of Ritz method. First
of all, we use HFEM without hierarchical term, in another word, conventional FEM to re-
solve Example 3.1. The displacement function is written as:

W =c +c,x+c,x* +c,x° (3.43)

Then we use one hierarchical term.

’ . X
W=c +cx+cx’ +c,x° +cgsin— (3.44)
/

e

Also we use two hierarchical terms to get more accurate results and compare the

result with that from the conventional FEM.

. T . 2mx
W =c +c,x+cx” +¢,x° +csin—=+c¢,sin=— (3.45)
1 2 3 4 5 l 6 l

Tables 3.10 to 3.12 give the results for Example 3.1 obtained from the above three

models respectively. The exact solution is from Equation 3.20.

Table 3.10 Natural frequencies of uniform composite beam described in Example 3.1
using conventional FEM based on CLT

2E* 4B 6E 8E 10E 12E Exact
@ 1074.78 | 1067.38 | 1067.11 | 1067.08 | 1067.07 | 1067.06 | 1067.06
@, 4299.11 |4271.69 | 4269.54 | 4268.69 | 4268.47 | 4268.24
@ 10166.2 | 9641.44 | 9621.13 | 9608.66 | 9606.46 | 9603.53
@, 17274.8 | 17196.5 | 17101.2 | 17091.3 17072.9

*2E means two-elements model.
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Table 3.11 Natural frequencies of uniform composite beam described in Example 3.1
using one-hierarchical-term model based on CLT

2E1T* 4E1T 6EIT 8E1T 10E1T 12E1T Exact
o, 1067.14 | 1067.06 | 1067.06 | 1067.06 | 1067.06 {- 1067.06 | 1067.06
@, 4268.56 | 4268.27 | 4268.24 | 4268.24 | 4268.24 | 4268.24
@, 9610.58 | 9604.27 | 9603.68 | 9603.58 | 9603.55 | 9603.53
@, 17079.4 | 17074.3 | 17073.3 | 17073.1 17072.9

*2E1T means two-elements model, and w has one trigonometric hierarchical term.

Table 3.12 Natural frequencies of uniform composite beam described in Example 3.1
using two-hierarchical-terms model based on CLT

2E2T 4E2T 6E2T 8E2T 10E2T 12E2T Exact
o, 1067.07 | 1067.06 | 1067.06 | 1067.06 | 1067.06 | 1067.06 | 1067.06
@, 4268.27 | 4268.25 | 4268.24 | 4268.24 | 4268.24 | 4268.24
@, 9603.76 | 9603.61 | 9603.56 | 9603.55 | 9603.54 | 9603.53
@, 17073.3 | 17073.1 | 17073.0 | 17073.0 | 17072.9

Figure 3.9 First mode frequency of simpl,
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Figure 3.9 shows the comparison between conventional and hierarchical FEM
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obtained from this example. Only the first natural frequency is plotted in this figure. We

can observe from the tables that the other frequencies have similar convergence of w, .

For this simply supported uniform composite beam, both conventional FEM and

HFEM show rapid convergence. At the same time, HFEM gives much more accurate

results compared with those from conventional FEM, especially for the two-elements and

four-elements models.

In above three examples, we fixed the number of hierarchical terms and increased

the number of element from two to twelve, and the comparison shows the considerable

improvement of hierarchical FEM. Next, for this same example, we will fix the number

of elements but increase the number of hierarchical terms to observe the convergence.

Table 3.13 Natural frequencies of uniform composite beam described in Example 3.1
using two-elements model based on CLT

2E0T

2E1T

2E2T

2E3T

2E4T

2B5T

2E6T

Exact

@Dy

1074.78

1067.14

1067.07

1067.06

1067.06

1067.06

1067.06

1067.06

Table 3.14 Natural frequencies of uniform composite beam described in Example 3.1
using three-elements model based on CLT

Exact

3EOT 3EIT 3E2T 3E3T 3E4T 3EST 3E6T
o | 1067.92 ; 1067.07 | 1067.06 | 1067.06 | 1067.06 | 1067.06 | 1067.06 | 1067.06
@, | 4318.69 | 4269.86 | 4268.32 | 4268.27 | 4268.24 | 4268.24 | 4268.24 | 4268.24

Table 3.15 Natural frequencies of uniform composite beam described in Example 3.1
using four-elements model based on CLT

4E0T 4E1T 4E2T 4E3T 4E4T 4E5T 4E6T Exact
o, | 1067.38 | 1067.06 | 1067.06 | 1067.06 | 1067.06 | 1067.06 | 1067.06 | 1067.06
@, | 4299.11 | 4268.56 | 4268.27 | 4268.24 | 4268.24 | 4268.24 | 4268.24 | 4268.24
o, | 10166.2 | 9610.58 | 9603.76 | 9603.66 | 9603.55 | 9603.55 | 9603.54 | 9603.53
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Table 3.16 Natural frequencies of uniform composite beam described in Example 3.1
using five-elements model based on CLT

SEOT

SEIT

SE2T

SE3T

SEAT

SEST

SE6T

Exact

1067.17

1067.06

1067.06

1067.06

1067.06

1067.06

1067.06

1067.06

4275.31

4268.33

4268.25

4268.24

4268.24

4268.24

4268.24

4268.24

9679.80

9605.56

9603.67

9603.58

9603.54

9603.54

9603.53

9603.53

17466.3

17090.9

17073.4

17073.3

17073.0

17073.0

17073.0

17072.9

Frequency (rad/sec)

1076

1074

1072

1070

1068

1066

1064

1062

Figure 3.10 3-D plot of the first mode frequency

Figure 3.10 shows the first mode frequencies of two-elements to five-elements
models. It is plotted using 3-D column with cylindrical shape. As can be seen the
frequency converges fast by increasing the number of elements or the number of
hierarchical terms. The two-elements conventional model shows more inaccuracy than

the others.

For the sake of numerical observation, these frequencies are also plotted by four
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lines as shown in figure 3.11.

Figure 3.11 2-D plot of the first mode frequency

Obviously, the convergence by increasing number of hierarchical terms is faster
then that by increasing number of elements. The two-elements two-hierarchical model
gives almost the exact solution, while the conventional FEM shows more inaccuracy
even though the number of elements reaches five. HFEM shows critical advantages of
using fewer elements and obtaining better accuracy.

The same comparison is also done to the same beam but with different boundary
conditions. Tables 3.17 to 3.19 and 3.20 to 3.22 give the first four modes’ frequencies for
fixed-fixed beam described in Example 3.2 and fixed-free beam described in Example 3.3

respectively. Figures 3.12 and 3.13 plot the first mode frequencies.
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Table 3.17 Natural frequencies of uniform composite beam described in Example 3.2
using conventional FEM based on CLT

2E 4E 6E 8E 10E 12E Exact
@, 2458.11 2422.11 | 2419.55 | 2419.11 | 2418.99 | 2418.94 | 2418.90
@, 6729.48 | 6680.89 | 6672.01 | 6669.54 | 6668.64 | 6667.80
@, 13350.7 | 13165.2 | 13102.5 | 13084.5 | 13077.8 13071.6
o, 21985.6 | 217427 | 21665.0 | 21635.9 | 21607.9

Table 3.18 Natural frequencies of uniform composite beam described in Example 3.2
using one-hierarchical-term model based on CLT

2E1T 4E1T 6E1T S8EIT 10E1T 12E1T Exact
@ 2420.70 | 2418.93 |2418.91 | 2418.90 | 2418.90 | 2418.90 | 2418.90
@, 6669.33 | 6667.95 | 6667.83 | 6667.81 | 6667.80 | 6667.80
@, 13102.5 |13073.6 | 13072.0 | 13071.7 { 13071.6 | 13071.6
@, 216239 | 21610.8 | 21608.8 | 21608.3 | 21607.9

Table 3.19 Natural frequencies of uniform composite beam described in Example 3.2
using two-hierarchical-terms model based on CLT

2E2T 4E2T 6E2T 8E2T 10E2T 12E2T Exact
o, 2419.03 241891 | 241891 | 2418.90 | 2418.90 | 2418.90 | 2418.90
o, 6667.94 | 6667.83 | 6667.81 | 6667.81 | 6667.80 | 6667.80
w; 13072.4 | 13071.8 | 13071.6 | 13071.6 | 13071.6 | 13071.6
o, 21608.6 | 21608.2 | 21608.1 | 21608.0 | 21607.9

Figure 3.12 First mode frequency of fixed-fixed uniform composite beam based on CLT
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Table 3.20 Natural frequencies of uniform composite beam described in Example 3.3
using conventional FEM based on CLT

2E 4E 6E 8E 10E 12E Exact
o, 380.320 | 380.149 |380.139 | 380.137 | 380.137 | 380.137 | 380.136
@, 2385.05 |2382.86 | 2382.46 | 2382.35 | 2382.31 | 2382.27
, 6722.08 | 6682.64 | 6674.49 | 6672.14 | 6671.27 | 6670.44
@, 13155.6 | 13100.7 | 13083.9 | 13077.5 | 13071.4

Table 3.21 Natural frequencies of uniform composite beam described in Example 3.3
using one-hierarchical-term model based on CLT

2E1T 4E1T 6E1T SEIT 10E1T 12E1T Exact
o, 380.139 | 380.137 | 380.136 | 380.136 | 380.136 | 380.136 | 380.136
@, 2382.33 | 2382.28 | 2382.28 | 2382.27 | 2382.27 | 2382.27
@, 6672.83 | 6670.67 | 6670.48 | 6670.45 | 6670.44 | 6670.44
o, 13074.3 | 13072.0 | 13071.6 | 13071.5 | 13071.4

Table 3.22 Natural frequencies of uniform composite beam described in Example 3.3
using two-hierarchical-terms model based on CLT

2E2T 4E2T 6E2T 8E2T 10E2T 12E2T Exact
@, 380.137 | 380.136 | 380.136 | 380.136 | 380.136 | 380.136 | 380.136
@, 2382.28 | 2382.28 | 2382.28 | 2382.27 | 2382.27 | 2382.27
@, 6670.57 | 6670.47 | 6670.45 | 6670.44 | 6670.44 | 6670.44
@, 13071.6 | 13071.5 | 13071.4 | 130714 | 13071.4

Figure 3.13 First mode frequency of fixed-free uniform composite beam based on CLT
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As can be seen from these three examples, both conventional FEM and HFEM
show rapid convergence for uniform composite beam with different boundary conditions.
At the same time, HFEM gives much more accurate results compared with those from
conventional FEM, especially for the two-elements and four-elements models. .With two
hierarchical terms, we can use just a two-elements model to obtain considerable accuracy

for the first mode frequency.

The following is the calculation of natural frequency for the tapered composite
beam given in Example 3.4, but using HFEM instead of Ritz method. This problem has
also been solved in Amit’s thesis [56]. Because the taper angle & is so small, Amit
ignored the effect on the ply stiffness caused by the taper angle. Therefore, the stiffness
matrix of ply has been given by Equation 2.14 instead of 2.69.

D,, =817.127 - 490.370x + 95.5104x* —1.01515%°

The frequency without considering the effect on the ply stiffness caused by « is

given in Table 3.23:

Table 3.23 Natural frequencies of tapered composite beam described in Example 3.4
using conventional FEM ignoring the effect of «

2B 4E 8E 12E 16E 10R
@, 1038.73 1034.84 1034.59 1034.57 1034.57 1034.57
@, 4155.27 4139.94 4139.08 4138.93 4138.85
., 9483.39 9324.25 9314.66 9313.01 9312.23
@, 16620.3 16568.3 16559.2 16554.9

In this thesis, we consider the effect of a and the bending stiffness coefficient is:

D,, =817.122 - 490.366x + 95.5097x* —1.01515x°
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The differences between these two D, coefficients is very small, because « is

only 0.02865°. In addition, for an Euler-Bernoulli beam, o can not be large because of

the ratio of length-to-thickness.

The natural frequencies are almost same because of the close bending stiffness

coefficient D, values, as given in Tables 3.24 to 3.26:

Table 3.24 Natural frequencies of tapered composite beam described in Example 3.4
using conventional FEM based on CLT

2E 4E 8E 12E 16E 10R
@, 1038.73 1034.84 1034.58 1034.57 1034.57 1034.57
@, 4155.26 4139.93 4139.06 4138.92 4138.85
@ 9483.36 9324.22 9314.63 9312.98 9312.21
o, 16620.3 16568.3 16559.1 16554.8

Table 3.25 Natural frequencies of tapered composite beam described in Example 3.4

using one-hierarchical-term model based on CLT

2EIT 4E1T 8E1T 12E1T 16E1T 10R
@, 1034.65 1034.57 1034.57 1034.57 1034.57 1034.57
@, 4139.16 4138.86 4138.85 4138.85 4138.85
@; 9319.00 9312.36 9312.23 9312.21 9312.21
w, 16556.1 16555.0 16554.9 16554.8

Table 3.26 Natural frequencies of tapered composite beam described in Example 3.4
using two-hierarchical-terms model based on CLT

2BE2T 3E2T 4E2T S5E2T 6E2T 7E2T 8E2T 10R
o, | 1034.58 | 1034.57 | 1034.57 | 1034.57 | 1034.57 | 1034.57 | 1034.57 | 1034.57
@, 4138.93 | 4138.88 | 4138.87 | 4138.86 | 4138.85 | 4138.85 | 4138.85
@, 9312.43 | 9312.34 | 9312.29 | 9312.26 | 9312.24 | 9312.21
@, 16555.3 | 16555.1 | 16555.0 | 16555.0 | 16554.8

As can be seen from the above tables, the natural frequencies from both

conventional FEM and HFEM converge fast to those from Ritz method, but HFEM gives

much more accurate results compared with those from conventional FEM using the same
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number of elements.

Tables 3.27 to 3.29 give the first four modes’ frequencies for the fixed-fixed

tapered composite beam described in Example 3.5.

