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ABSTRACT

Two-Dimensional Zero-Phase FIR Filter Design
with Nonuniform Frequency Sampling

Valentin Ninov

The present thesis is concerned with design techniques for two-dimensional zero-phase
finite impulse response digital filters with nonuniform frequency samples. Using the
freedom and flexibility of the nonuniform frequency sampling, several techniques for
taking samples in the frequency plane have been proposed. The design problem is treated
as a bivariate interpolation problem with unevenly spaced data. The main idea is to select
(find) sampling locations in the (@, @;) frequency plane and corresponding sample
values H{ @ik, @) of the desired filter frequency response such that the approximation
error in the designed filter is reduced significantly and the shape performance is high.

Three main types of two-dimensional zero-phase FIR filters that are most frequently
used in practice have been considered: rectangular, circular, and 2-D halfband (diamond
and fan) FIR filters. At least two sampling techniques for each filter type have been
proposed and examined. Common features of all of the proposed sampling approaches
are that the design is performed entirely with real number arithmetic, no computationally
expensive iterative procedures are used, and the samples are taken on curves that match

the contours of the desired filter frequency response magnitude,.

Although the filters designed with the proposed techniques are not optimal (in strict
sense), the methods are conceptually simple and produce filters with high degree of shape
regularity and approximation error comparable and sometimes even smaller than the

"conventional” 2-D FIR filter design methods.
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Foreword (Motivation for the Study)

In the last two decades there has been a great deal of interest in designing two-
dimensional (2-D) digital filters and their applications to 2-D digital signal processing.
This interest has been boosted by the advances of very large scale integrated (VLSI)
circuits which have allowed real-time operations of 2-D digital filters. 2-D digital filters
find applications in such versatile areas as digital processing of aerial and satellite
photographs, enhancement of X-rays, computer tomography, digital television, radio

astronomy, processing of geophysical data, and radar, to name just a few.

The two classes of digital filters depending on the nature of their impulse response are
the infinite-extent impulse response (IIR) filters and finite-extent impulse response (FIR)
digital filters. The IR filters are more economical, i.e., they can meet particular design
specifications with a significantly smaller number of filter coefficients than do the FIR
filters. However, the 2-D FIR filters are widely used in the field of digital signal
processing and often preferred to the 2-D IIR filters because of the attractive properties of
the former:

(i) inherent stability, the impulse response is finite and therefore, it is always
absolutely summable, or alternatively, all poles of the system function are at the origin of
the complex (z1, z2) space. The stability is never an issue in design or implementation;

(ii) the ability to attain a linear or zero phase response, constant group delay,
respectively; the zero phase is often a requirement, especially in the image processing,
and it cannot be satisfied with a single IIR filter;

(ili) relative ease of design, arbitrary frequency response can be closely

approximated with sufficiently large size of impulse response region of support;



(iv) efficient realization through high-speed convolution using FFT. If an FFT
realization of FIR filters is used the advantage of IIR filters is not so big.

(v)  if a zero phase FIR filter is required the design problem is simplified: the
frequency response is purely real and the number of independent coefficients is reduced;

(vi) FIR filters have good quantization properties;

(vii) efficient implementation of zero phase FIR filters: using the existing
symmetries the number of arithmetic operations per output point can be reduced at least
by 50 percent.

The problem of designing a digital filter is basically a problem of finding the impulse
response (or transfer function) coefficients that meet the design specifications. Existing
standard methods for designing 2-D FIR filters are the windowing, the frequency-
sampling method, the frequency transformation method, and optimal (minimax) methods
[10].

The 2-D window method is based on the same concept as the 1-D counterpart. The
desired filter frequency response Hy(@n, @) is known and the corresponding impulse
response hg(n1, n2) is found by inverse Fourier transforming Hy(@, @2). Then this desired
or ideal frequency response hgq(n, n2) which is of infinite extent is truncated to a finite-
extent sequence. In order to moderate the Gibbs phenomenon, this truncation performed
with a window function w(n;, n,), that is,

h(ny, n2) = ho(n, n)w(m, n2).
If hy(ny, n2) and w(n,, no) are both symmetric with respect to the origin, A4(n;, n2) will be
also and the designed filter has a zero phase frequency response H(@:, @;). This
frequency response is a smoothed version of the ideal frequency response. One-
dimensional windows are often used as a basis for generating 2-D windows [10, 11, 25].
There are two methods by which this is usually done. The first method is to obtain a 2-D
window w(n;, n2) as an outer product of two 1-D windows, w(n;, n2) = wy(n) wi(n). The
second method, proposed by Huang [25], is to obtain a 2-D window w(m;, n;) by

sampling a circularly rotated 1-D continuous window function, w(m, n) =



wc(,/nlz + n%) Among the most popular 1-D windows that can be used to obtain a 2-D

window are the rectangular, the Hamming and the Kaiser windows. the window method
is quite general and it is not optimal. There is no control over the frequency domain
specifications and sometimes it is necessary to design several filters to meet the design
specifications. Although, the window method is simple conceptually and computationally

and it is often used.

The frequency transformation method was originally proposed by McClellan [24] and
further developed by other authors [11]. In this method, a 2-D zero-phase FIR filter is
designed from a 1-D zero-phase FIR filter using the frequency transformation

H(w, an) = H(w) cosw=F(w,0,)

where F(w,, a») is the Fourier transform of a finite-extent zero-phase sequence 1(n;, n,).
Some first-order transformations for the design of circularly symmetric, diamond, and fan
shaped filters are shown in Chapters 3 and 4, respectively. There are two specific design
approaches. In the firs method, #(n1;, n2) is chosen among the results given in the open
literature. In the second approach, #(n;, n;) is designed for the specific need. The
frequency transformation method appears more complex conceptually than the other
standard methods for 2-D FIR filter. Nevertheless, this method has short design time and
its performance appear to be better than the window method and frequency sampling
(uniform) method [10]. In general., the frequency transformation method does not
produce optimal filters. In some restricted set of cases, however, this method can produce
optimal filters in the Chebyshev sense [10].

The optimal 2-D FIR design involve optimization of the designed filter coefficients
such that some function of the error between the resulting filter frequency response and
the desired filter frequency response is minimized. Usually, this is the Chebyshev (L.)

norm

E, = max IH(w,,wz)-Hd(a),,wz)l
(op23)



that is minimized. The error can also be weighted. In 2-D the Haar condition is not in
general satisfied, see Sec. 1.2, ant the alternation theorem does not apply to the
minimization of the approximation error. Some iterative algorithms of the Remez
exchange type have been developed [11, 21, 22]. These algorithms are very expensive
computationally, take long time, and do not always converge to a correct solution. Some
terminology and theorems of bivariate best approximation are considered in Sec. 1.2. In
contrast to the 1-D case, a practical procedure for reliably designing a 2-D optimal FIR

filter remains as an area of research.

The uniform frequency sampling technique is not optimal in any sense and does not
give control over the frequency domain parameters. Yet it is widely used because of its
conceptual and computational simplicity. The traditional frequency sampling design
methods are based on the discrete Fourier transform (DFT), the fast Fourier transform
(FFT) in particular, and they are, therefore, applicable to uniform frequency samples.
Traditionally, in the 1-D frequency sampling approach, the desired frequency response is
sampled at N equally spaced frequencies, where N is the filter length. An N-point inverse
DFT is used to compute the filter coefficients. The 2-D frequency sampling method
involve sampling a desired frequency response at the vertices of a uniform Cartesian grid.
Main disadvantage of the DFT and uniform sampling in general, is the limited (and
uniform) spectral resolution. For a given DFT length N (or of size NxN in 2-D), the
spectral resolution is fixed by the number N and is 2n/N (horizontally an vertically in 2-
D). The mathematical framework of the uniform frequency sampling method is presented
in Chapter 2.

Some relatively recent studies [1, 2, 6-9] showed the great potential of the nonuniform
frequency sampling for designing of 2-D FIR filters. The nonuniform frequency sampling
gives flexibility in choosing the sampling points and, therefore, controlling the spectral
resolution. The samples can be chosen so that the resulting interpolated frequency
response is very close to the optimal response, i. €., a response with maximum error in the

domain of approximation near to its minimum. The FIR filter design is generally an



approximation problem. The transfer function of a 1-D filter is a 1-D polynomial of a
finite order and therefore can be reconstructed from a finite number of uniform or
nonuniform frequency samples. However, some mathematical results in 1-D do not hold
in two or higher dimensions. For example, the fundamental theorem of algebra of
factorizability of univariate polynomials does not hold in two or more dimensions. As it
has been mentioned above, iterative design techniques leading to 2-D optimal FIR filters
have been developed. The final stage of such an algorithm is a 2-D polynomial
interpolation with a set of nonuniformly spaced frequency samples. A set of L+1 linear
equations’ with Z+1 unknowns is solved in order to find the L independent filter points.
Therefore, if this set of frequency samples was known at the beginning, the optimal
design problem would be solved in one step, without complex iterative multiple exchange
algorithms of the Remez type. Hence, one of the ideas and motivations of the present
study is to determine, using simple non-iterative procedures, a frequency sample point set
in the domain of approximation which will be a kind of approximation to the point set
producing an optimal (minimax) filter. In this way, a good approximation of the desired
frequency response would be obtained and the designed filter would be nearly optimal in
the Chebyshev sense. The present thesis does not pretend to give the exact algorithm but
it is believed that it makes one step forward in the right direction. The 2-D nonuniform
discrete Fourier transform (NDFT) and the bivariate polynomial interpolation are the
mathematical framework of the 2-D zero-phase FIR filter design with nonuniform
frequency samples. An overview of this theory is presented in Chapter 1.

t The notation L is used later for the number of frequency samples used in the proposed nonuniform
sampling techniques for 2-D FIR filter design. The meaning is the same.



Scope of the Thesis

The objective of the thesis is to investigate possible sampling techniques and to propose
the satisfactory of them for 2-D zero-phase FIR digital filter design with nonuniform
frequency sampling. These sampling techniques should be conceptually simple and not
requiring computationally expensive iterative procedures. Also, it is expected these
techniques to produce 2-D FIR filters with low approximation error, comparable to the
error produced by other methods as the window method, the uniform frequency sampling
method, and the frequency transformation method for the same filter size. Additionally, the
proposed techniques should produce filters with regular shapes, e.g., circular, square, fan,

etc.

Chapter 1 begins with a brief review of the 1-D and 2-D nonuniform discrete Fourier
transform [1, 2] since the inverse NDFT is the basis for the nonuniform frequency
sampling design from signal processing point of view. Some particular cases in which the
inverse NDFT has a unique solution are considered. Next, an overview is given of some of
the most important results in the bivariate interpolation theory. This theory is the
framework of the nonuniform frequency sampling FIR filter design from polynomial

interpolation point of view.

The next three chapters, 2, 3, and 4, are concerned with nonuniform sampling design
techniques of 2-D zero-phase FIR filters of different shapes. Several sampling techniques
have been proposed, which are illustrated with many design examples.

In Chépter 2, the design of zero-phase rectangularly shaped FIR filters with nonuniform
sampling is considered. Having in consideration the existing symmetries in the frequency
response and consequently, in the impulse response of these filters, the necessary number

of frequency samples is taken only in the first quadrant of the (@1, @;) plane. The filters



with rectangular shapes are the easiest to design among the considered shapes. The two
particular cases in which the inverse NDFT is nonsingular can be used: 1) frequency
samples taken arbitrary on vertical lines and 2) samples taken at the vertices of a
nonuniform rectangular grid. In both cases the frequency samples lie on straight horizontal
and/or vertical lines which naturally describe the filter shape contours. Several techniques
for determining the line coordinates are proposed. They include line coordinates obtained
from the extremal frequencies of a 1-D optimal FIR filter, from samples of exponential
functions, and from harmonic series. By adjustment of a single parameter, the exponential
and harmonic series techniques allow the approximation error to be controlled to a certain
degree. The methods are computationally efficient since instead of one large 2-D problem

several small 1-D problems are solved.

In Chapter 3, the design of zero-phase circularly shaped FIR filters with nonuniform
samples is considered. In this case, in order to obtain regular circular shape, the frequency
samples are taken on circular contours centered at the origin of the (@1, @) plane and
extending from (0, 0) till @> + @’ < n2. The sampling on straight lines cannot be applied
and therefore, the problem cannot be decomposed to several small 1-D problems. In
compensation, the number of independent filter coefficients is smaller because of the
eightfold symmetry. The approximation domain is chosen to be the first octant of the
frequency plane. The most important issues here are the distribution of circular contours in
the region @* + @* < =* and the contour shape in { o+ a2 >, | o), o] <n*}. The
first problem is solved by taking samples on circular contours having radii equal to the
extremal frequencies with the 1-D optimal filter design method [18]. This is a right choice
since the frequency response behavior of the designed filter is (almost) equiripple till o’ +
@,? < n* provided no samples were taken in the region @ + @ > n*. Determining the
shape of the contours in the corner near the point (x, 7t) proved to be the most problematic
issue. Filters with good performance were obtained in the case of hyperbolic contours in
this region. Several other techniques have been tried with less success. Some measures
should be taken to avoid singularities of the inverse problem. Fortunately, the interpolation

problem runs into singularities very seldom. Though the system of linear equations is often



ill-conditioned, the proposed techniques allow circularly shaped FIR filters with relatively
low deviations and high shape regularity to be designed.

In Chapter 4, the design of 2-D half-band FIR filters, namely 90° fan and diamond
shaped filters, with nonuniform samples is investigated. Two sampling techniques are
proposed. They are conceptually similar to the techniques used in the previous chapters. In
both cases frequency samples are taken on straight lines parallel to the contours of the
desired filter frequency response. One of the techniques calculates the location of these
lines using extremal points of 1-D optimal filter design. The other technique uses
exponential distribution of parallel lines in the domain of approximation. The designed
filters have low approximation error and very regular shape. The second method produces
superior results. At the end, the design of 2-D zero-phase FIR filters with different shapes
is considered and some of the capabilities of the nonuniform frequency sampling approach
are demonstrated with several design examples. The sampling techniques proposed in the

previous two chapters are also employed.

In Chapter 5, conclusions about the 2-D zero-phase FIR filter design with nonuniform
frequency sampling, in general, and for the proposed sampling techniques, in particular, are

made. Some possible directions and recommendations for further research are given.

The Appendix contains listings of the Matlab code for the most important algorithms

proposed and used in the present study.



Chapter 1
Theoretical Preliminaries

The 2-D FIR filter design problem with nonuniform frequency sampling can be
approached using two major frameworks: the nonuniform discrete Fourier transform
(NDFT) and bivariate interpolation theory. These theoretical frameworks are reviewed in
the two sections of this chapter. In Section 1.1, a review of the one- and two-dimensional
nonuniform discrete Fourier transform is presented. The basic idea of the NDFT and
existing methods for computing the inverse NDFT are presented in the first two
subsections. In Subsection 1.1.3, the two-dimensional NDFT is reviewed. At the end of
Section 1.1, two special cases of 2-D NDFT are discussed in which the inverse NDFT is
guaranteed to exist. In Section 1.2, an overview of some important results in bivariate
polynomial interpolation theory is presented. This section begins by outlining the main
differences between univariate and bivariate polynomial interpolation. Next, some
existing results in bivariate polynomial interpolation are presented. These results are
based on restrictive cases in which the interpolation problem has a unique solution. Some
conditions under which the 2-D interpolation problem cannot be uniquely solved are also
considered. At the end, some terminology and results characterizing the best

approximation by generalized polynomials in 2-D are reproduced.

The inverse nonuniform Fourier transform, as defined in [1, 2], is the basic framework
for nonuniform frequency sampling. The uniform frequency sampling methods are based

on the inverse conventional discrete Fourier transform (DFT). Given an aperiodic



sequence x(n) of length N with Fourier transform X(ef ‘”), its DFT is evaluation of the =-
transform X(z) of x(n) on the unit circle at N equally spaced points [13].

X (k) =X(2)| _ e = X[C) (10.1)
where X| (k) is the discrete Fourier series (DFS) representation of the periodic extension
x(n) of x(n),

Z(n)= D x(n+mN) (1.0.2)

The DFT X(k) of x(n) is the sequence of length N obtained by taking just one period of
X (%):

X(k)= {

The discrete Fourier transform is algebraically a matrix-vector product. Calling x = [x(0),
x(1), ..., x(N=2) x(N—1)]" the vector of the input values, X = [X(0),X(1), ..., X(N—1)]" the

X(k), 0<ks<N-1

1.0.3
0, otherwise ( )

vector of transform values, and Wy, =e™/?*¥ is the primitive N-th root of unity, the DFT

can be written as

1 1 1 “e 1 i
X(O) 1 WN W}& e WI:IV -1 X(O)
Slhm g ER]
X(Df - 1) i WAI;V_I W;(-Ar_l) . : WA(/N-;XN-” x(N - 1)

The two-dimensional DFT is a straightforward extension [10, 11] of the 1-D case. In 2-D,

the discrete transform pair is given by

Ny-1 Np-1 O0<ky <N, -1
&y prrkamy 1 1
x(ny,n, Wy,
X(ky. ky) = "Z; 3':’0 ( WN! M 0<ky<sNy-1 (1.0.5a)
0, otherwise
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05”2 SNz—l (1.0.5b)

1.1 The Nonuniform Discrete Fourier Transform, Review.
1.1.1 Definition

The nonuniform discrete Fourier transform [1, 2] is a generalization of the DFT and the
chirp z-transform (CZT) [12]. The nonuniform discrete Fourier transform of a sequence
x( n) of length N is defined as (1, 2]

X(z,)= fx(n)z;", k=0,1,..,N-1 (1.1.1)
=0

where zg, zy, ... , zy.1 are distinct points located arbitrarily on the z-plane. When these
points are located on the unit circle and spaced at equal angles the NDFT reduces to the

conventional DFT. Eq. (1.1.1) can be expressed in matrix form as

X=Vx (1.12)
where
X(zp) x(0)
X = j((f') : (L13a) x=| (1.1.3b)
X(zyy) x(N -1)
and
‘1 zal 252 26N+1'
1 zl—l 21_2 zl-N+l
v={1 z' z?* - ™. (1.1.4)
I 23y zZwa o Zwa

11



When the NDFT is evaluated on the unit circle, the above Vandermonde matrix becomes

1 e/® e 2™ ... /Nl
1 e/ e /2 ... /Nl
V=[] e/ e 22 ... /NIy (1.1.5)
1 e JON-1  gmJ20Na1 ... mS(N-lany ]

In the design of digital filters from nonuniform frequency samples we are primarily
interested in the existence and calculation of the inverse NDFT. If the N sampling points
are distinct then the Vandermonde matrix V is non-singular. This can be seen easily from

the factored form of the determinant of V [3, 29] :

derv) = [T (=" -7") = ﬁ{ﬁ(z{l-z;')] (1.1.6)
2], i>f j=0| i=j+1

Therefore, if z; # z; for i =j, then det(V) # 0 and V! exists. The inverse NDFT then exists
and is given by
x=VIX (1.1.7)

When the N sampling points are located at equal angles on the unit circle in the z-plane

then the matrix V reduces to the 2-D DFT matrix (cf. Eq. (1.0.4))

1 1 1 1
1 Wy w2 - W
V=l W we - RN (1.1.8)
1 W -1 WA%(N-I) . lev—xxN-l)_
where Wy =e &N |

12



1.1.2 Computing the inverse NDFT.

The problem of computing the inverse NDFT can be viewed as polynomial
interpolation problem. The theorem of polynomial interpolation states that {3]: Given N
distinct (real or complex) points 2y, 2\, ... , 2v-1 and N (real or complex) values f, fi, ... ,

Jfn-1, there exist a unique polynomial of order N —1

p(z)=a+aiz+ar? +... +ay. 2"
for which
() =/ k=01 . ,N-1 (1.1.9)
This interpolation problem can be solved using different methods.

(a) Direct Method
The inverse NDFT x is found by directly solving the linear system given by Eq. (1.1.2)
using Gaussian elimination. The complexity is on the order of O(N?) arithmetic
operations.
(b) Lagrange Interpolation
X(z) is expressed as a Lagrange polynomial of order N — 1,
X(2) =§—é‘£)-f((k) (1.1.10)

o L (Zi)

where Lo(z), Li(2), ... , Lv-1(2) are the fundamental polynomials, defined as

L)=[Ja-zz™, k=0,1,...,N —1. (1.1.11)
1=k

(c) Newton Interpolation

The z-transform of x(n), X(z) is obtained as a Newton interpolating polynomial from the

given sample values X (z,) and the sample locations z;and is expressed as

13



N2

X(2)=co+c(2=29)+€2(2 = 2o Xz =2 )+ o ey | [(z—22), (1.1.12)
k=0

Each coefficient ¢, can be represented as a divided difference of the m-th order of the
sample values X{(0), X(1), ..., X(m) with respect to the sampling points zg, zy, ... , z=. Each .

divided difference cp, is a linear combination of X(k)and z;, k=0, 1,2, ...., m.

co=X(0)

x()-x(0) xX()-c,
a7 Z1—2 T -z

X(Q-x()_ x@-X©0) (1.1.13)
= B o B _X(2)—X(l)—c,(zz—zl)

Z3-2g (z3-2)(2, - 2,)

The Newton interpolation has a permanence property. This means that if an additional
point is included, the coefficients ¢, need not to be recomputed as in the Lagrange

representation. One more term in (1.1.12) is added instead.

1.1.3 Two-dimensional NDFT

The 2-D nonuniform discrete Fourier transform of a sequence x(n, n;) of size NyxN; is

defined as [ 1, 2]

. N-1 N,-1
X(zpozn) = D ix(n,,nz) itz k=0,1,..,NiMN—1  (1.1.14)
m=0 n,=0

In other words, the 2-D NDFT corresponds to sampling the z-transform of the 2-D

sequence x(n;, nz). Without loss of generality, here x(n;, n;) is assumed a first-quadrant
sequence. The sampling points (zik, z2k) are distinct 4-D points in the (z;, z;) space. They

14



can be chosen arbitrary but in a way that the inverse NDFT exists. For the purpose of 2-D
FIR filter design these points are usually taken on the unit surface (|z1| =1, |z2| =1).

Eq. ( 1.1.14) can be expressed in a matrix form as

X=Dx (1.1.15)
where
[ i: (2100220) ] x(0.0)
. x(zlg,zzl) , ‘e "(?’1) (1.1.16)
| X(2100,-10 22000,0) | (¥ -LN; )
and
I T s
p=|' z?—‘l z?_'z z‘_‘Nlﬂ.z e (1.1.17)
1 Zz_(lN,-l) zi(zNz—l) zl—(x::i)z;(h’:’zj‘)_

Clearly, in order (1.1.14) to be a transform, the number of the sampling points in the (z;,
z,) space must be N = NyxN>. The size of the 2-D NDFT matrix is NxN.

In general, the determinant of the 2-D NDFT matrix cannot be factored. Distinct
sampling points (zix, Z2) do not guarantee that the matrix D is not singular [2]. There are,

however, some special cases in which the determinant can be factored.

From a 2-D FIR filter design point of view, finding the inverse NDFT can be altematively
stated as a 2-D polynomial interpolation problem. The filter impulse response coefficients
appear as coefficients of a bivariate polynomial (the transfer function)
H(z,.z,)= 2 2 Hn,m,) 272" (1.1.18)
m, mekR,
where Ry is the region of support of A(n1, n2). In [9] a number of sufficient conditions
have been derived under which the two-dimensional polynomial interpolation problem

15



has a unique or nonunique solution. However, no set of necessary and sufficient
conditions has been found. Some of the theorems stating the above-mentioned conditions
are presented in the next section. From filter design point of view, the possible singularity
of the determinant of D is not a serious problem because if that is the case, a different set
of sampling points can be chosen. Actually, the practice shows that when the sampling
points are distinct, the 2-D NDFT matrix D is very seldom singular.

1.1.4 Special cases of two-dimensional NDFT

If we constrain the locations of the sampling points (z1k, z2«) in a special way, we can
obtain a 2-D NDFT matrix D whose determinant is factorizable. Thus, it is guaranteed

that this matrix is nonsingular and, therefore, the inverse NDFT exists.

A) Sampling points located on parallel vertical (or horizontal) straight

lines in (@1, @7) plane.

This means the sampling points are taken on the unit surface (|z1/=1, [z2]=1) in the (z), 22)
space. Arbitrary samples taken on parallel vertical lines is the strategy employed in [6]

and [7].
@ 4 o
mlt st
O |7 e ‘ . .
W@ggp |- e
om [t i
-
®dp O @2 3 ml
Figure 1.1 Sampling points located on parallel lines to @ axis with Ny =4 and N, = 3.
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For an N;xN,-point sequence, the number of samples is NyxN,. These samples are taken
on N, vertical lines with coordinates ano, @11, - - -, @ik, - - - » O -1 - For each selected
value @y;, (i=0,1,...,N-1), N;valuesof @, are arbitrarily selected and denoted as
@y, =0, 1, ..., N2, Fig. 1.1. The equivalent points in (z), 22) space lie on the unit
surface:

Zy = e, Zygy = €M i=0,..., Ny=1, j=0,..,N,-1 (1.1.19)

Kronecker left product (tensor product) of two matrices A (mxn) and B (pxq) is defined

as the (mpxngq) matrix

Abll ‘AbIZ ot Ablq

Aby b, - Aby,

A®B=| . (1.1.20)

Ab, Ab, - Ab,

One of the Kronecker product properties states that [15] if A is an nxn matrix and B is
gxq, then
det(A® B) = (detA)?(detB)” (1.1.21)

In the case of samples on parallel lines, Eq. (1.1.15) can be expressed in the form
X=Dx=({V,}®V)x (1.1.22)

In other words, the 2-D NDFT matrix D is decomposed as a generalized Kronecker

product of a set {V3} of N; Vandermonde matrices and another Vandermonde matrix V.

VY ] Vi @ vy
V. V, ®v
p={v,}ev,=] * rev,s H. (1.123)
2 1 : 1 :
Vo - Von-1® Vo

17



where v;,i=0, .. ., N;-1, denotes the i-th row vector of matrix V.

1 z[-ol sz zl-éNl_l)
o -2 —-(N-1)
i ZI.I Lo ;l (1.1.24)
1z le‘_; z,’j,l_l ... ZL(NIYSI) |
_1 22-(;1' Zzg' z;é?’z-l)-
", =2 —(Np-1)
V, = 1 22:1,' 22.“ .» 221,-.2 s i=0,1,..,N;,-1 (1.1.25)
1 z5h oy Zhas t Zin

According to property (1.1.21), the determinant of D can be factored in the following way

Nyl
det(D)=[det(Vl)]N2 rl[det(VZi) = n (z,, -2z )NZIL[ H zz,,,, z{,i,») (1.1.26)

®j, > =l men, mon

From (1.1.26) it is clear, that if the vertical lines with coordinates zy;, i = 0,... N-1, are
all distinct, i. e., z; # zy;, i #, and if no two samples on the same line coincide, i. e., Z/m;
# 21, m # n, then the 2-D NDFT matrix D is nonsingular and the inverse transform
exists. Hence, the 2-D interpolation problem can be solved uniquely. The inverse 2-D

NDFT in this case can be obtained as follows. First, Eq. (1.1.14) is written as [2], [6]

N -I N
(zl,,zzlj) Z z x("hnz z;" zZu = Z g(z,,,nz 22” (1.1.27)

m=0 =0 m=0
i=0, 1., Ny=1 , j=0,1,..., Ny =1
where
elzm) = Sx(mam)zi m=0,1,...,N;- L (1.128)
=0
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For constant i (for each i-th vertical line), we have a 1-D interpolation problem with N,
points. Clearly, we have a system of N, linear equations, one equation per sample point
on the i-th line. For fixed value of i, Eq. (1.1.27) can be written in matrix notation as

X, =V,g (1.1.29)
where X, and g; are N> x 1 column vectors, and Vy; is the i-th N2 x N, Vandermonde
matrix as given in (1.1.25). Therefore, the vectors g; are directly computed from

g, = V;'X, (1.1.30)
and this is repeated for each value of i, i=1,...,N. In other words, g; is the 1-D
inverse NDFT of i,.. Once the coefficients g(z); , n2) have been calculated, the sequence
x(n; , m2) is calculated from (1.1.28) which in matrix form is written as

qn2 = ViXn2 (1.1.31)
where qq2 is the (V) x 1) ny-th row of g(z1:, 712), Xn2 is the np-th row of x(n; , n2), and V, is
the N; x N} Vandermonde matrix as given in (1.1.24). Hence,

x2= Vi  qu 1.32)

and this is repeated for each value of n2 , m2 =0, 1, . . ., N>-1, in order to obtain the whole

sequence x(n; , m).

Therefore, the inverse NDFT (INDFT) in the case of nonuniformly spaced samples
taken on nonuniformly spaced vertical (or horizontal) lines is computed with a total of N,
1-D N»-point INDFT for the column operations and N2 1-D N,-point INDFT for the row
operations. The process is the same as the FFT method by row-column decomposition.
Solving the linear systems (1.1.30) N, times and (1.1.32) N, times using Gaussian

elimination, the number of operations involved is O(N\N;® + NoN ).

B) Nonuniformly spaced rectangular grid.

Imposing an additional constraint that the samples in 2, direction have to be at the same

locations on each vertical line, a nonuniform grid in the (z1, z2) space is produced. When
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taken on the unit surface (jzi[=1, [z2]=1), the sample locations are vertices of a rectangular

grid in (@1, @) plane, Fig. 1.2.

o A L
e S b ’-
IS EOTRE S SO—— FA— ..
onl I SR oo L
) S - FSR— FR— B
[ 97 G- . """""""" @roomeonee .-
~ >
@ O Oz @3 i

Figure 1.2 2-D NDFT with samples at the vertices of a nonuniformly spaced rectangular grid for ¥, =4
and N, = 5.

For a 2-D sequence x(n; , n2) of size N, x N, the samples are taken at (21, 22), k=0, 1, ...

,Ni-1, 1=0,1, ..., N>-1. Now, Eq. (1.1.14) can be expressed in a matrix form as

X=VXV] (1.1.33)
where
X(0,0) X(01) - X(o,N,-1)
% X(:I,O) X(:I,l) X(l,I:fz -1) (1.134)
| X(M,-10) X(N,-11) - X(N;-LN,-1),
Here,
X(k’ I ) = X(ZI’ZZ) |:|=zu. Z2=22t ’ k - 1’ ZH’NI _1, (1.1.343)
I=1,2,..,N,-1.
and
x(0,0) x(01) - x(0,N,-1)
_ x(l:,O) x(t,l) x(1, 1\:’2 -1) (1135

x(N,-1,0) x(N,-11) - x(N,-1LN,-1)

As before, V; and V, are Vandermonde matrices of sizes N1xN, and M>xN,, respectively.
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B -1 =2 ~(N,-1) 7]
Iz Zi0 st Zy !
-1 -2 -(N,-1)
1 Z; Z; ces  Zo !
1 i il s
V, = ; A i=1,2 (1.1.36)
-1 -2 ~(N,-1)
_1 ZiN-1 ZiN-l T ZiNa ]

The equivalent NDFT matrix is a direct matrix product of V; and V3
D=V ,®V, (1.137)

and according to property (1.1.21)

dex(D) = [det(V,)] “[aee(v,, )" = TT (ait-=1)" TM(zb-z)"  13®)

#j, ) mzn, non

Clearly, the matrix is nonsingular provided that the sampling point coordinates are
distinct, i.e., when zy; # zy; for i =5, and zam # 22, for m = n. Hence, the inverse NDFT
exist and is unique or, in other words, the 2-D interpolation problem has unique solution.
The computing of the INDFT in this case involves the solution of two separate sysiems of
linear equations of sizes Ni and N>, respectively. Using Gaussian elimination, the number
of operations is on the order of Ni® + N;* . In the general case the operations involved in

the solution of INDFT are O(N;® N2%).
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1.2 Overview of Bivariate Polynomial Interpolation Theory

As we mentioned in Section 1.1, the inverse NDFT problem is equivalent to a 2-D
polynomial interpolation problem. The transfer function of a 2-D FIR digital filter is a 2-
D polynomial of finite order. The purpose of this section is to select some appropriate
tools for filter design among the vast amount of theoretical results of approximation
theory. Unlike the 1-D case, the bivariate polynomial interpolation is a nontrivial task.
The question is in which cases the 2-D polynomial can be reconstructed from a finite
number of nonuniform frequency samples. In which cases this reconstruction is unique?
A number of theoretical results on univariate and especially on bivariate interpolation
theory will be reviewed. Also, another purpose of this section is to introduce and equate

terminology.

The univariate approximation by polynomial interpolation rests mainly on two
theorems. The first one is the classical interpolation theorem and it states that (3, 5]

Theorem 1.1 Given n + 1 distinct (real or complex) points zo, z,, . . ., z,and n + 1 (real

or complex) values fo, fi, . . ., fo. There exists a unique polynomial p,(z) e B, for which
P(zi) =fi i=0s 1!"-9"- (l°2‘1)

Z, denotes the class of polynomials (a linear space) of degree < n. The proof is based on

the Vandermonde's determinant factored form. Since p,( z ) is a polynomial of degree < n,

it may be expressed as p(z) = f_:c,:z‘E . The interpolation conditions (1.21) written out in

k=0
matrix form now become
1 2 282 - z8lleo| | Sfo
bz z,'z e AL (1.2.2)
1z, 2z - zijle.] LA,
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where the c's are the unknowns. This system has a unique solution because the coefficient
matrix is nonsingular. It can be shown [3] that the determinant of this matrix
(Vandermonde's determinant) can be factored in the form

V= T(z-z) (1.2.3)

0si<jsn
From this formula it is clear that ¥ = 0 if and only if the points z; are distinct.

