USING GENETIC ALGORITHMS TO SCHEDULE
MULTIPROCESSOR SYSTEMS UNDER LOGP MODEL

Yu CHEN

A THESIS
IN
THE DEPARTMENT
OF
ELECTRICAL AND COMPUTER ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FoRr THE DEGREE OF MASTER OF APPLIED SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

JANUARY 2006
© Yu CHEN, 2006

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-14254-5
Our file Notre référence
ISBN: 0-494-14254-5
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Using Genetic Algorithms to Schedule Multiprocessor Systems under
LogP Model

Yu Chen

In recent years, with the wide-spreading usage of computer technologies in var-
ious aspects of the modern world, the demand for more powerful computers has
outmatched the yet rapid advancement in hardware development. LogP model is
a practical model that reflects better the practical behavior of nowaday massively
parallel computers

This thesis is dedicated to the design and evaluation of algorithms for multi-
processor system scheduling under the LogP model. The objective is to obtain a
feasible schedule of input task graphs and corresponding LogP model with minimum
makespan. Due to the NP-hard nature of the problem, we choose the genetic algo-
rithms (GA) to effectively explore the huge solution space.

The approach consists of two main parts. The communication tasks under the
LogP model are scheduled by a genetic algorithm with determined processor assign-
ments. Another GA is used to optimize the processor assignments of computational
tasks. The design issues in both GA algorithms are discussed in detail.

The evaluation of both parts of the algorithm over a set of benchmark task graphs

shows an overall improvement over previous works within the LogP model.

1l

Acknowledgments

[am indebted to the members of my thesis examining committee for their time
and suggestions during the thesis defense.

It was a great pleasure to have Dr Nawwaf Kharma as my supervisor. He has
been an unfailing source of knowledge, encouragement and support. He gave me
much invaluable comments and also careful proof-reading. Without his supervision
and expert knowledge in Genetic Algorithms, this thesis would not have been possible.

Thanks also go to Dr Skander Kort, my former supervisor, who introduced me to
Multiprocessor Scheduling. He guided me through the early parts of my project and
provided me a system SHELA to work on.

I would also like to thank Dr Yuke Wang, Dr Liang Chen, Dr Weiping Zhu,
Dr Chunyan Wang and Dr Asim Al-Khalili for their suggestions and advices on my
study and research. I am grateful for all the help I received from the members of the
Department of Electrical and Computer Engineering.

Many thanks to my friends who provided help, advice and companionship during
my study in Concordia University. I specially express my gratitude to Zhuoyan Li
for his help. Finally, I thank my parents, my sister Linda Chen and my husband Yi

Zhang for their encouragement and company. This work is dedicated to them.

iv

Contents

List of Figures

List of Tables

1 Introduction

2 Preliminaries

2.1

2.2

2.3

Multiprocessor Systems L L.
Parallel Computing Models
221 TheModels
222 LogPmodel L.
2.2.3 Communication Semantics
Scheduling Problems 00000
23.1 Definitions L oo
2.3.2 Optimality Criteria,
2.3.3 Analysis of Scheduling Problems.

xiv

2.4 Scheduling Strategies 19

2.4.1 List Scheduling 19
24.2 Genetic Algorithms L Lo 20
Problem Statement, Literature Review and Contributions 23
3.1 Problem Statement 0oL 23
3.2 Problem Instance 25
3.3 Literature Review Lo o 26
3.3.1 Approaches of Scheduling under SDM 26
3.3.2 Approaches of Scheduling under LogP 28
333 Summary e 31
3.4 Contributions of the Thesis 32
Scheduling Communications using Genetic Algorithms 33
4.1 Extended Task Graph 35
4.2 List Scheduling under LogP 0. 39
4.3 Representationo 41
43.1 BasicsofEncoding 43
43.2 Encoding e e 44
4.4 Genetic Operations 46
4.4.1 [Initial Populationo 000000l 47
4.4.2 Fitness Evaluation 000, 48
4.4.3 Termination Criteria 52
444 Selection L 52

vi

445 GAOperator 54

4.5 Discussion e 58
5 More Communication Scheduling under LogP 60
5.1 Modified Encoding 60
5.1.1 Disadvantages of the Original Design 60
5.1.2 Encoding Restrictions 63
5.1.3 Initialization L 65
514 GAOperator 70
51,5 Discussions L o 73

5.2 Scheduling Communications with Gaps 74
5.2.1 Problem Description 75
5.2.2 List Scheduling withg>o0 77
523 FillingGaps L 82

6 Processor Allocation Using GA 90
6.1 Early-Task-First Strategies 90
6.2 Problem Description L 0 Lo 94
6.3 Processor Assignment using GA L L. 97
6.3.1 Algorithm Outline, 97
6.3.2 Encoding 98
6.3.3 Decoder 100
6.34 Crossover 102
6.3.5 Mutation 106

vii

6.4 Discussion e, 108

7 Experiments 110
7.1 Benchmark Graphs 110
7.1.1 Characteristics of Task Graphs 110
7.1.2 Sample Graphs 113

72 Models e 114
7.3 Performance Measures 116
7.3.1 Makespan 116

732 Speedup 117
7.3.3 Pairwise Comparison, 117

7.4 Methodology 118
7.4.1 Implementations, 118
7.4.2 Baseline Heuristics 119

7.5 Resultsand Analysis L L. 120
7.5.1 Communication Scheduling Heuristics 120
7.5.2 Different encodings in communication scheduling 123
7.5.3 Scheduling communications with GA 125
7.5.4 Scheduling communications wheng>o. 131
7.5.5 Processor assignments L. 133

7.6 SUMMATY o v e e e e e e e 137
8 Conclusions and Future Work 138
8.1 Fundamental Results 139

8.2 Future Directions of Research

A Benchmark Graphs

B Experiment Results 147

List of Figures

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

3.10

3.11

4.1

4.2

4.3

4.4

4.5

Anetwork model 6
The PRAM model 7
The BSPmodel 8
Communications under the SDM model 9
Communication between two processors in the LogP model i1
Independent data semantics 13
Common data semantics 0L 14
Gantt Charts 16
Process of Simple Genetic Algorithm 22
Task Graph G2 25
A Schedule S(G,) of G, feasible under M(1,1,1,2) 25
Task Graph G 34
Different Communication Arrangements 34
Extending a Task Graph G3 37
Extended Task Graph G} 44
Example of an Encoded Chromosome 46

4.6

4.7

4.8

4.9

4.10

4.11

4.12

5.1

5.2

5.3

5.4

5.5

5.6

3.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

Algorithm Qutline 0oL,
Extended Task Graph G,
Evaluation of a chromosome C'.
Roulette Wheel Selection
Crossover Operation
Extended Task Graph G5, L L.
Mutation Procedure oL
Simple Task Graph G
Mapping between representation space and search space.
Extended Task Graph G}, 0L
Extended Task Graph Gy
Initialization Procedure oL
Various Graphs Lo
Extended Task Graph G5
Feasible Schedule Sg, of G;, under model L=1,0=1,9=2,P=2 .
A communication task s;; finisheson Ppatten
v;, the last task scheduled on Piatt=CM
Extended Task Graph Gy
Schedule Sg; introduced by X oo
Extended Task Graph G; under LogP model (1,1,2,2)
Feasible schedule S; when all gaps are filled. makespan(S;) = 24
Feasible schedule S, when not filling the gaps. makespan(S;) = 19
Feasible schedule S; when filling a gap sometime. makespan(Ss) = 18

x1

78

79

80

82

82

83

5.17 General Situation Requiring Gap Filling Decision 85

5.18 Extended Task Graph G§ under LogP model (1,1,2,2) 88
5.19 Decoding Xy 89
6.1 Algorithm Flow Chart 97
6.2 TaskGraph G 99
6.3 Task Graph G 105
6.4 Uniform Crossover 105
6.5 Task Graph G 107
6.6 1-bit Mutation 107
6.7 SWap 107
6.8 Processor Assignments before/after Mutation 108
7.9 Comparison of Two Encoding Method 124

7.10 Comparison of GA on different processor assignments when scheduling
graphs in SSG 127
7.11 Comparison of speedup on graphs with different anchors 127
7.12 Average Improvement of GA performance on Graphs with different
Latencies. 129
7.13 Average Improvement of GA performance on Graphs with different
Overheads o 129
7.14 Average improvement on Graphs with different Numbers of Processors 130
7.15 Comparison of Improvements on RGNOS 131
7.16 Average speedup with respect to number of nodes in graphs 132
7.17 Average Improvements of GA performance under different models (g > 0)133

xil

7.18 Average speedup of different algorithms when scheduling SSG 134

7.19 Comparisons between modelso 135
7.20 Comparisons of average speedups 136
8.1 Comparison of Speedups 139

89 Combined GAs for Scheduling under the LogP model 142

xiii

List of Tables

5.1

5.2

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

79

Al

B.1

B.2

B.3

All possible results by initializing GA population for G 68
All linear orders over set of nodes L. 69
Models withg=0 115
Models withg>o0 116
Implementation Environments 118
Improvements of 2ETFList on SSG, compared to 2ETF (%) 121
Improvements of ETFRList on SSG, compared to ETFR (%) 121
Improvements of 2ETFList on R20L, compared to 2ETF (%) 121
Improvements of ETFRList on R20L, compared to ETFR (%) 121
Improvements of 2ETFList on RGNOS, compared to 2ETF (%) . . . 122
Improvements of ETFRList on RGNOS, compared to ETFR (%) . . . 122
Characteristics of Benchmark Graphs 146
GA Speedup of Communication Arrangements of SSG (g =0). 147

Improvements of GA on SSG, compared to the original heuristic that
produces the corresponding processor assignments 147

GA Speedup of Communication Arrangements of R20L (g =0). . . . 148

Xiv

B.4 Improvements of GA on R20L, compared to the original heuristic that
produces the corresponding processor assignments 148
B.5 GA Speedup of Communication Arrangements of RGNOS (g =0) . . 148
B.6 GA Improvements on Communication Arrangements of RGNOS (g = 0)149
B.7 GA Speedup of Communication Arrangements of R20L (¢ > 0). . . . 149
B.8 GA Improvements on Communication Arrangements of R20L (g > o) 149

B.9 Improvements of GA on Processor Allocations when Scheduling SSG

B.10 GA Speedup on Processor Allocations when Scheduling RGNOS (g = 0)150

B.11 Improvements of GA on Processor Allocations when Scheduling SSG

XV

Chapter 1

Introduction

1.1 Motivation

Technological advances and users demand the evolution of computer architectures.
The concept of multiprocessor was proposed as a means of exceeding the maximum
performance of a single processor. Scheduling is the management of resources that
have to be allocated to activities over time, subject to a number of constraints. The
main multiprocessor scheduling problem concerns assigning partitioned tasks of ap-
plication programs to processors.

An appropriate distribution of both computation and communication of the ap-
plication programs is the key issue to achieving eflicient execution in multiprocessor
scheduling. Culler et al. [15] defined a realistic machine model which better reflects
the practical behavior of massively parallel computers. Their LogP model considers
dominant communication characteristics of each individual operation, as well as the

limited capacity of communication networks.

Scheduling under the LogP model is NP-hard even for special cases such as join
trees of height' one [30]. Only a few scheduling strategies (discussed in detail in
Section 3.3) have been studied for this problem. Most of these strategies ignore the
network capacity constraint of the LogP model and only deal with simple tree-like
graphs.

In comparison, a large number of strategies for static scheduling under the stan-
dard delay model (SDM)? have been studied. Genetic Algorithms have successfully
been applied to this problem and also have been superior to the list scheduling ap-
proaches.

This thesis presents genetic algorithms for scheduling general task graphs under

the LogP model taking into account the limited number of P processors.

1.2 Outline of the Thesis

The rest of the thesis is organized as follows.

Section 2.1 and 2.2 in Chapter 2 give a brief description of the multiprocessor
systems and parallel computing models addressed in this thesis. Section 2.3 and
2.4 present an overview of the scheduling problem, and the approaches proposed for
solving them.

Section 3.1 in Chapter 3 formally defines the scheduling problem under the LogP

model with a problem instance shown in Section 3.2. Previous work in related areas

YThe topological height (height) is defined as the largest number of edges from an entry node to
the node itself

2Standard delay models consider the latency for a message transmission is the only relevant
communication parameters.

is briefly described in Section 3.3. Section 3.4 contains a summary of the major
contributions of this thesis.

Chapter 4 describes in detail the genetic algorithm used for communication man-
agement when scheduling under LogP. Section 4.1 presents a method of extending
task graphs under the LogP model, which generalizes the communications. Details
of the genetic algorithm are described in the rest of the chapter.

Chapter 5 improves the algorithm proposed in Chapter 4 in two ways: the encod-
ing method is modified in Section 5.1, and, in Section 5.2, the algorithm is adapted
to more general LogP models, including models with significant gaps.

Chapter 6 describes processor allocations using genetic algorithms. The processor
allocation problem is formalized in Section 6.2. Section 6.3 presents the algorithms
in a step-wise fashion. Finally, Section 6.4 discusses further details of this algorithm.

Chapter 7 presents evaluation results to demonstrate the effectiveness of both GAs
on 3 sets of benchmark task graphs. These graphs are described in Section 7.1. Sec-
tion 7.2 presents the models used in the experiments. Section 7.3 and 7.4 describe the
metrics used for evaluation. Section 7.5 is devoted to the five parts of the procedure.

Chapter 8 summarizes with some concluding remarks. Section 8.2 presents possi-
ble future directions for research.

Appendix A contains data on the benchmark graphs used in the simulations. This

data includes detailed characteristics of the graphs.

Chapter 2

Preliminaries

This chapter contains background information about the multiprocessor schedul-

ing problem.

2.1 Multiprocessor Systems

The term “multiprocessor” can label any system that applies more than one pro-
cessor to perform desired applications. However, in most cases, it refers to general-
purpose, asynchronous parallel machines with multiple instruction-steams and mul-
tiple data-streams (MIMD) [26].

Ideally, a system with n identical processors could offer n times the throughput
of a single processor. But, the ideal case cannot be realized due to the effort involved
in operation control and information transmissions among the processors.

A homogeneous multiprocessor system is composed of a set P = {1,--- ,m} of m

identical processors. These processors are fully inter-connected in a network, where

all links are identical. A processor can communicate asynchronously through one or

several of its links simultaneously.

2.2 Parallel Computing Models

Parallel computing refers to solving a problem faster by employing multiple pro-
cessors simultaneously. Parallel computing models are key to the design of parallel
programming environments. Various abstract models will be discussed in the follow-
ing section.

Abstract models, also called computational models, are high-level machine de-
scriptions that are referred to in algorithm design. They are used to describe the
architectural classes in realistic terms. In an abstract model, the essential features of
an architecture is identified and reflected in the model. In addition, an abstract model
should be able to represent a large class of architectures, including possible future ar-
chitectures. The requirements for a suitable abstract model have been formulated

in [33] as:

e Accuracy
The cost estimates should be close to the real time assumptions.
o Simplicity
The cost model should depend on only a few parameters of program and archi-

tecture.

e Monotonicity in the Architectural Parameters

5

When the architecture is improved, the predicted costs should decrease.

2.2.1 The Models

In the following, we give a brief description of various abstract parallel computing

models [33].

Network Models Network models are the models describing low-level features of
the architecture, for instance the topology of the interconnection network and
the fact of insecure message transmission.Network models focus on the inter-
connection topology. Most models assume synchronous operation. Figure 2.1

shows an example of network models.

Figure 2.1: A network model

This kind of models have almost disappeared nowadays. Firstly, the models
move whole packets from node to node: this is no longer sufficiently general.
Second, the models are hard to use due to the excessive details of the archi-
tectures. Moreover, lacking portability is another serious drawback. Network

models are now usually used for the design of elementary algorithms, such as

routing, sorting and broadcasting.

PRAM Parallel random access machine (PRAM) is one of the most popular models

in parallel algorithm design.

Shared Memory

Figure 2.2: The PRAM model

A PRAM consists of p processors that have access to a global shared memory.
Besides, each processor owns a small amount of local memory for registers and
codes. It is a synchronous MIMD model. Every processor can access any

memory location in one step regardless of the memory location.

The popularity of the PRAM is due to its simplicity. Generally, in PRAM mod-
els, the architectural details were ignored and the execution was supposed to be
synchronous. PRAM has difficulties in dealing with highly data-dependent com-
munication latencies as well as memory and network contention. The PRAM
model is widely considered as not matching the essential features of existing

parallel machines.

BSP Bulk synchronous parallel (BSP) models represent a the relatively new trend in
modelling, which were discussed in [38]. As shown in Figure 2.3, BSP describes
a computer as a collection of nodes, each consisting of a processor and memory.

BSP models the interconnection network by means of a few parameters, instead

Interconnection Mechanism

..................
R RIIRRIIRIRLLIILLXLE XKLL LK LLLRLKS]

QRRERELILIRELLIIKAISARLIIIL LIRS,
e e e 0020t e e e e 0t de o e e e te %0 %0 S0t te o e tetedeteted:
SO 00O SIS SIS OSSO0 88V VS S0, 0. 009,999,

QR

Mecmory

Figure 2.3: The BSP model

of the topology of a particular machine. It assumes the existence of a router
and a barrier synchronization facility. One difference of BSP from PRAM is a

larger step size.

BSP includes a cost model of three parameters:

e p, the number of processors
e [, the cost of a barrier synchronization, and

e g, a characterization of the available bandwidth.

Algorithm design for BSP is harder than for the PRAM, because of the addi-
tional parameters [and g. These parameters generally make algorithms less
comparable. However, compared with network models, BSP is still much sim-
pler. BSP accounts for the costs of communication and synchronization. It is
suited to current architectures, in which communication costs are dominated
by the time of exchanging messages with the network. However, it may prove

inappropriate for future architectures with large numbers of processors.

SDM The Standard Delay Model(SDM) [45] is a representative model of distributed
memory machines. The processors communicate with each other by transferring
messages through an interconnected network. The most important concept

8

introduced in SDM model is the latency of communications, the time spent for
messages to go across the interconnections. Figure 2.4 shows communications

under the SDM model. The latency depends on message size.

P, T, e \T‘t
P, T, \\\ Y T
P, T, I

‘:;Lus"
L)~

Figure 2.4: Communications under the SDM model

In this model, the communication overheads are ignored, since they have been
shown not to work for many parallel architectures. In addition, the processor
bandwidth does not have‘ an upper bound. In reality, it is impossible for a
processor to send/receive as many simultaneous messages as needed at a time,

as implied in the SDM model.

LogP LogP improves on BSP with respect to authenticity. It also abstracts from the
network topology and describes a machine in terms of a few parameters. The
model does not deploy implicit synchronization. Instead, the processors work

asynchronously and communicate via pairwise message exchanges.

LogP describes real architectures more detailedly and more accurately than
BSP. It allows for the use of the overlap between computation and communica-
tion that is not represented by BSP. LogP does not enforce a specific program

structure, and thus algorithms can be formulated more flexibly.

The LogP model will be described in detail since it is the model we are going

9

to use in this thesis.

2.2.2 LogP model

LogP [15] is a model of a distributed-memory multiprocessor architecture in which
processors communicate by point-to-point messages. The model only specifies the
performance characteristics of the interconnection network, however, not the exact
structure of the network.

The main parameters of the model are:

L : an upper bound on the latency, incurred in passing a message containing a word

or many from a source processor to a target processor.

o : the overhead, defined as the length of time that a processor takes to transmit
or receive a message; during this time, the processor cannot perform any other

operations.

g : the gap, defined as the minimum time interval between consecutive message
transmissions or consecutive message receptions at a processor. The reciprocal

of g corresponds to the available communication bandwidth per processor .
P : the number of processors.

Thus, it is assumed that the capacity of the network is finite, such that at most
[(L/g)] messages can be transferred at a time. If a processor attempts to transmit
messages beyond this limit, it stalls until the messages can be sent without exceeding

the capacity limit.

10

The LogP model abstracts the communication network into three parameters.
When the interconnection network is operating within its capacity, the time to trans-
mit a message is 20 + L. The available bandwidth per processor is determined by g,
and the network capacity by [(L/g)]. The network is treated as a pipeline of depth
L with initiation rate (i.e. one per clock cycle for individual instruction) g and a
processor overhead of o on each end [15].

Figure 2.5 provides an illustrated example of the communication between pro-

cessors in the LogP model. Consider two different processors P, and P,. Assume

P, " T,

Figure 2.5: Communication between two processors in the LogP model

processor P, executes a task T and the processor P, processes T, a successor of
T,. Then the result of the execution of 7T} must be transferred from processor P,
to processor P, before T, can be executed. Assume the result of T; is sent twice
for its successors, including 75, on P,. Figure 2.5 shows the communication between
processors P, and P,. The sending overheads are represented by s;5 and sy;; 12 is the
receiving overheads corresponding to sy5. T3 is also waiting for message from another
task. rj, is the receiving overhead.

As shown in Figure 2.5, messages are transmitted if a task and one of its successors
are scheduled on different processors. Lengths of the overheads (si2, s1:, T2 and rj2)
are the same. It is also stated that a message can be received at least L time units

11

after it has been submitted to the communication network, for example, from the end
of s1o to the beginning of rj5. And, there is a delay of at least g time units between
two send or receive overheads on the same processor. That is why s3; does not start
right after s, finishes. Note that there need not be a delay between a send operation
and a receive operation on the same processor.

The model is asynchronous, but is bounded above by L. Because of variations in
latency, messages sent to a given target processor may not arrive in the same order as
they were sent in. In some situations, it is possible to ignore one or more parameters
and work with a simpler model: o can be increased to g (0 = g), in which case g is
no more relevant.

LogP is a machine-independent model for parallel computing. It tries to find out
a tradeoff between the authenticity and simplicity when abstracting parallel comput-
ers. The model is sufficiently detailed to reflect the major practical issues in parallel
algorithm design, yet simple enough to support detailed algorithmic analysis. At the
same time, the model avoids specifying both programming style and communication
protocols, being equally applicable to shared-memory, message passing and data par-
allel paradigms. Culler et al. [15] has applied optimal algorithms for broadcast and
summation. It demonstrates how an algorithm may adapt its computational structure
and communication schedule in response to each LogP parameter.

The classical LogP model only deals with short messages and does not adequately
model machines with support for long messages. LogGP [2], the extension of LogP
should be considered for long messages. However, in this thesis, the messages are
assumed to be short enough to allow the use of the classical model. Actually, we may

12

eliminate long messages by processing the related tasks on the same processor. In
this case, there is no need to transmit the long messages. But, it is only practical

when long messages are uncommon.

2.2.3 Communication Semantics

In both the LogP models and SDM models, data transfer between two tasks
running on different processors are achieved by message passing. The requirements
of message passing varies. Communication semantics define how requiring data are
transferred from one processor to another. Finta and Liu [17] introduce two extreme
cases of the communication semantics: independent data semantics and common data,
semantics.

Independent data semantics refers to independent data passing. Messages trans-
ferred to different successors are assumed to be different regardless the successors’
positions [18]. In this case, the result of the execution of a task is sent separately to

each of its successors regardless of the successor’s position. Figure 2.6 provides an ex-

P, T, S b S feea .
OROR: | T || T

(a) Gy (b) Message passing between two processors

Figure 2.6: Independent data semantics

ample. The precedence relationships among T3, T> and T are given by Figure 2.6(a).
As shown in Figure 2.6(b), there are two separate messages containing T)’s results

to be send from P, to P,. Most of the work on scheduling parallel programs with

13

communications is on the semantics of independent-data communication.

On the contrary, under common data communication semantics, results of a task
can be sent to any processor at most once even the processor executes more than
one successor of this task. Only in this case one can use broadcasting communication

mechanisms. Figure 2.7 shows the communication among the same tasks in Figure 2.6

G P, T, Sp [‘
(.) (T, P, N | o, T,

(a) Gy (b) Message passing between two processors

Figure 2.7: Common data semantics

in common data semantics. There is only one messages transmitting between proces-
sors. Note that there is no difference between independent data and common data if
there is no task with more than one successor.

We consider independent data semantics in this thesis.

2.3 Scheduling Problems

2.3.1 Definitions
Tasks

Although scheduling problems arise in many application domains, a general model
of scheduling may be applied to any application. The processes to be scheduled are
made of complex activities. Such processes can always be modelled as tasks and rela-

tions among them {11}. For instance, a parallel program in multiprocessor scheduling

14

problems can be divided into a set of computational tasks which are executed under
certain precedence constraints. The tasks can often not be executed in an arbitrary
order as the result of a task may be needed by other tasks.

A directed acyclic graph (DAG) G = (V, E,w,l) can be used to represent the
tasks and the precedence constraints. The vertices are the set V = {T1,---,T,} of
n tasks, and each directed edge in E represents the precedence relation between two
tasks, i.e. the processing order of the tasks is limited by this relation. The weight
w; associated with a task T; presents the execution time of that task. If the result
of task T; is required by the execution of task Tj, (T;,7;) € E. The length of the
message sent by T; to T} is denoted by [(T},T}), and represents the weight of that
edge. Hence, messages of this size are sent by T; to all the tasks on other processors
requiring its result before the execution of these tasks starts. When (T;,T;) € E, T;
is said to be an direct predecessor of Tj, while Tj is the direct successor of T;. We
denote Predg(T;) as the direct predecessors of T; in G, and Succg(T;) as the direct
successors. Tasks without predecessors are called source nodes and are to be executed

first. Tasks without successors are called sink tasks and executed last.

Scheduling

In general, scheduling is the process of assigning tasks to a set of resources.
Scheduling problems are characterized by set V = {Ti,--- ,T,} of n tasks and set
P = {Py, -, P} of m processors. Therefore, scheduling means to the assignment
of the tasks in V to processors from P under certain imposed constraints [11].

The constraints includes: each task is processed by at most one processor at a time,

15

and each processor can only process at most one task at a time. These two constraints
are applicable in classical scheduling theory, however the first may be relaxed in some

new applications.

Schedules

A (feasible) schedule is an allocation of the resources to the tasks that satisfies
all constraints defined by the scheduling problem. The objective of scheduling is
finding a schedule that is optimal with respect to a certain objective function. The
resources that have to be allocated and the constraints that have to be satisfied can
be of various types. In mathematical terms, a scheduling problem is often solved
as an optimization problem, with the objective of maximizing a measure of schedule
quality [5].

A schedule S of task graph G maps a pair (o(T;),#n(T;)) to each task T; in G,
where o(T;) presents the starting time of T;’s execution and #(T') is the processor
that T; is assigned to.