Table 3.27 Natural frequencies of tapered composite beam described in Example 3.5
using conventional FEM based on CLT

2E 4E 8E 12E 16E 10R
@, 2384.66 2348.65 2345.68 2345.52 2345.49 2345.48
@, 6525.51 6469.47 6466.18 6465.62 6465.36
@, 12949.2 12704.8 12680.8 12676.6 12674.7
@, 21082.8 20979.0 20960.5 20951.8

Table 3.28 Natural frequencies of tapered composite beam described in Example 3.5

using one-hierarchical-term model based on CLT

2E1T 4E1T 8EIT 12E1T 16E1T 10R
@, 2347.19 2345.51 2345.48 2345.48 2345.48 2345.48
@, 6466.84 6465.39 6465.37 6465.36 6465.36
@y 12704.4 12675.1 12674.7 12674.7 12674.7
@, 20954.6 20952.1 20951.9 20951.8

Table 3.29 Natural frequencies of tapered composite beam described in Example 3.5
using two-hierarchical-terms model based on CLT

2E2T 3E2T 4E2T SE2T 6E2T 7E2T 8E2T 10R
o, | 2345.60 | 2345.51 | 2345.49 | 2345.49 | 2345.48 | 2345.48 | 2345.48 | 2345.48
@, 6465.73 | 6465.50 | 6465.43 | 6465.40 | 6465.38 | 6465.37 | 6465.36
@y 12675.4 | 12675.0 | 12674.9 | 12674.8 | 12674.7 | 12674.7
w, 20953.1 | 20952.5 | 20952.2 | 20952.1 | 20951.8

Tables 3.30 to 3.32 give the first four modes’

tapered composite beam described in Example 3.6.

frequencies for the fixed-free

Table 3.30 Natural frequencies of tapered composite beam described in Example 3.6
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using conventional FEM based on CLT

2E 4E 8E 12E 16E 10R
o, 383.276 383.128 383.117 383.116 383.116 383.116
@, 2340.26 2337.85 2337.71 2337.69 2337.67
@y 6543.03 6498.62 6495.53 6494.99 6494.73
@, 12729.5 12707.3 12703.3 12701.4

Table 3.31 Natural frequencies of tapered composite beam described in Example 3.6

using one-hierarchical-term model based on CLT

2EIT 4E1T 8E1T 12E1T 16E1T 10R
@, 383.119 383.116 383.116 383.116 383.116 383.116
@, 2337.73 2337.68 2337.67 2337.67 2337.67
@, 6497.18 6494.78 6494.74 6494.73 6494.73
o, 12702.0 12701.5 12701.4 12701.4

Table 3.32 Natural frequencies of tapered composite beam described in Example 3.6
using two-hierarchical-terms model based on CLT

2E2T 3E2T 4E2T S5E2T 6E2T 7E2T 8E2T 10R
o | 383.117 | 383.116 | 383.116 | 383.116 | 383.116 | 383.116 | 383.116 | 383.116
@, 2337.70 | 2337.68 | 2337.68 | 2337.68 | 2337.67 | 2337.67 | 2337.67
@, 6494.86 | 6494.79 | 6494.76 | 6494.75 | 6494.74 | 6494.73
w, 12701.7 | 12701.6 | 12701.5 | 12701.5 | 12701.4

Tables 3.33 to 3.35 give the first four modes’ frequencies

tapered composite beam described in Example 3.7.

for the free-fixed

Table 3.33 Natural frequencies of tapered composite beam described in Example 3.7

using conventional FEM based on CLT

2E 4E 8E 12E 16E 10R
o, 354.694 354.497 354.484 354.483 354.483 354.483
@, 2285.41 2282.76 2282.60 2282.58 2282.56
@, 6493.79 6445.69 6442.51 6441.95 6441.69
@, 12677.1 12654.3 12650.2 12648.3
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Table 3.34 Natural frequencies of tapered composite beam described in Example 3.7

using one-hierarchical-term model based on CLT

2EIT 4E1T 8EIT 12E1T 16E1T 10R
o, 354.484 354.483 354.483 354.483 354.483 354.483
@, 2282.61 2282.57 2282.57 2282.56 2282.56
o, 6443.90 6441.74 6441.70 6441.69 6441.69
@, 12648.8 12648.3 12648.3 12648.3

Table 3.35 Natural frequencies of tapered composite beam described in Example 3.7
using two-hierarchical-terms model based on CLT

2E2T 3E2T 4E2T SE2T 6E2T TE2T 8E2T 10R
o, | 354.484 | 354.483 | 354.483 | 354.483 | 354.483 | 354.483 | 354.483 | 354.483
@, 2282.59 | 2282.57 | 2282.57 | 2282.57 | 2282.57 | 2282.57 | 2282.56
w, 6441.82 | 6441.75 | 6441.73 | 6441.71 | 6441.70 | 6441.69
w, 12648.6 | 12648.5 | 12648.4 | 12648.3 | 12648.3

So far, Ritz method, conventional FEM and hierarchical FEM have been

described and example problems have been solved to illustrate their applications, for both

uniform and tapered composite Euler-Bernoulli beams. The HFEM shows much better

accuracy than the conventional FEM. In the next section, we will apply Ritz method,

conventional FEM and HFEM to uniform and tapered composite Timoshenko beams.

33

Formulation based on First-order Shear Deformation Theory

3.3.1 Solution using Ritz method and based on FSDT

In this section, we will derive the solution using Ritz method based on the first-

order shear deformation theory and then give some examples, including uniform and

tapered composite beams.
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3.3.1.1 Formulation using Ritz method based on FSDT
The basic assumptions for the shear deformation theory remain the same as listed

in chapter 2 for the classical laminate theory, with an exception being assumption 5

concerning the neglect of the interlaminar shear strain y,, and y, . Thus for the first-

order shear deformation theory, the displacements are assumed to be of the forms:

u(x,y,z,t)= u’ (x,y,t)+ Zl//x(x,y,t) : (3.46)
Wxp,2,0) = (xy,0)+ 2y, (x.p,1) (3.47)
w(x, y,z,t) =w(x, y,t) (3.48)

where , and y, are the rotations about x and y axes respectively.

The curvatures become:

K _oy, (3.49)
Ox
oy,

el (3.50)
A

d

K;,yzﬁwer Vy (3.51)

Oy ox

From the plane stress assumption, we have the same stress-strain relation and
ABD matrices for FSDT as those for CLT (Equation 2.79 and 2.82 respectively), except
that the curvatures are different.

Because now the shear deformation is not negligible, we express the interlaminar

strains by:

o

Yy =¥y = 5 +y, | (3.52)
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o

Ve =Ve= o Ve (3.53)
X

In chapter 2, we have already derived the relationship between stress and strain

for a ply in a tapered composite beam, and each term of stiffness matrix can be nonzero:

o] [C, C, G, C. Cs Cilfe)
o, Cn Cy G, Cy GCylls,
17 Gy Gy G §6<ng (3.54)
T Cu Ci Cu |17
Te Cis Cig ||7
Ty |Sym 6'66_ V)

The transverse shearing stresses can be isolated from the above six stresses:

r 3

gx
y

{%}:F’ Cu G Cu Gy c}} & | (3.55)
TXZ C] 5 C25 C35 C45 CSS C5 6 }/yz
Vi
®3

From the displacement w(x,y,z,¢)= w°(x,y,¢), we can get &, =0. Thus there are

five strains that have contributions to 7, and 7,,- In this thesis, we assume that the

contributions of &

X2

{T”}=k Cu @Hy ”} (3.56)
Tx Cis Css |V

where % is the shear correction factor [2]. In this thesis, we choose £ =5/6.

&,,and y, are negligible. Therefore, the shearing stresses are:

The strain energy, Equation 3.2, reduces to five terms
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U =% J-_”.(O'x[;‘x TOLE, TV T T0Y ), +sz}/xz)1Xdde

(06, + 0t + Ot
1 + (_Q_—lzgx + gzzey + g%yxy )gy
"2 J--” " (ng" + Ose8y + Q¥ sy )yxy dxdydz
+ k(644yyz +Cos¥ )}’yz
Lt k(ats?’yz +Cost . )}/xz
O
+20,8.6, + 0,6,

=% .“,[ + 2§61€x7xy + 2562%7)@ + _Q—“}’fy dxdydz

HhCut (3.57)
| 2kCys7,u7 o + KCis¥ 2,

We begin our study with one-dimensional case. For this case, due to the first-

order shear deformation, we have only two strains for a composite beam:

g =20 (3.58)
Ox
L (3.59)
ox

where  and w are functions of x and time ¢. Therefore, the strain energy

reduces to two terms:
U= [[[0: +4Cor Yy

Leed= H(owY .= owY? |
=2 j j J’ Q“zz(—a;c"i) +kC55(y/+a) dxdydz
o 1 (3.60)

el = Hf0wY . = ow\’
_EJ'J.b Q“Z (a‘) +kC55(l// +a) JdJCdZ

1 oy Y awY’
_-—Z—J:b!:D“(E) +kA55(l//+gc—) PV

Following the same procedure used for the classical laminate theory, we have the
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kinetic energy:

1 owY (owY
== 1] fp[f(_;) J{Ej :'deydz (3.61)
1 '; A o[ Oy * (owY
=— bl z°| —— | +| — d:
247 -£ P I:Z ( ot ot ‘
Harmonic displacement functions are also assumed for w and v :
wix,t) =W (x)e™ (3.62)
w(x,t)="¥(x)e™ (3.63)
Then, similar to Equation 3.14,
a)Z H
T= - [5% J: pb(zzt,//2 +w )ixdz (3.64)

We have assumed that the rotary inertia is negligible, that means the first term in

kinetic energy can be ignored:
T= wzgfb%id— “’Zfb( H, +p,H Wdx 3.65
—_7_['% POow xz““é— P, +p a1, jw (3.65)

It has the same expression as that based on the classical laminate theory.

The stationary value for a composite beam based on FSDT becomes:

1 ¢ VAN aw)’ ®° 2
H=U+T=E£b Do | sty + 22| =2 (oo, + p,H Wdx (3.66)
X X

N N
In Ritz method, we assume that W =) c¢ and W =) eg, according to

i=l i=1
different boundary conditions and substitute them into Equation 3.66. Then we can

impose the stationary condition:
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Ao and 2 =g (3.67)
Oc; Oe,

13

We can get a matrix equation:
]~ w?[m]fic}=0 ’ (3.68)
Again, solving the eigenvalue problem |[K ]— a)z[M ] =0, we can get the free

vibration frequencies. The procedures are as same as those for the classical laminate

theory.

3.3.1.2 Example applications

Example 3.8 vibration of simply supported uniform beams using Ritz method based on

FSDT

The beam and boundary condition are as same as those in Example 3.1. The
length-to-height ratio is 62.5. It is a typical Euler-Bernoulli beam but we apply the first-

order shear deformation theory. The exact solution is from reference [2]:

2.2
w="t" D ks (3.69)
L \(D,m’n* + Pkdy) pH

where the material properties of the beam in this example are

A, =18726912 Nm

D,, =817.127N.m

The exact solutions of this example are

o, =1064.10
w, =4221.53
o, =9371.81
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w, =16360.4

Then trigonometric interpolation functions are assumed for this simply supported

boundary condition:

interpolation functions:

N . N .
W=Zcisinl—Liz, ¥ =Ze,.cos£LE

i=1

i=1

(3.70)

Table 3.36 gives the calculated natural frequency using the above trigonometric

Table 3.36 Natural frequencies of long uniform composite beam described in Example
3.8 using Ritz method based on FSDT

1R 2R 3R 4R 5R Exact | Bernoulli
o, 1064.10 | 1064.10 | 1064.10 | 1064.10 | 1064.10 | 1064.10 | 1067.06
@, 4221.53 | 4221.53 | 4221.53 | 4221.53 | 4221.53 | 4268.24
o, 9371.81 | 9371.81 | 9371.81 | 9371.81 | 9603.53
o, 16360.4 | 16360.4 | 16360.4 | 17072.9

The above table shows perfect accuracy although W and W have only one
interpolation term each. The result matches the exact solution. This is because of the
assumed trigonometric function. The exact solution comes from solving the goveming

differential equation by assuming harmonic vibration [1]:

o . LTX ; inx
w=c,e'”sin—, y =e¢e'” cos— (3.71)
L L

They are as same as what we assumed in Riti method.

Meanwhile, the frequencies based on FSDT are very close to those based on
classical laminate theory. That is what we expected, because the length-to-height ratio is
so large.

For the same beam, we just shorten the length to L =0.03048 m. The length-to-
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height ratio is 6.25. It is a typical Timoshenko Beam. The frequencies based on FSDT

should differ from that based on the classical laminate theory.

Table 3.37 Natural frequencies of short uniform composite beam described in Example
3.8 using Ritz method based on FSDT

1R 2R 3R 4R 5R Exact | Bernoulli
@, 85535.8 | 85535.8 | 85535.8 | 85535.8 | 85535.8 | 85535.8 | 106706
o, 237674 | 237674 | 237674 | 237674 | 237674 | 426824
o, 391857 | 391857 | 391857 | 391857 | 960353
o, 542611 542611 542611 | 1707295

As can be seen, the frequencies match the exact solutions and are smaller than
those based on classical laminate theory. That is what we have expected. So far, all the
results show good accuracy for uniform beam. The next step is to verify the natural

frequencies of tapered composite beams based on FSDT.

Example 3.9 vibration of simply supported tapered beams using Ritz method based on
FSDT

The tapered beam and boundary condition are as same as those in Example 3.4,
The length-to-height ratio is 62.5. It is a typical Euler-Bernoulli beam but here we apply
the first-order shear deformation theory. The transverse shear stiffness of this tapered
composite beam is a function of x and the bending stiffness is as same as that based on
CLT.

Ay, =18726912 —3200000x

D, =817.122 - 490.366x + 95.5097x* —1.01515x°
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Table 3.38 Natural frequencies of long tapered composite beam described in Example 3.9
using Ritz method based on FSDT

IR 2R 3R 4R SR Bernoulli
o, 1032.42 1031.89 1031.89 1031.89 1031.89 1034.57
@, 4098.90 4096.48 4096.47 4090.45 4138.85
@, 9107.43 9101.65 9101.65 9312.21
@, 15916.9 16554.8

15906.2

As can be seen from Table 3.38, the convergence of the natural frequencies is

similar to that of the frequencies based on the classical laminate theory for the same

beam.

Again for the same beam, we just shorten the length to L =0.03048 m. The
length-to-height ratio is 6.25. The material properties become:

A, =18735567 — 32001364x

D,, =816.591-4900.49x +9544.85x* —1015.16x°

Table 3.39 Natural frequencies of short tapered composite beam described in Example
3.9 using Ritz method based on FSDT

1R 2R 3R 4R 5R Bermoulli
@, 83928.8 83899.7 83899.7 83899.5 83899.5 103422
@, 235854 235810 235810 235809 413748
o, 390752 390714 390714 930912
@, 542297 542267 1654936

From the above examples we can say that based on FSDT, Ritz method also has

ideal convergence and seems to converge to the exact solution for tapered composite

beam. The following formulation is using hierarchical finite element method to re-solve

the same example problems and compare the results from both methods.
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3.3.2 Solution using Hierarchical Finite Element Method and based on FSDT

3.3.2.1 Formulation using HFEM based on FSDT

In Hierarchical finite element method, we assume the displacement and rotation

functions as:

N
. nmx
W=c+cx+) s sin—~

n=2 e
r A
¢
G
) .2 nx Cs
=|1 x sin— sin—- sin—— < >
e e 2le 1x(ﬁ+2) ¢
2

=10x05inEOsin2—7[£O~- sinZ2 0 Jc6>
l l lx(n+4)

e (4 e

(3.72)

\“n+4 ) (n+4)<1
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n=2 e
c, |
C4
l: . . 2 nmc} Cs
==|]l x sin— sin— sin— S 3
l l, 21, IX[E”J Gy
\c"+4 J [§+2)xl
c |
G
G
€4
2 o
=010 x 0 sinZ 0 sin® ... 0 sin?®= {e, b
le le 218 Ix(£+2J
2 C7
Cy
(3.73)
cn+3
c

Un+d J (neada
=[x Jie}
where, n=2, 4, 6, 8...