The second fundamental theorem in the 1-D polynomial approximation is the
Weierstrass approximation theorem of 1885, [3].

Theorem 1.2. Let f( x ) be a continuos function defined on [a, b]). For givenan £> 0, it
is possible to find a polynomial p( x ) of sufficiently high degree for which

,f(x)—p(x)lSe, asx<bh (12.4)

The Weierstrass’ theorem asserts the possibility of uniform approximation by polynomials

to continuous ( not necessarily analytic) functions over a closed interval.

The ordinary polynomials are simply linear combinations of the monomials 1, x, x2, -
x". A continuous function f (x) on [a, b] can be approximated also by a linear
combination of other fixed functions ¢, @1, . . ., ¢, on the same interval [a, b]. Their

linear combinations zc,.gi,- are termed generalized polynomials. The problem of best
i =0

approximation by generalized polynomials requires the Haar condition [3]:

Given a system of n+1 functions {@o, ..., §.} continuous on some fixed metric space X.
This system is said to satisfy the Haar condition if every set of n+1 vectors of the form

ox) =[go(x) #1(x) - @,(x)] (1.2.5)

is independent for any choice of distinctly different x. Expressed otherwise , the

determinant
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¢o(xo) ¢O(xn)

A(xo,xz...,x,, = (1.2.5a)

ba(x0) - #(x,)
is zero only when two of the points x; coincide in the fixed compact metric space X_ The
non-zero Vandermonde determinant (1.2.3) implies that {1, x, X%, ..., X" } satisfies the
Haar condition on any interval and for any n. A system of functions satisfying the Haar
condition is called a Chebyshev system. The Chebyshev polynomials of first and second
kind form a Chebyshev system, xe[~1, 1] . Another example of a Chebyshev system is

n

{ @ = e"“} o fOr distinct acand xe(—o, +w).

Now it will be pertinent to reproduce the central theorem of univariate best

approximation, the alternation theorem [3, 13, 16].

Theorem 1.3. Let {@o, . . ., §n} be a system of N + 1 functions of C [a, b] satisfying the

Haar condition, and let X be any closed subset of [a, b]. P(x) = ic,-¢ {(x) denotes a

=0
certain generalized polynomial on X. Also, fx) is a continuos function on X to be

approximated and w(x) is a positive and continuous on X. The weighted error function is

given by

E(x) = w(x)[ f(x) - P(x)] (1.2.6)
and the error norm is the weighted maximum error

|El = max| E(x)| = & (1.2.7)

A necessary and sufficient condition that P(x) is the unique polynomial that minimizes

||El| is that the error function E(x) exhibits on X at least N+2 alternations, thus:
E(x) =-E@xi+1)) =426 fori=0,1,2, .. N+l, andx; € X.

The alternation theorem means that there is a unique best approximation for a given set
of points (frequencies), filter length Np, and weight function w(x). It also states that the
best Chebyshev approximation must necessarily have an equiripple error function. In the
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optimum approximation of 1-D FIR filters Chebyshev polynomials are used as basis

functions withx =cos @ :
Pk (x) = T(cosw) = costkw) , k=0,1,..,N. (1.2.8)

The approximation polynomial P(x) is a sum of these weighted cosines. The number of
the extremal points is at least N+2 and is related to the filter length Np. A subset of N+1

of these points are sufficient to reconstruct the N-th order polynomial P(x). These N+1

extremal points are in fact frequency samples trough which the filter amplitude response
A(w) is constructed [18].

13 14 13 L4 Y T

1pq----c -;-------..E. ----+E_, Fiter length Nijp=9 | S: R
: : i Q=6 extremal points Plcosw) = 2, a; cos(w)
k=0

(3] RN SRS SO S S S
: : : : : : Min. number of extremal points Q-

1 S B S

P S N AL N S
: : : : (NID+3)/2’ NlD =0dd

0 : I : =
\e/ e {(N[D-&-Z)/Z, Nyp =even

0.2 : : : H : H

Figure 1.3 Frequency response amplitude of an optimal FIR filter designed using the algorithm in {18].
Five of the six alternation frequency samples (two of them are at the band edges) have been
used for the interpolation.

The amplitude response 4(w) = P(cosw) of the length 9 FIR minimax filter, shown in Fig.
1.3, is obtained with a linear combination of five cosine basis functions. The amplitude
function is the analytic (real-valued) version of the magnitude response M(w), A(®) =
IM(w).

Unfortunately, there is an essential difficulty in the extension of the Chebyshev
approximation theory to functions of more than one variable. As it has been shown [4],
there are no universal Chebyshev sets of functions of two and more variables that can be

used for interpolation in 2-D or higher dimensions. In other words, the Haar condition is
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not in general satisfied. There are, however, some special metric spaces X, on which a
Chebyshev system of continuous functions can be defined. For example, this is true when
X is homeomorphic to a subset of a circle [4]. Such special cases are of little interest in
practice. The absence of Chebyshev sets means that, in general, the polynomials are not
specified uniquely by samples at arbitrary locations. Furthermore, it may happen that a
solution to the interpolation equations does not exist. The nonuniqueness is not too much
of an issue, because one of the many possible solutions is enough (provided all the
solutions are optimal in Chebyshev sense). Finite point sets can be considered as
approximations to infinite point regions. In such cases we have a set of functions {¢ (x)}

that may form a Chebyshev system or may not [4].

Prior discussing optimal solutions in two and higher dimensions, we will consider some
basic results from the bivariate polynomial interpolation theory. The emphasis will be on
interpolation using only function sample values. The methods employing function
derivatives at the sample points will not be considered because they are quite involved

and, therefore, of little interest for the practice of digital filter design.

The interpolation in 2-D can be done with bivariate polynomials that are either in I'1,,
the space of polynomials with total degree less or equal to n, or in IT,m), the space of
polynomials P(z;, z2) with maximum degree 7 in z; and m in z,. The total degree of a 2-D

polynomial P(z, z;) is defined to be the degree of the 1-D polynomial P(zy, z1).

degree degree
inz, inz,
2 2 ® ®
1 ® 1 L ®
—0—» *—0—>
0 1 2 degree 0 1 2 degree
inz 1 inz 1

Figure 1.4 Degree of polynomials (3) in IT, and (b) in 1, 5.
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One important result in 2-D interpolation, that will be of interest in our problem of 2-D
FIR filter design, was derived by Gasca and Maeztu in 1982, [23]. Consider a set of
straight lines #; in R?, each of which is associated with a polynomial of first degree in x
and y, also denoted by ;. With each line r; a set of straight lines 7., is considered in such a
way that the intersections determined by r; and r;; are points at which the interpolation
data (sample values) are given, denoted by u;,. The lines r; and/or r;;, may appear with
multiplicity greater than one, leading to derivative values as interpolation data. A
formulation with derivatives results in a Hermite interpolation problem. When no two lines
coincide we have the particular case of a Lagrange interpolation problem and this can be

stated as follows [23]:

Theorem 1.4 If the intersection u;; of r; and r;;with i+ j =0, does not lie on any of the
lines
Foy - oy Fil Fi0y - - - Fifl ifi>0, j>0,
Fo, . - Iel ifi>0, j=0,
reo, .- roq1 if i =0, j>0,
then we have defined a Lagrange interpolation problem with a unique solution.
The proof can be found in [23]. Fig. 1.5 shows an example of geometric distributions of

the sampling points of Theorem 1.4.

g

Figure 1.5 Example of geometric distribution of the sampling points of Theorem 1.4, Ref. [23].
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A special case of the above theorem has been proposed earlier by Chung an Yao [30].
Their results deal with special sets (lattices) of nodes in R™ for which the Lagrange
interpolation problem has a unique solution. An example of a so-called natural lattice is

presented in Fig. 1.6.

Figure 1.6 A two-dimensional example of natural lattice of sampling points of fifth order [30]..

The condition for uniqueness is that corresponding to each sampling point x,cR?, there
exist & distinct straight lines (or hyperplanes in R™) such that (i) x; does not lie on any of
these lines (hyperplanes), and (ii) all the other sample points lie on at least one of these
lines (hyperplanes). In the example above & = 5. Stated plainly, the above results require
no sample points taken on the intersection of three or more straight lines (in R?) in order

to guarantee unique interpolation polynomial.

A special case of the above results is the sampling on a nonuniform rectangular grid. In
Sec. 1.1 it has been shown that a unique solution of the interpolation problem exists in this

case.

Some results concerning sufficient conditions under which the 2-D polynomial
interpolation problem has a unique or nonunique solution has been derived in [9]. These
results are on interpolation in the polynomial space Il . . The sampling points are

chosen on curves with nonfactorizabie equations. However, the results concerning the
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unique solution are for very specific arrangement of the irreducible curves and the samples
on each curve. Some conditions under which the interpolation polynomial coefficients
cannot be uniquely determined are given. For completeness, these conditions will be

repeated here as

Theorem 1.5, [9] Let the bivariate interpolation polynomial be of the form

N. N,
Plx,y) = X 2ali, j)x'y’ (1.2.9)

1=0 ;=0

and let the sampling points lie on p irreducible distinct curves r, r, ..., r,. Each of these
curves r; has maximum degree in x given by M.””, and in y given by M,”. If the following

inequalities are simultaneously satisfied, i. e.,
N.> ﬁ:Mf) N,> f,M;" , (1.2.10)
=1 =1

then the polynomial coefficients cannot be uniquely determined.

Theorem 1.6, [9] Let the interpolation polynomial be of the form (1.2.9) and the
(N+1)YN,+1) sampling points are taken again on irreducible curves. If there is an

irreducible curve of the form
xMe = or xMeyMr = (1.2.11)

which contains more than MNAMN+1 sampling points, then the coefficients of the
polynomial (1.2.9) cannot be uniquely determined.

Proofs of the above two theorems can be found in [9]. Theorem 1.5 simply states that if
the sum of the degrees of the curves on which the samples are taken is small compared to
the degree of the desired polynomial, then the interpolation problem becomes singular.
Theorem 1.6 states that if too many points are taken on any curve with equation of the

form (1.2.11), then overspecification is done and the interpolation problem runs into

singularity.
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In [31] the Lagrange interpolation is extended to 2-D functions (signals) using polar
coordinates. A 2-D function fp, ) is reconstructed from a set of nonuniform samples.
The function is presented in polar coordinates p and 6, and it has a finite circular region

of support.

As it was pointed out in the foreword, one of the ideas in the present thesis is to
determine locations and values of the frequency samples in the (@), @,) plane, such that
the resulting continuous frequency response is as much as possible close to optimal in
Chebyshev sense. That is why it would be pertinent to reproduce some terminology and
results concemning the characterization of the Chebyshev approximation in 2-D and m-D.

The domain of approximation is a compact subset K of the two-dimensional frequency
plane (@i, @). For an ideal filter with piecewise constant frequency bands, X would be
chosen to be the union of the passband regions R, and stopband regions R;, omitting the
transition bands. The error criterion is the minimization of the maximum error between
the desired frequency response (the function to be approximated) and the resulting filter
frequency response (the 2-D interpolation polynomial). As in the 1-D case, the maximum

error magnitude |E(w)| given by
£ = max|E(0)| = max| (@) Hp (@) - H(w)) (12.12)

Here ® = (@1, @) is the frequency vector. The error norm |E|| = & is sometimes referred
to as the L, error criterion. The frequency response of a 2-D zero-phase FIR can be

expressed as (cf. Sec. 3.1)

H(o) = H(o,0,)= 2 2a(n,ny)cos(an +ayn,) = ia,-(é,»(m) (1.2.13)

(n.m)e R, =0

Clearly, the bivariate polynomial H(®) can be constructed using N+1 real-valued basis
functions ¢{(®),

#(0) = ¢(an, @) = cos(an; + a ny) (1.2.14)
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where i depends on n; and n;. The optimal approximation problem can be stated as:
Given R, R, passband tolerance &, = kJ, and stopband tolerance &, determine a; so that
S is minimized. Stated otherwise, determine the set of coefficients a; that minimizes

mal)rclE (w)| over the compact subset K.
@€

In 2-D, however, the N +1 vectors of basis functions

Ho,) = [¢o(‘°i) ¢1(‘°i) ¢N(°’i)]r i=0,1,..,N,

(cf. Eq. 1.2.5) are not always linearly independent for any N +1 points o, in K. No set of
nontrivial bivariate functions satisfies the Haar condition [4, 10]. The absence of
Chebyshev sets means that the alternation theorem does not hold in m-D, m > 2. There
are, however not so powerful, some theorems characterizing the best approximation in 2-

D. First of all, the concept of convexity should be considered.

A set of points (vectors) is said to be convex if with each two of its points it
contains also the line segment containing them. In R?, the line segment joining points v,

and v; consists of all points of the form av; + (1 - a)v; for @ € [0, 1].

Figure 1.7 Convex and nonconvex sets: set 4 is convex, B and C are not.

In an arbitrary m-D linear space (in our case m = N+1), if a set of vectors v; is finite, then
a vector v is said to lie in the convex hull of v; if and only if there exist constants «;

subject to three simultaneous conditions:
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(a) v=za,v,. () a;20 forall i © za,-=1 (1.2.15)
=1 =1

Figure 1.8 Convex hull of a finite set of discrete points.

The convex hull of a set of points lying in a 2-D plane may be "found" by driving nails in
at each point and wrapping a string around the configuration, as it is illustrated in Fig.
1.8.

An extremal point is a point ®; = (@;, @,) in K where the error functions attains its norm,
given by (1.2.12). The extremal point set is the set of all such extremal points. The

characteristic vector associated with a particular point ®; is the vector ®( ®; ), see above.

A critical point set is defined as a set of extremal points of minimum size such that the
zero vector lies in the convex hull of the of the signed characteristic vectors o(o,)P( ®; )

where

(V% el e

By minimum size it is meant that if any point were removed from the set, the zero vector

(the origin of the m-D space) would no longer lie within the convex hull of the reduced

set.

Theorem 1.7 A critical point set contains p < N + 2 critical points. (N + 1 is the

number of basis functions ¢;(®) ), [3, 4, 21].
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This theorem limits the dimensionality of the problem. The originally stated
approximation problem can be replaced by a search for a critical point set of p < N + 2
members. In the 1-D case, the alternation theorem asserts that the unique solution
necessitates at least N+2 alternations. The choice of p in the second Remez exchange
algorithm [18] is p < N + 2. However, in the 2-D case all what is known is thatp <N +2
and typically p = N + 2 is chosen for the practical iterative algorithms [21, 22]. At each
iteration N + 2 points (frequency samples) are necessary for solving a set of N + 2 linear
equations in order to determine the error deviation & and the candidate N + 1 coefficients
a;. These equations possess a unique solution. The case when p < N +2 is called the

degeneracy case.

The next theorem is a characterization theorem for the optimal approximation [3, 4, 21].

Theorem 1.8 H{w; @) is a best approximation to Hp(w;, @;) in the Chebyshev sense if
and only if the zero vector lies in the convex hull of a critical point set associated with the

extremal points of the error function.

Proofs of theorems 1.7 and 1.8 can be found, for example, in Rice [4] and Cheney [3].
The best Chebyshev approximations are not uniquely determined. Additional criteria are
considered which separate one of the best approximations as the "best of the best” which
is called also the strict approximation [4]. The strict approximation is unique. Several
iterative techniques for the design of optimal 2-D linear phase FIR digital filters have
been developed [19, 20, 21, 22]. The methods based on linear programming used by Hu
and Rabiner[20] and improved by Fiasconaro [19] are usually very slow. Much faster
methods using single-exchange and multiple-exchange ascent algorithms have been
proposed by Kamp and Thiran [22], Hersey and Mersereau, and Harris [21]. The
mathematical details of these algorithms, which are out of the scope of this thesis, can be
found in [22, 4, 3, 21]. The ascent algorithms include a search for the local maxima of the
error function magnitude. This is much more involved in 2-D than in the 1-D case. The 2-
D function H(@:, @,) can have ridges or nearly flat edges along which the error function
may not vary much. That is why it must be carefully searched in many directions. In
contrast to the 1-D case, in the 2-D case not all the critical points are replaced in each
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iteration, and this increases the number of iterations. The 2-D iterative algorithms of the
Remez exchange type developed so far are very expensive computationally, and have not
been demonstrated to reliably converge to a comrect solution. Developing a
computationally efficient algorithm to design 2-D optimal filters remains an area for
research [10].

Some important elements of the above-mentioned techniques deserve more
attention as far as the filter design by nonuniform frequency samples is concerned. First,
in order to determine the best approximation digitally, the continuos domain of
approximation X is represernted by a finite set of discrete points K'. These are samples of
K lying on a Cartesian grid. It has been found that a grid density sufficient to sample the
highest frequency basis function ten to twenty times per period in each spatial frequency
will adequately represent the continuum [21]. Also, points of the discrete set K are
located along the edges of the transition regions. On the second place, although the Haar
condition is not satisfied in the continuos domain K, as a practical matter it is true that
N+1 characteristic vectors randomly chosen from the discrete domain K’ are nearly
always linearly independent. If for a given choice of the N+1 frequency points ®; = (@1;,
@,;) the characteristic vectors are not linearly independent, then one or more values of ®;

are perturbed slightly to remove the degeneracy.

At the end, a few words should be said about the possible arrangements of the
positive and negative sampling points in a critical point set. The positive and negative

points of the set of extremal points of an approximation H(®) to Hp(®) are, respectively

P ={o|oekK, Hw)-Hpye)=max|H)-H)o)},
oV = {o|o ek, Ho)-Hyo)=—max|H®)— Hxo) }. (1.2.17)

In the one-dimensional case, the nature of the critical point set is simply described. The
Chebyshev approximation is characterized by at least N + 2 extremal (alternating) points
of the error function. This set contains a subset of N + 1 points in the order
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where ©, ® denote positive and negative points, respectively. There is no simple

geometric identification of a critical point set in two or higher dimensions. Some
possible arrangement of positive and negative points in a critical point set for
approximation by low degree polynomials and rational functions are illustrated in Fig.
1.9, [4].

>

Figure 1.9 Some critical point sets for approximation in 2-D by polynomials or by rational functions [4]

For approximation in 2-D and higher dimensions, approximating functions which are
tensor products can be used. The critical point sets in a product space must be products in
a certain sense of critical point sets in the spaces entering into the product. Some

examples are illustrated in Fig.1.10.
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Figure 1.10 Some 2-D critical point sets formed by tensor products. The points on the dotted lines only
indicate the construction and are not part of the sets.
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Chapter 2
Rectangular Shape FIR Filter Design

In this chapter we will consider nonuniform sampling techniques for designing 2-D zero-
phase FIR filters with rectangular shape of their frequency response. In Section 2.1,
existing methods for designing 2-D FIR filters with uniform as well as with nonuniform
frequency sampling are briefly discussed. Existing symmetries in the frequency response
and impulse response, tolerance scheme specifications, and general solution to the 2-D
interpolation problem for rectangular FIR filters are discussed in Section 2.2. In Section
2.3, the arbitrary sampling technique is investigated. In Section 2.4, a sampling technique
based on exponentially distributed parallel lines is proposed and demonstrated. Several
sampling techniques based on sampling at the vertices of a nonuniformly spaced
rectangular grid are proposed in Section 2.5. These techniques employ grid lines obtained
using harmonic series, exponential functions, 1-D extremal frequencies, and Chebyshev

polynomials.

2.1 Existing Methods for 2-D Frequency Sampling FIR Filter Design .

The uniform frequency sampling technique for designing 2-D FIR filters is the most
straightforward extension of the corresponding 1-D case. It has been shown by Hu and
Rabiner [20] in 1972 how the powerful FFT can be used in the 2-D frequency sampling
design method. The method consists of taking samples at the vertices of a Cartesian grid
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in the 2-D frequency plane (@i, @,). The frequency samples H'(k;, k;) are simply the
coefficients of the 2-D DFT of the shifted desired filter Ap(n, n2), see Eq. (2.1.6). The
shift is due to the fact that the discrete Fourier transform is defined only for first-quadrant
support sequences, that cannot be zero phase. To make that more clear, let's begin with
the transfer function of the desired zero phase filter.

Hp(z,2,) = f: ih,, (n,ny)z; 2™ (2.1.1)

m=—o n2=—w©

This filter is stable and its Fourier transform exists iff

> Slro(n.m) <o 2.12)

"l ==—0 ’h:@

The desired frequency response is (2.1.1) evaluated on the unit surface ( z1=¢'*"', z;=¢/ @2y,

a’hwz i ihu "1:"2 e ™ z—jmm (2.1.3)

m=-w n2=—wo
Now, if we want to approximate this desired (ideal) filter by an FIR filter with N;xN>-
point impulse response A(ni, n2), where Ny = 2 M+1, and N> = 2 My+1, the impulse
response of the ideal filter has to be shifted by M, points in n, direction, and by M, points

in ny direction.
hb("xa”’z) =ho("1‘Mn”z"M2) (2.1.4)

Using the shifting property of the Fourier transform, the frequency response of the shifted

version is given by
Hy(@ ,@,) = e/e; ™" Hp(@ 1,0,) @.1.5)

The frequency samples can be expressed as the coefficients of an Ny xN>-point DFT of the
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shifted ideal impulse response (2.1.3).

H’(kl,kz) =H,',((o l’wZ)Lh=‘2N£‘kl-M=%k| HD(a) 1,&)2) —jaaM, -szMz . fv—"k, q—i’xh

(2.1.6)
The corresponding sequence h'(n;, nz) is obtained by the application of the inverse
discrete Fourier transform to (2.1.6), which gives

N.—1 N.-1
r(n,n,)= LYy H'(kl,kz)exp[j%k,n,)exp(ji{—”—kznz) 2.1.7)
2

At the end, the designed filter is obtained by shifting (2.1.7) back.
H(n,,ny) = i (n + My ny + M) (2.1.8)

The frequency response of the designed filter is given by

a) I» a’z i & h hy, n2 Ja’l"le;ﬂ”l"z (2'1 '9)

m=— Ml nZ——Mz

From the frequency samples, a direct interpolation formula for the frequency response can

be obtained by plugging the shifted version (2.1.8) of (2.1.7) into (2.1.9), giving

H(wy,0,)= 3 Z [r\ N, i H (k. k) exp(j—k,(nl-{»Ml)) exp(j—j\—,—kz(nz-i—Mz)]]

"l_"Ml”Z k2 0

.exp(—jo,n,)exp(—j@,n,)
(2.1.10)

Interchanging the order of summation, and summing over the n; and n,, produces
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e oM gmjon My (1 — e ioN: Xl - e—ijNz)
NN,

Nf ”f H (K, k)

. k=0 k=0 (1 — /M) gy Xl — /M) gms ‘”2)

H(w,,0,)=
Q.1.11)

Equation (2.1.11) is the basis of the 2-D FIR filter design with uniform frequency
samples. In the design of piecewise constant filters, the ideal frequency response changes
sharply from one to zero or vice versa. These sharp transitions cause large deviations in
both passbands and stopbands. This can be considerably improved by introducing
transition bands and samples in these bands. The values of these samples can be chosen
S0 as to minimize the maximum approximation error J; in the stopband(s) and 43, in the
passband(s). this is not a trivial problem and requires linear programming methods, [19,
20], which are computationally intensive. The problem can be considerably simplified,
and wili work well [10], if the sample values in the transition band(s) are obtained by
linear interpolation.

The uniform frequency sampling gives the least error control in both passbands and
stopbands. This is due to the inherent disadvantage of the method: the lack of flexibility
in choosing the frequency sample locations. For a fixed filter size the frequency samples
appear always at the same locations, regardless of the filter shape, e.g., square, circular,
fan, etc. As a consequence, the filters deviate from the desired passband shape, especially

when the support size of the impulse response is small.

The idea of 2-D FIR filter design by nonuniform frequency sampling is not new. Here
some of the most interesting approaches will be considered. The details of these
techniques will be given in the next section during the comparison with the proposed
methods. Rozwod, Therrien, and Lim [6] proposed a method for nonuniform frequency
sampling design of 2-D FIR filters in which the locations of the frequency samples are
constrained to be on parallel vertical or horizontal lines in the (@1, @,) plane. This case
has been considered in Sec. 1.1. As it has been shown there, this sampling technique
reduces the large 2-D system of linear equations to several smaller 1-D systems. Along
with the reduction of computational complexity, the method guarantees existence and
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uniqueness of a solution provided that the sampling points on the same line are distinct.
However, no efficient algorithm for the sample locations on each line and the line
locations has been offered. Angelidis [7] improved this method. Using the same
constraints on the sampling locations, he improved the computational efficiency by
introducing a Newton polynomial representation of the filter's transfer function. This
representation guarantees accurate solutions even in cases of high-order filters or when
the interpolation matrix is ill-conditioned. This technique is a special case of the corollary
given in [9], see next. Two design examples are given, one circular lowpass filter, and

one circular bandpass filter.

Zakhor and Alvstad [9] apply a number of theoretical results to the problem of
nonuniform frequency sampling design of 2-D FIR filters. Some conditions are given,
under which the interpolation problem might become singular. Specifically, these
conditions concern the sum of degrees of the curves on which the sampling points are
chosen and the number of the points on each curve, Sec. 1.2, Theorem 1.5 and Theorem
1.6. Also, a corollary is given providing an exact description of the distributions of the
frequency sampling points required for unique specification of the filter coefficients. The
corollary specifies the number of the sampling lines and their slopes, the distributions of
the sampling lines in the frequency plane, and the distributions of the samples on each
line. A recursive algorithm is proposed for computing the 2-D polynomial coefficients.
This recursive algorithm can only be applied to lines of identical slope in the (@, @)
plane. The authors design a circularly symmetric FIR filters using this approach and via
a linear least squares (LLS) approach which involves the solution of an overdetermined
system of linear equations. Actually, the recursive approach is an LLS fit. In the first
case the samples are taken on straight lines in the 2-D frequency plane with slope -1,
while in the LLS case the lines have slopes *+ 1. Common feature of the designs shown in
[9] is that samples are taken at the intersections of the sampling lines and the pass- and
stopband edges. Also, a few samples are taken in the transition regions with values
chosen linearly from 0 to 1. The shape of the designed filters deviates from circular due to
the fact that the samples are on straight lines and cannot match exactly the circular shape.
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Another feature is the huge number of sampling points, for example 534 frequency
samples for only 36 independent filter coefficients, filter size 15x15 points. The resulting

approximation error can be found in the comparison table in Chapter 3.

Mitra er al. [1], and Bagchi and Mitra [2] have generalized the definition of the DFT
and introduced the NDFT (see Sec.1.1). They showed how this framework of nonuniform
frequency sampling can be used in the design of 2-D FIR filters. Their examples include
the design of nonseparable filters with different shapes: square, circular, diamond, and
fan. It has been shown how the number of the frequency samples can be decreased using
the symmetry properties of these filters' coefficients. Using the freedom of the
nonuniform sampling, the frequency samples are placed on contour lines that match the
desired passband shape, e.g., for the design of a square-shaped filter, the samples are
taken on a set of square contours in the (@1, @) plane. The result is a closer match to the
desired shape. The sample values of the desired filter are obtained by approximating a
cross-section of the 2-D frequency response by 1-D analytic functions derived from
Chebyshev polynomials. The design is completed by solving a system of L linear
equations for the L independent filter coefficients. Though some guidelines have been
given for the choice of the number of samples and their locations, there is nothing said
about the minimum distance between the sampling contours and the maximum sample

density.

Angelidis and Diamessis [14] proposed a method for designing 1-D FIR filters from
nonuniform frequency sampling. The method is based on an interpolation polynomial of
Newton type and works well with complex values of the frequency samples. in other
words, nonlinear phase of the desired filter can be specified and supplied to the algorithm
through the sample values. The polynomial coefficients are calculated recursively and the
method is numerically well-conditioned. Based on this Newton type polynomial,
Angelidis [7] extended the method to 2-D. The frequency samples are taken in the first
quadrant of the frequency plane at the vertices of a nonuniformly spaced rectangular grid.
In this way, the 2-D problem of the filter coefficients calculation is reduced to 1-D
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formulas, like the case considered in Sec. 1.1., case B. Here, the number of arithmetic
operations is reduced because two 1-D triangular systems are solved. Since the
polynomial is of Newton type, the coefficients are permanent which means that in cases
where an additional row of frequency samples is taken, the filter coefficients are obtained
by calculating only the new coefficients and updating the old ones. As in [14], the
frequency samples can be complex numbers. i.e., the phase of the desired filter can be

specified.

Angelidis [8] further improved this method and applied it the case when the frequency
samples are taken arbitrary along vertical or horizontal lines in the (@1, @,) plane, as in
[6]. The 2-D interpolation problem is divided into several 1-D problems. As it was
described in Sec. 1.1, case A, in such an sample arrangement, the solution is guaranteed
to exist an it is unique. Again, the method is recursive, fast, and guarantees accurate
solutions even in cases of high-order filter design when the interpolation matrix is ill-
conditioned. As before, in case of new samples, the old interpolation coefficients are

updated and only the new coefficients are calculated.

2.2 Rectangular shape FIR filters: symmetry constraints

The 2-D finite impulse response (FIR) digital filters have impulse response h(n;, n2)
which is of a finite extent. Therefore, A(n, n) is always absolutely summable and FIR
filters are always stable. Among the other advantages over the infinite-extent impulse
response (TIIR) filters can be pointed out the ability of the FIR filters to attain purely real
frequency responses. Such filters are termed zero phase filters. The 2-D FIR can be
efficiently realized, for example, trough a high-speed convolution using the FFT.

Similar to 1-D digital filters, 2-D digital filters are generally specified in the frequency
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domain. The frequency response of a 2-D digital filter is periodic with period 2x in both
spatial frequencies @ and @, i.e.,

H(a, @n) = H(an+ 2n, ;) = H(wy, o + 21) for all (w;, @») 2.2.1)

Therefore, H(a:, @) would be completely specified if known in the region —nt <@ <m,

—mM<pr<T.

In many applications, for example image processing, a zero phase characteristic is
needed. A zero phase filter has tendency to preserve the shape of the signal component in
the passband region of the filter. The frequency response of zero-phase 2-D FIR filters
is a real valued function, i. e.,

H(a, an) = H* (o), ) . (2.2.2)

If in some frequency regions H(w,, @,) becomes negative, then a phase shift of - n radians
occurs. Typically, the frequency response can become negative in regions corresponding
to the stopbands, and a phase of # rad. in the stopbands has little significance. Provided
that the impulse response A(ny, n2) is real, the constraint (2.2.2) is equivalent in the space

domain to a symmetric impulse response with respect to the origin of (n;, 7;) plane:
h(ny, n2) = h(—ny, — nz) 2.2.3)

In this chapter, the design of 2-D rectangularly shaped zero phase FIR filters from
nonuniform samples in the frequency plane (@, @) is considered. Frequency response
specifications for the four basic types of 2-D filters with rectangular shape are presented
in Fig. 2.1. Since the filters are zero phase, only the magnitude specifications are given,
using a tolerance scheme, Eq.(2.2.4). The darkly shaded regions are the passband regions,

denoted as R,, and the unshaded regions, R;, correspond to the stopbands.



I-SPSIH(wlaak)lsl-i_Sp’ (wla@)eRP

(224)
I H(wb 0)2) I < 85 s (a)ls a)l) € Rs
o>
@2 (0]
13 1T
: o Z ;gg_k 5 =
o
-t T (DL -t OJIA
-
(@ (b)
passband, R,
[: transition band, R,
- :] stopband, R,
(01)]
b1
- o e WL
- -R
(©) (@
Figure 2.1

Frequency response specifications of rectangularly shaped ideal FIR filters.
(a) Lowpass filter; (b) highpass filter; (c) bandpass filter; (d) bandstop filter.

From the figure above it is clear that the rectangularly shaped filters have fourfold
(quadrant) symmetric frequency responses.

H(an, o) = H(— an, @) = H (a1, — @2) (2.2.5)
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In the space domain this constraint is equivalent to a fourfold symmetry of the impulse

response h(ni, nz) given by
h(ny, n2) = h(— ny, m) = h(ny, — n) (2.2.6)

The symmetry constraints reduce the number of the independent parameters to be
estimated during the design. Also, the number of arithmetic operations in the
implementation is reduced. This reduction is more than 3 times compared to an arbitrary
FIR filter and is greater for larger filter sizes. For instance, this factor is 3.52 for a filter of
size 15x15, and 3.75 for a 31x31-point filter. The independent points are usually chosen
in the first quadrant of the (ny, n2) plane. This is illustrated in Fig. 2.2 for a 7x7-point

filter.

