New Motion Estimation Techniques and their SIMD

Implementations for Video Coding

Chunjiang Duanmu

A Thesis
n
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy at
Concordia University
Montreal, Quebec, Canada

August 2005

© Chunjiang Duanmu, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-09971-2
Our file Notre référence
ISBN: 0-494-09971-2
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

New Motion Estimation Techniques and their SIMD
Implementations for Video Coding

Chunjiang Duanmu, Ph. D.
Concordia University, 2005

Compression of video signals is of great importance to modern multi-media systems.
In order to achieve efficient data compression, block motion estimation is generally
employed to remove temporal redundancies inherent in video signals and thus, it is a
crucial component of international video coding standards. This thesis aims at developing
techniques to reduce the computational complexity of a given block motion estimation
algorithm without sacrificing its accuracy, to utilize the single instruction multiple data
(SIMD) technique to accelerate a block motion estimation process, and to develop a new
fast block motion estimation algorithm suitable for implementation using SIMD
architecture.

A method to detect blocks that are stationary between successive frames, is
proposed. In this method, when a block is judged as stationary, the search process for
such a block is skipped in the block motion estimation process. The statistical
characteristics of the video sequence are utilized in deciding as to which blocks are
stationary. Simulation studies are carried out showing that this method reduces the
computational complexity of the various block motion estimation algorithms without
sacrificing the accuracy of the original algorithm.

A vector-based fast block motion estimation algorithm, suitable for

implementation on an SIMD architecture, i1s proposed. This algorithm maintains the

i

accuracy and coding efficiency of the full-search algorithm, but the complexity is only a
very small fraction of that of the full-search algorithm. It is also shown that by
implementing the proposed algorithm on an SIMD architecture, the execution time of the
algorithm can be further reduced by about 74%.

The concept of an eight-bit partial sum is introduced so as to take advantage of
the byte-type data parallelism in the existing SIMD architectures. A method of employing
these partial sums to speedup a given block motion estimation process is proposed. The
notion of the eight-bit partial sums is extended to the four-level case and it is shown that
there are fifteen possible methods of utilizing these multi-level partial sums to accelerate
block motion estimation algorithms. It is shown that any of these fifteen methods can
accelerate a given block motion estimation algorithm without any loss of accuracy. The
full-search algorithm is used to determine as to which one of these fifteen methods would
provide the lowest computational complexity in order for it to be chosen to accelerate the
various motion estimation algorithms. Simulation studies have been conducted and the
results show that the proposed scheme is capable of providing a substantial speedup for

the various existing motion estimation algorithms without any loss of accuracy.

v

ACKNOWLEDGEMENTS

This thesis would not have been written were it not for the help of numerous people
throughout the past half-decade.

First and foremost, [would like to express my deepest gratitude to my supervisors,
Dr. M. Omair Ahmad and Dr. M.N.S. Swamy, for their guidance, encouragement, and
support during the course of this research. I very much appreciate the freedom they have
given to explore new ideas and avenues to research. I also would like to record my
sincere thanks to them for spending time with me and correcting the initial drat of this
thesis which resulted in improvement of the presentation. The advice and comments of
the committee members are gratefully acknowledged.

I am indebted to Dr. Wei-Ping Zhu of the Department of Electrical and Computer
Engineering, Dr. A. Shatnawi who was a visiting scholar, and Dr. Yang-Li Wang who
was a visiting scientist in the Center for Signal Processing and Communications for their
fruitful discussions, suggestions and constant moral support.

I would like to thank Dr. H. L. Xiong and Dr. K. L. Du, who were post doctoral
fellows at the Center for their friendship and encouragement. I would also like to
acknowledge the support of Mr. Qinglin Zhang, Mr. Xiaojun Lu, and Mr. Wei Chu, the
graduate students working with my supervisors.

Last but not the least, I am similarly grateful to my wife and my parents. Were it

not for their support, inspiration and love, I would have never gotten to this point.

To my wife and my parents

Vi

TABLE OF CONTENTS

LIST OF FIGURES. ...
LIST OF TABLES ... o
LIST OF ABBREVIATIONS. ...
LIST OF SYMBOLS,

Chapter 1 Introduction.................oooiiii

1.1 Structure of a Video Coding System........... .o
1.2 Scope and Organization of the Thesis.....................ooi,

Chapter 2 Block Motion Estimation Algorithms.............................
2.1 Block Motion Estimation Process and the Full-Search Algorithm........
2.2 Fast Block Motion Estimation Algorithms........................... .
2.3 Performance COmpPariSON.oooiiitaitiii i enn

2.4 SUIMMATY. . oot et e e et e

Chapter 3 A Method for Fast Block Motion Estimation by
Exclusion of Stationary Macroblocks from the

Search Process.........coooviiiii i
3.1 Proposed Method...... ...
3.2 Criterion for the Detection of Stationary Macroblocks.....................
3.3 Adaptive Threshold Value...............
3.4 Simulation Results.....................o R
3.5 SUMIIAIY . .o e e e

Chapter 4 A Vector-Based Fast Block Motion
Estimation Algorithm.........................

4.1 The Vector-Based Motion Estimation Algorithm...........................

vl

4.2
43

4.4
4.5

4.1.1 Formation of Partial Sums

412 Lower Bounds forthe MADo,

413 Fast Method to Compute the Partial Sums
4.1.4 Algorithm

SIMD Implementation of the Proposed Algorithm

Computational Complexity of the Proposed Algorithm

43.1 Computational Complexity of MAD' (V)
foraGven/, 0</<5

432 Computational Complexity to Calculate
the Frame Partial Sums

4.3.3 Computational Complexity of the Algorithm

4.3.4 Theoretical Speedup

43.5 Practical Speedup

Simulation Results

Summary

Chapter 5 Fast Block Motion Estimation with Eight Bit

5.1
52

53

Partial Sums using SIMD Architectures

Eight Bit Partial Sums of Sixteen Luminance Values

Multi-Level Eight-Bit Partial Sums...............o
5.2.1 Formation of Multi-Level Eight-Bit Partial Sums
5.2.2 Upper Bounds forthe SADs............ooii

523 The Methods of Using Multi-Level
Fight-Bit Partial Sums

52.4 Optimal Method of Using Multi-Level
Eight-Bit Partial Sums

525 SIMD Implementation for the Computation of SAD............

Computational Complexity

53.1 Computational Complexity of a Block Motion Estimation
Algorithm Incorporating the Proposed Scheme

532 Theoretical Speedup of a Block Motion Estimation
Algorithm Incorporating Scheme 5.2............................

Vili

63

65

65
66
66
67
73

74

75
81
81
84

86

88

93

5.33 Practical Speedup of a Block Motion Estimation

Algorithm Incorporating Scheme 5.2............................
5.4 Simulation Results. ... T
55 SUMIMATY . .. e,
Chapter 6 CONCIUSION. ..ot
RETETENCES. ...\
Appendix A Block Motion Estimation Algorithms...........................
A.1 Full-Search Algorithm........ ...
A.2 Two-Dimensional Logarithmic Search Algorithm.........................
A.3 Orthogonal Search Algorithm................... ..
A.4 One ataTime Search Algorithm..
A.5 Conjugate Direction Search Algorithm...................... .
A.6 Three-Step Search Algorithm..............co i,
A.7 Four-Step Search Algorithm..................... i
A.8 Unrestrictive Center-Biased Diamond Search Algorithm..................
A9 Predicative Search Area Algorithm...................
A.10 Block-Based Gradient Descent Search Algorithm.........................
A.11 Selective Elimination Algorithm....................oiiiiiiii i,

Appendix B Computational Complexity of Block Motion
Estimation Algorithms.........................

B.1 Computational Complexity of the FSA and the
Multi-Step Search Algorithms..................... i

B.2 Computational Complexity of the SEA. ...

1X

94

Figure 1.1
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7

Figure 2.8

Figure 2.9
Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

LIST OF FIGURES

Video encoder Structure............oooii i 3
Block motion estimation............c.oooiiiiiiiiiiiii 9
Search pattern of the 2-D logarithmic search algorithm............ 12
Search patterns of the orthogonal search algorithm.................. 12
Search pattern of the three-step search algorithm.................... 14
Search patterns of the four-step search algorithm.................... 15
Large diamond search pattern (LDSP).................o o 16
Small diamond search pattern (SDSP)...........ooooiiiiiii 16
Determination of the search area in the predicative search area
algorithm. 17
Rate-distortion performances of the various algorithms............ 23
Percentage of stationary macroblocks for the Trevor sequence.... 27

Percentage of stationary macroblocks for the Foreman
SEQUEIICE. e ittt et e e 27

Percentage of stationary macroblocks for the Miss America
T | £ 4 Lo < 28

Percentage of speedup and error in judgment of proposed
method combined with the FSA for the Salesman
SEQUETICEttt et ettt et e e e 34

Percentage of speedup and error in judgment of proposed
method combined with the FSA for the Hall Objects
ST |11 s o] O PP 34

Percentage of speedup and error in judgment of proposed
method combined with the FSA for the Silent
SEQUEIICE .« e ettt ettt et ettt e e ettt 35

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14
Figure 3.15
Figure 3.16

Figure 3.17

Percentage of speedup and error in judgment of proposed
method combined with the FSA for the Akiyo
01115 1T

Percentage of speedup and error in judgment of proposed
method combined with the FSA for the News
SEQUETICE - - -ttt ne ettt ett e et et et e e e et e e

Percentage of speedup and error in judgment of proposed
method combined with the FSA for the Foreman
SEQUETICE . - et entt et ettt et et et et et e e

Percentage of speedup and error in judgment of proposed
method combined with the FSA for the Trevor
leTe |1 T O

Percentage of speedup and error in judgment of proposed
method combined with the FSA for the Mother & Daughter
C1ET0 1115 o Vot

Percentage of speedup and error in judgment of proposed
method combined with the 3SSA for the Mother & Daughter
011 1S) s LoT T

Percentage of speedup and error in judgment of .proposed
method combined with the 4SSA for the Mother & Daughter
SEQUETICE . .-ttt ettt et ettt e et e et e e e

Percentage of speedup and error in judgment of proposed
method combined with the UDSA for the Mother & Daughter
SEQUETICE . - -ttt et ettt et et et e et et e e

Rate-distortion performances of FSA and proposed method
combined with the FSA for the Salesman
SEQUETICE . . .ttt et ettt ettt et et e et et et e

Rate-distortion performances of FSA and proposed method
combined with the FSA for the Hall Objects
SEQUETICE. -« .« ettt ettt et et e et e et e e et e e

Rate-distortion performances of FSA and proposed method

combined with the FSA for the Silent
SEUEIICE . + vt vt enet et ee e ettt e e e et et e e e e

X1

35

36

36

37

37

38

38

39

41

42

Figure 3.18

Figure 3.19

Figure 3.20

Figure 3.21

Figure 3.22

Figure 3.23

Figure 3.24

Figure 3.25

Figure 4.1

Figure 5.1

Figure A.1

Rate-distortion performances of FSA and proposed method
combined with the FSA for the Akiyo
SEQUETICE . - . .ttt e et e et e e e e e e

Rate-distortion performances of FSA and proposed method
combined with the FSA for the News
SEOUETICE vttt ee e et et te et e et e e e et et et e e

Rate-distortion performances of FSA and proposed method
combined with the FSA for the Foreman
SEQUETICE . .+ttt e et ettt et et et e et

Rate-distortion performances of FSA and proposed method
combined with the FSA for the Trevor
SEOQUETICE . - .« e et e aeetenieeeeeeteeeateseb et et e ebeaeeeanbeeenseeneaanneenne

Rate-distortion performances of FSA and proposed method
combined with the FSA for the Mother & Daughter
SEQUETICE. + .« v+ttt e et et et e et e et e e et e et
Rate-distortion performances of 3SSA and proposed method
combined with the 3SSA for the Mother & Daughter
eTe |11 1 Lot TP
Rate-distortion performances of 4SSA and proposed method
combined with the 4SSA for the Mother & Daughter
SEQUETICE ettt ettt et et et e
Rate-distortion performances of UDSA and proposed method
combined with the UDSA for the Mother & Daughter
SEQUETICEottt ettt et et et e et e ettt et e

Packed word-type subtraction on SIMD registers....................

Packed byte-type addition on SIMD registers........................

Current block B, and its four neighboring blocks B,, B,, B,,

X1t

43

43

44

44

45

45

46

Table 2.1

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 4.5

Table 4.6

Table 4.7

Table 4.8

Table 5.1

Table 5.2

Table 5.3

Table 5.4

Table 5.5

Table 5.6

Table 5.7

LIST OF TABLES

Computational complexity of the various algorithms...............
Fast method to calculate the frame partial sums.....................
A vector-based fast block motion estimation algorithm............

Employment of SIMD technique for the calculations of frame
Partial SUMS.t

Computational complexity of MAD'(V), 0<I<5................

The average number of times per block that MAD' (V) needs to
be calculated in the proposed VFA.................l.

Theoretical speedup of the proposed VFA over the FSA and
SEA without SIMD implementation.................................

Practical speedup of the proposed VFA over FSA and SEA
without SIMD implementation.....................oooiian. ..

Practical speedup of the proposed VFA using SIMD
archifecture.o

Conditions used for the various methods.............................
Computational complexity of the various methods..................

Computational complexity and average number of CPU cycles
per block usingthe FSA.

Computational complexity and average number of CPU cycles
per block using the 2DLSA.

Computational complexity and average number of CPU cycles
per block using the OSA........

Computational complexity and average number of CPU cycles
per block using the OATSA

Computational complexity and average number of CPU cycles
per block using the CDSA..... ...

X1il

64

69

70

71

72

88

89

100

Table 5.8

Table 5.9

Table 5.10

Table 5.11

Table 5.12

Table 5.13

Table A.1

Table A.2

Table A.3

Tabie A.4

Table A.5

Table A.6

Table A.7

Table A.8

Table A.9

Table A.10

Computational complexity and average number of CPU cycles

per block using the 3SSA........... 101
Computational complexity and average number of CPU cycles

per block using the 4SSA. ... 102
Computational complexity and average number of CPU cycles

per block usingthe UDSA............ 103
Computational complexity and average number of CPU cycles

per block using the PSAA 104
Computational complexity and average number of CPU cycles

per block using the BGDSA........... 105
Computational complexity and average number of CPU cycles

per block using the SEA........... 106
Full-search algorithm...................o.. 120
2-D logarithmic search algorithm................................... 121
Orthogonal search algorithm...................... 122
One at a time search algorithm... 123
Conjugate direction search algorithm................................. 124
Three-step search algorithm. ... 125
Four-step search algorithm............................ 126
Unrestricted center-biased diamond search algorithm............... 127
Block-based gradient descent search algorithm...................... 129
Selective elimination algorithm....................................... 130

Xiv

LIST OF ABBREVIATIONS

2DLSA Two-dimensional logarithmic search algorithm

3SSA Three-step search algorithm

4SSA Four-step search algorithm

BGDSA Block-based gradient descent search algorithm

CCITT Consultative Committee of International Telegraph and
Telephone

CDSA Conjugate direction search algorithm

DCT Discrete cosine transform

DWT Discrete wavelet transform

FSA Full-search algorithm

LDSP Large diamond search pattern

MAD Mean absolute difference

MMAD Modified mean absolute difference

MPEG Moving Picture Experts Group

OATSA One at a time search algorithm

OSA Orthogonal search algorithm

PS Practical speedup

PSAA Predictive search area algorithm

PSNR Peak signal to noise ratio

PSTN Public service telephone network

QCIF Quarter common intermediate format

XV

RCC

RUC

SAD

SDSP

SEA

SIMD

TMN

UDSA

VFA

VLSI

Reduction in the computational complexity
Region of uncertainty

Sum of the absolute differences

Small diamond search pattern

Selective elimination algorithm

Single instruction multiple data

Test model near-term: This was the name of the codec
for the simulation model used during the development of
the H.263 video compression standard.

Upper bound

Unrestricted center-biased diamond search algorithm

Vector-based fast block motion estimation algorithm

Very large scale integration

XVl

bxb
(x,)
1.(x,y)
1.(x,)

(x05¥0)
V=.V,)

MAD®Y)

B.(m,n)

B, (m,n,l7)

SxS§

LIST OF SYMBOLS

Current block

Reference block

Size of a block

Index of a pixel in a frame

Luminance value of pixel (x, y) in the current frame
Luminance value of pixel (x,y) in the reference frame
Top-left corner of a block

Motion vector

Mean absolute difference corresponding to the motion
vector V =V..V,)

Luminance value of pixel (m,#) in the current block

Luminance value of pixel (m,n) in the reference block

corresponding to the motion vector ¥
Size of search window

Set of all candidate motion vectors inside the search
window

Optimum motion vector

The number of times MAD(V) needs to be calculated
per block of the block motion estimation algorithm x

Computational complexity per pixel of the block motion
estimation algorithm x

Quantization step size

Total number of output bits for the encoder

XVvil

PSNR(Q)

MSE(Q)

fok (m’ n)

[(m,n, Q)

MAD

min

w

MAD,(0,0)

T,,and T,

N

e

MAD*

min

P,P, P, and P,

LBy, (V)

(p.9)

w'(p.q)

Peak signal to notse ratio

Mean square error between the original video sequence
and the reconstructed video sequences

Luminance value at the position (m,n) in the k -th frame
of the original video sequence

Luminance value at the position (m,n) in the k -th frame
of the reconstructed sequence

Minimum value of MAD
Width of a video frame
Height of a video frame
Predetermined threshold

The number of the stationary macroblocks undetected in
the previous frame

The value of MAD(0,0) of the /-th undetected stationary
macroblock in the previous frame

Values for the determination of the adaptive threshold

The number of non-stationary macroblocks for which the
values of MAD_. lie between T and 7, in the previous
frame

min

The value of MAD,_ . of the k -th non-stationary
macroblocks for which the values of MAD
T and 7, in the previous frame

lie between

min

Parameter values used in the determination of the value
of the adaptive threshold

Lower bound for the MAD in the selective elimination
algorithm

Index of data sets or partial sums

Data set at the /-th level (1<7<5)

XVviil

LIJO

S!(p.q)

S'(p.q,V)

SO

S, ()

MAD' (V)

F!(m,n)

F!(m,n)

CS(n)

n,, (1)

n, ()

mr(l)

Set of all the pixels ina 16 x16 block

Partial sum at the /-th level (1</<5) of the current
block

Partial sum at the /-th level (1</<5) of the reference
block

Partial sum at the 0 -th level of the current block
Partial sum at the O -th level of the reference block

Mean of the absolute differences of the partial sums at
the /-th level (0 <7/ <5)

Frame partial sum at level / (0</<5) at the location
(m,n) in the current frame

Frame partial sum at level / (0</<5) at the location
(m, n) in the reference frame

Set of all the candidate motion vectors checked so far in
a motion estimation process

Optimum motion vector in the set CS(n)

Current candidate motion vector to be checked in a
motion estimation process

The number of additions in the computation of
MAD' (V)

The number of subtractions in the computation of
MAD' (V)

The number of absolute value calculations in the
computation of MAD' (V)

Computational complexity of MAD' (V) per pixel

The average number of times per block that MAD'(V)
needs to be computed

X1X

C(VFA)

VFA
77 54

VFA
T ska

VFA
PSFSA

VFA
PSSEA

PS(SIMD)

BS| (n)

BS/ (n,V)

PS (n)

PS (n,V)

[4]>>[B]

MMAD®V)

Computational complexity of the proposed vector-based
fast block motion estimation algorithm

Computational complexity of the proposed vector-based
fast block motion estimation algorithm as a percentage of
the computational complexity of the full-search
algorithm

Computational complexity of the proposed vector-based
fast block motion estimation algorithm as a percentage of
the computational complexity of the selective elimination
algorithm

Execution time of the proposed vector-based fast block
motion estimation algorithm as a percentage of that of
the full-search algorithm

Execution time of the proposed vector-based fast block
motion estimation algorithm as a percentage of that of
the selective elimination algorithm

Execution time of the proposed vector-based fast block
motion estimation algorithm using an SIMD architecture
as a percentage of the execution time of this algorithm
without an SIMD implementation

Partial sum of sixteen luminance values corresponding to
the current block

Partial sum of sixteen luminance values corresponding to
the reference block

Eight-bit partial sums of sixteen luminance values for the
current block

Eight-bit partial sums of sixteen luminance values for the
reference block

Shift A4 to the right by B bits

Modified mean absolute difference (MMAD)
corresponding to the eight-bit partial sums of sixteen
luminance values

XX

LB(V)

MMAD

MBS! (m,n)
MBS,I_ (m,n, 17)
SAD' (V)
UB'(V)

715 (%)

77/,\/[AD (x)

C'(x)

C,.(H)

RCC(x)

5S4

A lower bound for MMAD(V)

Minimum value of MMAD computed so far in a block
motion estimation process

Multi-level eight-bit partial sums for the current block
Multi-level eight-bit partial sums for the reference block
Sum of the absolute differences of all the eight-bit partial

sums between the current and reference blocks at the /-th
level

An upper bound for SAD' (V)

The number of times §4 D‘(V) needs to be calculated in

the block motion estimation algorithm X incorporating
the use of Scheme 5.2

The number of times MAD (17) needs to be calculated in
the block motion estimation algorithm X incorporating
Scheme 5.2

Computational complexity per pixel in the block motion
estimation algorithm X incorporating Scheme 5.2

Computational complexity per pixel to calculate all the
eight-bit partial sums in a frame

The percentage of the reduction in the computational
complexity of algorithm X incorporating Scheme 5.2

Search area

XX1

Chapter 1

Introduction

Video signals usually consist of more than 15 pictures (video frames) per second. This
requires a huge amount of data to be stored, transmitted, and processed. In order to
overcome the problems involving large volume of data, video compression becomes a
necessity. For example, for a low resolution quarter common intermediate format (QCIF)
video sequence, a network bandwidth of 6 Mbits/s is required for transmission, if no data
compression is performed. To transmit this QCIF format video sequence over a public
service telephone network (PSTN) with a bandwidth of 64 kbits/s, the video signal needs
to be compressed by a factor of more than 100. Even for a network with a wider
bandwidth, video compression can make the network to offer more services or to
accommodate more users.

As aresult of the requirement of video compression in multimedia communications,
several international standards in video coding have been proposed to pave the way for
ubiquitous applications of multimedia products. Block motion estimation is an essential
part of these standards. However, these standards do not specify the exact motion
estimation algorithm to be employed and is left to the developers implementing the
standards. For this reason, the development of fast block motion estimation algorithms
with good compression efficiency has been a focus of recent research activities and is

expected to continue to attract a great deal of research effort in the near future.

1.1 Structure of a Video Coding System

The structure of a typical video encoder, such as that of MPEG-1 [56, 57], MPEG-2 [31,
58-60, 74], MPEG-4 [2, 3, 32, 61-63, 70, 88, 90], H.261 [25, 33, 53], H.263 [8, 25, 34, 93,
98], H.263++ [8], or H.26L [35], is as shown in Figure 1.1. The main objective of an
encoder is to use as few output bits as possible to represent the original video sequence,
given a distortion requirement of the reconstructed video sequence. To achieve this
objective, block motion estimation [9, 20, 23, 27, 64, 66, 83, 94] is employed to remove
the temporal redundancies of a video sequence, while the discrete cosine transform (DCT)
[11, 78, 80] or discrete wavelet transform (DWT) [6, 79, 84, 91] is utilized to remove the
spatial redundancies.