Schedules may be represented by Gantt charts, a popular type of bar chart [11],

as shown in Figure 2.8. A Gantt chart aims to show the timing of tasks as they occur

BT I,
BLL | T H L L t

Figure 2.8: Gantt Charts

over time, while it does not (initially) indicate the relationships between tasks.

Generally, task T; € V is bound by the following data except its execution time

16

w;:
1. Arrival time art;
2. Due date d;
3. Deadline Ji
4. Priority g;
Schedule S is said to be feasible iff. the following conditions are satisfied:
e on each processor, only one task can be processed at a time.,
e task T; is processed in time interval [art;, c;li];
e all tasks in V have been scheduled;
o if tasks T; < Tj, T; must not start before Tj is finished;
e other constraints, if any, are satisfied.

Consequently, given a schedule, we can calculate the following parameters for each

task T;,¢ = {1,2,...,n}:

1. completion time C; = o(T;) + w(T;);
2. flow time F;, = C; — art;;

3. lateness Di = Ci - di.

17

2.3.2 Optimality Criteria

There are various optimality criteria, also called performance measures, for schedul-
ing problems.

Makespan is defined as the duration between the start time of the first job and
the finish time of the last executed job. Minimizing the makespan of the schedules
is used most since it leads to both, the maximization of the processor utilization
factor!, and the minimum of the maximum completion time of the scheduled set of
tasks. Makespan may also be important when a task set arrives periodically and is
to be processed in the shortest time.

Another popular criterion mazimum lateness involves due date. Maximum late-
ness

Lppar = max {L;},1 € {1,2,...,n},

where n is the number of tasks. In real time environment, minimization of the maxi-
mum lateness leads to the construction of a schedule with all tasks finished on time.

From the user’s viewpoint, the mean flow time criterion is also important, since
minimizing mean flow time reduces mean completion time of the scheduled task set.
Mean flow time

F=

S

ZF,.,@' €{1,2,...,n}.
=1

In this thesis, the objective of the problem is to minimize the schedule makespan.

!Processor utilization factor is the ratio of the processor’s non-idle time in the given period, e.g.
within the makespan Cpaz-

18

2.3.3 Analysis of Scheduling Problems

A scheduling problem could be either static or dynamic [3]. The difference be-
tween two types of scheduling problems is related to the predictability of structure of
input jobs. Problems with a predictable structure are called static problems; on the
contrary, in dynamic scheduling problems, the number of the tasks and the edges from
the tasks are not known in advance. Only static scheduling problems are considered

in this thesis.

2.4 Scheduling Strategies

2.4.1 List Scheduling

List scheduling is one of the most popular solutions to the multiprocessor schedul-
ing problems. In list scheduling, each task is scheduled according to its priority. In
addition, each task is scheduled as soon as all its predecessors have been scheduled.

Above all, there are two rules for designing a list scheduling algorithm (also called
list scheduling algorithm). The first relates to the ranking of tasks. The second relates
processor clustering, which assigns tasks to processors. Different settings of the two
rules result in different algorithms. Also, it is necessary to define ready tasks, i.e. the
tasks that can be scheduled.

A list heuristic builds a schedule step by step with the two rules. At each step,
ready tasks are collected into a list which is sorted by rank. Among these ready tasks,

the one T; with the highest rank is chosen according to the first rule. Next, select a

19

processor P;, on which T; is assigned according to the second rule. T; starts on P;
immediately. This algorithm finishes when all tasks have been scheduled.

The particular assignment of priorities to tasks results in different schedules be-
cause tasks are selected for execution in different orders. HLF (Highest Level First),
LNSF (Largest Number of Successors First) and LPTF (Largest Processing Time
First) are three commonly used list scheduling heuristics. Here, HLF avoids de-
lays in the critical path so as to minimize the execution time; LNSF maximizes the
number of ready nodes by scheduling a task with the largest number of successors.
And, the longest tasks are processed first in LPTF so that delays in long tasks are
minimized. According to some empirical performance studies on List Scheduling,

level-based heuristics are the best at approximating the optimal schedule.

2.4.2 Genetic Algorithms

Genetic Algorithms (GA) have been used as adaptive algorithms for solving prac-
tical problems and as computational models of natural evolutionary systems. Most
GAs have at least the following elements in common [42]: populations of chromo-
somes, selection according to fitness, crossover to produce new offspring, and random
mutation of new offspring.

The chromosomes in a GA population typically take the form of bit strings. Each
chromosome can be thought of as a point in the search space of candidate solutions.
The populations are replaced successively with another in GA. Usually, a fitness

function is required to assign a fitness to each chromosome in the current population.

20

The fitness of a chromosome depends on how well that chromosome solves the problem
at hand.

The simplest form of GA involves three types of operators:

Selection This operator selects chromosomes in the population for reproduction.

The fitter the chromosome, the more times it is likely to be selected to reproduce.

Crossover (single point) This operator randomly chooses a gene and exchanges
the subsequences before and after that gene between two chromosomes to create

two offspring.
Mutation This operator randomly flips some of the bits in a chromosome.

Given a clearly defined problem to solved and a bit string representation for can-

didate solutions, a simple GA works as follows [21]:

1. Start with a randomly generated population of n I-bit chromosomes (candidate

solutions to a problem).
2. Calculate the fitness f(z) of each chromosome z in the population.
3. Repeat the following steps until n offspring have been created:

a. Select a pair of parent chromosomes from the current population, the prob-

ability of selection being an increasing function of fitness.

b. With probability p. (crossover rate), cross over the pair at a randomly chosen

point (chosen uniformly) to form two offspring.

21

c. Mutate the two offspring at each gene with probability p,, (mutation rate),

and place the resulting chromosomes in the new population.

If n is odd, one new population member can be discarded at random.

4. Replace the current population with new population.

5. Go to step 2.

Such a procedure may also be accomplished as shown in Figure 2.9. Each iteration

Figure 2.9: Process of Simple Genetic Algorithm

of such a process is called a generation and the entire set of generations is called a
run. At the end of a run, there are often one or more highly fit chromosomes in the
population.

The simple procedure just described is the basis for most applications of GAs.
There are a number of details to fill in, such as the size of the population and
crossover /mutation rates, and the success of the algorithm often depends greatly

on these details.

22

Chapter 3

Problem Statement, Literature

Review and Contributions

This thesis deals with static scheduling of general task graphs, representing par-
allel programs, on homogeneous multiprocessor systems, under the LogP model. In-
dependent data semantics are assumed. The objective is to minimize the makespan
of the parallel program. A formal description follows. We also present an overview
of previous work in related areas and a summary of the contributions made by this

thesis.

3.1 Problem Statement

Given a parallel program described by a DAG G(V, E,w,!) and a LogP instance
M(L,o,g, P), we are looking for a schedule S of G on the multiprocessor system

P = {1,...,P —1,P} such that S is feasible under M and S has the minimum

23

makespan among all feasible schedules of G. That is

. 1
S = argmzns’isfeasiblescheduleofG(ma‘kespan(s)) .

A LogP-feasible schedule must have included both starting time and processor
assignment for each in the extended task graph. A processor can not execute more
than one task at a time. A task can only starts after all its predecessors have been
finished. It takes at least a delay of L to transfer a message from one processor to
another. In other words, the interval from completion of a send task to the beginning
of its corresponding receive task must be equal or be greater than L. As for gaps, a
delay of at least g is necessary between two consecutive send or receive operations.
Note, there are not such delays required between a send task and a receive task on
the same processor.

Denote the starting time and processor that have not been scheduled by L. v, v;
and v; present any types of tasks in G(V, E,w,l). s;;, s; and s; are send tasks, and
ri5, T and r; are receive tasks.Then, a LogP-feasible schedule can be defined by the

following constraints:

1. o(v) #L1 and w(v) #L, Vv € V,

2. if w(v;) = w(v;) #L and v;,v; € V, then o(v;) +w(v;) < o(v;) or o(v;)+w(v;) <

a(vi);
3. if vy; <, v; and v;,v; € V), then o(v;) + w(v;) < o(v;);

4. if coupled communications s;j,7;; € V and (si;, 1) € E, then o(si;) +w(si;) +

24

L < a(ry);

5. if send tasks s;,s; € V and 7(s;) = 7(s;) #L, then o(s;) +w(s;) + g < o(s;) or

o(s;) + w(s;) +9 < a(si);

6. if receive tasks r;,7; € V and 7n(r;) = n(r;) #L1, then o(r;) + w(r;) + g < o(ry)

or o(r;) + w(r;) + g < o(r;);

3.2 Problem Instance

Consider the task graph G, shown in Figure 3.10. Figure 3.11 are the feasible

Figure 3.10: Task Graph G,

schedule example of the task graph G (Figure 3.10) under LogP instance M(1,1,1,2).

1 2 3 4 &5 6 T 8 9 10 11 12 13
T l S14 T [7‘46 Ts rs7 | Tz l
T 17“14 Ty | s46 T S57 [

Figure 3.11: A Schedule S(G,) of G, feasible under M(1,1,1,2)

25

3.3 Literature Review

3.3.1 Approaches of Scheduling under SDM

The most common model used by the scheduling community for the scheduling
problem is the SDM, where the latency for a message transmission is the only com-
munication parameter.

Much research has been done in recent years on static scheduling task graphs
under SDM-like models. Rayward-Smith {45] shows that it is NP-complete to find
the minimum makespan under the model which was confined to unit communication
times (UCT) and unit execution time (UET). He also presents a heuristic, called
“generalized list scheduling”, which adopts the same greedy strategy as Graham’s
list scheduling [23]: No processor remains idle if there is some task available that it
could process. The ETF (Earliest Time First) algorithm [25] computes, at each step,
the earliest start-times for all ready nodes and then selects the one with the earliest
start-time. Here, the earliest start time of a node is computed by examining the
start-time of the node on all processors exhaustively. When two nodes have the same
value in their earliest start-times, the ETF algorithm breaks the tie by scheduling the
one with the higher static priority. There are other ways to determine the priorities
of nodes, such HLF (Highest Level First) [12]; LP (Longest Processing Time) [12];
LPT (Longest Processing Time) [19]; and CP (Critical Path) [51].

List scheduling algorithms have a low time complexity. For instance, the time
complexity of ETF is O(N P?), where N is the number of the nodes in the given graph

and P is the number of processors. However, all the list scheduling algorithms are

26

sub-optimal on general task graphs. To improve these solutions, genetic algorithms
have successfully been applied to the problem and the results reported have been
superior to those of the list scheduling approaches.

The application of genetic algorithms to the multiprocessor scheduling problem
can be classified into two categories: direct mapping and indirect mapping.

In the direct mapping, the phenotype is identical to the phenotype and the genetic
operators manipulate the schedules directly. This scheme was first introduced in the
HAR algorithm by Hou et al. {24]. In the HAR algorithm, each chromosome is
a collection of lists, each of which represents the schedule on a distinct processor.
Thus, each chromosome is a two-dimensional structure: one dimension is a particular
processor index and the other is the ordering of tasks scheduled on the processor.
The encoding scheme in HAR, poses a restriction on the schedule being represented:
the list of tasks within each processor in a schedule is placed in ascending order of
their height. The genetic operators are based on the precedence relations between the
tasks in the given graph. Their simulation study shows the HAR algorithm produces
schedules within 20% from optimal solutions. This representational scheme of direct
mapping is later modified by Corréa et al. [14]. Their version called Lyon introduced
an initialization method that generate the initial population via a list scheduling
algorithm. The algorithm uses knowledge augmented operators.

In the indirect mapping scheme, the genotype is a set of symbols that are used
by some decoding algorithm to build a schedule. Ahmad et al. [1] uses such a repre-
sentational scheme. They employ a list of task priorities as a chromosome. A list of
priorities is obtained from the input DAG first. The initial population is generated by

27

randomly perturbing the original list. A list scheduling algorithm is used to determine
the fittest chromosome. Therefore, the genetic search operates on the problem-space
instead of the solution-space as is commonly done. They report to have better results
than Hou et al.. Sandes and Megson’s [47] improved approach is based on the implicit
representation proposed by Ahmad et al.. It was extended to partially connected pro-
cessor networks, through an extended chromosome representation. Auyeung et al. [4]
introduced a different approach using indirect mapping. Their solution is to use the
GA to find a combination of four heuristics. The chromosomes encode the weights of
different heuristics in order to obtain an optimal combination of the priorities from
the heuristics. Their results show that such an approach outperforms each one of the
four list scheduling algorithms alone.

According to the comparisons carried out by Rebreyend [46], convergence times are
similar for the two categories. Both approaches tends towards the same lower bounds.
In general, the indirect mapping is simple and straightforward in structure. The direct
mapping scheme requires more implementation effort, however it is more flexible.
Note, the height restriction in the encoding of HAR and Lyon may prevent the search

from obtaining the optimal solution; this is discussed in detail in Section 5.1.2.

3.3.2 Approaches of Scheduling under LogP

Besides latency, other communication characteristics have been shown to influence
performance significantly, with the evolution of parallel architectures {39]. Some of

these characteristics cannot be modelled as part of the message delay [15]. Therefore,

28

using SDM may result in poor performance. On the other hand, the LogP model [15]
(see Section 2.2.2) and its variants [2] consider the dominant communication char-
acteristics of each individual communication, as well as the limited communication
capacity. LogP can accurately model a variety of parallel machine [15, 36, 39], as well
as clusters [15, 49).

It is NP-complete to find an optimal schedule under the LogP model, even for
some special classes of task graphs: M. Middendorf et al. [41] assume all tasks have
computation time ¢ and assuming constant ¢, 0 and L. And they suggest that, for
inverse trees!, it is NP-complete to find a linear schedule (i.e. at least one of the
predecessors of a task is computed on the same processor) with makespan greater
than T, even if g < o, Verriet [50] shows that the computation of a schedule of
length at most D is NP-complete even for fork trees®> when g = 0. Zimmermann et
al. [52] found that even for simple graphs, such as send-graphs and receive-graphs, it
is NP-complete to decide whether there is a schedule under the LogP model with a
makespan of at most D for any fixed number of processors.

Compared to research in multiprocessor scheduling under the SDM-like models,
only a few scheduling strategies for the LogP models have been published [7, 8, 30, 31,
27, 34, 35, 36, 41, 50, 52]. These approaches include: (a) approximation algorithms;
(b) replication-based algorithms; and (c) list scheduling algorithms.

Lowe et al. [37] generalize the result of Gerasoulis et al. [20] to the LogP models

using linear schedules. Two polynomial-time algorithms were presented in [50] that

1A communication structure is an inverse tree if the communication structure with the same
vertices and edges in inverse direction in a tree. [34]
2A fork tree consists of a node v, and its k successors vy, ..., Uk.

29

construct schedules for fork graphs; one is a 2-approximation algorithm for scheduling
arbitrary fork graphs with unrestricted number of processors, the other constructs
minimum-length schedules for fork graphs in which all sinks have the same execution
length for the case that the number of processors is bounded. Further, Zimmermann
et al. [53] consider k-linear scheduling® under the LogP model. They presented an
algorithm to obtain optimal k-linear schedules for trees and tree-like task graphs
with an unbounded number of processors, assuming g = o. This approach cannot
be generalized easily to cases where g > 0. Middendorf et al. [41] discussed some of
those for linear schedules (i.e. k = 1). However, it is not yet clear whether these
apply to k-linear schedules in general, and whether other normalization properties
are required. There is no general approximation scheme with a constant performance
ratio. For instance, Lowe [34] provides a performance ratio with parameters o and g.
In short, approximation algorithms are not the solution to the scheduling problem of
general task graphs under the LogP model.

Boeres et al. [6, 7, 8, 9] outlined a methodology to design replication-based clus-
tering (i.e. obtaining processor assignments) algorithms for scheduling arbitrary task
graphs with arbitrary costs, under the LogP model, onto a bounded/unbounded num-
ber of processors. Theoretical analysis presented in the paper shows that the algo-
rithm generates linear schedules under small communication condition. However,
due to lack of effective evaluations, conclusions based on experimental results may be
limited to the graphs tested.

As for heuristics, two list scheduling algorithms presented by Kalinowski et al. [27]

3A k-linear schedule may map up to k directed paths of a task graph onto one processor

30

adapted the scheduling scheme of Hwang’s [25] ETF algorithms to the LogP models.
These approaches handle general task graphs, in cases where g = o. The proposed
algorithms compute effective schedules if the communication time is not greater than
the average computation time. In these algorithms, all send tasks are executed se-
quentially right after the computational tasks complete. Similarly, the receive tasks
directly precede computation. Such a scheme reduces the number of possible task as-
signments and simplifies the algorithms, but possibly eliminates some good solutions.
Details of the list scheduling algorithms under the LogP model are to be discussed in

Section 6.1.

3.3.3 Summary

To the best of our knowledge, GAs have not been applied to scheduling problems
under the LogP model, and all work of LogP scheduling only considered some special
cases (except {6] which uses replication-based algorithms), such as specific classes of
task graphs (except [27]), restricted LogP models (except [36]). This thesis presents a
LogP scheduling methodology for general conditions from a practical viewpoint, and
employs GAs extensively as part of its proposed methodologies.

Our approaches will follow the scheduling schemes of ETF algorithms presented
by Kalinowski et al. [27]. The scheduling procedure is divided into two phases: First,
it allocates tasks to processors. Second, it adds necessary communications to the

results in the first phase. GAs are applied to each of the two phases, appropriately.

31

3.4 Contributions of the Thesis

In addressing the general problem of multiprocessor scheduling under the LogP
model, distinct from that has been done before, this thesis makes the following specific

contributions:

1. Task Graph Extension. Extending a task graph under the LogP model allows
for the generalizations of communication tasks. With this task graph extension,
general scheduling algorithms can be applied to the scheduling problem under

the LogP model more easily.

2. Gap Handling. The effects of the gaps in a scheduling procedure are analyzed
thoroughly. The decoders of GAs are modified to deal with significant gaps.
In addition, the concept of gap filling is introduced to allow the algorithms to

search for more solutions.

3. A novel GA based algorithm for communication management. The algorithm
extends the ETF heuristics [27] by arranging the communication operations dif-
ferently. A GA, with specific genetic operators, is presented for this purpose. A
list scheduling algorithm is applied as the decoder. A novel encoding method-

ology that minimizes the representation space is proposed for this algorithm.

4. A novel GA-based algorithm for processor allocation. This algorithm allocates
tasks to processors using a GA. Similarly, the chromosomes are decoded with a
list scheduling algorithm. In this algorithm, the communications are arranged

using fixed rules.

32

Chapter 4

Scheduling Communications using

Genetic Algorithms

Existing scheduling algorithms under the LogP model assign communications to
respective processors, after scheduling the computational tasks, using fixed rules. The
objective of the rules is to obtain a feasible schedule under LogP, instead of to min-
imize the makespan. Most of these rules assign high priorities to the computational
tasks.

2ETF from [27] is such an algorithm. It gets a schedule of the task graph under
SDM and then derives another schedule which is feasible under LogP. During the
second phase of 2ETF, the sending overheads from the same source of computational
tasks are scheduled sequentially right after the source task. On the other side, the
receiving overheads that have the same destination are grouped together and inserted
before the common destination task.

The disadvantage of using fixed rules is illustrated by the following example. Task

33

graph G, in Figure 4.1 is scheduled in two ways. Both schedules have identical

5® 12 13

Figure 4.1: Task Graph G,

allocations of the computational tasks. The difference between them is that Schedule
S1 in Figure 4.2(a) follows the rule applied by 2ETF while Schedule S, in Figure 4.2(b)

does not. The critical path of the task graph is: T} — T, — T5. If the sending

TJ_LSIS l T, LS47 lsm__‘

T, |18% | 05l Ts
T; l I 1593 [T I l Ui iTxl r41l T, J
(a) Schedule S;{2ETF)

TII T, |547|S43|S|s|

T, ISzgl lrlji T
T { Irzﬁ lTﬁ |r47i T, l&x ITjI

(b) Schedule S;

Figure 4.2: Different Communication Arrangements

overhead s;5 is scheduled right after T3, it will delay 74 , the longest computational
task in the task graph, and which is also on the critical path. Additionally, T5
is the last task assigned to the second processor. Therefore, postponing s;5, and
consequently postponing ri5 and T3, will not affect the overall processing time. On
the contrary, it minimizes the makespan, like schedule S; does.

In brief, it is necessary to find a strategy to schedule the communication tasks in
order to achieve better overall schedules. However, the exact set of communication

34

tasks is not determined until the processor assignment is fixed. Thus, the objective is
to schedule the communications with given processor assignments of computational
tasks. The assignments come from one of the existing algorithms under SDM and the
sequential communications are derived. The key step will be applying GA to find an
optimal placement of both computations and communications.

A novel method to generalize the communications is introduced at first. With this
method, we adapt the general list scheduling algorithm for LogP models. A genetic
algorithm is proposed next, using the list scheduling algorithm as the decoder. The

whole procedure of the GA is discussed in detail.

4.1 Extended Task Graph

According to the LogP model, no task can be scheduled during the overheads. In
a sense, communications are similar to computational tasks, as both of them occupy
processors. 2ETF manages communications after settling all the computational tasks.
In this manner, communication is simply an extension of computation. But, now our
focus are the communications. It is reasonable to allow communications more flexi-
bility. Therefore, we treat the communication tasks the same as the computational
tasks. Viewing communications as tasks also make possible the application of various
optimization algorithms to this problem.

Such generalization can be achieved by extending the task graph. The main pur-

pose of such extension is to insert all the communication tasks into the original graph

35

given the processor assignment so that communication tasks can be considered to-
gether with the computational tasks. At the same time, the extension must maintain
the partial order defined by the original graph.

Extending a task graph is a 3-step process. First, we generate the communication
tasks. Whenever two directly connected nodes are assigned to different processors,
there should be a pair of communications: a send task on the source processor and a
receive task on the destination processor. Second, the edges of the graph are redefined
taking into consideration the new nodes of the communication tasks. Clearly, a send
task can not be scheduled until the source computational task is finished. Similarly,
the receive task should finish before the destination computational task starts. Also,
receiving a message can only happen after the message has been sent. Therefore,
we should add 3 edges for each pair of communication tasks generated in last step.
The three edges are: (a) an edge from thé source task to the send task, (b) an
edge from the send task to the receive task, and (c) an edge from the receive task
to the destination task. At last, since the source task has been connected to the
destination task through the communication tasks, the original edge between the two
computational tasks is no longer necessary and is deleted. Removing this edge would
not change the partial order of the original graph. As a result, this process expands
each edge connecting two processors into three edges.

The process of extending a task graph G3 of 5 nodes is illustrated in Figure 4.3.
The nodes in the original graph have been distributed on 3 processors, and two edges
connecting 2 different processors need to be extended. Consider the edge (T3, T3).

After T is finished on P, a message is passed from P, to P; so that P; can process T3.

36

i
!
i
i
i
i
i

(a) Original Task Graph Gj (b) Step 1: Derive the Communications

. P B R B R
~8.3 : i -5 l3\' : i
CaT RNt

i i

i et i

i [l VEGN i

i -\ ey b

4 1 - - [}

| Sas) s S

1 i [

VANCRROF
i
1
i
i

/
7

i
1
i
i
i
i

(c) Step 2: Connect the Communica- (d) Step 3: Remove Redundant Edges
tions

Figure 4.3: Extending a Task Graph G3

37

Thus, we have a pair of communication tasks, s;3 and r3, to present the overheads.
Figure 4.3(b) shows all the necessary communications to be added into this graph.
After adding communication tasks, T}, s13, 713 and T3 are reconnected to form a new
path from T} to T3, as in Figure 4.3(c). The final graph after extension is presented in
Figure 4.3(d). Although all the edges are extended at the same time in the example,
we usually extend only one edge at a time. An outline of the extension algorithm is

given in Algorithm 1.

Algorithm 1 Task Graph Extension under LogP

Input:

G, w, l: a precedence graph,

M = (L,o0,9,P): a LogP instance,

II(G) = {n(T;)|VT; € V'}: an processor assignment of G.
Output:

G', w', l': an extended graph,

II(G") = {w(T})|VT; € V'}: an processor assignment of G'.

Begin
{Initially: G' := G, II(G") := II(G) and orgE := E'.}
for all (T;,T;) € orgE and =(T;) # w(Tj) do
sij = send(T;, Tj);
ri; = receive(T;, Tj);
Vi=V'U {Sij7 rij};
E":= E'U{(T;, s5), (515, 735), (ri5, T5) };
E = B/(T.T);
(si;) = w(Ti);
m(ry) = w(T});
H(G’) = H(G,) U 7r(sij) U 7T(T'1;j);
end for
End

Note that the edges between coupled communication tasks are different from the
others due to the latency of message passing. For instance, the ready time of a task
is defined as the earliest moment that the task can be started regardless of the status

38

of processors. It depends on accomplishment of all the tasks’ predecessors. However,
a recetve task is not ready immediately after the completion of its predecessor, the
corresponding send task. There must be an interval longer than L between the
coupled communication tasks. Formally, the ready time of a task can be calculated

as follows:

)
maxr,epreqry) (0(T5) + w(T;)) if T; is not a receive task and Predg(T;) # 0

rt(Ti) = \ o(send(T})) + w(send(T;)) + L if T} is a receive task

0 if T; € source(G)

\

(4.1)
, where o(Tj) is the starting time of task Tj; w(T}) denotes the weight, i.e. execution

time, of T and L presents the latency.

4.2 List Scheduling under LogP

Having all the information (including the processor assignments) of both compu-
tational tasks and communication tasks from the extended task graph, we then need
to figure out how to arrange the tasks on each processor so as to obtain a schedule
under LogP. Suppose we have the ranks of all the tasks. Then, list scheduling is one
of the simplest methods to generate a LogP schedule.

As discussed in Section 2.4.1, list scheduling algorithms schedule tasks as early as
possible. They apply two rules: one for processor assignments and another for task

ranking. In our problem, the processor assignments come with the extended task

39

graph. The ranks are assumed to be known. Therefore, a common list scheduling
algorithm can be applied easily. In the rest of this section, we are going to describe
our approach.

This algorithm accepts a extended graph G’, a processor assignment II{(G’), a
LogP instance M and a priority queue Q(G’) as inputs. Here, Q(G’) consists of the
priority values for all tasks. Also, we assume M = (L, 0, g, P) satisfies o0 = g, allowing
us to ignore gaps. The output of the algorithm should be a feasible schedule S of G’
under the model M.