Figure 2.2 Independent points of an FIR filter with a fourfold symmetry of size 7x7.
Let's consider a 2-D FIR rectangularly shaped filter with Njx/N-point impulse response
region of support. If N; and N, both are odd integers and A(ny, ny) is centered at the origin

of (n1, n2) plane, then the frequency response can be expressed as

M, M.
Ha,o)= 3 uh(m,ny)exp(—joym)exp(-jayn,) @22.7)
m=—M;, m=—M,
N, -1 N, -1
where M1=-—1£—, M, = 22 .
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To ensure a quadrant symmetric, zero-phase frequency response, the impulse response
h(n;, n;) must have the following fourfold symmetry:

W(n,,n,) = b(—ny,ny) = h(ny,—n,) (2:2.8)

Applying these symmetry conditions to Eq. (2.2.7), the following expression for H(w,

an) is obtained

M, M-
H(w,0,)= h(O, O)+ Zzh(n,,o) cos(colnl)+ ZZh(O, nz)cos(coznz)+

m=1 m=l
M, M.
£30 > an(m, ny) cos(ayn ) cos(@,m,) 229)
m=l ny=l

Mk
Mk

a(m.m)cos(rm Jeos(;n,)

mn
where a(0, 0) = h(0, 0),
a(ny, 0) = 2h(m, 0),
a(0, m) = 2h(0, nz), and
a(ny, m) = 4h(n;, n) for ny, ny #0. (2.2.10)

i
[=)

oF
I

Therefore, the number of independent coefficients is

- - —1kN, -1 1
L=1+N1 1+N2 1+(N1 1)(N, )=(Nl+)(N2+1)=(M1+1)(M2+1)
2 2 4 4
2.2.11.a)
In the case where Ny = N; = N=2M+ 1 this number is
2
JRLAL YR (2.2.11.b)

Hence, L frequency samples H(w, @) will be sufficient to solve for the NixN; filter
coefficients A(n;, ny). These samples are taken in the first quadrant of (@i, @) plane: the
desired frequency response characteristic is to be sampled at L points in the region { (@,

@): 0 <@ <m 0<ae <} Letsdenote the discrete set of interpolation points
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L
K ={ (col k’a’Zk) }k=l . The design problem becomes a problem of solving the following

system of linear equations for the coefficients a(m, m3), 0<m <M, ,0<Ssm<M;:

1 cos@, COS@; COS@Wy - C€OS M@ cos Mo, a(0,0) H(w,,,04)
1 cosw, COS®;CO8@y - COS M@, cos Mywy a(1,0) H(oy,05)
1 cos@y coS@ cos@y, - C€OSM@ cos My, ||a(M, M,) H(wy,04;)

(2.2.12)

If the coefficients a(n;, n2) are to be determined via a linear least-squares fit, then the

number of the frequency samples will be denoted Vs, and usually N;> L .

2.3 Arbitrary sampling.

Arbitrary sampling means allowing frequency samples to occur anywhere in the (@1, @)
plane. This approach involves the solution of L linear equations, where L is the number of
independent filter coefficients, Eq. (2.2.11), and is computationally intensive for filters
of high order.

The arbitrary sampling technique provides great flexibility in choosing the sampling
locations but it suffers from many theoretical and practical problems. As it has been
pointed out in Sec. 1.2, in 1-D case a set of N +1 arbitrary samples guarantees that an N
order interpolating polynomial can be placed through them. In 2-D, however, there are no
sets of N +1 universal functions which can be used for interpolation at any N +1 distinct
points. In other words the polynomials in 2-D do not form a Chebyshev system, and
therefore, bivariate polynomials are not specified in general from samples at arbitrary
locations. Solutions to the interpolation equations may not exist or be unique. This is
illustrated with the following examples. Since the filters are fourfold symmetric, the
number of the independent coefficients, and, therefore, the number of the necessary

frequency samples is L, given by (2.2.11).
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Example 2.1: A square-shape lowpass FIR filter with impulse response region of support
size 7x7 points designed by arbitrary sampling. Filter specifications:

| H(an, an) |=1 for |on| <0.2n and [@p| <027

| H (@1, @) |=0 for 04n<|w|<m or 0.4n<|amy|<m
The samples are taken arbitrarily in the first quadrant of the (@1, @) plane. Since a 7x7-
point square filter is to be designed, only 16 coefficients are independent out of 49.
Therefore, 16 frequency samples will be sufficient to solve the problem. These samples
are taken at locations shown in Fig. 2.3 (a). The magnitude response perspective and
contour plots are shown in Fig 2.3 (b), and (c), respectively. Isocontours at levels 1, 0.8,

0.4, 0.2, and 0.02 are shown.
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Figure 2.3 Example 2.1: A 7x7-point FIR filter designed using 16 arbitrary taken samples.
(a) Sample locations; (b) Perspective plot of the frequency response magnitude;
(c) Contour plot and sample locations (denoted by the dots).
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Clearly, the error in the stopband is extremely large and this design is unacceptable. In the

next example this error is decreased by increasing the size of the filter.

Example 2.2: The desired filter frequency response is specified using the same tolerance
scheme as in Example 2.1. Now the filter is of size 9x9. The number of independent
samples is L =25. Now the samples are taken more uniformly both in the passband and
stopband region, i. e., their density is approximately constant in these regions. This
improves the characteristic in the stopband but the error is still large: 8, = 0.6301, &=
0.1704. The sample locations and the resulting frequency response are shown in Fig. 2.4

(a), (b), and ().

9x8
(%)

‘ \\\ »
s‘ \\\\\\\\ \\\\\\\ \;\ "
TR
\\ 3\\\\\\“\&\\:‘\:\“
\\ N

.7
1\
)

(®) ©
Figure 2.4 Example 2.2: A 9x9-point FIR filter designed using 25 arbitrary taken samples.

(a) Sample locations; (b) Perspective plot of the frequency response magnitude;
(c) Contour plot at levels 1, 0.8, 0.4, 0.2, and 0.02 and sample locations (the dots).
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Example 2.3: This example shows the great potential of the nonuniform frequency
sampling. The same tolerance scheme as in Example 2.1 is used. Now the filter is of size
3x3 and only L = 4 samples are necessary. The sample locations and the resulting
frequency response are shown in Fig. 2.5. The deviations are §, = 0.5075 and & =
0.3510 in the pass- and stopband, respectively. The error is not relatively so large if
compared to the "standard" uniform sampling approach or to other 2-D FIR filters of the

same size. For example, the following 3x3 filter [10]

1/6
h={1/6 1/3 1/6
1/6

has deviations §, = 0.4731 and &; = 0.5544 (assumed that @)p = @&, = 0.4n and @5 =was
= 0.6m). The filter designed with the uniform sampling approach shows deviations &, =

0.7224, & = 0.3325. The results are summarized in Table 2.1.

(a)

Figure 2.5 Example 2.3: (a) Sample locations for a 3x3-point FIR filter. The resulting perspective and
contour plots are shown in Fig. 2.5, (b) and (¢) on the next page.
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Figure 2.5 (continued) (b)and (c): Example 2.3: A 3x3-point FIR filter designed using 4
nonuniformly taken samples shown in Fig. 2.5 (a)..
(d) and (e): A 3x3-point FIR filter designed using 9 uniformly taken samples.

Besides the theoretical disadvantages as possibly degenerate or ill-conditioned matrices, it
became clear from the experiments that the arbitrary sampling approach suffers from
practical difficulties too. The prescribed deviations in the passband(s) and stopband(s)
cannot be guaranteed, even worse, the design error can be inadmissibly large, as in
Example 2.1. Therefore, some restrictions to the frequency sample locations should be

imposed in order to avoid the above mentioned disadvantages.
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2.4 Rectangular Shape FIR filter design by nonuniform sampling on parallel
lines.

This is the special case (A) of the NDFT, considered in Sec. 1.1. It has been shown there
(see Egs. (1.22)-(1.26)) that the 2-D NDFT matrix is nonsingular provided the vertical
lines are distinct and the samples on each vertical line are distinct. Instead of solving one
large system of linear equations, this approach solves several smaller 1-D systems. Each
line determines one 1-D FIR filter or a slice of the 2-D filter. For a FIR filter with impulse
response of size Ny{xN; points, where Ny = 2M|+1 and N> = 2M>+1, there are M+l
vertical lines with coordinates @x . On each line are taken M,+1 samples (cf. Fig. 1.2).
For simplicity and avoiding repetition, the frequency samples are taken only in the first
quadrant of the (@),a,) plane, 0 < @, @, < n. The expression (2.2.9) for a zero phase
fourfold symmetric 2-D FIR filter evaluated at the sampling locations (@i, @2m) can be

expressed as

M, M. »
H(mlk’mzm) = Z Z h(nl,nz)e--’m‘*"le-lmzhnz
nlz—M "2=‘M2

M, M.
= 2 Z a(nl,nz)cos(nlw,k)cos(nza)m) 4.1
m=0 n=0

M,
Z g(a)lk > "2) °°5( "2‘”21:",)

n=0

for £k=0,1,...,M;, m=0,1,...,M,

where

M,
o, m,) = Za(nl’nZ)cos(nlwlk) , n=0,1,..., M. (2.4.2)

m=0

For constant k (for each k-th vertical line), we have a 1-D interpolation problem with
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M>+1 points or a system of M>+1 linear equations. For fixed value of k, Eq. (2.4.1) can be

written in matrix notation as

H, = V8, (2.4.3)

where H; is an (M;+1) x 1 column vector containing the sample values on the k-th line.

The vector g is (Mz+1) x 1 column vector and Vy is the k-th (Ms+1)x(Mz+1) matrix of

cosine terms
1 coswy, -+ cosM,wq,,
1 cosw -« cosM,w
2kl 20 241
V, = ] . . , k=0,1,..., M 24.4)
1 Cos@mypyy, - cosMymyy,,

Therefore, the vectors g; are directly computed from

g, = Vi H, (2.4.5)

and this is repeated for each value of £ k=1, ..., N.. The sequence h(n; , ny) is

calculated from (2.4.2) which in matrix form is written as
qn2 = Viap 2.4.6)

where qg; is the (Mj+1)x1 ny-th row of g(wii, n2), an: is the ny-th row of a(n, , ny), and

V) is a (M;j+1) x (M;+1) matrix

1 cosw, --- cosMw,,
1 cosw;,; --- cosMw,

Vv, =|. . . . 24.7)
1 coswy,, --- cosMw),,
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Hence,
8=Vi" qu (2.4.8)

and this is repeated for each value of n, , n, =0, 1, . . . , M3, in order to obtain the whole
sequence a(n;, nz). Then, the impulse response h(n; , n;) is obtained from the sequence
a(n, , nz) using the relations (2.2.10). The matrices V| and V> are nonsingular provided

the parallel lines and the samples are selected at non-repeated locations. The

nonsingularity is guaranteed by the fact that the set of functions {cos ka)}:io satisfy the

Haar condition [3, 4], i.e., they form a Chebyshev set, see Sec. 1.2.

The basis for the algorithm is presented by Rozwod, Therrien and Lim in [6] and
further developed by Angelidis in [7]. However, the coordinates of the parallel lines and
the sample locations on each line is an issue that needs further investigation. An arbitrary
choice of line coordinates and samples does not produce the desired results in terms of
deviations and band edges. It may even produce very unwanted results. This is illustrated

by the following example.

Example 2.4: Filter specifications:
| H(an, an) |=1 for |@n]<0.35t and |@n| <0.35x%
| H(@w1, @) | =0 for 0.65n<|aon|<m or 0.65n<|wn|<T
A. Filter size: 9x9 points.
The sample locations are shown in Fig. 2.6 (a). The samples are taken arbitrary on 5
vertical lines, 5 samples on each line. No points are taken in the transition region. The
magnitude of the filter is shown in Fig. 2.6 (b).
B. Filter size: 11x11 points.
A total of 36 samples are taken on 6 lines, 6 samples on each, Fig. 2.6 (c). The resulting
magnitude is shown on Fig. 2.6 (d).
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Figure 2. 6 Sample point locations and perspective plots of the frequency response for Example 2.4.
(a) and (b) case A, 9x9-point impulse response;
(d) and (e) case B, 11x11-point impulse response.

The above example clearly shows that for good design results some appropriate
locations of the vertical (or horizontal) lines and the samples on each line should be
found. Here, the method will be developed a little bit further. It will be shown that it is
possible to find such locations of the line and sample coordinates that the resulting filters

will be with good performance.

In the proposed in this section sampling method, the coordinates of the vertical lines
o, k=0,1, ..., M, are calculated using exponential functions. For the passband the

56



exponential function used is

fo(x)=1-e"7, x €[0, 1], (2.4.9)
and for the stopband the function used is
fi(x)=e™ -1, x €[0, 1], (2.4.10)

In both cases a is a positive constant. The functions f; and f, are sampled uniformly in

the interval [0, 1] and then the samples are linearly mapped to the @ axis, Fig. 2.7.

4 0
f(x}

(@) (®)

Figure 2.7 Nonlinear mapping of the uniform nodes in the interval [0, 1] to the passband (a) and the
stopband (b) along the @, axis.

The function f;(x) is sampled uniformly at P, points in the interval [0, 1]. The sample
values are mapped to the interval [0, @i,]. @y, is the passband edge in o direction. The

final effect is a nonlinear (exponential) mapping of the uniform nodes.
@,
oy = == f,(x:)s 2.4.11)
where x;=i/(P1—=1) for i=0,1,.,Pi—1, and fom=S(1)
Similarly, the function f;(x) is sampled uniformly at S, points and the sample locations in
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the stopband along @ axis are obtained according to the following transformation

D(1vp) = ”;—:"fx(x,-) + @, (24.12)

where x;=i/(S1—1) for i=0,1,..,8—1, and fom=f(1).

The numbers P; and S; are chosen in proportion to the passband and stopband width,
respectively, and such that P, + S} = M, = (N1—1)/2. The filter impulse response size N;x
N> can be roughly estimated in terms of the desired deviations §; , 8; , and transition band
width by [11]

—20log,g /9,9, ~

M= 2.10(w )

i=1,2 (2.4.13)

The sample point locations along each of the vertical lines are obtained using the same
exponential mappings (2.4.11) and (2.4.12), this time in ®; direction. The number of the
samples on each line in the passband region is P, and in the stopband region this number
is S», such that P, + S, = M; = (N>—1)/2. This mapping is used only for 0 < &n < w;p. For
the stopband region w;s < @ < &, M> samples are taken uniformly on each line for 0 < @,
< 7. Egs. (2.4.11) and (2.4.12) now become

@, .
@y = fop(x,), for i=0,1,..,P—1 (2.4.14)

where x;=j/(Px-1) for j=0,1,..,P~1, and fom=s(1)-

7~ @y, ._
@y en) =—E—f,(xj)+w2,, for i=0,1,..., Pi—1 2.4.15)
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where x;=j/(S—1) for j=0,1,..,5—1, and fm=f(1).

For the region &;s < on <,

__7t

for j=1,3,5,...2Ms—1, i=P,, .. M +1 (2.4.16)

The value of the frequency samples in the passband region is set to 1, and in the stopband

region it is 0.

The following example demonstrates the good quality of rectangular-shape FIR filters

designed with frequency samples determined in the above-described fashion.

Example 2.5 Square shape 2-D FIR filter with specifications

| Hy(an, an) |=1 for || <0.35n and [wp| <0.35n
| Hi(an, an) |=0 for 0.65t<|o|<m or 0.65n<|anp|<=

Impulse response size: (A) 11x11; (B) 21x21, (C) 81x81
The parameter o = 1.25. The sample locations and the resulting frequency responses are

shown in Fig. 2.8, Fig. 2.9, and Fig. 2.10 for case A, B, and C, respectively

1902
q'r ----- @ oereeesnn craepeenees . x)
q 4 [
q
9 q ) ) )
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q q [
q 4 [
0.35x8- - — 49— -4
< < [
p [ [
< s [
w
P o L D Rt = - 1
0 0.35x 0.65x

@)

Figure 2.8 Example 2.5 (A): An 11x11-point zero phase square shape FIR filter designed using the
proposed method for the frequency sample locations. (a) Sample locations.
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Figure 2.8 (continued) Example 2.5(A): (b) Frequency response perspective plot; (c) frequency response
contour plot. The maximum error is 8, = 0.0682 in the passband and &, = 0.0346 in the stopband.
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Figure 2.9 [Example 2.5 (B): a 21x21-point zero phase square shape FIR filter designed using the proposed
method for the frequency sample locations. (a) Sample locations; (b) Frequency response perspective plot; (c)
frequency response contour plot. The approximation error is 5, = 0.0012 in the passband and §; = 0.0061 in the
stopband.
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Figure 2.10 Example 2.5 (C): an 81x81-point zero phase square shape FIR filter designed using the
proposed method for the frequency sample locations. (a) Sample locations;
(b) Frequency response perspective plot; (c) frequency response contour plot.
The deviations are 5, = 2.76x107 in the passband and &; = 3.15x107 in the stopband.

In the first case, Ny =N = 11, My = Mr = 6, P, = P, = 3, and S| = S; = 3. The samples
are taken on six vertical lines. The coordinates of the first three lines are calculated

according (2.4.9). The next three lines have coordinates given by (2.4.10). For 0 < @ <

0.35w the samples are taken on each line according to (2.4.12) and (2.4.13). For 0.65n <

@; < 7 the locations are calculated using (2.4.14). A total of 36 samples is taken in the
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first quadrant of the (@, @,) plane, shown in Fig. 2.8 (a). The third example shows that
the method produces accurate results even for the design ot: high-order filters which
maintain very good shape and low peak approximation error. A total of 1681 samples are
taken on 41 vertical lines. In these examples the parameter a in Egs. (2.4.9) and (2.4.10)
was set to 1.25, a value that gives good results. Determining the optimal value of a is a

possible direction for further research.

The results are compared with the uniform sapling approach and summarized in Table

2.1
Filter Passb. edges | Stopb. edges Number Passband Stopband Algorithm
Size @ip, O WDis. D of samples dev., &, dev., & (Sampling)
3x3 0.4xn 0.6m 9 0.7224 0.3325 Uniform
4 0.5075 0.3510 Arbitrary
9%9 0.35n 0.65n 81 0.1849 0.2235 Uniform
25 0.0314 0.2464 PLE
11x11 035x 0.65n 121 0.2027 0.1496 Uniform
36 0.0682 0.0346 PLE
21x21 035 0.65n 441 0.1034 0.1115 Uniform
121 G.0012 0.0061 PLE
81x81 035w 0.65n 6561 0.0636 0.0422 Uniform
1681 0.0000276 0.0000315 PLE
Table 2.1 Performance of the proposed sampling technique on parallel lines..

PLE stands for "sampling on parallel lines using exponential coordinates”.

The above described algorithm has been implemented using Matlab. The m file
tsam2.m is used to generate (M;+1)x(M>+1) frequency samples. Input arguments are the
passband and stopband frequency edges (normalized by =) along @, and @; axes, and the
numbers M;+1 and M; +1. The function returns a vector wl containing the sample
coordinates along @) axis, a matrix w12, each column containing the sample coordinates
along @, for each vertical line, and a matrix Hk containing the corresponding sample
values. The Matlab file pnint2d.m calculates and returns the coefficients of the
designed 2-D rectangular-shape zero-phase FIR filter. Input arguments are w1, w12, and
Hk, returned by tsam2 .m. The number of arithmetic operations for an N;xN; filter is on
the order of (M +1)(Mz+1)*+ (Ma+1)(M+1)* where M;=(N;-1)/2, i = 1, 2. The number
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of operations needed to calculate the sample locations and values is small compared to
the one required for the linear system solution. The program listings are given in
Appendix A.

2.5 Samples taken on the vertices of a nonuniformly spaced rectangular grid.

This is the second special case of the NDFT where the inverse NDFT is guaranteed to
exist and it is unique. It has been shown in subsection 1.1.4 that in this case the 2-D
NDFT matrix is a Kronecker product of two Vandermonde matrices, see Eq. (1.1.37).
The corresponding determinant can be expressed as product of terms of the form
(Zon™ — z Y, i=1, 2, Eq. (1.1.38). Therefore, the nonsingularity is guaranteed by the
choice of distinct sampling points. For the purpose of FIR filter design, the sampling
points are taken at the vertices of a nonuniform rectangular grid in the (@, @) plane. The
, coordinates of the grid lines running parallel to @, axis can be chosen arbitrary, as
long as they are distinct. The same holds for the @, coordinates of the lines parallel to @,
axis, cf. Fig. 1.3. In this way the matrices of the systems of linear equations will not be
singular. The expression (2.2.9) for the frequency response of an zero phase fourfold
symmetric 2-D FIR filter evaluated at the sampling locations (@14, @,») now takes the

form

M, M,
H(0,04y) = Z Z a(nl,nz)cos(nla)lk)cos(nza)z,,,) .5.1)
m=0 n=0

for k=0,1,..., M, m=01,..,M,

Using matrix notation, this expression can be written as
H=V,aV] (2.5.2)
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where H is the (M;+1)x(Mz+1) matrix containing the frequency samples, a is the matrix
form of the (M;+1)x(M>+1) sequence a(m; , n,) related to the impulse response A(n; , n2)
by (2.2.10). V, and V; are matrices of size (M+1)(M;+1) and (Mx+1)(AMa+1),

respectively.
1 cosw,y --- cosMw,
1 cosw, -+ cosMw, )
V., =1. . . . , i=1,2. 2.5.3)
1 cosw,, --- cosMw,,

Since a set of 1-D functions {cos ka)}:i o forms a Chebyshev system, the matrices V, and

V, are nonsingular and a(n, , n2) can be determined directly from

a = Vi'A(V] )'l (2.5.4)

The impulse response of the designed filter A(n; , n) is then determined using (2.2.10).
The computational complexity is significantly reduced and it is OMP>+M>%). Several
techniques for choosing the grid line coordinates will be considered which produce good

performance filters.

2.5.1. Grid line coordinates using harmonic series.

In this case the coordinates of the nonuniform rectangular grid are calculated as partial

sums of harmonic series.

k
1 .
@Dy =b" [217-1], k= 1, ...,}),-, i=1, 2 (2.5.5)

for the passband and



k
@, =by; +b3,-[l - Z;:’Fil’ k=1, ..,S,, i=1,2 (2.5.6)
m=1

for the stopband, i = 1, 2. The total number of samples is (Pi+Si)(P2+S;) =
(M+1)(N2+1)/4 for an N;xN> -point filter. The constants by, b2, and b3 are chosen so as to
map the above functions to the passband [0, w;;,] and stopband [@s, ] in @ and @,

directions, i=1, 2.

by = 5—2— 2.5.7)
Z m¥ -1
m=1
by=mn (2.5.8)
@D — T
b3' = _L_S__)- 2.5.9)

1- ZI m#
m=1

fori=1,2.

The frequencies @ik and @y, determine the locations of the vertical and horizontal lines of
a nonuniformly spaced rectangular grid. The frequency samples are then taken at the
vertices of this grid. Their values are set to 1 in the passband, and to 0 in the stopband.
The impulse response is computed according to (2.5.4) and (2.2.10). The Matlab code for
obtaining the frequency samples using harmonic series, sharm3.m, along with the code

for computing the filter impulse response, grd2d .m, are presented in Appendix A.

The design results obtained using this nonuniform sampling technique are very similar
to the results obtained in Sec. 2.4 using exponential functions and sampling on vertical
lines. The two techniques cannot be directly compared because the results were obtained
with different values of the parameters a and £ and these values were not the optimal. In

most of the design examples #= 1.0. However, for higher order filters, e.g., 21x21-point
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and larger, this value should be decreased to 0.5 — 0.1. The results are summarized in
Table 2.2.

Example 2.6 Rectangular shape 2-D FIR filter designed from frequency samples taken at
the vertices of a nonuniform grid obtained with harmonic series.

Filter frequency edge specifications:

| Hi(@y, @) | =1 for |@]<0.25% and [@»] <0.45n

| Hi(@y, @) | =0 for 0.55n<|@il<m or 0.75n<|an|<x

The numbers P;=3, §;=5, P;=5, 5:=3, resulting in M;=8 and M>=8 grid lines in o;
direction and »; direction, respectively. The total number of samples is 64, corresponding
to a 15x15-point impulse response. The samples taken in the first quadrant of the
frequency plane with f#=1.0 are shown in Fig. 2.11(a). The resulting frequency response
is shown in Fig. 2.11 (b) and (c). The maximum deviation in the passband is &, = 0.0249
and in the stopband & = 0.0205.
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Figure 2.11 A 15x15-point square shape zero-phase FIR filter designed from frequency samples with
locations obtained using harmonic series. (a) Sampling locations;
(continued on the next page).
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Figure 2.11 (continued) A 15x15-point 2-D square shape zero phase FIR filter designed from frequency

samples with locations obtained using harmonic series, = 1.0.

(b) frequency response contour plot; (c) frequency response perspective plot.
While for low-order filters good results were obtained with £ = 1.0, for filters of higher
order filters (impulse response 21x21 points and more) this value gives large error and S
should be decreased. Values between 0.5 and 0.1 work well, the smaller values to be used
for filters of larger size and narrower transition bands. Evidently, the small values of £
decrease the "degree of nonuniformity” and the design results become similar to these

obtained with uniform sampling.

2.5.2 Grid line coordinates with exponential distribution.

This nonuniform sampling technique is very similar to that considered in Sec. 2.4. The
coordinates of the vertical grid lines @i, £=0, 1, . . ., M, are obtained in the same way
as it was done in Sec. 2.4, using formulas (2.4.9) - (2.4.11). The following exponential

functions are used:

frlx)=1-e""%, x €[0, 1], (2.5.10)
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for the passband and

fix)=e= -1, x €[0, 1], (2.5.11)
for the stopband. The coordinates are obtained using
a,
@y, = f—”f,,(x.»), (2.5.12)
pm

where x;=i/(P;-1) for i=0,1,..,Pi-1, and fom=s(1)

Similarly, the function f;(x) is sampled at S} points and the sample locations in the

stopband along @, axis are obtained according to the following transformation

Dy(ivp) = ”;S:," fi(x.)+ @y, (2.5.13)

where x;=i/(S)-1) for i=0,1,..,81-1, and fim=£(1).

The same formulas are used to obtain the grid line locations in @, direction. The
difference with the case considered in Sec. 2.4 is that the frequency samples in the region
(w15 , ®)x(0, 7) are not taken uniformly. Instead, these locations are calculated using the
same expressions (2.5.10)-(2.5.13), except that @; is used in place of @;. This sampling
method produces filters with good performance for a between 1.0 and 1.5. The resulits

are comparable with the previous two cases.

Example 2.7 Rectangular shape 2-D FIR filter designed from frequency samples taken at
the vertices of a nonuniform grid obtained with exponential functions.
Filter frequency edge specifications:

| Hy(en, an) |=1 for |an]<0.6n and [@|<0.3n
| Hy(w1, @) |=0 for 0.8x<|my|<m or 0.5t <|ap|<m

The number of lines in the pass- and stopbands is P,=8, S$1=3, P,=4, $;=6, respectively,
resulting in M;=11 and M>=10 grid lines in @, direction and @, direction, respectively.

The corresponding filter is of size 21x19 points. The sample locations are shown in Fig.
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2.12 (a), and the resulting frequency response is shown in Fig. 2.12 (b) and (c).
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Figure 2.12 A 21x19-point 2-D square shape zero phase FIR filter designed from frequency samples with
locations obtained using exponential functions, & = 1.25. (a) Sampling locations; (b) frequency response
contour plot; (c) frequency response perspective plot.

The value of « in the above example is 1.25. The resulting filter impulse response is not

square but the filter frequency response is still with zero phase. The maximum deviations

are 8, = 0.0283 for the passband, and &; = 0.0398 for the stopband. Although no samples
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are taken in the region {@s <@ ST, @ < @ < s} U {@1p < o < ay, p < & < T}
the filter behavior is good in this region. There is no need to take samples in the transition
band either. This is typical for lowpass and highpass filters designed using the sampling
technique with exponential functions. However, for bandpass and bandstop filters, as well
as for some other sampling approaches, it is necessary to take samples in the above-

mentioned frequency regions, as it will be shown in the next subsection.

The performance of some of the designed filters from frequency samples obtained by
exponential functions is presented in Table 2.2. For all designs @ = 1.25. The
performance is almost the same as that obtained with sampling on vertical lines.
However, in the case of frequency samples on a rectangular grid the computational
complexity is substantially reduced and the algorithm is much faster. The listing of
Matlab code for obtaining the frequency samples, nexp2g.m, is presented in Appendix
A. The filter impulse response is obtained using the same m file as in the previous case,

grd2d.m.

These sampling approaches, harmonic series and exponential distribution, can be used
for designing filters other than lowpass, as highpass, bandpass, and bandstop. The next

example shows a bandpass, zero phase, square shape FIR filter.

Example 2.8 A bandpass square shape, zero phase FIR filter with edge specifications:

| H(wy, an) |=1 for {0.4n<|wy| <0.6m, 0.4n<|ap] <0.67}
| Hi(an, an) |=0 for {|@n]|<0.2x, |@p| <0.2r}U{ 0.8n< |@| < t}U{ 0.8n< |an| < 7}

Filter impulse response size: 35x35 points.

The number of independent filter coefficients is 324 out of a total of 1225. That is why
the samples are taken at the vertices of a grid with M;=18 lines along the @, axis, and
M>=18 lines along the @, axis, Fig. 2.13 (a). The number of lines in the passband is P;=6
and P,=6, and in the stopbands we have §;,=6, S|2=6 and S,;=6, $22=6, respectively. The
grid line locations are calculated using functions of the type (2.5.10) and (2.5.11). The
deviations in the resulting frequency response magnitude are &;; = 0.000365, 5, = 0.0877,
and &;; = 0.000421 in the first stopband, in the passband, and in the second passband,
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respectively. As it can be seen on Fig. 2.13 (d), the maximum error in the passband
occurs near its cormers where no samples are taken. This effect can be eliminated by
taking additional rows and columns of samples passing though the transition regions and
this will be demonstrated in the next subsection.
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Figure 2.13 Example of a bandpass square shape, zero phase FIR filter of size 35x35 designed with
exponentially distributed frequency samples. (a) Sample locations; (b) impulse response;
(c) contour plot; (d) perspective plot.

71



A highpass zero phase FIR filter with the same frequency edge specification and the
same impulse response size as a given lowpass FIR can be designed using the samples
obtained for the lowpass filter by simply inverting their values, i.e., the samples with
value 1 are set to 0, and vice versa. This is also true for the design of a band stop filter
from given frequency samples for a bandpass filter (with the same frequency edge specs).
The next example shows an highpass square shape, zero phase FIR filter designed from

the sample locations used to design a lowpass filter, i. €., @5 high = @1p 10w and so on.

Example 2.9  Design of a highpass square shape FIR filter using the sample locations
and the inverted sample values used for designing a lowpass square shape filter, Fig. 2.14.
Lowpass filter frequency edge specifications:

| Hp(an, @7) |=1 for |o] <0.2x and || < 0.2

| Hp(or, @2) | =0 for 0.4n<|an| <m, any @p, 0.4n<|wp| <, any &y

Highpass filter frequency edge specifications:

| Hip(n, an) | =0 for || <0.2r and |@n| < 0.2%
| Hi(wn, @2) |=1 for 0.4n<|an| <m,any @, 0.4n<|an| <=, any o
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Figure 2.14 (a) Frequency samples for the design of a lowpass square shape filter;
(b)the inverted samples from (a) in order to design a highpass filter.
= - sample value =1; O - sample value =0.
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Figure 2.14 (continued) Example 2.9. (c) Impulse response of the lowpass and (d) of the highpass filter;
(e) frequency response contour plot of the lowpass and (f) the highpass filters;
(g) frequency response perspective plot of the lowpass and (h) the highpass filter.
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A highpass 2-D digital filter can also be obtained from a given lowpass filter using the

well-known relation

by, (my,n2)=8(ny, ny )~y (my, 1) (2.5.14a)

where hp,(n; , m2) and hp(n , ny) represent the highpass and lowpass filter impulse
responses, respectively. The same relation can be used to obtain a bandstop filter from a

bandpass filter:
hbs(n[ N nz) = 5("[ ’ nz) - hbp (nl B n2) (2.5.14b)

Both methods, inverting the sample values with following interpolation or using (2.5.14),
produce the same results. For example, the highpass filter in the last example designed
from the samples shown in Fig. 2.14 (b) and the highpass filter with the same
specifications but obtained using Eq. (2.5.14a) have the same performance in terms of
shape and approximation error. The maximum error in both designs is 5, = 0.002449 and
8s = 0.002363 for the passband region and the stopband region, respectively. More design

results are summarized in Table 2.2.

2.5.3 Nonuniform rectangular grid obtained from an 1-D optimal FIR filter.

The idea here is to use the extremal frequencies obtained with the Remez exchange
algorithm as coordinates for the grid lines in the (@1, @) plane. Using the Parks-
McClellan algorithm [18] for optimal 1-D filter design (remez.m in Matlab), the
extremal 1-D frequencies and the corresponding amplitude values at these frequencies are
found. An example is shown in Fig. 2.15, where the amplitudes at the 10 extremal

frequencies for an 1-D length-17 equiripple filter are denoted by circles.
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Figure 2.15 10 extremal points obtained with the Parks-McClelian algorithm for the design of an
equiripple 1-D digital filter of order 16 and frequency edges o, = 0.4x and o, = 0.6x.