The correlation between video frames is generally utilized to compress the digital
video. For example, a large number of blocks in the current frame can be represented by
their corresponding regions (reference blocks) in a previously reconstructed video frame.
This reconstructed video frame is referred to as the reference frame in the literature. The
basic idea of motion estimation and compensation is to use a reference block to represent
the current block. On the encoder side, the process of finding a good reference block for
the current block is called block motion estimation. The translational motion of a
reference block from the reference to the current frame is indicated by a motion vector.
The information of the motion vector is encoded and sent to the decoder, so that the
decoder at the receiver end can retrieve the reference block. The process of retrieving a
reference block is called block motion compensation. Since the number of bits required to

represent the motion vectors are, in general, significantly less than those required to

represent the current frame directly, a large number of bits can be saved to represent the

current frame by utilizing the technique of block motion estimation and compensation.

Most of the times, the prediction error, that is, the error between the current block

and its reference block is large and in addition, there are spatial correlations between the

prediction errors. For this reason, the prediction errors are transformed by utilizing the

DCT or DWT to remove the spatial correlations between the prediction errors. The

quantized DCT or DWT coefficients are encoded and sent to the decoder, so that the

decoder at the receiver can use the encoded bits of the prediction errors to enhance the

quality of the reconstructed video sequence.

Input et L quantization F-

P —p ‘ |Quantization !
e T orDWT | |
video g | i %
1 . | I |

| Mode .

'-— - = Control !

— T — 7| (interfintra)

o wi Mofion ____ L .y L___

% Motion | vector (Motion f 0 :
estimation(["lcompensation ‘\ i |
| | | -

{ 7;7“-”’7* r \] R Y
{ revious | 4 o | IDCT - Inverse <
____|frame buffer {\ or IDWT quantization |

Figure 1.1 Video encoder structure

-~ encoding |

In Figure 1.1, there is also a mode dectsion block to decide the optimal operational

modes and parameters of the encoder. In the inter mode of the current block, the process

of motion estimation is first performed and the information of the resulting motion

23 -

vectors are encoded. Then, the prediction errors are transformed, quantized and encoded.
In the intra mode of the current block, the process of motion estimation is not employed
and the current block is directly transformed, quantized and encoded. The inter mode is
suitable for all situations, except for that in which the scene changes. In the latter
situation, the block motion estimation cannot give a good prediction of the current block,
and the intra mode is more suitable. The information regarding these modes and
parameters 1s sent to the decoder in addition to the information about the motion vectors

and prediction errors, so that the received bits can be correctly decoded.

1.2 Scope and Organization of the Thesis

The international video coding standards, as discussed earlier, do not specify the
algorithm for the block motion estimation, and is left to the individual developer
implementing the standard. In this way, products from different vendors with varying
performance can compete with one another. Thus, it is essential to develop fast block
motion estimation algorithms providing good accuracy.

The objective of this thesis is to develop techniques for reducing the computational
complexity of a given block motion estimation algorithm without sacrificing its accuracy,
to utilize the single instruction multiple data (SIMD) technique [36-42, 86] to accelerate a
block motion estimation process, and to develop a new fast block motion estimation
algorithm suitable for implementation on SIMD architectures. The thesis is organized as
follows.

In Chapter 2, we first briefly describe the block motion estimation process and the

full-search algorithm. Then, some typical fast block motion estimation algorithms in the

literature are reviewed. In order to evaluate the compression efficiency of a block motion
estimation algorithm, the concept of rate-distortion curve 1s discussed and used to asses
the coding efficiency of a video codec. Simulations on the existing block motion
estimation algorithms are carried out for the purpose of comparing their computational
complexity as well as compression efficiencies.

Based on our observation that there are a large number of stationary blocks that do
not experience motion between video frames, and the search process in block motion
estimation is unnecessary for such a block, in Chapter 3 a method has been proposed to
detect and skip altogether the search process for such stationary blocks in a motion
estimation process. The proposed method is then applied to a number of existing block
motion estimation algorithms to reduce the computational requirement of the algorithms.

As the SIMD technique provides an option to accelerate some of the execution
processes by utilizing data-parallelism, a vector-based fast block motion estimation
algorithm, suitable for SIMD implementation, s proposed in Chapter 4. It is proved that
this algorithm has the same accuracy and coding efficiency as that of the full-search
algorithm.

In order to take advantage of the byte-type data parallelism in the existing SIMD
technique, we introduce the concept of eight-bit partial sums in Chapter 5. Since these
partial sums are of only eight bits, eight of them can be processed concurrently in a single
64-bit SIMD register. A method of employing these partial sums to speedup a given
block motion estimation algorithm is then described. The notion of the eight-bit partial
sums is extended to the four-level case and it is shown that there are fifteen possible

methods of utilizing these multi-level eight-bit partial sums to accelerate a block motion

estimation algorithm without any loss of accuracy. Each of these fifteen methods is used
in the full-search algorithm to determine the one that provides the lowest computational
complexity. The one with the lowest computational complexity is adopted to accelerate
the various block motion estimation algorithms. Simulations are performed for this
scheme on typical video test sequences.

Chapter 6 concludes the thesis by highlighting the contributions of this investigation

and provides some suggestions for further work.

Chapter 2

Block Motion Estimation Algorithms

The objective of a block motion estimation algorithm is to obtain a good reference block
for the current block under the constraint that the resulting motion vector is inside a
search window 1n the reference frame (the previous reconstructed frame). The similarity
between the reference and current blocks is usually measured by their mean absolute
difference (MAD). The full-search algorithm [20] is a brute-force algorithm, since for
every candidate motion vector inside the search window a computation of the MAD is
carried out.

Since the full-search algorithm (FSA) for block motion estimation has a very high
computational complexity, many fast block motion estimation algorithms have been
proposed in the literature. These algorithms can generally be categorized into either
multi-step or exhaustive search algorithms. For a multi-step search algorithm, only a
subset of the candidate motion vectors inside the search window is selected and thus, the
number of MAD computations is reduced. For an exhaustive search algorithm, the
computation of a lower bound for MAD is executed to circumvent the calculation of
MAD, wherever possible.

In this chapter, we first describe the block motion estimation process and the full-

search algorithm in Section 2.1. Then, we briefly review some typical fast block motion

estimation algorithms in Section 2.2. Simulation studies are carried out in Section 2.3 in
order to compare the various block motion estimation algorithms both in terms of their

computational complexity as well as their rate-distortion performance.

2.1 Block Motion Estimation Process and the Full-Search Algorithm

In a block matching algorithm, the current frame is divided into a number of fixed-sized
blocks and the motion vector for each current block, say B,, with size bxb where b is a
power of 2, is determined by finding the best possible matching reference block in the
reference frame according to a defined matching criterion. In existing video coding
standards [7, 8, 27, 30, 56, 65], b is chosen as 16 and the matching criterion used is the

MAD. We define the luminance values of the current and reference frames as 7,(x, y)
and 7, (x,y) respectively, where x and y are the row and column indices of a pixel in a
frame. The location of the top-left comer of the current macroblock is denoted as

(x,,¥,) . Then, the MAD corresponding to the candidate motion vector ¥ = (¥, V,) can

be expressed as

15 15

MAD(V)=Y_>| B.(m,n) - B,(m,n,V)| (2.1)

n=0 m=0

where

{B, (m,n,V) = [(x,+V +my, +V, +n) 22)

B .(m,n)=1(x,+m,y, +n)
In (2.1), without loss of generality, we have not included the division by the factor 256.
In general, a search window of size Sx .S =Q2w+1)x(2w+1) is used to find the

best matching block and confine the search in the reference frame to a limited region.

Thus, the value of the motion vector gets restricted to —w<V,, V <w and the

candidate motion vectors inside the search widow (.S x.§) form the set
P=AV V) |-w<V ,V, <w} (2.3)

The value of w commonly used in video coding standards is 15, making the search
window size to be (31x31).

Figure 2.1 depicts the current macroblock, the reference block, the search window,
and the motion vector involved in the block motion estimation process. As seen from
Figure 2.1, the displacement from the location of the top-left corner of the current
macroblock to the top-left corner of the reference block in the reference frame is the

corresponding motion vector for the current macroblock.

Moation vector
7
7 }
w
\ * jt— b e
Reference\r -0
black : I W ?
\ 1 b
Lo] ¥
Position of
current Current
macrohlock macroblock
Search window
Reference frame Current frame

Figure 2.1 Block motion estimation

In the full-search algorithm (FSA) for block motion estimation, for every ¥ € P,
the block matching computation of (2.1) is executed . The candidate motion vector ¥

with the minimum value of MAD is selected as the optimum motion vector Vop for the

current macroblock , i.e.,

v, =arg {I}JiIIDl[MAD(f)]} (2.4)

The FSA is given in Section A.1 of Appendix A.

2.2 Fast Block Motion Estimation Algorithms

The block matching computation of (2.1) is very time consuming; it needs 256
subtractions, 256 operations to calculate absolute values, and 255 additions. For a search
window of size 31x 31, 961 block matching computations are required for the current
macroblock. For the QCIF format video sequence, there are 11x9 macroblocks in a
video frame. Thus, for a video sequence in this format, the FSA requires, for each video
frame, 256x31x31x11x9=24,355,584 subtractions, 24,355,584 operations to
calculate the absolute values, and 255x31x31x11x9 = 24,260,445 additions. Moreover,
there are at least 10 video frames per second in real time applications. This huge amount
of computational requirement hinders the usage of the FSA in real time applications.
Hence, a number of fast block motion estimation algorithms have been proposed in the
literature. Most of these can be grouped into multi-step and exhaustive search algorithms.
1) Multi-step search algorithms

The 2-D logarithmic search algorithm [45], orthogonal search algorithm [75], one at a

time search algorithm [82], conjugate direction search algorithm [82], three-step search

-10 -

algorithm [49], four-step search algorithm (73], unrestricted center-biased diamond
search algorithm [89, 100], predictive-area search algorithm [10], and the block-based
gradient-descent search algorithm [54] are fast block motion estimation algorithms
belonging to this category. In this category of fast algorithms, the motion estimation
process consists of several search steps. At each search step, a number of locations are
selected, where the values of the MAD are calculated.

The motion estimation process in the 2-D logarithmic search algorithm (2DLSA)
[45] is executed by successively reducing the search area. Each step in the algorithm has
five search locations, as shown in Figure 2.2. At each location, a block matching
computation of MAD is carried out. At the first step, the search center is located at the
center of the search window. At the next step, the search center is moved to the location
corresponding to the minimum value of MAD at the previous step. The search length of

the initial step 1s L%_l, where § is the length of the search window. Whenever the search

center has the minimum value of MAD, the search length is reduced to one-half of its
previous value. This procedure continues until the search length is unity. In the final step,
all the neighboring eight locations around the search center are checked and the optimum
motion vector corresponds to the location with the minimum value of MAD among all
the eight searched locations. This algorithm is given in Section A.2 of Appendix A.

The goal of the orthogonal search algorithm (OSA) is to minimize the total number
of search locations in the worst case [75]. In this algorithm, vertical and horizontal search
patterns are utilized alternatively, as shown in Figure 2.3. At every search step excluding
the first one, the center of the search pattern is the location with the minimum value of

MAD computed so far in the previous step. After both vertical and horizontal search

o111 -

Search length

Search length

Search center

Figure 2.2 Search pattern of the 2-D logarithmic search algorithm

Search length

Search center

(a) Vertical search pattern

Search length

Search center

(b) Horizontal search pattern

Figure 2.3 Search patterns of the orthogonal search algorithm

-12 -

patterns at a given search length are utilized, the search length 1s reduced by one-half of
its previous value and the search process continues until the search length is unity. This
algorithm is given in Section A.3 of Appendix A.

The one at a time search algorithm (OATSA) has two search steps [82]. The
direction of the search in each step is parallel to one of the coordinate axes, i.e., one
component of the candidate motion vector is adjusted, the other being fixed. In the first
step, the search begins along the horizontal search direction. When the local minimum
value of MAD is found along the horizontal search direction, the search direction is
changed to the vertical one. In the second step, the search starts from the location of
minimum value of MAD in the previous step and ends at the local minimum value of
MAD along the vertical direction. This algorithm is given in Section A.4 of Appendix A.

In the conjugate direction search algorithm (CDSA) [82], OATSA is first carried
out. Then, at the location of the optimum motion vector in the OATSA, a third step of the
search is carried out in the direction connecting the location (0,0) and the location of the
optimum motion vector in the OATSA. This algorithm is given in Section A.5 of
Appendix A.

In the three-step search algorithm (3SSA) [49], the search locations of the FSA are
greatly reduced by tracking the direction of a locally optimum motion vector. For a
search window of size § x §, the initial search length is (%—!, where I_v_l 1s the smallest
integer equal to or larger than y . The shape of the search pattern of the 3SSA is shown in
Figure 2.4. At every chosen search location, a computation of the MAD is carried out. In

every search step excluding the initial one, the search length is one half of that of the

previous step and the search center is moved to the search location with the minimum

~13 -

value of the MAD computed so far. From the above discussion, we see that the 3SSA for

block motion estimation needs to carry out only [log, S —1_1 search steps. For a search

window of size 31x 31, the total number of chosen search locations in the 3SSA is fixed
at 33. Thus, in the 3SSA, the computational complexity of the FSA is reduced by a factor
of about 30 for a 31x 31 search window. This algorithm is given in Section A.6 of

Appendix A.

Search leng

Figure 2.4 Search pattern of the three-step search algorithm

In the four-step search algorithm (4SSA) [73], two search patterns are utilized. In the
fixed search pattern, the search length is fixed at 2 as shown in Figure 2.5(a). In the
initial step of the 4SSA, the search center is located at the center of the search window.
At each step of this algorithm, this fixed search pattern is recursively employed until the
search center has the minimum value of MAD or the search process reaches the boundary

of the search window. Similar to the 3SSA, the search center of every step is the location

- 14 -

with the minimum value of MAD in the previous step. When the search center has the
minimum value of MAD or the search process reaches the boundary of the search
window, the final search pattern of Figure 2.5(b) is employed to find the optimum motion

vector. This algorithm is given in Section A.7 of Appendix A.

Search center Seardh center

o o o

(a) Fixed search pattern (b) Final search pattern

Figure 2.5 Search patterns of the four-step search algorithm

In the unrestricted center-biased diamond search algorithm (UDSA) [89, 100], two
search patterns are employed. In the large diamond search pattern (LDSP) shown in
Figure 2.6, eight search locations surrounding the center one form the shape of a large
diamond. In the small diamond search pattern (SDSP) shown in Figure 2.7, four search

locations surrounding the center one form the shape of a small diamond. In this

-15 -

algorithm, the LDSP is employed repeatedly until the location of the minimum value of
the MAD is at the center of the LDSP. Then, the SDSP is utilized to find the optimum
motion vector with the minimum value of the MAD among the five searched locations.

This algorithm is given in Section A.8 of Appendix A.

Figure 2.6 Large diamond search pattern (LDSP)

Figure 2.7 Small diamond search pattern (SDSP)

216 -

In some instances, the motion vectors between the neighboring blocks might be
similar due to the reason that a large moving object may cover several neighboring blocks
with similar translational motions between video frames. The predictive search area
algorithm (PSAA) [10] tries to utilize the correlations between the neighboring motion
vectors in such cases. The set of the candidate motion vectors in this algorithm is the
union of the four sub-areas, where each sub-area lies in the region indicated by the
neighboring motion vector, as shown in Figure 2.8. Thus, the PSAA reduces the
computational complexity of the FSA by restricting the search area. This algorithm is

given in Section A.9 of Appendix A.

o 1
S
S kl k\ ’ [N SA4
S
% . mv; sd=5US,Us,US,
: mvs
V4

Figure 2.8 Determination of the search area in the predicative search area algorithm

In the block-based gradient descent search algorithm (BGDSA) [54], the search

pattern is a 3x 3 square. Initially, the center of the search pattern is at the location (0,0)

in the search window. If the location with the minimum value of the MAD lies at the
center of the search pattern of the 3 x 3 square, the search stops; otherwise, the center of

the search pattern of the 3 x 3 square is moved to the location with the minimum value of

-17 -

the MAD in the previous iteration. This algorithm 1s given in Section A.10 of Appendix

A.

2) Exhaustive search algorithms

Since the values of the MAD inside a search window have several local minima
instead of only one, these multi-step search algorithms are often trapped in a local
minimum. For this reason, the multi-step search algorithms lose the accuracy of the FSA,
and exhaustive search algorithms have been proposed.

The selective elimination algorithm (SEA) [52] is a fast block motion estimation
algorithm belonging to the category of exhaustive search algorithms. It exhaustively
searches every location inside the search window as the FSA does. However, it avoids the
computation of the MAD whenever possible by calculating some lower bounds for the
MAD. Since every search location is searched and the corresponding optimum motion
vector is not excluded during the search process, the SEA can reduce the computational
complexity and maintain the accuracy of the FSA. The SEA is given in Section A.11 of

Appendix A.

2.3 Performance Comparison

(a) Compleixty

Simulation study of various block motion estimation algorithms is carried out for the
CCITT test video sequences in the QCIF format using the TMN20 framework of the
H.263 video codec. The encoding process is carried out for frames 1, 4, 7, ..., 97, 100,

...., that is, two frames are skipped in between the frames that are encoded.

- 18-

In our simulation, eight video sequences, Salesman, Car Phone, Silent, Akiyo,
News, Foreman, Trevor, and Mother & Daughter, are selected to evaluate the
performance of the various block motion estimation algorithms. Each video sequence
consists of various kinds of motion activities such as zooming, panning, and fast or slow
motion. Salesman, Silent, and Akiyo are sequences having slow translational motion,
whereas the remaining sequences have high translational motion. All the test video
sequences consist of 300 frames, except for the sequences Trevor and Mother &
Daughter, which have 150 and 800 frames respectively.

In order to find the computational complexity per pixel, we assign one unit for each
of the operations of addition, subtraction, and right shift, and two units for each of the
operations of comparison and taking the absolute value. This is a reasonable assumption
on commonly used CPUs.

Let x denote a block motion estimation algorithm utilized in the block motion

estimation process. Let Taiap (X) and C(x) denote, respectively, the number of times

MAD(V) needs to be calculated per block and the computational complexity per pixel of

the block motion estimation algorithm x in order to complete the estimation process. The
computational complexity of algorithm x is derived in Appendix B, where x represents
the algorithm FSA, 2DLSA, OSA, OATSA, CDSA, 3SSA, 4SSA, UDSA, PSAA,
BGDSA or SEA.

Table 2.1 gives the simulation results concerning the computational complexity of
the various algorithms for the eight video sequences mentioned earlier. In addition, the
computational complexity of a given algorithm for a particular video sequence as a

percentage of the computational complexity of the FSA is given in the parenthesis. From

-19-

Table 2.1 Computational complexity of the various algorithms

Salesman c Mother
ar Silent Akiyo News Foreman Trevor &
Phone
Daughter

C(FS4) 3847.75 | 3847.75 | 3847.75 | 3847.75 | 3847.75 | 3847.75 | 3847.75 | 3847.75

68. 39 72.91 70.27 68. 15 69. 39 77.56 71.67 69. 11

CEDLSA) | (L 7gm | usow | (ussw | L7 | (Lsow | oo | ausew) | (1 sow
. . . 68. 07 68. 07 68.03 .07 .

C(OSA) 68.07 68. 07 68. 07 8. 07 68 68. 07

(L.77%) | (L.77%) | (L.77%) | (1.77%) | (1.77% | (L.77%) | (1.77%) | (1.77%)

20. 54 24.70 22.70 20.26 21.42 28.07 24.74 21.46
TSA4
c(o4 54) (0.53%) | (0.64%) | (0.59%) | (0.53%) | (0.56%) | (0.73%) | 0.64%) | (0.56%)

28.55 32.87 30.83 28.27 29.43 39.36 32.95 29.51
C(CD54) (0.74%) | (0.85%) | (0.80%) | (0.73%) | (0.76%) | (1.02%) | (0.86%) | (0.77%)

132.13 132. 13 132. 13 132. 13 132. 13 132.13 132. 13 132.13

C(3S54) (3.43%) | 3.43%) | 3.43%) | G.43%) | 3439 | G.a3w) | .43%) | (3.43%)
(4S54 68.71 77.08 72.83 68.31 70.31 89. 09 75.35 70. 07
() (1.79%) (2. 00%) (1. 89%) (1. 78%) (1. 83%) (2.32%) (1. 96%) (1. 82%)
53.09 65. 10 59. 10 52.49 55.53 81.36 63. 30 55.25

CUDSA) (1.38%) | (1.69%) | (1.54%) | (1.36%) | (1.44%) | (2.11% | (1.65%) | (1.44%)
C(PSAA) 148. 95 183. 30 162. 04 145. 38 158. 96 206. 00 175.37 157.71

(3.87%) | (4.76%) | (4.21%) | (3.78%) | (4. 13%) | (5.35%) | (4.56%) | (4.10%)

37.96 53. 45 46. 61 36. 88 40. 56 74.91 52.05 40. 92
C(BGDSA) 0.99%) | (1.39%) | (1.21%) | (0.96%) | (1.05% | (1.95%) | (1.35%) | (1.06%)

C(SEA) 978. 89 823. 14 742. 66 543. 67 634.95 | 1034.54 | 932.84 753. 07
(25. 44%) (21. 39%) (19. 30%) (14. 13%) (16. 50%) (26.89%) 1 (24.24%) (19. 57%)

this table, it can be seen that a multi-step search algorithm has a computational

complexity that is substantially lower than that of the FSA. Among the 9 multi-step

-20 -

search algorithms, the PSAA has the highest computational complexity and is about 4%
of that of the FSA. The computational complexity per pixel of this algorithm ranges from
145 to 206 for the different test sequences. For the fast moving Foreman sequence, the
computational complexity per pixel of the PSAA is 206. Thus, among the multi-step
search algorithms, the PSAA has a relatively high computational requirement, especially
for a fast moving sequence. It can also be seen that the computational complexity of
3SSA is the same for all the test sequences, showing the regularity of this algorithm. Due
to this regularity, the 3SSA is sometimes selected in VLSI implementation. We also see
that the 4SSA or UDSA has less computational complexity than that of the 3SSA. This is
due to the fact that when the search center has the minimum value for the MAD, a final
search step is executed in these two algorithms, in contract to the 3SSA where the search
process continues. We see that the BGDSA has less computational complexity than that
of the UDSA, since the search process is stopped in the BGDSA when the search center
has the minimum value for the MAD. Since in the CDSA, the OATSA is first executed
and then the search process is continued in a conjugate direction, we see that the CDSA
has a little higher computational complexity than that of the OATSA. We also see that the
SEA has one-forth to one-fifth the computational complexity of that of the FSA, and
hence is also not suitable for real-time applications.

(b) Rate-distortion

In a video coding system, the bit-rate is measured by R((Q), which is the total number of
output bits for the encoder with a quantization step size of Q. The distortion of the
system for the quantization step Q is measured by its peak signal to noise ratio (PSNR),

which is defined as

_21 -

255°

PSNR(Q) =10* loglo(m

) (2.5)

where MSE(Q) is mean square error between the original video sequence and the

reconstructed video sequences. The MSE(Q) can be expressed as

MSE(Q) = %Z S (FE o, Q) — £ (mym))? 2.6)

k mn
where f)(m,n) and f'(m,n,Q) represent the luminance values at the position (m,#) in

the k -th encoding frame of the original video sequence and the reconstructed sequence,
respectively and N is the total number of pixels. Higher the value of the PSNR, lower
the distortion.