There are a few time variables involved in our approach. The completion time
denoted by ct(i) is associated with processor P;, which presents the end of last task’s
execution on P;. Current time C'M is the moment when the algorithm makes deci-
sions. We increase CM gradually starting from time 0. The increments of CM are
determined by the values of future decision moments on all processors. N M (7) refers
to the next decision moment on processor ¢. It is the next earliest point of time when
processor P; is possibly going to start processing a task. In other words, at time
N M(i), there should be at least one task ready on processor P;, while the processor
is free for use at the same time. Hence, both the completion time of the processor
and the ready time of each task on the processor influence the next decision moment.
All these variables are initialized to 0 before the algorithm starts.

Furthermore, the algorithm works with two sets of nodes. One is the set U,
containing the tasks that have not been scheduled yet. At the beginning, U is made
up of all tasks in the extended task graph G’. Whenever a task is scheduled, it
is removed from the set U. The other set of nodes is SN, the nodes that can be

40

scheduled. This is not simply the set of ready nodes. The processors to which the
nodes in SN are assigned are available at the moment.

At each iteration, we update SN. It is accomplished by scanning all the nodes in
U. Then, we select the task T; with the highest priority, in SN and schedule it to
processor m(T;) at current moment ¢. 7T; is then removed from U and SN. Since the
processor 7(T;) is no longer available at the current moment any more, any other tasks
assigned to the same processor are deleted from SN. We also update the completion
time of processor 7(T;), as T; becomes the last task on this processor at this moment.
Besides, the ready time of all of T;’s direct successors are recomputed. Any tasks that
can be scheduled at time t are scheduled before increasing C'M at the next decision
moment.

The details of this approach are described in Algorithm 2. Note that the ready
time rt(7;) is calculated with Equation (4.1). It is necessary to keep in mind that the
ready time of a receive task is computed differently.

Given the scheduling problem and a processor assignment, this list scheduling
algorithm can transfer any integer strings into a LogP-feasible schedule. Therefore,

it is used as the decoder of our GA.

4.3 Representation

This section introduces the representation of a feasible schedule. In the following,

we are going to discuss the encoding strategy as well as the decoding methodology.

41

Algorithm 2 List Scheduling under LogP, with g = o

Input:
G'(V',E',w',l'): an extended graph of G(V, E, w,),
M = (L,o,g,P): a LogP instance, such that o = g,
Q(G") = {q(T))|VT; € V'}: a priority queue for tasks in G,
I(G") = {n(T;)|VT; € V'}: an processor assignment of G.
Output:
S: a feasible schedule of G'(G) under M.

Begin
{Associate ct(i) to the completion time of processor P;, and NMi to the next
decision moment on the processor. .Denote the set of nodes that can be scheduled
with SN. Initially:SN = 0 ct(i) = 0,V:,0 < i < P, the current moment
CM := 0,the set of unscheduled nodes U := V'.}
while U # 0 do
for all T € U do
if 0 < rt(T)< CM and ct(n(T)) < CM
and 7" € U,VT' € Prede/(T) do
SN :=SNU{T};
end if
end for
while SN # () do
{Select a task T;, such that Q(T;) = minrey Q(T);}
o(T;) = CM;
U:=U/T;
ct(n(Ty)) := CM + w(Ty);
ri(Ti) == —1;
for all T; € Succg:(T;)do
{Update r¢(T;);}
end for
for all T € SN do
if 7(T) = n(T;) do
SN := SN/T,;
end if
end for
end while
fori=0to P—-1do
NM (i) := max(CM, ct(i), ming g (rt(T)|VT, 7(T) = 1));
end for
CM = minie[o’p_ll NM(’L),
end while
End

42

4.3.1 Basics of Encoding

GA encoding is used to represent relatively complicated solutions in a simple way.
The number of possible encodings may be very large, but, that does not mean that we
can choose any encoding method. As a matter of fact, the encoding strategy affects
every step of GA operations.

The following two principles introduced in [21] are often used for encoding design:
- Principle of meaningful building blocks;
- Principle of minimal alphabets.

The first principle states that substrings from the encoding may combine under
crossover to produce better solutions. And, the second requires the smallest alphabet
so as to maximize the number of exploitable schemata.

However, these two principles are sometimes difficult to apply due to the complex-
ity of problems. In most cases, a capable encoding method meets a few requirements
in the following manner. First of all, an encoding method must be accompanied by
a decoder in order to generate the solution from the coding. A simple decoder can
decrease the algorithm’s complexity. And, the encoding itself should be simple. A
chromosome must consists of building blocks that are able to deliver partial solutions.
Without such meaningful building blocks, genetic operators are not able to produce
solutions in a predictable way. At last, one encoded individual must present one, and
only one solution. This prevents GAs from wasting time on meaningless individuals

which degrades GA performance.

43

In next section, we are going to discuss an encoding strategy for our own problem,

one that adheres to the limitations discussed above.

4.3.2 Encoding

First, the encoding method should allow the representation of a schedule to hold
enough information while being simple enough for GA operators to act. As the
processor assignments of both computational and communication tasks are known,
the only thing we need, in order to obtain a feasible LogP schedule, is the starting
time of each task. It is straightforward to give each task a priority so that we can
schedule these tasks easily using list scheduling heuristics. Computational tasks and
communication tasks are treated equally during the scheduling process. When more
than one task is ready for the same processor at the same moment, the task with the

highest priority is scheduled at first, regardless of the type of the task.

P

!
|
i
i
i
!
|
|
[}
!
!
[}
i
i
I
i
]

Figure 4.4: Extended Task Graph G

Figure 4.4 shows an extended task graph G with processor assignments. We
can simply use a string of positive integers as the chromosome for our GA. Then
an individual C is composed of n pairs {Q1, @2, -..,@xn}, where n is the number of

44

vertices in the extended task graph, and a gene is a pair @Q; = {v;,¢;} (v; € V and

g; 2 0). Suppose we have two individuals

Cl = {{Tl) 3}1 {312: 4}) {7‘12, 1}> {T3> 5}) {T2> 2}}a

and

Cy = {{11, 3}, {512, 4}, {r12, 1}, {75, 100}, {73, 2} }.

It is easy to observe that T) should be scheduled on P first. When task T is
finished on F;, at time ¢, (¢; is the execution time of T}), T3 and s;2 will be ready
simultaneously. Although C) and C; have different priority values for T3, it does not
affect the scheduling decision at time ¢;, as both 5 and 100 are greater than the s5’s
priority, which is 4. In fact, while g,,, is set to 4, gr, could be any number greater
than 4, so as to produce the same schedule. This is quite wasteful. Hence, we limit
the value of priority to a small interval of integers, between [0,n — 1].

Let us look at another chromosome

C3 = {{Tl’ 3}’ {812’4}7 {7”12, 1}’ {T3’4}7 {T27 2}}

The priority values all satisfy ¢; € [0,n — 1]. However, g;,, = qr; = 4. At time ¢;, we
cannot decide which task to schedule based on priorities only. There are 2 alternatives:
either sy5 is scheduled at first, or T3 is executed before s15. If we choose one solution
randomly whenever we decode the chromosome, it will be impossible to evaluate the

chromosome consistently over time, since it represents 2 different solutions. On the

45

other hand, we might lose one of the two schedules forever if we consistently select
one interpretation over the other. Thus, we should not allow equal priority values for

different genes in any one chromosome.

nodes: T1 812 Ti2 T3 T2

priorities: 2 3 1 4 0
)

order: 0 1 2 3 4

permutation: To 1 Ty s1p T3

Figure 4.5: Example of an Encoded Chromosome

In conclusion, we set two restrictions on the priority values in the encoding. First,
the priority of any node should be a non-negative integer not greater than n — 1,
where n is the number of nodes in the graph. Second, each node should have a
unique priority value, which is different from any other node’s priority value. The
two lines in Figure 4.5 show how such a chromosome would be like, when scheduling
the extended task graph GY. Furthermore, priorities with these two restrictions can
introduce a total order of all the nodes in the graph. A permutation of all the tasks,
shown in the fourth line of Figure 4.5, is already capable of presenting a solution, and
is much simpler too. And, the permutation can be easily transformed to the priority
form, by assigning each node its rank in the permutation. Thereby, a permutation
of n nodes can yield a feasible schedule using list scheduling, and conversely every

feasible schedule can be represented by such a string.

4.4 Genetic Operations

Figure 4.6 shows the procedure of the algorithm.

46

Mating Pool

Figure 4.6: Algorithm Outline

4.4.1 Initial Population

Before evolution starts, we need an initial population. In the Simple GA (SGA) [21],
individuals in the initial population are generated randomly. However, for an ex-
tended graph of n nodes, there are n! individuals in our representation space. When
n gets huge, it is even harder to start searching at a random point in the space.
Therefore, it is helpful if we start our evolution at a population with better points
than the randomly-generated ones.

We still generate most initial individuals randomly as in the SGA. However, one
of the initial individuals is encoded from a known solution. This solution comes from
an existing heuristic, such as 2ETF. Such a initialization procedure together with our
elitism strategy guarantee that our GA generates individuals that are better or (at
worst) of equal fitness than those generated by the 2ETF heuristic.

Most of our parameter values are determined empirically. The parameters in our

GA are listed as below:

47

Crossover Rate & Mutation Rate Our crossover rate and mutation rate are rel-
atively high, compared to those of the SGA. The crossover rate is 0.85 and
the mutation rate is 0.15. The reason we are using relatively high rates is our
elitism strategy. Since the best individual is always able to survive, higher rates
are not going to destroy it. On the contrary, higher rates help us search the

space more effectively, at least that is what we found to be true case.

Population Size The population contains 50 individuals.

4.4.2 Fitness Evaluation

Having an encoded chromosome described in Section 4.3.2, it is easy to extract
a priority queue from the chromosome. The priority queue consists of the ranks of
all nodes in the extended task graph. Such a queue can always be mapped onto a
LogP-feasible schedule via the list scheduling algorithm (Algorithm 2). The goal is
to minimize the makespan. Thus, we have to compute the makespan of each schedule
introduced by the chromosomes.

Again, the makespan is the length of time a schedule takes. More specifically, it is
the time span between the beginning of the first task and the completion of the last
task. We need to find out the minimum completion time among all the tasks. Since
tasks must be done before their successors, and there is only one latest task on each
processor, we only need to calculate the completion time of the last computational
task without successors on each processor. The maximum of these completion time

is the makespan we are seeking.

48

v

&)
&

1 t
1 1
1 1
1 i
1 i
i i
i i
! t o~
1 v
@ | @z
! T g5
i i
i i
i i
i i
i i
1 1

Figure 4.7: Extended Task Graph G

An example is shown in Figure 4.8. Consider chromosome C' as the permutation of
all tasks in graph G, in Figure 4.7. Assume the computational tasks are all unit tasks,
which take a unit of time each to execute. For the LogP model M let L=0=¢g =1,
and P = 3. We arrange the tasks as schedule S, which is produced by our decoder.
There are two computational tasks that have no successors: T» and T5, which are
on different processors. T, finishes at time t = 3, earlier than Ts. Therefore, the

makespan of S should be the completion time of Ty, which is 7.

C
T T BBl T T ol T
\U, Decoder{List Scheduling)

chedule S ,/’=3

TS5l T =7
’/-__ .

Ly Tofs| T,

T.JSas|

makespan(S) = 7

Figure 4.8: Evaluation of a chromosome C

There are two steps to evaluate an individual. The individual should be decoded
into a feasible schedule at first. List scheduling is applied as the decoder of our

GA. Then, the makespan is computed. The smaller the makespan, the better the

49

individual is.

We evaluate an individual using the makespan of the schedule it represents. It is
more convenient for us to put the makespan into a form that can be maximized. The
differences between the makespans of different schedules are relatively small compared
to the makespans themselves, especially when the graph is complicated. So, scaling
is necessary in order to increase the differences between different makespans. This
allows a GA to operate correctly.

Let M(z) be the makespan of individual z, the fitness function is defined as:

1
x) — mingew M(y) + K

&)= 371 (+2)

where K is a scaling constant and min,ew M(y) represents the minimum makespan
over all the generations to date.

As the key to fitness scaling, the variable K is problem-dependent. It influences
the performance of the GA by affecting selection pressure, the primary component
that determines the convergence rate of the GA. If K is too small, individuals with the
highest fitness values, will dominate the population too rapidly, which would prevent
the algorithm from searching other areas of the search space, hence, possibly leading
to premature convergence to a sub-optimal schedule. If on the other hand K’s value
is too large, the search would proceed too slowly for it to reach the exact optimal
solution. Therefore, the value of K must be chosen carefully.

K varies in each generation. Let Fgg be the expected number of offspring of the

best individual with a makespan Mpg,; in current generation and Ew be the expected

50

number of offspring of the worst makespan with My, respectively. We set
Epst = 2Ew,

which implies that the best individual has only two times more chances to survive.
According to the proportional selection method we are going to discuss later, the
expected number of an individual’s offspring should be proportional to its fitness.

Hence, from Equation (4.2), it follows

1 1
- =2x - .
Mps — mingew M(y) + K My s — mingew M(y) + K

On the other hand, according to our elitism strategy (to be discussed later),
in M(y) = Mpg:.
min M(y) = Mp.:
So, we can establish the equality
K = My, (4.3)

This means K is set to the maximum makespan in each generation. As a result, our

fitness function is

B 1
filz) = M(z) — mingew M(y) + max,ew, M(2)’

51

where W; stands for all the individuals in the population of current generation.

4.4.3 Termination Criteria

The evolution stops after 50 generations.

4.4.4 Selection

Proportional Selection

Proportional (or roulette wheel) selection is used to select those individuals which
will produce or constitute (most of) the next generation. This method ensures the se-
lection of an individual z with a probability p,, which belongs to a uniform probability

distribution.

Figure 4.9: Roulette Wheel Selection

A brief description of this method is given below. Using Equation (4.4), we have
the fitness f(z;) for each chromosome z;, i = {1,2,...,n — 1,n}, where n is the size

of our population. Then, a number r; is computed for each z;:

_ ZZ=1 f(x:)
ZZ=1 f(z:)

52

r; = r(z;)

According to Equation (4.4), f(z;) is positive. Thus, 7(z;) € (0,1), 11 <r2 < ... <
Tn-1 < rnp and 7, = 1. Then, we randomly generate a number s in the interval [0, 1).
If 0 < s < rq, the first chromosome x; is selected. Or, if ; < s < 7341, T; is selected.
It is like the spinning wheel in Figure 4.9. The wheel is divided into n sectors and
r; corresponds to the coordinates of the sectors on the circle. The dimension of a
sector is proportional to the fitness values of its respective individual. Formally, the

selection probability of a individual z; is

The fixed pointer determines which sector is selected at each iteration. In the example,
the pointer falls into the third sector on the wheel, so z; is copied to the mating pool
in this round. A mating pool is used for stocking the new individuals preparing for
crossover and mutation. After the selection procedure is repeated n' times, a mating
pool of n’ individuals is generated for later processing. Note, the size of the mating
pool may be different from the population size.

The roulette wheel method has no bias. However, the better chromosomes may
get selected more than once because of their higher selection probability. This allows
better individuals to have more descendants than less fit ones. On the other hand,
since our fitness values are always positive, any individual in the population may be

selected for the mating pool.

53

Elitism

Elitism is the pass, without change, of the fittest individuals in one generation,
to the next generation. The number or percentage of individuals involved is usually
a variable set by the GA user. This ensures that a GA does not accidentally loose a
highly fit individual due to crossover or mutation, which are probabilistic operations
(see Section 4.4.5), which may effect any individual in the mating pool.

There are N individuals in our population. In selection, we set up a mating
pool having 1 individual less than the original population. Such a mating pool goes
through the other genetic operations. But the best individual is inserted directly into
the next population. Thus, the mating pool is only made up of N — 1 individuals
which are selected from all N individuals in the original population. As other genetic
operators do not affect the size of the population, the number of individuals after the
application of the genetic operators remains N — 1. These N — 1 chromosomes are
added to the fittest chromosome in the original population, to build a new population

of size N.

4.4.5 GA Operator
Crossover

Crossover is the process of combining the genes of one chromosome with those
of another to create offspring that inherit traits of both parents. It is employed to
reach the most promising regions. During the process, it is always trying to search

(new) neighboring region. The new individuals generated from recombination should

54

inherit part of information from their parents while being different.

According to the encoding method in Section 4.3.2, the information preserved by
the chromosome is a feasible schedule which is determined by the order of genes. The
operator should deal with the order instead of the values. The descendants obtained
by crossover have to collect all the n genes when getting the partial order of genes
from both their parents. Also, each gene could appear only once in the descendant
so as to satisfy the encoding restraints.

As the result, a special two-point crossover operator is proposed for our LogP
scheduling problem. Let n be the length of the chromosomes, i.e. the number of all
tasks in the extended task graph. Two crossover points, integers ¢; and ¢,, are chosen
randomly such that ¢; € {0,1,...,n—1},7 € {1,2} and ¢; < ¢;. The points indicate
the positions within the chromosome where the string is divided into segments. When
¢y = 0 or ¢cg = n— 1, it becomes a one-point crossover. The segment between the
crossover points on one parent is replace with the same genes in a different order. The
new order is determined by the order that these genes appear in the other parent.

To illustrate the procedure of the crossover, let us consider two chromosomes:

Xi———‘IlIL'Q...:L‘n

and

Yi=mvy2... Yn,

where 7 is the number of current generation.

55

The first step is to cut the chromosome X; at the points ¢; and ¢, and to
remove the sub-string z’ between the cross points z; Z¢ 41...%e-1- Search the

chromosome Y; from the beginning for all the elements in z' and generate permu-

tation z” of ', where " = z z, , ...z, _,, such that {z.,zc41,..., 21} =

! !

! /s 3 " U 1
{2, 2 41,22, }. Atlast, 2’ in X; is replaced by z” so as to form a new indi-

3 —_ / ! /
vidual X1 = 21%2 ... Tey 1T Toy 4y - - Ty 1Ty - - - T

ParentAlelVg]VllvolV4IV9[V2]V6IW‘{VOIV4 L V2J

Parent B| V| V,| V4|V, [V | V5| Vi Ve[Vo |V | —== -

| !
Crossover Point: C;=3 C =7

‘//__\
chida [Vs[Ve[v Vo[V, [V]ve] v vi]v,] Vo[Va| V4 Vo

ChildB [Vo| Vo[Vol V5[V Vel V| Ve]Ve| V]

Figure 4.10: Crossover Operation

Figure 4.10 explains the whole process of the recombination operation executed
between 2 individuals, parent A and parent B, each of which has 10 genes. The
crossover points are respectively ¢; = 3 and ¢, = 7. That means the genes from
the 4t to the 7** in each parent chromosome will be re-ordered according to the
other parent. When we modify the first parent individual parent A, for example, the
substring “vousvgus” is replaced by another permutation of the same genes following
the order of these genes in parent B. parent B is scanned for these genes. Consequently,
the order of the four genes (v, v, v4 and vg) in the parent B is “vguavave”. To
generate a new individual child A, we need to insert “vguav4vp” in the place where we

removed “vyusvgus”. Repeat these steps on parent B, and another offspring individual

56

is generated: child B in the figure. As a matter of fact, this method allows the
offspring to collect every gene only once so as to maintain the characteristics defined

by the encoding.

Mutation

The goal of mutation is not to obtain any better solutions, but to introduce a
measure of divergence into a converging population. Such an operation generally
enhances the diversity of a population. Unlike crossover, mutation should always try
to destroy the permutation of nodes so as to reach some new area of search space
that could be far away from the area of current focus of search.

As for our problem, the results of mutation should still satisfy the encoding re-
strictions. The only thing we can change is the order of the genes, but not the values.
In this way, the operation will lead to a legitimate schedule.

We employ a mutation operator to reconstruct a continuous part of the chromo-
some. Let n be the total number of all the tasks in the extended task graph. Two
integers m; and ms are selected randomly, such that 0 < m; < (me2—1) < (n—2). my
and my present the position of the segment to be reordered in the chromosome. When
mutating a chromosome, we extract the substring between the mi* and (my + 1)
gene and shuffle it randomly. At last, we put the string back to get the new individ-
ual. When m; = 0 and m; = n — 1, the whole chromosome will be rearranged, like
initializing a totally new individual randomly. The segment must contain at least 2
genes for the reconstruction to be carried out successfully. That is why m, and mq

must satisfy m; < myp — 1.

57

Figure 4.11: Extended Task Graph G}

The extended graph G in Figure 4.11 was the one we had in Section 4.1. Fig-
ure 4.12 illustrates how the mutation works. The first string A beside the graph is
an eligible chromosome waiting for mutation. Assume that L = 0 = g = w(T;) =
1,vi € 1,...,5. Then, the schedule S corresponds to A. It is selected to shuflle the
segment from the 4** gene to the 7. A possible result is the chromosome A’, shown

in Figure 4.12. S’ is the schedule obtained from A’.

A (Before Mutation) Schedule S
[T TulSuslS 0| T Tyl 1] T} | T35 T
m =3 1y =7 s Talas| T
T,lSes|
A’ (After Mutation) Schedule §°
ITUTSus| Tl TS sl 15| Ts) [T Tl
m =3 | 1 m, =7 r45|r13|T3|T5
T.J8.s]

Figure 4.12: Mutation Procedure

4.5 Discussion

In this chapter, the problem of communication managements under LogP models
is introduced. The communications are re-arranged with known processor assignment

58

so as to achieve a shorter makespan. A novel genetic algorithm is proposed for this
problem. We also have discussed every detail of the algorithm, including the encoding
method and the genetic operators.

The algorithm’s framework is set up as the SGA with a new encoding method.
Not only the decoder, but also the genetic operators are specifically designed for the
problem. This GA is simple and practical.

Meanwhile, there are some drawbacks. The encoding method discussed in Sec-
tion 4.3.2 produces integer strings, each of which corresponds to a single solution.
But, a schedule can be represented by more than one string if encoded in this way.
In a sense, the search space is still much larger than the solution space. When the
graphs are more complicated, this may present an obstacle to the GA in exploring
the space effectively.

In addition, g = o is assumed in this chapter. Although this assumption is widely
used in past research, the condition g > o has become a more common issue due the
lagging of network developments as compared to the rapid progress on processors. It
is also necessary to take this condition into account.

The next chapter is going to discuss these drawbacks in detail and to improve the

GA.

59

Chapter 5

More Communication Scheduling

under LogP

This chapter is devoted to improving the algorithm proposed in the previous
chapter. New restrictions are added to the encoding method in order to minimize the

representation space. In addition, the decoder is adapted for more general models.

5.1 Modified Encoding

5.1.1 Disadvantages of the Original Design

The original encoder is capable of generating chromosomes representing any and
all permutations of tasks. The decoder transforms these permutations into feasible
schedules. A GA using this encoding method has produced better schedules than

existing algorithms. It is also superior to the encoding method that uses random

60

numbers for priority values.

However, there are still drawbacks affecting the GA’s performance. The order
of the tasks in a schedule are determined not only by their priorities, but also by
some other constraints such as partial orders on the set of the tasks. There may be
more than one chromosome representing the same solution. For instance, a task v;
proceeding another task v; can start if a path exists from node v; to v;, regardless of

their priority values.

Figure 5.1: Simple Task Graph G

When scheduling the tasks of graph G in Figure 5.1 on the same processor, no
communications are required. The algorithm is capable of dealing with this class of
problems; as long as the processor assignments are known. According to the original

encoding method, there are 6 chromosomes in total.

¢ (T, T, T3);

Cy, (T1,Ts,T3);

Cs (T, Th,T3);

Cy (Ty, T3, Th);

Cs (T3, 1, Ta);

Ce (13,15, TY).
T, is the predecessor of both Ty and T3. Hence, T} has to start first even if it has the
lowest priority. Only the order of 75 and T3 is determined by the priorities. There

61

are two feasible schedules for this problem:

Sy T, 13, Ts;

Sy Th, T3, Ts.
C1, Cs and Cj all represent the same solution Sy, while the others are mapped to S,.
All 6 chromosomes must be evaluated before determining which schedule is the best.
It takes much more time to search such a relatively larger representation space than

to search the search space itself.

Search Space
Presentation Space

Figure 5.2: Mapping between representation space and search space

Figure 5.2 illustrates such a mapping between the representation space and the
search space. More than one chromosomes represent one schedule. When the mapping
is not one-to-one, the representation space is much larger than the search space. In
fact, the problem constraints are more important than task priorities, as they must be
satisfied before the priorities are taken into account. The proportion of representation
space to search space become more significant when the graph is more complicated.

With a representation space much larger than the search space, it is difficult to
find the optimal solution, as much more computations are required. There is also a
high risk of converging to a local optima, since it is possible for a GA to get stuck
around different points in the presentation space, which actually stand for one or

more sub-optimal schedules.

62

5.1.2 Encoding Restrictions

The representation space needs to be minimized in order to avoid redundant
search. One straightforward way to do this is by placing restrictions on the rep-
resentational scheme.

Nevertheless, restrictions may introduce bias into the algorithm which may result
in the exclusion of part of the search space. Both [24] and [14] state that nodes
in their chromosomes are sorted by their heights. Although [24] has proved that
a schedule is legal if it satisfies the height-ordering condition, it is not sufficient to
suggest a new technique that minimizes the representation space without ensuring
that it does not exclude valid solutions. In fact, height-ordering restrictions limit the

search to particular solutions, which form a proper subset of all feasible solutions. An
m@ T ®
OR2

Figure 5.3: Extended Task Graph G},

extended task graph G, with a pair of communication tasks is illustrated in Figure 5.3.
A set partition of node set VJ can be {{T1,T5, T3}, {T4, sor, T3, Ts}, {r2r}, {T7}}, in
which nodes in each subset have the same height. According to the height-ordering
restriction, nodes with lower heights must be placed before nodes with higher heights.
For example, T} has to be put in a position before T5. Obviously, this has introduced
a non-existing precedence relationship into the problem, e.g. Tg is prior to T7. Such

63

additional relationships prevent the algorithm from generating solutions produced by

chromosomes that do not satisfy the height-ordering condition, such as

C\(Gy) = (T3, s27, Th, Ta, T3, 727, T, T5).

If the optimal solution is among these solutions, a GA is not able to find it regardless
of the operators’ performance. This condition is surely undesirable.