As it was mentioned in Sec. 1.2, the extremal points are at least N + 2, where N is the
order of the interpolation polynomial obtained as a linear combination of Chebyshev

polynomials:

N
P(cos@) = by(cos kw) (2.5.15)
k=0

In the example above N = 8. If the length of a 1-D zero-phase prototype is Nip, the
number O of extremal frequencies is (at least) [13, 18]

Q =N+2=(Npt+3)/2 (2.5.16)

A subset of N +1 extremal points is sufficient to design the 1-D filter. For example, if we
want to complete the filter design from the extremal points given in Fig. 2.15, only 9
points are used. The program of McClellan-Parks-Rabiner [18], remez.m in Matlab,
retains the first N+1 points, discarding the last one at n. However, for the design of 2-D
FIR filters this extremal point at &t is used also. Otherwise the error in the non-covered
with samples area around (0, 7) and (x, 0) is large. The extremal 1-D frequencies are

placed along @ and @, axes. The frequency samples are then placed on the sides of
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squares passing through the extremal frequencies, Fig. 2.16(a). All the samples on a
particular square have the same value corresponding to the value of the 1-D extremal

point.

Example 2.10 Design of a square shape, zero phase FIR filter using the extremal
frequencies and corresponding amplitudes of the 1-D optimal filter shown in Fig. 2.15,

ap = 0.47, a5 = 0.6m.
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Figure 2.16 Example 2.10: (3) Samples at the vertices of a nonuniform grid obtained with the extremal
frequencies for the 1-D filter, @ — sample value = 145, O - samples value = +5;
(b) Contour plot of the resulting 2-D square filter; (c) perspective plot. Filter size 19x19.
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The maximum ripple of the 1-D prototype filter is 8, = 8; = & = 0.023763. The total
number of samples in the first quadrant is (N+2)’. The resulting 2-D filter is of size 19x19
and the maximum error is 8, = 0.0579 and &; = 0.0683 for the passband and stopband

regions, respectively.

The method is computationally more intensive than the previous two methods, samples
on a rectangular grid with exponential or harmonic distribution, because the Remez
exchange algorithm must be used, once for square shape filters and twice for general
rectangular shape. There is a small modification in the algorithm for the design of filters
with rectangular shape. The extremal points for two equiripple 1-D filters are used, these
of the first one are mapped along @, axis, and the points of second one -- along @, axis.
The matrix containing the sample values at the grid vertices is obtained as an outer

product of the samples of the two filters:

H=HH] (2.5.17)

where H; = [Hyo Hi1 . . Hw Hin-1)" and Hy = [Hyo Hyy . . Han Han+1]" are (1xN+2)
vectors containing the values at the extremal frequencies for the first and second 1-D
filters, respectively. Obviously, both 1-D filters must be of the same order. The sample
values are obtained using (2.5.17) because in this case the sample values lying on a given
rectangular contour cannot have the same values, Hix # Ham , for k #m, even in most of
the cases Hjy # Ha . Consequently, the 2-D filters have increased passband and stopband
peak error compared to the square shape case. The next example demonstrates this

technique.

Example 2.11 2-D rectangular shape, zero phase FIR filter design with frequency
samples at the vertices of a nonuniform rectangular grid obtained from the extremal
frequencies for two 1-D equiripple filters. Frequency edge specifications

| Hy(on, @) |=1 for |wi|<0.4n and |an| <0.2%

| H(n, a2) |=0 for 0.6n<|w|<m or 04n<|ap|<m
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The grid line coordinates along @; axis correspond to the extremal frequencies for the
design of 1-D equiripple FIR filter of order 16 (length N, = 17) and passband and
stopband edges

| H(@y, @) | =1£8 for |@] <04n and | Hi(an, an) | =18 for0.6n<|@<mn
Similarly, the coordinates along @, axis are obtained from the extremal frequencies for
the design of 1-D equiripple FIR filter of the same order 16 and passband and stopband
edges

| Hi(an, @) | =128 for |@f <0.2n and | Hi(wy, an) | =18 for04n<|af<mn
The sample values are obtained using Eq. (2.5.17). The sample locations are presented in
Fig. 2.17 (a).

2-D FIR Filler, size 19x19
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Figure 2.17 Example 2.11. (a) Sample locations; (b) Perspective plot of the resulting rectangular filter.

The impulse response of the designed filter A(n, , ny) is determined as usual, using (2.5.4)
and (2.2.10). The resulting 2-D filter is of size 19x19 points. The perspective plot of the
resulting filter frequency response is shown in Fig. 2.17 (b).

An unwanted effect has been observed with this sampling technique. When the order of
the 1-D prototype filters is relatively high, the filter magnitude in the transition band is
not anymore monotonically decreasing. Instead, significant error peaks appear in this
region. The transition band cannot be called anymore "don't care region”, as in the 1-D
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case. This problem can be solved by taking additional samples in the transition band.
Some authors have used complicated linear programming techniques [19, 20] for finding
optimal values for the transition band frequency samples in order to minimize the
deviation in both pass- and stopbands. Here it will be shown that a linear interpolation of
samples is reasonable and works well. Usually only one additional row and one additional
column of samples is sufficient to eliminate the undesired effect. The frequency sample

values on a positive slope of transition band are determined using (cf. Fig. 2.18(a))

f{(wlc) - Zlc @O,

- [I?(a)lb)—l?(wla)] + H(w,,) » @, = const (2.5.18a)
16 = %ia

for o> @». For @ < @n Eq. (2.5.18a) is used with interchanged places of @, and @,.

The frequency sample values on a negative slope of transition band are obtained from (cf.
Fig. 2.18(b))

Ao, )= Z_:Z_:%:C-[f{(ww)— fl(wla)] + H(w,,), @, = const (2.5.18b)

for w;> w,. For @) < anthe places of @ and @,. interchange in (2.5.18b).

Hi (Q)b)' H((Da)'
H®) H®)
H(®.), H(wy), : .
L : : : o,
©, @c (0 ®, Q¢ @y
(@) (®)

Figure 2.18 Frequency sample values in the transition band: (a) positive slope; (b) negative slope.

In the case when the additional samples are taken in the middle of the transition band
their values are 0.5. The next example demonstrate the effect of additional samples in the

transition band.
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Example 2.12 Square shape FIR filter design with frequency samples obtained from an

1-D equiripple filter. Frequency edge specifications:

| H(an, an) | =1 for |an|<0.2% and [ <0.2%
| H(an, @) |=0 for 04n<|an|<m or 04n<|ap|<m
Filter size: 49x49 points

The sample locations and the frequency response obtained without samples in the

transition band are shown in Fig. 2.19 (a), (c), and (e), respectively.
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Figure 2.19 Example 2.12: Additional samples in the transition band. (a) No frequency samples in the
transition band; (b) one additional row and one additional column of samples taken in the middle of the

transition band.

@ - sample value = 15;

o — sample value = 13;

e - sample value obtained with

linear interpolation of samples. (c) Frequency response contour plot of the filter designed from the samples
shown in (a); (d) Contour plot of the filter designed with the additional samples in the transition band

shown in (b).
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Filter size: 43x43 2-D FIR Filter, size 49x49
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Figure 2.19 (continued) (e) Frequency response perspective plot of the filter designed without samples in
the transition region;

(f) frequency response of the filter designed with the additional samples shown in (b).

In order to maintain the same 2-D filter size in the case of additional transition samples,
the order of the 1-D prototype was decreased from 46 to 44. The contour and perspective
plots of the filter designed with additional samples, taken according to (2.1.18), are
shown in Fig. 2.19 (d) and (f). These sample locations are presented in Fig. 2.19 (b). The
peak error in the second case is 5, =0.0014 and & = 0.0029.

All filters in this subsection were designed using the Matlab function grd2d.m which

was used in the previous cases of nonuniform rectangular grid. The frequency samples
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were taken with a written for the purpose m file, npmcc2.m. The extremal frequencies
and the corresponding amplitude values for the design of 1-D optimal filter were obtained
from a modified version pmcc.m of the Matlab version remez.m of the McClellan-
Parks-Rabiner computer program [18]. (By the way, in Matlab v.5 this modification is
not necessary because the new remez.m returns a structure containing the extremal

frequencies and the corresponding values.)

The last example with frequency samples obtained from the 1-D equiripple algorithm is
to show that this sampling approach allows the design of good quality square shape, zero
phase FIR filters.

Example 2.13 Square bandpass 2-D FIR filter design with frequency samples obtained
from the 1-D optimal filter design algorithm. Frequency edge specifications:

| Ho(an, @) |=0 for jan|<02n, |@n<02n
| Hy(eon, @2) |=1 for {0.4n <|w| <0.6%, |@y]<0.6n}U{|@n| < 0.6n, 0.4n < |an| <0.6n}
| Hy(@, @) |=0 for {0.8n<|mn|<n, any epr}U{any @1, 0.8n<|ay| <n}

The frequency samples in 1-D are obtained with the following specifications:
|Hig@") | =0 for|@'|<02r, 08n<|w|<n |Huy(@)|=1 for 04n<|w’|<0.6n.
1-D filter order = 34.
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Figure 2.20 A bandpass filter designed from samples obtained using the 1-D Remez exchange algorithm.
(a) Sample locations. Additional samples are taken in the two transition bands.

m - sample value = 145, O —sample value =15, @ — sample value obtained with interpolation;
(b) Impulse response of the resulting 2-D FIR filter; (continues)
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Figure 2.20 (continued) A bandpass filter designed from samples obtained using the 1-D Remez
exchange algorithm. (c) Contour plot of the frequency response; (d) perspective plot of the
frequency response.

The 1-D optimal filter algorithm produces 19 extremal frequencies and corresponding
frequency response values. In the middle of each transition band one additional point is
taken whose value is found by linear interpolation using the neighboring samples. Thus,
in 1-D the total number of frequency samples is 21, giving rise to 21x21 samples in the 2-

D frequency plane. That is why the resulting 2-D filter is of size 41x41 points. The

approximation error can be found in Table 2.2.

2.5.4 Sampling analytic functions based on Chebyshev polynomials.

This approach for obtaining the sample locations in the (@i, @) plane and the sample
values has been used by Bagchi and Mitra, [2]. In this subsection, the method is
demonstrated again with some minor modifications. Firstly, some modifications has been
done in the way of generating the 1-D analytic functions. Secondly, the frequency

samples in the 2-D frequency plane are taken exactly on the vertices of a nonuniform
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grid, obtained from the 1-D sample coordinates, and not as in [2], i. e., on square contours
passing through the extrema (see below). Thus, the calculation of the filter coefficients

can be done using (2.5.4), guaranteeing the existence and uniqueness of the solution.

The simplest way the Chebyshev polynomials 7,(x) of n-th order is defined is

T,(x) = cos(narccosx) Ix] <1 (2.5.19a)

X=COS® Or @ =arccosx,

and T,(x) = cosh(nacoshx), [x|>1 (2.5.19b)
The turning points of T,(x) in [-1, 1] occur at the zeros of sinnw /sinw . Together with the
endpoints x = —1 and x = 1, the number of extrema in the interval [—1, 1] is n+1. They

occur at

=, %, =cosa, =cos k=0,1,...,n (2.5.20)
n

The n zeros of Th(x) occur at

a)i=w, xi=cos(£il)—” , i=0,1,...,n-1 (2.5.21)
2n 2n

The Chebyshev polynomials are orthogonal over the above two discrete sets of points.

The desired amplitude response of a zero phase 1-D FIR filter is generated as follows:

_ | Hy(0) =h|1-6,T,(x)], lolso,
H(w)= {Hs(a)) 5, [t[s,r,(x)]w;] o, <lo|<x @3-22)

where 8p and &; are the peak ripples in the passband and stopband, respectively, @, and @
are the passband and stopband frequency edges, respectively. The constant b, is used to
linearly map the interval [—1, 1] to [~@y, @], and by, and bs are used to map the interval

[—1, 1] to [ws, T+as].
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bl = GJP
b =r—-w, (2.5.23)
by=nx

In the present work the linear transformation (2.5.22) is used, which is much simpler than
the nonlinear transformation used in [2]. Both produce similar results, as it will be shown.
The order p of the Chebyshev polynomial used in the passband depends of the required
number of P samples in this band. And the order s of the polynomial used for the
stopband is determined from S, the number of samples in the stopband. And P and S are
determined’ from the 1-D filter length N;p which can be approximately estimated [2, 13]
by choosing the lowest odd value
satisfying

~10log(5,8,) - 13

2324(, —wp) 1 (2:524)

1D =
Due to the fourfold symmetry, P and S are related to N by

P+S=N+1)2. (2.5.25)

Since P is the number of samples in [0, @] and S is the number of samples in [ a, =],
they are taken in proportion to the sizes of the passband and stopband and such that
(2.5.25) is satisfied. The samples are chosen to be taken at the extrema of the Chebyshev
polynomials in the intervals [0, 1] and [-1, 0], which correspond to the passband [0,
@p] and the stopband [ax, ], respectively. A Chebyshev polynomial of even order n has
(n+2)/2 extrema in the interval [0, 1] or [—1, 0], including the end points. Therefore, the
orders p and s of the Chebyshev polynomials used in (2.5.22) are given by
p=2P=-2
s =25-2 (2.5.26)
The choice of extrema as sample locations is motivated by the fact that in this way the

sensitivity of the frequency response to a perturbation in the sample locations is

t Note that here the notations P and S are defined in a different way than in [2].
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minimized. The proof can be found in [2]. The Parks-McClellan algorithm also uses the
extrema of the error function as points for interpolation. According to the Alternation
theorem, the use of these points for interpolation will guarantee minimization of the
maximum approximation error and equiripple behavior. The difference with the
considered in this subsection method is that the initial locations are improved with each

iteration until the optimum is found. Here, this is performed in one step.

The values of @ at which the functions (2.5.22) are sampled are mapped one to one
along ©; and ®; axes. Trough these frequencies pass the grid lines. The frequency
samples in the (@, @?) plane are taken at the vertices of this grid with equal values on
each square contour and having the value of (2.5.22) for the corresponding 1-D
frequency.

The next example illustrates this sampling technique.

Example 2.14 A lowpass square shape, zero phase FIR filter design with frequency
samples obtained by sampling the analytic functions (2.5.22). Filter specifications:

| Ho(@y, @2) |=1£0.01 for |an]<0.35% and |@n|<0.35%
| Hy(an, an) | =% 0.01 for 0.65n<|w|<m or 0.65nt <|wp| <~x.

Substituting &, = 8= 0.01, @} = 0.35%, s = 0.657 in (2.5.24) we obtain Nip = 13.35. The
lowest odd value is Njp = 15.

P + S =8 and since the passband and stopband have equal width of 0.35x,

P =4 and S = 4. The orders of the Chebyshev polynomials are

p=2P—2=6 and s =28-—2=6. Therefore,

Hy(@) =0.35n[1—0.01T4(x)] , lw|<0.35m, Ixj<1

Hy(®) = (r—0.657)[0.01 T¢(x)] + =, 065n<|lwi<m, |x|<1

These functions are presented in Fig. 2.21 (a) and (b), respectively. They are sampled at

the extrema of the corresponding intervals, denoted with circles.
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Figure 2.21 The functions H,(w), (a) and H,(w), (b) for Example 2.14. Chebyshev polynomials of 6-th
order are used. The samples at the extrema are denoted with "o".

The resulting frequency vector which is mapped onto @; and @, axes is o = [0, 0.5045
0.8906, 1.0996, 2.042, 2.251, 2.6371, n]", and the corresponding sample values are H; =
[1.01, 0.99, 1.01, 0.99, 0.01, -0.01, 0.01, -O.OI]T. Therefore, the number of grid lines in
the (@1, @) plane is 8x8, the total number of samples is 64, and the resulting 2-D FIR
filter is of size 15x15 points. The sample locations are shown in Fig. 2.22 (a). The
impulse response of the filter is shown in Fig. 2.22 (b), and the frequency response
contour and perspective plots are presented in (c) and (d), respectively. The resulting peak
passband error is §, = 0.0147 and the peak stopband error is 8 = 0.0149. As it was
mentioned above, the use of a linear mapping of the interval [-1, 1] to [—a%, @], and to
[ws, T+as] produces similar results as the more elaborated nonlinear mapping used in [2].
For example, a 9x9 filter with frequency specifications as in Example 2.14 designed
using the mapping proposed in [2] has peak errors 8, = 0.0322 and &, = 0.0471, while
the same filter designed with the mapping proposed in this work exhibits peak errors 3, =
0.0250 &, = 0.0804.

87



‘é""'”.... ........ oo..o--.?(x.x) 0.25-+ Filter Sizge: 15x15
0 o oo 3] [} \';a 0.2
-] a o (- - o ? 0 1 5 J
06559~ - —- —0-&--—-—9 0 0 [
: ; 0.14
: : 0.05-
OJSSQ— -—e--e8 éo o é 04
? - [ ] ? ? Q o ?
é L ] a ‘ 6 -3 -] L d
: ! !
9@ @l mm——- y SPUNPr-SE b
0 035z 065%
%) Fiker Size: 15x15
scheby2.m
[
H U’[[ [I[” s \\\\\'\ . R'\\'l\
e O e
"""" o Ui
iy Ilf{!fl[j[;ﬂ ,'A\‘ il !
B
g A
en ,
©) @

Figure 2.22 Example 2.14: a lowpass 15x15 filter designed by sampling 1-D analytic functions, Eq.(2.5.22)
(a) Sample locations. ® - sample value = 1£5, 0 -— sample value = £5,
(b) Impulse response of the resulting 2-D FIR filter; (c) Contour plot of the frequency
response; (d) perspective plot of the frequency response.

The design results obtained with frequency samples at the vertices of a nonuniform
rectangular grid are summarized in Table 2.2. It can be seen that the performance of
exponential distribution of samples is slightly over that of harmonic distribution. The best
performance with respect to maximum deviations in the pass- and stopbands produces the
technique using Chebyshev polynomials. However, the good results of this technique are
only for square shape filters. For rectangularly (not square) shaped filters better results
can be obtained with the exponentially and harmonically distributed frequency samples.
This is due to the fact that in the case of non-square shape the use of extrema of

Chebyshev polynomials or the extrema of 1-D optimal filter the sample values are
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determined as an outer product, which is equivalent to a separable design. A separable 2-
D square filter A(n;, n,) is designed from two 1-D filters ay(n) and hx(n), h(ni, n2) = hy(n)
hy(n) < H(wy, az) = Hi(w) Hy(®).

Filter Passb. edges | Stopb. edges | Passband Stopband | Algorithm a Matlab
Size O1p, O2p 15, W25 dev., &, dev., d, | (Sampling) | (B) | m.File
(W51, O1p2...) (©151. Q152 ) (& @_;») NY)
9x9 0.4n 0.6n 0.1912 0.2937 Uniform - fsampdr
9x9 04=n 0.6n 0.1036 0.3035 Harm . 10 | sharm3
9x9 0.35= 0.65% 0.0317 0.2462 Harm . 1.0 | sharm3
9%9 035n 0.65n 0.0314 0.2460 Exp 125 | nexp2g
9x9 0.45=n 0.75n 0.1087 0.0761 Exp 1.25 | nexp2g
9x9 045w 0.75n 0.1352 0.1133 1-D Opt 7 pmcc2
9x9 0.35= 0.65x 0.0250 0.0804 Cheb. poly - scheby2
9x9 0.35% 0.65n 0.0322 0.0471 Cheb. poly - Ref.[2]
11x11 0.35x 0.65n 02027 0.1496 Uniform - fsampdr
11x11 0.35n 0.65n 0.0586 0.0349 Harm 10 | sharm3
11x11 0.35= 0.65n 0.0582 0.0346 Exp 1.25 | nexp2g
11x11 0.45=n 0.75n 0.5075 03510 1-D Opt 9 pmcc2
11x11 0.35n 0.65n 0.0452 0.0288 Cheb. poly - scheby2
15x15 | 0.25%w, 0.45% | 0.557, 0.75% 0.1993 0.1341 Uniform - fsampdr
15x15 | 0.25w, 0.45% | 0.55%, 0.75n 0.0239 0.0205 Harm 1.0 | sharm3
15x15 | 0.257m,0.45% | 0.557,0.75n 0.0240 0.0198 Exp 1.25 | nexp2g
15x15 0.35n 0.65w 0.0147 0.0149 Cheb. poly - scheby2
19x19 0.2x 04n 0.2150 0.1171 Uniform - fsampdr
19x19 0.2x 04rn 0.0581 0.0221 Exp 1.25 | nexp2g
19x19 02n 0.4rn 0.0552 0.0460 1-D Opt 17 | npmcc2
19x19 0.4~ 0.6m 0.0354 0.0178 Exp 1.25 | nexp2g
21x21 0.35n 0.65n 0.1034 0.1115 Uniform - fsampdr
21x21 0.35=n 0.65n 0.0011 0.0063 Harm 1.0 | sharm3
21x19 0.6m, 0.3n 0.8xm, 0.5% 0.0283 0.0397 Exp 1.25 | nexp2g
29%29 0.2=n 0.4rn 0.02363 0.00245 Exp 1.25 | nexp2g
29x29H 0.2n 0.4n 0.00245 0.02363 Exp 1.25 | nexp2g |
31x31 0.45n 0.55% 0.2633 0.1155 Uniform - fsampdr
31x31 0.45=n 0.55n 0.1069 0.0548 Harm 0.1 | sharm3
31x31 0.45n 0.55n 0.0701 0.0364 Exp 0.75 | nexp2g
31x31 0.45n 0.55n 0.0951 0.0657 1-D Opt 29 | npmcc2
35x35B 0.4m, 0.6n 0.2x,0.8n 0.0876 0.000365 Exp 1.25 | nexp2b
0.4m, 0.6n 0.2x%, 0.8% 0.000421
35x35B 0.4m, 0.6n 0.2w, 0.8 0.0612 0.0225 1-D Opt 33 | npmcc2b
0.47m, 0.6n 0.2x, 0.8x 0.0272
41x41B 0.4m, 0.6n 0.2xn, 0.8 0.0104 0.0037 1-D Opt. 35 | npmcc2b
s.inTB | 04, 0.6n 0.2x, 0.8 0.0252
Table2.2 Performance comparison (caption on the next page).
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Table 2.2 Performance comparison of rectangular shape FIR filters designed with frequency
samples at the vertices of a nonuniform rectangular grid..
Uniform - uniform sampling;
Harm -- sampling using harmonic series, Sec. 2.5.1;
Exp -- sampling using exponential functions, Sec. 2.5.2;
1-D Opt - sample coordinates from extrema of 1-D optimal design; Sec. 2.5.3,
N, - 1-D prototype length;
Cheb. poly — sample coordinates from the extrema of shifted and scaled Chebyshev polynomials.
No letter after the size — lowpass filter,
H - highpass filter; B -- bandpass filter;
s. in TB -- additional samples in transition bands.

2.6 Summary

In this chapter several nonuniform sampling techniques have been proposed that are
pertinent for the design of 2-D rectangular shape, zero phase FIR filters. These techniques
can be grouped into two categories: (i) frequency sampling on parallel lines and (ii)
frequency sampling at the vertices of a nonuniform rectangular grid. A common feature
of both techniques is that the interpolation problem has a unique solution, or stated
otherwise, the NDFT matrix is nonsingular. The two approaches, parallel lines and
nonuniform grid, are very pertinent for the rectangular filter design because in these cases
the frequency sample locations "naturally” match the shape of the filter. The practice has
shown that the best results with the frequency sampling techniques are obtained when the

samples are taken on contour lines that match the desired filter shape.
The sampling techniques proposed here, exponential and harmonic distribution of

frequency samples, have shown that the flexibility of choosing the sample locations is

not the only advantage of the nonuniform sampling. Rectangular shape filters with good
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performance can be designed using simple and fast algorithms. It should be noted that
parameters « and B ( cf. Egs. (2.4.7), (2.4.8), (2.5.6)) can be optimized and then even
increased filter performance can be expected. The method based on Chebyshev
polynomials gives superior filter performance in terms of maximum passband and
stopband deviations. However, not much can be done to improve this technique, except
maybe the application of some nonlinear transformation of the region [—1, 1] to [y, @]
or to [—ax, @]. Unfortunately, there are not too much design examples of rectangular
shape filters in the literature and a comprehensive comparison of the results with other

methods for 2-D FIR filter design cannot be made.

It is an interesting fact that the design based on the extrema of 1-D optimal prototype
does not give the expected performance. This simply is due to the fact that the Alternation
theorem does not hold in 2-D and the implication is that the sample locations for the best
in Chebyshev sense design in 2-D cannot be obtained by simply extending the 1-D case to
2-D. The critical point sets in 2-D are further investigated in the next chapter dealing with
2-D circularly symmetric FIR filters.
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Chapter 3
Design of Circularly Symmetric FIR Filters

In this chapter the design of 2-D circular shape FIR filters with nonuniform frequency
sampling is considered. After a brief foreword, the existing symmetries in the frequency
response and impulse response of circular shape FIR filters are discussed in Section 3.1.
Also in this section, the generalized polynomial expression of the frequency response is
given which will be used to solve the 2-D interpolation problem. The minimum number
of frequency samples, tolerance scheme specifications, domain of approximation, and
sampling parameters are also discussed. In Section 3.2, a sampling technique for
designing circular shape FIR filters is introduced. This technique is based on exponential
distribution of circular contours on which the frequency samples are taken. A class of
sampling techniques based on extrema obtained from a 1-D optimal FIR filter design are
proposed and investigated in the next section, Section 3.3. These techniques are presented
in subsections 3.3.1 to 3.3.3, respectively. Some considerations concerning the sampling
density and the interpolation method are presented in Section 3.4. A least-squares
approach is proposed and demonstrated in this section as a way to improve the solution
accuracy. At the end, the results of the proposed sampling methods are summarized and

compared to results obtained with conventional 2-D FIR filter design methods.

The 2-D FIR filters with circular symmetry have enjoyed special interest in the past
decades. It is primarily due to the fact that the circular symmetry does not give

92



preferential treatment in any particular direction in the frequency domain. Also, the
circular symmetry is very attractive since the frequency response is isotropic for a
constant radius and that suggests easy extension of some of 1-D filter design methods to
2-D, e.g. the rotated window method [25]. In this method, a 2-D window w(n;, n2) is
obtained by rotating a 1-D analog window w,(f) and sampling the resulting 2-D analog
window w(t, £2). One of the most popular windows is the rotated Kaiser window which
will be used in this chapter for comparison. The early studies of 2-D FIR filter design
with uniform frequency sampling consider FIR filters with circuiarly symmetric
frequency response, see for example Hu and Rabiner [20] and Fiasconaro [19]. The
McClellan transformation [24] proved to be very suitable for circular FIR filter design.
This transformation was extensively studied and further developed, e.g. [Al]. It produces
high performance filters, in some restrictive cases even optimal filters [10], and this
method is usually considered in elaborated applications requiring high performance. The
iterative design techniques for optimal 2-D linear phase FIR filters [21, 22], too, are based

on filters with circular shape frequency response.

The design of circularly symmetric FIR filters is attractive because the eightfold
symmetry suggests great savings and the circular shape hints for simplifications using
rotations. On the other hand the design of circular filters with frequency samples is
challenging since a rectangular grid, even nonuniform, does not allow samples to be taken
exactly along the shape contours. The methods from the previous chapter do not produce
the desired results with circular filters in terms of regular circular shape. As it was already
mentioned, the best shape with the frequency sampling is produced when the samples are
taken along shape isocontours. However, if the samples are taken on circles, 2-D matrix
handling, as for example in Eq. (2.5.4), is impossible. Vector representations of the
frequency samples and 2-D impulse response sequence should be used instead, as in
(1.1.16). Intuitively, the problem lies into the more appropriate polar representation of
sample coordinates in this case and the Cartesian coordinate representation of the DFT ,

NDFT, and the point locations of the filter impulse responses.
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3.1 Circular shape FIR filter symmetry constraints and sampling parameters.

3.1.1 Symmetry constraints.

Before delving into 2-D circular FIR filter design with frequency samples, it is useful to
review the symmetry properties of these filters and to determine what design savings can
be realized.

In this chapter, as in Chapter 2, only zero phase 2-D filters will be considered, i.e.,
filters whose frequency response is a real function, H(@ , @;) = H*(an , @). In Sec. 2.2 it
was pointed that for real valued impulse response filters this implies symmetry about the
space domain origin, A(n; , n2) = h(—n; , —n3). It is frequently of interest to explore new
2-D design techniques using FIR filters with an eightfold (octant) symmetry. Digital
filters with circularly symmetric frequency response characteristic are filters with octal
symmetry. The frequency response is symmetric with respect to the @, axis, the @, axis,
and both diagonals @, = @1, and the @, = —w;:

H(w,,0,) = H(-®,,0,) = H(®,,- ®,) = H(®,,®,) (G.1.1)

From the symmetry properties of the Fourier transform, the eightfold symmetry in the
Fourier domain implies eightfold symmetry in the space domain.

h(n;, n,) = h(—n;,ny) =h(ny,—n,) =h(ny,n;) (3.1.2)

The only independent points of A(n,, ny) are these in the half first quadrant, as depicted in
Fig. 3.1(a).
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Figure 3.1 (a) Independent points of an 7x7-point impulse response with eightfold symmetry and square
region of support; (b) ideal region of support of an 9x9-point impulse response of a circularly
symmetric FIR filter.

In fact, the circular symmetry of the filter frequency response H(w,@,) implies circular
symmetry of the impulse response h(n;, n2) [10]. An impulse response has circular
symmetry if it is a function of m? + ny?, see below Egs. (3.1.12)-(3.1.15). The support
region of such an impulse response of size 9x9 is shown in Fig. 3.1 (b). Such support
region has advantages as smaller number of independent points than the square region of
support and, therefore, the number of arithmetic operations per output sample in the
implementation stage is smaller, too. However, the shape of support region of
independent coefficients is different for the different filter sizes, making the matrix-vector
manipulation difficult. That is why in the present work only filters with square impulse
response region of support will be considered. As the experiments showed, the

performance gain of circular impulse response support region is almost insignificant.

For a zero-phase filter with a finite-extent impulse response of size M xN>, where
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N =2M;+1, N, = 2M>+1, the transfer function is

M, M.
H(z,, z3) = Z 2 h(n,ny)z"mz™"™

m=—M m=—M,

and the corresponding frequency response is

MM
Hanop)= 2. 2 h(m,m)e@me i
m=—M, m=—M,
Since for circular symmetry
Ni=M=N, M =M, =M, N=2M+1,
and using the symmetries given by (3.1.2), this expression can be rewritten as

M M

Hw,, ;) = Z z a(n,,n,)cos Mm@, COS N,@,
n|=0 n2=0

where
a(0, 0) = h(0, 0),
a(m, 0)=2h(n, 0),
a(0, nz) =2h(0, ny),
and a(m, n2) =4h(n, ;) forn;, ny#0.

Since h(ny, ny) = h(ny, m) implies a(ny, n2) = a(nz, n), hence,

M ny
Hw, @)= D . b(nl,nz)[cos(nla)l)cos(nza)z)+cos(n2wl)cos(nla)2)]
m=0 n=0
where
b(ny, ny) = a(ny, n2) for m=#ny,
and b(n;, n)=0.5a(n;,n;) for m=ny.

With further simplification of the notations, (3.1.5) can be expressed as

L

H(w,, @,) = (k)¢ (@), @;)
k=1

where

6, (@, ®,) = cos(w,n,)cos(@,n,) + cos(@,n,)cos(@,n)

(3.13)

(3.1.4)

(3.1.4a)

(3.1.5)

(3.1.5a)
(3.1.5b)
(3.1.5¢)
(3.1.5d)

(3.1.6)

(3.1.6a)

(3.1.7)

(3.1.8)
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and

b(k) = b(ny, n,) for k= 'L('%f—ll+ ny +1 (.1.9)

The number of independent filter coefficients, therefore, is

(N+1)/2
_(M+1Y(M+2) (N+D(N+3) _ Z ; (3.1.10)

2 8 =

L

Hence, L frequency sampling points should be sufficient to determine the coefficients
b(k), respectively a(n;, n;) and h(m;, nz). The size of the inverse problem is reduced by
factor of 8N?*/(N+1)(N+3), which is between 4 and 6.5 for low and medium order filters.

Cl)z‘
T

- Fahd

-

Figure 3.2 Approximation domain.

Since the frequency response (3.1.7) is symmetric with respect to both axes and both
diagonals of the frequency plane, it will be sufficient to consider for sampling only the

half of the first quadrant, K = {(@;, @): 0 < an < 7; 0 < @, < @1}, the shaded region in
Fig. 3.2. In general, the samples can appear anywhere in this continuous domain. For

now we shall consider that the set of sampling points is {®y, ..., @k, -.. , O}, i. €, L

sampling points, where @ = (@, @x). The basis functions o(®) = @@, @) can be

defined as in (1.2.11) but in the case of eightfold symmetry it is more convenient to use
the form (3.1.8) above (or as suggested by (3.1.5)). The characteristic vector, associated

with a particular point @ is the vector
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<D(‘°k)=[¢1(‘°k) ¢z(‘9k) ¢L(mk)]r' (3.1.10.a)

The existence and uniqueness of solution to the approximation problem depends on the
linear independence of these L characteristic vectors. In Sec. 2.1 it has been mentioned
that L characteristic vectors randomly chosen from KX, but for nonoverlapping ®; , are
almost always independent. Although this condition cannot be guaranteed, the practice
shows that this is the case. Much more serious issue is the ill-conditioning, which will be

considered later.

The frequency response specifications of zero phase circular FIR filters are given using
similar tolerance scheme as for rectangular filters. Tolerance schemes for the four basic
types circular filters are given in Fig. 3.3 and Fig. 3.4. In this text the radius of the
passband boundary is denoted by @, and the stopband radius by ax. To avoid ambiguity,
the 1-D frequency edges are denoted by @' and @', respectively.