For a fixed value of the quantization step size, (0 , a rate-distortion pair
(R(Q), PSNR(Q)) can be evaluated for a given video coding system. The rate-distortion

curve is used to asses the compression efficiency of a video coding system.

The Foreman sequence in the QCIF format is selected for evaluating the rate-
distortion performance of the multi-step search algorithms. Since the SEA has the same
rate-distortion performance as the FSA, simulation of the rate-distortion performance for
the SEA is not carried out. Figure 2.9 shows the rate-distortion performance of the multi-
step search algorithms 2DLSA, OSA, OATSA, CDSA, 3SSA, 4SSA, UDSA, PSAA, and
BGDSA. The rate-distortion performance of the FSA is also shown in this figure in order
to make a comparison of a multi-step search algorithm with the FSA. From this figure, it
can be seen that at the same level of distortion, a multi-step search algorithm needs 30 to

80 percent more bits than the FSA to encode the same sequence. Thus, a 30 to 80 percent

-22 -

37 T T T T T | T I T

L -]
Lo

PSHMR{dE)
o
FY

bits x 104

Figure 2.9 Rate-distortion performances of the various algorithms

of coding efficiency of the FSA is lost in a multi-step search algorithm. It can also be
seen that among the 9 multi-step search algorithms, the PSAA has the best rate-distortion
performance and the OATSA the worst. Since in the CDSA, the OATSA is first executed,

it is seen that the CDSA has a better rate-distortion performance than the OATSA. We

-23-

also see that the CDSA has about the same rate-distortion performance as the 3SSA and

that the 2DLSA has a better rate-distortion performance than the CDSA or 3SSA.

2.4 Summary

In this chapter, we have first carried out a review of the existing block motion estimation
algorithms. Simulation studies of these block motion estimation algorithms have been
conducted on the H.263 video codec using eight selected video test sequences. The
simulation results have shown that the computational complexity of any of the multi-step
search algorithms is substantially smaller than that of the FSA. This is achieved at the
expense of reduced coding efficiency. Simulation results have also shown that the
selective elimination algorithm has a high computational complexity as the full-search

algorithm, and hence not suitable for real time applications.

_24 -

Chapter 3

A Method for Fast Block Motion Estimation by Exclusion of

Stationary Macroblocks from the Search Process

A typical video frame contains many macroblocks that experience little motion with
respect to the reference frame. We shall refer to these macroblocks as stationary
macroblocks. In this chapter, we aim at accelerating the block motion estimation process
by excluding these stationary macroblocks from the search process, and thus reduce the
computational requirement for the block motion estimation by avoiding the search
process altogether for stationary macroblocks.

Details of the proposed method to reduce the computational complexity of a given
block motion estimation algorithm are given in Section 3.1. The criterion to detect these
stationary macroblocks is discussed in Section 3.2. In order to make the proposed method
work efficiently for different video sequences, an adaptive threshold, described in Section
3.3, is employed. In Section 3.4, simulation results to demonstrate the effectiveness of the
proposed method to accelerate a given block motion estimation algorithm are given. The
rate-distortion performance of the H.263 video codec, with and without the proposed

method, is discussed.

-5 -

3.1 Proposed Method

As mentioned earlier, there are a number of stationary macroblocks in a typical video
sequence and these are usually located in the background area or in the still objects of the
video frames. The percentage of such stationary macroblocks in a frame is usually very
high. In order to find the number of stationary macroblocks for a given frame, a
simulation study is carried out. In this investigation, a macroblock is deemed as

stationary when the optimum motion vector for the macroblock is (0,0) in the full-search

algorithm. Figures 3.1, 3.2, and 3.3 depict the percentage of the stationary macroblocks
for Trevor, Foreman, and Miss America test sequences, respectively. From these figures,
it can be seen that the stationary macroblocks comprise more than 50, 20 and 40 percent
of all the macroblocks for the three sequences, respectively. From Figure 3.1, it can be
seen that for the Trevor sequence, the percentage of stationary macroblocks goes to
almost zero in the neighbourhood of the 60th frame, and this is due to the fact that there
are some abrupt changes in the scene in the frames around the 60th frame. Figure 3.2
shows that since the Foreman sequence is a fast moving sequence, the percentage of
stationary macroblocks 1s low throughout the sequence, whereas Figure 3.3 shows that
since the Miss America sequence is a slow moving sequence, the percentage of stationary
macroblocks is high throughout the sequence.

Since the stationary macroblocks do not move between the frames, the optimum

motion vector for a stationary macroblock is (0,0) . Thus, the motion vectors of the

stationary macroblocks can be determined beforechand without carrying out the

computationally intensive search process in the block motion estimation. Consequently,

-6 -

Percantage

100

a0

a0

70

60

&0

40

30

20

i0

50

Frama no.

100

Figure 3.1 Percentage of stationary macroblocks for the Trevor sequence

Barcantage

100

|0

a0

70

60

50

ao

- J
J

[L“

T s,

(L
\] j M JI}\\\(\/

sk I | y A
“‘.! \ _g _J &} \.ﬂ‘x\f‘) . {f\/‘
200 5.0 1(;0 1;0 2(;0 25l0 " 200

Frame no.

Figure 3.2 Percentage of stationary macroblocks for the Foreman sequence

_027.-

100 T T

f’.\ {a'z \\ ’XX {,“
so |- ; . ¢ ',:"&' N ; /
\ , ‘ \]
ol | f \L,ff \ AL
70 f Vv SS ; p f .
60 &"A‘\ / ‘\ j W .

Parcantage

sof- v H\J 1

\/“\v J

0 50 {00 180
Frama no.

Figure 3.3 Percentage of stationary macroblocks for the Miss America
sequence

the search process for the determination of the optimum motion vector of a stationary
macroblock 1s unnecessary. Based on these observations, we now propose a new fast
block motion estimation method by carrying out the search process only for the non-
stationary macroblocks. The proposed method carries out the block motion estimation
using the following two steps.

1) Check if the current macroblock is a stationary macroblock.

2) If the current macroblock is a stationary one, set the resulting motion vector for

the current macroblock as (0,0) and skip the search process for this macroblock.

If the current macroblock is not a stationary one, do the normal block motion
estimation algorithm and find the motion vector with the minimum value of

MAD.

.08 -

By detecting the stationary macroblocks in the first step, the proposed method can save a
great deal of computations by not carrying out the search process for such macroblocks in

the block motion estimation.

Let Vop and MAD_, denote the optimum motion vector and the corresponding value

of MAD, respectively. The proposed method is summarized in Algorithm 1. As
previously discussed, when the current macroblock is judged as a stationary macroblock,
the search process for the corresponding macroblock in the block motion estimation

algorithm is skipped, and the 170[, and MAD_. for such a macroblock are set as (0,0) and

min

MAD(0,0), respectively.

Algorithm 1: Proposed Block Motion Estimation Method

1 Initialization
Vo = (an)
MAD = MAD(V,)

2 Stationary block judgement

If (current macroblock is stationary)
Go to (4);

else
Go to (3);

3 Search Process

For (each search location of ¥ in a motion estimation algorithm)

{
Calculate MAD(V)

If (MAD(V) < MAD))

{
MAD = MAD(V)
V,=V

!

!
4 Output
Vop =V
MAD_. = MAD

-29.

3.2 Criterion for the Detection of Stationary Macroblocks

In order for the proposed method to be efficient, it is necessary to have a suitable
criterion for the detection of the stationary macroblocks. The value of MAD(0,0) is
chosen as the criterion to judge whether or not a current macroblock is stationary. More
formally,

(1) If MAD(0,0) < T, the current macroblock is judged as stationary, and

(i) If MAD(0,0) > T, the current macroblock is judged as non-stationary,

where T stands for a predetermined threshold.

There are two advantages of the choice of MAD(0,0) as the criterion.

1. MAD(0,0) is the MAD corresponding to the motion vector (0,0) . Since MAD(0,0)

should also be computed in the conventional block motion estimation process, there is no
computational overhead in using this value for the determination of stationary

macroblocks.
2. Since a stationary macroblock does not move between the reference and current

frames, MAD(0,0) for a stationary macroblock has a small value, while MAD(0,0) for a
non-stationary macroblock has a relatively large one. Thus, the value of MAD(0,0) can

very well distinguish the stationary macroblocks from the non-stationary ones. In the next

section, we discuss as to how to choose the value of 7' for different video sequences.

-30 -

3.3 Adaptive Threshold Value
If a large number of stationary macroblocks remain undetected in a previous frame due to
the large values of MAD(0,0), the level of the threshold 7" should be made larger in

order to detect more stationary macroblocks in the current frame. On the other hand, if
there are some non-stationary macroblocks judged as stationary ones in the previous
frame due to a large value of T, the level of the threshold should be made smaller. Thus,
the proposed algorithm should perform better if the threshold 7' can be adapted to the

statistical characteristics of the video sequence.
Define N, as the number of the stationary macroblocks undetected in the previous
frame, and MAD,(0,0) as the value of MAD(0,0) of the /th undetected stationary

macroblock in the previous frame. The method for making the threshold level T to be
adaptive 1s now given as Algorithm 2 by using pseudo code. In Algorithm 2, the first

frame refers to the first one that utilizes the block motion estimation technique. Let N,

min he

denote the number of non-stationary macroblocks for which the values of MAD
between T and 7, in the previous franﬁa and £ the index of such a macroblock. In our
method, the parameter values of F,, P, P,, and P, are set as 400, 100, 30 and 1200,
respectively. These parameter values have been chosen after a simulation study with a
large number of video test sequences. Initially, the threshold value is set as P, for the
first frame. This value of F, should be relatively small in order not to erroneously judge

a large number of non-stationary macroblocks as stationary ones in the first frame.
Subsequently, this threshold value is adaptively varied from frame to frame according to

the statistics of the video sequence. If there are a large number of undetected stationary

-31-

macroblocks in the previous frame, the threshold value should be made larger. Thus, 7
is larger than 7 and the difference between 7; and 7' depends on the number of
undetected stationary macroblocks in the previous frame. On the other hand, if there are a

lot of non-stationary macroblocks for which the values of MAD, lie between T" and T

in the previous frame, the threshold value should be made smaller in order not to
erroneously judge a lot of non-stationary macroblocks as stationary ones in the current

frame. Thus, T, is smaller than 7] and the difference between them depends on the

number of non-stationary macroblocks for which the values of MAD_. lie between T

min

and 7, in the previous frame. In order not to let the threshold value to be unreasonably

high, P, is set as the upper limit of the threshold value.

Algorithm 2: Determination of the Adaptive Threshold T

If (first frame)
I'=F;
else

{
diff, = 3" (MAD,(0.0) ~T):

I=1

T, =T +diff, | P;;

NE
diff, = 3 (T, = MAD,;,);
=1

L =T —diff,/ P,;
T=T,

If(T>PF)
Tr=~P°;

-32-

3.4 Simulation Results

A simulation study on the proposed method for fast block motion estimation is carried
out for the CCITT test video sequences in the QCIF format using the TMN20 framework
of the H.263 video codec. The encoding process for a frame is carried out after skipping
two frames in between, i.e., the encoding is done for the frames 1, 4, 7, and so on.

The percentage of detected stationary macroblocks out of all the macroblocks in a
frame can be considered as the speedup offered by the proposed method for a given block
motion estimation algorithm. The error in judgment is the percentage of the non-
stationary macroblocks judged as stationary ones out of the total number of macroblocks
in a frame. Figures 3.4-3.11 give the percentage of speedup and error in judgment of the
proposed method in conjunction with the FSA for the Salesman, Hall Objects, Silent,
Akiyo, News, Foreman, Trevor, and Mother & Daughter test video sequences,
respectively. From these figures, it can be seen that the proposed method can provide a
speedup for the FSA. For all the test sequences excluding the Foreman, this method
offers a speedup of more than 50% for the FSA. Only for the very fast moving Foreman
sequence, the percentage of speedup, which our method can offer for the FSA is
relatively small. This 1s due to the fact that there is only a small number of stationary
macroblocks in this sequence as shown in Figure 3.2.

In Figures 3.12-3.14, we illustrate the percentage speedup and error in judgment of
the proposed method in conjunction with the 3SSA, 4SSA and UDSA, respectively, for

the Mother & Daughter sequence. From these figures and Figure 3.11, it can be seen that

-33 .-

1 il e
150 200 250 300
Frama 6o

Figure 3.4 Percentage of speedup and error in judgment of proposed method combined
with the FSA for the Salesman sequence

a0 T T T T
T wf%’ : o Fat : ; :
; , e FAR A #¥ ;
oj*rgff : ,_..Jg_fef%ﬁ.f.g%&f%ﬁ%ﬁ ________ TR
70_ ;._._>>------~‘--E—-<.- 44—4-4—4-.&._4. ..4_44,.._44; ———
]ZL USRS MRS SRR DSOS S— .
%50_1 RPN]
= l —}— speedup
St I -- ——— errar in judgment h
P I R T FY |
T : :
zo_f T P |
i
10.— --------------- :.,._,__.4....,...444-..,_..._...A._.A__A___,.....; —
[#} = }F '\/b_%‘\s’in“' SRk SNVAS 4 - frv . N ™y
o 50 100 150 200 250 s00

Figure 3.5 Percentage of speedup and error in judgment of proposed method combined
with the FSA for the Hall Objects sequence

90

. T U S — e

=
[+]
‘
=
—T
]

: AL
250l .- ‘& SR]
540_“_1

j ~+—' speedup.

so ... X 3 - -
e BITOF N judgment
T | I s e B PP T 4
‘o .. —
+ : : - : :
ola o a s S i AN I e S AN
0 50 100 150 200 250 300

Frame no.

Figure 3.6 Percentage of speedup and error in judgment of proposed method combined
with the FSA for the Silent sequence

70 r'.*. r;’i‘_ T T T T T
#fﬁﬁﬁ*ﬁ“ 4 Fe-S %%4— S : e v
e o *Sa»)r
60_ ._._.A..._...........4_.,._A.._._....._._......4_..,,..._..._.,._:
BObp-eeaas ;...._............; —
gao— .. -
o
= : :
& et speedup
-
Pl [+l o SRR LR R R R PR o o
——— errorin judgment
oo O SRR RN SRRSO e _
1l R L D D D R R R R —4
0 L , L FAV y—\ lf' =~ n -, } 2 Fanny
3] 50 100 180 200 250 ano

Frame no.

Figure 3.7 Percentage of speedup and error in judgment of proposed method combined
with the FSA for the Akiyo sequence

- 35 -

s é

bo] L :

] . .

c : :

3 : :

FAO L Lo —— speedup e .
o :

"""""""""""""""" f‘p‘gv\;
L~ e S : L O AN /
f"!?\“f A% \ . : ee“j; S
4] oS 1 A £ 1 i
) &0 100 150 200 250 ann
Frama no.

Figure 3.8 Percentage of speedup and error in judgment of proposed method combined
with the FSA for the News sequence

80 ! ! ! ! !
ol 35 T S ot speedup |
70

80

<0

50

b

bl

e

@ 40

.

30 A_E._.

20 : :

10_. ; .. : -
N R RS SN AWV YINGY: (VAU
o 50 100 150 200 250 200

Framea no.

Figure 3.9 Percentage of speedup and error in judgment of proposed method combined
with the FSA for the Foreman sequence

-36 -

N . A

: T o

BO - E.A.,_..._....f\%..._ﬁ.f{AE{LX{‘J}.ﬁ%\&E.....A....A...._....47;4'_
: : 3y R
: : *.

B b é...‘..._4....4._.._..4.._._,_Af: !".\4'_ —
040.. *fxi; R R % s R R R LRl R R LR R e R R —
g j’\f b V“\xe
gso_ﬂf [OO —— speedup o

———— @rTOr in judgment

1

+ a
10 = - o - m e e e e e e e o o E .. -
B S e W"‘E e \\\ o
o £ 1 -, I ST e Sy
a 50 100 150
Frama no.

Figure 3.10 Percentage of speedup and error in judgment of proposed method combined
with the FSA for the Trevor sequence

Percentage

o o
s j‘ﬁw" ‘w«r%mmrmﬂh P wwvup% e va W
o 100 200 300 400 500 600 700 aga
fFrama no.

Figure 3.11 Percentage of speedup and error in judgment of proposed method combined
with the FSA for the Mother & Daughter sequence

-37.-

100

Parcentage

—+—— Speedup R
: error in judgment

L+ B ; ; SRR IELEEEE L RR ELE SRR -
] hr’“{! ’\lﬂ] M%‘y f&ﬁb";m F“.}M’fl“}in 1 AN ﬂ"u‘ﬁﬂi f’j "w"‘lﬂa KJ’“ N (\n A Y \“’h\j\ L"’n"’\
]
3] 100 200 oo 400 S00 &00 700 agn
Frame no.

Figure 3.12 Percentage of speedup and error in judgment of proposed method combined
with the 3SSA for the Mother & Daughter sequence

1600 T T T T T T T

Percentage

.—Jr—— Sbeedup ‘

errar in judgment

A Nhiﬁ/"l("“ b /\fm‘q ,u-tr'h\‘/'f \m"‘l f\""&”hmm raf‘*r a4 s (Jfﬂ‘\/} ﬂ&i‘"ﬁ
Q oo 200 0o 400 s00 500 700 ann
Frama no.

Figure 3.13 Percentage of speedup and error in judgment of proposed method combined
with the 4SSA for the Mother & Daughter sequence

_38 -

100 ; e T ! ! ! !
80
a0
70
&0

S0

Fercantage

40

W0

—er: speedu:p ST
errar in judgment

20

LT P -

: : P 5 5 L
O TN LI L N P LS W s SN . A TA T AT
44
0 100 200 300 400 S500 600 700 angn
Frama no.

Figure 3.14 Percentage of speedup and error in judgment of proposed method combined
with the UDSA for the Mother & Daughter sequence

the percentage speedups are approximately the same, irrespective of the block motion
estimation algorithm chosen. Thus, the speedup, provided by our method, remains about
the same for the various block motion estimation algorithms, showing that this speedup is
determined by the characteristics of the video sequence.

The percentage of error in judgment of the proposed method in conjunction with a
block motion estimation algorithm for various test sequences is generally below 5, as
shown in Figures 3.4-3.14. This includes the test sequence Trevor, wherein there is a
sudden scene-change around the 60th frame. Thus, this method has a relatively high
accuracy in judging the stationary macroblocks. Even if there are some non-stationary

macroblocks judged as stationary ones, their MAD(0,0) values should be smaller than the

threshold value of 7 . Thus, the block matching error of such macroblocks requires just a

-39.

few more bits for encoding. However, the requirement of these extra bits can sometimes

be offset by the bit savings of the motion vectors of value (0,0), since the motion vector
of (0,0) needs the least number of bits for its representation.

From Figures 3.4-3.14, it can also be seen that for the initial frame of the video
sequences, the efficiency of proposed method 1s not very high, since the number of
detected stationary macroblocks is initially small. This is due to the small initial value of
the threshold 7. According to our simulation study, the initial value of the threshold T
cannot be set to a large value, since in that case a large number of non-stationary
macroblocks will be judged as stationary ones. However, the advantage of the adaptive
threshold value is obvious from these figures. After a few frames, the efficiency of the
proposed method becomes quite high. This is in view of the fact that the value of the
adaptive threshold T becomes larger based on the statistical characteristics of the video
sequence.

Figures 3.15-3.22 depict the rate-distortion performance of the FSA and the proposed
method combined with the FSA for the Salesman, Hall Objects, Silent, Akiyo, News,
Foreman, Trevor, and Mother & Daughter test video sequences, respectively. From these
figures, we can see that the rate-distortion performance of the proposed method combined
with the FSA 1s approximately the same as that of the original FSA for the various test
sequences. Thus, these figures demonstrate that the proposed method does not result in
much of a loss of the coding efficiency of the FSA. Figures 3.23-3.25 illustrate similar
rate-distortion performance curves for the proposed method in the case of the 3SSA,
4SSA and UDSA, respectively, for the Mother & Daughter sequence. From these figures,

it can be seen that when the proposed method is utilized for a block motion estimation

- 40 -

algorithm, the coding efficiency is about the same as that of the original algorithm. Thus,
the proposed method does not decrease much of the coding efficiency of a video coding

system, while offering speedup for the block motion estimation process.

36 ! ! ! ! 5 ' ! !
: : : : : : : L
: : : : : : :@/’/ :
AL b----- E.._4...._.,: E.H.A.....,: E_....u...i /.;424’2‘.......-.,: -
7 SO U S S -
o 1 Eee
z s ‘ '
cztaa_ I;.A...’ FSA o
% Lo :
= § ~_ proposed method
: P : combined with FSA
A2 - , ‘,:A,‘,(.’ E......_._..: R . -
. /..{'?".‘. . : :

#4 : : : : : : ;
ajf---- R e SR IEERES S SRRRRRRE _
" R S RS N S S R
10600 1800 2000 2500 3000 3500 4000 4500 5000 5500

hits

Figure 3.15 Rate-distortion performances of FSA and proposed method combined with
the FSA for the Salesman sequence

-41] -

173
[F]

—— FSA

proposed method
combined with FSA

PFENR(dB)

7]
-

k- , frf"—‘f; g...........i ;......_..43..........‘._.........,‘..‘_‘.._._,E

aj 1 1 1 1 1 ; 1 1]

1000 1500 2000 2500 A000 3500 4000 4500 5000 a500
bits

Figure 3.16 Rate-distortion performances of FSA and proposed method combined with
the FSA for the Hall Objects sequence

3 r

]
(5]

ASNR{dB)
(7]
=

.. proposed method
combined with FSA

an m“......“.._:.‘.,.......

. ‘, ; ; ; B ;
1000 2000 3000 4000 5000 5000 7000 2000
bits

Figure 3.17 Rate-distortion performances of FSA and proposed method combined with
the FSA for the Silent sequence

_42 -

ag T T T T

B)

—— FSA

proposed method
combined with FSA

PENR(d

i ; ; ; :
500 1000 1600 2000 2500 J000
hits

Figure 3.18 Rate-distortion performances of FSA and proposed method combined with
the FSA for the Akiyo sequence

¥ ! ! .' ! ! f
96 |- e b R S |
5 [oreeee e e e B P -
PR Y'Y SRR . e . ' ‘ N
=] : : P —+— FSA
= : -
z : e : proposed method
Salk Ll AR AT P combined with FSA
: ,/ : !)
N A"";é(N . - N N
PO I S e S A SRR ﬂ
_‘// B . . : : .
- : : : . ; :
BY ot pe e Rt EEREEIIEIE, =
an] 1 1 1 1 1
2000 2000 4000 5000 §000 7000 8000 S000

bits

Figure 3.19 Rate-distortion performances of FSA and proposed method combined with
the FSA for the News sequence

- 43 -

&

a7 34
z :
o “".‘ :
5 s —t— FSA
e R R TP R hRRRREE R e
R : . proposed method

i combined with FSA

2000 4000 &£000 agan 10000 12000 14000
hits

Figure 3.20 Rate-distortion performances of FSA and proposed method combined with
the FSA for the Foreman sequence

38 ! s ' ! 5 ! ! !