Instead of the heights, we sort the nodes by the precedence relationships. The
linear extensions® of the given graph are used as chromosomes. Thereby, the partial
order is encapsulated in the chromosomes. A chromosome is still a fully permutation
of the tasks. Meanwhile, the chromosome must satisfy the partial order of the graph.
Whenever precedence exists between two nodes, their ranks in a chromosome must re-
flect such a relationship. A node has to come after all its predecessors, which may not
be directly connected with the node. Such a restriction allows chromosomes to pre-
serve problem specifications while providing enough information for GA processing.
Besides Cj, above,

Co(Gy) = (T3, T5, T3, T1, $97, T, 727, T1)

is also a valid chromosome that satisfies the partial order of the graph.

LA linear extension of a partially ordered set X is a permutation of the elements z;, x5, ... of
X such that z; < x; implies ¢ < j. For example, the linear extensions of the partially ordered set
((1,2),(3,4)) are 1234, 1324, 1342, 3124, 3142, and 3412, all of which have 1 before 2 and 3 before
4. [10]

64

5.1.3 Initialization

The initialization method needs modification to take into account the added re-
strictions. First, the new initialization process should be able to produce only linear
extensions of the extended task graph. The algorithm can be improved if initializa-
tion can only generate legal individuals. Second, the individuals generated in this
step should bear no bias. Individuals in the initial population are expected to be
mapped to points which are distributed uniformly in the solution space.

We denote the population size by N. Given a partial order P, which is defined
by the extended task graph G'(V’/, E',w',l’), over the set of nodes V', initialization
is expected to generate a set R = {F;,Fy,...,F;,...Fn} of total order F; as initial
sequences, such that:

PCF, VF,eR.

It is straightforward to apply a repair mechanism to transform randomly generated
permutations into strings that necessarily meet the restriction. Denote the randomly
generated linear order by F'. If P ¢ F’, ' needs repair. F, the result of repairing F’,
should still be a total order, such that P C IF. Furthermore, it should be a combination
of P and F'. But it is not a simple union operation, as conflicts may exist between F'
and P when P ¢ F'. P is the dominant constraint in the problem. Therefore, when
one relation (z;,y;) € P conflicts with (y;,z;) € F', we always follow (z;,y;) in P.
Otherwise, F would not satisfy P C F.

Unfortunately, the repair mechanism has shortfalls regardless of its implementa-

tion. Combining P and [to get F is similar to updating I’ with relations from P. As

65

a linear extension of partial order P, F must has transitivity (a < b and b < ¢ implies
a < ¢). One replacement may result in a chain of conflicts. Some other relations
have to be changed in order to maintain the transitivity. There could be more than
one way to adjust conflicting relations. But, any method of modification is bound to
introduce some bias into the resulting population.

Let set V = a,b,c and the partial order P = {(c,a)}. F' = (a,b,c) is a linear
order over set V and P ¢ F'. F’ needs repair. F’ includes 3 binary relations, (a,b),
(b,c) and (a,c). The last one conflicts with (c,a) in P. ‘Then, F’ is updated to
{(a,b),(b,c),(a,c)}. However, a < b and b < c lead to a < ¢. This means either
(a,b) or (b, c) has to be changed. In terms of permutations, a has to be placed before
¢ according to P. There are 3 positions for b: before a: (b,a), (b, c); between a and
¢ (a,b),(b,c); after c: (a,b),(c,b). None of these positions can be presented by a
subset of . A decision on which position can not be determined by F’ alone. Always
arranging the involved elements according to a fixed rule introduces bias into the
results. On the other hand, it is almost impossible to make such choices flexible, on
a random basis, due to the exponential complexity of the operation.

An approach similar to a classical algorithm for topological sorting [29] is applied
to generate linear extensions with minimal bias. Legal individuals are generated di-
rectly instead of producing illegal ones, and then repairing them. Various topological
sorting algorithms are provided by existing computing libraries, such as LEDA [40].
But such libraries usually produce only one topological sorting for a certain graph,
but not a set of uniformly distributed strings. The initialization algorithm is shown
by Algorithm 3.

66

Algorithm 3 GA Initialization

Input:

G'(V',E',w'l'): an extended task graph of G(V, E,w,).
Output:

C(G') = (vig, Viy, -, Vi, _,)¢ @ legal chromosome for scheduling G'.

Begin
{Denote the set of nodes that have no predecessors with SN
and source node of edge e; with src(e;).
Initially, SN = source(G'), C(G') =0 .}
while SN # @ do
{Randomly select a node v;, such that v; € SN ;}
C(G") :=CU(v);
V' =V /u;
for all ¢; € F' do
if src(e;) = v; do

E' = F'/e;
end if
end for
SN := source(G');
end while
End

67

An example of the application of Algorith 3 is shown in Figure 5.4. A chro-
mosome C(Gg) = (T1,T,,T3,Ty) is generated for extended task graph Gg. Such a

process is illustrated by Figure 5.5. Various choices in each iteration might result

Figure 5.4: Extended Task Graph Gj

(\ 1KT2,K\ 3,}
SN
(a) SN = {Tl,Ta} (b) SN = {TQ,T3} (C) SN = {Tg} (d) SN = {T4}

Figure 5.5: Initialization Procedure

in different chromosomes. Table 5.1 lists 3 individuals that may be generated during

initialization. ~ Table 5.2 lists all possible permutations using all 4 nodes. Only 3

Iteration 1 | Iteration 2 | Iteration 3 | Iteration 4 | Results
Take T1 Take T2 Take T3 Take T4 (Tl, T2, T3, T4)

Take T3 Take T, Take Ty | (T1,73,T3,T})
Take T3 Take T1 Take T2 Take T4 (Tg, Tl, T2, T4)

Table 5.1: All possible results by initializing GA population for G

of 24 permutations are legal, which are exactly the 3 individuals in Table 5.1. As

63

(T, T2, T35, Tu)y/ | (T2, 10, T35, Ty) | (T3, Th, T2, Ty)v/ | (T, Th, T2, T5)
(1,12, Ty, T3) | (T2, T, Ty, T3) | (13,71, T3, T3) | (T4, Th,T3,T5)
(T, T3, T5, Tu)y | (T2, T35, T, Ty) | (T3, T2, T1,Ty) | (T4, T, 11, T5)
(11, T3, T4, Tz) | (T2, T3, T4, Th) | (T3, T2, Ty, Th) | (T4, T2, T3, Th)
(11, Ty, 15, T3) | (T2, Ty, 10, T3) | (T3, T4, h, T2) | (T4, T3, Th, T)
(1, T4, T3, T2) | (T2, Ty, T5,17) | (15,714, T2,T7) | (T4, T35, T2, Th)

Table 5.2: All linear orders over set of nodes

long as the random numbers in each step are generated using a uniform distribution,
it is possible to generate any strings that satisfy the partial order. Such an initial-
ization method produces valid chromosomes only, and it is able to generate all valid
candidate solutions.

We can not deny that some bias still exists. As the choices are made randomly,
the probabilities associated with the generation of chromosomes are unequal. It is
0.5 for the permutation (73,71, T>,T4) and 0.25 each for the rest. Though, the effect
of such a distinction becomes less significant when the graph gets larger. Most of
the graphs we work with have at least 20 nodes. Also, the number of nodes on the
critical path is usually less than half of the total number of nodes. Suppose there are

10 nodes on the critical path of a graph with 20 nodes (Figure 5.6(a)). Then, the

highest probability of generation for a single chromosome is

1
Prmaz g TN

~ 1
10 %

tolt—*

Pr ... 1s even lower if there are more nodes. For a graph with 20 nodes, the number of
all permutations is 20!. If there is only 1 edge in the graph, e.g. G, in Figure 5.6(b),
the number of valid chromosome will be 2. As for G3 in Figure 5.6(c), there is only

one pair of nodes that have no relation between them. Thus, the number would be 2.

69

®
&~

@
@~

(b) G2:1 edge (c) G3:2 strings

Figure 5.6: Various Graphs

Both cases are rare, and for most graphs, the number of legal strings is between 270!
and 2. Therefore, it is reasonable to assume that the average lies somewhere in the

vicinity of
2410 x 19!

> ~ 5 x 19! > 10'".

The size of our populations was kept to 100 or less, due to the complexity of the
decoder. Therefore, Pr ., < glo should be acceptable when selecting less than 100

strings out of 10'7.

5.1.4 GA Operator

As initialization has been adapted to new restrictions, GA operators should also
produce legal chromosomes. Repair mechanisms are not recommended as they could
slow down the algorithm and introduce bias. Reproduction does not modify individ-

uals. Therefore, the reproduction method described in Section 4.4.4 is still valid. As

70

such, only crossover and mutation are discussed in this section.

The original crossover operator cuts strings at two points and replaces the middle
part with the same genes but in probably a different order. Such a crossover operator
still works for the new encoding.

Let

Xi = (xhx% .- '73:71))

and

)/i = (y17y27"‘)yn)

be two chromosomes involved in a crossover operation, where 7 refers to the current
generation and n stands for the total number of nodes. It is clear that X; and Y;
satisfy the partial order P defined by the graph. That is, P C X; and P C Y;. Assume

the crossover points are ¢; and ¢y, such that ¢; < ¢; and ¢y, ¢ € [1,n]. This divides

the nodes in X; into 3 sets: Ny, = {z1,Z2,...,Z,}; Nog = {Zey41,Tey42s- -1 Ten b
N3, = {Zcyt1, Tega2, - - - » Tn). Hence, for any z,, € Ny, Tm, € Noy and z,, € N3y,
Tm; <x, Tmy <x, Tmg- (5.1)

Also, there are 3 total orders Fy; : Ny X Nyg; Fap ¢ Nop X Nogj Fs, @ N3p X N,
satisfying Fy,,Fo,,F3, C X;. The crossover operation is looking for a full order
% . Noz X Ny, such that), C Y;, and Iy, is replaced with I, , to obtain a new

chromosome X4y, such that Fy,F,_,F5, C X41.

For (zj,zx) € P

71

1. If z; € Ny, and zx € Ny, then (zj,zx) € Fi,. Thus, (z;,2%) € Xiy1. In the

same way, (¢;,zx) € Xy if z; € N3, and x € Na;

2. If ; € Ny, and 7 € N3, according to Equation (5.1) z; <, xx. This is

true since the positions of z; and z; remains the same in X;i;,z; < Tk.

Xir1

($j1 .'Ek) € Xi+1-

3. lf z; € Ny, and zx € Ny, z; <x, Ty then, z; <xipy Tk This also exists if

T € NQz and xx € NgI.

4. If z; € Ny, and z € Ny, then (zj,z¢) € Y as (z;,2x) € P. Therefore,

(zj,z) € Fy, . Meanwhile, F, C X1, (z;,7x) € Xiya.

In conclusion, (z;,zx) € Xit1, V (2, z%) € P. That is

PC Xit1.

That means X;,; also satisfies P, the partial order derived from the graph. The
chromosomes generated by this crossover method are still legal strings as defined in
Section 5.1.2.

The original mutation operator shuffles the whole chromosome. Obviously, there
is a high chance for such a mutation operator to interrupt the partial order embedded
in a valid chromosome.

We propose a new mutation operator that only swaps two neighboring genes.
Furthermore, there must be no precedence relationship between the two chosen genes.
Otherwise, the output string would not satisfy the graph’s partial order.

72

Consider the chromosome

Xi = (CEl,.'Eg,...,.’L‘n)

which is selected for mutation. 7 is the generation number and n is the number of
nodes. we denote the graph partial order by P. A point m is selected, such that
1<m< (n-1) and (Zp, Tims1) ¢ P. We switch z,, and z,,41 to obtain a new
chromosome

/
Xi = (.’L’l,ﬂ?Q, ey -1 T+ 1 Tmy T2 - - -)In)'

The switch does not affect any binary relationship that involves z,, or 1. Since

(Tmy Tmi1) € P, (Tm+1,Tm) does not violate P. Therefore,

X DOP.

This operator keeps the graph partial order.

5.1.5 Discussions

Let N be the number of nodes in the extended task graph, M be the number of
edges. We denote the number of points in the presentation space by K. When the
individuals are encoded using the method of Section 4.3.2, there would be a total
of totally K,y = N! legal strings in the representation space. As for the modified
encoding method, K4, the size of the new representation space varies with the

graph’s structure.

73

Assume M < N. K,,4’s upper bound occurs when all M edges have a common

source node (or target node). In that case, maximal max (K, ,oq) = MNZ:T When the

edges are on the same path, minimal K4 = %-', is obtained. Thus, the proportion k&

of Kmod to Korg satisfies

1 1
7 S k< :
M! M+1

when M < N. Obviously, k is even smaller if M is increased. In brief, the repre-
sentation space with modified encodings is at least (M + 1) times smaller than the
original space, while representing the same set of solutions.

However, the mapping of the modified method is not yet one-to-one. There are
other problem constraints, such as, the processor assignments. But it costs too
much in terms of computation to achieve such a mapping. The sub-optimal map-

ping achieved by the modified method is efficient and practically sufficient.

5.2 Scheduling Communications with Gaps

Gaps, denoted by g in the LogP model, define the minimum time interval between
two consecutive transmission or reception events, on one processor. That is , the
processor is just not available for one type of communications during a gap. It may
be possible to schedule computational tasks as well as other types of communications
on this processor, if there are not any tasks executing on it. The length of a gap is
determined by the capacity of the network. The network capacity is finite, with an
upper bound of [%] A processor can not transmit any messages that would exceed
this limit.

74

One or more of the four parameters of a LogP model can be eliminated. It
is possible to ignore some parameters by using certain approximations [15] based on
certain assumptions. For instance, 2ETF [27] ignores the gap g. This can be achieved
by increasing o so as to include g.

Scheduling procedure can be simplified using approximations. But, an approxi-
mation technique works for only one class of machines. Since our goal is to find a
general approach to schedule under LogP model, it is important that the algorithm
should also be able to handle the cases when g > o, so that it can be applied to any

machine.

5.2.1 Problem Description

The problem remains the same as the one described in Chapter 4, except the
model. The problem covers all LogP instances. The constraint that g = o is no longer
necessary. We still assume independent data semantics. To generate all these nec-
essary communication tasks, an extended task graph G'(V', E',w’,l') is constructed
based on the original task graph G(V, E,w,{) and the processor assignment II(G).
Respectively, TI(G’) is the processor assignment after graph extension. With this
processor assignment, G’ is scheduled under model M(L, o, g, P).

A LogP-feasible schedule must include both starting time and processor assign-
ment for each node in the extended task graph. A processor can not execute more
than one task at a time. A task can only start after all its predecessors have finished.

The interval from completion of a send task to the beginning of its respective receive

75

task must be equal or greater than L. As for gaps, a delay of at least g exists be-
tween any two consecutive send or receive operations. Note, there are not such delays
required between a send task and a receive task on the same processor.

We designate the starting time and processor that have not been scheduled by
L. v, v; and v; are the tasks in G'. s;j, s; and s; are send tasks, and 15, r; and
r; are receive tasks. Then, a LogP-feasible schedule can be defined by the following

constraints:
1. o(v) #L and 7(v) #L, Yv € V;

2. ifw(v;) = 7(v;) #L and v;,v; € V7, then o(v;)+w(v;) < o(v;) or o(v;)+w(v;) <

o(v;);
3. if v; <¢r vj and v;,v; € V7, then o(v;) + w(v;) < o(v;);

4. if coupled communications s;;,7;; € V' and (s;5,735) € E', then o(si;) +w(si;) +

L < a(ry;);

5. if send tasks s;,s; € V' and n(s;) = 7(s;) #L, then o(s;) + w(s;) + g < a(s;)

or o(s;) +w(s;) + g < o(si);

6. if receive tasks r;,r; € V' and 7(r;) = w(r;) #1, then o(r;) + w(r;) + g < o(r;)

or o(rj) +w(r;) + g < o(r:);

Consider the extended task graph G% shown in Figure 5.7. There is a total of 4
computational tasks assigned to 2 processors, with 3 pairs of (derived) communication

tasks. We assume w(T;) = 1, where 1 € {1,2,3,4}. This graph is scheduled under

76

T, _
7, N !
iz
IO
\r13\
L - <2
D
AN
: \Tlg:
: /S—
L3yt
-

Figure 5.7: Extended Task Graph G4

a LogP model M, = (1,1,2,2), in which the gap is greater than the overhead. We
should consider gaps whenever a communication task is scheduled. Sg: in Figure 5.8
is a feasible schedule for G under M. The earliest communication task in Sg, is 52
on processor P;. As soon as s, starts, no other send tasks can be put on P; during
the gap, from the moment ¢ = 1 to ¢ = 3. That is why s;3 can only start at time
t = 3, but not earlier than ¢t = 2. When processor P, starts receiving the message for
T from Py, a gap from ¢t = 4 to t = 6 for receive tasks is generated too. Consequently,
13, another receive task on P,, can only be scheduled after the gap, i.e. after ¢t = 6.
T, is executed immediately after 15 at time ¢ = 5, because the gap does not prevent
the processor from performing other types of tasks. Similarly, sq4 starts right after

r13 since they are different types of communication tasks.

5.2.2 List Scheduling with g > o

So far, a GA has been successfully applied to the problem when g = 0. We

continue to use GA, to solve the general case. Model specifications are only involved

77

Figure 5.8: Feasible Schedule Sg, of Gy, under model L =1,0=1,9=2,P =2

in the decoder part of the original GA. Hence, we focus on accommodating our list
scheduling algorithm to the case where g > 0. Having such a decoder, we only need
some trivial modification to the GA itself. The modified GA is described in the next
section.

Task ranking and processor assignments are given as the inputs. Therefore, we
only need to determine the starting time of the tasks, in cases where g is not neces-
sarily equal to 0. Above all, it is important to find out how a dominant gap influences
the scheduling rules. First, a gap results from limited network capacity; it occurs
as soon as a processor starts processing a communication task. Second, a gap can
only affect the scheduling rules between two consecutive send tasks or receive tasks.
These two tasks must be the same type. Accordingly, a gap always accompanies with
a communication task. And the type of this task determines the type of task that
will be delayed. So, in most cases, the scheduling strategy should remain the same
as Algorithm 2. The only situation to resolve is that when a communication task is
to be carried out before the end of the gap.

Suppose there is a send task s;; finishing on processor F,, at time tc, as shown in

Figure 5.9, and the next step is to select a task to start at topy, if possible. Processor

78

Figure 5.9: A communication task s;; finishes on P, at tcu

P, is idle at this moment, as s;; is done. With g > o, no send operations can be
performed before (tcp + g — 0). Meanwhile, both computational tasks and receive
tasks can be scheduled as long as they are ready before t-);. Among the ready nodes,
the one with the highest priority starts at this moment. Hence, for the period from
tem to tem + g — o, the processor is still unavailable for send tasks, but available for
other types of tasks.

To minimize the modification to Algorithm 2, the concept of available time of
a processor is introduced in place of the completion time. Awvailable time indicates
the earliest moment when a processor becomes available for tasks of a certain type.
We denote it by avt(F;, j), where i is the processor number and j specifies the task
type. Values of available times for different types on the same processor at the same

moment may vary. But at any moment the following conditions must be satisfied:

avt(P;,SEND) > avt(P;,, COMP)

avt(P;, RECV) 2 avt(P;, COMP)

for Vi € {0,1,...,n — 1}, where n is the number of processors. Whenever a task is
scheduled, all three available times on the corresponding processor must be updated
at the same time. However, the updates are carried out differently. It is clear that

the available time of a processor for computational tasks is exactly the processor’s

79

completion time, i.e. avt(P;, COMP) = ct(FP;), at any time. It is more complicated
to update the available time for communication tasks. In fact, we explain how this is
done for one type of communication; the other one is done the same way. Consider

Figure 5.10. v; is the last task executing on processor F;, at t = CM. Obviously, it

P
M-
J

Figure 5.10: vj, the last task scheduled on Pi at t = CM

finishes at o(v;) + w(v;). Denote the available time before v; starts for send tasks on
P; by avtvefore v, (Fi, SEND). Assume v; is a computational task. In this case, we do
not update avt(P;, SEND), if avtyeore o, (5, SEND) > (o(v;) + w(v;)). A gap must
be taken into account for all send tasks until avtpefore 1,J.(Pi, SEND). The execution of
a computational task has no impact on this. When avtyetore v;(Fi, SEND) < (0(v;) +
w(v;)), AVtaser v, (Fi, SEND) should be v;’s completion time. The condition that v; is
a receive task should be the same as the one v; is a computational task. If v; is a send
task, then no send task can start until the end of v;’s gap. The end of this gap is the
available time of this processor for send tasks. All of these conditional computation

are represented by Equation (5.2).

4

o(v;) + w(v;) if £ =COMP,

avt(F;, z) = 4 o(v;) + ¢ if x #COMP and z =type(v;),

max{avtpetore v; (£,), 0(v;) + w(v;)} otherwise.
) (5.2)

A task v; is schedulable at time t iff. avt(w(v;), type(v;)) <t and rt(v;) < t.
Available time takes the place of completion time. Thus, it also acts as a key for

80

determining the next decision moment (N M) in each iteration, just like completion
time does in Algorithm 2. Since a task can only start when it is ready and the assigned
processor is free for it, the earliest moment an unscheduled task can be scheduled is

defined as:

st(v;) = max(rt(v;), avt(m(v;), type(v;))), s.t.u; € U. (5.3)

After all tasks that can start have been scheduled in each iteration of list schedul-
ing, we step forward to the earliest moment when there are some ready tasks can
start. The earliest time that an unscheduled task can be scheduled is calculated with

Equation (5.3). NM can be easily decided using Equation (5.4).
NM = mgr‘}{st(vi)|5t(vi) > CM}. (5.4)

With different ways of defining what task can start and determining the next
decision moment, the rest of the list scheduling algorithm remains the same as Algo-
rithm 2. Tasks that can be scheduled are included into the set SN at each iteration.
These tasks are scheduled in sequence based on their priorities. The higher priority
a task has, the earlier it starts. Whenever a task is scheduled, SN as well as ready
time of all this task’s successors must be updated. It moves on to the next iteration
whenever there are no more tasks that can be scheduled at the current moment. And,
the scheduling stops when all the tasks have been scheduled.

With chromosome

X = {T3,815,T1,T2,T26,T5,326,T4,7"15,T6}

81

0N 7N

Si5 1Sogn:

Figure 5.11: Extended Task Graph G}

as input, scheduling the extended task graph G} in Figure 5.11 is done using model

(1,1,3,2). The resultant schedule is shown in Figure 5.12. Its makespan is 13.

0 1 2 3 4 5 6 7 8 8 9 1011 1213,
]

B T [8|T|Ts
B T, Iis Ts.r%J Ts

Figure 5.12: Schedule Sg; introduced by X

Gaps lead to different values of available times for three types of tasks. A commu-
nication task can not start during a gap generated by a communication task of the
same type. Furthermore, available time for the type is not affected by gaps generated
by another type. Also, there is no difference between available times for all types if
g = o. In this case, available time works exactly the same way as completion time
in Algorithm 2. In conclusion, the modified algorithm produces a feasible schedule

without increasing the computational complexity of the original algorithm.

5.2.3 Filling Gaps

Like any list scheduling algorithms, the decoder schedules a task as soon as pos-

sible. Meanwhile, gaps delay one type of communication. Sometimes, the delayed

82

communication task is not able to compete with other ready tasks, at the same mo-

ment, even if the communication task has a higher priority.
4 Po Pl 3 4
S
s, E i
- cV4 2
7 P
e Sist ~
\:\/ Y

: \rlﬁ

5

Figure 5.13: Extended Task Graph G§ under LogP model (1,1,2,2)

Consider the extended task graph Gj in Figure 5.13, which is derived under a
model instance M, = (2,1,2,2). Each computational task in G} is labelled with its
cost, i.e. length of execution time. And there are two pairs of communications, which
are from the same source task 7). Both send tasks, s14 and s,5 are going to be ready
at the same moment. Due to the gap which is longer than the overhead, the difference
between the starting times of these two send tasks is at least g, and the same for
receive tasks. Gaps of the first send and the first receive task are critical. Different

decisions regarding these gaps lead to different results. Figure 5.14 demonstrates the

R [T, [5. Ts [ss]

| 1 | T,

14 15 20
; T5 l

Figure 5.14: Feasible schedule S; when all gaps are filled. makespan(S,) = 24

schedule S; generated by Algorithm 4. Tj starts immediately after s4 since it is the
only task that can be scheduled on P at time t = 5. The process call filling a gap

occurs when a task is scheduled on a processor, where there is at least one gap. T;

83

is so long that s;5 is put off for much longer than a gap. 15 and T5 are also delayed.

To avoid this, S, in Figure 5.15 leaves the idling period unfilled between s,4 and s;s.

4 7 14

B [T, l SM% 5151 T l 5
Plr T I 5! j’:%:ls T, L Ts J

Figure 5.15: Feasible schedule S, when not filling the gaps. makespan(S;) = 19

In the same way, T} is not inserted right after r14. S>’s makespan is less than S)’s.

Sy is still not the shortest. Figure 5.16 shows the optimal solution S; for G§. The

4 7 14

0 I T, l 514% 515] Te l 6
1I T] T I‘MI T lﬁsL Ts J

Figure 5.16: Feasible schedule S3 when filling a gap sometime. makespan(S;) = 18

only difference between S; and 53 is that Ty starts between 714 and 5. The filling
has eliminated an idle period on P; so as to reduce the makespan. Using the original
GA and the list scheduling decoder results in losing some solutions. It might not be
able to reach the optimal solution, Sj.

As a matter of fact, the effect of filling a gap is determined by characteristics of
the specific gap, especially the attributes of each task that is ready either before or
during the gap. For instance, if a filling does not exceed the gap, it is better to fill
the gap. However, the situation becomes more complicated when there is not such
a task. As it is implied in the example, it is almost impossible to conclude with a
simple strategy. In fact, finding such rules is a separate optimization problem.

Benefiting from the robustness of GAs, we embed the gap filling decision into
the encoding instead of setting-up a whole raft of rules. There can be more than one

84

chromosome corresponding to one solution, given the encoding method of Section 4.5.
It remains the same when applied to the problem with g > 0. Basically, we split the
representations of the same solution into a few groups. Different groups fill gaps on
different positions. Whether the gap is filled or not is determined by comparison of
priorities. In this way, a GA can explore the possibility of gap filling while seeking

the optimal order of all tasks.