In local coordinate system, the nodal displacements and rotations are:
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[w, 10 0 0000 0 0 O] ¢
¥, 01 0 00 0O0O0 00 c,
w, 1 07 0 00 0O 00 ¢
v, 01 014 0000 00 c,
4, 000 01000 0 0 cs
=<4t =000 00100 0 0 et
4, 000 0O0O0OT1TO 00 c,
A, 000 0 0O0O0OT1 0 0 Cq
A4, 0 0 00 0O 1 0 Cpis
An J (nrada _0 0000000 0 1J(n+4)><(n+4) xc"+4d(ﬂ+4)(l
= [ Jel
(3.74)
The displacement and rotation can also be expressed as:
rWl 3
4!
W,
v,
Al
welve NyoNy Ny Ny NG ONY WY e NI Nial] 4 b
A3
A4
An—l
kAn d(ﬂ+4><1
= [}
(3.75)
Similarly,
¥ = [N Jfu) | (3.76)
Substituting Equations 3.72 and 3.74 into Equation 3.75 yields:
Vo= [ [ Jed = [ e (3.77)
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Then, the interpolation functions for displacement can be expressed by

[ve]=[x] & ] (3.78)

The expanded interpolation functions are:

Ny =1-=
le
Ny =0
x
N =—
3 le
N} =
Ny =sin’>
le
Vg =0
Ny =sm—zﬂ
le
Ny =0
N7, =sin 2
2,
(Nt =0 (3.79)

Similarly, the interpolation functions for rotation can be expressed by

v ]=[x ] & ] | (3.80)
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NY =0
x
Ny =1-2
2 le
NY =0
X
Ny =—
4 le
NY =0
NY =sin—
ﬁ .
NY =0
N{ =sin
N:/+3=O
NY., =sin>
L 216

Here we use the following three notations:

o] 40

dx

o] )

dx

e = v+ v

(3.81)

(3.82)

(3.83)

(3.84)

Finally, we can get the govemning equation for HFEM based on FSDT from the

stationary condition (Equation 3.66) by variational method:

The stiffness and mass matrices are:

(k1= [ v TIvee bt [T v s
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[M]: '[e(pLHL+err)[ W]T[Nw]dx

Equation 3.85 can be written as:

[K]-0lar] =0

As same as in Ritz method, solving the eigenvalue equation {[K ]— coz[M ] =0, we

can get the natural frequencies.

Now we can check Examples 3.8 to 3.9 using HFEM based on FSDT.

3.3.2.2 Example applications

(3.87)

(3.88)

Example 3.10 vibration of a simply supported uniform beam using HFEM based on

FSDT

The uniform beam and boundary condition are as same as in Example 3.1. The

length-to-height ratio is 62.5. It is a typical Euler-Bernoulli beam but we apply the first-

order shear deformation theory and use conventional FEM and HFEM.

Table 3.40 Natural frequencies of long uniform composite beam described in Example
3.10 using conventional FEM based on FSDT

2E 4E 8E 16E 32E 64E 128E Exact
@, 7967.00 | 3583.19 { 1960.98 | 1340.82 | 1139.25 | 1083.36 | 1068.95 | 1064.10
@, 16387.3 | 8078.49 | 5370.03 | 4530.40 | 4300.46 | 4241.38 | 4221.53
@y 42368.9 | 19043.5 | 12106.8 | 10096.5 | 9556.30 | 9418.15 | 9371.81
o, 35876.6 | 21579.2 | 17718.5 | 16704.5 | 16446.7 | 16360.4

Table 3.41 Natural frequencies of long uniform composite beam described in Example
3.10 using two-hierarchical-terms model based on FSDT

2E2T* 4E2T 6E2T 8E2T 10E2T 12E2T Exact
o, 1440.01 | 1152.37 | 1101.28 | 1084.18 | 1076.60 | 1072.61 1064.10
@, 4811.81 | 4442.43 | 4330.92 | 4285.34 | 4262.97 4221.53
@ 11567.2 | 10145.3 | 9728.98 | 9568.26 | 9493.39 9371.81
@, 18425.5 | 17277.1 | 16844.2 | 16648.8 16360.4

*2E2T means two-elements model, w and y have one interpolation term each
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Table 3.42 Natural frequencies of long uniform composite beam described in Example

3.10 using four-hierarchical-terms model based on FSDT
2E4T 4E4T 6E4T 8E4T 10E4T 12E4T Exact
@, 1131.96 | 1100.98 | 1086.67 | 1078.69 | 1074.13 | 1071.35 1064.10
o, 4342.51 | 4302.63 | 4276.79 | 4260.53 | 4250.17 4221.53
@, 9601.77 | 9526.73 | 9485.40 | 9455.49 | 9434.80 9371.81
w, 16591.7 | 16539.4 | 16499.4 | 16468.5 16360.4

From Tables 3.40 to 3.42, we can say that when we apply FSDT to an Euler-
Bernoulli beam, the results from FEM are more inaccurate than those from Ritz method
especially when few-elements model is used. For the conventional FEM, the natural
frequencies can not reach the exact solutions even when we use one hundred and twenty-
eight elements. Compared with Tables 3.36, 3.41 and 3.42 show that HFEM for an Euler-
Bernoulli beam based on FSDT does not have acceptable accuracy when two-elements
model is used. At the same time, HFEM shows rapid convergence if we increase the
hierarchical terms.

For the same beam, we just shorten the length to L = 0.03048 m. The length-to-
height ratio is 6.25. It is a typical Timoshenko Beam. The following tables give the

natural frequencies of this short beam.

Table 3.43 Natural frequencies of short uniform composite beam described in Example
3.10 using conventional FEM based on FSDT

2E 4E 8E 16E 32E 64E 128E Exact
o, | 117272 | 93215.5 | 87434.1 | 86009.0 | 85654.0 | 85565.4 | 85543.2 | 85535.8
o, 281781 | 248546 | 240370 | 238347 | 237842 | 237716 237674
@5 501916 | 423264 | 399636 | 393794 | 392341 | 391978 391857
@, 610687 | 559657 | 546851 | 543670 | 542876 542611
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Table 3.44 Natural frequencies of short uniform composite beam described in Example
3.10 using two-hierarchical-terms model based on FSDT

2E2T 4E2T 6E2T SE2T 10E2T 12E2T Exact
@, 86967.8 | 85714.9 | 85598.5 | 85567.7 | 85555.2 | 85548.9 85535.8
@, 239651 | 238236 | 237922 | 237812 237762 237674
@, 401048 | 394333 | 392863 | 392377 392170 391857
o, 550232 | 545619 | 544103 543473 542611

Table 3.45 Natural frequencies of short uniform composite beam described in Example
3.10 using four-hierarchical-terms model based on FSDT

2EAT 4EAT 6E4T 8E4T 10E4T 12E4T Exact
o, 85819.3 | 85633.8 | 85582.1 | 85562.4 | 85553.0 | 85547.8 85535.8
@, 238094 | 237906 | 237815 | 237768 | 237740 237674
@, 392672 | 392400 | 392217 | 392106 | 392038 391857
@, 543526 | 543283 | 543103 542979 542611

The first mode frequency is plotted in figure 3.14 to compare the convergences

between conventional FEM and HFEM.,

.....................................................................................................

________________________________________________________________________________________________________________________

Figure 3.14 First mode frequency of simply supported uniform composite beam based on

FSDT
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Form this figure, we can see that the top curve shows a typical slow convergence
of conventional FEM for FSDT. Furthermore, this curve is always above the exact
solution and it seems that it can not reach the exact solution. That is because of the shear
lock. On the other hand, HFEM has much better accuracy than the conventional FEM, the
two lower curves almost reach the exact solution.

Furthermore, the accuracy from both conventional and hierarchical FEM is much
better than that shown in tables 3.40 to 3.42. This is because if we apply FSDT to an
Euler-Bernoulli beam, we need many-elements model to reach acceptable results.

In order to see how the hierarchical method affects the accuracy, we can increase
both the number of elements and the number of trigonometric terms. Moreover, we can

see if HFEM can fix the problem of shear lock.

Table 3.46 Natural frequencies of short uniform composite beam described in Example

3.10 using two-elements model based on FSDT

2E2T

2E4T

2E6T

2E8T

2E10T

2E12T

Exact

@

86967.8

85819.3

85653.6

85587.6

85566.1

85553.4

85535.8

Table 3.47 Natural frequencies of short uniform composite beam described in Example
3.10 using four-elements model based on FSDT

4E2T 4E4T 4E6T 4E8T 4E10T 4E12T Exact
o, 85714.9 | 85633.8 | 85556.8 | 85551.9 | 85541.9 | 85541.0 | 85535.8
@, 239651 | 238094 | 237839 | 237749 | 237717 | 237699 237674
@, 401048 | 392672 | 392462 | 392028 | 392002 | 391919 391857

Table 3.48 Natural frequencies of short uniform composite beam described in Example
3.10 using six-elements model based on FSDT

6E2T 6E4T 6E6T 6EST 6E10T 6E12T | Exact
o, 85598.5 | 85582.1 | 85544.3 | 85543.3 | 85538.4 | 85538.2 | 85535.8
@, 238236 | 237906 | 237733 | 237713 | 237691 | 237687 237674
@ 394333 | 392400 | 392065 | 391954 | 391911 | 391889 391857
@, 550232 | 543526 | 543157 | 542792 | 542745 | 542675 542611
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Figure 3.15 First mode frequency vs. number of hierarchical terms of simply supported
uniform composite beam based on FSDT

The first mode frequency in tables 3.46 to 3.48 is plotted in Figure 3.15.

From the above figure, we can see that increasing the number of hierarchical
terms helps the convergence considerably, especially at the beginning. Two-elements
model gives good solution with using four hierarchical terms. Increasing the number of
elements and the number of hierarchical terms lets the frequency reach almost the exact
solution rapidly.

Since HFEM gives accurate solution for uniform laminated beam, we can apply it
to the tapered Timoshenko beam to see if it can also converge to the solution that we got

from Ritz method.

Example 3.11 vibration of a simply supported tapered composite beam using HFEM

based on FSDT
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The tapered beam and boundary condition are as same as those in Example 3.4.

The length-to-height ratio is 6.25. It is a typical Timoshenko beam and we apply FSDT.

Table 3.49 Natural frequencies of tapered composite beam described in Example 3.11
using conventional FEM based on FSDT

2E 4E 8E 16E 32E 64E 128E 10R
a, 116302 | 91741.7 | 85836 | 84379.7 | 84016.9 | 83926.3 | 83903.6 | 83899.4
@, 280795 | 246886 | 238555 | 236494 | 235980 | 235852 | 235809
@, 502711 | 422591 | 398607 | 392679 | 391204 | 390836 | 390714
@, 611142 | 559505 | 546554 | 543337 | 542534 | 542267

Table 3.50 Natural frequencies of tapered composite beam described in Example 3.11
using two-hierarchical-terms model based on FSDT

2B2T 4E2T 6E2T S8E2T 10E2T 12E2T 10R
@, 85359.9 | 84079.4 | 83960.2 | 83928.6 | 83915.9 | 83909.4 83899.4
@, 237827 | 236382 | 236062 | 235950 | 235898 235809
@, 400060 | 393230 | 391735 | 391242 | 391031 390714
@, 549986 | 545312 | 543777 | 543139 542267

Table 3.51 Natural frequencies of tapered composite beam described in Example 3.11

using four-hierarchical-terms model based on FSDT

2E4T 4E4T 6E4T 8E4T 10E4T 12E4T 10R
o, 84185.0 | 83996.1 | 83943.4 | 83923.3 | 83913.6 | 83908.3 83899.4
@, 236236 | 236045 | 235952 | 235904 | 235876 235809
@, 391539 | 391264 | 391079 | 390966 | 390897 390714
o, 543191 542946 | 542764 | 542638 542267

The first mode frequency is plotted in figure 3.16.

As can be seen that just like that in the uniform beam case, HFEM based on
FSDT also gives better éonvergence than the conventional FEM for a tapered composite
beam. The frequency seems to converge to the solution from Ritz method. At the same
time, by only increasing the number of elements but using few hierarchical terms, result

from HFEM does not converge rapidly to that from Ritz method.
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Figure 3.16 First mode frequency of simply supported tapered composite beam based on

________________________________________________________________________________________________________________________

FSDT

Next, we are going to increase both the number of elements and the number of

hierarchical terms to see if the solution can approach the solution from Ritz method.

Because the six-elements model with hierarchical terms costs very long time, only two,

three, four and five-elements models are used in this section.

Table 3.52 Natural frequencies of tapered composite beam described in Example 3.11
using two-elements model based on FSDT

2B2T

2E4T

2E6T

2E8T

2E10T

2E12T

10R

@

85359.9

84185.0

84016.6

83949.0

83927.1

83914.0

83899.4

Table 3.53 Natural freéuencies of tapered composite beam described in Example 3.11
using three-elements model based on FSDT

3E2T 3E4T 3E6T 3E8T 3E10T 3E12T 10R
o, 84313.7 | 84059.2 | 83938.8 | 83923.5 | 83907.9 | 83905.0 | 83899.4
@, 240959 | 236385 | 236168 | 235924 | 235897 | 235850 235809
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Table 3.54 Natural frequencies of tapered composite beam described in Example 3.11

using four-elements model based on FSDT

4E2T 4E4T 4E6T 4E8T 4E10T 4E12T 10R
@, 84079.4 | 83996.1 | 83917.5 | 83912.5 | 83902.3 | 83901.3 | 83899.4
@, 237827 | 236236 | 235977 | 235886 | 235853 | 235835 235809
@, 400060 | 391539 | 391328 | 390887 | 390861 | 390776 390714

Table 3.55 Natural frequencies of tapered composite beam described in Example 3.11
using five-elements model based on FSDT

SE2T SEAT SE6T SEST SE10T SE12T 10R
@, 83997.4 | 83962.7 | 83909.0 | 83906.9 | 83899.9 | 83899.5 | 83899.4
@, 236805 | 236123 | 235903 | 235863 | 235835 | 235827 235809
@, 395255 | 391391 | 391056 | 390841 | 390799 | 390757 390714
@, 555975 | 543346 | 543148 | 542501 | 542476 | 542352 542267

The first mode frequency is plotted in figure 3.17.

......................................................................................................

______________________________________________________________________________________________________________________

Figure 3.17 First mode frequency vs. number of hierarchical terms of simply supported

tapered composite beam based on FSDT

As can be seen from both the tables and Figure 3.17, the natural frequency
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converges to the result from Ritz method. By only increasing the number of elements, the
frequency converges slowly. The frequency from the five-elements model without
hierarchical term is inaccurate. At the same time, as soon as two hierarchical terms are
given to the displacement and rotation functions (one term for each), the result is very
close to that from Ritz method although we use the two-elements model. When we
increase the number of hierarchical terms to four, the difference between the results from
HFEM and Ritz method is almost invisible. The most important aspect is that when we
use twelve hierarchical terms along with the five-elements model, the first mode

frequency is same as that from Ritz method. The shear lock problem disappears.