=35 SR
z —— FSA
T proposed method
combined with FSA
39 i
2}

a1
2000 3000 4000 5000 5000 7000 8000 9000 10000 11000
hits

Figure 3.21 Rate-distortion performances of FSA and proposed method combined with
the FSA for the Trevor sequence

- 44 -

35._‘.4.......-.-,% ‘;..l :‘,,a ... —
: A
E M ,// ‘ *
= ; e :
3 : e ; —— FSA
%s‘t.— --------------- ‘ --------------- }? --------------- - .- —
@ : o : proposed method
: // : : combined with FSA
M ~ . H
LT § R E....‘/f :...4........_...,: R PR]
A : : : :
M
e
/’/é : ; : :
azhb-------)#,/{AA :_......4.....‘,.5,_,.........A_”E P
),/ N . . . M
7
s
31 L 1 1 H 1
1000 2000 3000 4000 s000 000 7000
bits

Figure 3.22 Rate-distortion performances of FSA and proposed method combined with
the FSA for the Mother & Daughter sequence

as

a5

PENRIgE]
o
=

T
i

«w
P
1

© e 3SSA

et proposed roethod
combined with 3SSA

821

AP P PO P e

3P

a i 1 2 i 5 i i
1000 2000 IBCO AO00 S000 S000 FOOu 8000 8000
bits

Figure 3.23 Rate-distortion performances of 3SSA and proposed method combined with
the 3SSA for the Mother & Daughter sequence

- 45 -

ASNRIdB)

proposed method
combined with 4554

10Q0 2000 3000 4000 5000 £000 7000 2000
bits

Figure 3.24 Rate-distortion performances of 4SSA and proposed method combined with

PSNR{dR)

Figure

the 4SSA for the Mother & Daughter sequence

az T T T T T T

[/
N

A D —+— UDSA

proposed method
combined wiht UDSA

1]
(&)

310000 2000 3000 4000 5000 6000 7000 agno
hits
3.25 Rate-distortion performances of UDSA and proposed method combined with

the UDSA for the Mother & Daughter sequence

- 46 -

3.5 Summary

Through a simulation study in this chapter, it has been established that the positions of a
large number of macroblocks generally do not change from one frame to the next. Such
macroblocks have been defined in this chapter as stationary macroblocks. Since the value

of the motion vector for a stationary macroblock is already known to be (0,0), the search

process for such a stationary macroblock in a given block motion estimation algorithm is
unnecessary. Based on this observation, a fast block motion estimation method has been
proposed, in this chapter, by skipping the search process for the stationary macroblocks.
In this method, a predetermined threshold is employed to detect the stationary
macroblocks. An algorithm to adapt the threshold value based on the statistical
characteristics of a given video sequence has been proposed. Simulation studies have
shown that the proposed method can provide a speedup for a given block motion
estimation algorithm, with about the same coding efficiency as that of the original
algorithm. These studies have also shown that the amount of the speedup resulting from
the application of the proposed scheme to a block motion estimation algorithm is
approximately the same, irrespective of the algorithm chosen for the application. This
result is due to the fact that the speedup is mainly governed by the characteristics of the

video sequence rather than the chosen algorithm.

_47 -

Chapter 4

A Vector-Based Fast Block Motion Estimation Algorithm

In modermn CPUs, the single instruction multiple data (SIMD) technique 1s commonly
used to provide execution speedup by employing data parallelism. In view of this, a
vector-based fast block motion estimation algorithm, suitable for implementation on
SIMD architectures, is proposed and described in this chapter. The proposed algorithm
can accelerate the execution of the FSA for block motion estimation in two aspects. First,
the computational complexity of the FSA can be reduced by employing the proposed
algorithm. Second, the implementation on SIMD architectures can bring a further
speedup by utilizing data parallelism.

In Section 4.1, a number of partial sums of the luminance values are defined and
expression derived for the same. These partial sums are utilized to calculate some lower
bounds for the MAD. A fast method to calculate these partial sums is developed. Then,
an algorithm using these partial sums for reducing the computational complexity of the
FSA is proposed. It is proved that this algorithm maintains the accuracy of the FSA.
Section 4.2 gives the implementation of this algorithm on SIMD architecture. In Section
4.3, the computational complexity of this algorithm is discussed. Section 4.4 gives
simulation results to demonstrate the effectiveness of the algorithm with respect to the

computational complexity.

- 48 -

4.1 The Vector-Based Motion Estimation Algorithm

As in the case of the selective elimination algorithm (SEA) [52], the objective of our
algorithm is to find some lower bounds for the MAD. In order to use the SIMD technique
to accelerate the motion estimate process efficiently, these lower bounds must fulfill the
following two requirements.

1. The computation of the lower bounds must be computationally much less
intensive than the computation of the MAD itself. Otherwise, there are no
savings in the computation.

2. The manipulations of these lower bounds can be easily and efficiently
performed using the SIMD technique. In order to satisfy this requirement,
elements involved in the computation of these lower bounds should be
stored in a contiguous memory space so that the SIMD technique can be
fully utilized to carry out the calculations corresponding to several data
elements in parallel.

It is shown in this section that the vector-based fast block motion estimation
algorithm not only satisfies the above two requirements, but also maintains the accuracy

of the full-search algorithm.

4.1.1 Formation of Partial Sums
For a 16 x16 block in a video coding standard, we first partition every column of this
block into different data sets. Then, the addition of all the luminance values in a data set

is defined as a partial sum.

_49 -

Each column of a 16x16 block is partitioned into upper and lower half sections
recursively until it cannot be further partitioned. Each partition can be considered as a
representation of the block at level /, such that 1 </ <5. The sections in the final level,

i.e., level 5, can be represented by the data sets given by
Y (p,q)={(m,n)|m=p and n=gq} (4.1)
where (p,q) and (m,n) are, respectively, the indices of the data set and the pixel in a
block, 0 <m,n <15, and the superscript denotes the level number. The sections of the
partition at level /, (1 </ < 4), can be represented by the sets given by
Y(p.g) =" CQpoJ¥Y" 2p+19) (42)
where 0< p <2™', and 0< ¢ <15. Thus,
Y (p,q)={(mn)|2 ' p<m=<2>"p+2°" -1 and n=gq} 4.3)
We extend the definition of level / to include the Oth level as
Y =UL,W'(0,9) 4.4)
Thus,
YO = {(m,n)|0<mn<15} 4.5)
From (4.5), we see that \P'° is the set of all the pixels ina 16 x16 block.
The partial sums, as defined above, are the sums of all the luminance values in a

data set. Thus, the partial sums at the level / (1</<5) of the current and reference

block can be, respectively, expressed as

Sip.@)= D,B.(m,n) (4.6)

(m.m)e¥! (p.q)

and

- 50 -

Si(p.q V)= Y B.(mnV) (4.7)

(m,me¥ (p.q)

where (p,q) is the index of a partial sum in a 16 x16 block, V = (V,,V,) 1s a candidate

motion vector, and the subscript » and ¢ represent the reference and current blocks,

respectively. When / = 0, the partial sums at the O -th level are defined as

S)= D B.(mn) (4.8)
(m,n)e‘l’0
and
;)= Y B.(mnV) (4.9)
(m,n)e¥’

where W° is given by (4.4).

Using (4.2) in (4.6), it can be seen that, when 1</ < 4, the following holds.

Sip.g)= D.B.(mm)+ > B.(mn) (4.10)

(mm)e™ (2p.0) (mm)e?"™ (2p+1,q)
Using (4.6), (4.10) can be expressed as
Sc(p.q)=5."Q2p.)+ 5" 2p+1,q) (4.11)
Similarly, using (4.2) in (4.7), when 1</ <4, the following equation can be derived.
SH(p.q.V)=8,"(2p,q.V) + S 2p+1,4.V) (4.12)

Combining (4.11) and (4.12), when 1 </ <4, we have

SHp.q) =S 2p,g)+ ST (2p+1,9) “4.13)
SHp.q.V)=S"2p.g.V)+ S 2p+1,4,7) '
From (4.1), (4.6) and (4.7), when [=5, we have
Sj b = B 2
{ g(p q)_ Ap.q)) @.14)
S(p,q,V)=B,(p,q,V)

Using (4.4) and (4.5) in (4.8) and (4.9), when / = 0, we have

-51-

15 15 15

SY=3"3"B.(mun)=> S0,q)

m=0 n=0 g=0
. 15 15 _ 15 _ (415)
ST)=2.2 B (mn V)= 8(0,q,V)
m=0 n=0 g=0

4.1.2 Lower Bounds for the MAD
The mean of the absolute differences of the partial sums at level / (1</<5) is defined
as

15 211

MAD'(V)=>" > |SHp,9) - S\(p,q. V)| (4.16)

g=0 p=0
where, without loss of generality, we have not included the division by the factor of 2**.

The absolute difference of the partial sums at level 0 is given by
MAD® (V) =S =S, (V)] (4.17)

Using (4.13) in (4.16), for 1 </ <4, we have

15 271

MAD'(Py=> Y 1SMQ2p,q)+ S 2p+L,g) =8 2p,q.V)-S" 2p+1L,4,7)|
qg=0 p=0
(4.18)
The above equation can be expressed as
15 271
MAD' (V)= Y 1S 2p,q) =8, 2p.a. V) + (ST 2p+1,9) = 57" (2p +1,4,7)) |
q=0 p=0
(4.19)
Using the inequality
la+b| < la|+]|b] (4.20)

MAD' (V) can be expressed as

_52.

15 2711 R B
MAD' (V)<Y X (18 2pg) =5 2p.a.)+ 2p+1Lg) =S 2p+1.4.7)))
q=0

p=0

(4.21)
The above inequality can be rearranged as
B 15 2U+h-1_4 B
MAD' ()<, 218 (p.) =5 (p,q.V)| (422)
q=0 p=0

From (4.16), the right side of (4.22) is just MAD"™ (V). Thus, for 1 <1 <4, the following
inequality holds.
MAD' (V) £ MAD"™ (V) (4.23)

When [=5, MAD’ (V) can be expressed using (4.14) in (4.16) as

15 15

MAD*(V)=>">"| B.(p.q) - B,(p,q,V) | (4.24)

g=0 p=0
The right side of (4.24) is just MAD(V) . Thus, for [=5, we have
MAD® (V) = MAD(V) (4.25)

From (4.15), when [=0, (4.17) can be expressed as

MAD® (V) < ii B_(m,n)— iiB, (m,n, V)| (4.26)

The right side of (4.26) is the lower bound for the MAD(V) in the selective elimination
algorithm, i.e.,
LB, (V)=MAD" (V) 4.27)

where LB, (V) is as defined in (A.8). Using (4.15), (4.17) can be rewritten as

MAD (7)< 3 (5! (0.q) - §'(0.4.7)| (4.28)

q=0

-53-

Using the inequality

15 15
1> e(@) <) | c(g)] (4.29)
q=0 q=0
MAD® (V) can be expressed as
MAD® (V)< | S:(0,9) ~ $,(0,4.V) | (4.30)
g=0

The right side of (4.30) is MAD' (V) from (4.16). Thus, we have

MAD® (V) < MAD' (V) (4.31)
Combining (4.23), (4.25), (4.27), and (4.31), we have

LBy, (V)< MAD'(V) < MAD*>(V) < MAD* (V) < MAD* (V) < MAD(V) ~ (4.32)
From the inequalities given by (4.32), we see that there are four lower bounds for
the MAD(V) and they are MAD'(V), 1 <1< 4. These lower bounds are tighter than the
lower bound in the selective elimination algorithm. Due to this fact, the number of times
the calculation of MAD(V) that can be circumvented in the vector-based fast block

motion estimation algorithm is much more than that in the selective elimination algorithm.
In passing, it is noted that the term “multi-level partial sums” was introduced in [21,
22]. However, the partial sums used therein do not satisfy the Requirement 2 given on

page 49.

4.1.3 Fast Method to Compute the Partial Sums

From the above discussion, it is obvious that in order to calculate MAD'(V), one needs

to compute S'(p,q) and S'(p,q,V), which are the partial sums of the luminance values.

A fast method to calculate these partial sums is now given.

-54 -

The frame partial sums at level / (1</<5) at the location (m,n) in the current and
the reference frames, respectively, are defined as
2271
Fl(mn)= Y. I (m+i,n)
=0

2

F!(mn)= Y1 (m+in)
i=0

(4.33)

where /_(x,y) and [, (x,y) are the luminance values at the location (x, y) in the current

and reference frames, respectively. The frame partial sums at O th level at the location
(m,n) 1n the current and reference frames, respectively, are defined as

15 15

Fco(m,n) = ZZ]C(m +i,n+j)

o (4.34)
F’(m,n) = ZZIr(m +i,n+j)

i=0 j=0

The frame partial sums are calculated only once and saved in the memory for future

use. The corresponding block partial sums at the /th (1 </ <5) level can be expressed as

SHp.q)=F!(x,+pe2”,y, +
{C(pq) (X +p Yo +q) 435)

S(p.g. V) =F/(x, 4V, + pe27y, +V, +q)
where (x,,y,) is the upper-left corner of the block, ¥ = (¥, V,) is the candidate motion

vector, and (p,q) is the index of the partial sum in a block. The corresponding block

partial sums at the O th level can be expressed as

SO — FO ,
c(,) R c(xc())yo) (436)
Sr(V):Fr (XO +Vr’y0 +Vy)
From (4.33), we see that, when [/ =5, we have
F’(m,n)y=1_(m,
e (mm)=1I.(m,n) (437)
F>(m,n)=1 (m,n)

-55-

and when 1 </ <4, we have

254 231ty 2311y

Fl(mu)= > I.(m+im)= > [(m+in)+ Y I.(m+2"" +in) (4.38)
i=0 i=0 i=0

The right side of (4.38) is F'*'(m,n) + F/*'(m+2*",n), using (4.33). Thus, for 1 </ < 4,
we have

F!(m,n)=F" (m,n)+ F"' (m+2"" n) (4.39)
For a faster computation of F.(m,n), we could use (4.39) instead of (4.33). We initially
obtain F’(m,n) using (4.37). Then, we employ (4.39) to compute F,(m,n) from

F!"(m,n) recursively, for 1</<4.

From (4.33) and (4.34), we have

15 15

Fl(mny=Y[> I (m+in+j)]= IZSZF; (m,n+ J) (4.40)

j=0 i=0
The use of (4.40) is not a good method to compute F. (m,n), since it needs 15 additions

to compute F,.’(m,n) per pixel. Now, we give a fast method to compute F.’(m,n) that

needs only two additions per pixel. Equation (4.40) may be rewritten as

15
Fl(mn)=Y F!(mn—1+ j)+F(m,n+15)= F!(m,n~1) (4.41)

=0

The first term on the right side of (4.41) is F.”(m,n 1) from (4.40). Hence,
F’(m,n)=F'(mn—1)+ F!(m,n+15) = F.(m,n 1) (4.42)

From (4.42), we see that only one addition and one subtraction are needed to compute

F°(m,n) for n>1. Thus, we can use (4.42) to compute F.’(m,n) (for n>1) efficiently.

In order to use (4.42) to calculate F’(m,n), we have to initially calculate F’(m,0) using

- 56 -

F°(m,0) = iFC‘ (m, j) (4.43)

Once F'(m,0) is found, we can use (4.42) to calculate F,(m,n) from F(m,n—1)

recursively. Table 4.1 summarizes the method outlined above for a fast calculation of the

frame partial sum.

Table 4.1 Fast method to calculate the frame partial sums

1) If (not the first encoding frame)
F'(m,n) = F!(m,n)
QDFor(m=0;m<H,m=m+1)
{

For(n=0; n<W;n=n+1)
FZ (m,n) = I, (m,n)
}
For(/=4;1>1; I=1-1)
{
For(m=0;m<H-2""+1;m=m+1)

{
For(n=0; n<W;,n=n+1)

{
El(myn)=F* (m,n)y+ F*' (m+2"" n)
§
¥
}
HFor(m=0;m<H-15; m=m+1)
{

F(m0) =Y Fl(m,))
}

For(n=0; n<W-15; n=n+1)
{

For(m=1,m<H-15; m=m+1)

{
F’(m,n)=F’(m,n—1)+ F!(m,n+15) = F!(m,n-1)

Note: W and H represent the width and height of a video frame.

-57-

4.1.4 Algorithm

The inequalities given by (4.32) form the basis of the vector-based motion estimation
algorithm. In this section, we discuss the use of the inequalities given by (4.32) for the
reduction of the computational complexity of the FSA.

Let CS(n) be the set of all the candidate motion vectors checked so far in a motion

estimation process and 170p (n) the optimum motion vector in the set CS(n), i.e.,
V,,(n)=arg {VIErclgln)[MAD(V)]} (4.44)

where n is the number of candidate motion vectors checked. Denoting the current

candidate motion vector to be checked in a motion estimation process by V., we have
CS(n+1)=CS(mUY,, } (4.45)
and
Vyp(n+1) =arg{ min [MAD(Y)]} (4.46)
Since we have CS(n) c CS(n+1), the following inequality can be derived
MAD(V,, (n +1)) < MAD(V,, (n)) (4.47)
If at any level of [, 0</ <4,
MAD' (V) > MAD(V,,(n)) (4.48)
then, we have from (4.32)
MAD(V,,,.) > MAD'(V,,,.) > MAD(V, (n)) (4.49)

Comparing (4.47) and (4.49), the current candidate motion vector V. is not a better

curr

motion vector than ¥, , (1) whenever (4.48) holds, that is,

Verr #V,,(n+1) whenever MAD'(V_) > MAD(VDP (n)) (4.50)

curr curr

- 58 -

Thus, if (4.48) is satisfied for any level /, 0 </ <4, the computation of MAD(VC) can

urr

be avoided without the exclusion of the optimum motion vector. In this way, a large
number of computations of MAD(V), which are very computationally intensive, can be
circumvented while keeping the accuracy of the full-search algorithm. In order to utilize
(4.32) more efficiently, the computations of MAD' (V) are carried out successively from
level 0 to level 5, and stopped whenever (4.48) is satisfied. The vector-based fast block

motion estimation algorithm is summarized in Table 4.2. In this table, 1701, and MAD

min
are, respectively, the optimum motion vector checked so far and its corresponding value

of MAD.

4.2 SIMD Implementation of the Proposed Algorithm

In this section, we give an implementation of the algorithm using an SIMD technique to
further accelerate the process of motion estimation.

Usually, the luminance values of a video frame are saved in the memory in a row-by-
row raster scan manner. According to (4.39), the frame partial sums at level / can be
obtained by the summation of the two frame partial sums at level /+1 in the same column.
In order to use the data parallelism offered by the SIMD technique, the frame partial
sums at every level are also saved in a row-by- row raster scan manner. The process of

using the SIMD technique in these calculations is given in Table 4.3.

-59.-

Table 4.2 A vector-based fast block motion estimation algorithm

Step 1) Initialization

a) Compute all the partial sums for the current frame and save
them in a continuous memory space.

b) Retrieve all the partial sums for the reference frame in a saved
continuous memory space.

Step 2. For every current block, execute the block motion estimation
process.
Step 2.1 Initialization

I7()]) = (OJO)
MAD,,, = MAD(V,,)
Step 2.2 Search
(*) For (each search location of V,

{
If (MAD (V) > MAD_.)

Curr

in the full-search algorithm)

urr

Go to (*) and select next search location;
If (MAD'(V,,,) > MAD,,,)

curr

Go to (*) and select next search location;

If (MAD*(V,,,,) > MAD,;,)

curr

Go to (*) and select next search location;
If (MAD* (V) > MAD,,.)

curr

Go to (*) and select next search location;
If (MAD*(V,,,) > MAD,,)

Go to (*) and select next search location;
Calculate the MAD(V_);

Curr

If (MAD(V) < MAD,)

curr

MAD

Vop = chrr

=MAD(V_)

min curr

j

- 60 -

Table 4.3 Employment of SIMD technique for the calculations of
frame partial sums

1) Load four (/+1)-th level frame partial sums into the first SIMD

register.

2) Load the four (/ +1)-th level frame partial sums at the next 2*-th row

and the same column as in (1) into the second SIMD register.

3) If [=4, unpack the loaded data from the byte type to the word type.

4) Do the four-word summations of the data of the first two SIMD

registers in only one SIMD instruction.

5) Store the data and go to (1) for the next four partial sums.

Since the partial sums of a macroblock are also saved in a row-by-row raster scan
manner, the proposed algorithm is very suitable for an SIMD implementation. Equation
(4.16) can be rewritten as

27

MAD' (V)= Y r(p) (4.51)
where
r(p) =Y | SHp.)~ S(p,q. V)| (4.52)

As seen from (4.51), the elements involved in the computation of MAD' (V.,V,) consist

of only r(p)’s, which form a vector. This is the reason why the proposed algorithm is
called the vector-based fast block motion estimation algorithm. The significant feature of

the proposed algorithm is that S'(p,q) and S!(p,q,V) in (4.52) are, respectively, saved

-6l -

in a contiguous memory space. In this way, four subtractions in (4.52) can be carried out

simultaneously in an SIMD instruction utilizing two 64-bit SIMD registers, as shown in

Figure 4.1.

Destination bit 64 48 32 16
register a(l) a2) a(3) a(4)
Source bit 64 48 32 16
register b(1) b(2) b(3) b(4)
Destination bit 64 48 32 16
register c (D) c(2) ¢(3) c(4)

Note: In the above figure, c(1)=a(i)-b(i)

Figure 4.1 Packed word-type subtraction on SIMD registers

4.3 Computational Complexity of the Proposed Algorithm

In Section 4.1, a vector-based fast block motion estimation algorithm has been proposed.
This algorithm maintains the accuracy of the full-search algorithm as mentioned in

Section 4.1.4. In this section, we first analyze the computational complexity to compute
the / th level lower bounds of MAD'(V) for 0</<5 , and then discuss the

computational complexity to compute the frame partial sums. Based on these, theoretical

-62 -

and practical speedups of the proposed vector-based fast block motion estimation

algorithm over the full-search and selective elimination algorithms are determined.

4.3.1 Computational Complexity of MAD'(V) for a Given I, 0<1<5

Equations (4.16) and (4.17) are used to calculate the value of MAD' (V). When [=0,

MAD® (V)= S° - 8° (V)] (4.53)
and when 1</ <5,
Lo 15 271) . *
MAD' (VY=Y > |8:p.a)-Si(p.q. V)] (4.54)
p=0 ¢g=0

From (4.53), we sce that the computation of MAD®(V) needs only one subtraction
and one absolute value calculation (the operation to calculate the absolute value of x).

From (4.54), we see that the computation of MAD'(V) (for 1</ <5) needs 16x2""
subtractions, 16x 2" absolute value calculations, and 16x 2" —1 additions. Let n,(/),
n (I), and n, (/) denote, respectively, the number of additions, subtractions, and

absolute value calculations in the computation of MAD'(F). Then, from the above

discussion, we have

n_(0)=0
n,(0) =1 (4.55)
nab(o) =1

and

n ()=16x2"~1
n,(I)y=16x2" 0<I<5 (4.56)
n,(l)=16x2""

- 63 -

As discussed in Chapter 2, in order to find the computational complexity per pixel, we
assign one unit for each of the operations of addition and subtraction, and two units for

each of the operations of comparison and taking the absolute value, a reasonable

assumption on commonly used CPUs. Let n, (/) denote the computational complexity of
MAD' (V) per pixel. Then, we have

n ()=, ()+n, ()+2n,(l))/256 (4.57)
since one block consists of 256 pixels. The computational complexity of MAD' (V) for a

given [, 0</ <5, 1s provided in Table 4.4.