Figure 5.17: General Situation Requiring Gap Filling Decision

Figure 5.17 shows a general situation. A filling decision is required on processor P;,
when communication task v; comm, is finished at time ¢ = 0(v; comm,)+0. In the figure,
the first subscript of a node is the rank of the task, i.e. the priority, while the second
refers to the task’s type. comm, and comm, can either be a send or a receive task.
And, comp represents a computational task. Also, at this moment, there are a group
of ready tasks assigned to F;, which are included in the set of RNp,. However, only
types other than comm; can be scheduled immediately. This part of RNp, belongs
to the set of SNp,, which stands for schedulable nodes. The list scheduling algorithm
only picks a task from SNp, with the highest priority, regardless any characteristics
of tasks of type comm; in RNp,. Such an operation aims to fill v; comm,’s gap. If we

are unable to fill the gap, no task should be scheduled until ¢ = o(v; comm,) + 9. At

85

t = 0(Vi; comm,) + 9, tasks of comm; type can also be scheduled. In this case, tasks of
all types are compared, in terms of their priorities. Furthermore, it is very important
that the type of any tasks starting at t = o(vi, comm,) + ¢ be comm,, if the gap
is left unfilled. Otherwise, the interval from (o (v;; comm,) + 0) to (0(Vsy comm,) +)
becomes another unnecessary idling time, if task of another type is scheduled at
t = 0 (Viy commy) + G-

Whether the gap is filled or not, is determined as follows. At time ¢t = (v;, comm,)+
o when a comm task is done, we update the set of ready nodes RNp, and the set of
schedulable nodes SNp, on F;. Select the node v; sy, With the highest priority from
SNp, and vj yype; from RNp,. If v;ype; = Uj iype;, that is v; ype, and v gy, are exactly
the same node, vjype, is scheduled at t = o(v;; comm,) + 0. Otherwise, node task is
scheduled on P; at this moment. More generally, at any moment when there is a
gap on the processor and there is no task processing on that processor, only the task
with the highest priority in both sets of ready nodes and schedulable nodes can be
scheduled on the processor.

As a matter of fact, this approach is comparing schedulable tasks to tasks delayed
by the gap. The priority of a task can be considered as the measurement of its urgency.
The higher the priority is, the earlier the task should be scheduled. Therefore, it is
reasonable to schedule the delayed task before other tasks if it has the highest priority.
The finalized decoder is listed in detail by Algorithm 4.

The following example gives details on the decoding procedure. The same graph

86

Algorithm 4 List Scheduling under LogP (g > o)

Input:
G'(V',E',w',l'): an extended graph of G(V, E, w, 1),
M = (L,o0,g,P): a LogP instance,
Q(G") = {q(T))|T; € V'}: a priority queue for tasks in G,
[I(G’) = {#x(T:)|T; € V'}: an processor assignment of G.
Output:
S: a feasible schedule of G'(G) under M.

Begin
{Associate avt(i,j) to the available time of processor P, for tasks of j; where j €
{COMP, SEND, RECV}, and NM to the next decision moment .Denote the set of nodes
that can be scheduled with SN, the set of ready nodes that are blocked by gaps with RN.
Initially:avt(s, j) = 0,¥4,0 < i < P, and Vj € {COMP, SEND, RECV};SN = 0;RN = 0; the
current moment CM := O;the set of unscheduled nodes U := V'.}
while U # 0 do
for all T € U do
if 0 < rt(T) £ CM and avt(n(T), COMP) £ CM do
if avt(n(T), type(T)) < CM do
SN :=SNU{T}
if avt(n(T), type(T)) > CM do
RN := RN U{T};
while SN # 0 do
{Select a task T3, such that ¢(7T;) = minyey ¢(T);}
if avt(w(T}), SEND) # avt(#(T;), RECV) do
for all T; € RN do
if n(T;) = n(T;) and q(T;) > ¢(T) do
for all T € SN do
if 7(T) = =(T3) do
SN := SN/T;
(1) == avt(n(T}), type(T;));
Goto next inner while loop;

o(T3) =CM;
U = U/Ti;
rt(T;) = —1;

for all k € {COMP, SEND, RECV} do
{Update avt(n(T), k)};
for all T; € Succg (T;) do
{Update rt(T});}
for all T € SN do
if 7(T) = n(T;) do
SN :=SN/T;
end while
{Update NM};
CM = NM,
end while
End

87

s
\§1§L\;
:\/—\

Figure 5.18: Extended Task Graph Gy under LogP model (1,1, 2, 2)

Gy (Figure 5.18) under the same model instance (1,1,2,2). Assume there is a chro-

mosome

Xy = {11, T4, T2, 115, s15, T3, 514, Ts, Ts, 714}

Figure 5.19 shows the whole scheduling procedure of G’ based on X,.
It is clear that gaps are taken into account during the scheduling procedure. And,

gap fillings at various positions are determined by the genes.

88

CM=0 P T
0 ! 35— NM=3
AN
4
CM=3 p, —_Tl—l 7 NM=4
Pl Tz | 3 l
5
CM=4 P, T, isnsl 7 NM=S
P, T, ! 3
6
CM=5 P T, lsls% 7 NM=6
P, T, l T
7
CM=6 p T, s/ NM=7
P, T, l T
14
CM=7 P T Is %S T l
A . 15 14 8 =
Pl T2 l T3 I %8 NM=8
14
CM=8 |78 T, l 515% Sia Te NM=13
12 T T r”l Is]”
14
CM=13 R T, 1515% S14 T 77 NM=14
Bl T | T) = Ln
14
CM=14 PO T, ‘SIS% 814 Te 16
P, T, I T; f15| T lr"‘ L]

Figure 5.19: Decoding X,

89

Chapter 6

Processor Allocation Using GA

In previous chapters, we have developed a new way to schedule communications
under the LogP model. The GA based method is designed only for situations where
processor allocation is known. The allocation must be generated by some other heuris-
tics before our approach can be applied. Some of these heuristics are described in the

following section.

6.1 Early-Task-First Strategies

There are two list scheduling algorithms for the LogP model introduced in [27].
One is the two-pass ETF heuristic (i.e. 2ETF) and the other is ETF with reservation
heuristic (i.e. ETFR). As schedules generated by ETFR always contain unnecessary
idling slots, a garbage collector is run to remove these slots. ETFR with garbage col-
lector is called ETFRGC in [27]. Although ETFRGC produces more efficient sched-

ules than ETFR, there is no conceptional distinction between the two algorithms.

90

Therefore, ETFR will refer to ETFR with garbage collector from now on.

Both 2ETF and ETFR are extensions of the Early-Task-First (ETF) Algorithm [25],
which is a typical list scheduling algorithm for scheduling under SDM. ETF sched-
ules a task as soon as possible. Meanwhile, it utilizes as many processors as possible.
Thus, there are two sets involved: the set of available tasks and the set of free proces-
sors. Usually, tasks which become available earlier are scheduled earlier. Algorithm 5
provides a detailed description of this approach.

The ready time of T is denoted by rt(T"), which is the latest completion time of
T’s predecessors. st(T, P) denotes the earliest starting time of task T on processor P.
Due to communication requirements, st(T', P) may vary from processor to processor.
It is determined not only by T’s ready time and P’s completion time, but also by
the positions of T"’s predecessors. A task can start only after all its predecessors have
terminated. That is,

ri(T) < CM.

Such a task is called a ready task. A processor is considered free at a given moment

only if there are no tasks being processed on that processor at that moment.

ct(P) < CM.

Obviously, ETF is always trying to fill all free processors with ready tasks at every
moment. From the point of view of tasks, ETF assigns task to the processor which

would allow the task to start earliest.

91

Algorithm 5 Earlier Task First under SDM

Input:
G(V,E,w,l): a precedence graph,
M: an SDM instance.

Output:
S: a feasible schedule of G under M.

Begin
{Associate ct(P;) to the completion time of processor P,. Denote the set of
available nodes with RN and the set of free processor with F'P.
Initially: RN = @ ¢t(i) = 0,Vi,0 < i < P, the current moment CM := 0 and the
set of unscheduled nodes U := V'.}
while U # (do
for all T € U do
if0<ri(T) < CM and T' € U,VT' € Predg(T) do
RN := RN U {T},
end if
end for
while RN # 0 and FP # () do
{Select a task T; and a processor P;
s.t. st(T;, P;) = mingregpy minpepp st(T, P);}

m(Ti) := Pj;

o(T)) = CM;

rt(T;) := -1,

ct(j) = CM + w(Ty);
RN := RN/T;;
U:=U/T;

FP:= FP/P;

for all T; € Succe(T;) do
{Update rt(T});}
end for
end while
{update CM};
FP :={P|ct(P) < CM},
end while
End

92

Both 2ETF and ETFR are composed of two scheduling phases: processor alloca-
tion and communication embedding. The two algorithms applied different strategies
in the first phase.

As a relatively simple extension to ETF, 2ETF simplifies the LogP model and
transfers it to an alternative SDM instance. Communication overheads are considered
as a part of communication costs but they do not occupy processors. Thus, the cost
of a communication in the SDM model is set to be 20 + L.

ETFR emphasizes communications during the first phase. It is always assumed
that send/receive operations are necessary between a task and any of its successors.
According to the LogP model, whether a message needs to be transmitted or not is
determined only by the processor assignments of the origin task and the destination
task. If these tasks have been allocated to the same processor, there is no need
to transmit a message. However, ETFR reserves idle slots for communication tasks
before the processor assignment is known. These slots are always large enough for any
potential overheads. It is ensured that interval between a task 7; and the immediate
following task on the same processor is longer than ng,..(T;) X 0, where ng,..(T;) refers
to the number of T;’s successors.

As for the communications, the ETF extensions apply a simple scheme, which as-
sumes that each computational task is preceded by a sequence of incoming communi-
cations, and followed by outgoing communications. Both algorithms arrange sending
tasks from the same origin sequentially without any interruption. Also, communica-
tion operations that are receiving messages for the same destination computational
task are scheduled sequentially.

93

The original 2ETF and ETFR algorithm presented in [27] can only deal with
models that satisfy g = 0. We extend them so that they are able to handle significant
gaps. For example, Algorithm 6 lists the procedure of improved ETFR, which is
suitable for the situation where g > o.

2ETF and ETFR can be considered as two different strategies of computational
task arrangement, as they handle communications in the simplest way, which places
communication tasks between their origins and successors. ETFR produces better
schedules in more cases than 2ETF. But, whether ETFR is superior to 2ETF is
dependent on the specific nature of the task graphs.

Although, appropriately inserting communications between (allocated) computa-
tional tasks may lead to a significant reduction in the overall makespan, processor
assignment of computational tasks is a significant factor that should be taken into

account. Therefore, we are going to seek a better way of allocating processors.

6.2 Problem Description

The processor assignment should lead us to the shortest makespan schedule under
a specific instance of the LogP model.

The computer program is described using a directed acyclic graph G(V, E, w, [).
w: V(G) — Z% is a function that assigns an execution length to each task of G and
[: E(G) — Nis a function that specifies the number of messages needed to send
through each edge of G.

A processor assignment II for a problem instance (G, M) is a function w, such

94

Algorithm 6 ETFR with g > o

Input:

G(V,E,w,l): a task graph,

M =(L,o0,g, P): a LogP instance,
Output:

S: a feasible schedule of G under M.

Begin
{Associate ct(i) to the completion time , cts(i) to the available time of send tasks,
ct,(i) to the available time of recv tasks of processor FP;(0 < i < P).
Initially: ct(i) = 0,cts(i) = 0,ct, (i) =0,Vi,0<i < P, }
while SN # V do
while RN # @ and FP # { do
{Compute e,(T, 1) for every T € RN and for every processor ¢ € FP};
{Select a task T and a processor i such that T € RN, i € FP
and e“s(’f‘,%) = minpepy minerp es(T,1) };
if é,(T',1) < NM then
for each T" € Pred(T') such that 7s(T") # ¢ do
rs(send(T', T)) := ns(T");
os(send(T’, T)) := max{NSM(T"), ct,(ms(T"))};
Cts(WS(TI)) = US(Send(Tlv T)) +9;
wg(recv(T", T)) = ws(T);
os(reco(T’, T)) =
max{ct(z), ct.(ns(T)), os(send(T", T)) + L + o};
ctr(ns(T")) = os(reco(T",T)) + g;
ct(ns(T")) := os(reco(T’,T)) + o;

endAfor
ms(T) =1
os(T') 1= €s;

NSM(T) := os(T) + w(T);
{Let reserved = ZT,,ESUCC(T) 9}
ct(i) == os(T) +w(T) + reserved,
RN := RN/T;
FP:=FP/i;
SN = SN U{T};
if ct(i) < NM then
NM := ct(i);
end if
else
{exit the innermost while loop}.
end if
end while
{Update CM,NM, RN ,FP},
end while
End

95

that

n:V(G)—{1,2,...,P}U{l}.

7 assigns a processor to the tasks in V. The value 1 denotes the task has not been

allocated to any processor yet. A processor assignment is called valid if

m(v) # L,Yv € V.

That is, each task has been assigned to a processor. The assignments involved in our
problem must be valid.

Any feasible schedule of task graph G under a model M corresponds to exactly
one processor assignment. But, more than one schedule may have the same processor
assignment. The set of all the feasible schedules with the same processor assignment

I is denoted with S,. Then, there exists at least one schedule S,;,(IT) such that

VS € Sﬂ') Crnaz(Smin(H)) < Cmaz(S)-

We define S,,in,’s makespan Cipuz(Smin(I1)) as the appropriateness of processor as-
signment II, which is represented by app(II).
Accordingly, the objective is to find a processor assignment II(G) with the mini-

mum appropriateness app(II).

96

6.3 Processor Assignment using GA

6.3.1 Algorithm Outline

The GA-based algorithm described here is essentially the same as the GA in
Chapter 4, except for the encoding and the genetic operators. Figure 6.1 shows an

outline of the algorithm.

Mating Pool

Figure 6.1: Algorithm Flow Chart

This GA also starts with an initial population made up of randomly generated
individuals, in addition to some specific chromosomes. In our case, two specific chro-
mosomes correspond to processor assignments generated by 2ETF and ETFR respec-
tively. The size of the population is fixed. Due to the complexity of the decoder,
we use a relatively small population. There are 40 chromosomes in each genera-
tion, 38 of which are generated at random. For each random initial individual, each

computational task in the graph is randomly allocated to a processor.

97

Elitism is also used. The best individual in a generation enters the next genera-
tion without alteration. 39 (potentially repeating) individuals are chosen using fitness
proportional selection from the current generation, and placed in a mating pool. The
mating pool is subjected to crossover and mutation. As a result, a group of 39 chro-
mosomes are generated. The new population is composed of these 39 chromosomes

plus the single elite individual. The evolutionary run is halted after 50 generations.

6.3.2 Encoding

Similar to any other GA design, the first step is to invent a way of presenting a
candidate solution of the problem, using a chromosome. It is important that the en-
coding contains building blocks that are carefully matched with appropriate crossover
and mutation operators.

As for the processor allocation problem, real-valued genes are used to encode a
solution directly. Each gene corresponds to the processor assignment for a given task.
Note that the subject of this problem are the original graphs, which have not been
extended yet. Only the assignment of computational tasks are encoded. Therefore,
all the chromosomes have the same (fixed) length, which is equal to the number of
computational tasks in the corresponding task graph.

For example, when scheduling task graph G in Figure 6.2 on 2 processors, Py and

Py, the chromosome

C = {(T1,0),(13,0), (13,1), (T4, 0), (T, 1), (T6,0), (T7,0), (Ts, 1) }

98

7
» ® ©

Figure 6.2: Task Graph G

G%IG

represents a processor assignment, where tasks T3, 15, T3, T and T7 are assigned to
processor Fy, with the others placed on P;.

Information about tasks may be removed from the chromosome to simplify the
representation. The genes only keep processor numbers, with each gene corresponding
to exactly one task. Such gene-task correspondence is decided according to certain
sorting rules. In our implementation, it is determined by the topological sorting used
by LEDA [40]. For instance, according to LEDA [40], the nodes in G in Figure 6.2

should be sorted in this sequence:
T,,15, 15, Ty, Ts, T, T, T§.
Then, the chromosome C' can be simplified to
¢'={0,0,1,0,1,0,0,1}.

In short, the processor assignment is encoded as a string of integers, each of which

represents the number of the processor that the corresponding task is assigned to.

99

6.3.3 Decoder

Given a certain processor assignment, looking for the optimal schedule is an NP-
hard problem. Hence, it is necessary to evaluate processor assignments in a manner
which would keep the computational complexity of the algorithm as low as possible.

We adopt the task arrangement method used in 2ETF/ETFR. The decoding pro-
cedure is also divided into two phases: computational task arrangement and commu-
nication embedding.

The first phase still follows the Earlier-Task-First logic as in Algorithm 5. The
difference is that there is no need to calculate the ready time of one task for each
free processor any more. Instead, each task is always bound to one processor. Note
that during the first phase, a standard delay model is applied, so as to attain a lower
complexity. The procedure of Earlier Task First with known Processor Assignment
(or ETFPA) is described in Algorithm 7.

As for communications, we apply the strategy used in 2ETF, which is named
algorithm LogP-Feasible-Schedule by Kalinowski et al. [27]. In order to form a feasible
schedule under LogP, communication tasks are inserted according to the following

rules:

e A send task should be on the same processor as its source computational task,

while a recv task should be on the same processor as its destination task.

e At first, send tasks from the same source computational task must be scheduled

sequentially.

100

Algorithm 7 Earlier Task First with known Processor Assignments

Input:
G(V, E,w,l): a precedence graph,
II(G) = {#(T;)|VT; € V}: a processor assignment of all nodes in G,
M: an SDM instance.
Output:
S: a feasible schedule of G under M.

Begin
{Associate ct(P;) to the completion time of processor P,. Denote the set of
available nodes with RN and the set of free processor with F'P.
Initially: RN = @ ct(i) = 0,Vi,0 < i < P, the current moment CM := 0 and the
set of unscheduled nodes U :=V'.}
while U # 0 do
for all T € U do
if 0<rt(T) < CM and T' € U,VT' € Prede(T) do
RN = RN U{T};
end if
end for
while RN # 0 and FP # 0 do
{Select a task T; and a processor P;
s.t. st(T;, P;) = minrepy minpepp st(T, P);}

m(T;) = Py;

o(T;) == CM,

rt(T;) == -1,

ct(y) := CM +w(T);
RN := RN/T;
U:=U/T;

FP .= FP/P;;

for all T; € Succe(T;) do
{Update rt(T});}
end for
end while
{update CM};
FP :={P|ct(P) < CM};
end while
End

101

e In the same manner, recv tasks corresponding to the same destination compu-
tational task must be grouped together; no other task may be inserted into such

a group.

e send tasks are handled immediately after their origin computational task is
finished. There should not be any delay between the computational task and

the first message transmission from that task.

e A computational task must start immediately after all tasks that receive input

data for it have been done.

e send tasks from the same source computational task are sorted using a topo-
logical sorting routine, in the order of their destination tasks; this topological

sort is fixed for the whole procedure.

o Likewise, recv tasks in the same group are sorted according to their sources.

e According to the definition of the LogP model, a message is received at least
L time units after it has been submitted to the network. That is, the interval

between a pair of send and recv operations must be longer than L.

6.3.4 Crossover

Crossover is a procedure that randomly selects two chromosomes from the mating
pool and then recombines parts of them to produce two new chromosomes. The goal
is to mix genetic information of fit individuals, in order to occasionally produce new
offspring that join the best features of their parents, and hence exceed their fitness.

102

Algorithm 8 LogP Feasible Schedule with g > o

Input:

G(V,E,w,l): a task graph,

M = (L,o0,9,P): a LogP instance,

S: a schedule of G under SDM.
Output:

S’: a feasible schedule of G under M.

Begin
{Associate ct(z) to the completion time of processor P, cts(i) to the available
time of send task of processor P, ct.(i) to the available time of recv task of
processor P;(0 <1 < P).
Initially: ct(:) =0, cts(2) = 0, ct, (i) = 0,V:,0 < 7 < P, S.CurrentTasks(C);}
while C # 0 do
for each T; € C do
no(T}) 1= ms(Ty);
for each T} € Pred(T;) do
if ﬂ's(Tk) 7é 7rS(Tj) do
i = ms(T;) wg(recv(Ty, T;)) :=1;
og(recv(Ty, T;)) := max{ct(s), o (send(T, T;))+o+L, ct (i) };
ct(i) := og(recv(Tk, Tj)) + o;
ct (i) = og(recv(Ty, T;)) + 95
end if
end for o5/(Tj) := ct(ng(T}));
ct(i) = o5(Ty) + w(T));
for each T, € Succ(T}) do
if Ws(Tk) # ﬂs(Tj) do
wg(send(Tj, Tx)) = 1;
os/(send(T;, Ty) := max{ct(), cts(1) };
ct(i) = og(send(T;, Ti) + o;
cts(i) == og(send(Ty, T;)) + g;
end if
end for
end for
S.CurrentTasks(C);
end while
End

103

Uniform crossover operator [48] is used in our GA. Two parents are selected from
the current generation to generate two new individuals. Crossover points are not
fixed in advance. They are determined probabilistically at each gene position. Let p,
be the crossover probability at each gene position, and N be the number of genes in

a chromosome. The recombination operation can be described as follows:

UNIFORMCROSSOVER(a, b)
¢ a;
fort: —0to N
do sample u € U(0, 1);
if u>p,
do ¢; « b;;

return c;

This procedure generates only one individual from two chromosomes. So, it must be
run twice for a pair of offspring.

According to Ackley [16], p, is set to 0.5. When p, = 0.5, both parents have the
same chance of passing on their genetic material to their offspring. In this case, the
uniform crossover operation can be simplified, by constructing a mask. Each bit of
the mask determines the parent that the child should receive the corresponding gene
from. The crossover probability (p.) is set to 0.85.

The following example shows how the crossover operator works for a problem
instance of scheduling G (in Figure 6.3), under a LogP model with P = 4. G is

composed of 8 nodes. Hence, chromosomes in the evolution are strings of 8 integers.

104

OROJOBO
S
CRORONO
Figure 6.3: Task Graph G

And, each gene should be a integer not less than 0 and not greater than 3. The

sequence of tasks resulting from a default topological sorting routine, applied to G is:

(Th T2) T3) T4) T57 Tﬁ) T77 T8)

Parent A Parent B
Bnannanafioo:

~ ~ -
~ ~
~

I
Y

~
~

mask =145 |1 0 |0

Child C U

[tlofafuifisfs]o]

Figure 6.4: Uniform Crossover

Suppose there are two chromosomes A and B involved in the crossover operation
illustrated in Figure 6.4. As there are 8 nodes in the graph, the upper bound of
the crossover mask is 28 — 1 = 256. Thus, the first step is to generate an integer
between 0 and 255, which is 145 in this example. This integer is converted to its
binary equivalent 10010001, which is a 1-dimensional vector of bits. The vector has
the same length as a chromosome. The value of a vector bit determines the source of
the corresponding bit in the child chromosome. Specifically, 1 in the first bit of the
vector means that the first gene of the child chromosome is copied from the first gene
of parent A. In the same manner, the second bit of the child is taken from B, as the

second bit of the vector is 0.

105

6.3.5 Mutation

Mutation is relatively simpler than crossover, but certainly not of negligible sig-
nificance. Evolution with only mutation and selection but no crossover can still be
effective, though crossover accelerates the search process. The objective of mutation
is to maintain genetic diversity lost during crossover and selection, both of which
place relentless pressure on the population to converge to an ever-shrinking pool of
genes. Individuals are only changed slightly in mutation. This means the processor
assignments are mildly perturbed, with some small probability.

Our GA has employed two types of mutation operators: 1-bit mutation and swap
mutation. 1-bit mutation is implemented by selecting a gene at random and changing
its value randomly as well. The new value of the mutated gene usually differs from its
original setting. On the other hand, swap mutation is performed on two genes instead
of one. It randomly selects a pair of genes and then swaps them. It is important that
the selected pair of genes have different values or else the swap will be useless. These
two operators are applied alternately during mutations. The mutation rate p,, is 0.1.

From the programmatic point of view, 1-bit mutation moves a task from one
processor to another so that the search may reach a new point. On the other hand,
new solutions can also be introduced by switching two tasks on different processor,
which is achieved by swap mutation. Although both the mutation operators can
bring diversity to the population, they accomplish it in different ways. 1-bit mutation
maintains the positions of all the tasks but one, while swap mutation maintains the

numbers of tasks on both each processor. The search may be led to distinct directions

106

by these different mutation operators. There are more chances of exploring a wider

space of valid schedules, if both mutations are applied, which is the case here.

Rt
g

() (19 (1) (@)
Figure 6.5: Task Graph G

The mutation example uses G of Figure 6.5. Generally, mutations are performed
in two steps. One is to select the mutating position(s), and the other is to perform the
modification at the genes. Figure 6.6 shows how 1-bit mutation works on chromosome

X(Before Mutation) [0 |1 [3 2 [3 o [2]2 |

X3, (After Mutation) 0 |1 [3]2 [3 o |3]2]

Figure 6.6: 1-bit Mutation

X. The T** gene z; is selected for mutation. To ensure this gene is modified to a new
value, we apply:

z; = (z; + (r mod P)) mod P,

where r is an integer generated randomly. In this case, the possibility of all new
values are equal. Assume that r = 1 in this example. This result in a new value of

(2 + (1 mod 4)) mod 4 = 3. And X7, is the result of the 1-bit mutation.

X(Before Mutation)| 0 |1 {3 [2 [3]o [2]2]
A

Xiu(After Mutation)| 0 |1 [3 [2 [2.]o |3]2 |

Figure 6.7: Swap

107

As for swap mutation, the first step is still to select mutating genes. The selected
genes must have different values, for example, the 5% and the 7** genes of X (see
Figure 6.7). Afterward, the two genes are swapped resulting in X .

Processor assignments represented by X, Xj, and X are illustrated in Figure 6.8.

1-bit mutation (see Figure 6.8(b)) has moved task T, from processor P, to P;. On

PITy [T T, T T, T
P2 T, B T, T, B

P Te| |Ts| | Ty T, | | T To| | Te| | Ts
PIT| TS SR n| |n

(a) Original Assignments (b) After 1-bit Mutation (c) After Swap Mutation

Figure 6.8: Processor Assignments before/after Mutation

the other hand, swap mutation switches T5 and 77, as shown in Figure 6.8(c).

6.4 Discussion

In this chapter, a novel genetic algorithm is proposed for the processor allocation
problem under LogP models. The concept of appropriateness is introduced as a mea-
sure for the evaluation of processor assignments. The algorithm has been discussed
in detail.

The algorithm is based on the SGA. The potential solutions are encoded using
positive integer strings that represent the processor assignments of the computational
tasks. The encoding methodology used in this algorithm assures that a coded string

only represents one solution. The decoder uses a list scheduling algorithm to build a

108

LogP-feasible schedule. As for the genetic operators, uniform crossover, 1-bit muta-
tion and swap mutation are applied.