3.4  Conclusions and discussions

So far, the conventional and the hierarchical FEM based on CLT and FSDT have
been described and example problems have been solved to illustrate their applications,
for both uniform and tapered composite beams. Based on both CLT and FSDT, the
HFEM displays superior results as compared to the conventional FEM. We have seen
how the results of the formulations compare with each other and within themselves from
the tables and figures.

As can be seen, convergence to the exact solutions in the lowest two modes is
much faster than in the third or fourth mode in the cases of both conventional FEM and
hierarchical FEM. This is due to the fact that the higher is the mode the more complex is
the mode shape. Therefore, the higher the mode is, the more number of hierarchical terms
are needed to describe accurately this mode.

In order to get very accurate solution, direct integration is applied to Ritz method.
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From the above examples, we can see that for different boundary conditions, ten
interpolation terms give acceptable solution. Furthermore, Ritz method for simply
supported boundary condition converges faster than the others. That is because the
trigonometric interpolation function ( sinx ) describes the harmonic vibration more
accurately than the others. On the other hand, FEM seems to converge at the same speed
for all the four kinds of boundary conditions. For HFEM, numerical integration is applied
to save time because the integral is too complicated. The number of Gauss points used is
from ten to twenty depending on the case to guarantee the accuracy.

Moreover, HFEM has much better accuracy compared with the conventional
FEM. The shear lock problem prevents the conventional FEM to reach the exact solution.
The solution from HFEM can almost reach the exact solution and the solution from Ritz
method.

Due to the varying thickness of the beams, the transverse shear stiffness

coefficient A;; and the bending stiffness coefficient D, become linear and cubic

functions respectively. This results in a fully populated stiffness and mass matrices and
increases the computational effort required to obtain a solution. Nonetheless, the
efficiency and accuracy of the solution for the tapered beams are forthcoming,.

To sum up, in this chapter the Hierarchical Finite Element Method has been
presented and its formulation has been applied to the free vibration analysis of both
uniform and tapered Euler-Bernoulli and Timoshenko beams. To start with, Ritz method
is presented and its derivation is detailed to stress the conceptual changes for tapered
composite beam. All examples are solved by Ritz method, conventional FEM and HFEM

so that besides the comparison that can be made with regard to the HFEM and Ritz
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results, another comparison also can be made between conventional and hierarchical
FEM. The detailed formulation of the HFEM is also given to stress the major aspects of
the method.

The trigonometric form of HFEM is found to give highly accurate results, viz.
frequencies in free vibration, with substantially less number of elements and system
degrees of freedom. The effect of adding internal degrees of freedom enhances the
performance of the element and hence a single more efficient element can do the work of
many conventional elements combined. Also, the number of system degrees of freedom
can be varied without changing the mesh of elements. Results can be achieved to any
desired degree of accuracy by simply increasing the number of hierarchical terms in each
element. In this chapter, example problems are given for both Euler-Bernoulli and
Timoshenko models. The HFEM formulation gives much better results than the
conventional formulation. In the next chapter, we will apply HFEM to tapered Euler-

Bernoulli and Timoshenko beams with axial force.
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Chapter 4

Free Vibration Analysis of Tapered Laminated Composite Beams

subjected to Axial Force

4.1 Introduction

In the previous chapter, we have derived the formulations of vibration analysis of
a tapered composite beam, based on both CLT and FSDT. At the end of each section,
examples have been given. The results obtained using Ritz method, conventional FEM
and HFEM match very well. When there is axial force acting at the ends of the beam,. it
affects the vibration frequencies. In this chapter, we will derive the formulations of
vibration analysis of a tapered composite beam subjected to axial force, based on both
CLT and FSDT. Ritz method and HFEM will also be applied to this problem and
example problems will be given. In addition, all the compressing axial forces applied at
the ends of beams in the examples will be much smaller than their corresponding

buckling loads.
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4.2 Formulation based on Classical Laminate Theory

4.2.1 Solution using Ritz method and based on CLT
In this section, we will derive the formulations using Ritz method based on the
classical laminate theory for a tapered composite beam subjected to axial force and then

give some examples, including uniform and tapered composite Euler-Bernoulli beams.

4.2.1.1 Formulation using Ritz method based on CLT
In Chapter 3, we have already derived the strain energy U of a tapered laminated
beam (Equation 3.9). In the case where transverse deformation is taken into account, the

actions exerted upon the laminate result from in-plane loads [1]. The potential energy of

the in-plane loads N, N, ,and N , owedtoa deflection w is

xy?

y=1 | I{Nx(@) van, 2O, Ny(iw-) }dxdy 4.1)
2 Ox Ox Oy Oy

In this section, we limit our discussion to a beam and there is only N, acting on

it. Thus the potential energy can be reduced to:

V= % | IN[%W;) dxdy = % [ bNx(%] dx (4.2)

In addition, the kinetic energy T is as same as that for a beam subjected to pure
bending without axial force (Equation 3.15).

Therefore, the stationary value for the vibration analysis of a tapered laminated
beam subj ected to axial force includes three components [1]:

N=U-V+T (4.3)

Substituting Equations 3.9, 3.15 and 4.2 into Equation 4.3 yields:
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1 ¢ o*w 2
=E-EbD”[6x2Jd ——_[bN(a )dx——_[ (p H, + p,H Wdx (4.4

In order to use Ritz method, we assume the same interpolation functions for the
displacement W that were used in Chapter 3 (Equation 3.17). Then we can substitute
Equation 3.17 into Equation 4.4 and impose the stationary condition (Equation 3.18).
Again we can get a set of N equations. Expressing this set of equations by a matrix

equation yields Equation 3.19. Here, the [M ] matrix is as same as that we obtained in
Section 3.2.1.1, but the [K] matrix is different. Here, N, is embedded in [K] matrix

because:

*w ow\’
U- j: bD“(ax J dx——£ bN (axJ dx (4.5)

Solving this eigenvalue problem ’[K - 0?[M ] =0, we can get the free vibration

frequencies for beam subjected to axial force.

4.2.1.2 Example applications
In this section, we will apply Ritz method to a uniform laminated composite beam

subjected to axial force. Furthermore, a tapered laminated composite beam is presented.

Example 4.1 vibration of a simply supported uniform composite beam subjected to axial
force using Ritz method based on CLT

A uniform composite beam with both ends simply supported as shown in Figure
4.1 1s made up of NCT301 graphite-epoxy. Its mechanical properties are shown in Table

2.2
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The geometric properties of the beam are: length L =0.3048 m ; individual ply
thickness ¢ =0.0001524 m. There are 32 plies in the laminate and the configuration of
the laminate is [(0/90)g]s. The laminate thickness of /7 = 0.0048768 m is obtained by
multiplying the number of plies, 32 in this case with the ply thickness, i.e. 0.0001524m.

The length-to-height ratio is 62.5. It is subjected to axial force N, =10KN.

From Reference [1], we have the expression of buckling load:

2
T

N, =—D

cr Lz 11 (46)

For the beam given by Example 4.1, the bending stiffness coefficient is
D,, =817.127 N.m

Therefore, its first mode buckling load is N, =86.808 KN . The axial force

applied on this beam N, =10KN is much smaller than N, .

Figure 4.1 Simply supported uniform composite beam subjected to axial force

The exact solution is given by [2]:

2,2
W = mrr 1 m ZZ' '—D—‘—Nx (47)
L \\pH\ L° A

For symmetrical laminate, the above equation can be simplified to:
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2_2
a)m:mL”\[;I(D“Z” —Nx) (4.8)
P

Substituting the value of D, into Equation 4.7, we can get the natural frequencies
of the beam shown in Figure 4.1:

@, =1003.72 rad/sec

@, =4206.33 rad/sec

@, =9541.87 rad/sec

w, =17011.4 rad/sec

Then same trigonometric interpolation functions as those in Equation 3.22 are
assumed for the displacement . Table 4.1 gives the natural frequencies by using

trigonometric interpolation functions:

Table 4.1 Natural frequencies of uniform composite beam described in Example 4.1 using
trigonometric interpolation functions

1R 2R 3R 4R 5R Exact
@, 1003.72 1003.72 1003.72 1003.72 1003.72 1003.72
@, 4206.33 4206.33 4206.33 4206.33 4206.33
@, 9541.87 9541.87 9541.87 9541.87 9541.87
@, 17011.4 17011.4 17011.4 170114

As can be seen the Ritz method gives perfect results for this example, even when
W has only one interpolation term. This is as same as that for the uniform composite

beam without axial force discussed in Chapter 3.

Example 4.2 vibration of a simply supported tapered beam using Ritz method based on

CLT
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A tapered composite beam made up of NCT301 graphite-epoxy has configuration
of model F. Both of its ends are simply supported as shown in Figure 4.2. Its mechanical
properties are shown in Table 2.2.

The geometric properties of the beam are: length L =0.3048 m ; individual ply
thickness ¢ = 0.0001524 m. There are 32 plies at the left end and 30 plies at the right end.
Two layers are dropped. The configuration of both ends are [(0/90)s]s and [(0/90),/0]s
respectively. The height of each ply in z direction is 4 =0.00015240001905m . It is
almost as same as the thickness 7 =0.0001524 m, because the tapered angle is only

a =0.02865° . This beam is subjected to axial force N, =10KN . This axial force should
be much less than the first mode buckling load of this tapered beam, because the first
mode buckling load of the similar uniform beam in Example 4.1 is N, =86.808 KN .

The bending stiffness coefficient of this beam is

Dy, =817.122 - 490.366x + 95.5097x* —1.01515x°

Figure 4.2 Simply supported tapered composite beam subjected to axial force

The same trigonometric interpolation function as in Example 4.1 is assumed for

the displacement W . Table 4.2 gives the results.
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Table 4.2 Natural frequencies of tapered composite beam described in Example 4.2 using

trigonometric interpolation functions

IR 2R 3R 4R SR 10R
o, 967.496 966.896 966.896 966.892 966.892 966.891
@y 4075.46 4072.87 4072.86 4072.84 4072.34
) 9252.92 9246.56 9246.55 9246.48
@, 16501.7 16489.4 16489.2

As can be seen the convergence is still very fast, but the results from low order

displacement functions do not exactly match the solution obtained using ten interpolation

terms, not like that in the case of uniform beam. That is because the tapered angle results

in a cubic D,;. Few trigonometric terms can not accurately describe the displacement.

The more trigonometric terms we use, the more accurate result we have.

The next step is to use HFEM to re-solve the same problems.

4.2.2 Solution using Hierarchical Finite Element Method and based on CLT

4.2.2.1 Formulation using HFEM based on CLT

In the above section, we have already derived the stationary value based on

classical laminate theory for a composite beam subjected to axial force (Equation 4.4).

M =6U-8V+6T=0

Imposing the stationary condition:

We can obtain the governing equation for this problem:

[ Il P |- w v vty - o2 [ o, 1, + .0 T v it

(4.9)

=0

(4.10)

where the interpolation functions N*, N* and N have the same forms as those

we defined in Chapter 3 for HFEM based on CLT.
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Equation 4.9 can be expressed by:

i1~ o[} =0

(k1= [ oI T o v e v s
M= [ (.21, + p. 1, N[ [N hax

that in Ritz method,

As same as

|[K |- w?*[M ] =0 , we can get the natural frequencies.

Now we can re-solve Example 4.1 using HFEM.

solving

4.2.2.2 Example applications

@.11)

(4.12)

(4.13)

the eigenvalue equation

Example 4.3 vibration of a simply supported uniform composite beam subjected to axial

force using HFEM based on CLT

This problem is same as Example 4.1 but we use HFEM instead of Ritz method.

Table 4.3 Natural frequencies of uniform composite beam described in Example 4.3 using

conventional FEM based on CLT

2E 4E 6E 8E 10E 12E Exact
o, 1008.17 | 1004.01 | 1003.78 | 1003.74 | 1003.73 | 1003.72 | 1003.72
o, 4223.40 | 4209.83 | 4207.45 | 4206.79 | 4206.55 | 4206.33
@, 9718.28 | 9580.00 | 9554.30 | 9547.04 | 9544.38 | 9541.87
@, 17213.8 | 17079.0 | 17039.8 | 17025.2 | 17011.4

Table 4.4 Natural frequencies of uniform composite beam described in Example 4.3 using
one-hierarchical-term model based on CLT

2E1T 4E1T 6EIT 8E1T 10E1T 12E1T Exact
@ 1003.80 | 1003.72 | 1003.72 | 1003.72 | 1003.72 | 1003.72 | 1003.72
@, 4206.66 | 4206.36 | 4206.33 | 4206.33 | 4206.33 | 4206.33
@, 9548.96 | 9542.61 | 9542.03 | 9541.92 | 9541.89 | 9541.87
@, 17017.9 | 17012.7 | 17011.8 | 17011.5 | 17011.4
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Table 4.5 Natural frequencies of uniform composite beam described in Example 4.3 using

two-hierarchical-terms model based on CLT

2E2T 4E2T 6E2T 8E2T 10E2T 12E2T Exact
@, 1003.73 | 1003.72 | 1003.72 | 1003.72 | 1003.72 | 1003.72 | 1003.72
@, 4206.36 | 4200.34 | 4206.33 | 4206.33 | 4200.33 | 4206.33
0, 9542.11 | 9541.96 | 9541.91 | 9541.89 | 9541.88 | 9541.87
@, 17011.7 | 17011.5 | 170114 | 17011.4 | 170114

Figure 4.3 shows the comparison between the results obtained using conventional

FEM and hierarchical FEM for this example. Only the first natural frequency is plotted in

this figure. We can observe from Tables 4.3 to 4.5 that the other frequencies have similar

convergence.

Figure 4.3 First mode frequency of simply supported uniform composite beam subjected
to axial force based on CLT

For this simply supported uniform composite beam subjected to axial force, both

conventional FEM and HFEM show rapid convergence. At the same time, HFEM gives
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much more accurate results compared with those from conventional FEM, especially for
the two-elements and four-elements models. This is as same as that for the uniform
composite beam without axial force given in Chapter 3.

Then we can use HFEM to re-solve Example 4.2, the tapered composite beam

subjected to axial force.

Example 4.4 vibration of a simply supported tapered beam subjected to axial force using
HFEM based on CLT

This problem is same as Example 4.2 but we use HFEM instead of Ritz method.
Tables 4.6 to 4.8 are the natural frequencies obtained using conventional FEM model,

one-hierarchical-term model and two-hierarchical-term model respectively.