Table 4.4 Computational complexity of MAD'(V), 0<[<5

Absolute value | Computational
Additions Subtractions
/ calculations complexity
(n,(1)) (n,())

(1)) (n,(1))
0 0 1 1 3/256
1 15 16 16 63/256
2 31 32 32 127/256
3 63 64 64 255/256
4 127 128 128 5117256
5 255 256 256 1023/256

- 64 -

4.3.2 Computational Complexity to Calculate the Frame Partial Sums

In Section 4.1.3, we discussed a fast method to calculate the frame partial sums. When

1<1<4, we see from (4.39) that for the calculation of F!(m,n) from F'*'(m,n), only

one addition is needed. For a video frame of size W x H, we need to use (4.39) at most
n,()=4xWxH

times to calculate all the frame partial sums of FC’ (m,n), for1</<4,1<m<H, and

I<nsW.

When [=0, we use (4.42) and (4.43) to calculate F’(m,n). The number of
additions n,(2) and the number of subtractions n,(3) needed in calculating all the
F?(m,n) values are given by

n,(2) =15(H =-15) + (W —15)(H —16)
and
n,(3)=MW —15)(H -16) .
Let n, denote the total computational complexity per pixel required to calculate all the

frame partial sums. Then

n, <(n,()+n,(2)+n,(3)/(WH) <6 (4.58)

4.3.3 Computational Complexity of the Algorithm
Denoting by m, (/) (0</<5)) the average number of times per block that MAD')

needs to be computed, the computational complexity of the proposed algorithm (VFA) is

given by

- 65 -

C(VFA) :ZS:m,(Z){n,(l)+7§g}+nf (4.59)

1=0

where the factor 5% arises as a consequence of the operation of comparison between

MAD'(V

curr

) and MAD_. per block (see Table 4.2).

4.3.4 Theoretical Speedup
The computational complexity of the proposed algorithm as a percentage of the
computational complexity of the FSA is

vea _ C(VFA)
B C(FSA)

x100% (4.60)
As discussed previously, the proposed algorithm can be implemented using an SIMD
architecture, where a four-fold data parallelism can be employed. As a result of this, the
execution time of the proposed algorithm using an SIMD architecture as a percentage of

the execution time of the algorithm without SIMD implementation is theoretically

TS(SIMD) = l/ifx 100% =25% 4.61)

The computational complexity of the proposed algorithm as a percentage of the

computational complexity of the SEA is

. C(VF4)
S C(SEA)

x 100% (4.62)

4.3.5 Practical Speedup

Let p

1> Pop» and P, denote the average number of CPU cycles needed per block to

carry out the FSA, SEA, and VFA, respectively, without any SIMD implementation. Let

- 66 -

P, (SIMD) be the average number of CPU cycles needed per block to implement the
proposed VFA using an SIMD architecture. Thus, without any SIMD implementation, the
execution time of the VFA as a percentage of that of the FSA and SEA, respectively, are
given by

P
PSSV = T 100% (4.63)

FS4

and

P
PSS = A« 100% (4.64)

SEA
The execution time of the proposed VFA using an SIMD architecture as a percentage of

the execution time of the VFA without an SIMD implementation is

Bopa (SIMD)

PS(SIMD) = x 100% (4.65)

VFA

4.4 Simulation Results

Simulation studies on the proposed algorithm are carried oﬁf for the CCITT test video
sequences in the QCIF format using the TMN20 framework of the H.263 video codec.
The encoding process for a frame is carried out after skipping two frames in between, i.e.,
the encoding is done for frames 1, 4, 7, ..., 97, 100, ...and so on. The search window is
of size 31x31. The SIMD technique employed is the Intel’s MMX instruction set.

In our research work, ten video sequences, including the Salesman, Car Phone,
Silent, Akiyo, News, Foreman, Trevor, Mother & Daughter, Miss America, and Claire are

selected for the performance evaluation of the proposed algorithm.

-67 -

Table 4.5 lists the values of m, (/) (0</<5) for various test sequences in the
proposed VFA. The values given in Table 4.5 are used in obtaining the values of C(F'$4),

C(SEA), and C(VFA) as well as those of 77,5, and 75 for the various test sequences
and these are given in Table 4.6. From Table 4.6, it can be seen that the computational
complexity of the VFA is about 2 to 8 percent of that of the FSA and 11 to 27 of that of
the SEA. It should be noted, as mentioned earlier, that a further reduction of 75% can be
achieved for the complexity of the proposed VFA by implementing it using an SIMD

architecture.

Table 4.7 gives the values of P, P, and P, the total CPU cycles per block of
the FSA, SEA, and the proposed VFA without an SIMD implementation for the various
test sequences. It also gives the values of PS,f| and PS;;;, the execution time of the
VFA as a percentage of the execution time of the FSA and that of the SEA, respectively.
It can be seen from this table that the execution time of the proposed VFA is about 2 to
11 percent of that of the FSA and 16 to 40 percent of that of the SEA. Table 4.8 gives the
values of P, and P,.,(SIMD), the CPU cycles per block for the proposed VFA with
and without an SIMD implementation. It is seen from this table that the execution time of
the proposed VFA using an SIMD architecture is about 26 percent of that of the VFA

with no SIMD implementations. It is noted that this practical speedup of 74% is close to

the theoretical speedup of 75%.

- 68 -

Table 4.5 The average number of times per block that MAD' (17) needs to be
calculated in the proposed VFA

Test sequence | m,(0) m, (1) m,(2) m,(3) m,(4) m,(5)
Salesman 960 | 23886 | 2903 | 646 | 185 148
CarPhone | 960 | 20003 | 6651 | 2078 | 1521 | 8.02

Silent 960 | 17985 | 4662 | 1729 | 7.1 3.96
Akiyo 960 | 13022 | 1773 | 359 179 BE

News 960 | 15297 | 3623 | 1908 | 803 27
Foroman 960 | 25278 | 10718 | 4358 | 2106 | 1132
Trevor 960 | 22738 | 3221 | 137 | 617 | 414

Mother
960 | 18253 | 39.01 1 350 | 231
& Daughter

Miss America | g60 | 29883 | 844 | 3486 | 969 | 3.11
Claire 960 | 10239 | 3551 | 12.08 | 257 | 159

- 69 -

Table 4.6 Theoretical speedup of the proposed VFA over the FSA and SEA without
SIMD implementation

C(FSA) C(SEA) C(VF4)
Test sequence Mrse Mt
from (B.5) | from (B.24) | from (4.59)
Salesman 3847.75 978.89 116.14 3.02% 11.86%
Car Phone 3847.75 823.14 201.54 5.24% 24.48%
Silent 3847.75 742.66 141.37 367% 19.04%
Akiyo 3847.75 543.67 78.66 2.04% | 14.47%
News 3847.75 634.95 127.90 3.329% 20.14%
Foreman 3847.75 1034.54 274.42 7.13% 26.53%
Trevor 3847.75 932.84 141.41 3.68% 15.16%
Mother

— 3847.75 753.07 118.24 3.07% | 15.70%
Miss America 3847.75 038.55 192.25 5.00% 20.48%
Claire 3847.75 432.30 92.28 2.40% 21.35%

-70 -

Table 4.7 Practical speedup of the proposed VFA over the FSA and SEA without SIMD

implementation

Test
Prgy Py o PS Fng PS;EF:

sequence
Salesman | 719760 | 701748.66 | 118862.02 | 4.37% | 16.94%
CarPhone \ 719760 | so1821.12 | 2113397 | 7.78% | 35.71%
Silent 2717760 | 534691.54 | 147934.00 | 5.44% | 27.67%
AKYO 1 9717760 | 394188.82 | 80619.70 | 2.97% | 20.45%
News | 2717760 | 45859426 | 135718.18 | 4.99% | 29.59%
Foreman 5717760 | 741156.18 | 28979636 | 10.66% | 39.10%
Trevor | 9717760 | 669248.78 | 14470924 | 5.32% | 21.62%

Mother
& 2717760 | 542278.62 | 12312927 | 4.53% | 22.71%

Daughter

Miss
: 2717760 | 673353.92 | 208302.85 | 7.66% | 30.94%

America
Claire | 2717760 | 315402.00 | 97969.85 | 3.60% | 31.06%

-1 -

Table 4.8 Practical speedup of the proposed VFA using SIMD architecture

Test
P, B (SIMD) | PS(SIMD)
sequence
Salesman | 1886700 | 31279.48 26.32%
CarPhone | 51133070 | s5615.71 26.32%
Stlent 1 147934.00 38930 26.32%
AKYO 8061970 | 2121571 | 26.32%
News 135718.18 | 3571531 26.32%
Foreman | 58979636 | 762622 26.32%
Trevor | 14470924 | 3808138 26.32%
Mother
& 123129.27 | 32402.44 26.32%
Daughter
Miss
0,
America | 20830285 | 54816.54 26.32%
Claire | 9796085 | 2578154 | 26.32%

-72 -

4.5 Summary

In this chapter, a vector-based fast block motion estimation algorithm, suitable for
implementation using SIMD architecture, has been proposed. In this algorithm, certain
partial sums of the luminance values have been defined and a fast method to calculate
these partial sums developed. These partial sums have been used to calculate some lower

bounds for the MAD. These bounds have then been utilized in the algorithm to reduce
significantly the number of times MAD(V) needs to be computed. It has been shown that

this algorithm maintains the accuracy and coding efficiency of the full-search algorithm.
Simulations have been carried out on a number of test sequences, and the simulation
results show that the computational complexity of the algorithm is about 2 to 11 percent
of that of the full-search algorithm and 11 to 27 percent of that of the selective
elimination algorithm. These results also show that the execution time of the algorithm

can be reduced by about 74% by implementing it using an SIMD architecture.

-73 -

Chapter 5

Fast Block Motion Estimation with Eight Bit Partial Sums
Using SIMD Architectures

As discussed in Chapter 2, since the values of the MAD inside a search window have
several local minima instead of only one, multi-step search algorithms are often trapped
in a local minimum, and hence, these multi-step search algorithms lose the accuracy of
the full-search algorithm. The selective elimination algorithm (SEA) described in Chapter
2, and the vector-based algorithm (VFA) proposed in Chapter 4 are fast block motion
estimation algorithms belonging to the category of exhaustive search algorithms. This
category of fast block motion estimation algorithms exhaustively searches every search
location inside the search window as the full-search algorithm does. However, they avoid
the computation of the MAD whenever possible by calculating some of the lower bounds
of the MAD. Since every search location is searched and the corresponding optimum
motion vector is not excluded during the search process, these algorithms can reduce the
computational complexity and maintain the accuracy of the full-search algorithm.

As discussed in Chapter 4, the SIMD technique offers a good mechanism to
accelerate the implementation of block motion estimation through data parallelism.
However, exhaustive search block motion estimation algorithms, such as the SEA, and
VFA, cannot take advantage of the byte-type data-parallelism 1n this technique, since the

partial sums of these algorithms are of more than nine bits.

- 74 -

In this chapter, new partial sums of only eight bits, instead of more than nine bits in
the literature, are derived to discard as many of the MAD computations as possible,
without excluding the optimal motion vector. The presented partial sums can not only be
utilized in the full-search as well as in some of the fast block motion estimation
algorithms with no loss of accuracy, but also be implemented on SIMD architectures to
take advantage of byte-type data-parallelism.

In Section 5.1, we define the eight-bit partial sums of sixteen luminance values. In
Section 5.2, the notion of the eight-bit partial sums is extended to the four-level case. It is
shown that there are fifteen possible methods of utilizing these multi-level eight-bit
partial sums to accelerate a block motion estimation algorithm without any loss of
accuracy of the algorithm. Each of these fifteen methods is used in the full-search
algorithm to determine the one that provides the lowest computational complexity. This
method is adopted as the chosen scheme to accelerate various block motion estimation
algorithms. In Section 5.3, computational complexity of the scheme incorporated with
various block motion estimation algorithms is discussed. Simulations are carried out in
Section 5.4 to demonstrate the effectiveness of proposed scheme to accelerate block

motion estimation algorithms.

5.1 Eight Bit Partial Sums of Sixteen Luminance Values

Our objective here is to use eight-bit partial sums to accelerate the block motion
estimation process. To achieve this objective, there are two problems that must be solved:
the first is a method to obtain eight-bit partial sums, and the second a method to utilize

these partial sums in a block motion estimation process.

-75 -

The partial sums of sixteen luminance values corresponding to the current and
reference blocks are defined, respectively, as
15
BSy,(n) =Y B (m,n)
oy } (5.1)
BS/(n,V)=>"B, (m,nV)

m=0
where m and n are, respectively, the row and column indices in a block. It is seen that
the above are of twelve bits. We now define the eight-bit partial sums of sixteen

luminance values for the current and reference blocks, respectively, to be the quantity

obtained by a four-bit right-shift operation of the 12-bit partial sums BS|(n) and

BS!.(n,V), ie.,

{PSC (n) =[BSy5(m)] >>[4] (5.2)

PS, (n,V)=[BS;(n,V)] >>[4]
where the notation of "[A4] >>[B]" stands for shifting A4 to the right by B bits [15].

The MAD criterion should be slightly modified in order to use these eight-bit partial
sums to reduce the computational complexity of a block motion estimation process. The
modified mean absolute difference (MMAD) corresponding to the eight-bit partial sums

of sixteen luminance values is defined as
MMADV) =[MAD(V)] >>[4]+16 (5.3)
It can be seen that the computation of the MMAD requires only two operations, one right

shift operation and one addition, after the computation of the MAD. The following

theorem gives a lower bound for the MMAD.

15
Theorem 5.1: A lower bound for MMAD(V') is ZI PS_(n)—PS, (n,V)].

n=0

- 76 -

Proof: The eight-bit partial sums defined in (5.2) can be expressed as

PS_(n) = BS{,(n)/16 -6, (n)
PS,(n,V)=BS},(n,V)/16 5, (n)
where

8.(n),8,(n) e (i/16]0<i <15}

Then,

S :i; PS_(n)—-PS (n,V)|

n=0

can be written as

BS BS|.(n,V
$ =31 2) - BB,)

B c
S < Z! Sis(n) lgSlé(n V)
n=0

or

Zlé(n) 8,(m)|
In view of (5.5), we have
YIsm-sm| = 13

We now consider the first summation

15 15

Zl BSis(n)— BS1r6(n,I7) |= Z

n=0 =0

ZB (m,n)— ZB (m,n,V)

m=0

15

2

n=0

i(Bc(m,il)—Br(m,n,V)

m=0

15 15

22

n=0 m=0

IN

= MAD(V'), using (2.1).
Hence, from (5.7), (5.8) and (5.9) we get

MADY)
16

S<

-77 -

(54)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

Since

M—Al%@ < {(MAD®V)] >>[4]} +1
we get
S< {[MAD(V)]>>[4]} +16
= MMAD®), using (5.3). (5.11)

Hence, the theorem.

We shall denote this lower bound given by Theorem 5.1 as LB(V).

In an exhaustive or multi-step search algorithm, the computation of MAD(V) is
carried out at every chosen search location of 7 . In the following theorem, we show that
some of the computations of MAD(¥) can be skipped without loss of accuracy.
Theorem 5.2: If LB(V) is larger than the minimum value of MMAD computed so far,

the computation of MAD(V) can be skipped without any loss of accuracy in the
exhaustive as well as multi-step search algorithms.

Proof: Define CS(j) as the set of all the candidate motion vectors checked so far in a
motion estimation process and Vop (j) as the optimum motion vector in the set CS(j),
€.,

7. (j) =arg{_min [MAD(mv)]} (5.12)

myeCS(Jj)
where j is the number of the checked candidate motion vectors. Define 7 as the current
candidate motion vector to be checked in a motion estimation process and CS(j +1) as

the set containing the current candidate motion vector as well as all the candidate motion

vectors checked so far in a motion estimation process, 1.€.,

-78 -

CS(j+1)=CS(HU Y (5.13)

Since CS(j) < CS(j+1), we can show that

MAD(V,, (j+1)) < MAD(V,,(})) (5.14)
From (5.14) and (5.3), we have
MMAD(,,(j +1)) < MMAD(V,, (/) (5.15)
From Theorem 5.1
LBV, (j+1)) < MMAD(V, (j +1)) (5.16)
F?om (5.15) and (5.16), we have
LBV, (j+1)) < MMAD(V,,(})) (5.17)
Thus, if
LB(V) > MMAD(V(})) (5.18)

where MMAD(VOP (/)) is the minimum value of MMAD computed so far, then we have
V=V, (j+1) (5.19)
and the current candidate motion vector of ¥ is not a better estimate than 170p (7). Thus,

the computation of MAD(V) can be skipped if (5.18) holds. Hence, the theorem.

Based on Theorem 5.2, an algorithm can be formulated using the eight-bit partial

sums to accelerate a block motion estimation process and is given in Scheme 5.1. In this

Scheme, MMAD MAD and V,, respectively, stand for the minimum value of

min ? min ?

MMAD, the minimum value of MAD, and the optimum motion vector, computed so far.

-79-

Scheme 5.1

Step 1) Initialization

a) Compute all the eight bit partial sums of sixteen luminance
values for the current frame and save them in a continuous memory

space.

b) Retrieve all the eight bit partial sums of sixteen luminance

values for the reference frame in a saved continuous memory space.

Step 2. For every current block, execute the block motion estimation
process.

Step 2.1 Initialization
I7o = (090)
MAD_ = MAD(V,)

MMAD,

o = [MAD, . 1>>[4]+16

min

Step 2.2 Search

(*) For (each search location of ¥ in a motion estimation algorithm)

{
If (LB(V) > MMAD,_)
Go to (*) and select next search location

Calculate the MAD(V)
If (MAD(V) < MAD,)

{

MAD . = MAD(V)

MMAD, =[MAD__1>>[4]+16

v, =V

-80 -

5.2 Multi-Level Eight-Bit Partial Sums

In this section, we extend the notion of the eight-bit partial sums discussed in Section 5.1
to the multi-level case. It is shown that the eight-bit partial sums of sixteen luminance
values are just the fourth-level eight-bit partial sums. From these multi-level eight-bit
partial sums, the multi-level sum of the absolute differences (SAD) of all the eight-bit
partial sums between the current and reference blocks is described. An upper bound (UB)
for the SAD of a particular level is then established. It is shown that the MMAD
described in the previous section is just the UB of the fourth level. Finally, an SIMD

implementation for computing the SADs is described.

5.2.1 Formation of Multi-Level Eight-Bit Partial Sums

Consider a column C(n), 0<n <15, in a (16x16) block. It has sixteen elements,
C(n) ={(m,n) |0 <m <15} . We first partition this set of C(n) into cight subsets of
C'(m,n) , where each subset C'(m,n) is defined as,

C'(m,n) = {(k,n) | 2m <k <2m+1} - (5.20)
where 0 <m <7 and OS n <15. Thus, each of the subsets consists of two neighboring
elements. We say that these eight subsets of C'(m,n) constitute the first level. We now

define every subset in the (/+1)-th level partition to be the union of two neighboring

subsets in the /-th level, 1.e.,
C"' (m,n)=C'2m,n)UC' 2m +1,n) (5.21)
where 0 <m <2*' —1 and 0 <n <15. Thus, we have partitioned the set C(n) into eight

subsets of C'(m,n) corresponding to level 1, four subsets of C?(m,n) corresponding to

-81 -

level 2, two subsets of C’(m,n) corresponding to level 3, and finally the set C*(0,n)
equals to C(n) itself.

The /-th level partial sums corresponding to the current and reference biocks are
defined, respectively, as the summation of all the luminance values in the set C'(m,n)

m2!+2' -1

MBS!(m,ny= Y, B.(k,n)= > B.(k,n)

(k,m)eC’ (m,n) k=m2' (5.22)
m2 +2'-1)
MBS (m,n,V)y= > B.(knV)= > B.(knV)
(k,m)eC’ (m,n) k=m2'
where (m,n) 1s the index of a partial sum and

(m,n)e Q' ={(m,n)|0<m<2""~1,0<n<15}. For a 16X16 plock, all the elements

in the block consist of a set of S, = {(k,n)|0<k <15,0<n <15}. Thus, we have

UcC' m,ny =, (5.23)

(m,n)eQ’

From (5.20) and (5.22), a first-level partial sum can be expressed as

{MBS; (m,n) = B_(2m,n)+ B,(2m +1,n) (524

MBS: (m,n,V) = B (2m,n, 17) +B,(2m+1,n, V)

From (5.21) and (5.24), the (/ +1)-th level partial sum for /=1, 2, 3 can be expressed in

terms of the two /-th level partial sums as

MBS"™" (m,n,V) = MBS’ (2m,n,V)+ MBS' 2m+1,n,V)
From (5.24) and (5.25), we obtain a fast method to compute the partial sums. In this

method, we first use (5.24) to get the partial sums of the first level. Then, we use (5.25)

recursively to compute the (/ +1)-th level partial sums from the /-th level partial sums.

From (5.24) and (5.25), we can also see that the /-th level partial sums MBS (m,n) and

-82 -

MBS'(m,n,V) consist of (8+1) bits, since B (m,n) and B, (m,n,V) are 8-bit
quantities. Then, the proposed multi-level eight-bit partial sums for the current and

reference blocks can be, respectively, obtained by an [-bit right-shift operation of

MBS (m,n) and MBS (m,n,V), e,

MPS!(m,n) =[MBS!(m,n)] >>[I] (5.26)
MPS (m,n, V) = [MBS" (m,n,7)] >>[1] '
From (5.26), we see that
{MPSZ O.m)=PS.(n) (5.27)
MPS*(0,n,V)y= PS, (n,V)

Thus, the eight-bit partial sums of sixteen luminance values are just the fourth-level

eight- bit partial sums. From (5.26), we can also see that

{MPSCI (m,n) = LMBSﬁ (m,n)/ 2’J (5.28)

MPS! (m,n,V) =| MBS' (m,n,7)/2" |
where I_xJ is the largest integer less than or equal to x.

We now define the /-th level sum of the absolute differences of all the eight-bit

partial sums between the current and reference blocks as

SAD'(Vy=)| MPS!(m,n) - MPS.(m,n,V)| (5.29)

(m,n)eQ

From (5.29), it can be scen that LB(V) = SAD*(V).

-83 -

5.2.2 Upper Bounds for the SADs

In order to use the multi-level eight-bit partial sums to accelerate a block motion

estimation process, we must find an upper bound (UB) for SAD' (V). The process to find

this UB is described below.

Using (5.28) in (5.29), we have

SAD'(7)= Y |D(m,n, V)

(mn)ecy
where
D(m,n,Vy=| MBS (m,n)/ 2" |~| MBS (m,n,7)/2" |
At the same time, we have
la/2' |= 412" -5
where 5 e[' ={i/2' |0<i<2'~1},and 4 and i are integers.
Using (5.22) and (5.32) in (5.30), we have

SAD'(Vy= > |G(m,n,V)/2" —5(m,n,V)]|

(m,n)eQ]
where

G(m,n,Vy= Y (B.(k,n)-B, (k,n,V))

(k,m)eC' (m,n)
5(m,n,l7) =06, (m,n) —52(m,n,l7), 0,,0, € r!
From (5.33), we have the inequality

SAD'(V)< D (1G(m,n, V)| 12" +|5(m,n,V)|)

(m,n)eQ’

From (2.1), (5.23) and (5.34), we have

-84 -

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

Y 1Gmn V)< > (Y IB.(kn)=B,(k,nV))

(m,n)te (m,n)EQ] (k,n)e(."(m,n)

= >|B.(k,n)~B, (k,nV)]|

(k.n)eSg
= MAD(V)
From (5.35), we have
l 5(77’1, n, I;;) |:| é‘l (m: I’l) - 52 (m, n, I;;) l
Since &,(m,n) and &,(m,n,V)eT’
|6(m,nV)| < |6

max min |

where 8 and &_. are the maximum and minimum values of § e "' . Hence

| 8(m,n, V)| (2" =1)/2' —=0]= (2" - 1)/2'
From (5.36), (5.37), and (5.40) we have

SAD' (V)< MAD(V) /2" + 28! =252
From (5.41),

SAD' (V) < {E(I) + [MAD(")] >> [I1}
where E(1) = 25" = 2% +1.