1-8,<|H(an, i) [<1+8,, (on, )€ F
| H(en, @») | < 5, (an, a») € F

&> L 3
2 w2

passband, &%,

[[] wansition band, %

[ stopband, %
@ ®)

Figure 3.3 2-D circular shape filter specifications using a tolerance scheme for
(a) lowpass and (b) highpass filters.
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1-§<|H(an, @) [<1+8;,, (o, a)e FH
| H(an, @) | < &, (o, ) € F

(@) (®)

Figure 3.4  2-D circular filter specifications using a tolerance scheme for
(a) bandpass and (b) bandstop filters.

It has been shown [10, 11] that the impulse response corresponding to the ideal lowpass

circular frequency response

Hy(opos) =11 Veit@isec @3.1.11)
i} 0, Jol+ol>0, and |o||o|<7

is given by

hh,(nl,nz):—z——?c—-—z-.ll(a)c,/nlz +n§) (3.1.12)

mnt +nj
where J is the first order Bessel function of the first kind and ex is the cutoff frequency.
The impulse response of the ideal circular highpass filter is obtained by simply
subtracting (3.1.12) from the impulse,

By (ny,y) = 8(my, ny) = hyy (my, my) (3.1.13)
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The expressions for a bandpass and bandstop filters are similar:

@ @
hy, (nl,n2)=——CL—Jl(a)cz nt +n§)———a———J (a) nt +n2) (3.1.14)
g 27r\/ nt +n? 27z\/ n? + n} AN

hss(m,n2) = 8(ny, )= by, (my.my) (.1.15)

It is worth to note that the frequency response given by (3.1.5) ( and (3.1.8) ) can be
expressed using Chebyshev polynomials. Introducing the notation x = coswy, y = cosay,
|x[<1,|y|<1, (3.1.5) may be written as

H(w»,, 0;) = i f: a(n,m,)T, (x)T, (») (3.1.16)

n=0 n,=0
where Ti(o) is the k-th Chebyshev polynomial. Using the trigonometric identity
cos(n+1)@ + cos(n-1)w = 2cosw coshw

and To(x) = 1, Ti(x) =x, Eg. (3.1.16) can be written as

M M
H@, @)= > D, c(n,n)x"y™ (3.1.17)

m=0 m=0
This expression of the frequency response is convenient to check the conditions of

Theorem 1.5, Sec. 1.2.

3.1.2 Sampling Parameters

It was already mentioned that the practice has best results in terms of shape regularity are
obtained when the frequency samples are lie on contours that mach the desired filter

shape. Such is the case with the circularly symmetric filters, too. However, while the
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shape in the region R, : \Jo? + @3 <7 is well described by circular contours, this is not

necessarily true for the corner region Rc : {\/mlz + o3 >z}h{|w1|sz, |w,| < 7r} i

Taking into account the symmetries considered above, in this text R, and Rc will be
limited to one half of the first quadrant of the frequency plane, as shown in the figure

below.

-7t

Figure 3.5 Definition of the regions R, and Rc.

The sampling parameters to be determined are:
1) The number of contours and their distribution in R, ;
2) the number of samples on each contour and the spacing between them;
3) the sample values;
4) the shape and the locations of contours in the region Rc
5) the sample density on each contour and sample values in this region

Now, the design problem of a 2-D circular shape, zero phase FIR filter with nonuniform

frequency samples can be stated.

Problem Definition: Determine parameters 1) - 5) such that the design result is a circular

filter with small passband and stopband deviations (nearly equiripple behavior, if
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possible) and shape close to the ideal circular shape.

From bivariate interpolation point of view the problem can be defined as: Given a set of

points (@, ®x), k =1, .., L, and a set of corresponding values at these
points A (@4, @,;), find the coefficients b(m, n;), Eq. (1.3.6) of the interpolating

function H(@,,®,) such that the interpolation conditions
H(wlk,G)Zk)= I?D(wlk’Q)Zk) ’ for k= 1, ceney L,

are satisfied.

Once the parameters 1) - 5) have been determined, the filter coefficients can be found by
evaluating Eq. (3.1.6) at each sampling point and solving the resulting system of linear
equations. This can be expressed in matrix form as

-

H=Cb (3.1.18)

where H is an (Lx1) vector containing the sample values, b is an (Lx1) vector

representing the sequence &( k ) given by (3.1.9). C is an (LxL) matrix having the form

2 Ccosm; +COS@, 2COS®;; COS@W, COS2@y; +COS2@,y -+ 2cos Mim, cos Mrm,,

2 COSW;, +COS@5 2COSW|,COSWy COS2@ ; +COS2@Wy -+ 2c08s M@, cos Mo 5,

2 cOSw,;, +COS@W,; COS@W; COS@,; COS2wy, +C0s2w,; -+ 2cos M, cos My,
(3.1.19)

Obviously, the solution depends on the nonsingularity and the conditioning of C. The

sequence b(k) is found from

b=C'H (3.1.20)

Then the impulse response A(n;, n2) can be determined using (3.1.6a) and (3.1.5).
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The investigation of the sampling parameters 1) - 5) will begin by employing some of
the sampling techniques used in the previous chapter and analyzing the resuits. In all of
the design examples the frequency samples of the desired filter frequency response are
taken on circular contours in the region R, . The shape of contours in the corner region Rc

has been varied in a search of optimal shape.

3.2 Exponential distribution of the circular contours.

The design examples will begin as usual with the design of lowpass filters. The
frequency samples in the region R, lie on circular contours. The radii of these circles are
the scaled and shifted samples of exponential functions similar to those used in Sec. 2.4
and 2.5. Namely, the radius of the k-th circle r,, £=0, 1, ..., P+S, is calculated as
follows. For the passband the exponential function used is

fo(x)=1-e"%, xe[0,1], (3.2.1)
and for the stopband the function used is
fi(x)=e™ -1, xe[0,1], (32.2)

In both cases « is a positive constant. The functions f; and f, are sampled uniformly in
the interval [0, 1]. The function f,(x) is sampled uniformly at P points in the interval [0,
1]. The scaled sample values are then used as radii in the interval [0, @] where @) is the

filter passband edge.

\l&

1o(x:)s (32.3)
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where x;=i/(P-1) for i=0,1,..,P-=1, and fom=sf(1) (3.2.3a)

Similarly, the function f(x) is sampled uniformly at S points and the radii in the stopband
are obtained according to the following transformation

T-®
TisP) = —fm—’f,(x,-) +o,, (3.2.4)
where x;=i/(S-1) for i=0,1,..,5—1, and fm=/f(1). (3.2.4a)

The numbers P and S are chosen in proportion to the passband and stopband width,
respectively, and such that P + S is approximately (N+1)/2, and NxN is the filter impulse
response size. The value of the frequency samples in the passband region is set to 1, and

in the stopband region it is 0.

Example 3.1 A 2-D lowpass circular shape zero phase FIR filter. Edge specifications:

| Ho(w, @) |=1 for o>+ @3* <(0.4n)
| Hy(an, @) |=0 for (0.6n)<w+wl’sn

Filter size: 21x21 points.

Only 66 of the 441 filter coefficients are independent and 66 samples are taken in the half
of the first quadrant of the frequency plane, Fig. 3.6(a). The samples in the region R, lie
on circular contours with radii according to (3.2.3) and (3.2.4) for the passband and
stopband, respectively. A total of 55 samples are taken in this region. The rest 11 samples
are taken in R- and lie on straight lines with slope -1. The frequency response contour
and perspective plots of the designed filter are shown in Fig. 3.6 (c) and (d), respectively.
The peak error in the passband is 5, = 0.0053, and in the stopband &; = 0.0782.
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Figure 3.6 A 21x21-point circularly shaped filter designed with frequency samples taken on circular
contours with exponential distribution in the passband and stopband,
(). The samples in R lie on straight lines. (b) Impulse response of the designed filter;
(c) frequency response contour plot; (d) perspective plot.

The samples on each circle are equidistant but with unequal angular spacing between two
different circles. The sampling density in the frequency domain agrees with some
theoretical consideration which will be given later. In Fig. 3.6 (c) the samples having

value of unity are denoted with e, and these with value zero with o.

As a practical matter of fact, the sample uniformity on each circle deteriorate the

condition number of matrix (3.1.19). This effect has been alleviated by taking N, more
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samples than necessary to design an NxN filter and then removing randomly N, samples
in the region Rc . A drawback of this sampling technique is the approximately high ill-

conditioning caused mostly by the sample arrangement in Rc.

3.3 Circular contours passing through the extrema of 1-D optimal filter.

In the region R, : {,/mf + o3 s::} Nn{0<w, <7 0w, <wm,} the samples lic on

circular contours. Each circular contour is centered at the origin of the (@ | , @ 2) plane
and has a radius equal to the corresponding 1-D extremal frequency obtained from the
algorithm for optimal 1-D digital filter design. The sample on each contour have the same
values and are equal to the corresponding 1-D samples used for the optimal filter design
(the Parks-McClellan algorithm). In the corner region Rc the samples have been taken
using different approaches as extrapolation of the 1-D extremal frequencies to nv2,
samples lying on straight lines, scaling the 1-D frequency axis, and samples on hyperbolic
contours, etc. Only some of these techniques deserve illustration here since they produce

relatively good results in terms of small peak approximation error and shape regularity..

3.3.1 No samples in the corner region Rc

In some cases it is possible to design a circular shape FIR filter of good performance from
samples taken only in the region Ry : {\/a)f + o2 .<_7r}r\ {Os o, <7 05w, Sw,} .

This technique can be employed for the design of filters of relatively low order (filter size
up to 15x15 points) and relatively wide transition band ( 0.2r or wider). The radii of the
circles on which the frequency samples are taken are equal to the extremal frequencies @,

obtained with the Remez exchange algorithm, i.e., re = @'%, k= 1, ..., O, where Q is the
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number of 1-D extremal frequencies. The technique will be illustrated with the following

examples.

Example 3.2 A lowpass circularly shaped zero phase FIR filter with the following
frequency edge specifications:

| H(a, an) |=1 for @*+ @3> <(0.357)
| Han, @2) | =0 for (0.657) <o ’+wlsn®

Filter size: 15x15 points.

A circularly shaped filter of this size has 36 independent coefficients out of 225.
Therefore, to solve for those coefficients 36 frequency samples will be sufficient. We
have, see Egs. (3.1.4a) and (3.1.10), N=15, M= 8, L=36. A 1-D optimal design that
produces Q=8 extremal frequencies is the design of a length Nip = 13 equiripple filter, cf.
Eq. (2.5.16). The Parks-McClellan algorithm with specifications Nip=13, @,=0.35m,
w=0.65n, weighting = [1, 1], produces 8 frequencies which are

ax=[0 0.1607r 0.2946n 0.35% 0.65t 0.7125n 0.8464n 7" =r

The samples in the 2-D frequency plane are taken on circles with in the above radii and

centered at the origin. Only the first octant is covered, as shown in Fig. 3.7 (a).

0 0 35x 0.65z

(a)

Figure 3.7 A 15x15-point zero phase FIR filter designed with samples taken only in R,
(a) Sampling locations; (b) impulse response; (continued on the next page)
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Figure 3.7 (continued) A 15x15-point zero phase FIR filter designed with samples taken only in R,.
(c) frequency response contour plot; (d) frequency response magnitude perspective plot.

The number of samples on each circle is k, where k is the circle number, =1, ..., O .
This is a good choice since in this way the requirement of Eq. (3.1.10) is satisfied. The
positive and negative samples are denoted by o and e, respectively, see (1.2.14). The 1-D
ripple obtained with this design is 8;p = 0.0173, both for the passband and stopband,
naturally. The contour plot and perspective plot of the frequency response are shown in
Fig. 3.7 (c) and (d), respectively. The peak error of the designed filter is §;=0.0174 in the
passband, and 8= 0.0787 in the stopband. The passband peak error is almost the same as
the ripple of the 1-D optimal filter. The maximum error in the stopband is at the corner

(n, 7). Several design results using the same technique are presented in Table 3.1.

Filter size Nip # of Samples @p o 8ip 35, S,
11x11 9 21 03n 0.7n 0.0257 0.0258 0.0433
13x13 11 28 0.25n 045% 0.0642 0.0642 0.0726
15x15 13 36 035z 0.65® 0.0173 0.0174 0.0787
15x15 13 36 0.38x 0.62n 0.0332 0.0332 0.0768
19x19 17 55 03n 0.6n 0.0037 0.0037 0.2275
23x23 19 78 0.38=n 0.62rx 0.0056 0.0057 6.4339

Table 3.1 Performance of the technique with no samples in Rc.
Nip — 1-D prototype length; @, o — radii of the 2-D passband, stopband regions;
8ip — 1-D ripple. 85, 8; — 2-D passband and stopband deviations.
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As it can be seen from the table, the maximum error in the stopband increases rapidly for
filter sizes larger than 15x15 points. For the last item in the table, a 23x23-point filter this
error is unacceptably large, 8 = 6.4339. This peak error occurs in the corner region Rc
where no samples were taken. The next design example shows this unwanted effect of

increasing the peak stopband error in the Rc region with the increase of sample density.

Example 3.3 A lowpass circularly shaped zero phase FIR filter with the following
frequency edge specifications:

| Hy(an, an)|=1 for @ 2+ @4 <(0.3n)
| H(wr, @) |=0 for (0.6n) <o ’+wi<n

Filter size: 19x19 points.

The 1-D optimal prototype whose 10 extremal frequencies and corresponding amplitude
values were used has length Njp = 17 points. Its maximum ripple is 8;p = 0.0037. The 2-
D sample arrangement is the same as in the previous example and it is shown in Fig. 3.7
(a). A total of 55 samples were taken, necessary to solve for the 55 independent filter

points.

@) ®)

Figure 3.8 A 19x19-point zero phase FIR filter designed with 55 samples taken only in R,.
1-D filter length Nip= 17. (a) Sampling locations; (b) impulse response, 19x19;
On the next page: (c) frequency response contour plot;
(d) frequency response magnitude perspective plot.
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Figure 3.8 (continued)

Now the sampling density is increased, we have 19 samples more in the same area Ry.
This increases considerably the error in the corner region, as it can be seen on the
perspective plot, Fig. 3.7 (d). The maximum deviation in the stopband now is &= 0.2275.
However, the passband maintains almost equiripple behavior and the low ripple of the 1-
D prototype, namely 8, = 8,0 = 0.0037.

It is interesting fact that for each filter size increase, e.g. from 15x15 to 17x17, the
condition number of matrix C, Eq. (3.1.19), increases approximately by factor of 10. In

other words, the ill-conditioning rapidly increases.

3.3.2 Scaling the 1-D frequency axis.

This technique uses a very simple trick in order to cover with samples the corner region
Rc: {,/a)f + o3 >7r} Nn{0<w, <7, 0<w, <w}. The 1-D extremal frequencies are

obtained by supplying to the Remez exchange algorithm frequency edge specifications of
the desired filter which are compressed by factor of 1/\/5 . The obtained extremal
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frequencies are then expanded by factor of V2 . In this way the interval [0, x] of the 1-D
frequency axis is mapped into the diagonal [(0,0), (=,n)] of the (@ 1, @ ) plane. This can
be viewed as scaling the whole (@ ;, @ 2) plane. Now the circular contours passing
through the extremal frequencies reach the point (=, %). Of course, this point is not always
covered since the point at = in 1-D is not always a member of the extremal point set. The

following two examples illustrate this sampling technique.

Example 3.4 A lowpass circularly shaped zero phase FIR filter with
unity gain in the passband region %,: @ 2+ @ 2% <(0.427),
zero gain in the stopband region F%: 0.58nY <o+ wl<n’
Impulse response region of support:  21x21 points.
For this design remez was called with the following specifications: @), = (0.42rn)/ V2,
@, = 0.58n/\/2, filter order = 20. With these specifications the resulting 1-D ripple is

8,0=0.024. The frequency samples in the (@ |, @ ;) plane were taken as before: on each
circle the samples are at equal angles with respect to the origin and with equal values
equal to the 1-D amplitude of the corresponding extremal frequency. A total of 66
samples were taken in the domain of approximation in order to solve for the 66
independent impulse response points. These samples are shown in Fig. 3.9 (a). As before,
the positive and negative samples are denoted by o and e, respectively. The mesh plot of
the resulting impulse response is presented in Fig. 3.9 (b). The frequency response
magnitude contour plot and perspective plot are shown in Fig. 3.9 (¢) and (d),
respectively. The maximum deviation in the passband of the 2-D filter is 3, = 0.0256, and
the stopband deviation is 8; = 0.0794. Obviously, the passband nearly maintains the low
ripple of the 1-D prototype filter. The problem is in the stopband where the deviation is

increased. The maximum error in the stopband is at the point (r, 0.7812x).
As a matter of fact, with this sampling technique there is no significant improvement of

the conditioning of matrix C. However, now it is possible to design filters with narrower

transition bands and with better deviation performance.
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Figure 3.9 Design Example 3.4. A 21x21-point filter designed by scaling the 1-D extremal frequencies.
(a) Frequency samples; (b) impulse response; (c) frequency response magnitude contour plot;
(d) frequency response magnitude perspective plot.

Naturally, this technique can be also used for the design of highpass, bandpass, and
bandstop 2-D circularly shaped, zero phase digital FIR filters. This is done by simply
using the corresponding extremal points for the design of 1-D equiripple highpass,
bandpass, and bandstop filters, respectively. Alternatively, a highpass or bandstop filter
can be obtained from a lowpass or bandpass filter using the relations (3.1.13) and
(3.1.15), respectively. The next example demonstrates the design of a bandpass filter.

Example 3.5 A bandpass circular shaped FIR filter with specifications:
unity gain in the passband region F4;: (0.3?!)2 < w2+ w?<(0.67),

zerogammthestopbandreglon.% 0<a)| +a)2 <(0. 111:) u(081t) <a;1 + @y’ < 2<n?
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Impulse response region of support: 21x21 points.

The 1-D extremal frequencies were obtained from the modified Matlab program
remez.m supplied with the above frequency edge specifications translated to 1-D and
filter order 20. For a 21x21-point filter 66 frequency samples are necessary to be taken.
The locations of these samples are shown in Fig. 3.10 (a). The impulse response and
frequency response magnitude contour and perspective plots of the designed filter are
shown in Fig. 3.10 (b), (c), and (d), respectively.
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Figure 3.10 Design Example 3.5. A 21x21-point bandpass filter designed by scaling the 1-D extremal
frequencies.  (a) Frequency samples; (b) impulse response; (c) frequency response
magnitude contour plot; (d) frequency response magnitude perspective plot.
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The resulting 2-D zero phase bandpass FIR filter frequency response magnitude exhibits
deviations &, = 0.0296, §, = 0.0299, and &, = 0.0552 in the first stopband region, in the
passband, and in the second stopband, respectively. As before, the maximum error is in
the corner region Rc, which shows that the sampling locations and values in the corner
are not the optimal. In other words, the guess for the frequency response behavior in this
region is not exact. Further improvement of the sampling arrangement, producing filters

with better performance in terms of deviations, is proposed in the next subsection.

3.3.3 Hyperbolic contours in the region Rc.

This technique has been motivated by the fact that the frequency response contours of a
filter designed with samples taken only in R, , Fig. 3.10 (a), "naturally” bend in the shape
of hyperbolas in the corner region Rc, Fig. 3.6 (b) and (c). This is the case even if a small

number of samples is taken in this region.
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Figure 3.11 Hyperbolic behavor in the region Rc when
the frequency samples are taken only in Ry .

(a) Sample locations; (b) frequency response
perspective plot near the corner (x, ©); (c) contour plot.
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The hyperbolic contours on which the samples will be taken have the same orientation as
the frequency response contours in Fig. 3.6 (c), i.e., these are hyperbolas rotated by /4.
The density of the samples in the corner region Rc is chosen to be approximately the same
as in R,. The frequency samples in R, are taken as described in Sec. 3.3.1, on circular
contours with radii equal to the 1-D extremal frequencies. The effectiveness of this

sampling technique will be demonstrated with several design examples.

Example 3.6 A 2-D lowpass circularly shaped zero-phase FIR filter with impulse
response of size 23x23 points, and with the following frequency edges
passband region F,: 0 < @ 2+ @2% <(0.38n)°%,
stopband region Z: 0621 <w’+w itsn?

The 1-D extremal frequencies were obtained from the modified Matlab program
remez.m supplied with the above frequency edge specifications translated to 1-D, i.e.,
@,'=0.38n, @;'=0.62%, and 1-D filter order = 20. A 23x23-point eightfold symmetric
filter has 78 independent impulse response points. In order to find them, 78 samples of
the desired frequency response amplitude were taken in the first octant of the (@1, @)
plane, Fig. 3.12 (a). As in the previous subsections, the error-positive samples are denoted
by e , and the positive points by o. The samples on each contour have the value of the
corresponding 1-D extremal sample. The pattern is continued in the corner region R, i.e.,
the samples alternate in sign on successive contours and have magnitude equal to the 1-D
ripple. The distance between the hyperbolic contours is taken to be equal to the average
distance between the 1-D extremal frequencies in the last band, the stopband in this
example. The perspective plot of the designed filter frequency response magnitude is
shown in Fig. 3.12 (d). The equiripple behavior and the low 1-D ripple are inherited in
the passband region of the designed filter; §;p = 0.0056492, 5,= 0.0056607. The error in
the stopband is about 3 times larger, 8; = 0.017425. This can be somehow corrected by
introducing a weighting function in the Remez exchange algorithm and thus making the
error minimization more important in the 1-D stopband. In turn, the error in the 2-D filter

stopband region will also be decreased.
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Figure 3.12 Example 3.6: A 23x23-point circular filter designed from frequency samples in the corner
region taken on hyperbolic contours. The extremal frequencies and the corresponding amplitude values of
1-D length-21 optimal filter were used. (a) Sample locations; (b) impulse response of the designed filter; (c)
and (d) frequency response magnitude contour and perspective plots, respectively.

Using the modified remez.m with a weight vector w = [0.5, 1], the error in the 2-D
design was somehow balanced: 8, = 0.007623 in the passband region and &; = 0.007445
in the stopband region, respectively. The method allows other types of filters, as
passband, stopband, and highpass filters, to be designed. This is done by simply using the
extremal points of the corresponding type 1-D optimal filter (again using the modified

remez.m).

Example 3.7 A 2-D circularly shaped bandstop zero phase FIR filter with impulse
response of size 25x25 points, and with the following frequency edges
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passband region Z,:0<w 2+ ®2<(02n)Yand (081’ <0’ +wi<n®

stopband region F: (0.4%)’ < @ 1% + @ 2* < (0.6m)°.
The 1-D extremal frequencies and corresponding amplitudes were obtained with filter
order of 22 and the above frequency specifications translated to 1-D, i.e.,
wp1 =027, @g =041, @y =0.6n, and @y = 0.8n. The locations of 91 frequency
samples, necessary to find the 91 independent filter points, are shown in Fig. 3.13 (a).
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Figure 3.13 Example 3.7: A 25x25-point bandstop FIR filter designed from frequency samples in the
corner region taken on hyperbolic contours. (a) Sample locations; (b) impulse response of the designed
filter; (c) and (d) frequency response magnitude contour and perspective plots, respectively.

The 1-D ripple of an order-22 optimal filter without weighting is 8;p = 0.011513. The
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resulting deviations of the frequency response magnitude of the designed 2-D filter are

8p1 = 0.011557, & = 0.011611, and &, = 0.028292 in the first passband, the stopband,
and in the second passband, respectively. This error can be compared to the error that
return bandstop filters designed with the window method and frequency transformation
method. The results are given in Table 3.2. The both filters have the same region of
support, 25x25, and the input frequency edges were the same as the filter designed in
Example 3.7. For this example and in the following examples the shape parameter in the
rotated Kaiser window method was chosen such that the minimum possible passband and
stopband deviations were obtained for the given filter size. As for the transformation
method, the bandstop filter was designed using the original (McClellan) transformation

-

cosw = - Y2 + Vacosawy + Vacosan + /2COS@1COS@. (G3.1)

Since the 2-D filter should be of size 25x25 and the transformation sequence is 3x3, the
1-D optimal prototype has length Nip = 25. As it can be seen from the table, the
performance of the bandstop filter designed with the proposed method for nonuniform
frequency sampling is better in the first passband compared to the first passband of the
filter designed with the window method. The roles are interchanged in the second
passband. The transformation method gives much better deviation performance and this is
natural since a higher order 1-D prototype was used with smaller ripple, 6,p=0.004045.
However, the transformation method filter failed with the second passband edge and that
is why the deviation in the second passband is so large, 8,>= 0.242. The true second
passband edge is at radius ® = 0.9x instead at ® = 0.8%. And if we want the comparison to
be more fair, the transformation filter should be designed with the 1-D prototype used for
the frequency sampling method. In this case the deviations of both filters are very similar,

yet the transformation filter fails again with the second passband edge.

The shape performance of the 2-D FIR filters designed with the proposed nonuniform
frequency sampling method should not be underestimated either. Fig. 3.14 shows the
contour plots of three filters designed with the same specifications:

passband region R,: 0<w 2+ w22 <(0.75%)
stopband region Z: (0.95n’ <@’ + @<’
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impulse response region of support size: 23x23 points.
The first frequency response contour plot, Fig. 3.14 (a), is the filter designed using the
rotated Kaiser window method. The second plot, (b), represents the filter designed with
the frequency transformation method, and the third one, (c), is the contour plot of the
filter designed with the method under consideration. The dotted circle is an ideal circle
drawn with radius 0.85=, the cutoff, and it is not a part of the contours. As expected, the
window method gives the most regular circular shape. The shape obtained with the
nonuniform frequency sampling method is not better but it is pretty much similar. By the
way, the shape regularity can also be seen in the contour plots of all the previous

examples in this section.
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Figure 3.14 Shape performance comparison of
circularly shaped filters designed with (a) the
window method; (b) the frequency transformation
method; (c) the proposed method with nonuniform
frequency samples. The black dots represent an
ideal circle with raduis the cutoff frequency, 0.85x.
(0.857)* = a0’ + &
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The last example in this section is to show the limitations of the proposed technique for
design of circularly shaped zero phase FIR filters with nonuniform frequency sampling.
Although the approximation error is zero at the sampling points, it increases unacceptably
between them in cases of very sharp transition bands and/or the filter order is relatively

high and, therefore, the number of samples in the domain of approximation is large.

Example 3.8 A lowpass circularly shaped zero phase FIR filter with impulse response
support size 25x25 points;

passband region F,: 0< @ >+ @2° <(0.48n);

stopband region #&: (0.52n)’ <o *+wl<n’.

The transition band now is only 0.04x. The 1-D extremal frequencies and corresponding
amplitudes were obtained with 1-D filter order 22 and the above frequency specifications
translated to 1-D, i.e., @ p= 0.48m, @ s= 0.52%. For a 25x25-point filter 91 frequency

samples are necessary and their locations are shown in Fig. 3.15 (a).

Sample Locations

* '''' R Y\'\"Y’Y'Y’""'E"

1 samptn

25ts T T gy i

(a)

Figure 3.15 Example 3.8: A 25x25-point lowpass FIR filter with transition band width = 0.04z.
(a) Locations of the 91 samples; (b) impulse response of the designed filter.
On the next page: (c) and (d) frequency response magnitude contour and perspective plots.
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2-D FIR Fiter, size 25x25

2-D FIR Filter. size 25x25

@p=048x. @ =052x

* ope0.48%. oy«052cx

© @
Figure 3.15 (continued) Example 3.8.

The deviations in this case are pretty large, especially in the stopband: &, = 0.1148,
&8s =0.3554. The ripple of 1-D prototype (filter length Nip =23, oy’ =0.48%n, «s' = 0.52n)
is 8;p = 0.0307. Note that a circularly symmetric filter with the same impulse response
support size, 25x25 points, and with the same frequency boundaries, @, = 0.487 and
= 0.52n, is difficult to design even with the "standard" methods considered previously:
the window method and the frequency transformation method. This can be seen from the

frequency response plots of these filters, shown in Fig. 3.16, (a) and (b).

2-D FiR Filter, stze 25x25 2-D FIR Filter, size 25x25

windlpZ.m
op=048%. 8;=0.R2x

:,‘ fq c '{';ﬁ ’{‘!
@ ‘;‘:“‘*‘0\.31,.1

(7

@ ()
Figure 3.16. 25x25-point circularly shaped FIR filters designed using
(a) the rotated Kaiser window method and
(b) the McClellan transformation. In both cases @, = 0.48%, o, = 0.52n .
Deviations: (a) §, = 0.0966, 5, =0.3756 (5, = 0.0984 for ®,*+®;’20.6%);
() 8, =0.1755, 5,=0.5654 (5, =0.1749 for 0,’+w,*20.6n);
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The large stopband deviations are due to the fact that these designs fail with the stopband
boundary. The true stopband boundary is actually at about 0.6m, see the note in

parenthesis.

It is clear from the above examples what is the potential of the proposed sampling
technique of frequency samples taken on circular contours in the region R, having radii
equal to 1-D extremal frequencies and frequency samples taken on hyperbolic contours in
the region Rc. The number of samples on each contour in R,, the density of contours and
the number of samples on each contour in Rc are parameters that deserve optimization. In

the next section some issues concerning these parameters are considered.

3.4 Some considerations concerning the sample density and interpolation method.
3.4.1 Sample density and locations.

It has been shown in the last section that, with the proposed techniques for nonuniform
frequency sampling on circular contours, relatively high quality approximations of the
four basic types of ideal piecewise constant, circularly symmetric FIR can be designed.
Up to impulse response support sizes of about 25x25 points and transition bands as
narrow as 0.15x, these filters are comparable, in terms of error and shape performance, to
the two major "standard" approaches for designing 2-D circular zero phase FIR filters, the
rotated Kaiser window and the McClellan's frequency transformation. Especially the
technique with sampling on hyperbolic contours in the corner region Rc deserves
attention. For filter sizes larger than 25x25 points and transition bans narrower than 0.157
the frequency samples happened to be too densely located and the bad effect of ill-
conditioning is strong. Also, an effect is present, similar to the well-known in the numeric
analysis example of Runge [29, 5] in the univariate interpolation. In general, the sequence

of interpolation polynomials {PN(x)} obtained with equidistant points diverge. In other
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words, the error E(x) of interpolating a function f{x) on equally spaced nodes in an
interval [a, 5], E(x) = f(x)- Py(x), does not tend to zero as the polynomial order N

increases. This nonconvergence is called the Runge phenomenon, [S5]. An example is
presented in Fig. 3.17 (a). The function
1
x) = ————
) 1+20x*
is approximated by a polynomial constructed on 9 equally spaced samples of this function

in the interval [— 1, 1].

(3.4.1)

(a) (b)

Figure 3.17 (a) Polynomial approximation to fx) = 1/(1+20x*) based on 9 uniformly spaced nodes over
[~1, 1]. (b) Polynomial approximation of the same function based on 9 Chebyshev nodes

over [—1, 1].

The remedy to the Runge's phenomenon in 1-D is sampling at Chebyshev nodes. The
Chebyshev nodes are the zeros of a Chebyshev polynomial Tx+(x) of order N+1, given by

k+)x
2N +2

X; = COS for k=0,1,..,N+1 (34.2)

Fig. 3.17(b) shows how the error is decreased by constructing an interpolation polynomial
of the same degree on Chebyshev nodes. In general, if fx) and its first derivative are
continuous on [—1, 1], then it can be proven that Chebyshev interpolation will produce a

sequence of polynomials {PN (x)} that converge uniformly to f{x) over [-1, 1].

123



However, in 2-D the things are different. The straightforward extension of the above
sampling approach in the frequency plane seems to be sampling at the zero locations of
Tu(x)Ta(y), where x = cos@;, y = cosa,. Some design simulations have been conducted
with samples taken at the zero locations in the (@1, @) plane, however the design results

were not satisfactory.

From the design simulations conducted in this chapter it became clear that there is a
lower and upper limit of the distance between the contours on which the frequency
samples are taken. Several results in sampling and reconstruction with polar coordinates
might prove to be very useful in the case of designing circularly symmetric FIR filters
with frequency sampling. For example, Heideman and Veldhuis [33] considered
reconstruction of two-dimensional continuous function of finite circular extent from
samples of its Fourier transform. This study is closely related to the projection-slice
theorem and computer tomography, cf. [A4]. It was shown that polar coordinate
representation F(p, 6) of the Fourier transform F(¢2,, £2) of a function Ar, @) of finite
circular extent with radius a can be represented by a countably infinite set of one-
dimensional functions F(8). These functions describe F(p, 6) on concentric equidistant
circles, withradii & , m=0, 1,2, .... Also, it was shown that every function F,, may be
reconstructed from a finite number of samples N,, . Using the projection-slice theorem,
the authors showed that the Fourier transform F(£2), £2) may be sampled on circular
contours with a minimum sampling distance —21; and the number of samples on each
contour should satisfy N, = 27m + 5. Although the projection-slice theorem holds only
for continuous signals, this result was used with a slight modification in the algorithms
taking samples on the circular contours in the region R.. The number of samples on the
m-th circle is

N,,,=int[21tm+10], m=0,..,0-1, (3.4.3)

where int[ ] denotes the nearest integer and Q is the number of 1-D extremal frequencies.