Table 4.6 Natural frequencies of tapered composite beam described in Example 4.4 using
conventional FEM based on CLT

2E 4E 6E 8E 10E 12E 10R
o, 971.322 | 967.183 | 966.949 | 966.910 | 966.899 | 966.895 | 966.891
@, 4089.49 | 4076.25 | 4073.93 | 4073.29 | 4073.06 | 4072.84
@, 9418.65 | 9283.56 | 9258.57 | 9251.50 | 9248.92 | 9246.48
@, 16686.0 | 16554.9 | 16516.8 | 16502.7 | 16489.2

Table 4.7 Natural frequencies of tapered composite beam described in Example 4.4 using
one-hierarchical-term model based on CLT

2E1T 4E1T 6E1T SEIT 10E1T | 12E1T 10R
o, 966.974 { 966.893 | 966.891 | 966.891 | 966.891 | 966.891 | 966.891
@, 4073.16 | 4072.87 | 4072.85 | 4072.84 | 4072.84 | - 4072.84
@, 9253.31 |9247.20 | 9246.63 | 9246.53 | 9246.50 | 9246.48
@, 16495.5 | 16490.5 | 16489.6 | 16489.3 | 16489.2
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Table 4.8 Natural frequencies of tapered composite beam described in Example 4.4 using

two-hierarchical-terms model based on CLT

2E2T 4E2T 6E2T 8E2T 10E2T 12E2T 10R
@, 966.901 | 966.892 | 966.891 | 966.891 | 966.891 | 966.891 | 966.891
@, 4072.87 | 4072.85 | 4072.84 | 4072.84 | 4072.84 | 4072.84
Dy 9246.71 | 9246.56 | 9246.51 | 9246.50 | 9246.49 | 9246.48
@, 16489.5 | 16489.4 | 16489.3 | 16489.2 | 16489.2

The first mode frequency is plotted in Figure 4.4.

Figure 4.4 First mode frequency of simply supported tapered composite beam subjected
to axial force based on CLT

As can be seen all the three curves converge to the exact solution. For
conventional FEM, six-elements model gives acceptable accuracy. At the same time,
HFEM shows critical advantages of using fewer elements and obtaining better accuracy.
This is because the hierarchical formulations consider the internal degrees of freedom.

Hence, the resulting expressions involving higher derivatives of the displacement field
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are accurate. These are similar to those in the cases without axial force.

In the above three examples, we fixed the number of hierarchical terms and
increased the number of elements from two to twelve, and the comparison shows the
considerable improvement of hierarchical FEM. We can also fix the number of elements
but increase the number of hierarchical terms to observe the convergence. Tbles 4.9 to

4.12 are results for Example 4.4.

Table 4.9 Natural frequencies of tapered composite beam described in Example 4.4 using
HEFEM with two-elements model based on CLT

2E0T

2E1T

2E2T

2E3T

2E4T

2BE5T

2E6T

10R

@,

971.322

966.974

966.901

966.893

966.892

966.891

966.891

966.891

Table 4.10 Natural frequencies of tapered composite beam described in Example 4.4
using HFEM with three-elements model based on CLT

3EOT 3EIT 3E2T 3E3T 3E4T 3EST 3E6T 10R
@ | 967.800 | 966.900 | 966.894 | 966.891 | 966.891 | 966.891 | 966.891 | 966.891
w, | 4122.81 | 4074.42 | 4072.92 | 4072.87 | 4072.84 | 4072.84 | 4072.84 | 4072.84

Table 4.11 Natural frequencies of tapered composite beam described in Example 4.4
using HFEM with four-elements model based on CLT

4E0T

4E1T

4E2T

4E3T

4EAT

4E5T

4E6T

10R

@

967.183

966.893

966.892

966.891

966.891

966.891

966.891

966.891

@,

4089.49

4073.16

4072.87

4072.85

4072.84

4072.84

4072.84

4072.84

@y

9418.65

9253.31

9246.71

9246.61

9246.50

9246.50

9246.49

9246.48

Table 4.12 Natural frequencies of tapered composite beam described in Example 4.4
using HFEM with five-elements model based on CLT

SEOT

SEIT

SE2T

SE3T

5E4T

SE5T

S5E6T

10R

967.011

966.892

966.892

966.891

966.891

966.891

966.891

966.891

4079.83

4072.93

4072.85

4072.84

4072.84

4072.84

4072.84

4072.84

9321.11

9248.46

9246.62

9246.53

9246.48

9246.48

9246.48

9246.48

16874.0

16506.5

16489.7

16489.5

16489.2

16489.2

16489.2

16489.2

Figure 4.5 plots the first mode frequency of two-elements to five-elements
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models. As can be seen the frequency converges fast by increasing number of elements or
the number of hierarchical terms. At the same time, the two-elements conventional model
shows much more inaccuracy than the others. As soon as we use one hierarchical term,
the first mode frequency becomes very close to that from Ritz method, even for the two-

elements model.

Figure 4.5 First mode frequency vs. number of hierarchical terms plot of simply
supported tapered composite beam subjected to axial force based on CLT

So far, the conventional and the hierarchical finite element methods based on
CLT have been described and example problems have been solved to illustrate their
applications, for both uniform and tapered composite beams. In this section, only simply
supported boundary condition is presented. The others will show up in Chapter 5. Similar
to that in the case without axial force, given in Chapter 3, the HFEM displays superior

results as compared to the conventional FEM. In the next section, we will apply HFEM to
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a tapered Timoshenko beam subjected to axial force based on FSDT.

4.3 Formulation based on First-order Shear Deformation Theory

4.3.1 Solution using Ritz method and based on FSDT
In this section, we will derive the solution using Ritz method based on the first-
order shear deformation theory and then give some example problems, including uniform

and tapered composite beams subjected to axial force.

4.3.1.1 Formulation using Ritz method based on FSDT

In Chapter 3, we have already obtained the strain energy U (Equation 3.60) and
kinetic energy T (Equation 3.65) of a tapered composite beam based on FSDT. In the
case where transverse deformation is taken into account the actions exerted upon the

laminate result from in-plane loads. The potential energy of the in-plane load N, owed to

a deflection W is as same as that based on the classical laminate theory, as given by
Equation 4.2.

The stationary value for the vibration analysis of a tapered laminated beam
subjected to axial force based on FSDT has the same form as in the case of classical
laminate theory:

O=U-V+T (4.14)

Substituting Eqﬁations 3.60, 3.65, and 4.2 into Equation 4.13 yields:

2 2 2 2
I =l£"b{D“(a—w) +k45(w+ Gw) :ld,\~% ‘[:ebNx(iw—J d —% “b(p,H, + p,H, )W dx

2 Ox 8_x Ox
(4.15)

116



N N
Assuming W=Zc,.¢i and ‘P:Zeigoi according to different boundary

i=1 i=1
conditions and imposing the stationary condition, Equation 3.67, we can obtain a matrix

equation having the same form as Equation 3.68. Again, solving the eigenvalue problem

l[K - w?*[M ] =0, we can obtain the free vibration frequency.

The next step is to give some example problems, including a uniform laminated
beam subjected to axial force. In order to have exact solutions to compare, we need to
solve the differential equation for the vibration analysis of a uniform laminated beam
subjected to axial force.

We have two differential equations for a uniform laminated beam subjected to

axial force based on FSDT [2]:

oy 'w o’w o’w
kASS( ox o’ j sa P
5 . " (4.16)
v _ v
D, ‘é;z—_kAss(‘// +a) =1, W
Ignoring the rotary inertia moment yields:
2 2 2
G S G G
5 . 4.17)
7
D, +—1=0
11 axz kASS (W ax )

First of all, we consider a simply supported beam and assume the displacement

and rotation functions as:
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3 minx
W = Bmelmt COST

(4.18)
w=C, e sin >
L
Substituting Equation 4.17 into Equation 4.16 gives
mi m*r® 2 _

MSSTBm+ (kASS_Nx) L2 ~pr Cm_o

) (4.19)
D, "+ ks |B, + ke 7=C, =0

L L
Then we can condense out B,

mZﬂ_Z m27z_2 m2n_2
{(DIIT+MSS (kAss _Nx) I —pHcaZ _k2A525 I2 Cm =0 (4.20)

Because the coefficients are nonzero (C, # 0), the other part of the left side of
Equation 4.19 must be zero. Thus
(D“m27z2 + kAL, XkA55 - Nx)ﬁzzﬁ2 ~ R A m*n? = (D“mzir2 + LkA, )LZpHaJ2
(4.21)

Then the natural frequency of a uniform laminated beam with axial force based on

FSDT is of the form:
o = mr £Dllm27z'2 + LZkASS) (k1455 - Nx)_L2k2A525 (4 22)
L (D1 it + szASS) oH

4.3.1.2 Example Applications

In this section, we will apply Ritz method to a uniform laminated composite beam
subjected to axial force. Furthermore, a tapered laminated composite beam subjected to

axial force will be presented.
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Example 4.5 vibration of a simply supported uniform composite beam subjected to axial

Jforce using Ritz method based on FSDT

This problem is similar to Example 4.1 except that the length L =0.03048 m and

the axial force N, =100 KN . Its length-to-height ratio is 6.25.

From Reference [1], we have the expression of buckling load based on FSDT:

kA..D, *
":D 525 1 5 (4.23)
W+ kA L

where the material properties of the beam in this example are

Ay =18726912 Nm'™

D, =817.127 N.m

Therefore, its first mode buckling load is N, =5578 KN . The axial force applied
on this beam N, =100 KN is much smaller than N, .

The exact solution is given by Equation 4.21:

@, = 84765.6 rad/sec
@, =236568 rad/sec
@, = 390348 rad/sec

w, = 540674 rad/sec

Then trigonometric interpolation functions are assumed for the displacement W

and rotation ¥ as given by Equation 3.70. Table 4.13 gives the results.

119



Table 4.13 Natural frequencies of uniform composite beam described in Example 4.5
using Ritz method based on FSDT

1R 2R 3R 4R 5R Exact
1 84765.6 84765.6 84765.6 84765.6 84765.6 84765.6
@, 236568 236568 236568 236568 236568
o, 390348 390348 390348 390348
@, 540674 540674 540674

It can be seen the Ritz method gives perfect solution for this problem, even when
W and ¥ have only one interpolation term each. This is as same as that for the uniform
composite beam without axial force discussed in Chapter 3 and that for the uniform

composite beam with axial force based on CLT in Section 4.2.1.2.

Example 4.6 vibration of a simply supported tapered beam subjected to axial
force using Ritz method based on FSDT

A tapered composite beam made up of NCT301 graphite-epoxy has configuration
of model F. Both of its ends are simply supported as shown in Figure 4.2. Its mechanical
properties are given in Table 2.2.

The geometric properties of the beam are: length L = 0.03048 m ; individual ply
thickness ¢ = 0.0001524 m . There are 32 plies at the left end and 30 plies at the right end.
Two layers are dropped. The configuration of both ends are [(0/90)3]s and [(0/90)/0]s
respectively. The height of each ply in z direction is 4 = 0.000152401905 m. Itis almos"c
as same as the thickness ¢#=0.0001524m , because the tapered angle is only
o =0.2865° . This beam is subjected to axial force N, =100 KN . This axial force should
be much less than the first mode buckling load of this tapered beam, because the first

mode buckling load of the similar uniform beam in Example 4.5 is N, =5578 KN
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The bending stiffness coefficient is
D,, =816.591—-4900.51x +9544.85x* —-1015.17x

Table 4.14 gives the first four natural frequencies.

Table 4.14 Natural frequencies of tapered composite beam described in Example 4.6
using Ritz method based on FSDT

IR 2R 3R 4R 5R 10R Uniform
o, 83118.3 | 83088.6 | 83088.6 | 83088.4 | 83088.4 | 83088.4 | 84765.6
@, 234703 234658 234658 234658 | 234657 | 236568
@; 389190 389151 389151 | 389151 | 390348
o, 540296 540266 | 540265 | 540674

As can be seen the convergence is still very fast, but the results from low order

displacement functions do not match the solution obtained using ten interpolation terms.

That is because the taper angle results in a cubic D,,. Few trigonometric terms can not

accurately describe the displacement. The consequence is the inaccurate result.

The next step is to use HFEM to re-solve the same problems and compare the

results from both methods.

4.3.2 Solution using Hierarchical Finite Element Method and based on FSDT

4.3.2.1 Formulation using HFEM based on FSDT

In the previous section, we have derived the stationary value (Equation 4.14) for a

tapered composite beam with axial force based on FSDT. Then, imposing the stationary

condition (Equation 4.8), we can obtain the governing equation:

[l Iver - v v F v e [ T e e
~o® [ (o, 8, + p,H, N[ [ Jixfu}= 0

(4.24)
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where the interpolation functions N*, N, N** and N have the same forms

as those we defined in Chapter 3 for HFEM based on FSDT.

Equation 4.22 can be written as:

&1~ 0?[pfu} =0

where,

(1= o v T Ives T v v vee T v

1= [ (oot + ot YT [ s

It is also an eigenvalue problem.

(4.25)

(4.26)

(4.27)

Now we can re-solve Examples 4.5 and 4.6 using HFEM instead of Ritz method.

4.3.2.2 Example applications

Example 4.7 vibration of a simply supported uniform beam subjected to axial force using
HFEM based on FSDT

In this problem, the uniform composite beam and boundary condition are as same
as those in Example 4.5 but we apply HFEM instead of Ritz method. Tables 4.15 to 4.17
are the natural frequencies obtained using conventional FEM model, two-hierarchical-

terms model and four-hierarchical-terms model respectively.

Table 4.15 Natural frequencies of uniform composite beam described in Example 4.7
using conventional FEM based on FSDT

2E 4E 6E 8E 10E 12E Exact
@, 116590 92472.1 | 88163.0 | 86671.0 | 85983.4 | 85610.7 84765.6
@, 280646 | 256018 | 247433 | 243495 | 241368 236568
o, 500235 | 445925 | 421700 | 410349 | 404199 390348
@, 654297 | 608594 | 584399 | 571009 540674




Table 4.16 Natural frequencies of uniform composite beam described in Example 4.7
using two-hierarchical-terms model based on FSDT

2B2T 4E2T 6E2T 8E2T 10E2T 12E2T Exact
o, 86203.5 | 84945.4 | 84828.6 | 84797.6 | 84785.1 | 84778.7 | 84765.6
@, 238544 | 237129 | 236816 | 236706 | 236656 236568
@, 399525 | 392820 | 391352 | 390867 390660 390348
w, 548278 | 543675 542163 541534 540674

Table 4.17 Natural frequencies of uniform composite beam described in Example 4.7

using four-hierarchical-terms model based on FSDT

2EAT 4E4T 6E4T 8E4T 10E4T 12E4T Exact
@, 85050.1 | 84863.9 | 84812.1 | 847923 | 847829 | 84777.7 | 84765.6
@, 236987 | 236799 | 236709 236661 236634 236568
@, 391161 | 390890 | 390708 390597 390528 390348
@, 541587 | 541344 541164 541041 540674

The first mode frequency is plotted in Figure 4.6.

Figure 4.6 First mode frequency of simply supported uniform composite beam with axial
force based on FSDT
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Figure 4.6 is very similar to Figure 3.14 showing the first mode frequency of
simply supported composite beam without axial force based on FSDT. The top curve
shows a typical slow convergence of conventional FEM based on FSDT. Furthermore,
this curve is always above the exact solution. Shear lock also happens to beam subjected
to axial force. On the other hand, HFEM has much better accuracy than the conventional

FEM, and the two lower curves almost reach the exact solution.