Thus, an upper bound for SAD' (V) is found, namely,
UB' (V)= E(I) +[MADY)] >>[1]

and we have

SAD' (V) <UB'(V)

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

It can be seen that the computation of UB'(V) requires only two operations after the

computation of MAD(V), namely, one right shift operation of MAD(V) by [bits and

one addition. From (5.3) and (5.43), we also see that MMAD(V) = UB*(V), i.e., MMAD

is just the fourth-level UB.

-85 -

5.2.3 The Methods of Using Multi-Level Eight-Bit Partial Sums

In this section, we first describe a method of using the eight-bit partial sums at a
particular level to accelerate the block motion estimation process. Then, we give all the
possible methods of using the eight-bit partial sums at the four levels to accelerate the

block motion estimation process.
Theorem 5.3: If SAD'(V) is larger than the minimum value of UB' computed so far,
the corresponding computation of MAD(V) can be skipped without any loss of accuracy

of the exhaustive as well as multi-step search algorithms.

Proof: From (5.14), we have
MAD(V,,(j +1)) < MAD(V,,())) (5.45)
where 1701, (j) and Vop (j+1) are, respectively, the optimal motion vectors before and

after checking the current motion vector.

From (5.43) and (5.45), we have
UB'(V,,(j+1)<UB'(V,,())) (5.46)
Fromi(5.44), we have
SAD'(V,,(j+1)) SUB'(V,,(j +1)) (5.47)
From (5.46) and (5.47), we get the inequality
SAD'(V,,(j +1)) <UB'(V,,(j)) (5.48)
Thus, if
SAD'(V) > UB'(V,, () (5.49)

where UB'(V, () is the minimum value of UB' computed so far, then
op

- 86 -

VeV, (j+1) (5.50)

and the current candidate motion vector of ¥ is not a better estimate than ¥_(;). Thus,

op

the computation of MAD(V) can be skipped if (5.49) holds, and hence the Theorem.

From Theorem 5.3, it is seen that there are four conditions that can be used to reduce

the computational complexity of a block motion estimation process. These are

Condition 1: SAD' (V) >UB'(V,,()))
Condition 2: SAD*(V)>UB*(V,,(}))
Condition 3: SAD*(V)>UB*(V,, (/)
Condition 4: SAD*(V) > UB*(V,,(}))

Each of the above conditions correspond to a particular level of / (1<7<4). There are
fifteen possible combinations in which these conditions can be used and each one gives
rise to a method of using the conditions to accelerate the block motion estimation
process. These methods are listed in Table 5.1. For a particular method in this table, the
symbol ‘X’ denotes that this condition is employed and the symbol ‘O’ denotes that this
condition is not employed. For example, for Method 8, only Conditions 2 and 3 are used.
For each of these fifteen methods, the accuracy of the block motion estimation process is

maintained, since from Theorem 5.3, we know that if any of the conditions used in these
methods is satisfied, the computation of MAD(V) can be skipped without loss of

accuracy.

-87 -

Table 5.1 Conditions used for the various methods

Condiiss Methods 1,15 13 14 |5 |6 |7 |8 {9 |10t }12]13]|14]15
Condition 1 x lolojolx|x|{x]olo]o|x |x|x|o|x
Condition 2 olxlololx|ololx|x|ol|x!|x]|o|x|x
Condition 3 olo|xlololx|o|x|o|x|x|o|x |x|x
Condition 4 olojolx|olo|x|o|x|x|o|x|x|x|x

5.2.4 Optimal Method of Using Multi-Level Eight-Bit Partial Sums

In Section 5.2.3, fifteen possible methods of using the multi-level eight-bit partial sums
were given. In this section, each of these methods is simulated and evaluated in order to
find the optimal one among them. This optimal method is finally illustrated as our
scheme to accelerate the block motion estimation process.

Table 5.2 lists the computational complexity corresponding to each of the fifteen
methods to accelerate the full-search algorithm for various video test sequences. From
this table, we see that Method 7, which uses conditions 1 and 4, has the least average
computational complexity. Thus, the method using the eight- bit partial sums of levels 1
and 4 has the least average computational complexity among all the possible methods.
This method is formalized as Scheme 5.2 and is used to accelerate the block motion

estimation process.

- 88 -

Table 5.2 Computational complexity of the various methods

Method

Sequenc

Salesman 486 | 682 | 1120 | 1938 | 471 | 458 | 374 | 687 | 593 | 1051 476 | 382 | 390 | 619 | 408

HEI.H 562 759 | 1173 { 1996 | 558 530 | 470 760 689 1136 558 | 487 | 493 | 722 | 521
objects

Silent 531 702 | 1151 | 1951 | 497 501 411 723 616 1080 518 | 411 | 430 | 653 | 447
Akiyo 481 671 { 1111 | 1962 | 460 | 448 | 396 676 611 1071 464 | 400 | 408 | 636 | 424
News 577 | 769 | 1172 [1998 | 569 | 533 | 481 761 | 696 1138 562 | 497 | 499 | 727 | 527

Foreman 854 | 951 | 1313 | 2023 | 787 | 743 | 643 | 948 | 812 1233 783 | 647 | 663 | 867 | 702

Trevor 510 | 708 | 1120 | 1970 | 500 | 473 | 419 | 702 | 638 | 1088 | 494 | 430 | 432 | 662 | 454
Mother & \ 000 | 953 | 1344 | 2084 | 781 | 760 | 679 | 979 | 874 | 1310 | 807 | 703 | 727 | 945 | 773
Daughter

Average 600 | 774 | 1189 | 1990 | 578 | 556 | 484 | 779 | 691 1138 583 | 494 | 505 | 729 | 532

-89 -

Scheme 5.2

Step 1) Initialization

a) Compute all the eight bit partial sums of levels one and four for the
current frame and save them in a continuous memory space.

b) Retrieve all the eight bit partial sums of levels one and four for the

reference frame in a saved continuous memory space.

Step 2. For every current block, execute the block motion estimation process.
Step 2.1 Initialization

V. =(0,0)
MAD,,, = AMDminvso_far = MD(VO)
UB:. =[MAD,, 1>>[4]+16

UB' =[MAD__]>>[1]+65

min

Step 2.2 Search
(*) For (each search location of ¥ in a motion estimation algorithm)

{
If (SAD* (V) > UB..)
Go to (*) and select next search location

If (SAD'(V)>UB..)
Go to (*) and select next search location

Calculate the MAD(V)

If(AJAD(V) < MZ{Dminfmffar)

{
WDmin = MDmim so__ far = WD(I?)
UB! =[MAD_]>>[4]1+16

UB., =[MAD,, 1>>[1]+65

min

min

v, =V

-90 -

5.2.5 SIMD Implementation for the Computation of SAD

Since the partial sums in the SEA, and VFA are of more than eight-bits, they cannot be in
the packed byte format on SIMD architectures. Now, let us look carefully at the
computation of the SADs. Since the partial sums in (5.26) are of only eight bits, they can
be in packed byte format on SIMD architectures. In the SIMD architecture of Intel MMX,
eight of these partial sums can be put into a 64-bit SIMD register, so that eight of them
can be manipulated in one SIMD instruction as shown in Figure 5.1. Thus, an eight-fold

data parallelism can be realized on such an architecture.

bit 64 56 48 40 32 24 16 8 0
a(l) | a2) | a@3) | a4) | a5) | a6) | a(7) | a(3)

&

bit 64 56 48 40 32 24 16 8 0
b(1) | b(2) | bB) | b(#) | b(5) | b(6) | b(7) | b(8)

bit 64 56 48 40 32 24 16 8 0
(1) | e@) [cB) | cd) | c5) | c6) | «(T) | c(3)

Note: In the above figure, c(i)=a(i)+b(i)

Figure 5.1 Packed byte-type addition on SIMD registers

-91 -

5.3 Computational Complexity
In this section, we first evaluate the computational complexity of a block motion
estimation algorithm incorporating the proposed Scheme 5.2. Then, we discuss the

theoretical and practical speedups that can be achieved by imcorporating Scheme 5.2 in a

given block motion estimation algorithm.

5.3.1 Computational Complexity of a Block Motion Estimation Algorithm Incorporating

the Proposed Scheme

Let 7/ (x) and p (x) respectively denote the number of times S4D'(V) and

MAD(V) need to be calculated 1n the block motion estimation algorithm X incorporating
Scheme 5.2. Let (C'(x) denote the corresponding computational complexity per pixel.

Then, the computational complexity of the FSA, with Scheme 5.2 incorporated, can be

expressed as

C'(FSA) = (16 +15+16x 2 + 2) x 5 + 17, , (FSA) x 1281282412722

256
+ 771’L/IAD (FSA) X 256><2+252654(;255+2+4 + C;}S (H)
= 2.8+ 38y (FSA) +27,,,(FS4) + C, (H) (5.51)

where C (H) is the computational complexity per pixel to calculate all the eight-bit
partial sums in a frame. In Scheme 5.2, all the eight-bit partial sums in a frame are
calculated using a fast computational mechanism similar to that in the SEA. These partial
sums are saved in a contiguous memory space before the motion estimation process

begins. Thus, C;,s (H) can be expressed as

C:Ds (H) — 2W(H-1)+16W +3(H-16)W =5 M (552)

WH H

-92 -

The computational complexity per pixel of the 2DLSA, OSA, OATSA, CDSA,
3SSA, 4SSA, UDSA, PSAA, BGDSA, and SEA, incorporating Scheme 5.2, can be
expressed as

C'(2DLSA) = £:11,,0 2DLSA) + 38 771, @ DLSA) + 277!, (2DLSA) + C\ (H) (5.53)
C'(OSA) = £517,,,, (OSA) + 38 1, (OSA) + 2171, (0SA) + C', (H) (5.54)

C'(OATSA) = 35 M sup (OATSA) + 3517, (OATSA) + 55 17,,,, (OATSA) + C' ((H) (5.55)

C'(CDSA) = £1,,,,(CDSA) + 2217, (CDSA) +L7,,.,,,(CDSA) + C' (H) (5.56)
C'(3854) = £17,,,, 3SSA) + 3817, (3SSA) + 2277, (3SSA) + C!, (H) (5.57)
C'(ASSA) = 3511 yap (4SSA) + 3557715 (ASSA) + 532174 (4SS4) + C (H) (5.58)
C'(UDSA) = £:17,,, UDSA) + 32 17, (UDSA) + 2 ,,.., (UDSA) + C., (H) (5.59)

C'(PSAA) = 3511 yap (PSAA) + 3577, (PSAA) + 5217, (PSAA) + C (H) (5.60)

C'(BGDSA) = £:11,,,, (BGDSA) + 3217, (BGDSA) + 277}, (BGDSA) + C' (H) (5.61)

256 256

C(SEA) =4 -3 =+ 57+ 5% 8" + 3% Myup (SEA) + 3517, (SEA)
192 (SEA)+C) (H)

256

(5.62)

where 77,,,, (x) is defined in Section 2.4 and C’ (H) is given by (5.52).

5.3.2 Theoretical Speedup of a Block Motion Estimation Algorithm Incorporating
Scheme 5.2
The proposed scheme of using eight-bit partial sums for a block motion estimation

algorithm can greatly reduce the computational complexity of algorithm x, since the

-93 _

value of Mh4p(X) is much less than that of Niap (X) - The percentage of the reduction in
the computational complexity is given by

C(x)-C'(x)

(x)

RCC(x) = x 100 (5.64)

This reduction RCC(x) may be considered as a measure of the theoretical speedup that

results as a consequence of incorporating Scheme 5.2.

5.3.3 Practical Speedup of a Block Motion Estimation Algorithm Incorporating Scheme
5.2

Let P(x) be the average number of CPU cycles needed per block to carry out the block
motion estimation using algorithm X . Let P'(x) denote the average number of CPU
cycles required per block to carry out the estimation using algorithm * with Scheme 5.2

incorporated. Then, the percentage of practical speedup that results as a consequence of

incorporating Scheme 5.2, 1s expressed as

P(x)- P (x)

P(x)

PS(x) = 100 (5.65)

5.4 Simulation Results

A simulation study on the proposed method for fast block motion estimation is carried
out for the CCITT test video sequences in the QCIF format using the TMN20 framework
of the H.263 video codec. The encoding process for a frame is carried out after skipping

two frames in between, i.e. the encoding is done for the frames 1, 4, 7,...and so on.

-94 -

In our research work, seven video sequences, including the Salesman, Car Phone,
Akiyo, News, Foreman, Trevor, and Mother & Daughter, are selected for the
performance evaluation of the proposed method. For the seven video sequences
considered, Table 5.3 gives the computational complexity per pixel as well as the average
number of CPU cycles needed per block to carry out the block motion estimation on
SIMD architecture of Intel’s MMX using FSA, with and without Scheme 5.2 being
incorporated. It also includes the reduction in the computational complexity (RCC) and
the practical speedup (PS) for these sequences. Similar results are given in Tables 5.4-
5.13 for 2DLSA, OSA, OATSA, CDSA, 3SSA, 4SSA, UDSA, PSAA, BGDSA, and SEA
respectively. From these tables, we see that Scheme 5.2 reduces the computational
complexity of FSA, 2DLSA, OSA, OATSA, CDSA, 3SSA, 4SSA, UDSA, PSAA,
BGDSA, and SEA by more than 80%, 30%, 30%, 20%, 18%, 35%, 30%, 28%, 45%,
27%, and 50%, respectively. It is also seen that the proposed scheme accelerates the
execution of these algorithms on SIMD architectures by more than 70%, 25%, 20%,

14%, 12%, 30%, 20%, 20%, 38%, 27%, and 50%, respectively.

5.5 Summary

In this chapter, a new concept of an eight-bit partial sum, that is obtained by carrying out
a four-bit right-shift operation on the sum of the 16 luminance values of a column of a
16x16 block of a video frame, has been introduced. These partial sums have been
defined so as to take advantage of the byte-type data parallelism in the existing single-
instruction multiple-data (SIMD) technique for an improved speed of a given motion

estimation algorithm. Since these partial sums have the characteristic of having only eight

- 95 -

Table 5.3 Computational complexity and average number of CPU cycles per

block using the FSA

Salesman | Car phone | Akiyo News | Foreman | Trevor I\S;)f;i’ft &

. (FS4) | 60.78 | 130.70 | 62.51 | 83.3 |152.77| 67.08 | 141.57
Maw (FSA) |3 04 | 3132 | 9.20 | 18.41 | 24.38 | 11.27 | 39.88
C(FSA) | 3847.8 | 3847.8 | 3847.8 | 3847.8 | 3847.8 | 3847.8 | 3847.8
C'(FS4) | 383.33 | 635.87 | 411.02 | 489.19 | 652.31 | 428.10 | 691.93
P(FS4) | 715200 | 715200 | 715200 | 715200 | 715200 | 715200 | 715200
P'(FS4) | 88259 | 140642 | 93545 | 109695 | 145404 | 97076 | 151911
RCC(FSA) | 90.04% | 83.47% | 89.32% | 87.29% | 83.05% | 88.87% | 82.02%
PS(FSA) | 87.66% | 80.34% | 86.92% | 84.66% | 79.67% | 86.43% | 78.76%

- 96 -

Table 5.4 Computational complexity and average number of CPU cycles per block
using the 2DLSA

Salesman Car Akiyo News Foreman | Trevor Mother &
phone Daughter

17,5 (2DLSA) | 7.24 9. 68 6. 44 6. 69 10.09 | 8.43 9.12

Mo CDLSA) 1 79 1404 |2.53 |3.55 |48 |4.12 |4.39

C(2DLS4) 68.39 |72.91 |68.15 [69.39 |77.56 |71.67 |69.11

C'(2DLSA) |30.28 [44.75 |31.91 |36.57 |48.91 |42.49 |44.79

P(2DLSA) 12725 | 13567 | 12680 | 12911 | 14431 | 13336 | 12859

P'(2DLSA4) | 6398 9292 6638 7529 10113 | 8771 9244

RCCEDLSA) | oo 7o 138 6% |53.9% |47.3% |37.0% |40.7% | 35. 2%

PS(2DLSA) | 49.7% |31.5% |47.6% |41.7% |29.9% | 34.2% | 28. 1%

-97.-

Table 5.5 Computational complexity and average number of CPU cycles per

block using the OSA
Car Mother
Salesman hone Akiyo News Foreman Trevor &
p Daughter
n.,(0S4) | 6.57 | 8.56 | 6.29 | 6.59 | 10.4 | 8.04 | 8.37
Mup(OSA) | 1.75 | 4.65 | 2.64 | 3.6 | 4.14 | 4.31 | 4.09
C(0S4) 68.07 | 68.07 | 68.07 | 68.07 | 68.03 | 68.07 | 68.07
C'(0S4) 29.04 | 44.64 | 32.04 | 36.49 | 46.28 | 42.24 | 42.02
P(OS4) 12665 12665 12665 12665 12658 12665 12665
P'(0S4) 6114 9170 6651 7502 9618 8683 8668
RCC(0S4) 07.3% | 34.4% | 52.9% | 46.4% | 32.0% | 38.0% | 38.3%
PS(OSA) oL.7% | 27.6% | 47.5% | 40.8% | 24.0% | 31.4% | 31.6%

- 98 -

Table 5.6 Computational complexity and average number of CPU cycles per

block using the OATSA
Salesman pgj;e Akiyo News | Foreman | Trevor]\];I;tlzrt &

0 (OATSA) | 217 | 3.34 | 2,18 | 221 | 3.15 | 2.1 | 2.6l
Taap (OATSA)| 4 51 1 160 | 121 | 1.55 | 2.42 | 1.85 | 1.42

C(OATSA) | 20.54 | 24.70 | 20.26 | 21.42 | 28.07 | 24.74 | 21.46
C'(OATSA) | 16.25 | 19.22 | 15.05 | 16.55 | 22.33 | 17.74 | 16.83
P(OATSA) | 3822 | 4597 | 3770 | 3986 | 5223 | 4604 | 3993
POATSA) | 3243 | 3899 | 3020 | 3304 | 4475 | 3528 | 3388
RCC(OATSA) | 20.9% | 22.2% | 25.7% | 22.8% | 20.4% | 28.3% | 21.6%
PS(OATSA) | 15.1% | 15.2% | 19.9% | 17.1% | 14.3% | 23.4% | 15.2%

-99 -

Table 5.7 Computational complexity and average number of CPU cycles per block

using the CDSA
Salesma Car . Mother
hone Akiyo News Foreman Trevor &
n p Daughter
7723 (CDSA4) 3. 13 4.12 3.13 3.23 5.23 3.06 3.52
771,\/[AD (CDS4) 1.64 2. 87 2.19 2.12 3.51 2.45 2.41
C(CDSA) 28.55 32. 87 28. 27 29.43 39. 36 32.95 29.51
C'(CDSA) 19. 20 26. 38 21.39 21. 38 31.58 22.58 23.13
P(CDSA) 5312 6117 5260 5476 7323 6131 5491
P'(CDSA) 3892 5319 4298 4308 06392 4530 4656
RCCCDSA) | a9 7 | 19.7% | 24.3% | 27.4% | 19.8% | 31.5% | 21.6%
PS(CDSA) 26. 7% 13. 0% 18. 3% 21. 3% 12. 7% 26. 1% 15. 2%

- 100 -

Table 5.8 Computational complexity and average number of CPU cycles per block

using the 3SSA
Car Mother
Salesman h Akiyo News Foreman { Trevor &

phone Daughter

n,,(35854) | 10.00 | 14.63 8.94 9. 88 18. 59 1.7 14. 38
TuwGSSAN 1 9o | 6,60 | 3.01 | 4.52 | 7.65 | 4.91 | 6. 14
C(3884) | 132.13 | 132.13 | 132.13 | 132.13 | 132.13 | 132.13 | 132.13
C'(3854) | 40.66 | 68.67 | 42.90 | 50.83 | 80.81 | 56.04 | 66.33
P(3554) 24585 | 24585 | 24585 | 24585 | 24585 | 24585 | 24585
P'(3554) 8744 14315 9080 10627 | 16879 | 11737 13859
RCC(3S854) | 69.2% | 48.0% | 67.5% | 61.5% | 38.8% | 57.6% | 49.8%
PS(3S854) | 64.4% | 41.8% | 63.1% | 56.8% | 31.4% | 52.3% | 43.6%

- 101 -

Table 5.9 Computational complexity and average number of CPU cycles per block

using the 4SSA
Car Mother
Salesman h Akiyo News Foreman | Trevor &

phone Daughter

Ms(4854) | g 08 | 1164 | 6.71 | 7.25 | 14.46 | 9.22 | 10.53
Taap (4SSA) | 93 | 498 | 2.68 | 3.7 | 561 | 4.61 | 4.02
C(4554) 68. 71 77.08 68. 31 70. 31 89. 09 75.35 70. 07
C'(4554) 32.43 52.71 33.06 | 38.35 | 61.64 46.27 | 46.19
P(45S4) 12784 14341 12710 13082 16576 14021 13038
P'(4554) 6863 10937 6874 7907 12856 9547 9617
RCC(4S554) | 52.8% | 31.6% | 51.6% | 45.5% | 30.8% | 38.6% | 34.1%
PS(4584) | 46.3% | 23.7% | 45.9% | 39.6% | 22.5% 31.9% | 26.2%

-102 -

Table 5.10 Computational complexity and average number of CPU cycles per block

using the UDSA
Car Mother
Salesman hone Akiyo News Foreman | Trevor &
p Daughter
7, (UDSA) | 7.36 | 10.69 | 6.17 | 6.61 | 13.1 | 9.02 | 8.06
MuoUDSA) | ga | 390 | 2.6 | 3.56 | 504 | 3.8 | 3.49
CWUDSA) | 53.09 | 65.10 | 52.49 | 55.53 | 81.36 | 63.30 | 55.25
C'(UDSA) | 30.00 | 45.72 | 30.66 | 35.57 | 56.14 | 42.02 | 38.18
PWDS4) | 9879 | 12114 | 9767 | 10333 | 15138 | 11779 | 10281
PUDSA) | 6305 | 9526 | 6334 | 7293 | 11703 | 8702 | 7889
RCCUDSA)| ys 5w | 29.8% | 41.6% | 35.9% | 31.0% | 33.6% | 30.9%
PS@UDSA) | 36.2% | 21.4% | 35.2% | 29.4% | 22.7% | 26.1% | 23.3%

-103 -

Table 5.11 Computational complexity and average number of CPU cycles per block

using the PSAA
Salesman | Car phone | Akiyo News | Foreman | Trevor “ggg;rtfr‘
s (PSAA) |19 g0 | 19.66 | 9.91 | 12.05 | 25.19 | 14.54 | 20.03
Nuan(PSAA) 9 g5 | 835 | 3.91 54 | 9.57 | 5.78 | 8.00
C(PSA4) | 148.95 | 183.30 | 145.38 | 158.96 |206.00 | 175.37 | 157.71
C'(PSA4) | 53.22 | 89.01 | 49.29 | 60.40 |106.41 | 67.95 | 86.72
P(PSA4) | 27714 | 34106 | 27051 | 29577 | 38330 | 32631 | 29346
P'(PSA4) | 11431 | 18649 | 10385 | 12662 | 22386 | 14311 | 18171
RCC(PSAA) | 64.3% | 51.4% | 66.1% | 62.0% | 48.3% | 61.3% | 45.0%
PS(PSAA) | 58.8% | 45.3% | 61.6% | 57.2% | 41.6% | 56.1% | 38.1%

- 104 -

Table 5.12 Computational complexity and average number of CPU cycles per block

using the BGDSA
Salesman pgs;e Akiyo | News | Foreman | Trevor g;’g;lrtjr‘
7 (BGDSA) | 5.64 | 7.03 | 4.30 | 5.05 | 10.66 | 5.92 | 4.96
.o (BGDSA) | 1.69 | 3.66 | 2.21 | 3.08 | 581 | 3.69 | 2.79
C(BGDSA) | 37.96 | 53.45 | 36.88 | 40.56 | 74.91 | 52.05 | 40.92
C'(BGDSA) | 25.03 | 36.68 | 24.54 | 29.58 | 53.93 | 34.49 | 28.26
P(BGDSA) | 7063 | 9946 | 6862 | 7547 | 13939 | 9685 | 7614
P(BGDS4) | 5200 | 7525 | 5009 | 6009 | 11082 | 7027 | 5758
RCC(BODSAY | oy ygy | 31 4% | 33.5% | 27.1% | 28.0% | 33.7% | 30.9%
PS(BGDSA) | 926.4% | 24.3% | 27.0% | 20.4% | 20.5% | 27.4% | 24.4%

- 105 -

Table 5.13 Computational complexity and average number of CPU cycles per block

using the SEA
Salesman | Car phone | Akiyo News | Foreman | Trevor 1\];[;’1‘12‘;’; &

. (SEA) | 51.46 | 101.51 | 38.79 | 56.37 | 132.10 | 59.28 | 72.00
Maw (SEA) |3 08 | 27.48 | 4.80 | 13.03 | 21.86 | 9.66 | 20.08

C(SEA) | 978.89 | 823.14 | 543.67 | 634.95 | 1034.54 | 932.84 | 753.07

C'(SEA) | 203.24 | 391.38 | 157.16 |231.12 | 443.57 | 242.35 | 298.17

P(SEA) | 184671 | 155742 | 103734 | 120683 | 195041 | 176118 | 142705

P'(SE4) | 48142 | 86513 | 37204 | 52611 | 99257 | 55875 | 66670
RCC(SEA) | 79.2% | 52.5% | 71.1% | 63.6% | 57.1% | 74.0% | 60.4%
PS(SEA) | 73.9% | 44.5% | 64.1% | 56.4% | 49.1% | 68.3% | 53.3%

- 106 -

bits, eight of them can be processed concurrently in a single 64-bit SIMD register. A
method of employing these partial sums to speedup a block motion estimation process
has been proposed. The notion of the eight-bit partial sums has then been extended to the
four-level case and shown that there are fifteen possible methods of utilizing these multi-
level partial sums to accelerate the block motion estimation algorithms without any loss
of accuracy. The full-search algorithm has then been used to determine as to which one of
these fifteen methods would provide the lowest computational complexity in order for it
to be chosen to accelerate various motion estimation algorithms. Simulations have been
carried out to find the average number of CPU cycles needed per block for various
algorithms incorporating the chosen method. These simulations have shown that the
proposed scheme is capable of providing a substantial speedup for the various existing

motion estimation algorithms.