With a number of samples on each contour determined by (3.4.3) the performance
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improvement was significant. The design examples showed that the minimum distance
between adjacent contours is even more important than the number of samples on each

contour. However, the projection-slice theorem does not hold for discrete-space signals.
Moreover, it can be argued that 2L is the minimum sampling distance. Therefore, the

question about the minimum distance between sampling contours in the discrete-space

case remains open.

The interpolation matrix C, Eq. (3.1.19), becomes ill-conditioned in case of narrow
transition bands and relatively high filter order primarily because of the basis functions
used, Eq. (3.1.8), and its large size in such cases. Improvement of the solution accuracy
can be obtained, for example, by using residual correction or also known as mixed
precision iterative improvement, [32]. If the linear system (3.1.18), H = Cb, is solved
with partial pivoting factorization PH = LU, the accuracy can be improved by repeating
the following algorithm

r= H— Cb (double precision)

Solve Ly=Pr fory. (3.44)
Solve Ux=y forx.
b=b+x

If r-digit arithmetic is used to compute PH = LU, b, x, and y, then 2s-digit arithmetic is
to be used for H— Cb. The number of iterations depends on the machine precision and

the condition number of C, [32]. The method is relatively computationally cheap. Each

iteration costs O(L?), to be compared with the original O(L?) expenses in the factorization

PH = LU. However, if C is badly enough conditioned with respect to the machine
precision, then no improvement may result. The mixed precision iterative improvement is

machine-dependent and this limits its use in software for wide distribution.

Another improvement of the interpolation problem solution can be obtained with the

least squares solution of an overdetermined system of equations, i.e., the minimization of

"Cb - fI"2 . This method is considered in the next subsection.

125



3.4.2 Linear least-squares solution.

Another possible solution to the large deviations in case of large sample density and
narrow transition bands is the least-squares solution of an overdetermined linear system.
Since the maximum deviations are in the form of sharp peaks in between the sample
locations, it can be expected that a least squares fit will smooth off these peaks. This is
done by taking more frequency samples than the number of independent filter points and
an overdetermined system of linear equations is solved. If the number of frequency
samples is NV;, and the number of independent filter coefficients is L, where N; > L , then

the least squares solution is in fact minimization of (cf. Eq. 3.1.18)

lce - fl||2 (3.4.5)

where the matrix C now is (N; x L) ant the vector containing the sample values H is

(N, x1). The most reliable solution procedure for this problem involve the reduction of C
to various canonical forms via orthogonal transformations [32]. One of the most popular
factorizations is the @R factorization C = @R where Q is an orthogonal matrix of size
(N: x N;) and R is an upper triangular matrix of size (L x L). There are several methods
for computing an orthonormal basis for a set of vectors. Along with the classical Gram-
Schmidt orthogonalization process and the numerically more stable modified Gram-
Schmidt, methods based on Householder, block Hauseholder, Givens and fast Givens
transformations exist. Information about these methods can be found for example in
Golub and Van Loan [32]. In case when C is rank deficient, i.e., rank(C) < L, QR with
column pivoting should be used. In our case the matrix C is almost always full rank. For
the solution in the least squares sense of the overdetermined system of equations Cb =
H, the effective rank of C is determined from a QR decomposition with pivoting. A
drawback of the method is the large number of floating point operations for the linear
system solution. The Householder @R decomposition with pivoting requires

4N,L — 2r7(N; + L) + 4r*/3 floating point operations where r = rank(C), [32].
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Example 3.9: A bandpass zero phase FIR filter of size 33x33 points and with frequency
boundaries as follows:

passband F: |Hoan, an)|=1 for (0.4n) <o+ @’ <(0.67),

stopband F: | Hyan, @) |=0 for 0< @ >+ @, <(02n) and (081’ < +w <7’
A total of 162 samples were taken, Fig. 3.18(a), using the approach of the previous
section. An eightfold symmetric filter of size 33x33 has 153 independent points.

Therefore, only 9 samples were taken in excess.
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Figure 3.18 A circularly shaped bandpass zero phase FIR filter designed using the sampling technique
described in Sec. 3.3.3 and using a least-squares solution.
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Although the residual correction and least squares solution methods can improve the
solution precision to a certain degree, they have their limitations and drawbacks. Some
more elegant solution should be considered as, for example, interpolating in polar
coordinates. An interesting method for reconstruction of a bandlimited 2-D signals from a
set of nonuniform samples lying on concentric circles centered at the origin is presented
in [31]. The function and its samples are represented in polar coordinates. The polar

coordinate representation seem to be the right approach in our case, too.

Some design results obtained with the sampling techniques proposed in this chapter are
shown in Table 3.2 for comparison. Comparison is made also with the standard design
methods for circular shape FIR filters: the rotated 1-D Kaiser window and the frequency
transformation method. The abbreviations used in the table stand for, as follows:

Exp Samples on circular contours with exponential distribution in R. and on
straight lines in Rc, Sec. 3.3.1;

R, Samples taken only in the region R, Sec. 3.3.2;

Sc Scaling the 1-D frequency axis, Sec. 3.3.3;

HC Samples on hyperbolic contours in Rc, Sec. 3.3.4;

Win  Rotated 1-D Kaiser window;

FT Frequency transformation using the McClellan's transformation sequence.

LS Least squares solution.

Lowpass Filters
Filter size | 1-D filter | Passband | Stopband 1-D Passband | Stopband Method
length, Nip | edge. @, | edge, o, | ripple,8ip | dev.3, dev., 8. | (sampling) |
- - 0.0398 0.0538 Exp'
9 0.0549 0.0551 0.0891 R.
11x11 11 0.35% 0.65x 0.0581 0.0581 0.0932 Sc
9 0.0549 0.0551 0.0791 HC
- - 0.0611 0.0515 Win
11 0.0174 0.0174 0.0674 FT
- - 0.0148 0.0165 Exp
13 0.0173 00174 0.0787 R-
15x15 17 0.35= 0.65n 0.0181 0.0181 0.0280 Sc
13 0.0173 0.0174 0.0312 HC
- - 0.0461 0.0168 Win
15 0.0057 0.0057 0.0403 FT

Table 3.2 Performance comparison of circular shape FIR filter design with the proposed

nonuniform sampling techniques. (a) Lowpass filters.
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Filter size | 1-D filter | Passband | Stopband 1-D Passband | Stopband Method
length, Nip | edge,®, | edge,® | ripple,3;p | dev.,§; dev. 5, | (sampling)
- - 0.0084 0.0345 Exp
23 0.02363 0.0315 0.0754 Sc
21x21 17 0.4n 0.6n 0.02376 0.0238 0.0849 HC
- - 0.0265 0.0288 Win
21 0.01136 | 0.01141 0.1040° FT
(0.01140)
- - 0.0045 0.1843 Exp
21 0.0106 0.0109 13.5789 R,
23x23 21 0.75n 0.95n 0.0106 0.0259 0.0562 HC
- - 0.0294 0.0192 Win
23 0.0056 0.0057 0.5336" FT
(0.0552)
23x23 21 0.38n 0.62n 0.00565% | 0.00762 0.00745 HC
23x23 21 0.42=n 0.58n 0.0307% 0.0308 0.0341 HC
27 0.38x 0.62x 0.0058% 0.0064 0.0107 Sc
23 0.38x 0.62=n 0.0024 0.0027 0.0077 HC
25%25 23 0.48=n 0.52n 0.1746 0.1818 0.3970 HC
- 0.48n 0.52n - 0.0966 03756 Win
(0.0984)
25 0.48n 0.52n 0.1746 0.1755 0.5654 FT
(0.1749)
Table 3.2 (a) .Lowpass filters (continued).
Bandpass Filters
NxN, Frequency edge radii, 1-D Passband Stopbands Method
Nip 51 , Op1 , Op2, Vg2 ripple, 3ip S &1, o5 (sampling)
23x23, 21 0.1m, 0.3%, 0.6n, 0.8 0.013467 | 0.014109 | 0.013467, 0.032416 HC
21x21, 21 0.1w, 0.3%, 0.6%, 0.8n 0.029594 | 0.029855 | 0.029594, 0.055167 Sc
23x23, - 0.1m, 0.37, 0.6, 0.8n - 0.020189 | 0.053733, 0.020382 Win
21x21, 21 0.013543 | 0.013467, 0273272° FT

Table 3.2 (b) .Bandpass filters.
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Bandstop Filters

NxXN, Frequency edge radii, 1-D Stopband Passbands Method
Nip @1 5 Wp1, Op2, Vg2 ripple, Sip 3, Bp1, 82 (sampling)
25x25, 23 0.2x, 0.4x, 0.6%, 0.8% 0.011513 | 0011611 | 0.011557, 0.028892 HC
25%25, 27 0.2xn, 0.4x, 0.6w, 0.8% 0.011861 | 0.011861 | 0.012207, 0.038974 Sc
25%x25, - 0.2x, 0.4m, 0.6w, 0.8n - 0.017434 | 0.054256, 0.016468 Win
25x25, 25 0.2x, 0.4x, 0.6x, 0.8% 0.004045 | 0.010134 | 0.004050, 0.242094" FT

Table 3.2 (c) .Bandstop filters.

+ All designs with exponential contour distributions use a = 0.4.

+

minimization. The larger ripple is shown.
*  The deviation values marked with an asterisk, mostly for the frequency transformation method, are large
since the design fails with the stopband or passband boundaries and this deviation is actually measured in
the transition band. The design should be done by choosing appropriate 1-D pass- and stopband edges, such
that the 2-D passband region is completely inside cos w,' = F(w,®,), and the stopband region is completely

outside w,' = F(®, ®,), see Eq. (3.3.1). The deviation in the actual pass- or stopband is given in parenthesis.

+ means that the 1-D optimal filter was designed using weights, usually 1:2 in favor of the stopband error

Lowpass Filters, Least-Squares method

NxN, Passband | Stopband | Number of 1-D Passband | Stopband Method
Nip edge, o, edge, © samples, N, ripple, 8;p | dev., §; dev., 8, | (sampling)
31x31, 29 0.35x 0.65= 142 0.000234 | 0.000235 | 0.001422 LS
31x31, 29 0.40n 0.60% 140 0.002713 | 0.002731 | 0.015097 LS
31x31, 37 0.45x 0.55= 216 0.014726 | 0.046693 | 0.048541 LS
37x37, 37 0.45n 0.55n 197 0.014726 | 0.015788 | 0.056534 LS
39x39, 37 0.46n 0.54n 216 0.027785 | 0.029628 | 0.049505 LS

Table 3.2 (d) .Lowpass filters, LS method.
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Bandpass Filters

NxN, Frequency edge radii, 1-D Passband Stopbands Method
Np Qyp , Opp , Dp2, Vg2 ripple, 3;p O Sp1s Op2 (sampling)

33x33, 30, 0.2z, 0.4%, 0.6, 0.8n 0.001815 | 0.001890 | 0.001821, 0.205364 HC
153 samples

33x33, 30, 0.2x, 0.4x, 0.6, 0.8% 0.001815 | 0.001833 | 0.001821, 0.008588 LS
162 samples

33x33, - 0.2x, 0.4m, 0.6, 0.8 - 0.002982 | 0.003033, 0.003712 Win
33x33, 33 0.2x, 0.4x, 0.6, 0.8 0.001227 | 0.001247 | 0.001233, 0.209816 FT

Table 3.2 (e) Bandpass filters, least squares method is compared with other methods.

All filters, including the window method, were designed using Matlab programs written
by the author. Exception is the frequency transformation method, for which the Matlab
program ftrans2.m, included in the Image Processing Toolbox, was used. The routine
veirc3.m is for taking samples in the region R, only. The sampling by scaling is
performed with vcirc4.m, and the sampling on hyperbolic contours in Rc is done with
vcirc7.m. The system of linear equations is solved and the filter coefficient were
determined in all cases with cnint2d.m, except for the LS solution, where cnint8.m

was used. Listings of these programs can be found in Appendix A.

3.5 Summary and Conclusions.

In this chapter sampling techniques for designing circularly shaped zero-phase FIR
filters with nonuniform frequency sampling were proposed. These techniques are simple
conceptually and for implementation. With them a circularly shaped FIR filters with very
regular shape and low passband and stopband deviations can be designed. The range of
the impulse response support size and the range of transition bands covered with this

design method are sufficient for the needs of most practical applications.
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The proposed techniques produce circularly shaped filters whose performance is
comparable and sometimes even superior to the existing methods. As the design results
showed and it can be seen from Table 2.1, in many cases the deviations of the resulting 2-
D FIR filter frequency response are almost the same as the ripple of the 1-D optimal
filter. This is especially true for the circular region around the origin of the (@, @;) plane
and for filter with transition bands of 0.2n and wider. This fact suggests that it is possible
to design 2-D FIR circularly shaped filters with deviations as low as the ripple of the
corresponding 1-D optimal filter.

A drawback of the proposed methods are the comparatively large amount of
computation, mostly for the solution of the system of linear equations. Another weak
point is the ill-conditioning which is very large for medium and high order filters. These
limitations can be overcome using some efficient bivariate interpolation techniques.
However, this implies further limitations to the frequency sample locations and, therefore,

possible deterioration in shape performance.

At the end of this chapter, it was shown that circular shape FIR filters with narrow
transition band (about 0.05m) and increased impulse response support size can be
designed with nonuniform frequency sampling using the proposed techniques with the
number of samples greater than the number of independent filter coefficients, i.e., by
solving an overdetermined system of linear equations. A drawback of this approach is the
increased number of arithmetic operations. And the result does not always justify the
expenses, i. e., the filters designed using the least-squares fit have deviations of
magnitude comparable with the deviations obtained with the conventional approach with

slightly wider transition band(s) and lower filter order.
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Chapter 4
Diamond and Fan FIR Filters

This chapter is primarily concerned with the design of two-dimensional half-band FIR
filters with nonuniform frequency sampling. The outline of this chapter is as follows. In
Section 4.1, we discuss the existing symmetries in the frequency response and impulse
response of half-band diamond and 90° fan shaped FIR filters and the basis functions
used in the generalized bivariate polynomial expression of their frequency response. Also
in this section, the minimum number of frequency samples is considered and the
tolerance scheme specifications for these filters are presented. In Section 4.2, two classes
of sampling techniques are introduced which can be used to design diamond and 90° fan
filters with nonuniform frequency sampling. The first technique is based on sampling on
parallel lines passing through scaled extremal frequencies obtained from a 1-D optimal
FIR filter design. The second technique utilizes sampling on parallel lines with
exponential distribution. Both techniques are illustrated with design examples. At the end
of this section, design results obtained with the proposed techniques are summarized in
tables and compared with results obtained with the McClellan frequency transformation
method. In the next section of this chapter, Section 4.3, the potential of the proposed
nonuniform sampling techniques is demonstrated with the design of 2-D zero-phase FIR
filters with various shapes of their frequency response, e.g., X-shaped filters, cross shaped

filters, etc. The conclusions are presented in Section 4.4.

The diamond and fan filters are of special importance for practical applications. The 2-
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D half-band diamond FIR filters can be used as a downsampling filters for quincunxially’
sampled 2-D data. In order to reduce the data rate for digital transmission of HDTV
signals, for example, a quincunx downsampling followed by guincunx upsampling at the
receiving end is performed. This method is preferred to orthogonal downsampling since it
does not reduce the resolution in the horizontal and vertical directions in which the
human visual system is more sensitive. Half-band diamond filters have applications in
such downsampling schemes as pre- and postfilters. Another application of these filters is

as an interlace-to-noninterlace scanning converters of digital TV signals.

Fan filters are used for the discrimination of seismic waves based on their velocity of
arrival at a 1-D array of sensors. Most of the published design work has been on the 90°
fan filters. These filters are attractive since their symmetries and properties of the impulse
response lead to efficient filter designs and implementations. Also, a 90° fan filter can be
very easily derived form a halfband diamond filter and vice versa by simply shifting the
frequency response in @; or @ direction by n. However, the 90° fan filter has some
limitations as normalized speed cutoff of 1, impossibility to discriminate two waves
arriving at the array from opposite directions. Other fan filters, as 60° and 30° fan filters,

prove to be more useful.

Several methods have been proposed to design half-band diamond and fan FIR filters.
In [28], an /,-norm minimization technique is used to design such filters. The McClellan
frequency transformation method [24] is also well known. These design methods produce
filters with passband ripples. Yoshida er al. [27] have proposed a design method for
maximally flat 2-D half-band FIR filters. Mitra er al. [1] and Bagchi and Mitra [2]
introduce a nonuniform frequency sampling method for designing diamond and 90° fan
filters. The frequency samples are taken at the extrema of analytic functions based on

Chebyshev polynomials.

The design of diamond and fan filters with nonuniform frequency samples, as it will be
shown in this chapter, is not so difficult as the one of circularly shaped filters. This is

* There is a small difference between quincunx sampling and hexagonal sampling.
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primarily due to the frequency response contours of these filters which are straight lines.
However, some limitations exist in this case, too. In the next section the design of half-
band diamond and half-band fan filters with nonuniform frequency sampling will be

considered.

4.1 Half-Band Diamond and Fan Zero Phase FIR Filters Symmetries.

It will be useful in the beginning to recall the definition of a 2-D half-band filter. Let's
start again with the system function of a 2-D zero phase FIR filter with impulse response
region of support of NxN points, where N =2M + 1.

M M
H(z;.z)= D, D h(m,ny)z"z3™ (4.1.1)

ll|=-'M ’lz="M
The frequency response is a real function, H(w; , a») = H*(@, , @), and for real valued
impulse response we have symmetry about the origin, A(n; , n2) = h(—n; ,—ny).

The definition of a 2-D half-band filter is as follows [27]: A 2-D zero phase FIR filter
with fourfold symmetry is said to be a 2-D half-band filter if and only if its frequency

response satisfies

H(w,,@,)+ H(x - 0,,7 — @,)=1 4.1.2)

for arbitrary @ and @, . This means that the frequency response is symmetric about the
point (@o,@20, H(@10,@20)) = (2, 1/2, 0.5) in the region 0 < @y, < . Similarly to the
1-D case of a half-band filter, where A;p(n) = 0 for n = even, n=0, in 2-D it can be shown
that [27]

h(ny, n) =0, forn+n;=even and n;, n2#0. “4.1.3)
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This a consequence of the fact that the impulse response contains a factor of the form

sin[ 3(m + "2)]

5 . Let's consider the sum
15 (nl + nz)

H(w,@,)+ H(@, + 7,0, + )= Kny,ny)e /"Me /¥ +
n "

Z Z h(nl ,n, )e-f(a’x""’)"le‘f(‘”z*x)"z 4.1.4)

n om

= z Z {h(n[ N )e'ja)m, e‘jmz"z [l + e’fﬂ(nl +n;) ]}

m N

For ni+ n; = odd the sum in the brackets is zero. For n;+ n; = even according to (4.1.3)

h(ny, ny) = 0 except for n, = n, = 0. Therefore,

H(w,,»,)+ H(®, + 7,0, + 7)=2k0,0) . 4.1.5)

Since the impulse response is symmetric about the origin and real valued,

H(o, +n,0, +7)=H(-0, - 7,~©, - 7) (4.1.6)
and since H(@; , @) is periodic with period 2n in @; and in @,

H(-0,-7,-@,-7)=H(r-0,7-0,). 4.1.7)
From this result and from (4.1.2) follows that

H(w,,0,)+ H(r - o,,7 —@,)=2h0,0)=1 (4.1.8)
The 90° fan filters have quadrant symmetry, i.e., the frequency response is symmetric
with respect to the @ and @, axes. The diamond filters have eightfold symmetry, i.e., in
addition to the axes, their frequency response is also symmetric with respect to both

diagonals @ = @» and @; = -, , Fig. 4.1.
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- f 1 stopband -

() (®)

Figure 4.1 (a) Ideal half-band diamond filter; (b) ideal half-band 90° fan filter.

H(w,,0,) = H(-0,,0,) =H(®,,- ®,) = H(®,,»,) 4.1.9)
which implies

h(ny, ny) = h(=ny,ny) =h(n,— ny) =h(ny,ny) 4.1.10)

As in the previously considered cases, a frequency response with fourfold symmetry can

be expressed in the form, cf. Egs. (2.2.9) and (3.1.5),

H(w,,02)=H(0,0) + 3" 21(n0) cos(m@r) + 3 20, ny) cos(m;) +

m=l ny =l

+ i 5!: 4h(ny, n, ) cos(ma, )cos(n,@,)

L) =1 ’lz=l

(4.1.11)

The diamond filter is symmetric with respect both diagonals, @, = @, and @, = — ).
That implies that A(n1, n2) = h(n2, my). Therefore, the independent impulse response points
are limited in the shaded triangular region in the first quadrant of the (»;, ;) plane, which

is shown in Fig. 4.2.

Having in mind Eq. (4.1.8), the frequency response H(@1, @) takes the following form
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M m-1
H(w,,@,)=05+ Y zd(nl,nzlcos(nlwl)cos(nza)z)+cos(nza)l)cos(nlwz)] 4.1.12)

m=1n=0
- e
° e
- e
° .
°
.
) .
°
° ]
- e [ ) - o - o

Figure 4.2 Impulse response of a 2-D half-band FIR filter of size 11x11 points.

® h(n;, n;) = nonzero; * h(m, ny) =zero ; ¥ 17(0,0)=0.5
The shaded region contains the independent filter coefficients.

2 0), = odd
where d(n,,0) ={ M 0), m=o (4.1.12a)
0, n; = even
4 s H = dd, ¢0
and d(nl,n2)={ W, ), m o+ my = odd, (4.1.12b)
0, n, +n, =even, n, #0

With simplifications of notations, the above expression for the frequency response of a

half-band diamond FIR filter can be written as

L
H@)= 05+ d(k)p,(o) (4.1.13)
k=1

where © = (o1, a,)" is the frequency vector and the basis functions g(w) = ¢, @) are
given by
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6.(@,, @) = cos(o,m)cos(w,n,)+cos(@n,)cos(w,n,) - 4.1.19)

The coefficients d(k) = d(n;, n;). The index k is related to n; and n; by

-1 +1
(nx 1("1 ) + 2 +2 for n, =odd, n, =even

b ]

2 ) (4.1.15)
for n, =even, n, =odd

k=4 1
n n, +
_L+_2._

4 2’
This relations, as well as the number L of independent filter coefficients, the number L of
basis functions for interpolation, respectively, were obtained using the arithmetic
progression properties of the independent points, see Fig. 4.3 below.

0

Figure 4.3. The independent points in an impulse response of size QM+1)x(2M+1) = 15x15. The index k
is marked near each point.

Besides the formula for the number L of independent filter coefficients for a 2-D half-
band FIR filter of size (2M+1)x(2M+1) = NxN,

M+1| M+2| |N+1j{N+3
“[ 2 j[ 2 H 3 J. 2 J @110

which is given in the literature, e. g. [27], from the diagonal sums it follows that
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M(M+2
——(—+—), for M = even
L(My=3 4 @4.1.17)

M+1)2
-(—:1)—, for M = odd

Also, there is an recurrence relation which can be used in programming:

-YM-1), L)=1. (4.1.18)

The filter specifications for a diamond half-band filter are shown in Fig. 4.4. The diagonal
@1=an intersects the passband and stopband boundaries at points (@y,a%) and (@s,a%),

respectively.

1-8, <|H(an, ?)| <1+, (an, a») € R,
|H(an, @) < 9, (w1, @) € R,

A
N\

%] passband, R, ®)

(a) '
:] transition band, R,
:] stopband, R,

Figure 4.4 (a) Frequency response specifications of a half-band diamond filter;
(b) Domain of approximation (the darkly shaded triangle)

L frequency samples taken at distinct locations should be sufficient to determine the
coefficients d(k) and, subsequently, the impulse response h(n, n;). Because of the
symmetry about the point (@i0,@20, H) = (W2, 7/2, 0.5), the L frequency samples can be
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taken only in the darkly shaded triangular region in Fig. 4.4(b). The solution of the
interpolation problem depends on the linear independence of the L characteristic vectors

T
CD(mk) = [¢1(‘°k) ¢z(‘°k) ¢L((°l:)] , k=1,..,L 4.1.19)
where the functions gy(®) = ¢(@n, @,) are as defined by (4.1.14). The system of linear

equations to be solved can be expressed in matrix-vector form as

Dd=H (4.1.20)
where D is an LxL matrix having as rows the characteristic vectors ®(®;), d is an Lx1

vector containing the unknowns d(k), and H is an Lx1 vector with entries
H(wwan) - 0.5, k=1, . . ., L. In case of nonsingularity of D, the impulse response is
found by solving the system

d=D'H 4.121)

and then using (4.1.12).

The expression for the frequency response of a 90° fan FIR filter can be derived very
easily from the expressions for a diamond filter since the fan filter frequency response is
obtained by shifting the diamond filter frequency response by © or —n in the direction of

@, Of an, i.e., He(an,an) = Hp(@—nr,@;) , which is equivalent in the space domain to

Since the half-band diamond filter is an eightfold symmetric filter, hp(n;, n2) = hp(n2, ny),
and since for both filters the nonzero coefficients are at (n;, n2) = (even, odd) or (n;, n) =

(odd, even) only, from (4.1.22) it follows that

he(ny,ny)=—he(ny,m) (4.1.23)
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Therefore, all the same expressions for a diamond half-band FIR filter can be used for a
90° half-band fan filter. The only difference is in the expression of the basis functions:

$i(@,, ®,) = cos(@,n,)cos(w,n,)— cos(@n,)cos(w,n,). (4.1.24)

Everything else is the same, of course by taking account of (4.1.23). For completeness,

1-8,<|H(on, @) |S1+8,  (oLan)eR,
IH(a)lr a)l)l S 855 (a’l, a)Z)eR:

Y S
1071 ®2

(b)

(a)

: transition band R,
D stopband, R;

Figure 4.5 (a) Frequency response specifications of a half-band fan filter;
(b) Domain of approximation (the darkly shaded triangle)

the filter coefficients are now obtained by solving the system of linear equations
Fd=H (4.1.25)
where F is an LxL matrix having as rows the characteristic vectors ®(®;), now with

entries gu(@ix,@2x) given by (4.1.24). d is an Lx1 vector containing the unknowns d(k),

and H is an Lx] vector containing the frequency sample values.

Since in the case of a half-band fan filter the symmetry about the point (n/2, /2, 0.5)
holds, the region in which the frequency samples are taken can be limited to the triangular
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region with vertices (x, 0), (r, ), and (n/2, ®/2), shown in Figure 4.5.

Though the specifications of the ideal 90° fan filter are usually given as
| Hlan, @) | =1 for -n/4 < 8<n/4 (orforn/4<6<3n/4),
| H(@n, @) |= 0 otherwise,

with the tolerance scheme on Fig. 4.5 it is more convenient to use a passband and
stopband edge frequencies, defined as shown in the figure: @, = @1, = @s and @& = @5
= @, and these frequencies are determined from the intersection of the line @, =—an+ n

with the passband edge and stopband edge, respectively.

4.2 Half-band Diamond and Fan FIR Filter Design.

(1) Half-band diamond shaped filters.
The design of these filters with nonuniform frequency sampling employs similar
sampling techniques as in the previous two chapters. For good results the samples should
be taken in the domain of approximation on contours describing the shape of the filter to
be designed. For a diamond shaped filter these contours are parallel lines with slope -1.
For a 90° degree fan filter the samples should be taken on parallel lines with slope 1. The
sampling parameters are the number of parallel lines, the distribution of these lines in the
region of approximation, the number of samples on each line, and the spacing between
the samples on a given line. The design simulations showed good results with lines with
exponential distribution or lines passing trough frequencies corresponding to extremal
frequencies for 1-D optimal filter design. How this mapping is performed will be

explained with the next example.

Example 4.1 A half-band diamond FIR filter with frequency edge specifications:
w, = 0.42n, @, = 0.58x, unity gain in the passband and zero gain in the stopband. Impulse
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response region of support size: 13x13 points. Since M = 6, from (4.1.17) we have L =
12 independent coefficient out of 139. Therefore, 12 frequency samples must be taken in
the region of approximation, see Fig. 4.4(b). The lines on which the samples are taken
have slope -1 and pass through the intersections of vertical lines with the main diagonal
@, = @,. Now, the vertical lines have as coordinates the extremal frequencies up to ap =
0.427 obtained with the Remez exchange algorithm and mapped one to one to the @,
axis. The algorithm for optimal 1-D linear phase, odd length FIR filter was initiated with
frequency edges @, = 0.42n, s = 0.58=, and filter order = 16, (Mp = 17). which
produces @ = 10 extremal frequencies. (Remember that O = (Nip + 3)/2 for Nijp=o0dd ).
From these only the 5 frequencies lying in the passband are taken, from @' = 0 to &' = @',
Therefore, five vertical lines are obtained in the (@), @) plane. Alternatively, this can be
seen as mapping the 1-D frequencies [0, #] to the diagonal [(0,0), (n,m)] in the 2-D plane.
The samples on each of the slanted line segments are taken approximately proportionally
to the segment length and such that their number is L = 12, Fig. 4.6(a). The samples on a
given line have the values of the corresponding 1-D amplitudes for the given extremal
frequency. The deviations in the passband and stopband of the resulting filter are &, =
0.0575 and & = 0.0754, respectively. The 1-D optimal prototype filter has ripple &;p =
0.0417.

@ ®)

Figure 4.6 Example 4.1: A 13x13 diamond shaped FIR filter with @}, = 0.427, ;= 0.58n and designed
from 12 frequency samples.
(a) sample locations, o sample value = 1+§,p_e sample value = 1- Sip;
(b) impulse response of the designed filter; (continues on the next page)
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2-D FIR Fiter, size 13x13

() (d)
Figure 4.6 (continued) Example 4.1: (c) frequency response contour plot; (d) perspective plot.

A Matlab program diam2.m has been written, which takes automatically the frequency
samples, given the frequency edges and the 1-D optimal filter order. If the number of
samples taken is more than the nearest number satisfying (4.1.17) then the redundant
samples are discarded in such a way that the remaining samples cover the region of
approximation approximately with uniform density. Using the approach of taking more
samples than necessary and then discarding the surplus has a positive effect of improving
the condition number of matrix D, Eq. (4.1.20). This happens since in this way the

conditions of Theorem 1.6 (cf. Sec. 1.2) are receded.

The next example demonstrates the potential of the nonuniform frequency sampling
method for high quality FIR filter design. A diamond half-band FIR filter with very small
deviations is obtained. The frequency samples are taken on parallel lines as in the
previous example. However, now all the samples are set to 1, and not the corresponding

1-D values 1+8;p.
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Example 42 A diamond half-band FIR filter with @, = 0.38n, o = 0.62~r, filter size
25x25 points. An impulse response with this support size has 42 independent
coefficients, Eq. (4.1.16) or (4.1.17). The necessary 42 samples were taken on lines
parallel to @, = —@, and passing trough scaled extremal frequencies along @, = @ .
These extremal frequencies were obtained with the Remez exchange algorithm used for
an optimal lowpass FIR filter of order 30 and passband and stopband edge frequencies
equal to the edges of desired 2-D diamond filter, i.e., ®, = 0.38n and &'s = 0.62~.

o
P ¢ &
: ol 05+
044
034
: : 0.2+ )
: 0.14 =
0.38x= X - M s = < >< -
: * .. : 0 =2 o - > o > :&>s
\ I -10 =g : 10
i:t.\&-_ 4-B e\ ------.’-:--_-- Wy
0 0.38x 10 10
(@ ®)

2-D FIR Filter, size 25x25

n-7)

© CY)

Figure 4.7 Example 4.2: A 25x25 diamond shaped FIR filter with a3, = 0.38%, @, = 0.62% and designed
from 12 frequency samples. (a) sample locations, e sample value = 1; (b) impulse response of the designed
filter; (c) Frequency response contour plot; (d) frequency response magnitude perspective plot.
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As in the previous example, the number of samples on each line segment is
approximately proportional to the segment length. All samples have value of unity. What
is interesting in this example is that the resulting 2-D passband and stopband deviations
are smaller than the ripple of the 1-D optimal filter which extremal frequencies have been
used. The deviations in the passband and stopband of the resulting 2-D diamond shaped
filter are 8, = 2.79x10™ and &; = 1.88x10™, respectively, while the 1-D optimal filter has

ripple 8;p = 4.48x10™.

It has to be noted that the design of 2-D half-band diamond shaped FIR filters with
nonuniform frequency sampling using the technique described with the last two examples
is not so easy as it might seem. Because of the basis functions used, {#(@:, @2)}, matrix
D is often badly conditioned, and in some cases may even become singular. For example,
in Example 4.1 the condition number of D is p = 73.89, while in the last example of a
quality diamond filter design p = 350938.62.

k) cond(D) = 3 42¢7x1018 cwy ‘ P 111096

o [ ]
(@) ®) ©)
Figure 4.8 Cases when matrix D, Eq. (4.1.20), is (a) nearly singular; (b) and (c) nonsingular.

The interpolation problem runs into singularity when the frequency samples are taken
only on the lines @, = 0 and @, = @; and the degree of Eq. (4.1.11) is 24 both in @, and
@, (9 samples or more). This effect is an indirect consequence of Theorem 1.5, Sec. 1.2,

and can be eliminated by simply taking samples in the exterior of approximation region
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triangle. This is illustrated in Fig. 4.8.