Example 4.8 vibration of a simply supported tapered beam subjected to axial force using
HFEM based on FSDT
In this problem, the composite beam and boundary condition are as same as those

in Example 4.6 but we apply HFEM here instead of Ritz method.

Table 4.18 Natural frequencies of tapered composite beam described in Example 4.8
using conventional FEM based on FSDT

2E 4B 6E 8E 10E 12E 10R
o, 115592 | 90961.6 | 86558.3 | 85033.2 | 84330.2 | 83949.1 83088.4
@, 279619 | 254481 | 245729 | 241715 | 239548 234657
@, 500979 | 445586 | 420973 | 409448 | 403206 389151
@, 655311 | 608982 | 584493 | 570946 540265

Table 4.19 Natural frequencies of tapered composite beam described in Example 4.8
using two-hierarchical-terms model based on FSDT

2E2T 4E2T 6E2T 8E2T 10E2T 12E2T 10R
@, 84555.6 | 83269.2 | 83149.4 | 83117.7 | 83104.8 | 83098.4 | 83088.4
@, 236675 | 235230 | 234910 | 234798 234747 234657
@ 398484 | 391663 | 390171 389678 389468 389151
@, 547967 | 543304 541772 541135 540265
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Table 4.20 Natural frequencies of tapered composite beam described in Example 4.8

using four-hierarchical-terms model based on FSDT

2E4T 4EA4T 6E4T SE4T 10E4T 12E4T 10R
o, 83375.1 | 83185.4 | 83132.5| 83112.3 | 83102.6 | 83097.3 | 83088.4
@, 235084 | 234893 | 234801 234753 234725 234657
@, 389975 | 389700 | 389515 389403 389333 389151
w, 541187 | 540943 540761 540636 540265

The first mode frequency is plotted in Figure 4.7.

Just like that in the uniform beam case, HFEM based on FSDT gives better

convergence than the conventional FEM, and it seems to converge to the solution from

Ritz method. Next, we are going to increase both the number of elements and the number

of hierarchical terms to see if the solution can rapidly approach the solution from Ritz

method. Tables 4.21 to 4.24 give the results.

Figure 4.7 First mode frequency of simply supported tapered composite beam with axial
force based on FSDT

o
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Table 4.21 Natural frequencies of tapered composite beam described in Example 4.8
using HFEM with two-elements model based on FSDT

2E0T

2E2T

2EAT

2E6T

2E8T

2E10T

2E12T

10R

@,

115592

84555.6

83375.1

83206.1

83138.1

83116.1

83103.0

83088.4

Table 4.22 Natural frequencies of tapered composite beam described in Example 4.8
using HFEM with three-elements model based on FSDT

3B0T 3E2T 3EAT 3E6T 3ES8T | 3EI10T | 3EI2T 10R
o, | 97231.8 | 83504.6 | 83248.8 | 83127.9 | 83112.6 | 83096.9 | 83093.9 | 83088.4
~o, | 311857 | 239806 | 235233 | 235016 | 234772 | 234745 | 234698 | 234657

Table 4.23 Natural frequencies of tapered composite beam described in Example 4.8
using HFEM with four-elements model based on FSDT

4E0T 4B2T 4EAT 4E6T 4E8T | 4E10T | 4E12T 10R
o | 90961.6 | 83269.2 | 83185.4 | 83106.5 | 83101.4 | 83091.2 | 83090.2 | 83088.4
o, | 279619 | 236675 | 235084 | 234825 | 234734 | 234701 | 234683 | 234657
o, | 500979 | 398484 | 389975 | 389764 | 389324 | 389297 | 389213 | 389151

Table 4.24 Natural frequencies of tapered composite beam described in Example 4.8
using HFEM with five-elements model based on FSDT

SEOT SE2T SEAT SE6T SEST SEIOT | 5EI2T 10R
@, | 88100.6 | 83186.8 | 83151.9 | 83097.9 | 83095.8 | 83088.8 | 83088.4 | 83088.4
o, | 263350 | 235653 | 234971 | 234751 | 234711 | 234683 | 234675 | 234657
o, | 468797 | 393685 | 389826 | 389492 | 389278 | 389236 | 389194 | 389151
o, | 680720 | 553945 | 541342 | 541145 | 540499 | 540474 | 540350 | 540265

The first mode frequency is plotted in Figure 4.8.
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_________________________________________________________________________________________________________

______________________________________________________________________________________________________________________

Figure 4.8 First mode frequency vs. number of hierarchical terms plot of simply
supported tapered composite beam with axial force based on FSDT
Figure 4.8 is very similar to Figure 3.17 plotting the first mode frequency of
simply supported tapered composite beam without axial force. Comparing the results for
Examples 3.11 and 4.8, we can see that the axial force affects the value of natural

frequencies but does not change the convergence of HFEM.

4.4 Conclusions and discussions

So far, the hierarchical FEM developed and applied to composite beams without
axial force in the previous chapter have been applied in this chapter to beams subjected to
axial force. These composite beams subjected to axial force have been modeled using
CLT and FSDT. Results for both the Euler-Bernoulli and Timoshenko beams have been
presented. The vibration analysis of uniform composite beams subjected to axial force is

also performed and compared with the conventional formulation and the exact solution.
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The application of HFEM is further extended to the thickness-tapered composite beams
with axial force based on both CLT and FSDT.

Application of the hierarchical finite element method to composite beams
subjected to axial force, as in the case of beams without axial force, yields the same
advantages of numerical efficiency and faster convergence. Less number of elements are
required to model and obtain precise answers for the vibration analysis of composite
beams with or without axial force. The system degrees of freedom are also substantially
less. The graphs in this chapter have given us a comparison of the convergence of natural
frequencies obtained using HFEM and the conventional formulation to their exact
solutions. There is a substantial reduction in the number of elements required to obtain
results that are almost the same as exact solutions. Also, much less number of system
degrees of freedom are required. For the Euler-Bernoulli beam, Figure 4.5 gives us the
convergence to the solution from Ritz method with increase in the number of
trigonometric terms. The non-dimensional frequencies for different modes are plotted
versus the number of trigonometric terms for the simply supported beam. For the
Timoshenko beam, Figure 4.10 illustrates the convergence of the two finite element
methods and shows that HFEM gives better results.

The results obtained for the vibration analysis of tapered composite beams
subjected to axial force show that the accuracy obtained is the same as that for beams
without axial force. The inherent features and advantages of the HFEM as pointed out for
the case of beams without axial force hold good for beams subjected to axial force too. In
addition, the dynamic analysis performed for the uniform and tapered composite beams

gives accurate results using minimum number of elements. The trigonometric HFEM is
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applied to the example problems since it has been the best method for uniform beams.
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Chapter 5

Parametric study on tapered composite beams

5.1 Introduction

In Chapter 2 we have already derived the formulations of elastic behavior for
composite beam with different taper models. In Chapter 3, Ritz method and hierarchical
finite element method have been applied for uniform-thickness, mid-plane tapered and
internally-tapered composite beams based on both classical laminate theory and first-
order shear deformation theory. Furthermore, in Chapter 4, these methods and theories
have been applied to tapered composite beams subjected to axial force.

The examples described in Chapters 2, 3 and 4 were designed so as to focus our
study on the effects of different types of tapered sections on vibration response. Major
considerations in designing a tapered composite beam are ply orientations, taper angle
and type of the tapered section. Six types of tapered sections were introduced as models
A, B, C, D, F and M as shown in Figure 5.1.

The tapered beams are analyzed considering different types of internally tapered
sections. Variations in the boundary conditions, stacking sequences and taper angles are

considered for all cases. In general, there are two ways of changing the taper angle: (a)
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change the length of tapered section while keeping the thickness of the thick and thin
sections as constants. b) change the number of drop-off plies (i.e., change the thicknesses

of thick and thin sections).

Model A Model B Model C

Model D

Figure 5.1 Taper models A, B, C, D, F and M

In this chapter, the parametric study is conducted on the tapered beams shown in
Figure 5.1. The material chosen is NCT301 graphite-epoxy. The properties of the
material are listed in Table 2.2. The specifications of composite (ply orientations) and
geometric properties (number of plies, taper angle, and length) are detailed in individual
problems. In all cases the laminate is symmetric. All problems are solved using Ritz
method and HFEM based on FSDT. The results are summarized in tables and where

applicable, in plots. The results are compared and interpreted ri gh‘é after each problem.

5.2 Parametric study on the free vibration of tapered composite beams

In this section, Ritz method will be applied to different composite beams with
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various boundary conditions besides HFEM. The interpolation functions for Ritz method

based on FSDT for the following four boundary conditions are given in table 5.1.

Table 5.1 Interpolation functions for different boundary conditions for Ritz method
based on FSDT

w 4
: Y, L imx ul
Simply supported Z ¢; sin A Z e;cos—
i=1 i=1
N : N
Fixed-fixed Z c; sin I—Lﬂf— Z e sin—
i=1 i=l
N : N
Fixed-free z ¢; sin = Z e;sin—-
= 2L 1
Free-fixed ic,. cosiﬁ ie,. cosiﬂ
= 2L P 2L

5.2.1 Effect of boundary conditions

A tapered composite beam made up of NCT301 graphite-epoxy has configuration
of model F. Its mechanical properties are listed in Table 2.2.

The geometric properties of the beam are: length L =0.0366 m ; individual ply
thickness ¢ =0.0001524 m. There are 48 plies at the left end and 24 plies at the right end.

24 layers are dropped. The configuration of both ends are [(0/ 90)12]S and [(O/ 90)6L
respectively. The height of each ply in z direction is 4 =0.00015259 m. It is almost as

same as the thickness ¢ =0.0001524 m, because the tapered angle is only o =2.8641°.
The total height at the left end is H = 0.00732435 m and the length-to-height ratio 1s 5.0.

The transverse shear stiffness coefficient and bending stiffness coefficient are

A5 =(29.3854 —321.150x)x 10°

D,, =2527.03-101856x +1344731x* -1014731x
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Table 5.2 gives the results from both Ritz method and HFEM. For Ritz method,

we use ten interpolation terms and for HFEM, a twelve-elements and four-hierarchical-

terms model is used. Figure 5.2 is the graphical form of Table 5.2.

Table 5.2 The lowest four natural frequencies of tapered beam described in Section
5.2.1
Simply-supported | Fixed-fixed Fixed-free Free-fixed
o 12E4T 64924.3 100530 35858.8 17055.1
10R 64922.5 100513 35856.8 17051.7
o, 12E4T 192926 208815 123605 104922
10R 192867 208750 123584 104900
o, 12E4T 324783 332908 247300 245013
10R 324681 332755 247218 245021
o, 12E4T 454631 458820 376835 377416
10R 454314 458620 376319 390264

—— Simply-supported |
~ - — Fixed-fixed ‘

— - & - — Fixed-free

— - %~ - - Free-fixed

Figure 5.2

Effect of boundary condition on natural frequencies of the beam described
in Section 3.2.1

Observation from Table 5.2 and Figure 5.2 shows that changing the boundafy
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condition results in a considerable variation in the natural frequencies. For this specific
beam, the natural frequencies for the fixed-fixed support are the highest, the second rank
is for the simply supported case, the third rank is for the fixed-free case and the lowest
values are for free-fixed support. Zabihollah got the same conclusion in his thesis [10]

although his example problem differs from the one presented here.

5.2.2 Effect of laminate configuration
The problem described in Section 5.2.1 is considered to investigate the effectof
laminate configuration on the natural frequencies. The same material and geometric

properties are used. The laminate configurations considered are: (i) LC1 that has

[(O/ 90)12]S configuration at thick section and [(O/ 90)6]S configuration at thin section; (ii)
LC2 that has [(+ 45)12]5 configuration at thick section and [(i 45)6]5c0nﬁguration at thin
section; (iii) LC3 that has [0,/(x45),(- 45)4]S configuration at thick section and
[0, /(x 45)4]S configuration at thin section. The lowest four natural frequencies are

determined for different boundary conditions and for the laminate configurations LCl1,
LC2 and LC3. In Section 5.2.1, we have already obtained the natural frequencies of the
beam with configuration LC1 as given in Table 5.2. Tables 5.3 and 5.4 give the values of
the lowest four natural frequencies of the beam with configurations LC2 and LC3

respectively.
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Table 5.3 The natural frequencies of tapered beam with LC2 configuration
corresponding to different boundary conditions

Simply-supported | Fixed-fixed Fixed-free Free-fixed
o | 12E4T 51681.9 89035.4 28367.4 12851.6
10R 51656.9 89011.4 28364.3 12847.4
o, 12E4T 167898 191916 106866 88684.9
10R 167829 191837 106841 88650.3
o, 12E4T 297389 311424 221790 218702
10R 297255 311258 221696 218402
o, 12E4T 427490 435601 348167 350030
10R 427146 436164 348102 . 366290

Table 5.4 The natural frequencies of tapered beam with LC3 configuration
corresponding to different boundary conditions

Simply-supported | Fixed-fixed Fixed-free Free-fixed
o, 12E4T 69160.4 103874 37324.8 19042.7
10R 69158.7 103858 37335.8 19039.7
o, 12E4T 200240 214366 128245 110331
10R 200182 214303 128261 110308
o, 12E4T 333514 340505 255562 252870
10R 333412 340315 255556 252456
o, 12E4T 464397 467831 386692 386357
10R 464079 466975 386621 385994

Figures 5.3, 5.4, 5.5 and 5.6 show the effect of laminate configuration for simply
supported, fixed-fixed, fixed-free and free-fixed boundary conditions respectively. The

resource data are from Tables 5.2, 5.3 and 5.4.

135




~ -~ LC2

—eo—LC1

ate configurations LCI, LC2 and LC3 with

mna
ly-supported boundary condition

Natural freqitencieé oflam

=z
o
N
as/pety) Aousnbayy jeine|

simp

Fi’gure 5.3

¥

Natural frequencies of laminate configurations LCI1, LC2 and LC3 with

Figure 5.4

ed-fixed boundary condition

fix

136



Figure 5.5 Naiuralﬁegzténcies of laminate configurations LCI, LC2 and LC3 with
fixed-free boundary condition

RN i
and LC3 with

F igure; 5.6  Natural }reque;zcies of laminate ‘conﬁgurations LCI ,LC2
free-fixed boundary condition

As can be seen for all the four types of boundary conditions, the natural
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frequencies for LC3 laminate configuration are the highest and the lowest values are
claimed by LC2 laminate configuration. The changes in natural frequencies for different
configurations are due to change in stiffness matrix for each configuration. Recalling

Equation 3.86, one can see that stiffness matrix directly depends on the values of D,, and
A, if the geometry properties are same. Therefore, it is necessary to consider the change

of ply orientation. Again tapered beam in Section 5.2.1 is considered here. The changes
in the fundamental frequency corresponding to different ply orientation angles for the

laminate with [i 9] ply group are shown in Table 5.5 and Figure 5.7.