- 107 -

Chapter 6

Conclusion

6.1 Concluding Remarks

Recent advances in communications, digital signal processing, and computer vision have
led to a surge of multimedia applications where video signals play an important role. In
order to overcome the problems arising from large volume of data of the video signals,
video compression becomes a necessity of multimedia systems. As a result of this,
several international standards in video coding have been proposed to pave the way for
ubiquitous applications of multimedia products. In these standards, block motion
estimation is an essential part to remove the temporal redundancies in video signals.
However, these standards do not specify the exact motion estimation algorithm to be
employed and this task is left to the developers implementing the standards. For this
reason, the development of fast block motion estimation algorithms with good
compression efficiency has been a focus of recent research activities and is expected to
continue to attract a great deal of research effort in the near future. In view of this, this
thesis has been concerned with developing techniques to reduce the computational
complexity of a given block motion estimation algorithm without sacrificing its accuracy,
to utilize the single instruction multiple data (SIMD) technique to accelerate a block
motion estimation process, and to develop a new fast block motion estimation algorithm

suitable for implementation on SIMD architectures.

- 108 -

The full-search algorithm as well as the existing fast motion estimation algorithms
have been reviewed. These fast algorithms have been categorized into multi-step and
exhaustive search algorithms. Simulation results have shown that the computational
complexity of any of the multi-step search algorithms is substantially smaller than that of
the full-search algorithm, but with a reduced coding efficiency. Simulation results have
also shown that the selective elimination algorithm has as a high computational
complexity as the full-search algorithm, and hence 1s not suitable for real- time
applications.

Through a simulation study, it has been established that a large number of
macroblocks generally do not move from one frame to the next. Such macroblocks have
been referred to as stationary macroblocks. Since the value of the motion vector for a

stationary macroblock is already known to be (0,0), the search process for such a

macroblock in a given block motion estimation algorithm is unnecessary. Based on this
observation, a fast block motion estimation method has been proposed by skipping the
search process for the stationary macroblocks. Simulation studies have shown that the
proposed method can speedup a given block motion estimation algorithm, with about the
same coding efficiency as that of the original algorithm. These studies have also shown
that the amount of speedup resulting from the application of the proposed scheme to a
given block motion estimation algorithm is approximately the same, irrespective of the
algorithm chosen for the application. This result is due to the fact that the speedup is
mainly governed by the characteristics of the video sequence rather than the chosen

algorithm.

- 109 -

A vector-based fast block motion estimation algorithm, suitable for implementation
on an SIMD architecture, has been proposed. In this algorithm, certain partial sums of the
luminance values have been defined and a fast method to calculate these partial sums
developed. These partial sums have been used to calculate some lower bounds for the

MAD. These bounds have then been utilized in the algorithm to reduce significantly the
number of times MAD(V) needs to be computed. It has been shown that this algorithm

maintains the accuracy and coding efficiency of the full-search algorithm. Simulation
results have shown that the computational complexity of this algorithm is about 2 to 11
percent of that of the full-search algorithm and 11 to 27 percent of that of the selective
climination algorithm. These results have also shown that the execution time of the
algorithm can be reduced by about 74% by implementing 1t on an SIMD architecture.

The concept of an eight-bit partial sum has been introduced in this thesis. These
partial sums have been formed so as to take advantage of the byte-type data parallelism in
the existing SIMD technique for an improved speed of a given motion estimation
algorithm. Since these partial sums have the characteristic of having only eight bits, eight
of them can be processed concurrently in a single 64-bit SIMD register. A method of
employing these partial sums to speedup a block motion estimation process has been
proposed. The notion of the eight-bit partial sums has then been extended to the four-
level case and shown that there are fifteen possible methods of utilizing these multi-level
partial sums to accelerate a given block motion estimation algorithms without any loss of
accuracy. The full-search algorithm has then been used to determine as to which one of
these fifteen methods would provide the lowest computational complexity in order for it

to be chosen to accelerate the various motion estimation algorithms. Simulations have

- 110 -

been conducted to determine the average number of CPU cycles needed per block for the
various algorithms incorporating the chosen method. These simulations have shown that
the proposed scheme is capable of providing a substantial speedup for the various

existing motion estimation algorithms.

6.2 Scope for Further Research

In the proposed vector-based fast block motion estimation algorithm, a method to utilize
the correlation of neighbouring motion vectors to predict the current motion vector, such
as the median prediction, can be developed. Such a study might provide a more accurate
initial value for the motion vector in the vector-based fast block motion estimation
algorithm, thus leading to a lower computational complexity.

The scheme of using long-term memory has been adopted in the video coding
standard H.26L for the purpose of motion estimation, providing a coding gain of about
0.5-1 dB. It is worth conducting further research in the utilization of the proposed eight-

bit partial sums in conjunction with long-term memory for motion estimation.

- 111 -

References

[1]

(2]

(4]

(3]
[6]
[7]

[8]

[11]

[12]

J. K. Aggarwal, and N. Nandhahumar, “On the computation of motion from
sequences of images—a review,” Proceedings of the IEEE, pp. 917-935, 1988.

O. Avaro, A. Elftheriadis, C. Herpel, G. Rajan, and L. Ward, “MPEG-4 systems:
overview,” Multimedia Systems, Standards, and Networks, New York: Marcel
Dekker, pp. 331-365, 2000.

A. Basso, M. R. Civanlar, and V. Balabanian, “Delivery and control of MPEG-4
content over IP networks,” Multimedia Systems, Standards, and Networks, New
York: Marcel Dekker, pp. 501-523, 2000.

C.S. Beightler, D.T. Phillips and D.J. Wilde, Foundations of Optimization, 2ed.
Englewood Cliffs, NJ: Prentice-Hall, 1979.

T. Berger, Rate Distortion Theory. Englewood Cliffs, NJ: Prentice Hall, 1971.
Y. T. Chan, Wavelet Basics. Kluwer Academic Publishers, Norwell, MA, 1995.

T. Chen, “Emerging standards for multimedia applications,” Multimedia Image
and Video Processing, CRC Press, pp. 1-18, 2000.

T. Chen, G. J. Sullivan, and A. Puri, “H.263 (including H.263++) and other ITU-
T video coding standards,” Multimedia Systems, Standards, and Networks, New
York: Marcel Dekker, pp. 55-85, 2000.

M. C. Chen, and A. N. Willson Jr., “Rate-distortion optimal motion estimation
algorithms for motion-compensated transform coding,” IEEE Transactions on
Circuits and Systems for Video Technology, pp. 147-158, April 1998.

Kuo-Liang Chung,and Lung-Chun Chang, “A new predictive search area
approach for fast block motion estimation,” /EEE Transactions on Image
Processing, vol. 12, no. 6, pp. 648-652, June 2003.

R. J. Clark, Transform Coding of Images. London: Academic Press, 1985.

C. J. Duanmu, M. O. Ahmad, and M. N. S. Swamy, “A fast three-step search
algorithm by the utilization of multi-level vector partial sums,” in Proceedings
of the 2003 IEEE Canadian Conference on Electrical and Computer
Engineering (CCECE 2003), Montreal, Canada, vol. 3, pp. 1981-1984, , May
2003.

-112 -

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

C. J. Duanmu, M. O. Ahmad, and M. N. S. Swamy, “A new lower bound for fast
block motion estimation algorithms,” in Proceedings of the 2003 IFEE
Canadian Conference on Electrical and Computer Engineering (CCECE
2003), Montreal, Canada, vol. 3, pp. 1975-1980, May 2003.

C. J. Duanmu, M. O. Ahmad, and M. N. S. Swamy, “A continuous tracking
algorithm for long-term memory motion estimation,” in Proceedings of the 2003
IEEE International Symposium on Circuits and Systems (ISCAS 2003),
Bangkok, Thailand, vol. 2, pp. [I-356-I1-359, May 2003.

C. J. Duanmu, M. O. Ahmad, and M. N. S. Swamy, “8-bit partial sums of 16
luminance values for fast block motion estimation,” in Proceedings of the 2003
IEEE International Conference on Multimedia and Expo. (ICME 2003),
Baltimore, U.S.A., vol. 1, pp. 689 — 692, July 2003.

C. J. Duanmu, M. O. Ahmad, and M. N. S. Swamy, ‘“Fast block motion
estimation with eight-bit partial sums using SIMD architectures,” Submitted to
IEEE Transactions on Circuits and Systems for Video Technology, 2005.

C. J. Duanmu, M. O. Ahmad, M. N. S. Swamy, and A. Shatnawi, “A vector
based fast block motion estimation algorithm for implementation on SIMD
architectures,” in Proceedings of the 2002 IEEE International Symposium on
Circuits and Systems (ISCAS 2002), Phoenix, U.S.A, vol. 4 , pp. IV-337 - IV-
340, May 2002.

C. J. Duanmu, M. O. Ahmad, M. N. S. Swamy, and A. Shatnawi, “Optimization
of the three-step search algorithm by exclusion of stationary macroblocks from
the search process,” in Proceedings of the 9th International Conference on
Electronics, Circuits and Systems (ICECS 2002), Dubrovnik, Croatia, vol. 3, pp.
1035 - 1038, Sept. 2002.

D. E. Dudgeon, and R. M. Mersereau, Multidimensional Digital Signal
Processing. Englewood Cliffs, NJ: Prentice Hall, 1984.

F. Dufaux, and F. Moscheni, “Motion estimation techniques for digital TV: A
review and a new contribution,” Proceedings of the IEEE, pp. 858-876, June
1995.

X.Q. Gao, C.J. Duanmu, C.R. Zou, “A multilevel successive elimination
algorithm for block matching motion estimation,” [EEFE Transactions on Image
Processing, vol. 9, pp. 501 - 504, March 2000.

X.Q. Gao, C.J. Duanmu, CR. Zou, and Z.Y. He, “Multi-level successive
elimination algorithm for motion estimation in video coding,” in Proceedings of
the 1999 IEEE International Symposium on Circuits and Systems (ISCAS
1999), Orlando, U.S.A., vol. 4, pp. 227 - 230, June 1999.

-113 -

[23]

(24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]
[34]

(35]

B. Girod, “Motion compensation: Visual aspects, accuracy, and fundamental
limits,” Motion Analysis and Image Sequence Processing, Boston: Kluwer
Academic Pusblishers, pp. 126-152, 1993.

B. Girod, ‘“Motion-compensating predication with fractional-pel accuracy,”
IEEE Transactions on Communications, pp. 604-612, April 1993.

B. Girod, E. Steinbach, and N. Farber, “Comparison of the H.263 and H.261
video compression standards,” SPIE Standards and Common Interfaces for
Video, pp. 233-251, Oct. 1995.

B. Grob, and C. E. Herndon, Basic Television and Video Systems, 6th ed. New
York: McGraw Hill, 1999.

H.-M. Hang, Y.-M. Chou, and S.-C. Cheng, “Motion estimation for video
coding standards,” Journal of VLSI Signal Processing Systems for Signal, Image,
and Video Technology, pp. 113-136, Nov. 1997.

Y. Hashimoto, M. Yamamoto, and T. Asaida, “Cameras and display systems,”
Proceedings of the IEEE, vol. 7, pp. 1032-1043, July 1995.

B. G. Haskell, “Frame replenishment coding of television,” Image Transmission
Techniques, New York: Academic Press, 1979.

B. G. Haskell, “Image and video coding: Emerging standards and beyond,”
IEEE Transactions on Circuits and Systems for Video Technology, pp. 814-817,
Nov. 1998.

B. G. Haskell, A. Puri, and A. N. Netravali, Digital Video: An Introduction to
MPEG-2. New York: Chapman & Hall, 1997.

C. Herpel, A. Elftheriadis, and G. Franceschini, “MPEG-4 systems: Elementary
stream management and delivery,” Multimedia Systems, Standards, and
Networks, NewYork: Marcel Dekker, pp. 367-405, 2000.

ITU-T Recommendation H.261, “Video codec for audiovisual services at px64
k bits/s,” Mar. 1993.

ITU-T Recommendation H.263, “Video coding for low bit rate communication,”
1998.

Joint Video Team, “Draft Text of Final Draft International Standard for

Advanced Video Coding (ITU-T Rec. H.26L | ISO/IEC 14496-10 AVC)”
ISO/IEC JTC1/SC 29/ WG 11 N5555, Pattaya, March 2003.

S114 -

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Intel Co., TA-32 Intel Architecture Optimization Reference Manual, 2005
[Online]. Available: http:// developer.intel.com / design/ pentium4/ manuals/
index_new.htm#aorm

Intel Co., IA-32 Intel Architecture Software Developer’s Manual Volume 1:
Basic Architecture, 2005 [Online]. Available: http:// developer.intel.com /
design / pentium4 / manuals / index_new.htm # sdm_voll, 2005

Intel Co., IA-32 Intel Architecture Software Developer’s Manual Volume 2A:
Instruction Set Reference, A-M, 2005 [Online]. Available: http://
developer.intel.com / design / pentium4 / manuals / index new.htm#sdm_vol2a

Intel Co, IA-32 Intel Architecture Software Developer’s Manual Volume 2B:
Instruction Set Reference, L-Z, 2005 [Online]. Available: http://
developer.intel.com / design / pentium4 / manuals / index new.htm#sdm_vol2b

Intel Co., IA-32 Intel Architecture Software Developer’s Manual Volume 3:
System Programming Guide, 2005 [Online]. Available: http://
developer.intel.com / design / pentium4 / manuals / index new.htm#sdm_vol3

Intel Co., Introduction to Streaming SIMD Extensions, 2005 [Online].
Available: http:// developer.intel.com / software / products / college/ia32 /
strmsimd / clikngo.htm

Intel Co, Pentium Processor with MMX Technology, 2003 [Online]. Available:
http:// support.intel.com/ design/archives/processors/mmx, June 2003

A. K. Jain, Fundamentals of Digital Image Processing. Englewood Cliffs, NJ:
Prentice Hall, 1989.

A. K. Jain, “Image data compression: A review,” Proceedings of the IEEE, vol.
69, pp- 345-389, Mar. 1981.

J. R. Jain, and A. K. Jain, “Displacement measurement and its application in
interframe image coding,” IEEE Transactions on Communications, pp. 1799-
1808, Dec. 1981.

N. S. Jayant, and P. Noll, Digital Coding of Waveforms. Englewood Cliffs, NJ:
Prentice Hall, 1984.

ISO/IEC, “IS 10918-1: Information technology—digital compression and coding
of continuous-tone still images: Requirements and guidelines,” 1990. (JPEG)

S. Kappagantula and K. R. Rao, “Motion predictive interframe coding,” IEEE
Transactions on Communications, vol. 33, pp. 1011-1015, Sept. 1985.

-115-

[49]

(50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

T. Koga, K. linuma, A. Hirano, and T. Ishi-guro, “Motion-compensated
interframe coding for video conferencing,” in Proceedings of National
Telecommunication Conference, pp. C9.6.1-C9.6.5, New Orleans, USA, Nov.
1981.

T. Komarek, and P. Pirsch, “Array architecture for block matching algorithms,”
IEEFE Transactions on Circuits and Systems, vol. 36, pp. 269-277, Oct. 1989.

O. Lee, and Y. Wang, “Motion compensated prediction using nodal based
deformable block matching,” Journal of Visual Communications and Image
Representation, pp. 6: 26-34, March 1995.

W. Li and E. Salari, “Successive elimination algorithm for motion estimation,”
[EEE Transactions on Image Processing, vol. 4, pp. 105-107, Jan. 1995.

M. L. Liou, “Overview of the kx64 kbps video coding standard,”
Communications of the ACM, vol. 34, pp. 47-58, Apr. 1991.

Lurng-Kuo Liu, and Ephraim Feig, “A block-based gradient descent search
algorithm for block motion estimation in video coding,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 6, no. 4, pp.419-422, August
1996.

H. Lohscheller, “A subjectively adapted image communication system,” /EEE
Transactions on Communications, pp. 1316-1322, Dec. 1984.

J. L. Mitchell, W. B. Pennebaker, C. E. Fogg, and D. J. LeGall, MPEG Video
Compression Standard. Bonn, Germany: Chapman and Hall, 1996.

ISO/IEC, “IS 11172: Information technology—coding of moving pictures and
associated audio for digital storage media at up to about 1.5 mbit/s,” 1993.
(MPEG-1)

ISO/IEC, “IS 13818-1: Information technology—generic coding of moving
pictures and associated audio information: Systems,” 1995. (MPEG-2 Systems)

ISO/IEC, “IS 13818-2: Information technology—generic coding of moving
pictures and associated audio information: Video,” 1995. (MPEG-2 Video)

ISO/IEC, “IS 13818-3: Information technology—generic coding of moving
pictures and associated audio information: Audio,” 1995. (MPEG-2 Audio)

ISO/IEC, “IS 14496-1: Information technology—coding of audio-visual
objects—part 1: Systems,” 1999. (MPEG-4 Systems)

- 116 -

[62]

[63]

[64]

(65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

ISO/IEC, “IS 14496-2: Information technology—coding of audio-visual
objects—part 2: Visual,” 1999. (MPEG-4 Video)

ISO/IEC, “IS 14496-3: Information technology—coding of audio-visual
objects—part 3: Audio,” 2000. (MPEG-4 Audio)

H. G. Musmann, P. Pirsch, and H.-J. Grallert, “Advances in picture coding,”
Proceedings of the IEEE, pp. 523-548, April 1985.

A. N. Netravali, and B. G. Haskell, Digital Pictures—Representation,
Compression and Standards, 2nd ed. New York: Plenum Press, 1995.

Y. Ninomiya, and Y. Ohtsuka, “A motion-compensated interframe coding
scheme for television pictures,” IEEE Transactions on Communications, vol. 30,
pp- 201-211, Jan. 1982.

S. Okubo, “Reference model methodology—a tool for the collaborative creation
of video coding standards,” Proceedings of the IEEE, pp. 139-150, Feb. 1995.

A. V. Oppenheim, and R. W. Schafer, Discrete-Time Signal Processing. Engle-
wood Cliffs: Prentice Hall, 1989.

M. T. Orchard and G. J. Sullivan, “Overlapped block motion compensation: An
estimation-theoretic approach,” IEEE Transactions on Image Processing, pp.
693-699, 1994.

J. Ostermann and A. Puri, “Natural and synthetic video in MPEG-4,” in
Proceedings of 1998 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP 1998), Seattle, USA, pp. 3805-3809, Nov. 1998.

W.B. Pennebaker and J.L. Mitchell, JPEG: Still Image Data Compression
Standard. Van Nostrand Reinhold, New York, USA, 1993.

P. Pirsch, N. Demassieux, and W. Gehrke, “VLSI architecture for video
compression—a survery,” Proceedings of the IEEE, vol. 83, pp.220-246, Feb.
1995.

L. M. Po and W. C. Ma, “A novel four-step algorithm for fast block motion
estimation,” I[EEE Transactions on Circuits and Systems for Video Technology,

vol. 6, pp. 313-317, June 1996.

A. Puri, “Video coding using the MPEG-2 compression standard,” SPIE Visual
Communications and Image Processing, pp. 1701-1712, Nov. 1993.

- 117 -

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[87]

[88]

A. Puri, H.-M. Hang, and D. Schilling, “An efficient block-matching algorithm
for motion compensated coding,” in Proceedings of 1987 IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP 1987), vol. 2,
pp- 1063-1066, April 1987.

A. Puri, and A. Wong, “Spatial domain resolution scalable video coding,” SPIE
Visual Communications and Image Processing, pp. 718-729, Nov. 1993.

A. Puri, L. Yan, and B.G. Haskell, “Temporal resolution scalable video coding,”
in Proceedings of 1994 IEEE International Conference on Image Processing
(ICIP 1994), Austin, USA, pp. 947-951, Nov. 1994.