Several Matlab programs have been written by the author, which take samples in the
triangular region in the first frequency plane quadrant using the extremal frequencies of a
1-D optimal filter or on parallel lines distributed exponentially. Some of this programs,
diam?2.m, diam4.m, are presented in the appendix. The interpolation is performed with
the function dnint2d.m, also shown in the appendix. The method with samples on
exponentially distributed parallel lines and sample values all set to 1 often gives better
results than the use of 1-D extremal frequencies. This sampling technique will be
presented with the 90° fan filter design. Both techniques are essentially the same for the

two filter types.

(i) Half-band fan shaped filters.

A 90° fan filter with passband for -n/4 < @< n/4 is designed by taking samples in the
triangular region with vertices (m, 0), (%, %), (7/2, n/2), Fig. 4.5(b). The samples lie on
lines parallel to the diagonal @, = @;. These lines pass trough the intersection of @» =
—m,+n and horizontal lines having as coordinates the extremal frequencies of 1-D optimal
design and mapped one to one to the @, axis. With the technique with samples on
exponentially distributed parallel lines the points on the line @, = —@;+= trough which

the parallel lines pass are found in the following way. The samples of the function
f(x))=1-e™ at x;=i/(P-1) for i=0,1,..., P~ and fixeda 4.2.1)
are mapped on the @; axis in the interval [0, @] in the following way

@

@y = :‘e—_#,)?f (x:)- 4.2.2)
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This is similar to the mapping used in the design of rectangularly shaped FIR filters, see
Sec. 2.4 and 2.5. Next, the intersections of the horizontal lines passing trough points @»;
with @, = —w,+nr determine the parallel lines with slope 1 on which the frequency points
are taken. The number of samples on each line segment is proportional to its length and
such that the total number of samples L satisfies (4.1.17). In order to adjust this number
and to improve the condition number of matrix F, here again is used the approach of
taking a bit more samples than necessary and discarding the excess number of them in a
"pseudorandom way". The parameter P is proportional to the desired filter size. The
parameter « is the most important. It deserves special attention and further investigation
since the passband and stopband deviations depend strongly on it and if chosen properly
the designed filter even can be optimal in Chebyshev sense. This statement is given

without a theoretical proof but some design examples show that this may be the case.

As in the design of diamond shaped filters, both sampling techniques have been used in
the design of 90° fan filters. Similarly, in most of the design experiments, the technique
with exponentially distributed parallel lines proved to produce superior results in terms of
approximation error compared to the technique employing 1-D extremal frequencies.
Once a diamond shaped FIR of good quality is obtained from frequency samples, a good
quality 90° fan FIR filter is obtained too, by simply employing (4.1.22), with almost the
same deviations. The firs example shows the design of an 11x11 fan filter designed with
frequency samples taken on exponentially distributed parallel lines in the domain of

approximation.

Example 4.3 A 90° fan FIR filter with passband oriented along the @, axis and passband
and stopband edges @, = 0.62n, @ = 0.38m, respectively. Impulse response region of

support size: 11x11 points.
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Figure 4.8 Example 4.3: 11x11 90° fan filter designed with samples on exponentially distributed parallel

lines in the domain of approximation. (a) Sampie locations; (b) impulse response of the designed filter;

(c) Frequency response contour plot; (d) frequency response magnitude perspective plot.

Nine frequency samples are sufficient to solve for the 9 independent impulse response
points of an 11x11 half-band fan filter. The locations of these samples are shown in Fig.
4.8 (a). All samples have value of unity. For this design the parameter in Eq. (4.2.1) was
set to oo = 0.35. As a practical guidance, good results can be obtained with & = 0.3 to 0.8
for low order filters, 7x7 to 13x13, and a should be gradually increased to about @ = 1.6
to 2.1 for filter sizes 23x23 and larger. The frequency response magnitude is shown in
Fig. 4.8(d). The filter exhibits deviations 8, = 8 = 0.0338 both in the passband and
stopband. This and the next results show that the proposed method is comparable and in
many cases superior to the existing fan FIR filter design methods, both in terms of shape
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and peak deviations.

Example 44 A half-band fan FIR filter with passband oriented along the @ axis and
band edge frequencies @y = 0.58%, @ = 0.42n. Impulse response region of support size:
25x25 points.

2-D FIR Fiter, size 25x25

Bp= 8y= 5832010 ¢

emefmem o men - - -

© @

Figure 4.9 Example 4.4: 25x25 90° fan filter designed with samples on exponentially distributed parallel
lines in the domain of approximation.
(a) Sample locations; (b) impulse response of the designed filter;
(c) Frequency response contour plot; (d) frequency response magnitude perspective plot.

The number of independent filter coefficients in this case is 42. The 42 frequency samples
obtained with « = 1.41 in (4.2.1) and having value 1 are shown in Fig. 4.9(a). The shape
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regularity can be seen from the frequency response contour plot, Fig. 4.9(c). The
maximum deviations for the passband and stopband are equal and small:

8, =8 =5.83x107*.

A 90° fan FIR filter with passband oriented along the @ axis, i.e., the ideal filter is
defined as

| H(wy, @) | =1 for -n/4 < 8<n/4 (orforn/4<0<3n/4),

| H(an, @) | = 0 otherwise,

can be simply obtained from a fan filter with passband along the @, axis by simply
rotating the impulse response matrix by 90° (or —=90°, or transposing it), and vice versa.

This is the easiest way and it has been done with the filter of the last example, Fig. 4.10.

2-D FIR FiRer, size 25x25
Sy Sy 5.832,10° ¢

vvvv

tttttt

n- , . 3
€Y ()
Figure 4.10 A 25x25 90° vertically oriented fan filter obtained from the filter designed in Example 4.4.

Alternatively, this transformation can be done by
hre, (n1, ”2) =5(n,, ny)- by, (m. "2) 4.2.3)

Some of the design results in this section are summarized in Table 4.1. The comparison

with other methods for design of 2-D half-band FIR filters is not exhaustive since the
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published results are for limited number of filter sizes and transition bands. The proposed
here methods are compared mostly with the "standard" frequency transformation method
[29] in which a 1-D half-band lowpass optimal FIR filter is transformed to diamond
shaped 2-D half-band FIR filter by applying the firs order (3x3) transformation

cos @' = 0.5cosay + 0.5cosaw, “4.24)

The 3x3 transformation leading to a 2-D 90° fan filter is given by

cos @' = 0.5cosan — 0.5cosa; 4.2.5)

This first order transformations produce curved contours, Figure 4.11, and in result the 2-
D frequency edge specifications would fail if they are directly related to 1-D, i.e., Ao’ =
|@s — @p|. making the 1-D transition band narrower will increase the ripple. In order to
obtain more regular shapes with the transformation method, the transformation order
must be increased. As a consequence, the 2-D filter size increases considerably. For
example if an 11 point 1-D prototype filter is used, the 3x3 transformation produces an
11x11 2-D FIR filter, while a 5x5 transformation will produce a 21x21-point 2-D filter.

2-D FIR Filter, size 25x25

05 ; w,

0 RRXKEX

7 (r,m)

€Y (®)
Figure 4.11 A 2-D diamond shaped FIR filter of size 25x25 designed using the frequency transformation
given by (4.2.4) and a 25 point 1-D optimal half-band FIR filter with @', = 0.38%, »',=0.62x.
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Diamond Shaped Fiiters

NxN, Nip Passband | Stopband 1-D Passband | Stopband Method Note
edge, ®p ed% ripple, 8;p | dev., §, dev., &, (samplinjg_)
9x9, 9 0.36n 0.64n 0.0636 0.0229 0.0218 1-D opt H.=1
9%9, — 0.36n 0.64n - 0.0295 0.0299 Exp a=125
9x9, 9 0.36n 0.64n 0.06362 | 0.06363 | 0.27309" FT -
9x9, ? 0.36n 0.6471 ? 0.0189 0.0184 | NDFTH® -
11x11, 15 0.4n 0.6n 0.0238 0.0687 0.0677 1-D Opt He=1
11x11, 11 0.47n 0.6n 0.05086 | 0.05096 | 0.33513° FT -
17x17, 19 0.4x 0.6% 0.0114 0.0020 0.0093 1-D opt H.,=1
17x17, 17 0.4n 0.6n 0.02376 | 0.02380 | 0.30948" FT -
25x25, 31 0.38n 0.62n | 4.48x10™ | 2.8x10™* | 1.88x10~ | 1-Dopt H.=1
25x25, -~ 0.36n 0.64n - 1.39x107* | 1.04x10~* Exp a=1.65
25x25, 25 0.38n 0.62r | 0.002395 | 0.002415 | 0.17052 FT -
Table 4.1 (a) Performance comparison for diamond shaped half-band 2-D FIR filters.
90° Fan Filters
NxN, Np | Passband | Stopband 1-D Passband | Stopband Method a
edge, @, edge, w; | ripple, 8;_0 dev., 5, dev., &, (samplgg)
9x9, — 0.38n 0.62% - 0.0569 0.0469 Exp 1.9
9x9, 9 0.38n 0.62n 0.08486 | 0.08486 | 0.3002° FT -
9%9, — 0.35xn 0.65x - 0.0397 0.0397 z -
11x11, — 0.38n 0.62x - 0.03379 | 0.03379 Exp 0.35
11x11, 11 0.38n 0.62n 0.03319 | 0.03319 | 0.25342° FT -
17x17, 2 0.43n 0.57x ? 0.0051 0.0051 NDFT @ -
19x19, - 0.41m 0.59% - 0.00843 | 0.00843 Exp 1.65
19x19, 19 0.41n 059 | 0.016096 | 0.016145 | 0.2761° FT -
21x21, — 0.39n 0.61n - 0.000476 | 0.001363 Exp 1.85
21x21, 21 0.39n 0.61x 0.00801 | 0.00803 | 0.2387 FT -
25x25, — 0.42n 0.58n - 5.83x10~* | 5.83x10™* Exp 1.41
25x25, 25 0.42n 0.58n 0.01269 | 0.01275 0.309° FT -

Table 4.1 (b) Performance comparison for 90° fan half-band 2-D FIR filters (Notations are

explained on the next page).
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*  As in the case of circularly symmetric FIR filters, this deviation is very large because the frequency
transformation method was applied with the 2-D frequency edge specifications directly used as frequency
band edges for the 1-D optimal prototype. The design should be done by choosing appropriate 1-D pass-
and stopband edges, such that the 2-D passband region is completely inside cos @y’ = F(w,,), and the
stopband region is completely outside o,' = F(®, ®,), see Eqs. (4.2.4) and (4.2.5). The deviation in the

actual stopband is approximately the same as in the passband.

Exp Samples on straight lines with exponential distribution in the domain of
approximation (proposed sampling technique);

1-D opt Samples on straight lines passing trough the scaled extremal frequencies
obtained from 1-D optimal design (the second Remez exchange algorithm)

FT Filters designed using the frequency transformations given by Eqs. (4.2.4)
and (4.2.5) for diamond and 90° fan filters, respectively;

NDFT @ this results are taken from reference [2].

Z Filters designed with frequency samples taken at the zero locations of the
basis function {#(w1, @»)}. This method does not always produce good results.
Details of some of the algorithms for determining the frequency sample locations can be
seen from the Matlab code listings, presented in appendix A. The program fan2.m
returns the frequency sample locations and their corresponding values using the extremal
frequencies of 1-D optimal filter. The program fan4.m uses exponentially distributed
parallel lines on which the samples are taken. The filter coefficients are obtained using

fnint2d.m, also shown in appendix A.
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4.3 General diamond and fan FIR filters and other shapes.

In this section the potential of the nonuniform frequency sampling design will be
demonstrated. Diamond and fan general (not half-band) FIR filters will be designed, for
example a passband diamond shaped FIR filter. 2-D FIR filters with shapes that are
usually difficult to be obtained with other design methods are also concerned. Not only
the shapes of the designed filters are regular, the performance in terms of passband and
stopband error is also good. This designs are performed with one of the two basic
sampling techniques proposed in the present work: 1) frequency samples taken on
exponentially distributed contours in the approximation domain in the (@1, @) plane and
2) frequency samples taken on contours passing trough extremal frequencies translated to
2-D Since these sampling techniques were described and demonstrated in chapters 2, 3,
and 4, the designs here are mainly explained with examples.

Example 4.5 In this example a diamond half-band FIR filter is designed, Fig. 4.12, from
the 90° fan filter in Example 4.4 by shifting the frequency response by n in the w;

direction. This is performed in the spatial domain by
hD (nl 3 nz) = e'i)ml h,.—(nl s n2) =(_l)"l hF(nl, nz) (4.3. l)

where Ap(n;, n2) and hg(ny, n2) are the frequency responses of the diamond and fan filters,
respectively. After that, a highpass half-band diamond shaped FIR filter is obtained by
shifting the frequency response of the fan filter by = in the direction of @,:

Ppngn (1, ny) =™ b (ny, ) =(=1)" ke (my, my) (432)

The frequency response magnitude contour and perspective plots of this highpass
diamond filter are shown in Fig. 4.13, (a) and (b), respectively. This type of filter can be
obtained, of course, by shifting the frequency response of a lowpass diamond filter by 7
both in the @; and @, directions

156



2-D FIR Filter, size 25x25

(ai
Figure 4.12 A half-band diamond FIR filter obtained from the fan filter in Example 4.4 using (4.3.1).

2-D FIR Fitter, size 25x25

camenm e rm - - . ----om .-

eovecpedoLdl

@)
Figure 4.13 A half-band highpass diamond FIR filter obtained from the fan filter in Example 4.4 using
Eq. (4.3.2).

A general, not half-band, diamond shaped FIR filter can be designed with nonuniform
frequency samples using the relationships from Chapter 3 for circularly shaped filters.
Since the frequency response of a general diamond shaped FIR filter possesses eightfold
symmetry, the expressions (3.1.6) - (3.1.10) hold and the approximation domain shown in
Fig. 3.2 can be used. The interpolation program, cnint2d.m, used for circularly shaped
filters can also be used without changes. Since the relations (4.1.8) and (4.1.12) do not
hold for general diamond and fan filters, now the design cannot be so economical. The

number of necessary samples is determined from (3.1.10) instead from (4.1.17).
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Example 4.6 A general diamond shaped FIR filter with passband and stopband edge
frequencies respectively @, = 0.25%, @5 =0.457n. Impulse response region of support size:
17x17 points. The filter is designed from 45 samples taken in the first octant of the (@,
@7) plane, Fig. 4.14(a). The lines on which the samples are taken pass through the 12
extremal frequencies for a length 21 1-D optimal FIR filter, scaled along the diagonal

[(0,0), (m,m)]. The max. deviations are &, = 0.0166 and &; = 0.0329 for the passband and
stopband, respectively.
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Figure 4.14 Example 4.6: A general diamond shaped FIR filter. (a) Sample locations,
o positive sample value: 1+8;por +6,p, o negative sample value: 1—-8,p or —8;p .
8,p = 0.0085. (b) impulse response; (c) frequency response contour plot;
(d) perspective plot of the designed diamond filter frequency response magnitude.

The next example employs the same sampling technique to design a bandpass diamond
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shaped zero-phase FIR filter.

Example 4.7 (a) A passband diamond shaped FIR filter with passband and stopband edge
frequencies respectively ax; = 0.2%, @p; = 0.4% ay2 = 0.6n, @y = 0.8xn. Impulse response
region of support size: 23x23 points. The filter has been designed from 78 frequency
samples lying on straight lines with slope —1, Fig. 4.15 (a). These lines pass trough the
scaled extremal frequencies obtained with the Remez exchange algorithm (the modified
McClellan-Parks-Rabiner program pmcc.m) for a 1-D optimal filter of length Njp = 31.

;92
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08x+
: 04
: 0.24 S = :
04 -i:- - ""="'= E==-<-~ Ot = :::..
. i - 0 E"==-<"=~~ . eI
02x -— . R 10 -?{_= 10
. 5 5
og.\f.\} f—amn 0 . = Y
o 02x 04x O06x 0.8x 10 10
@ ®

2-D FIR Filter, size 23x23

(c) @
Figure 4.15 Example 4.7(a) A bandpass diamond shaped FIR filter. (a) Sample locations,
o positive sample value, 1+8;p or +5,p, e negative sample value, 1—5,p or —5;p .
8;p =0.0018. (b) impulse response; (c) contour plot and (d) perspective plot of the
designed filter frequency response magnitude.
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From this bandpass diamond shaped FIR filter, using shifts of +x in the direction of @, or

an, or by using the passband-stopband conversion
}lz(nl, n2)=5(nl, nz)-hl(nz, nl), (4.3.3)
the filters shown in Fig. 4.16, 4.17, and 4.18 were obtained. In (4.3.3) A;(n1,m,) is the

impulse response of the original filter, 4(n;,n;) is the impulse response of the new filter.

Example 4.7 (b) An "X" shaped zero phase FIR filter is obtained from the bandpass
diamond filter by shifting the frequency response by & in the @, direction. (Shifting it in
the direction of @, will lead to the same result.) The resulting frequency response contour
and perspective plots are shown in Fig. 4.16, (a) and (b), respectively.

2-D FIR Filter, size 23x23
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Figure 4.16 An X shaped FIR zero phase filter of size 23x23 points obtained from the filter in Example 4.7
by shifting its frequency response by n in the &, direction.
(a) Frequency response magnitude contour plot; (b) perspective plot.
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Example 4.7 (¢) An "X" shaped highpass zero phase FIR filter, Fig. 4.17, of size 23x23

points obtained by applying (4.3.3) to the previous filter impulse response.

2-D FIR Filter, size 23x23

(a)

Figure 4.17 An X shaped highpass zero phase FIR filter of size 23x23 points obtained from the filter in

Example 4.7 (b) using Eq. (4.3.3). Contour plot (a) and perspective plot (b).

Example 4.7 (d) A 23x23 bandstop diamond shaped zero phase FIR filter obtained by

shifting the impulse response of the Example 4.7 (c) by = in the direction of @,. (The

same result would be obtained if shifting in the direction of @, by = or by applying (4.3.3)

to the filter in Example 4.7 (a).)

2-D FIR Filter, size 23x23

Figure 4.8 Example 4.7 (d). Caption on the next page.
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Figure 4.18 Example 4.7(d) A diamond shaped bandstop zero phase FIR filter of size 23x23 points
obtained from the filter in Example 4.7(a) using Eq. (4.3.3).
(a) frequency response contour plot; (b) perspective plot; (c) impulse response.

The last example demonstrates the capabilities of the nonuniform frequency sampling
to design a cross shaped 2-D zero phase FIR filters. The frequency edge specifications of

such a filter are shown in Fig. 4.19.

1'SPSIH(GJ[,Q)ISI+89, (a’ha).’.)eRp
‘H(a’h ﬂ.b_)[ < 63’ (0)[, 0)1) € R:

Berel passband, R,
[:] transition band, R,
[ stopband, &

Figure 4.19 Tolerance scheme for a cross shaped filter.

162



Example 4.8 (a) A cross shaped zero phase FIR filter of size 37x37 points. This filter has
been designed using the sampling technique introduced in Subsection. 2.5.2. This is
possible because of the filter shape. The frequency edge specifications of this filter are,
see the figure above: anp = wyp1 = 0.2%, @51 = @51 = 0.35%, Wip2 = ap2 = 0.61, 12 =
@»s2 = 0.87. The frequency samples are taken at the vertices of a nonuniform rectangular
grid only in the first frequency plane quadrant. The line coordinates of this grid are
obtained by sampling functions of the type of (2.5.10) and (2.5.11). The samples of these
functions are mapped using (2.5.12) and (2.5.13) into three bands along the @ and @,
axes. The samples of a function like (2.5.12) are mapped to [0, @ip1], [0, @2p1], [@1s1,
@1p2], and [@as1, @np2].- The samples of a functions like (2.5.11) are mapped to the
intervals [@s2, 7] and [@s, 7]. The sample values in the passband are set to unity and in
the stopband to zero. While in the case of a rectangularly shaped FIR filter it is not always
necessary to take samples in the transition band, in the case of a cross shaped filter this is
imperative in order to obtain good performance. The values of the transition band
samples are obtained with linear interpolation of neighboring samples. In the present
example there are just one additional row or column of samples in the transition band
and, therefore, their values are 0.5. Together with the transition region samples the total
number of samples taken is 361. The total number of points in the impulse response is
1369. The frequency sample locations are shown in Fig. 4.20 (a). The impulse response of
the designed filter is shown in Fig. 4.20 (b). The filter coefficients were obtained from
Egs. (2.5.4) and (2.2.10) with the Matlab program developed for rectangularly shaped FIR
filters, grd2d.m, see Appendix A. The frequency response magnitude contour and
perspective plots of the designed filter are shown in Fig. 4.20 (c) and (d), respectively.
The maximum deviations are 5, = 0.0052 and 8 = 0.0472 in the passband and stopband,

respectively.
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Figure 4.20 A cross shaped zero phase FIR filter of size 37x37 points from Example 4.8(a).
(a) Frequency sample locations; (b) impulse response of the designed filter;
(c) Frequency response contour plot; (d) frequency response perspective plot.

164



Example 4.8 (b) Another cross shaped FIR filter of size 53x53 points and frequency
edge specifications @ip1 = @np; = 0.15%, ans) = @51 = 0.227%, Wip2 = @p2 = 0.7,

@152 = ansy = 0.85n. The cross shaped FIR filters require increased filter order in
comparison with the other shapes in order to obtain the same error-level performance.
This filter has maximum error 8, = 0.0140 in the passband and 8 = 0.0076 in the
stopband. The frequency sample locations are shown in Fig. 4.21(a). The impulse
response of the designed filter is shown in Fig. 4.21(b), while its frequency response
contour and perspective plots are presented in Fig. 4.21(c) and (d), respectively.
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Figure 4.21 A cross shaped zero phase FIR filter of size 53x53 points from Example 4.8(b).
(a) Frequency sample locations; (b) impulse response of the designed filter;
(¢) Frequency response contour plot; (d) frequency response perspective plot.
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Some trials have been made to design elliptically shaped zero-phase FIR filters. Since
these filters have fourfold symmetric frequency response and impulse response, the
frequency samples should be taken on elliptic contours in the first quadrant of the
frequency plane. This makes the inverse problem much more difficult than the circular
shaped filter case. The results were not satisfactory, partly because of the increased ill-
conditioning, partly because of time shortage to improve the sample taking program. That

is why no results are presented here.

4.4 Summary and Conclusions.

In this chapter techniques for designing 2-D half-band as diamond, half-band 90° fan, and
other shapes FIR filters have been proposed. The techniques are based on the great
freedom of the nonuniform frequency sampling and are conceptually simple. Using the
existing symmetry properties of 2-D half-band FIR filters, the number of necessary
frequency samples is decreased significantly. The frequency samples are taken on parallel
lines in the approximation region. These lines are parallel to the shape contours of the
ideal (desired) filters. Two main techniques have been considered for determining the line
coordinates: 1) scaled extremal frequencies obtained from 1-D optimal filter design and
2) exponential distribution of parallel lines. Better results are obtained when all frequency
samples have value of unity than using the amplitudes corresponding to the 1-D extremal

frequencies.

A drawback of these techniques is the occurring in some cases ill-conditioning. Also,
singularities are not excluded and due measures should be taken to avoid them.
Nevertheless, it has been show with several design examples that the proposed techniques
can produce half-band diamond and half-band 90° fan zero-phase FIR filters of high
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performance in terms of approximation error and shape regularity. Special attention
deserves the optimization of parameter a, Eq. (4.2.1) since the maximum pass- and
stopband error depends strongly on it. The design simulations showed that there is an
optimal value of a for which the maximum error is minimized for this sampling
technique and 1t is the same in the passband and stopband, see the results in Table 4.1 (a)
and (b). Very possibly in this case the design is equiripple but that is still to be proved.

At the end of this chapter some of the capabilities of nonuniform frequency sampling
with the proposed sampling techniques in chapters 2 and 3 have been demonstrated. Zero
phase FIR filters with eightfold and fourfold symmetries of different shapes has been
designed. These filters exhibit regular shape and low approximation error. Not all

possibilities have been examined.
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Chapter §

Conclusions and Directions for Further Research

5.1 Conclusions

In this thesis several frequency sampling techniques have been proposed that can be used
for the design of 2-D zero-phase FIR filters. These techniques are simple conceptually
and produce good performance 2-D zero-phase FIR filters with piecewise constant
specifications: lowpass, highpass, bandpass, and bandstop. The range of transition
bandwidths and filter sizes covers most of the practical application needs. Despite that the
design method, including the sampling techniques plus the solution to the 2-D
interpolation problem, does not minimize the approximation error, and more precisely
any error norm, it makes steps forward to a good approximation of the optimal 2-D FIR
filter design. A common feature of all proposed sampling techniques is that the frequency
samples are taken on contours that match the contours of the desired filter shape, leading
to a high degree of shape regularity in the resulting filters. Also, the filter frequency
response, i.e., the bivariate function being approximated using 2-D polynomial
interpolation, has been presented as a generalized polynomial - a linear combination of
basis functions. The design is performed by solving for the coefficients of the bivariate
polynomial, which are all real numbers. All the proposed approaches use only real

arithmetic operations.

In Chapter 2, the design of rectangular shape zero-phase FIR filters with nonuniform
samples has been considered and several sampling techniques have been proposed. Using

the existing fourfold symmetries in both the frequency response and impulse response,
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the number of independent filter coefficients, the number of necessary frequency samples,
respectively, is reduced and the frequency samples are taken only in the first quadrant of
the frequency plane. The most promising among the proposed techniques appear to be the
one taking frequency samples on the vertices of a nonuniform rectangular grid, where the
grid line coordinates have exponential or harmonic distribution in the passband(s) and
stopband(s). A single parameter controls the grid line distribution and, consequently, the
maximum approximation error in the region of approximation. The proposed techniques
ensure computational simplicity since the bivariate interpolation problem is divided into
two univariate problems which are guaranteed to have a unique solution. The rectangular
shape FIR filters are the easiest to design with nonuniform frequency sampling due to the
fact that the sampling contours are straight vertical and horizontal lines.

The nonuniform frequency sampling design of zero-phase FIR filters with circular
shape has been considered in Chapter 3. The circular shape FIR filters appear to be the
most challenging for design with nonuniform frequency sampling. Several sampling
techniques have been proposed and investigated. Common for all of them is that the
frequency samples lie on circles centered at the origin of the frequency plane with radius
changing from zero to wn. The rest of approximation domain has been covered using
different approaches. The technique giving the best results among the proposed is the one
placing the samples on hyperbolic contours in the corner of approximation domain (near
the point (m, t)). Using the existing eightfold symmetries in the frequency response of a
circularly symmetric FIR filter and in its impulse response respectively, the number of
frequency samples is decreased approximately by factor of 4 to 7 compared to the
uniform sampling method. The approximation domain in which the frequency samples
are taken is the first octant of the frequency plane. The region and arrangement of
frequency samples adopted do not allow the problem to be divided into several smaller 1-
D problems, as in the rectangularly shaped filter case. As a consequence, the interpolation
matrix becomes ill-conditioned for filter sizes larger than approximately 25x25 points
and transition bands narrower than approximately 0.1x. In such cases inaccurate results

may be obtained. Nevertheless, the proposed techniques produce filters with good
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performance: low approximation error and very regular shape for medium and low filter
orders and not so narrow transition bands. With the technique, using the extremal
frequencies and amplitudes of 1-D optimal design, equiripple behavior is observed
around the origin of the frequency plane, for some cases extending to radius of 7. It was
shown at the end of the third chapter that circular shape filters with narrow transition
band (about 0.057) and increased impulse response support size can be designed with
nonuniform frequency sampling using the proposed techniques with the number of
samples greater than the number of independent filter coefficients, i.e., by solving an
overdetermined system of linear equations. A drawback of this approach is the increased

number of arithmetic operations.

In chapter 4, the design of 2-D half-band FIR filters with nonuniform frequency
sampling has been considered. Sampling techniques for the design of diamond and fan
shaped filters have been proposed. The symmetries and properties of the frequency
response and impulse response of 2-D half-band filters allow even smaller number of
frequency samples to be taken than the rectangular and circular shape case. The samples
are now taken in a small triangular region in the first octant of the frequency plane. The
samples lie on straight lines parallel to the isocontours of desired filter magnitude. Two
sampling techniques have been proposed. The first of them calculates the locations of the
parallel lines using the extremal frequencies of a 1-D optimal filter design. The sample
values on each line can have the corresponding values of the 1-D extremal points or are
simply set to unity. The other technique uses exponential distribution of parallel lines. All
samples have value of unity. The changing density of parallel lines is controlled by
supplying a properly chosen parameter. In this way the approximation error can be
controlled in a certain degree. It has been show with several design examples that the
proposed techniques can produce half-band diamond and half-band 90° fan zero-phase
FIR filters of high performance in terms of approximation error and shape regularity. As
drawbacks can be pointed the ill-conditioning of the interpolation matrix for many cases,
especially for increased filter sizes, and the possible occurrence of singular cases, for

whose circumvention adequate measures must be taken. At the end of this chapter, the
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capabilities of the nonuniform sampling techniques proposed in this thesis have been
demonstrated with the design of zero-phase FIR filters with different shapes.

5.2 Possible directions for further research

For the rectangular shape FIR filters the sampling techniques taking samples at the
vertices of a nonuniform rectangular grid are to be preferred since the computational
complexity is greatly reduced and the results are comparable with these obtained with
samples on parallel lines. The most immediate step that can be taken is the investigation
and optimization of the parameters controlling the line density in the cases of exponential
and harmonic distribution of the grid lines, [see Egs. [2.5.5), (2.5.6), (2.5.12), and
(2.5.13)]. This can be done by using an iterative procedure, in which the maximum error
is minimized with respect to the parameter a, similar to the steepest gradient method.
However, the iterative procedures will make the design unnecessary computationally
expensive. One of the main ideas of the present work was that the design should avoid
complex iterative algorithms. A possible solution is the use of iterative procedures only
for tabulation of the controlling parameter a for variety of filter sizes and transition
bandwidths. Also, it is believed that separate functions for the passband(s) and
stopband(s) will improve further the designed filter performance.

As far as the circular shape FIR filters are concerned, the first further step should be the
improvement of the algorithm for the contour shape and locations in the comner region Rc,
see Sec. 3.1. The maximum error is almost always into this region and better contour
locations can improve significantly the filter performance. The algorithm for the number
of samples on each contour should be also improved. Actually, this is not so much of an

issue. Much more important is the number of contours and their relative and absolute
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locations. A possible way to determine better contour shape in the comer region Rc is to
use circular contours in the region Rx and to apply one of the optimal filter techniques,
described in [21], for example, on a dense grid only in the corner region Rc. In this way,

the critical points in this region will probably outline the contour shape.

Although in many cases where the circular contours pass trough the extremal
frequencies of a 1-D optimal filter we have almost equiripple behavior in the region R, ,
when the 1-D filter order is greater than about 26, the interpolation matrix condition
number increases drastically, since the contours happen to be very "close" to each other.
Therefore, another technique should be used to calculate the radii of the concentric
contours if a high-order 2-D filter is required with low deviations. Recent experiments
have shown that circular contours in R, exponentially distributed in the passband(s) and
stopband(s) combined with hyperbolic contours in Rc give sometimes better result than
the proposed technique in Subsection 3.3.3. This technique with exponentially distributed
contours in R, can be further improved and all recommendations made above for the

similar technique for rectangular filters are valid here too.

An empirical formula can be found for estimating the size of the circular filter from the
given passband and stopband deviations. Also, the order of the 1-D optimal prototype
filter should be selected automatically. This won't be a difficult problem. The design
simulations have shown that the maximum deviation, usually obtained in the corner
region Rc, is 2 to 5 times greater than the 1-D ripple. Therefore, the Matlab signal

processing routine remezord.m could be used in an appropriate way.

Ways should be found for better solution of the 2-D interpolation problem. A more
numerically stable method should be used as, for example, dividing the 2-D problem to
several smaller 1-D problems. Interpolating in polar coordinates is also an option, see

Marvasty [31].
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Most of the directions given for rectangular and circular shape FIR filters hold for the
sampling techniques used for 2-D half-band diamond and fan shaped filters. It became
clear that the sampling technique using 1-D extremal frequencies is less efficient than the
other one using exponentially distributed parallel lines. Therefore, the efforts should be
put on the improvement of the second technique. Some iterative procedures can be
employed in order to optimize the parameter a controlling the sampling line distributions.
Thus o can be tabulated for different filter sizes and for different passband and stopband
edge specifications. Further work is needed to determine if this sampling can really
produce equiripple filters, as it appears from some design examples. Probably in the case
of half-band FIR filters a way can also be found to break the 2-D interpolation problem to
several smaller problems and thus improve the numerical stability of the interpolation

method.

An efficient sampling technique and a reliable interpolation method for 2-D zero-phase
elliptic shape filters are yet to be proposed.

The proposed sampling techniques can be used as an initial step in iterative algorithms
for minimax 2-D FIR filter design. Prior to start the multiple exchange procedure, the
conditions implied by the characterization theorem for the optimal approximation,
Theorem 1.8, Sec. 1.2, must be checked. Using frequency samples obtained with the
proposed sampling techniques in this thesis as initial critical point set can significantly

reduce the number of iterations and the design time.
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Appendix A
Program Listings

Al. Programs for Chapter 2: Rectangular Shape FIR Filters

function {wl, wl2, f12] = tsam2 (fpl, fsi, fp2, £fs2, M1, M2)

(wl, wl2, f£f12] = TSaM2(fpl, fsl1l, fp2, fs2, M1, M2)
Takes frequency samples in the first

quadrant of (wl,w2) plane placed on M1l vertical lines.
There are M2 samples on each line.

