Breadcrumb

 
 

On-site labor productivity estimation using neural networks

Title:

On-site labor productivity estimation using neural networks

Wang, Fang (2005) On-site labor productivity estimation using neural networks. Masters thesis, Concordia University.

[img]
Preview
PDF - Accepted Version
19Mb

Abstract

This thesis presents a study of on-site labor productivity in building construction using the work sampling method. The study is based on a field investigation of a number of selected construction operations on three buildings in Montreal, Quebec, Canada. The developed models revealed related parameters' impact on labor productivity. Neural network was used as a method for the development of the models presented in this thesis. The developed models are based on the data collected using work sampling and were developed using NeuralShell2 software. The network was trained and tested using 221 data points collected from real construction projects that were performed in Montreal in a 30-month period. The models' development and validation utilize real-world data from the projects. Three types of neural network-based models were developed. The first type of models is back propagation neural network (BPNN) models associated with different settings. The fifth model has shown the best results.

Divisions:Concordia University > Faculty of Engineering and Computer Science > Building, Civil and Environmental Engineering
Item Type:Thesis (Masters)
Authors:Wang, Fang
Pagination:xvii, 200 leaves : ill. ; 29 cm.
Institution:Concordia University
Degree Name:M.A. Sc.
Program:Building, Civil and Environmental Engineering
Date:2005
Thesis Supervisor(s):Moselhi, Osama
ID Code:8516
Deposited By:Concordia University Libraries
Deposited On:18 Aug 2011 14:27
Last Modified:18 Aug 2011 15:25
Related URLs:
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Document Downloads

More statistics for this item...

Concordia University - Footer