K. R. Rao and P. Yip, Discrete Cosine Transform—Algorithms, Advantages,
Applications. Academic Press Inc., London, 1990.

O. Rioul and M. Vetterli, “Wavelet and signal processing,” [FEE Signal
Processing Magazine, vol. 4, pp.14-38, Oct. 1991.

K. Sayood, Introduction to Data Compression. San Francisco: Morgan
Kaufmann, 1996.

G. M. Schuster, and A. K. Katsaggelos, Rate-distortion Based Video
Compression. Boston: Kluwer Academic Publishers, 1997.

R. Srinivasan and K. R. Rao, “Predictive coding based on efficient motion
estimation,” IEEE Transactions on Communications, vol. 33, pp. 888-896, Aug.
1985.

C. Stiller, and J. Konrad, “Estimating motion in image sequences,” [EEE Signal
Processing Magazine, pp. 70-91, July 1999.

G. Strang and T. Nguyen, Wavelets and Filter Banks. Wellesley-Cambridge

Press, Wellesley, MA, 1996 [Online]. Available: http://www-
math.mit.edu/~gs/books/wtb.html

G. J. Sullivan, and T. Wiegand, “Rate-distgortion optimization for video
compression,” IEEE Signal Processing Magazine, vol. 15, pp. 74-90, Nov. 1998.

Sun Co, VIS Instruction Set, June 2003 [Online]. Available: http:// www.
Sun.com/ processors/ vis

A. M. Tekalp, Digital Video Processing. Upper Saddle River, NJ: Prentice Hall,
1995.

A. M. Tekalp, and J. Ostermann, “Face and 2-D mesh animation in MPEG-4,”
Signal Processing : Image Communications, pp.387-421, Jan. 2000.

- 118 -

[89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

J. Y. Tham, S. Ranganath, M. Ranganath, and A. Al Kassim, “A novel
unrestricted center-biased diamond search algorithm for block motion

estimation,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 8, pp. 369-377, Aug. 1998.

A. Vetro, H. Sun, and Y. Wang, “MPEG-4 rate control for multiple video
objects,” IEEE Transactions on Circuits and Systems for Video Technology, vol.
9, pp. 186-199, Feb. 1999.

M. Vetterli and J. Kovacevic, Wavelets and Subband Coding. Englewood Cliffs,
NJ, Prentice Hall, 1995.

Y. Wang, and O. Lee, “Active mesh—a feature seeking and tracking image

sequence representation scheme,” /EEE Transactions on Image Processing, pp.
610-624, Sept. 1994.

Y. Wang and J. Ostermann, “Evaluation of mesh-based motion estimation in
H.263 like coders,” [EEE Transactions on Circuits and Systems for Video
Technology, pp. 243-252, June 1998.

Y. Wang, J. Ostermann, and Y. Q. Zhang, Video Processing and
Communications. Englewood Cliffs, NJ: Prentice Hall, 2003.

J. Watkinson, The Art of Digital Video, 2nd ed. Oxford: Focal Press, 1994.

J. C. Whitaker, DTV Handbook: The Revolution in Digital Video, 3rd ed. New
York: McGraw Hill, 2001.

J. C. Whitaker, and K. B. Benson, Standard Handbook of Video and Television
Engineering, 3rd ed. New York: McGraw-Hill, 2000.

T. Wiegand, M. Lightstone, D. Mukherjee, T. Campell, and S. K. Mitra, “Rate-
distortion optimized mode selection for very low bit rate video coding and the

emerging H.263 standard,” IEEE Transactions on Circuits and Systems for
Video Technology, pp. 182-190, April 1996.

T. Wiegand, X. Zhang, and B. Girod, “Long-term memory motion-compensated
prediction,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 9, pp. 70-84, no. 1, February, 1999.

S. Zhu and K. K. Ma, “A new diamond search algorithm for fast block matching

motion estimation,” IEEE Transactions on Image Processing, vol. 9, pp. 287—
290, Feb. 2000.

-119 -

Appendix A

Block Motion Estimation Algorithms

A.1 Full-Search Algorithm (FSA) [20]
The FSA is summarized in Table A.1. In this table, CS(/), 1701, (/), and Min(l) are,

respectively, the set of candidate motion vectors, the optimum motion vector and its

corresponding MAD value, computed so far in the FSA. The current motion vector is

denoted by ¥

curr

and P is as defined in (2.3).

Table A.1 Full-search algorithm

1) Initialization
=1
CS(D) = {(0,0)}

V,, (1) =(0,0)
Min(ly = MAD(V (1))
2) Search process

for (every Ve P)

curr

CS(+1)=CcsHU,,,}
Min(l +1) = Min(l)

V,+0) =V,

if (MAD(V.,)< Min(l +1))

curr

{
Min(l +1) = MAD(V)
Vop (l + 1) = VCMN‘
H
I=1+1
t
3) Output

Vop (S x S) is the selected motion vector in the full-search algorithm

- 120 -

A.2 Two-Dimensional Logarithmic Search Algorithm (2ZDLSA) [45]
For the search length m > 0, we define

NOm)={G,)| -m<ism, —m<<m) (A1)
and

M(m) ={(0,0), (m,0), (0,m), (-m,0), (0,-m)} (A2)
The search pattern given by (A.2) is employed until the search length is unity, after which

the search pattern given by (A.1) is employed. The algorithm is summarized in Table

A2.

Table A.2 2-D logarithmic search algorithm

1) Initialization
MAD(, j)y=o for (i,j) ¢ N(w), where w is defined in Section 2.1.
n' = |_10g2 wJ, where Lx_l stands for the largest integer less than x
n =max(2,2" —1)
qg=1=0

2) M'(n) «—— M (n)

3) Find (i, j) € M'(n) such that MAD(i + ¢, j +1) 1s minimum.
If i=0 and j =0, go to 5); otherwise go to 4)

4) ge—q+i,l«1+j;goto3)

5) n « ‘_n/2_|; if n=1, go to 6); otherwise, go to 2)

6) find (7, j) € N(1) such that MAD(i + g, j +1) is minimum.
qeq+i;l«1+7].
(g,1) is the optimum motion vector in the algorithm.

- 121 -

A.3 Orthogonal Search Algorithm (OSA) [75]

This algorithm recursively reduces the region of uncertainty (RUC), where it assumes the
optimum motion vector lies. The search patterns shown in Figure 2.3 are employed in this

algorithm. The algorithm is summarized in Table A 3.

Table A.3 Orthogonal search algorithm

1) Initialization

Search region, SR = (2w+1)x (2w +1) . Step number, i =1
Initial step size [= fw/ 2—|, where (x_l is the least integer larger than or equal to x

2) Step 1

Three search locations are placed horizontally in the center of SR . The distance
between every two neighboring search locations equals to the step size as shown in
Figure 2.3(b). The location with the minimum value of MAD is selected as the center
for the next step. Step number i <— (i +1)

3) Vertical step

Two more search locations are placed vertically around the location with the
minimum value of MAD from the previous step. The distance between every two
neighboring search locations equals to the step size as shown in Figure 2.3(a). The
location with the minimum value of MAD is taken as the center for the next step.

4) Stopping rule

The remaining region of uncertainty (RUC) now has an area of 4(/ ~1)x(/-1). If
[=1, stop; Otherwise, [« [1/2_], [< (i+1), and continue.

5) Horizontal step

Two more search locations are placed horizontally around the location with the
minimum value of MAD from the vertical step. The location with the minimum value
of MAD is taken as the center for the next step. i < (i +1) and go back to 3).

-122 -

A.4 One at a Time Search Algorithm (OATSA) [82]

The search process of this algorithm is first carried out in the horizontal (j-th) direction to
find a local minimum of MAD in this direction. Then the search process is carried out in
the vertical (i-th) direction, starting from the location of local minimum value of MAD in

the j-th direction. This algorithm is summarized in Table A.4.

Table A.4 One at a time search algorithm

1) Initialization

MAD(, j)y=o for (i, j) ¢ N(w), where N(w) 1s defined in (A.1).

2) Step 1

Compute MAD(, j), MAD(, j +1), and MAD(, j—1), a local minimum value
of MAD is found. If MADC(i, j+1) turns out to be the minimum, MAD(i, j +2) is
also computed and the minimum of MAD(, j), MAD(, j+1), and MAD(, j +2)
is found. Proceed in this manner until the minimum is closeted between two higher
values, i.e. MAD(i,j+1) (-w<I<w) is the minimum among MAD(, j+1),
MAD(, j+1-1) , and MAD(i,j+[1+1) . The j-direction search stops and a
minimum in this direction is obtained.

3) Step 2

The search continues now in the i-direction, similar to step 1. Computing
MADG, j+1), MAD(i—1,j+!), and MAD(i+1,j+/), a minimum 1is found. If
MAD(i +1, j +1) turns out to be the minimum, MAD(i + 2, j +1) is also computed
and the minimum of MAD(, j+1), MAD(i+1,j+/), and MAD(i+2,j+1) is
found. Proceed in this manner until the minimum is closeted between two higher
values. i.e. MAD(@+q,j+I) (—w<g<w) is the minimum among
MAD(i+q,j+1), MAD(i+q—-1,j+1), and MAD(i+q+1,j+[). The i-direction
search stops and we obtain a minimum in this direction.

-123 -

A.5 Conjugate Direction Search Algorithm (CDSA) [82]

In CDSA, OATSA is first carried out to find the location of the local minimum of MAD.
Then, the search process is continued in the conjugate direction, which connects the

location (0,0) and the position of the local minimum of OATSA. The position of the

local minimum along this conjugate direction is selected as the location of the optimum

motion vector in CDSA. This algorithm is summarized in Table A.5.

Table A.5 Conjugate direction search algorithm

1) Step 1

One at a time search algorithm is first carried out and (g,/), the location of the

minimum value of the MAD in the one at a time search algorithm, is found.

2) Step 2

The direction of search now is the vector connecting the location (0,0) and (g,/).
Case I: If MAD(3,3) 1s the minimum from 1), compute MAD(2,2) and
MAD(4,4) . Proceed in the direction connecting (0,0) and (3,3) until the minimum
is closeted between two higher values.

Case 2: A problem occurs if the i-direction component g is not equal to the j-
direction component /. This could be like MAD(3,2) obtained as a minimum from
1). In such a case, the nearest grid locations on the direction joining (0,0) and
(3,2) are chosen. These are (2,1) and (4,3). Proceed in this direction until a local

minimum is closeted between two higher values.

-124 -

A.6 Three-Step Search Algorithm (3SSA) [49]
For the search length m > 0, we define

T(m) = M(m) U {(_m’—m)a (_ma I’l’l), (m’ m)a (m’—m)}

where M (m) is given by (A.2). The search pattern of T(m) is employed in the 3SSA.

The initial search length in the 3SSA is approximately one-fourth of the length of the

search window. Then, the search length in each step of 3SSA is one-half of the search

length in the previous step until the search length is unity. The initial search center is at

the center of the search window. The center of the selected search locations in every other

step is the location corresponding to the minimum value of the MAD in the previous step.

This algorithm is summarized in Table A.6.

Table A.6 Three-step search algorithm

1) Initialization
MAD(, j) =, for (i, j) ¢ N(w), where N(w) is defined in (A.1).
q=1[=0
n= |—w/ 2—|

2) T'(n) « T(n)

3) Find (i, j) € T'(n) such that MAD(i +q, j+!) is minimum

4) qq+i,l<«I1+], n(——l—n/2—|

if n=1 go to 5); otherwise go to 2)

5) Find (i, j) € T(1) such that MAD(i + ¢, j +1) is minimum

search algorithm.

6) geq+i,l < I[+j. (g,0)1s the optimum motion vector of the three-step

- 125 -

A.7 Four-Step Search Algorithm (4SSA) [73]

The search pattern of 7(2) given by (A.3) is recursively utilized until the location of the
minimum value of MAD lies at the center of the search pattern or the search process
reaches the boundary of the search window. The initial search center is at the center of
the search window. The center of the selected search locations in every other step is the
location with the minimum value of MAD in the previous step. In the final search step,
the search pattern of 7'(1) given by (A.3) is employed. This algorithm is summarized in

Table A.7.

Table A.7 Four-step search algorithm

1) Initialization
MAD(, j) =, for (i, j) ¢ N(w), where N(m) is defined in (A.1).

2) Find (i, j) € T(2) such that MAD(i + g, j +1) is minimum, where T(m)

is defined in (A.3).

3 ge—q+i, <[+

if i=0 and j =0 go to 4); otherwise go to 2)

4) Find (i, j) € T(1) such that MAD(i + q, j +/) is minimum

5) q«qg+i,l«I[+j. (q,0) is the optimum motion vector of the four-step

search algorithm.

- 126 -

A.8 Unrestrictive Center-Biased Diamond Search Algorithm (UDSA)
[89, 100]

A large diamond search pattern (LDSP) as shown in Figure 2.6 is recursively utilized in
the UDSA until the location of the minimum value of the MAD lies at the center of the
LDSP, or the search process reaches the boundary of the search window. In the final

search step, a small diamond search pattern (SDSP) as shown in Figure 2.7 is employed.

This algorithm is summarized in Table A.8.

Table A.8 Unrestricted center-biased diamond search algorithm

1) The initial LDSP 1s located at the center of the search window. At
each of the nine search locations of the LDSP, block matching
computation of the MAD is carried out to find the location with the
minimum block matching distortion among these locations. If the
location with the minimum block matching distortion occurs at the

center of the LDSP, go to 3); otherwise, go to 2).

2) The search location with the minimum block matching distortion is
repositioned as the center search location to form a new LDSP. If
the minimum block matching distortion is at the center position, go

to 3); otherwise, recursively repeat this step.

3) Switch the search pattern from LDSP to SDSP. The search location
with the minimum block matching distortion corresponds to the final

solution of the motion vector of the diamond search algorithm.

- 127 -

A.9 Predicative Search Area Algorithm (PSAA) [10]

B, B, Bs

B4 Bc

Figure A.1 Current block B, and its four neighboring blocks B,, B,, B,, and B,

There are four neighboring blocks, B,, B,, B,, and B,, of the current block B, , as
shown in Figure A.1. We define the motion vector corresponding to the block B, as
MV, =(MVX,,MVY,), where 1<i <4, as shown in Figure 2.8. Each sub-area S, can be
expressed as

S ={x,)| MVX, —L<x<MVX,+L, MVY -L<y<MVY +L} (A4)
where L is selected as 2 in the PSAA. The search area SA4 in the predicative search area
algorithm is the union of the four sub-areas, i.e.,

SA=S,US,US;US, (A.S)
as shown in Figure 2.8. All the candidate motion vectors in the S4 are exhaustively
searched in the PSAA.

From (A.4) and (A.5), it can be seen that in the worst case, MAD needs to be
computed 100 times in order to find the optimum motion vector in the PSAA. In the best

case, however, only 25 such computations need to be carried out.

- 128 -

A.10 Block-Based Gradient Descent Search Algorithm (BGDSA) [54]
The search pattern of 7°(1) given by (A.3) is recursively utilized in the BGDSA. When

the location of the minimum value of the MAD lies at the center of the search pattern or
the search process reaches the boundary of the search window, the search process in the
BGDSA is stopped. The initial search center is at the center of the search window. The
center of the selected search locations in every other step is the location with the
minimum value of the MAD in the previous step. This algorithm is summarized in Table

A9.

Table A.9 Block-based gradient descent search algorithm

1) Initialization
MAD(i, j)y =0, for (i, j) ¢ N(w)

2) Find (i, j) € T(1) such that MAD(i + g, j +[) 1s minimum, where 7(m)

is defined in (A.3).

3) ge—q+i,l<I+]

if i=0 and j =0 go to 4); otherwise go to 2)

4)y g« q+i, <1+ . (g,0) is the optimum motion vector of the BGDSA.

- 129 -

A.11 Selective Elimination Algorithm (SEA) [52]

The partial sums in the SEA are defined as the summation of the luminance values in a
16 x16 block and can be expressed as
15 15
PS,(x,y)=> > I.(x+m,y+n)
i (A6)
PS,(x,y)=2 > 1, (x+m,y+n)

n=0 m=0
where 7, (x,y) and I, (x,y) are as defined in Section 2.1. It has been shown that for the

SEA [52],
MADV) = LB, (V) (A.7)
where LBy (V) = |PS (x5,) = PS, (xy +V sy, +)| (A.8)

This algorithm is summarized in Table A.10.

Table A.10 Selective elimination algorithm

1) Initialization

[=1

CS)=40,0)}; V,,()=(00); Min(l)= MADV,, (1))
2) Search process

for (every V. e P)

curr

CS(I+1)=CSHUW,,,}; Min(l +1) = Min(D); V, (I +1)=V, ()
if (LBgzy (V) < Min(1 +1))
{

if (MAD(V,,) < Min(I+1))

{
Min(I+1)=MADY,,.); V,,(+1) =V,

¥
}
[=1+1

}
3) Output

Vop (Sx8) is the optimum motion vector of the SEA

-130 -

Appendix B

Computational Complexity of Block Motion Estimation
Algorithms

B.1 Computational Complexity of the FSA and the Multi-Step Search
Algorithms
In the case of the FSA or a multi-step search algorithm, V.

curr

and Min(/) represent the
current candidate motion vector and the minimum value of the MAD computed so far,

respectively. At every search location in the algorithm, a calculation of MAD(V_) and a

curr

comparison between MAD(V,,) and Min(l) are carried out, where MAD(V,) is given

curr Ccurr

by (2.1). From (2.1), it can be seen that the computation of the MAD(V_) for a

curr

macroblock involves 256 subtractions, 256 operations to calculate the absolute values and

255 additions. Thus, the computational complexity per pixel for the calculation of the
MAD®V) is

Ciup = (256 +256 x2+255)/256 (B.1)
where the division by 256 is due to the fact that one macroblock contains 256 pixels. The

computational complexity per pixel for the comparison between MAD(V,,,) and Min(l)

is
C. =2/256 (B.2)

Hence, the computational complexity of the FSA is

C(FSA)=(C,,p +Co) 10 (FSA) (B.3)

where 7,,,,(x) and C(x) are, respectively, the number of times MAD¥) needs to be

calculated per macroblock and the computational complexity per pixel of the block

- 131 -

motion estimation algorithm x in order to complete the estimation process. Now, for the
FSA

Mo (FSA) = S? (B.4)
where (§x.S8) is the size of the search window. From (B.1), (B.2), (B.3), and (B.4),

C(FSA) can be expressed as

C(FSA4) =12 5? (B.5)

256

The computational complexity of a multi-step search algorithm x is given by

Cx) = (Copap +Cc1 MM agap (%) (B.6)
Specifically, we have

C(2DLSA) = (C,up + Co) ypup 2DLSA) =227, . (2DLSA) (B.7)
C(OSA) = (Copap + C 1 Vyap (0SA) = 251, (0S4) (B.8)
C(OATSA) = (C,p + Co)Mppap (OATSA) = X2 1, (OATSA) (B.9)
C(CDSA) = (Cyup + CoIigup (CDSA) = 52 17,4, (CDSA) (B.10)
C(BSS4) = (C,,yp + Co W40 (3SS4) =217, (3554) (B.11)
C(4SSA4) =(C,up + CoINpp (4SSA) =227, . (4S54) (B.12)
CUDSA) = (Cyip + Co)y (UDSA) = 2217, (UDSA) (B.13)
C(PSAA) = (Cyyup + Coilagup (PASA) = 21, (PSAA) (B.14)
C(BGDSA) =(C,p + Ce) apup (BGDSA) =227, (BGDSA) (B.15)

where, as mentioned earlier, 2DLSA, OSA, OATSA, CDSA, 3SSA, 45SSA, UDSA,
PSAA, and BGDSA respectively denote the 2-D logarithmic search, one at a time search,

conjugate direction search, three-step search, four-step search, unrestricted center-biased

- 132 -

diamond search, predictive area search, and block-based gradient descent search

algorithms.

B.2 Computational Complexity of the SEA
For the SEA (Section A.11), at every search location inside the search window, a

calculation of LB, (V.) and a comparison between LB, (V) and Min(I +1) are

Curr

carried out, where LB, (V..) is given by (A.8). From (A.8), it can be seen that the

Curr

computation of LB, (V,,,) for a macroblock involves one subtraction and one operation

curr

to calculate the absolute value. Thus, the computational complexity per pixel of

LBy, (V.,.) is

curr

C,, =(1+2x1)/256 (B.16)

The computational complexity per pixel for the comparison between LB, (V.) and

curr

Min(l +1) is

o

Ce, =% (B.17)

[}

Since there are SxS§ locations inside the search window, the total computational

complexity per pixel required to calculate LB, (¥,

curr

) and to compare 1t with Min(/ +1)

in the SEA is
Csen =(Chp +Cc2)S2 =53 %961 (B.18)
Define
i5
SC.(x,y) =D I .(x+m,y) (B.19)
m=0

-133 -

For the current frame of size W x H , the partial sums PS (x,y) (0<x<H -16,

0<y<W—-16) given by (A.6) are computed as follows.

15
Step 1) For the 0-th row, calculate all the SC_(0, j) = ZIC (m,j), 0L j<W —1. These

m=0
computations require 15/ operations, since each computation of SC_ (0,)
(0<j<W —1)needs 15 operations.

Step 2) For every ith row (1<i<H-16), «calculate all the
SC.(i,j))=8C.(i-1,/))-1.G-1,)+ (@+15)), 0<j<W-1. For each i-th row
(1<i< H-16), these computations require 2 operations, since each computation of
SC (i,j) (0<j<W —1) needs 2 operations. Since there are /{ —16 such rows, the total

number of operations required for this step is 2W (H —16) .

15
Step 3) For the 0-th column, calculate all the PS, (i,0) :ZSCC (i,j), 0si<H-16.

j=0
These computations require 15(/ —15) operations, since each computation of PS, (i,0)
(0<i< H—-16) requires 15 operations.

Step 4) For every j-th column (1<j<W-16), calculate all the
PS (i,j)=PS.(i,j—-1)-SC,(i,j-1)+SC.(i,j+15) , 0<i<H-16 . For each j-th
column (1< j <W —16), these computations require 2(H —15) operations, since each
computation of PS_(i,j) (0<i<H —-16) needs 2 operations. Since there are W —16
such columns, the total number of operations required for this step is 2(H —15)(W —16).

From these four steps, we see that the total number of operations required to

calculate the partial sums PS_(x,y) is

- 134 -

T =15W +2W(H -16) +15(H —15) + 2(H —15)(W —16) (B.20)
Thus, the total computational complexity per pixel required to compute all the partial

sums PS_(x,y) in the SEA is

_ L, 17 47 255 (B.21)

since a video frame consists of W x H pixels. Once PS (x,y) is computed for all (x, y),

they are saved in the memory. Hence, PS,(x,y) for any value of (x, y) can be retrieved
from the memory with no computation required.

When LB, (V.)< Min(l+1) , MAD(V,

curr

) 1s computed and a comparison

urr

between MAD(V

curr

) and Min(/ +1) is carried out (see Table A. 10). The computational

complexity per pixel for the calculation of MAD(®

curr

) and 1its comparison with
Min(l+1) is
Crane = Cop +Ca (B.22)

Since the average number of times required to calculate MAD(V_) and compare it with

Min(l +1) is n,,,(SEA) , the total computational complexity per pixel for the
computation and comparison is given by
Cseis = (Crup + Ce)apap (SEA) (B.23)
From the above discussion, we see that the computational complexity of the SEA
consists of Cg,, Cy,,, and Cg;. Hence, using (B.18), (B.21), and (B.23), the total
computational complexity per pixel of the SEA 1s obtained as

C(SEA) = 2 x 961+ 125 (SEA)+(4— 12— 424 255 (B.24)

w

- 135 -