Table 5.5 The fundamental natural frequency of tapered beam with [-_l- 9] ply group
corresponding to different boundary conditions

0° 10° 20° 30° 40° 50° 60° 70° 80° 90°
1* | 79885.8 | 78366 | 73860.8 | 66569.6 | 56996 | 46320.8 | 36802.1 | 31057.3 | 29351.9 | 29254.5
2* | 115440 | 114150 | 110281 | 103802 | 94621 | 82926.3 | 70575.8 | 61945.7 | 59095.2 | 58862.7
3% | 447174 | 43823 [ 41178.9 | 36925.9 | 31401.1 | 25332.2 | 20006.2 | 16830.2 | 15894.5 | 15842.5
4* 1 21670.5 | 21151.7 | 19642.8 | 17294.4 | 14385.1 | 11359.3 | 8831.64 | 7373.2 | 6951.55 | 6929.57

*1—Simply supported; *2—Fixed-fixed; *3—Fixed-free; *4—Free-fixed

Obviously, the fundamental frequency drops very slowly for ply orientation
angles close to 0° and 90°. In Figure 5.7, we can see that the largest slope of the curves
is around 45° . Because the geometry properties do not change, the only factor to cause

this is the change of material properties - D,; and A, . This is similar to that in the

uniform composite beam case. Meanwhile, the natural frequency of the beam with 0°

plies is much larger than the beam with 90° plies. That is because the elastic modulus £,
is much larger than £, and E,, etc. Therefore, the bending stiffness coefficient of 0° ply

is much larger than that of the 90" ply. Consequently, the more 0° plies a beam contains,
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the higher natural frequency it has.

——O—Simply-subported
- -@ ~ Fixed-fixed

{|— - &- ~ Fixed-free

— - x—- - Free-fixed

Figure 5.7  Fundamental frequencies of tapered beams with [i- 6| ply group

5.2.3 Effect of the taper angle

To study the effect of taper angle on the natural frequencies, the tapered beam
described in Section 5.2.1 is considered. Taper angles have been increased from
0° (uniform) to 5.0165° to investigate the effect of taper angle on natural frequencies.
The ply configuration at the left section remains same, and the various tapered angles are
obtained by fixing the length of the beam and decreasing the number of plies at the right
section, from 48 to 40, 32, 22, 14 and 6.

Table 5.6 and Figure 5.8 show the effect of taper angle on the natural frequencies

of tapered beam with simply supported boundary condition.
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Table 5.6 Effect of taper angle on the natural frequencies of simply supported
tapered beam

Number of plies Taper angle o o, o, ®
at the right section a’ )

48 0 80688.5 209433 336215 460213

40 0.9543 76734.4 205427 333663 458932

32 1.9090 71578.8 200292 330140 456940

22 3.1030 62974.7 190584 322902 453515

14 4.0592 53710.6 178123 311362 444913

6 5.0165 40899.1 157422 287327 421606

........... e <ttt eim i .._. _ |—®—1stmode
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Figure 5.8  Effect of taper angle on the natural frequencies of tapered beam with
simply supported boundary condition

Observation of the results in Table 5.6 and Figure 5.8 shows that increasing the
taper angle leads to decreasing the natural frequencies. As discussed in Chapter 2, 4, is
a linear function of x and D, is a cubic function due to the tapered geometry property.

This is similar to that of a tapered isotropic-material beam. At the same time, the change

of taper angle also changes the ply stiffness, as discussed in Chapter 2. We can expect
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that due to the fact that the taper angle is always small in many practical cases (less than
6°), the change of ply stiffness is small. Therefore, the majority contribution to the
change of 4, and D,, is given by the reduced height of the beam, not the change of ply
stiffness. From Figure 5.8, we can see that the slopes of the curves decrease very slowly
at the beginning and faster along with increasing of taper angle because D,, is a cubic
function of x.

Tables 5.7 to 5.9 give the lowest four natural frequencies for fixed-fixed, fixed-

free and free-fixed supports respectively.

Table 5.7 Effect of taper angle on the natural frequencies of fixed-fixed tapered
beam
Number of plies Taper angle o o, o, o,
at the right section arc
48 0 107665 216956 339540 461511
40 0.9543 106088 214848 337831 460627
32 1.9090 103848 212447 335834 459525
22 3.1030 99432.7 207566 331838 458293
14 4.0592 93305.1 199876 324459 453209
6 5.0165 82259.2 183238 305166 435293
Table 5.8 Effect of taper angle on the natural frequencies of fixed-free tapered beam
Number of plies Taper angle o ® » o
at the right section a° ' ’ ’ )
48 0 32928.3 128027 261473 387429
40 0.9543 33771.7 126992 257775 384900
32 1.9090 34702.3 125528 253283 381709
22 3.1030 36209.1 123023 245465 375155
14 4.0592 38069.3 120238 236163 365211
6 5.0165 41555.9 117402 222797 346323
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Table 3.9 Effect of taper angle on the natural frequencies of free-fixed tapered beam

Number of plies Taper angle o o, o, >
at the right section a’ *

48 0 32928.3 128027 261473 387429

40 0.9543 28100.1 122111 257286 384713

32 1.9090 22759.3 114669 252167 381622

22 3.1030 15597.9 101965 242696 375975

14 4.0592 9778.04 87069.9 229495 366633

6 5.0165 4207.80 64516.3 203581 343272

As can be seen from these tables, increasing the taper angle leads to decreasing
the natural frequencies and frequencies decrease very slowly at the beginning and faster
along with the increasing of taper angle. This tendency is as same as that of the simply

supported case.

5.2.4 Effect of taper model

To study the effect of different types of taper model on the natural frequencies,
the problem described in section 5.2.1 is considered. The material and the geometric
propertics are as described in section 5.2.1. Here, different types of tapered section
(models A, B, C, D, F and M) are considered in tapered beams. It should be pointed out

that for Model D, the ply orientation at the right section is (0),,. All the 90° plies are

dropped. This differs from the other models. For models A, B, C, F and M, the
orientation at the right end is still [(0/90);], .

The lowest four natural frequencies for simply supported, fixed-fixed, fixed-free
and free-fixed boundary conditions for all types of taper models and different laminate
configurations are given in Tables 5.10 to 5.13. Figure 5.9 shows the frequencies of the

simply supported beam with LC1 laminate configuration.
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Table 5.10 Effect of taper model on frequencies of simply supported beam

Model A Model B Model C Model D Model F | Model M
@, 66133.1 64620.6 65064.2 75802.2 64924.3 64911
1C1 @, 186581 190983 192733 208906 192926 192816
@, 308455 320675 323902 342347 324783 324566
o, 428395 448323 453002 473283 454631 454338
@, 53393.1 51711.3 51860 51435.4 51681.9 51672.5
LC2 @, 165513 167474 168002 | 166710 167898 167797
@, 286652 296026 296975 294830 297389 297146
@, 407385 425033 426404 423435 427490 427126
o, 70938 69182 69307.7 62671 69160.4 69139
L.C3 w, 195280 199550 200067 188170 200240 200080
@, 319684 331779 332725 318881 333514 333208
@, 441907 461599 462964 447703 | 464397 463985

—&—— Model A

- — Model B

- #&-— Model C
Model D
—¥—Model F

Figure 5.9  Effect of taper model on the natural frequencies for simply supported
boundary condition and LCI1 laminate configuration
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Table 5.11 Effect of taper model on frequencies of fixed-fixed beam

Model A Model B Model C Model D Model F Model M

@ | 964234 99369.9 100361 107187 100530 100465

@, 199011 206148 208221 220511 208815 208612

Ll 315389 | 328405 | 331768 | 348552 | 332908 | 332604
o, | 432227 | 452312 | 457024 | 476396 | 458820 | 458458
o | 869369 | 88726 | 89024.8 | 883056 | 890354 | 88973
Lep @ | 184915 | 190969 | 191386 | 190180 | 191916 | 191677
o | 298254 | 309677 | 310663 | 308478 | 311424 | 311022
o | 414449 | 432004 | 434285 | 431313 | 435601 | 435096
o | 100610 | 103433 | 103718 | 987066 | 103874 | 103781
L |® | 206338 | 213254 | 213848 | 205020 | 214366 | 214086

@, | 325679 338553 339522 327420 340505 340089

@, 445061 464926 466295 452059 467831 467333

Table 5.12 Effect of taper model on frequencies of fixed-free beam

Model A Model B Model C Model D Model F Model M

@ | 34276.2 35621.6 36007.1 39171 35858.8 35852.2

@, 116542 122287 123613 133537 123605 123498

LCl @, | 233922 244276 246886 264130 247300 247050
@, 354685 371589 375728 395546 376835 376494
o | 275754 28365.9 28510.1 28123.5 28367.4 28362.9
LC |- 102565 106549 106983 105909 106866 106768.
o, | 212295 220811 221599 219787 221790 221493
@, 331371 346201 347380 344787 348167 347709
@ | 363503 37356.2 37476.4 34146 37324.8 37315
LC3 |2 122184 127817 128241 120223 128245 128091

o, | 244027 254335 255115 242121 255562 255217

@, | 367483 384380 385556 370224 386692 386224

Table 5.13 Effect of taper model on frequencies of free-fixed beam

Model A Model B Model C .| Model D Model F Model M

@ | 18532.7 17082.9 17117.3 21486.6 17055.1 17076.7

@, 107202 104121 104816 119108 104922 105004

LC @, | 239135 242377 244477 264168 245013 245163
@, 360474 372662 376179 396943 377416 377595
@, | 14039.9 12897.2 12905.4 12880.3 12851.6 12868.2
LC2 L 91754.7 88572.5 88765.4 88228.6 88684.9 88757.6
@ | 217018 217960 218572 217057 218702 218837
@, 339224 348335 349377 347003 350030 350192
@, | 20708.7 19103.3 19110.3 16886.9 19042.7 19066.8
LC3 @, 113428 110106 110261 102456 110331 110416

@, | 248871 251900 252476 239389 252870 253021

@, | 372397 384376 385404 370626 386357 386529
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Figure 5.9 shows that the natural frequencies for tapered beam in which tapered
section is made as model D gives the highest values for the natural frequencies. This
result was expected from the geometry of the model D and the ply orientation of the
particular beam. M6d61 D has more horizontal layers in the tapered section. This can be
seen from Figure 5.1. In this example, there are 48 plies in the thick section, which are
dropped to 24 in the thin section. Furthermore, all the 0" plies are kept and all the 90°
plies are dropped. As discussed in section 5.2.2, 0° ply has the largest bending stiffness
coefficient while the 90° ply has the lowest. Therefore, for this particular beam, model D
gives the highest values for the natural frequencies. If we change the orientations to

[(90/0)12]S and (90),, at the left and right sections respectively, Model D claims the

Jowest natural frequencies, for all the four types of boundary conditions. The frequencies

are given in Table 5.14.

Table 5.14 Natural frequencies of Model D with [(90/ O)lz]s and (90)24 configurations at
the thick and thin sections

Simply-supported Fixed-fixed Fixed-free Free-fixed
o, 36783.7 76191.6 27336.2 7212.58
@, 137498 166077 89194.2 65410.2
@, 254452 273393 183779 184415
o, 375872 388914 296775 307823

As can be seen from the above table, the natural frequency drops from 75802.2
rad/sec to 36783.7 rad/sec, more than fifty percent, for simply supported boundary
condition. For fixed-fixed and fixed-free boundary conditions, the frequencies also

decrease although not as much as that in the simply supported case. It drops from
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21486.6 rad/sec to 7212.58 rad/sec for free-fixed case. Almost sixty-seven percent is
dropped.

In this example, for the other configurations, L.C2 and LC3, Model D does not
have the highest natural frequency but the lowest. That is also because of the difference
in the kept and dropped plies.

Moreover, the natural frequencies for models C, F and M are very close, which
means that the resin near the mid-plane does not considerably affect the stiffness of the
beam and this is the same observation as that obtained from the investigation of the

tapered beam in the previous chapters.

5.3 Parametric study on the free vibration of tapered composite beams subjected to
axial force
In this section, we will give some examples with different boundary conditions
and models as those in Section 5.2, but the beams are subjected to axial forces. These
axial forces are much smaller than the buckling loads of beams. As can be seen from
Chapter 4 and the previous section, the results from both Ritz method and HFEM match
so well. Therefore, in this section, only HFEM will be applied to the presented example

problems.

5.3.1 Effect of boundary conditions
This problem is as same as that in Section 5.2.1 but the beam is subjected to
compressive axial force.

Hereby, it is necessary to estimate the buckling load of this tapered composite
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beam [1]. First of all, we calculate the buckling load of uniform beam having the same

ply configuration as that at the thick section of this tapered beam:

_ kA55D11m27I2
“ m*r’Dy + kAL

(5.1)

For the uniform composite beam with ply configuration [(0/ 90)1215 , the transverse

shear stiffness and bending stiffness are:

Ay = 28090368 Nm™*

D,; =2690.36 N.m

Then the lowest buckling load is:

N, =10733KN

In order to ensure that the axial force applied to this tapered beam is much less
than the buckling load, we limit the axial force NV, to SO0KN. It is one twentieth of N,
of the uniform composite beam.

Table 5.15 gives the lowest four natural frequencies for different types of
boundary conditions. The same twelve-elements and four-hierarchical-terms model is

used. Figure 5.10 shows the graphical form of Table 5.15.

Table 5.15  The lowest four natural frequencies of tapered beam described in Section
3.3.1

Simply-supported Fixed-fixed Fixed-free Free-fixed
o, 61593.5 98354.7 32476.6 12610.1
@, 188422 204722 118427 100312
@ 318834 327146 241299 239665
@, 447117 451387 369519 370536
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—&—- Simply supported
-~ ~3¥- — Fixed-fixed
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Figure 5.10  Effect of boundary condition on natural frequencies of the beam Z’escribed
in Section 5.3.1

Comparison between the results in Tables 5.2 and 5.15 shows that all the

frequencies drop a little. The change of the boundary condition results in a considerable

variation in the natural frequencies as same as those in the case without axial force. The

natural frequencies for the fixed-fixed support are the highest, the second rank is for the

simply supported case, the third rank is for the fixed-free case and the lowest values are

for free-fixed support.

5.3.2 Effect of laminate configuration
The same problem described in section 5.2.2 is considered to investigate the

effects of laminate configurations on the natural frequencies of composite beam subjected

to axial force N, =500 KN . Table 5.16 gives the lowest four natural frequencies for this

problem. The 12E4T model is used.
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Table 5.16  The natural frequencies of tapered beam subjected to axial force
corresponding to different laminate configurations

Simply-supported | Fixed-fixed Fixed-free Free-fixed
@ 61593.5 98354.7 32476.6 12610.1
LC1 @, 188422 204722 118427 100312
@, 318834 327146 241299 239665
@, 447117 451387 369519 370536
@, 47412.3 86479.5 23289.0 5236.80
LC2 @, 162640 187409 100152 83042.1
@, 290815 305238 214704 212687
@, 419438 427738 339970 342575
@, 66067.6 101794 34236.7 15226.7
LC3 o, 195944 210402 123441 105965
@y 327761 334900 249880 247704
@, 457080 460576 379659 379667

Figure 5.11  Natural frequencies of laminate configurations LC1, LC2 and LC3
subjected to axial force

It can be seen that for all the four types of boundary conditions, the natural

frequencies for LC3 laminate configuration are the highest and the lowest values are
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claimed by I.C2 laminate configuration. The changes in natural frequencies for different
configurations are due to the change in stiffness matrix for each configuration. It is

similar to that in the case without axial force.