Still, this algorithm has similar drawbacks to the communication management
algorithm (Section 4.5). As the problem is on homogeneous multiprocessor systems,
all the processors are identical. The encoding method gives each processor a number
which makes the processor unique. Consequently, different strings may correspond
to the same solution. For instance, there is no difference between assigning all the
tasks to processor P, and assigning them to processor P, as P, and P, are identical.
The representation space is P! times larger than the solution space, where P is the

number of the processors.

109

Chapter 7

Experiments

7.1 Benchmark Graphs

7.1.1 Characteristics of Task Graphs

The objective of the experiments is to compare the new algorithms to existing
heuristics under various conditions that scheduling algorithm may encounter. There-
fore, it is necessary to classify DAGs by certain characteristics so as to evaluate the
performance more efficiently. A DAG is presented by G(V, E,w,l). The following

characteristics are representative and are widely used by researchers.

General Characteristics When a graph’s size is concerned, there are a group of
characteristics involved. Note, graphs here refers to the original task graphs

without any extensions.

o Number of Nodes: Total number of nodes in a graph is the mostly used mea-

surement for a graph’s size. It is denoted with N,,.

110

o Number of Edges: N, refers to the number of edges in the graph.

o Average Node Weight: N,

ZveV(G) w(v) ‘

N, =
w N,

e Height: A layering of a DAG is a partition of its node set into subsets, called

layers. The height of a graph is the number H of layers.

o Width: The width W of a graph is defined as the largest number of non-

precedence-related nodes in the DAG.

o Sequential Time: If the program is executed on a single processor, the makespan
would be the sum of costs of all computational tasks. Such a sum is called
sequential time tgeq. It is sometimes used as a baseline for experiments in parallel

scheduling algorithms.

tseg(G) = D w(v).

veV(G)
Anchor Qut-degree The number of out-going edges from a node is called the node’s
out-degree. [28] defines anchor out-degree, also called anchor, as the mode of
out-degrees of the nodes in the graph. Anchor reflects the branching factor of

a program, one of the factors that affect the graph’s complexity.

Denote the out-degree of node v in a graph G with d,,(v). Then, the anchor

of G is

ZvGV(G) dout (V)
N, ’

where N, is the number of the nodes in G. The anchor here is equal to the

111

average number of successors of all the nodes.

Critical Path The critical path is the longest path in a directed acyclic graph.
Formally, a chain in a DAG is a sequence of vertices vy, vs,...,v, such that
there is a directed edge from v, to vz, a directed edge from v, to v3 and so on,
up to and including a directed edge from v,_; to v,. The longest chain in a

DAG is called the critical path.

For a weighted DAG, critical path is usually defined to be the path from a
source node to a sink node with the greatest weight. The weight of an edge
is not considered in critical path analysis under LogP. Therefore, path weight

refers to the sum of the weights of all the nodes on the path. Its length is

tCP(G) = Z w(v).

veCP

Parallelism Kwok [32] defines parallelism as a parameter determined by the width
of the graph. A parallelism of 1 means the average width of the graph is
V' N,, a value of 2 means the graph has an average width of 2y/N,; and so on.

Accordingly, the parallelism of a graph is

p(G) = : (7.2)

112

7.1.2 Sample Graphs

Specific groups of graphs are used in our experiments. Brief descriptions of these

graphs follow.

Small-Scale Random Graphs (SSG)

Small-scale random graphs (SSG) are randomly generated and small in size. They
are made up of 14 graphs. The number of nodes in these graphs varies from 5 to 70
with increments of 5. The average weight of a node in each graph is approximately

10, which is relatively small. Detailed characteristics of the graphs are listed in Table

A1l

Random Graphs with 20 Layers (R20L)

These are random graphs we generated according to the experiments described
by Kalinowski et al. [27]. They have the same features, such as anchors and average
weights, as the graphs used in [27], but not exactly the same sets. Each of the graphs
has 20 layers, thus, this group is called Random Graphs with 20 Layers (R20L).
This suite of random graphs consists of two subsets with different parameters. In
the first subset (Graphl-10), the graphs’ anchors are close to 2, while the second
subset (Graph11-20) has an average anchor out-degree of approximately 8. Average
execution time for the first class of graphs is approximately 30, compared 90 for the

second class. In addition, both nodes and edges are generated uniformly.

113

Random Graphs without Optimal Schedules (RGNOS) [32]

The fourth set of graphs, referred to as random graphs with no known optimal
solutions (RGNOS), are a part of benchmark graphs generated by Kwok [32]. Kwok’s
RGNOS consists of 5 sets of graphs with different communication-to-computation
ratios (CCR). The communication costs under the LogP model are not determined
by CCR but by the model. Hence, we only select one set of 50 randomly generated
graphs from Kwok’s RGNOS for the experiments. These graphs are much larger than
SSG, with from 50 nodes to 500 nodes each, with increments of 50. Parallelism varies
among the 50 graphs. Five different values of parallelism were chosen: 1, 2, 3, 4, and

5.

Traced Graphs [32]

The last set of test graphs is called traced graphs, which simulate some parallel
programs obtained via a parallelizing compiler. We only randomly select one graph

from Kwok’s traced graphs. The graph is used to verify reliability of our algorithms.

7.2 Models

The algorithms we have proposed are general schedulers for scheduling problems
under LogP. Therefore, it is necessary to experiment under various circumstances to
evaluate the algorithms thoroughly. However, it is impossible to enumerate every
instance. The best way is to classify the instances, then select typical examples of

each class for the testing.

114

We first consider a group of models that satisfy ¢ = 0. Consequently, models
belonging to this class are selected for experiments. This group is listed in Table 7.1.

In these model instances, two values of P were considered: P =4 and P = 8. When

[Model[L] 0 [g]PI
M, 1011114
M, 1010 10
M3 111010
My 10|11
M; 10|10 10
Ms | 1]10]10

CO| 00| COj| v | W=~

Table 7.1: Models with g = o

P = 8, there may be more communications to be handled than P = 4. In addition,
we consider 3 pairs of values for L and o (g is ignored): (1,10) , (10, 1) and (10, 10).
These pairs correspond to different ratios between L and o. When L =1 and o = 10,
communication overheads are much more significant than latency. On the other hand,
latency dominates network communication costs if L = 10 and o = 1. Finally, (10, 10)
presents cases where values of latency and overhead are similar. In this case, latency
and overhead are both important to the overall communication costs.

Since models listed in Table 7.1 have already covered various possible comparisons
between L and o, we only consider the condition where L < o in the experiments that
handle significant gaps. Therefore, all the LogP model instances used here have the
same values for the latency and the overheads: L = 5 and o = 10. There are two
groups of models, both using has the same number of processors.

The value of the gap varies in the 6 models suited to the condition with distinct

gaps. In addition, the value is determined by characteristics of graphs used in this

115

experiments.

It has already been established in Chapter 5 that we are exploring every possibility
of gap filling. Whether filling is a good strategy or not, depends on the costs of the
computational tasks, as well as the size of the slots to be filled. By that we mean
the difference between the gap and the overhead (g — 0). We choose the first class
of graphs from the R20L graph set to evaluate the algorithm when g > 0. The
average weight N, for every one of these graphs is 30 time units. There are three
possible relationships between N, and g — o reflected in the experiments: g—o0 < Ny,

g—o= N, and g—o0 > N,,. Table 7.2 shows the three values of gaps: 15, 40 and 80.

| Model [L] o | g | P]

M, [5]10[80] 4
M, |5[10|40] 4
M, [5|10]15]4
M, [5]10]80] 8
M, [5]10[40[8
M, [5[10|15]38

Table 7.2: Models with g > o

Finally, when applying ETF algorithm under the SDM model, the communication

cost t, is assumed to be 2 X 0+ L.

7.3 Performance Measures

7.3.1 Makespan

As it has been emphasized several times in previous chapters, the objective is

to find a LogP-feasible schedule with minimum makespan. Obviously, makespan is

116

the most important measure used in our experiments. Formally, the makespan of
schedule S is denoted by Ci,e.(S), which is

Cmaz(S) = Ug}/a(')é) (os(v) + w(v)). (7.3)

7.3.2 Speedup

The specific characteristics of a given graph have directly impact on the makespan
of the optimal schedule for that graph. To eliminate such effects, we also use another
measure to evaluate an algorithm: speedup.

In parallel computing, speedup refers to how much a parallel algorithm is faster
than a corresponding sequential algorithm. Speedup of algorithm A is defined by the
following formula:

t
§q= —ca 7.4
4 Cmax(SA) ()

where i, is the sequential time of the graph, while Cs, refers to the makespan of
the schedule S, obtained by algorithm A. A desirable parallel algorithm should have

speedups greater than 1 in all cases.

7.3.3 Pairwise Comparison

It is impossible to set an absolute standard of speedup for parallel algorithms. As
a matter of fact, a Speedup > 1 only indicates that the algorithm is superior to the
serial algorithm that schedules all tasks on the same processor. This is obviously not

a comprehensive measure of algorithm performance.

117

As a result, the new algorithms are also compared to some existing algorithms.
In a pairwise comparison, the improvement achieved by a new algorithm A over an

existing baseline algorithm B is denoted by a4p, which is defined as

a — Cmaz(SB) - Cma:c(SA)
A8 Cmaz(SB)

x 100%. (7.5)

a4 p is expected to be positive for any improved algorithm A.

7.4 Methodology

7.4.1 Implementations

All the algorithms have been implemented in C++ and were run under both
Windows and Linux. The program uses graph data structures from LEDA [40].

Table 7.3 provides further details of OS platform, compiler type and libraries used.

| Platform | Compiler | Utility Library |
Windows XP Microsoft Visual C++ 6.0 | LEDA-4.4-windows
Fedora Core 4 1386 gee 2.95.3 LEDA-4.2-linux

Table 7.3: Implementation Environments

The program accepts 3 inputs: a task graph, a model instance and an algorithm
name. It prints the makespan of the final schedule and the schedule itself of the
given graph under the given model produced by the requested algorithm. When
running a GA-based algorithm, the average makespan and the best makespan in
each generation are recorded. Scripts are used to execute the programs on different
problem sets, without having to go back to the experimenter.

118

As most other GAs, our own GAs use random functions. Hence, the algorithm
can not guarantee to return the same result every time. In other words, result from
a single run of the algorithm can hardly reflect the algorithm’s performance. Thus,
we use 50 runs for each case. The average of the results of all 50 runs is considered
to be the final makespan of the algorithm in the corresponding case. The speedups

and the improvements are calculated based on such makespans.

7.4.2 Baseline Heuristics

As mentioned in Section 7.3.3, pairwise comparison is the most comprehensive way
to evaluate our algorithms. There is not yet a standard benchmark for scheduling
problems under the LogP model. The new algorithms are compared to some existing
algorithms, which are considered, from now on as the benchmarks for our own tests.

Both 2ETF and ETFR [27] are selected as the baselines in the experiments as they
are both algorithms for general scheduling problems under LogP. The communication
scheduling algorithms described in Chapter 4 and Chapter 5 are all based on processor
assignments produced either by 2ETF or ETFR. Hence, it is interesting to investigate

whether the new algorithms can find a better arrangement of communications, or not.

119

7.5 Results and Analysis

7.5.1 Communication Scheduling Heuristics

The decoder has the greatest effect on the complexity of our GA-based schedules.
As a matter of fact, the decoder used in this thesis is itself a heuristic. Therefore, it
is important to examine it for both complexity and accuracy. Such a decoder must
be able to transfer a chromosome into a feasible schedule.

The experiments are carried out in 2 parts, each of which corresponds to a dif-
ferent existing list scheduling algorithm. The two parts are called 2ETFList and
ETFRList after the original algorithms.

It starts with the results of the existing list heuristics. Both the processor as-
signments and the task ordering by the starting times are used as the inputs of our
algorithm. Such a full order is equivalent to the ranks of all tasks. Having the
processor assignments and the ranks, we can execute our list scheduling algorithm,
Algorithm 2/ on the respective problem again.

Both algorithms are tested on 3 sets of graphs (SSG, R20L and RGNOS) and under
6 model instances (M;-Ms), which assume g = o (see Table 7.1). The makespans of
output schedules are shown in Appendix A. At the same time, the improvements
of our list scheduling algorithms compared to the corresponding ETF algorithm are
listed in Table 7.4, Table 7.5, Table 7.6, Table 7.7, Table 7.8 and Table 7.9.

Obviously, such an approach works for both 2ETF and ETFR. The improvements
are always non-negative, and in most cases, positive. Makespans can be improved by

up to 17%. The list scheduling algorithm is always able to transfer a priority queue

120

[Graphs l M1 Mz M3 M4 Ms Me l
nld 1.190 4.128 4.306 1.190 4.128 4.306
n20 0.000 5.389 0.000 1.111 3.681 0.000
n25 1.493 6.289 4.795 1.493 6.289 4.795
n30 2.454 3.505 0.242 4.487 4.380 2.660
n35 2.564 2.867 1.370 5.172 10.115 7.882
n40 2.500 6.329 6.421 4.118 2.024 1.255
n45 4.082 6.506 3.362 4.717 8.741 7.099
n50 1.880 12.715 13.852 3.196 5.956 2.530
n60 3.548 7.810 6.064 3.937 5.482 9.040
n65 2.586 9.787 11.183 4.444 10.105 8.043
n70 5.645 11.036 8.497 4.514 6.267 6.191
Avg. 2.540 6.942 5.463 3.489 6.106 4.891

Table 7.4: Improvements of 2ETFList on SSG, compared to 2ETF (%)

[Graphs I M My M3 My Ms Mg]
nl5 0.000 0.000 0.000 0.000 0.000 0.000
n20 0.000 0.000 5.076 0.000 4.878 5.348
n25 0.000 0.000 12291 0.000 0.000 0.000
n30 0.645 0.450 2.469 0.000 3.900 3.591
n35 1.111 4.826 0.000 0.000 0.716 2.710
n40 2.538 6.397 6.076 0.000 1.296 2.407
n45 0.889 2.315 3.592 0.000 8.546 7.629
n50 1.195 2997 4564 0.000 1486 5.975
n60 1.684 5.242 1905 0.405 4.090 0.000
n65 1.690 1.877 2.878 0.000 4.472 5.066
n70 3.966 2.297 0.156 0.000 7.094 7.172
Avg. 1.247 2.400 3.546 0.037 3.316 3.627

Table 7.5: Improvements of ETFRList on SSG, compared to ETFR (%)

{ graph My M, M3 My Ms Ms | graph M M M3 My Ms Ms |

1 0.444 3.708 4.287 0.779 3.352 4.194 11 1.348 8.678 6.091 2.561 10.462 11.272
2 0.382 0.986 1.104 0.502 2.520 1.957 12 1.130 4.198 2.212 1.402 9.312 8.955
3 0.460 0.618 2.373 0.207 3.123 3.018 13 2.159 4282 4102 2381 9.923 7.729
4 0.360 1.024 2.168 0.417 3.011 4.035 14 1.254 4.566 1.989 2.407 9.691 9.342
5 0.735 3314 4.709 0928 3.230 4.645 15 1.474 5764 1534 2218 5.505 9.746
6 0.675 1716 3.747 0.568 4.068 2.787 16 1.325 4977 2.623 2621 5.920 8.659
7 0.310 0.882 0.728 0.571 1.713 1.696 17 0.699 5542 4.173 1.433 14.695 6.355
8 0.278 2.552 0.195 0.800 0.383 2.987 18 2.225 5.462 7.745 2.405 7.287 8.164
9 0.826 4.722 4469 1.478 0.682 3.172 19 1.587 3.904 3.785 1.892 9.006 10.695
10 0.455 6.505 1.634 0.402 3.278 2.442 20 1.215 4333 4.036 2.022 8.356 8.921

Avg 0.493 2.603 2541 0.665 2.536 3.093 Avg. 1.442 5.171 3.829 2.134 9.016 8.984

Table 7.6: Improvements of 2ETFList on R20L, compared to 2ETF (%)
l G. l M, Ms Ms My Ms Mg] G. l M, Moy Mj My My Mg l

1 0.091 0974 0.889 0.000 0.399 0.143 11 1.378 3.670 2932 1.747 3.563 6.995

2 0.280 0.000 0.644 0.102 0.000 0.624 12 1.126 2.550 1971 0.747 3.648 5.545

3 0.095 1.306 0.582 0.000 0.661 0.000 13 0.540 0.679 1.202 1.828 5.359 3.469

4 0.179 1.213 0.627 0.206 0.000 0.837 14 0.585 1.199 1.407 1.316 6.188 5.048

5 0.186 0415 0393 0.104 0.000 0.000 15 0.924 1.878 2369 1.348 4.989 2.932

6 0.000 0.797 0.590 0.096 0353 0.000 16 1.098 1.771 1.726 1.226 4.578 5.009

7 0.000 2423 0.434 0.000 0.843 0.412 17 0.901 1.073 0.291 1.964 3.571 3.387

8 0.276 0.000 0.982 0.398 0.512 0.000 18 0.740 2.288 1.478 1.182 5.448 4.394

9 0.000 0300 0.131 0.000 0.000 0.216 19 1.406 2.601 2.852 1.230 5.928 5.236

10 0.000 1.206 0.566 0.000 0.000 0.501 20 0.852 2.743 2.571 1.412 3.620 5.717

Avg. | 0.111 0.863 0.584 0.091 0277 0.273 | Avg. | 0.955 2045 1.880 1400 4.689 4.773

Table 7.7: Improvements of ETFRList on R20L, compared to ETFR (%)

121

LGraphs [M My M3 My Ms Ms
rip50 1.166 0.000 0.000 0.601 0.000 1.394
ripl00 | 3.040 5.704 0.490 4.615 13.408 11.999
rlpl50 | 0.000 3.280 5.351 1.754 0.000 8.826
rlp200 | 0.555 7.583 5.106 1.826 15.319 19.157
rip250 | 1.108 2.978 5.692 4.247 12,902 11.874
Avg. 1.174 3.909 3.328 2.609 8.326 10.650
r3p50 2.007 1.956 6.469 2.595 8.879 10.291
r3pl00 | 3.003 11.197 4771 4.789 5.524 5.553
r3pl50 | 1.362 5.492 7.601 2812 12.804 12.846
r3p200 | 2.861 4.886 8.040 4.762 17.332 3.957
r3p250 | 0.554 5.949 8.669 4.379 18.776 8.338
Avg. 1.957 5.896 7.110 3.867 12.663 8.197
r5p50 2.144 3.184 11.734 1.031 5.142 1.061
r5pl00 | 1.131 8.968 4.283 3.871 6.675 10.388
r5pld0 | 3.573 14.864 14.116 3.598 6.485 8.375
r5p200 | 2.214 8.728 5.731 4.678 12.387 9.957
r5p250 | 4.639 10.658 10.288 4.611 9.741 10.934
Avg. 2.740 9.280 9.230 3.558 8.086 8.143

Table 7.8: Improvements of 2ETFList on RGNOS, compared to 2ETF (%)

rGraphs [M, Mo M; My M Mg J

rip50 0.000 0.000 0.000 1370 3.330 2.444
rlpl00 | 1.887 0.000 0.000 2.450 4.799 3.903
ripl50 | 0.000 0.000 0.000 0.000 0.096 0.000
rlp200 | 1.339 0.340 0.952 3.288 0.000 0.000
r1p250 | 1.616 0.880 0.400 2.775 2397 1.177

Avg. 0.968 0.244 0.270 1977 2.124 1.505
r3p50 1.773 0.000 7.107 0.550 5.061 8.553
r3pl00 | 2480 0.000 1402 2.136 9.995 3.671
r3pl50 | 0.287 2.576 1.510 1.495 4.258 4.437
r3p200 | 1.987 0.866 1.599 1.389 8.885 4.971
r3p250 | 0.324 0.279 0.000 2.780 1505 1.002

Avg. 1.370 0.744 2.324 1.670 5.941 4.527
r5p50 1.185 0.000 5.672 0.267 1360 1.243
r5pl00 0.883 3.917 2.546 2.111 7.518 5.015
r5pl50 | 2.299 3.369 2.846 2.442 4.539 7.353
r5p200 | 2.014 2449 1424 1680 4.798 23810
r5p250 | 0.253 0.739 1.092 3.196 4504 4.903

Avg. 1.327 2.095 2.716 1.939 4.544 4.265

Table 7.9: Improvements of ETFRList on RGNOS, compared to ETFR (%)

122

into a relatively better schedule, compared to the existing algorithms. Hence, this

list scheduling approach should be an efficient decoder for processor assignments.

7.5.2 Different encodings in communication scheduling

This section compares the novel encoding method proposed in Section 5.1.2 to the
original encoding method described in Section 4.3.2. In the experiments, GAs with
both encodings are run on a traced graph representing the compilation of Gaussian
elimination algorithm [32]. The same sets of genetic operators and the same values of
parameters are applied. Average makespan and the best makespan in each generation
are logged for the comparisons. We observe 100 generations for each experiment.
Moreover, the experiments are carried out for processor assignments generated from
both 2ETF and ETFR.

Figure 7.9 presents the comparisons under different models. In the figures, each
pair of curves corresponding to the different genotypes has close starting points. The
difference between the average makespans of the two initial populations is less than
3%. The size of the solution space is much larger than the population size, which is
50, even though the restrained encoding is supposed to minimize the representation
space. That is why the GA tends to start with similar initial populations regardless of
the encoding method. But the final populations are distinct. The restrained encoding
leads to better results. The average makespan of the final population generated with
the improved encoding is shorter by up to 13.54% (Figure 7.9(f)). This encoding

results in an improvement of up to 3.34% compared to the unrestricted encoding

123

Makespan

Makespan

Makespan

13000

12500

12000

11500

14500

14000

Bestzﬂe'strained ——
Avg.(Restrained) ---x---
Besl?unresuained R

'é Avg.{Unrestrained) o | 13500 |-
N

% 4 13000 |

fiiae
- 3 & + 12500

\
Besliﬂesira‘ned; —
Avg (Restrained) ---x---

Beslyunres"amed e

Avg.(Unrestrained) --e-—- |

Generations

(a) GAComm?2ETF, M,

Generations

(b) GAComm2ETF, M,

Y . T T
Best(Restrained) ———
A .Restrained; R

Best(Unrestrained) - &---

Avg.{Unrestrained) 8-

=

wvg.(Restrained) ---x---
Best{Unrestrained) —--=---
Avg.(Unrestrined} &

Bestsn'atrained —
Ay ?

! i
5 %ﬁb
1280 &’“\ R PET
% 2
-
12000 t+ o
N
11500 | %
A
LN o
11000 L 1 L 1 " ' s L
20 40 60 k-4 100 [20 40 60 80 100
Generations Generations
(¢) GAComm2ETF, M (d) GACommETFR, M,
10500 T T T T 10500 T T —r T
2 Best(Restrained) —— BeslgRes\rair\ed) —
f‘h}, Avg (Restrai —xeen Avg.{Restrained) --x---
1.1 Bes:?dmeslral_ned o Best{Unrestrained) «--m---
10000 "Sﬁ Avg.(Unrestrained) ~—a— ﬂtﬁ; Avg {Unrestrained) 8-~
* k1
9500
9000
8500
8000

7500

Generations

(e) GACommETFR, M5

Generations

(f) GACommETFR, Mg

Figure 7.9: Comparison of Two Encoding Method

124

(Figure 7.9(e)). As a matter of fact, the populations encoded with constraints evolve
more regularly and converge faster.

All the results indicate the modified genotype is better than the primitive one.
The operators collaborate more efficiently with the restrained encoding. With such

an encoding method, the algorithm can produce a better result.

7.5.3 Scheduling communications with GA

The experiments of the algorithm which is proposed in Chapter 3 are divided into 2
parts based on the source of processor assignments. As this algorithm deals with com-
munication arrangements, the two parts of the experiments are called GAComm2ETF
and GACommETFR, respectively. The test sets used in this section includes SSG,
R20L and RGNOS.

The experiments are accomplished in a few steps. First, a processor assignment
is obtained by running an existing list heuristic, either 2ETF or ETFR. With such
a processor assignment, the corresponding graph is scheduled again using the GA
(Chapter 4). Only the tasks on the same processors are reordered by GA. The pro-
cessor assignment of obtained schedules is not changed. The GA is run 50 times on
each single problem. Minimal makespan from each run are recorded. The values for
the same problem (with the identical graph and the same model) are averaged for the
final results.

Table B.1 lists the speedups of both GAComm2ETF and GACommETFR on

each graph in SSG. The average speedup of GAComm2ETF over SSG is 1.26, and

125

average speedup of GACommETFR is 1.31. Although GACommETFR is more likely
to generate a better schedule than GACommZETF, neither of them is guaranteed to
be superior in all cases. Figure 7.10(a) compares our GA to the existing heuristics
using average speedups with respect to the number of nodes. GAComm2ETF achieves
better schedules than GACommETFR in only 2 graphs (graph n20 and n25) out of the
12 graphs in SSG. 2ETF also generate better schedules than ETFR when scheduling
graph n20 and n25. In fact, the shape of the GA’s curve is similar to the curve
of the original algorithm, which produces the corresponding processor assignment.
As described in Chapter 6, 2ETF and ETFR use the same technique to arrange
communications by simply inserting them. It is indicated by the results that the
GA tends to retain the advantage/disadvantage of the various processor assignment
algorithms.

Table B.2 shows the improvements of GA in all cases of scheduling SSG. The
GA improves the final results, as the improvements are always positive. Average
improvements of GA on processor assignments originated from 2ETF is 7.21%, and
from ETFR is 10.12%. It can be seen in Figure 7.10(b) that when the GA is applied
to the processor assignments from ETFR, the improvements are higher than those
achieved over 2ETF. This is true in most cases (except graph n05 and n65).

The algorithm is also tested with the graph set R20L. GA speedups are listed in
Table B.3. The average speedup is 2.6. The speedups are computed for two classes of
graphs in R20L with respect to models. Such comparisons are shown in Figure 7.1‘1.
The curves in Figure 7.11(a) are similar to the curves of Figure 7.11(b). Curves of
similar shapes are expected for any other processor assignments. Average speedup

126

Speedup

Speedup

Improvements(%)
o

=< 1 N i s . 2 " . L 2 1 N
10 20 30 4 50 60 70 10 20 30 40 50 60 70
Number of Nodes Number of Nodes

(a) Average Speedups

(b) Average Improvements

Figure 7.10: Comparison of GA on different processor assignments when scheduling
graphs in SSG

5.5 T T u T ¥ N 55 T T T T v
Class! —-— Classt ——
X Class2 --x-- X 552 ---K-e
sl o { s} i
i
45 p 445t
ar { * 4t H
35t - 4 \ {ast o \
x X I
3t
25
2|
15

(a) Average speedup of GAComm2ETF

(b) Average speedup of GACommETFR

Figure 7.11: Comparison of speedup on graphs with different anchors

127

values for the second class of graphs is greater than those of the first class, by 41.9%.
In fact, the algorithm always gets higher average speedups when scheduling the graphs
with higher anchor values (the second class). When the latency is decreased (from
M, to M5 and from M5 to Ms), there are only slight improvements in speedup. And,
speedup values drop when overhead is increased (from M; to M; and from M, to
Mj;). Moreover, the algorithm tends to return higher speedup values if the graphs
are scheduled on more processors. For instance, the speedups under M; (P = 4) is
much lower than the speedups under M3 (P = 8). As a result, the higher speedup
value always occurs when scheduling under a model with a longer L, a smaller o and
a greater P.

Table B.4 shows the improvements of the algorithm when scheduling graphs of
R20L. We use the following group of figures to analyze the relationships between the

model parameters and GA’s improvements. The average improvement

G) — aGAComm’ZETF,?ETF (G) + aGACommETFR,ETFR(G) (76)

2

is used here, as the measure of improvement.

Figure 7.12 compares two sets of models: (M,, M3) and (M5, Ms). Models in the
same set have only different latencies. The chaotic curves show that there is no reliable
improvement in GA performance when latency is changed. In contrast, increasing
overheads leads to significant improvements. Models with different overheads are
compared in Figure 7.13. When o is increased from 1 to 10, the GA returns higher

improvement values by 252%. Likewise, the GA achieves better performance when

128

improvements

improvements

65

55|

Figure 7.12: Average Improvement of GA performance on Graphs with different
Latencies

7 T T T T 10
Ml ——
M2 coxeee
X 9t 4
6 N
¥ S er 1
A
5| FiY . ~ ;1 |
i st 1
4 b iaN]
X "ﬁ £ 5t R
Ly i A
3 : y { / 4
L A . f ¥
LN -t s]
2t \ i
2t 4
1} 4
1 1
° " s s s ° . s " N
0 5 10 15 20 0 5 10 15 20
Graph Numbers Graph Numbers
(a) P=4 (b) P =

Figure 7.13: Average Improvement of GA performance on Graphs with different
Overheads

129

there are more processors. Figure 7.14 plots the average improvement of the GA with

respect to the number of processors P. The improvement increases 80% when the

improvements
-
ERE

Figure 7.14: Average improvement on Graphs with different Numbers of Processors

number of processors is doubled.

The algorithm is also run on the graph set of RGNOS, which contains several sub-
sets of graphs with different values of parameters. Table B.6 consists of the improve-
ment values of GA. The GA’s improvements compared to existing ETF heuristics are
non-negative in all cases. The average is 8.17%. And, as in previous cases, the algo-
rithm tends to return higher improvement values on processor assignments generated
by ETFR, rather than by 2ETF. That can be seen in Figure 7.15. In addition, the
algorithm is likely to achieve more improvements over graphs with higher parallelism.
Average improvements on graphs with p = 5 is 20% higher than that on graphs with
p = 1. Meanwhile, the algorithm also performs better on graphs with more nodes. As

it is shown in Figure 7.15(b), 36.54% more improvements are achieved, on average,

130

Average improvements(%}

facommeeTF —— T T T M BACOmm2ETF ——
PACOmMETFR ---%--- e -

.............

%)

-
Average.

5 — — 4 4
[1 2 3 4
Paratielism Number of Nodes

(a) (b)

uL
8f
8
8
3
¥
8

Figure 7.15: Comparison of Improvements on RGNOS

when the number of nodes are increased from 50 to 250.

In summary, the genetic algorithm works for all types of graphs in the experiments.
It can always improve a schedule generated by one of the existing ETF heuristics
by finding a better re-arrangement of the communication tasks. There are a few
parameters of graphs and models which have a significant impact on the results: the
overheads, the number of processors, the number of nodes in a graph, the anchor
out-degree of a graph and the parallelism of the graph. From the results in this
section, we may safely draw the conclusion that the GA performs better when the

delays caused by communication overheads are more significant.

7.5.4 Scheduling communications when g > o

In this section, the algorithm is evaluated under models with significant gaps
(Table 7.2). The first class of graphs in R20L is used. The experiments are the same

as those described in Section 7.5.3.

131

The algorithm succeeds in taking large gaps into account. Table B.7 shows GA
speedups in various situations. The values of GA speedups are less than the speedups
when g = o (Table B.3) by 43.75%. As it is shown in Figure 7.16, GA speedups still

have the same tendency as as the corresponding ETF heuristics. There exist fractional

BAComm2ETF
1.8 $ACommETFR

n

9

m
Oxx+

Speedup

[+X:]

06

0.4 s L n 1 L f
M, M, M3 LA My M
Models

Figure 7.16: Average speedup with respect to number of nodes in graphs

speedups of GA when ETF speedups are also fractional, i.e. the final schedule is
longer than its sequential time equivalent. This happens when g > o, mostly under
model M| and Mj. That is because the existing ETF heuristics do not take gaps
into account. Such an approach may generate too many communication tasks for
the same source. Consequently, idling periods brought by gaps are unavoidable and
hence lengthen the schedule. Obviously, speedup decreases with decreasing gaps.
Table B.8 lists GA’s improvements compared to corresponding ETF heuristics.
The GA achieves positive improvements in every test case with g > 0. The average

improvement is 15.85%. Figure 7.17 makes this point clear. This figure compares

132

Improvements(%}

25 F

%

Graph Numbers Graph Numbers.

(a) P=4 (b) P=8

Figure 7.17: Average Improvements of GA performance under different models (g >

0)

GA’s average speedups (Equation (7.6)) on each graph under different models. As
a matter of fact, the length of gaps is one of the factors that impact a GA’s perfor-
mance. When the gap is increased from 15 to 80, GA’s improvement is increased by
142.88%, on average. Furthermore, curves corresponding to different values of gaps
are distributed separately without any intersections. According to the results, the
algorithm is expected to gain more improvements when the gaps are larger. This
is verified by all 10 graphs. Still, GA performs better when the delays caused by

communication overheads are more significant when g > o.

7.5.5 Processor assignments

The algorithm proposed in Chapter 6 is tested on two sets of graphs: SSG and
RGNOS. Average makespan are calculated after 50 runs of each problem instance.

We do not insert any specific individuals into the initial generations so as to evaluate

133

the genetic algorithm thoroughly.

According to the speedups of all algorithms when scheduling SSG, GA is always
superior to ETF heuristics.

Note, there exists d,, = 1 especially under models (M; and M;) with large com-
munication costs. When §,, = 1, the speedups of the ETF heuristics are less than 1.
The principle of ETF heuristics is to make use of as many processor working as possi-
ble. Tasks are always distributed to different processors. In this case, it is impossible
for these heuristics to generate a schedule which uses only one processor. However,
such a processor assignment may be optimal for some graphs with relatively com-
plicated structures, as separating two consecutive tasks could bring in unnecessary
delays via extra communications. This makes it difficult to yield a schedule with a
speedup greater than 1 by simply re-arranging the communications. But, the proces-
sor assignment GA is always able to return a schedule with a speedup greater than

1.

Speedup
S

" N
[} 10 20 30 40 50 60 70

Figure 7.18: Average speedup of different algorithms when scheduling SSG

134

The comparison of the average speedups of three algorithms with respect to dif-
ferent graphs is illustrated in Figure 7.18. GA gains 20.6% higher speedups than
2ETF.

We also apply the GA to schedule RGNOS, to observe how the graph character-
istics and the model parameters impact the algorithm’s performance. GA generates

better schedules than the ETF heuristics. On average, GA speedups are 13% better

than 2ETF’s.

§5 v T T T ™

GA
2ETF x
1 ol
45
4 -
£ 15 oo -
g 35] ’fl
i ; '
\\ = 10 1

25 \\

2 b .'\\, .

15 \\,M_._.~_.4 s f

! "J'T M, M‘a M‘l M.s M‘a ML| ;"? ”‘a ":4 “ls Mls

Models . Modeais
(a) Average speedup (b) Average improvement compared to 2ETF

Figure 7.19: Comparisons between models

Figure 7.19(a) compares average speedup with respect to 6 models (M, Ma, ..., Ms).
It can be seen that the greatest speedup was achieved under model M,, while the
lowest was under M,. Higher speedup values are obtained when there are more pro-
cessors or when there are lower communication costs, i.e. smaller latency or smaller
overheads. The difference between GA and 2ETF is shown in terms of average im-
provement in Figure 7.19(b). The best improvement is achieved when L, o and P

are all at their highest (M;s). In cases where communication cost dominates, the

135

difference between GA and 2ETF becomes more significant.

The tendency of speedup decreasing with increasing p is observed (with one ex-

ception at p = 1) in Figure 7.20(a). GA speedup increases by 11.1% when parallelism

decrease from 5 to 2. In the same way, it is shown in Figure 7.20(b) that GA speedup

decreases for graphs with more nodes. The average speedup decreases by 24.8% when

the number of nodes increases by a factor of 5. In brief, the GA gains higher speedup

28 T T T T T 32 T T T T —

27

26
28 Fooe

26 b

PYY S

Speadup

24

i i i
Average Spestup

23 e

22

221

GA —+— GA ——
2ETF -enn 2ETF e

ETFR —-x-- ETFR --a-

0) P 3 . s s 0 Py %0 150 P 250
Parakelism Number of Nodes
(a) With respect to p {(b) With respect to N,

Figure 7.20: Comparisons of average speedups

values on less complicated graphs.

According to the results in this section, the algorithm proposed in Chapter

is able to find a better schedule than both ETF heuristics. It is possible for this

algorithm to reach the optimal processor assignment which is not reachable by other

heuristics. Furthermore, various settings of the scheduling problems leads to different

performances of this algorithm.

136

7.6 Summary

This section has introduced the basic methodology of the experiments. The bench-
mark sets of graphs are discussed. We also list all LogP model instances used in the
experiments. In addition, three performance measures are explained.

There are 2 genetic algorithms proposed in this thesis. These algorithms are
evaluated in 4 parts. All the results are recorded and analyzed in detail.

The results indicates that both algorithms have advantages over the existing
heuristics for scheduling under LogP. The algorithms perform differently in various
scheduling environments.

The average speedup value gained by the communication arrangement algorithm
(among three sets of test graphs) is higher than the corresponding list scheduling algo-
rithm by 7.60%, when the gap is ignored. GA improves the schedules by 12.14%, when
dealing with communications with significant gaps. As for processor assignment, GA
achieves an average improvement of 11.42% when g = 0. Both algorithms performs

better when the delay caused by communication overheads are more significant.

137

Chapter 8

Conclusions and Future Work

In Chapter 3, we said that the goal of this thesis is to schedule general graphs,
on homogeneous multiprocessor systems, under the LogP model. The major contri-

butions of this thesis are two approaches to scheduling using GAs:
1. Communication management;
2. Processor allocation.

In each case, the scheduling problem were formalized as a single objective op-
timization problem. The objective functions for communication management and
processor allocation were both based on the makespan of the schedules described in
Chapter 2.

Now that all the details have been presented in Chapter 4, 5 and 6, it is time to
wrap up. Section 8.1 lists the essential results obtained in this thesis. Section 8.2

suggests possible directions for future work.

138

2.6 —

@A 2ETF
24 ™ mETFR] —
2.2 — BConm Management GA ! I
2 290 |— &AProc Allocation GA [
3 & i —
9 |
3 1.8 } -
g L
2 |
1.6 !
|
1.4 i
|
|
i
A

1.0

S5G RGNOS

Figure 8.1: Comparison of Speedups

. 8.1 Fundamental Results

This thesis has presented work and progress mainly relevant to the application of

evolutionary computation in static multiprocessor scheduling. Essential results are:

¢ A novel approach, the task graph extension under the LogP model, has been
presented which generalizes communication overheads as tasks. It allows appli-

cation of more general scheduling algorithms to be applied to the problem.

¢ GAs have been applied to multiprocessor scheduling problems under the LogP
model. The GAs presented in this thesis combine established and new tech-
niques in a unique manner. Both GAs provide better solutions than existing
list scheduling algorithms. Figure 8.1 shows the average speedups of four algo-
rithms over two sets of test graphs. GAs clearly outperform the list scheduling

algorithms on the test graphs.

¢ A new concept of gap filling has been introduced to handle significant gaps

139

under the LogP model. It allows search for more possible schedules especially

when significant gaps occurs.

¢ A comprehensive experimental methodology to quantitatively compare the GAs
to the existing approaches has been presented. In particular, several quantita-
tive performance measures as well as sets of test graphs have been proposed.
The experimental results show that both measures and test graphs can reveal

differences in performance.

8.2 Future Directions of Research

This thesis provides a starting point for further work in scheduling general task
graphs under the LogP model, using GAs. Some of the possible directions in future

work are described in this section.

Improving the Genetic Algorithms

Since the scheduling problems for communication management and processor al-
locations are NP-hard, we had to resort to the use of heuristics (list scheduling algo-
rithms) and meta-heuristics (genetic algorithms). The algorithms presented in this
thesis work reasonably well in practise, but there is scope for improvement in the

followings:

1. One-to-one Encoding

140

The encoding methods used in this thesis only assure that identical chromo-
somes correspond to identical candidate solutions. But, one solution is repre-
sented by more than one chromosomes. It would be desirable to design encoding
methods which utilize one-to-one mapping. For instance, we can add restrictions

on the encoding methods. The new encoding should remain unbiased.

. Simpler Decoder

Current decoders use a list scheduling algorithm to generate the exact schedule
in order to evaluate each individual. Most computation time of the genetic
algorithms are spent in the decoders. One way to improve the decoder is to
find another measure that can be obtained without the exact schedule and can

reflect the schedule’s makespan.

. Adaptive Parameters

The GA are based on the SGA. Most parameters are determined prior to evolu-
tion. For example, the crossover and mutation rates and the number of genera-
tions are all set in advance. These parameters can actually be changed according

to the convergency rate or diversity of the population.

Combining Communication Management and Processor Allocation

Throughout this thesis, we have presented communication management and pro-

cessor allocation algorithms as two distinct algorithms, operating one after the other.

It may be possible to combine them into a new algorithm. In this case, the new

algorithm will have be independent of ETF strategies.

141

Figure 8.2: Combined GAs for Scheduling under the LogP model

For instance, these two algorithms can be combined into a two-level hierarchy.
Figure 8.2 shows the framework of such a hierarchy. Communication management
algorithm cannot be used to as an alternative to the evaluation of the processor allo-
cation algorithm. Then, the communication tasks of each individual within a specific
generation of the processor assignment algorithm are re-arranged to generate better
schedules. The new makespans are used in the reproduction procedures. However,
such an evaluation can be executed at each generation due to the complexity of the
algorithm. In the same manner, the population size and the number of generations
of the communication management algorithm would be lower than usual.

An interesting combination would introduce another representation methodology.
The new encoding should allow an individual to include both processor assignments
and task ranks. The key issue of developing such an encoding is the embedding of

the task ranks, which are usually determined after the processor assignment is set.

142

Multi-objective Genetic Algorithms

Decreasing either communication costs or computational costs may leads to a
better schedule. However, the communication costs and the computational costs for
a given graph conflict with each other. Using these costs as two objectives, we are
able to apply a multi-objective genetic algorithm to the scheduling problem under
the LogP model.

The challenge of such an approach is to determine the objective function. The two
objective functions should be easy to obtain. In addition, it must be proved that the
functions are able to evaluate the makespans of the potential schedules. As a matter

of fact, some straightforward objective functions may not work for this problem.

Other Heuristics

While the genetic algorithms are clearly well suited to the scheduling problem
under LogP and extending a task graph helps to simplify the problem, it would be
interesting to try other heuristics as well.

List scheduling algorithm is a promising candidate due to its lower complexity.
One possible extension is to find new task ranking rules based on the results pro-
duced by the GAs. The difference between the new list scheduling algorithm and
the existing algorithm is that the new one treats the communication tasks with the
same seriousness as the computational tasks, by extending the task graph. This is
a much more ambitious approach with potentially greater rewards due the reduced

computation time.

143

Thorough Evaluations

The experiments have proved that the algorithms presented in this thesis can han-
dle various conditions of scheduling under the LogP model. However, the experiments
are not as organized as the experiments suggested in [32].

The test graphs used in this thesis are from different researchers. There are not
any specific benchmarks for scheduling under the LogP model. A comprehensive test
set, is desired.

Instead of developing an entirely new test set, another interesting approach is to
adapt the algorithms to SDM models. Most parts of the algorithms are unrelated to
the model except for the decoder. In that case, the algorithms can be examined on
some widely used test sets, such as Kwok’s benchmarks [32].

Besides, a big challenge for the evaluation is the comparison of schedules obtained
for program graphs against program execution times on a contemporary machine

preserving properties of the LogP model.

144

Appendix A

Benchmark Graphs

145

[Graph [Ny Ne Ny H Aout tcp tseq J
n05 5 4 14.600 3 1.333 66 73
nl0 10 20 9.800 3 3.333 63 98
nl5 15 28 10.800 4 2.333 88 162
n20 20 29 8.600 5 1.933 105 172
n25 25 49 8.160 6 2.722 140 204
n30 30 77 9.500 6 3.080 158 285
n35 35 98 10457 6 3.379 157 366
n40 40 117 10.450 6 3.545 161 418
n45 45 142 10844 7 4.057 215 488
n50 50 147 11.140 8 3.675 231 557
n55 55 171 11.455 7 3.886 212 630
n60 60 197 10.633 8 4.477 243 638
n65 65 235 9.908 10 4.196 296 644
n70 70 300 10.314 9 5.172 280 722
graphl 92 149 31.098 20 1.987 1070 2861
graph?2 94 160 29 20 2105 1010 2726
graph3 94 154 30.957 20 2.081 1008 2910

graphd 93 152 31.108 20 2 1012 2893
graph5 88 148 30920 20 2.085 990 2721
graph6 98 155 32194 20 2214 1085 3155
graph?7 95 163 26.621 20 2.012 919 2529
graph8 79 125 30.354 20 1.923 1024 2398
graph9 84 135 30.762 20 1.957 1003 2584
graphl0 | 96 164 32.833 20 2.158 1035 3152
graphll | 243 1730 91.671 20 8.084 3510 22276
graphl2 | 244 1677 97.004 20 7.588 3491 23669
graphl3 | 259 1988 90.127 20 8.148 3324 23343
graphl4 | 253 1848 90.375 20 8.105 3398 22865
graphl5 | 243 1768 97.189 20 7.789 3504 23617
graphl16 | 229 1618 91.624 20 7.632 3297 20982
graphl7 | 289 2250 88.363 20 8.621 3427 25537
graphl8 | 228 1593 89.785 20 7.622 3430 20471
graphl9 | 244 1685 96.086 20 7.590 3549 23445

graph20 | 246 1754 89.423

rip50 50 206 54.480
ripl00 100 681 48.300
ripls0 150 1541 50.453
r1p200 200 1964 50.945
r1p250 250 3731 51.776
r2p50 50 115 47.240
r2pl00 100 378 50.850
r2pls0 150 884 50.707
r2p200 200 2760 52.900
r2p250 250 3100 53.260
r3p50 50 164 56.600
r3pl100 100 556 49.650
3p150 150 1173 51.760
r3p200 200 1655 49.810
r3p250 250 2406 49.996
r4p50 50 182 50.840
r4p100 100 507 52.730
r4p150 150 1017 51.233
r4p200 200 1483 45.806
rdp250 250 2294 50.664
r5p50 50 149 55.300
r5p100 100 478 44.960
r5pl150 150 1077 47.960
r5p200 200 1757 50.875
r5p250 250 2215 48.572

7.901 3297 21998

5.024 336 2724

10.984 468 4830

12.230 560 7568

11.353 687 10189
20.277 598 12944
5.227 331 2362

4.447 614 5085

9.609 589 7606

16.331 613 10580
16.848 732 13315
5.125 388 2830

6.318 544 4965

10.200 667 7764

9.851 787 9962

11.680 719 12499
4.667 435 2542

5.633 672 5273

8.071 681 7685

10.669 697 9161

11.356 833 12666
5.731 524 2765

6.208 538 4496

12.239 480 7194

9.346 637 10175
10.649 684 12143

— p— — (]
DOXENSSPEOSSONNO©EoIGe S o AN

Table A.1: Characteristics of Benchmark Graphs

146

Appendix B

Experiment Results

[IL M,] My I M | My | Ms ! Mg]
Graphs |[51 i 1 & 55 | By [P 51 82 1 8y dy | I 52]
nls 1.976 1.976 0.814 0.930 0.856 1.013 1.976 1.976 0.814 0.905 0.856 1.019
n20 1.954 1.954 1.096 0.961 1.098 0.920 1.977 1.977 1.096 0.901 1.096 1.042
n25 1.578 1.557 0.730 0.675 0.774 0.676 1.578 1.557 0.729 0.735 0.775 0.833
n30 1.840 1.892 0.690 0.690 0.690 0.770 1.938 1.996 0.790 0.847 0.840 0.879
n3s5 1.969 2.074 0.635 0.756 0.635 0.777 2.322 2.345 0.970 0.959 1.010 1.078
n40 2.152 2.245 0.719 0.764 0.724 0.777 2.683 2.660 0.886 0.966 0.886 0.987
n45 2.167 2.242 0.629 0.723 0.629 0.727 2.478 2.551 0.811 0.872 0.811 0.915
n50 2.160 2.323 0.731 0.797 0.815 0.807 2.676 2.618 0.977 0.906 1.002 0.953
n55 2.466 2.689 0.675 0.819 0.815 0.849 3.223 3.159 0.905 1.031 1.000 1.038
n60 2.156 2.225 0.647 0.688 0.654 0.695 2.671 2.686 0.756 0.903 0.857 0.952
n6s 1.855 1.901 0.581 0.650 0.596 0.618 2.215 2.279 0.639 0.800 0.661 0.849
n70 2.074 2.135 0.500 0.568 0.500 0.575 2.717 2.745 0.732 0.777 0.753 0.808

5y : EGAcomeETF b2 : JGAcommETFR

Table B.1: GA Speedup of Communication Arrangements of SSG (g = o).

l i M, 1 M, [M3 | My [M I Mg]
Graphs |lI" "a) ag | ay ag | o) ay | o ag | ay o | oy ag |
nls 2.381 1.205 8.716 12.870 9.498 11.111 2.381 1.205 8.716 7.223 9.478 2.472
n20 2.200 5.333 5.988 18.265 0.000 17.621 3.333 4.396 3.681 15.111 0.000 20.290
n25 3.522 0.750 12.097 12.426 9.760 17.962 3.515 0.758 11.969 11.380 9.832 8.649
n30 4.975 3.455 3.505 13.065 0.242 17.769 5.712 2.864 12.200 7.767 9.787 10.431
n35 4.667 6.154 2.867 16.204 1.370 12.959 9.431 4.258 13.276 8.921 10.744 8.737
n40 2.895 8.281 8.003 16.805 7.384 17.059 8.347 4.758 4.453 7.118 1.255 9.272
n4s 8.102 8.563 6.506 14.122 3.362 15.491 7.099 2.878 10.812 16.084 7.099 12.579
n50 3.053 9.509 12.727 18.190 16.974 17.823 4.950 3.277 10.636 9.769 6.221 10.893
ns55 5.030 6.276 4.111 15.772 7.311 18.818 6.905 2.722 3.589 14.659 7.080 12.046
n60 4.548 4.721 11.532 15.881 6.064 14.754 5.953 5.367 7.457 8.248 15.915 4.651
n65 5.362 8.446 12.510 16.894 13.056 12.774 7.711 2.880 12.235 7.651 12.972 8.917
n70 6.401 9.343 11.036 16.092 8.497 14.847 7.733 3.993 10.381 9.386 10.041 9.262

1 XGACOmMm2ETF2ETF 92 ®GAComm2ETF,2ETF

Table B.2: Improvements of GA on SSG, compared to the original heuristic that
produces the corresponding processor assignments

147

r I M, | My T M3 | My | Ms | Ms
Graphs || &, 5 | & % 1 & 2 1 & 2 I & S 1 & %

1 2.556 2.600 1.759 1.790 1.836 1.878 2.821 2.794 1.855 1.943 1.939 2.110
2 2.644 2.584 1.629 1.714 1.712 1.792 2.799 2.784 1.816 1.878 1.866 2.059
3 2.706 2.778 1.825 1.878 1.966 1.917 3.041 3.016 2.003 1.997 2.192 2.221
4 2.619 2.606 1.680 1.783 1.744 1.839 3.040 2.990 1.792 1.968 1.888 2.114
5 2.539 2.593 1.667 1.681 1.765 1.867 2.852 2.866 1.819 1.901 1.940 2.071
6 2.694 2.752 1.803 1.854 1.941 1.925 3.024 3.041 1.974 1.947 2.096 2.008
7 2.625 2.733 1.617 1.761 1.707 1.852 2.925 2.958 1.713 2.004 1.931 2.174
8 2.235 2.226 1.473 1.518 1.593 1.639 2.429 2.405 1.562 1.591 1.711 1.768
9 2.409 2.420 1.652 1.582 1.678 1.747 2.608 2.616 1.624 1.787 1.777 1.965
10 2.886 2.882 1.940 1.958 2.047 2.031 3.200 3.197 1.995 2.214 2.235 2.372
il 3.311 3.287 1.739 1.895 1.732 1.890 5.173 5.229 2.810 3.183 2.814 3.127
12 3.356 3.388 1.837 1.980 1.827 1.991 5.211 5.266 2.961 3.258 2.892 3.382
13 3.368 3.430 1.663 1.814 1.670 1.809 5.616 5.380 2.683 3.089 2.772 3.143
14 3.344 3.451 1.711 1.862 1.681 1.865 5.195 5.451 2.809 3.086 2.647 3.183
15 3.333 3.354 1.815 1.910 1.770 1.910 5.308 5.301 2.809 3.182 2.957 3.224
16 3.355 3.382 1.762 1.903 1.766 1.889 5.414 5.222 2.904 3.180 2.861 3.136
17 3.401 3.417 1.672 1.787 1.680 1.775 5.356 5.502 2.710 3.016 2.671 3.088
18 3.222 3.265 1.707 1.845 1.738 1.840 4.951 4.823 2.726 3.044 2.788 3.114
19 3.411 3.348 1.815 1.941 1.791 1.963 5.406 5.327 2.933 3.204 3.063 3.232
20 3.350 3.440 1.763 1.858 1.776 1.878 5.411 5.527 2.899 3.068 2.784 3.158