5.3.3 Effect of the taper angle

The problem given in this section is as same as that of section 5.2.3 but subjected
to axial force N, =500KN . Taper angles have been increased from 0° (uniform) to
5.0165° to investigate the effect of taper angle on natural frequencies. Table 5.17 gives

the effect of taper angle on the natural frequencies of tapered beam with simply supported

boundary condition. Figure 5.11 is the graphical form of Table 5.17.

Table 5.17  Effect of taper angle on the natural frequencies of tapered beam subjected
to axial force '

Number of plies Taper angle o o, o, ®
at the right section a° )

48 0 78786.9 206516 332129 454905

40 0.9543 74541.7 202168 329154 453106

32 1.9090 68953.8 196552 325056 450422

22 3.1030 59391.7 185808 316654 445668

14 4.0592 48447.6 171519 303152 434938

6 5.0165 29492.2 144263 272229 404567

Observation from Table 5.17 and Figure 5.12 shows that increasing the taper
angle leads to decreasing the natural frequencies. The decreasing tendency of natural
frequencies is similar to that in the case without axial force, as discussed in the previous
section. The slope of the curves in Figure 5.12 decreases very slowly at the beginning and

faster along with the increasing of taper angle.
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5.3.4 Effect of taper model

The problem given in this section is as same as that of section 5.2.3 but the beam
is subjected to axial force N, =500 KN . Here, different types of tapéred section (models
A, B, C, D, F and M) are considered in tapered beam.

The lowest four natural frequencies for simply supported boundary conditions for

all types of taper model and different laminate configurations are given in Table 5.18 and

Figure 5.13.
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Table 5.18 Effect of taper model on frequencies for simply-supported beam subjected to

axial force
Model A | Model B Model C Model D Model F | Model M
@, 62426.1 61237.2 61701.0 72989.0 61593.5 61580.0
LC1 @, 181409 186386 188168 204818 188422 188312
@, 301489 314587 317860 336770 318834 318615
@, 419507 440626 445363 466129 447117 446822
o | 48692.7 47394.7 47555.4 47096.8 47412.3 47402.7
LC2 o, 159592 162144 162686 161361 162640 162539
@, 279092 289348 290313 288131 290815 290570
@, 397996 416843 418235 415221 419438 419071
@, 67511.2 66054.4 66185.6 59193.7 66067.6 66045.9
LC3 w, 190364 195190 195716 183518 195944 195783
o, 312980 325930 326889 312767 327761 327453
@, 433306 454155 455537 440002 457080 456665

Figure 5.13  Effect of taper model on the natural frequencies corresponding to simply

—<&—Model A

- —&&- — Model B
— - & - Model C
- - %~ --Model D
~—X¥—Model F
—@—— Model M

......................................................................................................................

supported boundary conditions and LCI laminate configuration subjected to axial force

Observation from Table 5.18 and Figure 5.13 shows that the natural frequencies

for tapered LC1 beam in which tapered section is made as model D gives the highest

values for the natural frequencies. It is because of the remained 0° plies and the dropped
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90° plies. This conclusion is as same as that in the case without axial force, as discussed
in the previous section. For the other configurations, LC2 and LC3, Model D does not
have the highest natural frequency but the lowest. That is also because of the difference
in the kept and dropped plies. Moreover, the natural frequencies for models C, F and M
are also very close. This is the same observation that was obtained from the investigation

of the tapered beam without axial force in the previous section.

5.3.5 Effect of compressive axial force

The problem given in this section is as same as that in Section 5.2.1 but the beam

is subjected to compressive axial forces N, =250 KN, 500 KN, 750 KN and 1000 KN .

In the next section, tensile axial force will be applied to the same beam to investigate the
effect on the natural frequencies.

The lowest four natural frequencies for simply supported boundary condition for

various axial forces are given in Table 5.19 and Figure 5.14.

Table 5.19 Effect of compressive axial forces on frequencies of simply supported beam

N, 0 250 KN 500 KN 750 KN 1000 KN
o, 64924.3 63282.5 61593.5 59853.4 58057.0
@, 192926 190689 188422 186123 183790
@, 324783 321824 318834 315811 312754
@, 454631 450892 447117 443306 439456

Observation from Table 5.19 and Figure 5.14 shows that increasing the
compressive axial force causes the decreasing of the natural frequencies. At the same
time, the axial force has little effect on the natural frequencies. This is because the axial

force we have applied is very small compared with the first buckling load of this beam
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with simply supported boundary condition. Furthermore, the effects on the second, third
and fourth mode frequencies are much smaller. This is because the axial force is much

smaller than the second, third and fourth buckling loads.

—<&— 1st mode
1~ -# — 2nd mode
—-4-—3rdmode |
— - %— - -4th mode

@
U
L
B
[
o]
X
<
>
Q
c
@
3
=3
£
o
g
3
2
[

Figure 5.14  Effect of compressive axial forces on the natural frequencies of simply
supported beam

We can expect that changing the boundary condition will also change the effect
on the natural frequencies due to axial force.

The lowest four natural frequencies for fixed-fixed, fixed-free and free-fixed

boundary conditions for various axial forces are given in Tables 5.20 to 5.22.
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Table 5.20 Effect of compressive axial forces on frequencies of fixed-fixed beam

N, 0 250 KN 500 KN 750 KN 1000 KN
@, 100530 99449.6 98354.7 97244.9 96119.4
@, 208815 206780 204722 202640 200534
@, 332908 330041 327146 324222 321267
o, 458820 455120 451387 447618 443812

Table 5.21 Effect of compressive axial forces on frequencies of fixed-free beam

N, 0 250 KN 500 KN 750 KN 1000 KN
o, 35858.8 34251 32476.6 30490.3 28225.6
@, 123605 121060 118427 115698 112866
@, 247300 244325 24129 238221 235086
@, 376835 373200 369519 365791 362013

Table 5.22 Effect of compressive axial forces on frequencies of free-fixed beam

N, 0 250 KN 500 KN 750 KN 1000 KN
@, 17055.1 15028.4 12610.1 9493.15 4345.44
o, 104922 102642 100312 97928.9 95490.8
@, 245013 242355 239665 236944 234190
@, 377416 373993 370536 367042 363512

Observation from Tables 5.20 to 5.22 shows that increasing the axial force causes
the decreasing of the natural frequencies. At the same time, the axial force has little effect
on the natural frequencies of the fixed-fixed beam. The reason is as same as that for the
simply supported boundary coﬁdition. On the other hand, the first natural frequency for

the free-fixed boundary condition drops a lot when N, =1000 KN . This is because the
axial force is close to the first buckling load. Meanwhile, N, has just changed the

second, third and fourth mode frequencies a little because it is much smaller than the

second, third and fourth buckling loads.
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5.3.6 Effect of tensile axial force

The problem given in this section is as same as the previous one but the beam is

subjected to tensile axial forces N, =—-250KN, —500KN, —750 KN and —1000 KN

instead of compressive axial force.

various axial forces are given in Table 5.23 and Figure 5.15.

The lowest four natural frequencies for simply supported boundary condition for

Observation of Table 5.23 and Figure 5.15 shows that increasing the magnitude of

the tensile axial force causes the increasing of the natural frequencies. At the same time,

the axial force has little effect on the natural frequencies. This is because the axial force

we have applied is not very large. Furthermore, the effects on the second, third and fourth

mode frequencies are much smaller.

Table 5.23 Effect of tensile axial forces on frequencies of simply supported beam

N, 0 -250 KN -500 KN -750 KN -1000 KN
o, 649243 66522.8 68081.1 69602.1 71088.4
, 192926 195134 197314 199466 201593
o, 324783 327712 330611 333482 336326
o, 454631 458335 462007 465645 469252
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Figure 5.15 Effect of tensile axial forces on the natural frequencies of simply
supported beam

The lowest four natural frequencies for fixed-fixed, fixed-free and free-fixed

boundary conditions for various tensile axial forces are given in Tables 5.24 to 5.26.

Table 5.24 Effect of tensile axial forces on frequencies of fixed-fixed beam

N, 0 -250 KN -500 KN -750 KN -1000 KN
@ 100530 101597 102650 103691 104720
@, 208815 210828 212820 214791 216742
o, 332908 335747 338559 341346 344108
@, 458820 462485 466119 469720 473292
Table 5.25 Effect of tensile axial forces on frequencies of fixed-free beam
N, 0 -250 KN -500 KN -750 KN -1000 KN
@ 35858.8 37332.4 38695.6 39966.6 41159.4
@, 123605 126069 128458 130778 133034
@, 247300 250227 253108 255945 258741
@, 376835 380426 383974 387482 390951
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Table 5.26 Effect of tensile axial forces on frequencies of free-fixed beam

N, 0 -250 KN -500 KN -750 KN -1000 KN
@, 17055.1 18822.7 20403.0 21840.2 23163.8
@, 104922 107156 109344 111489 113594
@, 245013 247642 250242 252815 255360
, 377416 380805 384161 387485 390778

Observation from Tables 5.24 to 5.26 shows that increasing the magnitude of the
tensile axial force causes the increasing of the natural frequencies. At the same time, the
tensile axial force has little effect on the natural frequencies, even for the first mode
frequency for free-fixed boundary condition. In the previous section, we have interpreted
that when the compressive axial force is close to the buckiing load, the beam becomes
unstable and the natural frequency changes a lot. But in the case of tensile axial force, the

natural frequency always increases regularly.

5.4 Conclusion and discussion

In this chapter a parametric study on the vibration of tapered composite beams has
been conducted. Different types of tapered sections have been considered in tapered
beams. The problems have been solved for different boundary conditions, various taper
angles, different laminate configurations and various axial forces. The hierarchical finite

element method and first-order shear deformation theory are imposed.

We conclude that besides the boundary conditions, the laminate configuration
affects the natural frequency considerably. The 0° ply has the largest bending stiffness
while the 90° ply has the lowest. This is why in Section 5.2.2 the composite beams

having model D as tapered section provide the highest or lowest natural frequencies
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compared to the other tapered sections. Consequently, the natural frequencies for models
C, F and M are very close, because their kept and dropped plies are same and the resin
near the mid-plane does not considerably affect the stiffness of the beam. Increasing the
taper angle decreases the value of natural frequencies. The compressive axial force
decreases the natural frequencies a little unless it is close to the buckling load. At the

same time, the tensile axial force always increases the natural frequencies regularly.
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Chapter 6

Conclusions and future work

In the present thesis an advanced finite element formulation has been developed
for vibration analysis of tapered composite beams with and without axial force. The
effect on the laminate stiffness of the composite beam caused by the taper angle has been
considered. Different configurations of tapered beams, including mid-plane tapered as
well as internally tapered beams have been investigated. The study of the vibration
response has been conducted using Ritz method, conventional finite element formulation
and hierarchical finite element method for both uniform-thickness and tapered composite

beams based on both classical laminate theory and first-order shear deformation theory.

The taper angle of composite beam changes not only the geometric properties but
also the stiffness of the oblique plies. Consequently, the mechanical behavior of tapered
composite beam differs from that of uniform beam. The effect on the ply stiffness can be
ignored if the taper angle is very small. Along with the increasing of the taper angle, this

influence is not negligible.
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Considering the effect of taper angle, the constitutive equations of motion of
tapered composite beam with and without axial force have been derived. Then, based on
these differential equations, the Ritz method, and the conventional and hierarchical FEM

have been applied for mid-plane and internally tapered beams.

The conventional finite element model for the beam structure considers two
degrees of freedom per node, viz. displacement and slope so as to satisfy the geometric
boundary conditions. It was shown that the conventional. finite element model for beams
has some disadvantages: large number of elements are needed to achieve accurate results.
Furthermore, the conventional FEM also faces the problem of shear lock for Timoshenko

beam.

The hierarchical formulation enhances the capability of the element by making
the degree of the approximating function to tend to infinity. Based on the classical
laminate theory, the four cubic »displacement modes used in the conventional formulation
are retained and additional trigonometric terms are used. Based on the first-order shear
deformation theory, the linear displacement and rotation modes are kept and

trigonometric terms are added to both displacement and rotation modes.

The programming, involving symbolic and numerical computations, is done using
MATLAB® software. At the end of each formulation, appropriate problems have been

solved and the results are validated with the exact solutions if available. In the analysis of

vibration, comparisons between the results obtained using Ritz method, conventional

161



formulation and hierarchical formulation are inherent in all the problems. To elaborate on
the analysis in the present thesis, a parametric study using all the three types of

formulations is provided.

The parametric study is carried out for the tapered composite beams with and
without axial force to see the effects of various changes in the laminate parameters on the
natural frequencies. These changes include the change in the boundary conditions,
change in the laminate configuration, change in the taper angle, change in the type of
internal taper and finally change in the axial force. The work done in the present thesis
has provided some conclusions on the performance of the advanced finite element
formulation, and manufacturing and design of the tapered composite beams. The

important and principal conclusions are:

» The accuracy can be obtained more efficiently and rapidly by increasing the
number of degrees of freedom in the element rather than increasing the
number of elements of the same or fewer degrees of freedom. At the same
time, it is necessary to increase the number of elements besides increasing the
number of hierarchical terms.

» The advanced formulation uses fewer elements to obtain accurate results
which itself leads to less expensive computational processes. This result is
very important in vibration analysis especially in the computation of higher

frequencies.
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> In general, the Euler-Bernoulli beam element needs less number of elements
to arrive at an accurate result whereas the Timoshenko beam element uses
more elements to give an accurate result. This conclusion is valid for both
conventional and advanced finite element formulations.

» The stiffness of the tapered composite beam depends on the geometric
properties and the kept plies. The tapered beam model D (staircase-dispersed),
could be the stiffest or weakest model according to different laminate
configurations, hence this model gives the highest or lowest natural
frequencies for all types of boundary conditions and geometries. In another
words, we need to consider the composition of different models and laminate
configurations in order to control the natural frequencies.

» The tapered beams designed using model C (overlapped- grouped), model F
and model M are very similar in term of stiffness. This is because the kept and
dropped plies are same and the dropped resin pocket or layers in these models
are close to the mid-plane. The tapered beam model A usually is the least-stiff

model.

The study on the vibration of the tapered laminates with and without axial force

can be continued in the future based on the following recommendations:

1. The advanced finite element formulation presented in this thesis can be

extended for the analysis of the forced vibration response of different types of

laminated beams.
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The advanced finite element formulation could be extended for the stress
analysis, vibration and buckling of tapered laminated composite plates.

The effect of damping can be considered in the free and forced vibrations of
tapered composite beams and plates.

The study in this thesis can be applied to désign optimization of tapered

composite laminates.
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Appendix

Taper models of laminated composite beam

Model A Model B

resin
resin””|

Model C Model D

resin”™|

ply resin

Model F Model M

resin

ply ply
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