81:8c4comm2ETF 92 8cAcommETFR

Table B.3: GA Speedup of Communication Arrangements of R20L (g = o)

{ JJ[M, q My T M3 I My ! M i Mg]
Graphs a ag | oy a | o ay |~ o az | a az | ay ay |
1 0.489 0.159 4.292 2.729 4.562 3.281 1.249 0.284 4.263 2.154 4.828 3.137
2 1.630 1.701 2.995 1.384 2.361 2.102 2.307 0.609 5.403 5.975 4.697 8.189
3 0.959 0.317 1.407 3.623 2.450 1.827 0.847 0.635 5.481 3.770 6.848 5.329
4 0.473 0.716 2.011 1.602 2.797 1.395 0.782 0.573 4.678 3.115 4.883 4.585
5 1.486 0.616 6.719 4.122 5.729 4.448 1.632 0.784 7.096 7.297 6.918 7.072
6 1.175 0.297 3.178 3.071 4.855 3.284 1.215 0.615 5.759 4.630 4.650 4.276
7 0.362 0.072 1.444 3.370 2.017 1.212 1.181 0.717 2.734 3.289 3.392 4.087
8 0.540 0.783 3.368 1.064 2.055 4.180 1.202 0.804 1.996 3.422 4.832 5.333
9 1.515 0.958 6.515 1.843 6.985 2.900 2.397 0.345 1.328 4.175 5.879 5.141
10 0.720 0.114 8.121 2.885 3.237 2.385 0.897 0.303 5.860 3.545 4.308 4.868
11 1.392 1.723 8.748 3.921 6.193 3.195 3.279 2.075 10.926 3.721 12.253 7.047
12 1.626 1.633 4.428 2.603 2.231 1.971 2.042 1.258 10.968 4.319 9.612 5.592
13 2.171 0.755 4.440 0.679 4.102 1.240 2.980 2.071 10.734 5.384 8.182 3.501
14 1.427 0.603 | 4.926 1.199 | 1.989 1.471 | 2.805 1416 | 10.559 6.635 | 11.803 5.574
15 1.490 1.424 6.243 2.029 1.553 2.369 3.230 1.520 5.729 5.292 10.117 3.255
16 1.332 1.265 5.453 1.848 2.623 1.726 3.258 1.441 6.593 4.719 10.052 5.062
17 0.929 0.998 5.751 1.073 4.459 0.291 2.395 2.006 15.408 3.685 6.803 3.399
8 2.510 1.239 | 5.611 _ 2.390 | 7.765 1508 | 3.433 1.651 | 10.135 5588 | 10.782 _ 4.658
19 1.733 1.537 | 4.136 2.722 | 4.147 2.947 | 2.298 1.554 [10.5673 6.709 | 11.199 5.755
20 1.477 0.935 4.825 2.743 4.239 2.571 2.154 1.443 8.507 3.875 9.981 5.862
XL XGACOomMmMIETF2ETF %2 *GAComm2ETF2ETF

Table B.4: Improvements of GA on R20L, compared to the original heuristic that
produces the corresponding processor assignments

l il My | Ma I M3 My | Ms | Mg]
Graphs |51 w5 Y T % 5 ;PSS E S %]
T1p050 || 1.166 3.034 | 0.000 _ 9.950 | 0.000 _ 9.950] 4.008 2.921 | 0.000 _ 7.973 1.394 7.171
T1p100 || 3.105 5.519 | 5704 14.342 | 0.490 14.342 | 6.154 4.592 | 14.804 10.013 | 11.099 _ 10.479
ripi50 || 0.000 5.033 | 3.280 13.443 | 5.351 13.443 | 1.754 _3.223 | 0.000 _ 8.606 | 8.826 __ 7.546
rip200 || 0.855 5.286 | 7.583 14.113 | 5106 14.126 | 1.826 _ 5.963 | 15.526 _ 6.013 | 19.157 _ 5.972
T1p250 || 1.108 _ 6.939 | 3.142 15619 | 6.204 15.695 | 4.493 _4.907 | 14.166 _ 0.417 | 11.874 __ 8.384

r3p050 2.361 3.596 1.956 11.696 6.469 15.590 3.979 1.639 16.355 13.383 18.641 14.650
r3pl00 3.525 4.046 11.197 14.215 4.771 13.288 4.789 2.535 5.524 12.702 5.553 6.957
r3pl50 1.362 3.603 5.772 13.680 7.601 15.161 3.259 2.493 14.157 10.342 15.386 10.107
r3p200 3.391 5.544 4.886 13.358 8.300 14.555 5.121 3.551 17.996 13.397 4.354 9.284
r3p250 0.698 5.192 6.220 14.533 8.669 14.180 4.379 4.254 19.666 7.936 8.338 6.792
r53p050 2.358 2.345 3.184 11.854 11.734 11.888 1.289 0.930 5.142 11.461 1.061 9.669
r5pl00 1.264 3.189 9.232 15.591 4.283 15.353 4.530 2.797 7.403 10.794 11.956 9.573
5p150 3.611 5.135 14.864 15.473 14.116 14.466 4.353 3.925 6.485 11.172 8.375 13.219
r5p200 2.418 5.971 8.728 14.839 5.731 14.462 4.929 2.784 12.698 10.128 10.879 8.753
r5p250 4.830 4.641 10.658 14.139 10.814 14.484 6.616 4.797 9.741 10.184 10.934 10.489

81 8gacomm2ETF 92 8GAcommETFR

Table B.5: GA Speedup of Communication Arrangements of RGNOS (g = o)

148

l !_LL M, I Ma 1 M;] M, 1 Ms 1 Ms 1
Graphs ay oy | ay ag | o) ag | ag ay | oy ag | T az |
rlp050 1.166 3.034 0.000 9.950 0.000 9.950 4.008 2.921 0.000 7.973 1.394 7.171
rlpl00 3.105 5.519 5.704 14.342 0.490 14.342 6.154 4.592 14.804 10.013 11.999 10.479
ripl50 0.000 5.033 3.280 13.443 5.351 13.443 1.754 3.223 0.000 8.606 8.826 7.546
rlp200 0.555 5.286 7.583 14.113 5.106 14.126 1.826 5.263 15.526 6.013 19.157 5.972
r1p250 1.108 6.939 3.142 15.619 6.204 15.695 4.493 4.907 14.166 9.417 11.874 8.384
r3p050 2.361 3.596 1.956 11.696 6.469 15.590 3.979 1.639 16.355 13.383 18.641 14.650
r3pl00 3.525 4.046 11.197 14.215 4.771 13.288 4.789 2.535 5.524 12.702 5.553 6.957
r3pls0 1.362 3.603 5.772 13.680 7.601 15.161 3.259 2.493 14.157 10.342 15.386 10.107
r3p200 3.391 5.544 4.886 13.358 8.300 14.555 5.121 3.551 17.996 13.397 4.354 9.284 |
r3p250 0.698 5.192 6.220 14.533 8.669 14.180 4.379 4.254 19.666 7.936 8.338 6.792
r5p050 2.358 2.345 3.184 11.854 11.734 11.888 1.289 0.930 5.142 11.461 1.061 9.669
r5pl100 1.264 3.189 9.232 15.681 4.283 15.353 4.530 2.797 7.403 10.794 11.956 9.573
r5pl50 3.611 5.135 14.864 15.473 14.116 14.466 4.353 3.925 6.485 11.172 8.375 13.219
r5p200 2.418 5.971 8.728 14.839 5.731 14.462 4.929 2.784 12.698 10.128 10.879 8.753
r5p250 4.830 4.641 10.658 14.139 10.814 14.484 6.616 4.797 9.741 10.184 10.934 10.489

@1 G AComm2ETF,2ETF @2 X*GAComm2ETF,2ETF

Table B.6: GA Improvements on Communication Arrangements of RGNOS (g = o)
M1 Mg T T

r |I My [M3

Graphs |85 o8 I3 53 51 ST .29 S %1 & 52]
0.764 0.753 1.178 1.211 1.616 1.670 0.837 0.775 273 1.198 1.771 1.822
0.733 0.660 1.152 1.122 1.578 1.622 0.795 0.758 240 1.194 1.661 1.770
0.915 0.782 1.379 1.159 1.858 1.723 0.862 0.804 339 1.226 1.865 1.876
0.687 0.650 1.099 1.095 1.595 1.645 0.669 0.672 104 1.088 1.686 1.826
0.738 0.645 1.147 1.082 1.596 1.650 0.760 0.742 204 1.127 1.674 1.781
1
1
1
1

e

0.797 0.720 1.260 1.123 1.747 1.746 0.813 0.800 291 .187 1.836 1.838
0.663 0.644 1.074 1.072 1.544 1.630 0.709 0.690 134 .077 1.611 1.809
0.685 0.615 1.053 0.974 1.437 1.420 0.725 0.632 112 .017 1.568 1.500
0.692 0.701 1.085 1.050 1.538 1.538 0.721 0.714 147 .091 1.659 1.643
0.861 0.851 1.347 1.373 1.882 1.882 0.989 0.902 .496 1.365 2.038 2.034

o] o] o |] | | el] e

o) ©| ool < o ol | wof nof s

818G acomm2ETF 92 SGAcommETFR

Table B.7: GA Speedup of Communication Arrangements of R20L (g > o)

[M [ML M M Mg [
Graphs |['™ ay az | ay az | ay g 3] az | [T} az | ay ag |
11.147 26.079 6.342 25.306 3.753 10.557 18.839 9.810 14.154 3.129 7.762 1.899
19.625 28.178 15.548 24.967 5,722 12.676 22.588 7.412 20.187 4.311 9.198 2.132
14.889 28.280 7.875 21.061 4.170 13.036 19.093 3.157 12.936 1.164 5.264 0.056
18.648 22.054 14.984 22.935 7.247 12.976 20.564 6.928 15.482 2.719 7.675 4.861
16.050 21.844 11.714 19.430 7.133 12.338 23.988 7.287 20.418 1.654 11.743 4.918
13.697 19.480 11.579 14.047 6.433 11.601 16.730 5.486 13.154 1.622 5.534 0.220
12.794 27.913 9.300 24.488 3.059 15.780 14.198 3.143 10.267 3.448 2.879 0.481
18.682 20.419 13.996 18.518 6.037 10.488 14.419 7.903 9.120 4.619 4.852 3.165
18.818 27.368 13.940 22.648 7.351 11.431 8.539 0.401 6.324 4.406 4.502 5.610
24.563 32.374 16.955 29.114 5.531 15.788 20.086 13.180 13.382 1.828 7.013 1.603

S| ©] 0of ~| & enf | eof wof =

X1 AGACOomm2ETF.2ETF 22 *GACOommETFR,ETFR

Table B.8: GA Improvements on Communication Arrangements of R20L (g > o)

{ i M,y T M;] My] My | Ms] Mg]
Graphs |[oy az | T a2 | oy ag | o) ag | o o | oy az |
n05 6.250 6.250 12.048 27.000 1.351 16.092 6.250 6.250 12.048 27.000 16.092 1.351
nl0 12.088 8.046 23.438 56.054 21.600 47.594 12.088 8.046 23.438 56.054 47.594 21.600
nls 1.190 0.000 28.899 22.500 25.837 13.889 1.786 0.602 28.899 19.689 4.908 25.837
n20 3.333 6.452 8.281 30.059 5.471 34.621 3.333 4.396 6.368 32.169 30.918 8.917
n25 5.224 3.788 35.849 40.870 30.137 44.565 7.463 6.061 35.849 34.824 23.881 30.137
n30 6.515 2.321 33.411 40.000 31.159 36.667 6.429 0.701 30.657 21.918 21.271 24.202
n35 10.256 6.915 38.280 36.678 37.329 32.348 6.897 0.613 15.862 12.649 4.188 9.852
n40 8.000 9.360 33.861 36.474 32.905 35.593 5.882 3.030 15.385 10.300 10.493 12.552
nd5 11.837 9.244 | 41.205 37.013 | 39.228 _ 38.539 7.972 _0.064 | 27.704 _ 26.837 | 20.000 24.601
n50 11.278 10.943 36.197 34.778 32.321 33.690 3.653 4.091 12.696 18.209 15.386 6.396
nS55 13.011 6.400 35.252 30.997 24.460 31.072 6.257 3.971 14.457 13.740 15.548 14.053
n60 8.710 5.980 43.986 43.376 39.942 42.061 7.169 6.060 30.263 17.403 11.238 29.492
n65 5.460 11.081 49.171 46.018 48.190 46.109 7.863 0.265 43.902 26.147 22.689 42.449
n70 7.527 7.775 55.487 52.375 54.217 51.051 5.556 0.730 34.423 29.561 26.701 32.270

1 ¥GAa1l,2ETF *2°%GAaUl,ETFR

Table B.9: Improvements of GA on Processor Allocations when Scheduling SSG
(g=o0)

149

[Graphs T M, | M, [Mz | My | Ms [Ms |
T1p050 || 3.586 | 2.003 | 2.001 | 6.221 | 5.147 | 3.130
r1pi00 || 3.221 | 1.415 | 1.415 | 5.836 | 2.226 | 2.257
ripl50 || 3.111 | 1.053 | 1.053 | 5.716 | 1.771 | 1.749
r1p200 || 3.112 | 1.080 | 1.085 | 5.718 | 1.818 | 1.842
r1p250 || 2.777 | 0.800 | 0.796 | 4.993 | 1.338 | 1.314

r2p050 3.413 2.253 2.294 4.690 2.922 3.006
r2pl00 3.522 2.055 2.065 6.100 3.051 3.070
r2pl50 3.329 1.519 1.497 5.681 2.479 2.459
r2p200 2.877 0.857 0.850 5.007 1.411 1.391
r2p250 2.087 0.927 0.920 5.470 1.548 1.564

r3p050 3.492 2.108 2.136 5.164 3.028 3.114
r3pl00 3.351 1.591 1.570 5.103 2.422 2.482
r3pl50 3.178 1.285 1.300 5.237 1.997 2.049
r3p200 3.100 1.192 1.196 5.009 1.978 1.949
r3p250 3.117 1.084 1.086 5.455 1.804 1.754

r4p050 3.356 1.920 1.963 4.509 2.669 2.683
r4plo0 3.292 1.675 1.665 5.089 2.525 2.531
r4pl50 3.276 1.435 1.389 5.119 2.179 2.120
r4p200 3.192 1.216 1.250 5.336 2.029 1.959
r4p250 3.036 1.126 1.135 4.951 1.879 1.830

r5p050 3.052 1.999 1.984 3.739 2.427 2.548
r5p100 3.075 1.586 1.630 3.982 2.165 2.227
5pl50 2.942 1.282 1.299 4.486 1.860 1.872
r5p200 3.090 1.150 1.147 4.605 1.802 1.803
r5p250 3.107 1.119 1.135 5.252 1.915 1.916

Table B.10: GA Speedup on Processor Allocations when Scheduling RGNOS (g = o)

L ll M, I My] M3 | My I Ms] Mg]
Graphs || o az | ay az | oy agz | ay az | o) ag | o az |
rlp050 1.671 7.876 14.613 15.622 13.146 15.199 12.084 1.416 16.457 17.259 13.870 16.206
ripl0c 3.027 2.649 19.751 15.465 12.186 15.747 8.923 4.845 24.142 7.036 20.383 9.180
rlpl50 4.683 5.753 10.583 14.369 12.891 14.591 2.737 0.258 16.806 6.429 12.917 6.608
rip200 4.548 4.492 17.322 13.521 15.131 13.863 9.493 4.195 27.395 6.319 29.775 6.418
r1p250 4.288 6.175 11.727 15.258 16.840 15.376 8.853 3.465 25.869 7.216 23.710 5.360
r3p050 4.309 5.974 12.490 12.775 8.816 13.575 5.017 0.543 12.658 1.522 11.759 3.516
r3pl00 3.296 4.849 22.361 14.699 14.269 13.353 8.649 1.330 17.930 7.984 23.372 10.200
3pl150 2.175 3.298 15.142 13.810 15.649 14.685 5.133 1.743 23.767 0.054 22.973 3.273
r3p200 5.223 6.708 13.304 13.331 16.636 14.355 10.647 3.259 27.381 12.491 21.916 4.138
13p250 3.480 4.922 12.940 13.696 18.932 13.635 8.780 3.478 25.743 6.164 13.510 2.612
r5p050 2.905 3.422 13.639 12,768 18.651 11.411 4.696 1.785 15.098 0.317 17.708 1.340
15p100 2.708 2.837 16.896 13.657 15.604 14.080 6.993 1.302 16.004 2.973 20.869 0.902
r5p150 6.074 4.159 20.659 12.052 23.418 12.714 6.932 3.167 23.075 3.349 22.239 1.341
15p200 4.081 5.917 14.370 13.609 12.534 14.392 7.709 0.789 20.072 7.014 19.947 5.179
15p250 6.552 5.535 15.606 13.348 19.555 13.687 7.289 4.375 21.401 9.540 23.101 8.326

Table B.11: Improvements of GA on Processor Allocations when Scheduling SSG
(g=0)

150

Bibliography

[1] I. Ahmad and M. K. Dhodhi. Multiprocessor scheduling in a genetic paradigm.

Parallel Computing, 22:395-406, 1996.

[2] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman. LogGP: Incor-

[4]

[5]

(6]

[7]

(8]

(9]

porating long messages into the LogP model for parallel computation. Journal
of Parallel and Distributed Computing, 44(1):71-79, 1997.

A. J. Anderson. Multiple processing : a system overview. Prentice/Hall Interna-
tional, 1989.

A. Auyeung and a. H. Iker Gondra. Multi-heuristic list scheduling genetic al-
gorithm for task scheduling. In The 18 Annual ACM Symposium on Applied
Computing, pages 721-724, 2003.

J. Blazewicz, K. H. Ecker, E. Pesch, G. Schmidt, and J. Weglarz. Scheduling

Computer and Manufacturing Processes. Springer-Verlag, Heidelberg, second
edition, 2001.

C. Boeres, G. N. da Cunha, and V. E. F. Rebello. On minimising the processor
requirements of logp schedules. In Furo-Par, pages 156-165, 2001.

C. Boeres, A. Nascimento, and V. E. F. Rebello. Scheduling arbitrary task graphs
on logp machines. In Euro-Par, pages 340-349, 1999.

C. Boeres, A. Nascimento, and V. E. F. Rebello. Towards an effective task
clustering heuristic for logp machines. In IPPS/SPDP Workshops, pages 1065—
1074, 1999.

C. Boeres, V. E. F. Rebello, and D. B. Skillicorn. Static scheduling using task
replication for logp and bsp models. In Furo-Par, pages 337-346, 1998.

151

[10] R. A. Brualdi. Introductory Combinatorics. Elsevier, New York, 1997.
[11] P. Brucker. Scheduling Algorithms. Springer-Verlag, Berlin, third edition, 2001.
[12] E. Cofftman. Computer and Job-Shop Scheduling Theory. Wiley, New York, 1976.

[13] A. L. Corcoran and R. L. Wainwright. A parallel island model genetic algorithm
for the multiprocessor scheduling problem. In Selected Areas in Cryptography,
pages 483-487, 1994.

[14] R. Corréa, A. Ferreira, and P. Rebreyend. Scheduling multiprocessor tasks with
genetic algorithms. IEEE Transactions on Parallel and Distributed Systems,
10(8):825-837, August 1999.

[15] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser, E. Santos,
R. Subramonian, and T. von Eicken. Logp: Towards a realistic model of parallel

computation. In Principles Practice of Parallel Programming, pages 1-12, 1993.

[16] D.Ackley. An empirical study of bit vector function optimization. In Genetic

Algorithms and Simulated Annealing, pages 170-215. Morgan Kaufmann, 1987.

[17] L. Finta and Z. Liu. Scheduling of parallel programs in single-bus multiprocessor
systems. Technical Report RR-2302.

[18] L. Finta and Z. Liu. Complexity of task graph scheduling with fixed commu-
nication capacity. International Journal of Foundations of Computer Science,
8(1):43-, 1997.

[19] D. K. Friesen. Tighter bounds for Ipt scheduling on uniform processors. SIAM
J. Comput., 16(3):554-560, 1987.

[20] A. Gerasoulis and T. Yang. On the granularity and clustering of directed acyclic
task graphs. IEEFE Trans. Parallel Distrib. Syst., 4(6):686-701, 1993.

[21] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley Longman Publishing Co., Inc., 1989.

[22] M. Golub and S.Kasapovic. Scheduling multiprocesso tasks with genetic algo-
rithms,. In The International Conference Applied Informatics, pages 273-278,
Insbruck, Austria, February 18-21 2002.

152

[23] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal of
Applied Mathematics, 17(2):416-429, 1969.

[24] E. S. H. Hou, N. Ansari, and H. Ren. A genetic algorithm for multiprocessor
scheduling. IEEE Transactions on Parallel and Distributed Systems, 5(2):113-
120, Febuary 1994.

[25] J.-J. Hwang, Y.-C. Chow, F. D. Anger, and C.-Y. Lee. Scheduling precedence
graphs in systems with interprocessor communication times. SIAM J. Comput.,
18(2):244-257, 1989.

[26] K. Hwang and F. A. Briggs. Computer architecture and parallel processing.
McGraw-Hill, New York, 1984.

[27] T. Kalinowski, I. Kort, and D. Trystram. List scheduling of general task grphs
under logp. Parallel Computing, Special Issue on Scheduling Parallel and Dis-
tributed systems, 26:1109-1128, 2000.

[28] A. A. Khan, C. L. McCreary, and M. S. Jones. A comparison of multiprocessor

scheduling heuristics. In International Conference on Parallel Processing, pages
243-250, 1994.

[29] D. E. Knuth. The Art of Computer Programming, volume 1. Addison-Wesley
Longman Publishing Co., Inc., 3™ edition, 1997.

[30] L. Kort and D. Trystram. Scheduling fork graphs under logp with an unbounded
number of processors. In Furo-Par, pages 940-943, 1998.

[31] I. Kort and D. Trystram. Some results on scheduling flat trees in logp model.
Journal of Information Systems and Operational Research (INFOR), 37(1), 1999.

[32] Y-K. Kwok and I. Ahmad. Benchmarking and comparison of the task

graph scheduling algorithms. Journal of Parallel and Distributed Computing,
59(3):381-422, 1999.

[33] C. Leopold. Parallel and distributed computing. Wiley-Interscience Publication,
New York, N.Y., 2001.

[34] W. Léwe and W. Zimmermann. On finding optimal clusterings of task graphs.
In Parallel Algorithms/Architecture Synthesis pAs 95, pages 241-247, 1995.

153

[35] W. Lowe and W. Zimmermann. Scheduling iterative programs onto logp-
machine. In Furo-Par, pages 332-339, 1999.

[36] W. Lowe and W. Zimmermann. Scheduling balanced task-graphs to logp-
machines. Parallel Computing, 26(9):1083-1108, 2000.

[37) W. Léwe, W. Zimmermann, and J. Eisenbiegler. On linear schedules for task-

graphs for generalized logp-machines. In Furo-Par, pages 895-904, 1997.

[38] B. Maggs, L. Matheson, and R. Tarjan. Models of parallel computation: A
survey and synthesis. In Proc. of the 28th Hawait International Conference on
System Sciences (HICSS), volume 2, pages 61-70, Jan 1995.

[39] R. P. Martin, A. Vahdat, D. E. Culler, and T. E. Anderson. Effects of commu-
nication latency, overhead, and bandwidth in a cluster architecture. In ISCA,
pages 85-97, 1997.

[40] K. Mehlhorn, S. Naher, and C. Uhrig. The LEDA platform of combinatorial and
geometric computing. In Automata, Languages and Programming, pages 7-16,
1997.

[41] M. Middendorf, W. Lowe, and W. Zimmermann. Scheduling inverse trees under
the communication model of the logp-machine. Theor. Comput. Sci., 215(1-
2):137-168, 1999.

[42] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge,
Massachusetts, 1998.

[43] K. Plateau, B. Bouvry, and P. Trystram. Andes: Evaluating mapping strategies
with synthetic programs, 1997.

[44] S.C.S. Porto, J. P. F. W. Kitajima, and C. C. Ribeiro. Performance evaluation of
a parallel tabu search task scheduling algorithm. Parallel Computing, 26(1):73—
90, 2000.

[45] V. J. Rayward-Smith. UET scheduling with unit interprocessor communication
delays. Discrete Applied Mathematics, 18(1):55-71, 1987.

[46] P. Rebreyend, F.E.Sandnes, and G.M.Megson. Static multiprocessor task graph
scheduling in the genetic paradigm: A comparison of genotype representations.

Technical report, Ecole Normale Supérieure de Lyon, 1998.

154

[47] F. E. Sandnes and G. M. Megson. Improved static multiprocessor scheduling us-
ing cyclic task graphs: A genetic approach. In E. H. D’Hollander, G. R. Joubert,
F. J. Peters, and U. Trottenberg, editors, Parallel Computing: Fundamentals,
Applications and New Directions, Proceedings of the Conference ParCo’97, 19-
22 September 1997, Bonn, Germany, volume 12, pages 703-710, Amsterdam,
1998. Elsevier, North-Holland.

[48] G. Sywerda. Uniform crossover in genetic algorithms. In Proceedings of the third
international conference on Genetic algorithms, pages 2-9, San Francisco, CA,
USA, 1989. Morgan Kaufmann Publishers Inc.

[49] A. T. C. Tam and C.-L. Wang. Realistic communication model for parallel
computing on cluster. In IWCC, pages 92—, 1999.

[50] J. Verriet. Scheduling tree-structured programs in the logp model. Technical
Report UU-CS-1997-18, Department of Computer Science, Utrecht University,
Utrecht, the Netherlands, June 1997.

[51] T. Yang and A. Gerasoulis. List scheduling with and without communication
delays. Parallel Computing, 19(12):1321-1344, 1993.

[52] W. Zimmermann, W. Léwe, and D. Trystram. On scheduling send-graphs and
receive-graphs under the logp-model. Information Processing Letters, 82(2):83-
92, 2002.

[53] W. Zimmermann, M. Middendorf, and W. Léwe. On optimal k-linear scheduling
of tree-like graphs for logp-machines. In Euro-Par, pages 328-336, 1998.

155