The sample coordinates are calculated using EXPONENTIAL
functions. The sampling points are stored in

vector wl and matrix wl2, and the corresponding

sample values -- in matrix f12. In this way

TSAM can be used with pnint2d.m to design a rectangular
shape 2-D FIR filter.

o0 OO o o o0 o 0 o0 O o o oW

See also PNINT1D, PNINT2D, TSAM

$ ©® Val Ninov, Aug. 1998
% Last revision: Oct. 1998

alpha = 1.25;

if nargin <5

Ml = 5; M2 = 5;

end

wpl = fpl*pi; wsl = f£sl*pi;
if nargin < 3

wp2 = wpl; ws2 = wsl;

else

wp2 = fp2*pi; ws2 = fs2*pi;
end

Nl = 2*M1-1; N2 = 2*M2-1;
PBwidthl = wpl; PBwidth2 = wp2;
SBwidthl = pi-wsl; SBwidth2 = pi-ws2;

Pl = PBwidthl/ (PBwidthl+SBwidthl) *Ml1;
Pl = round(Pl); Pl = max(1l,Pl):;

P2 = PBwidth2/ (PBwidth2+SBwidth2) *M2;
P2 = round(P2); P2 = max(1,P2);

S1 = round(Ml1 - P1); S1 = max(1,S1);
N1 = 2*(P1+S81)-1;

S2 = round(M2 - P2); S2 = max(1,S2);
N2 = 2*(P2+52)-1;

fprintf (' Filter size %d x %d, \n', N1, N2);
fprintf(' Pl = %d, S1 = %d, P2 = %d, S2 = %d\n', Pl, S1, P2,

S2);
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$ Vertical lines coordinates wl
xl1 = 0:1/P1:1-1/P1;
gl = 1 - exp(—-alpha*xl);
if max(gl)==
wlp = wpl;
else
wlp = wpl*gl/max(gl):;
end
xl = 0:1/81:1-1/81;
gl = exp(alpha*xl)-1;
if max(gl)==0 wls = (wsl+pi)/2:
else
wls = (pi-wsl)*gl/max(gl) + wsl;
end
wl ={wlp wls];

% sample coordinates wl2 on each line wl
wl2 = zeros(M2,M1); fl1l2 = zeros(M2,M1);
x2 0:1/P2:1-1/P2;
g2 1 - exp(-alpha*x2):
if max(g2)==
w2p = wp2:;
else
w2p = wp2*g2/max(g2):
end
x2 0:1/82:1-1/82;
g2 exp(alpha*x2)-1;
if max(g2)==0 w2s = (ws2+pi)/2:;
else
w2s = (pi-ws2)*g2/max(g2) + ws2;
end
w2ss = pi/(2*M2):pi/M2:pi;
for i=1:M1
if i <= P1
wl2(:,1) = [w2p w2s]';
else
wl2(:,1)
end
end

w2ss';

for i = 1:M1; for j = 1:M2
if i<=P1 & j<=P2 f£12(3,i) = 1; end
end; end

% PLOTTING

figure(2); clf reset

hold on

x1=0:0.2:3.6; yl=zeros(size(xl)):

x2 = 0:0.1:pi; y2=pi*ones(size(x2)):
plot(xl,yl,':w', yl, x1,':w',x2,y2,"'.w");
plot(y2,x2,"'.w");

ha=text (3.8,0.1,'w");

set (ha, 'FontName', 'Symbol') &, 'FontAngle','italic')

ha=text (4,0,°'1"); set(ha,'FontSize',8)
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ha=text (0.1,3.6,'w");

set (ha, 'FontName', 'Symbol*') %, 'FontAngle’,'italic’')

ha=text (0.3,3.5,'2"'); set(ha,'FontSize’',8);

ha=text (3.2,3.2, ' (p,p) ')’

set (ha, 'FontName', 'Symbol', 'FontSize',10):
ha=text(-.2,-.2,'0");

set (ha, 'FontName', *Symbol"', 'FontSize',11) ;

axis equal; axis off;

axis({-0.2 pi+0.5 -0.2 pi+0.5]):

plot ({0 wpll, [wp2 wp2],'w-."',[0 wsl], [ws2,ws2], " 'w-.
plot ([wpl wpll, [0 wp2],'w-."',[wsl wsl], [0 ws2],'w-.

for i=1:M1
plot ([wl(i) wl(i)], [0 pil,'g");
end

xx=[-.1 -.1 .1 .1 1*0.4; %
yy=[ .1 -.1 -.1 .1 1*0.4; % Patch size
for j=1:Ml
for i=1:M2
u=xx+wl (j);
=yy+wl2(i,3);
if f£12(i,3j)>0.5;
£fill(u,v,'g');

else plot (wl(j),wl2(i,j),'go', 'markersize’,4);

end
end
end

'Ys
')s
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function h = pnint2d(wl,wl2, £f12)

h = PNINT2D(wl,wl2,f12) returns 2-D FIR filter coefficients.
using nonuniform sampling ponts. wl is a column vector
containing the sampling frequencies along wl axis. wl2 is a
matrix each column containing sampling points in w2 direction
corresponding to a vertical line at wl(i). fl2 is the matrix
holding the magnitude samples at points {wl (i), wl2(i,3j)}.

de o0 o0 o o0 o of o

See also PNINT1D, TSAM2, ANFIR1
% Val Ninov, Last Revision Sept. 1998

(M2, M1l] = size(f1l2);
a2d = zeros (M2, M1l):;
g = zeros(M2,M1);

for k=1:M1
V2 = ones (M2,M2);
for 1 = 1:M2
for 1 = 2:M2
V2(i,j) = cos{(j-1)*wl2(i,k)):
end
end
g(:,k) = flipud(V2\fl2(:,k)):
end

V1l = ones (M1,M1);
for i = 1:M1
for j = 2:M1

V1(i,j) = cos((j-1)*wl(i)):;
end
end
for m=1:M2
a2d(m,:) = (Vi\g(m,:)"')"';
end

a2d = rot90(a2d,-1):;
[nl,n2]=size(a2d):;

a2d(l,2:n2)=0.5*a2d(1,2:n2);
a2d(2:n1,1)=0.5*a2d(2:nl1,1);
a2d(2:n1,2:n2)=0.25*a2d(2:nl1,2:n2);
hll = flipud(fliplr(a2d(2:nl,2:n2)));

hi2 = flipud(a2d(2:nl1,1:n2)};

h21 = fliplr(a2d(l:nl,2:n2));

h = [ hll hl2 ;

h21 a2d}:

if ~nargout

fiplot (h):; % Plot the frequency response
end
om— e END of pnint2d -—-——~=—--
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function [wl, w2, Hk] = nexp2g(fpl, £fsl1l, fp2, fs2,

R o0 o0 o oP

0% o0 o o o oP oP

o o

alpha

[wl, w2, Hk] = NEXP2G(fpl, fsl, fp2, fs2, M1, M2)

Takes frequency samples in the first

M1, M2)

quadrant of (wl,w2) plane placed on a nonuniform grid

vertices with Ml x M2 grid lines.

The sample coordinates are calculated using EXPONENTIAL %

functions.

The sampling points are stored in

matrices wl and w2, and the corresponding
sample values -- in matrix Hk. In this way

NEXP2G can be used with GRD2D.m to design a rectangular

shape 2-D FIR filter.
See also GRD2D, SHARM3, SCHEBY3

© Val Ninov, Sept. 1998
Last revision: Dec. 1998

= 1.25;

if nargin <5 Ml = 5; M2 = 5; end

wpl

fpl*pi; wsl = fsl*pi:

if nargin < 3

wp2 = wpl; ws2 = wsl;

else

wp2 = fp2*pi; ws2 = fs2*pi;
end

wl = zeros(1l,M1);

w2 = zeros(l,M2);

Hk = zeros (M1,M2);
N1 = 2*M1-1; N2 = 2*M2-1;
PBwidthl = wpl; PBwidth2 = wp2;

SBwidthl = pi-wsl; SBwidth2 = pi-ws2;

Pl = PBwidthl/ (PBwidthl+SBwidthil) *Ml;

Pl = round(Pl); Pl = max(1,Pl):

P2 = PBwidth2/ (PBwidth2+SBwidth2) *M2;

P2 = round(P2); P2 = max(1l,P2):

s1 = round(M1 - P1l); S1 = max(1l,S1):

N1 = 2*(P1+S1l)-1;

s2 = round(M2 - P2); S2 = max(1,S82):

N2 = 2*(P2+S2)-1;

fprintf (' Filter size %d x %d, \n', N1, N2):
fprintf (' P1 = %d, S1 = %d, P2 = %d, S2 =
P2, S2);

$ Coordinates along wl axis
xl = 0:1/P1:1-1/P1;

gl 1 - exp(-alpha*xl):
if max(gl)==
wlp = wpl:;

else

$d\n’',

P1,

s1,
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wlp = wpl*gl/max(gl):;

end

x1 0:1/81:1-1/81:;

gl exp (alpha*x1l)-1;

if max(gl)==0 wls = (wsl+pi)/2;
else
wls = (pi-wsl)*gl/max(gl) + wsl;
end

wl ={wlp wls];

% sample coordinates alon w2 axis

x2 = 0:1/P2:1-1/P2;
g2 = 1 - exp(-alpha*x2):
if max(g2)==
wZp = wp2;
else
w2p = wp2*g2/max(g2);
end

x2 = 0:1/82:1-1/82;

g2 = exp(alpha*x2)-1;
if max(g2)==0 w2s = (ws2+pi)/2:
else
w2s = (pi-ws2)*g2/max(g2) + ws2;
end

w2 = [w2p w2s]:

[ww2,wwl]=meshgrid(w2,wl):
Hk(1:P1,1:P2)=ones(P1l,P2);
plotsam (wwl,ww2,Hk, fpl, £s1, fp2, £s2) ;

o END of nexp2g --—-———-—-
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function (wl, w2, Hk] = sharm3(fpl, fsl, fp2,£fs2, M1 ,M2);

% [wl, w2, Hk] = SHARM3(fpl, fs2,fp2,£fs2,M1,M2)

% returns M1*M2 frequency samples

% taken in the first quadrant of the (wl,w2) plane

% using harmonic series.

% The passband edges are fpl*pi and fp2*pi, the stopband
% edges are psl*pi and fs2*pi, respectively.

% The function returns the grid line coordinates in vectors wl
% and w2, and the frequency samle values in matrix Hk.

% The desired 2-D LP filter has squared shape.

% Use GRD2D to design the 2-D zero phase FIR filter.

%

% See also: GRD2D, NEXP2G

% © Val Ninov, Sept. 1888

% Last revision: Dec. 1998

alpha = -0.8;

if nargin <5

M1 = 5; M2 = 5;

end
wpl = fpl*pi; wsl = fsl*pi:;
if nargin < 3

wp2 = wpl; ws2 = wsl;

else

wp2 = fp2*pi; ws2 = f£s2*pi;
end

wl = zeros(1,M1):

w2 = zeros(1l,M2):;

Hk = zeros(M1,M2):;

N1 = 2*M1-1; N2 = 2*M2-1;
PBwidthl = wpl; PBwidth2 = wp2;
SBwidthl = pi-wsl; SBwidth2 = pi-ws2;

Pl = PBwidthl/ (PBwidthl+SBwidthl) *M1;
Pl = round(Pl); Pl = max(2,Pl):;

P2 = PBwidth2/ (PBwidth2+SBwidth2) *M2;
P2 = round(P2); P2 = max(2,P2):

S1 = round(M1l - Pl); S1 = max(2,S1);

S2 = round(M2 - P2); S2 = max(2,S2);

if Pl+S1>M1
if pP1>S1 Pl=Pl-1:
else S1=S1-1; end
end
if P2+S2>M2
if p2>s82 P2=P2-1;
else S2=82-1; end
end
N1l = 2* (P1+S1)-1;
N2 = 2*(P2+582)-1;
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fprintf (' Filter size %d x %d, \n', N1, N2);
fprintf (' Pl = %d, S1 = %d, P2 = %d, S2 = %d\n', P1l, S1,
P2, S2):

% Coordinates along wl axis
R e A e e A e e s e e o P o . B 0 P
x = zeros(P1l,1);
for k=1:P1;

x(k) = sum((1l:k).”alpha)-1;
end
x1 = x*wpl/max(x);
x = zeros(S1,1);

for k=1:S81;

x(k)= 1 - sum((l:k).”alpha);
end
x2 x*{wsl-pi)/min(x} + pi:

wl [x1; flipud(x2)]:

$ Coordinates along w2 axis

y = zeros(P2,1);
for k=1:P2;
y(k) = sum((l:k).”alpha)~-1;
end
yl = y*wp2/max(y);
y = zeros(S52,1);
for k=1:52;
y(k)= 1 - sum((1l:k)."alpha):

end
y2 = y* (ws2-pi) /min(y) + pi;
w2 = [yl; flipud(y2)}]:

Hk(1:P1,1:P2)=ones(P1l,P2):;
[ww2,wwl]=meshgrid(w2,wl):

plotsam(wwl,ww2,Hk, fpl, £s1, £p2, £s2);

g END of sharm3 ----——---
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function h = grd2d(wl,w2,H, fp, £s)
% h = GRD2D(wl,w2,H) returns 2-D FIR filter coefficients.
% using nonuniform sampling ponts on the vertices of a %
nonuniform rectangular grid.
% wl is a vector containing the sampling frequencies along wl
% axis. w2 is a vector containing sampling points in w2
% direction. H is a matrix holding the sample values H(i,J)
% at points {wl (i), w2(3j)}.
%
% See also PNINT2D, PNINT1D, NEXP2G
% val Ninov, July. 1998
% Last revision: 20 Dec. 1988
[M1, M2] = size(H):
a = zeros (M1, M2):;
g = zeros (M1,M2);
Vvl = ones (M1,M1l);
V2 = ones (M2,M2);
for i = 1:M1
for j = 2:M1
V1(i,j) = cos((j-1)*wl(i)):
end
end
for i = 1:M2
for j = 2:M2
V2(i,3) = cos((j-1)*w2(1));
end
end
cl= cond(V1l); c2= cond(V2):;
a = VIN(H/(V2')):
a(l,2:M2)=0.5%*a(1,2:M2);
a(2:M1,1)=0.5*a(2:M1,1);
a(2:M1,2:M2)=0.25*a(2:M1,2:M2);
hll = flipud(fliplr(a(2:M1,2:M2)));
hl12 = flipud(a(2:M1,1:M2));
h21 = fliplr(a(l:M1,2:M2));
h = [ hll hl2 ;
h21 aj:
if ~nargout
fiplot (h):
end
if nargin ==
[rp,rsl=rippler (h, fp, £s,128)
end
- END of grd2d —--—-————-

186



A2. Programs for Chapter 3: Circular Shape FIR Filters

function ([wl,w2, H] = vcirc3(fp,£fs,N1l)

[wl,w2,Hk]=VCRC3(fp, fs,N1l) takes samples placed on circular
contours in (wl,w2) plane. These contours

pass through the extremal frequencies

obtained using the Remez exchange algorithm

for optimal 1-D filter of order Nl.

The obtained samples can be used with CNINT2D

to design a circularly symmetric 2-D lowpass FIR filter

by nonuniform sampling.

The edge frequencies fp and fs are specified in rad/pi units
between [0 1], 1 corresponding to pi rad/s (Nyquist).

o0 o0 o0 o O o0 A0 OO o o0 o oo

See also: VCIRC4, VCIRC7, CNINT2D,

© Val Ninov, Aug. 1998
Last Revision: Dec.98

o0 o

Wl, H1] = pmcc(N1l,{O0 fp £s 1},{ 1 1 0 01):
Wl = W1l*2*pi;

Wl = Wl(:); H1 = H1(:):
end
L = max(size(Wl));
if abs(W1l(L)-pi)>10*eps

Wl = [Wl;pi]; H1 = [H1l; H1(L-1)]; L = L+l1;
end

zeros (10,1);
zeros (10,1);
zeros (10,1);
if Wi(l)==
wl (1) Wl(l):
w2 (1) W1l (1l):
H(1) H1(1):
k=2; o=2;
else
k=1; o=1;
end
for j = o:L
phi(:) =
for i=1l:
wl (k) W1l(j)*sin(phi(i)):
w2 (k) W1l (j)*cos(phi(i)):
H(k) = H1(3j):
k =k+1;
end
clear phi
end
N = max(size(wl)):

wl
w2
H

pi/d4:pi/4/j:pi/2;
J
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$PLOTTING

t = 0:pi/100:pi/2;
figure(l); clf reset
hold on
for i=1:L
plot (W1(i)*sin(t),W1l(i)*cos(t),'g"'):
end

x1=0:0.2:3.6; yl=zeros(size(xl)):

x2 = 0:0.1:pi; y2=pi*ones(size(x2));
plot(xl,yl,':w', y1, x1,':w',x2,y2,'.w");
plot(y2,x2,"'.w');

ha=text (3.8,0.1,'w'};

set (ha, 'FontName', 'Symbol') %, 'FontAngle','italic')
ha=text(4,0,'1'); set(ha,'FontSize*,8)
ha=text(0.1,3.6,'w");

set (ha, 'FontName', 'Symbol') %, 'FontAngle','italic')
ha=text (0.3,3.5,'2'"); set(ha,'FontSize',8):

ha=text (3.2,3.2,"'(p,p)"'})"

set (ha, 'FontName', 'Symbol', 'FontSize',10};
ha=text(-.2,-.2,'0");

set (ha, 'FontName', 'Symbol"', 'FontSize', 11)

axis equal:; axis off;

axis([-0.2 pi+0.5 -0.2 pi+0.5]):

for k = 1:N
if H(k) > 0.5
if H(k)>1
plot(wl(k),w2(k), " 'go', 'markersize’', 4)
plot (wl(k),w2(k),"'."', 'markersize',8)
else plot(wl(k),w2(k),'m.', 'markersize’,12)
end
else
if H(k)>0
plot (wl(k),w2(k),'go', ‘markersize’,4)
plot(wl (k),w2(k),'.', 'markersize’,8)
elseif H(k)==0 plot(wl(k),w2(k),'.', 'markersize',12)
else plot(wl(k),w2(k), 'm.', 'markersize’',12)

end
end
end
title('Sample Locations')
fos
hold off
F——————— END of vcirc3d ---—-—--
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function [wl,w2, H] = vcirc4 (fp, fs,N1)

% [wl,w2,Hk]=VCRC4 (fp, fs,N1) takes samples placed on circular
% contours in (wl,w2) plane. These contours
% pass through the extremal frequencies in
% obtained using the Remez exchange algorithm
% for optimal 1-D filter of order NI.
% The obtained samples can be used with VNINT2D
% to design a circularly symmetric 2-D lowpass FIR filter
% by nonuniform sampling.
% In contrast with VCIRC3, VCIRC4 takes samples in the region
% (W1r24+w272 > pi~2)U(0<=wl<=pi & 0<=w2<=wl)
% This is obtaimed by scaling (expanding) the frequency axis
% of the 1-D filter till sgrt(2)*pi
%
% See also: VCIRC3, VCIRC7, CNINT2D,
% ©® Val Ninov, Sept. 1998
% Last Revision: Dec. 98
sc = 1.41;
fp = fp/sc; fs = fs/sc;
(W1, H1] = pmcc(N1l,([0 fp £s 1],[ 1 1 0 01):
Wl = Wl*2*pi;
Wl = Wl(:); H1 = H1(:):
L = max(size(W1l)):
W1l(2:L) = sc*W1l(2:L);
wl = zeros(10,1); w2 = zeros(10,1):
H = zeros(10,1):
if W1(l)==
wl(l) = W1(l); w2(1l) = Wi(l); H(1) = H1(1);
k=2; 0=2;
else
k=1; o=l;
end
for j = o:1L
phi(:) = pi/4:-pi/4/j:0;
for i=1:j+1

u = Wl(j)*cos(phi(i)); v = W1l (j)*sin(phi(i)):
if u < pi
wl(k)=u; w2(k)=v; H(k) = H1(j):

k =k+1;
end
end
clear phi
end

N = max(size(wl)):
for kk=1:30 nn(kk)=sum(l:kk); end
MM = max (find(nn<=N));
if nn(MM) ~=N
Nd = N-nn(MM);
fprintf('\n %d samples will be discarded\n', Nd):;
M = length(wl}:;
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if £s>0.5 «r
else r

end

for k=r:3:r+3*Nd-1

fix(M/6):
fix(M/3);

wl = [wl(l:k-1,1); wl(k+1:M,1)];
w2 = [w2(1l:k-1,1); w2(k+1:M,1)];
H = [ H(1:k-1,1); H{(k+1:M,1)]:
M = length(wl):;

end

end

N = max(size(wl));
fprintf (' %d samples\n', N)

$PLOTTING
figure(l):; clf; hold on
x1=0:0.2:3.6; yl=zeros(size(xl)):
x2 = 0:0.1:pi; y2=pi*ones(size(x2)):;
plot (x1l,yl,":w', yl, x1,':w',x2,y2,"'.w");
plot(y2,x2,'.w'); ha=text(3.8,0.1,'w");
set (ha, 'FontName', 'Symbol') %, 'FontAngle', 'italic')
ha=text (4,0,'1'); set(ha,'FontSize',8)
ha=text (0.1,3.6,'w"');
set (ha, 'FontName', 'Symbol') %, 'FontAngle','italic')
ha=text (0.3,3.5,'2'); set(ha, 'FontSize',8);
ha=text (3.2,3.2,'(p,p)"}):
set (ha, 'FontName', 'Symbol', 'FontSize',10);
ha=text(-.2,-.2,'0");
set (ha, 'FontName', 'Symbol', 'FontSize',11);
axis equal; axis off;
axis([-0.2 pi+0.5 -0.2 pi+0.5}):
t = 0:pi/100:pi/2;
for i=1:1L

plot (Wl(i)*sin(t),Wl(i)*cos(t),'g")’
end

for k = 1:N
if H(k) > 0.5
if H(k)>1
plot(wl (k) ,w2(k),"'go’, 'markersize’, 4)
plot (wl(k),w2(k),'.', 'markersize’,8)
else plot(wl(k),w2(k),'m."', 'markersize',12)
end
else
if H(k)>0
plot (wl (k) ,w2(k),'go', 'markersize’, 4)
plot (wl(k),w2(k),"'.', 'markersize’,8)
elseif H(k)==0 plot(wl(k),w2(k),'.', 'markersize',12)
else plot(wl(k),w2(k),'m."', 'markersize',12)

end
end
end
title('Sample Locations'):; fos
hold off
§-——————- END of vcirc4 --——————-
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function [wl,w2, H] = vcirc7(fp,fs,N1l,wts)

o dP o0 o0 A o o0 P P P P o° of ol o

[

i
e

e

[wl,w2,Hk]=VCRC7 (fp,fs,N1) takes samples placed on circular
contours in (wl,w2) plane. These contours

pass through the extremal frequencies in

obtained using the Remez exchange algorithm

for optimal 1-D filter of order NI.

The obtained samples can be used with CNINT2D

to design a circularly symmetric 2-D lowpass FIR filter

by nonuniform sampling.

The edge frequencies fp and fs are specified in rad/pi units
between [0 1], 1 corresponding to pi rad/s (Nyquist).

VCIRC7 takes samples in the region

(Wwl™2+w272 > pi~2)U0(0<=wl<=pi & 0<=w2<=wl)

These samples lie on hyperbolic contours.

See also: VCIRC6, CNINT2D

© Val Ninov, Oct. 1998
Last Revision: Jan. 1999

f length(fp)>1 Wl=fp; Hl=fs; N1=2*(length(fp)-2):;
1se

if nargin ==

[Wl, H1] = pmcc(N1,([0 fp fs 1]1,[1 1 O O],wts):
else [W1l, H1] = pmcc(N1l,([0 fp fs 1],[1 1 O O])~

end

Wl = W1l*2*pi;

Wl = Wl(:); H1 = H1(:);
nd

L = max(size(Wl)):

if abs (W1 (L)-pi)>10*eps
Wl = {Wl;pil:; H1 = [H1l; H1(L-1)]:; L = L+1;
end
Sg = sqgrt(2):
d = sum(diff(Wl))/length(diff(Wl));
W2 = Sg*pi-0.1:-d:W1l(L):; %:(d) :Sg*pi-
W2 = fliplr(W2);
L2 = max(size(W2));
wl = zeros(300,1):
w2 = zeros(300,1):
H = zeros(300,1):
if W1(l) <= eps
wl(l) = 0;
w2(l) = 0:
H(l) = H1(1):
k=2; 0=2;
else
k=1; o=1;
end

for j = o:L
phi(:) = pi/4:-pi/(pi*(j-1)+5):0;
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for i=1l:1:length(phi)

wl(k) = W1(j)=cos(phi(i));
w2 (k) = Wl(j)*sin(phi(i)):
H(k) = H1(j);
k =k+1;

end

clear phi

end
Nbase = max(find(wl)):

$ Now take the additional samples

§ e e e e e e e e e e e e e e e B e R s s e e

for j = 1:1L2

st = 8/ (2*pi* (L+j-1)+7): $if N1>=16 st = 0.8*st; end

phi(:) = 0:-st:-1;
wx = W2(j)*cosh(phi) /Sq; wy
WXX = WX — WY;
WYY = WX + Wy;
if j==1&N1<=10 o0=2;
elseif j==1 & N1>10 o=2;
else o=1;end
for i=o:length (wxx)
if wxx(i)<=pi

= W2(j)*sinh(phi) /Sq;

wl(k) = wxx(i); w2(k) = wyy(i):

if rem(j,2) H(k) = H1(L):;
else H(k) = H1(L-1);
end
k =k+1;
end
end
clear phi wx wy
end

3wl (k) = pi; w2(k) = 1.3; H(k) = H1(L); k=k+l;
$wl(k)=3.092505; w2(k)=1.423534; H(k) = H1l(L); k=k+1:

if N1>=20

wl(k) = 3.12; w2(k) = 1.3; H(k) = HI1(L):
end

N = max(find(wl~=0));

wl = wl(1l:N); w2 = w2(1:N); H = H(1:N);

for kk=1:30 nn(kk)=sum(l:kk); end

MM = max(find(nn<=N});

remove=0;

if abs(N-nn(MM))<= fix (N1l/6)
Nd = N-nn(MM-1); remove=l;

end

if (nn(MM) ~=N & abs(N-nn(MM))> fix(N1/6)) | (nn(MM)~=N & N1<12)

Nd = N-nn(MM); remove=l;
end
if N==nn (MM)&N1<1l2 | N<10 remove=0;
end
if remove

fprintf('\n %d samples. %d samples
M = length(wl):

will be discarded\n’',

N,

Nd) ;
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p 3; count = 0;

r max (4, fix ((M-p*Nd)/3)):
dr = 10*eps:;

for k=r:p:r+p*Nd-1

wl = [wl(l:k-1,1); wl(k+1:M,1)];
w2 = [w2(1:k-1,1); w2(k+1:M,1)1];
H = [ H(1:k-1,1); H(k+1:M,1)1;

M = length(wl):;
count = count+l;
end
end
N = max(size(wl)):
fprintf(' %d samples\n', N):;

% PLOTTING

t = 0:pi/100:pi/2;
theta(:) = pi/4:-pi/32:0;
t2 = 0.5:-0.01:-0.5;

c2 = pi*ones(size(t2)}:
x=[0 4]};

y = zeros(size(x)):

figure(l):; clf
hold on
for i=1l:L
plot (W1 (i)*sin(t),Wl(i)*cos(t),'g");
end
for i=l:max(size(theta))
y = tan(pi/2-theta(i)) *x;
$plot(x,¥Y,'w")
end

x1=0:0.2:3.6; yl=zeros(size(xl)):

x2 = 0:0.1:pi; y2=pi*ones(size(x2));

plot (xl,yl, ':w', vyl, x1l,':w',x2,v2,'.w');
plot(y2,x2,'.w');

ha=text(3.8,0.1,'w');

set (ha, 'FontName', 'Symbol') &, 'FontAngle','italic')
ha=text(4,0,'1'); set(ha,'FontSize’',8)
ha=text(0.1,3.6,'w');

set (ha, 'FontName', 'Symbol') %, 'FontAngle’,'italic"')
ha=text (0.3,3.5,'2'); set(ha,'FontSize’',8);
ha=text(3.2,3.2,'(p,pP)")"

set (ha, 'FontName', 'Symbol', 'FontSize',10);
ha=text(-.2,-.2,'0'}:;

set (ha, 'FontName', 'Symbol', 'FontSize',11);

axis equal; axis off;

axis([-0.2 pi+0.5 -0.2 pi+0.5]);

for i=1:L

plot (W1l (i) *cos(t),Wl(i)*sin(t),"'g");
if i<=L2
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X = W2(i)*cosh(t2)/Sq; Y = W2(i)*sinh(t2)/Sq:
plot (X-Y,X+Y,'c"):;
end
end
plot ([0 pi], [0 pi],'w-')
$for i=l:max(size(theta))
% y = tan(theta(i))*x;
$ plot(x,y,'w')
$end

$plot ([0 pi], [pi pil,'r'); plot(([pi pil, (0 pil,'r"):

$axis('equal'); grid on;
$axis ([0 pi+0.2 0 pi+.2]):

for k = 1:N
if H(k) > 0.5
if H(k)>1
plot (wl(k),w2(k),'go', 'markersize’,4)
plot (wl(k),w2(k),'."', 'markersize’,8)
else plot(wl(k),w2(k),'m.', 'markersize’,12)
end
else
if H(k)>0
plot (wl(k),w2(k),'go"’', 'markersize’,4)
plot (wl(k),w2(k),'."', 'markersize’',8)

elseif H(k)==0 plot(wl(k),w2(k),'."', 'markersize',12)

else plot(wl(k),w2(k),'m.', 'markersize’',12)

end
end
end
title('Sample Locations')
fos
hold off
Fommm—m END of vcirc?7 - —==—————-
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function [h,V,al] = cnint2d(wl, w2, H, fp, fs)

% h = CNINT2D(wl,w2,H) solves for the coefficients

% of an eigthfold symmetrical FIR filter (e.g. circular)
% with nonuniform frequency samples as input arguments.

% The algorithm is based on the properties

% of an eightfold symmetric zero-phase FIR

% filter of size (2*M-1)X(2*M-1). The input arguments are
% the sample point coordinates stored in vectors wl and w2,
% and the sample values in vector H.

% The pass- and stopband edge frequencies fp and fs

% in rad/pi) are optional and if supplied the program

% returns the maximum pass- and stopband deviations.

% ® Val Ninov, Aug. 19838

% Last Revision: Nov. 98

wl = wl(:);

w2 = w2(:);

H = H(:);

for k=1:30 n(k)=sum(l:k):; end

len = max(size(wl)):
M = max(find(n<=len)):
N = n(M);

if N ~= len

fprintf ('With %d samples a %d X %d filter wil be designed\n',...
len, 2*M-1, 2*M-1);
fprintf (' Only the first %d samples will be used\n', N):

fprintf(' If you want %d X %d size take %d more samples\n’',...

2*M+1,2*M+1,n(M+1)-1len):

end

al =

zeros (N, 1) ;

a = zeros(M,M);
V = zeros (N,N);

flops(0);
for k=1:N;
1 =1:
for nl = 0:M-1
for n2 = 0:nl
if nl==n2
V(k,l) = cos(nli*wl(k))*cos(n2*w2(k)):;
else

V(k,1l) = cos(nl*wl(k))*cos(n2*w2(k))...
+ cos (n2*wl(k))*cos(nl*w2(k));

end

1 = 1+1;

end

end
end
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condV = cond (V)
al = V\H(1:N);

i=1;
for i=1:M

j=j+i-1;

a(i,l:i)=al(j:j+i-1,1)"':
end

for i=1:M

for j=1:M

if 3>i a(i,j)=a(j,i); end

end

end
aa = a:

a(i,2:M)=0.5%*a(1,2:M);
a(2:M,1)=0.5*a(2:M,1);
a(2:M,2:M)=0.25*a(2:M,2:M):;

hil = flipud(fliplr(a(2:M,2:M)));

hl2 = flipud(a(2:M,1:M));

h21 = fliplr(a(l:M,2:M));

h = [ hll hl2 ;

h21 a]l:;

if ~nargout

fiplot(h): % Plot the frequency response
end

if nargin ==
[dp,ds]=ripplec (h, fp,£fs,128) % Determine max. deviations
end

gmmm——————— END of cnint2d - ---—-—-——-—--———---
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function [rp,rs] = ripplec(h, fp, fs, N)

% (rp,rs] = RIPPLEC(h, fp, fs) returns the

% passband and stopband max ripples of a 2-D

% LP or HP FIR filter with circular symmetry.

% h is the filter impulse response, fp and fs are the
% frequency edges (in radians/pi), fp=wp/pi, fs=ws/pi.
% N is the 2-D DFT size: N-by-N points.

® Val Ninov, Sept. 1998
Last Rrevision: QOct. 98

o0 o

if nargin < 4
N = 128;
end

H = fft2(h,N,N);

H = abs(H(1:N/2,1:N/2));
high=0;

if H(1,1)<0.5 high =1; end

round (N/2*fp + 1);
round (N/2*fs + 1);

Rp
Rs

[f1,£f2] = meshgrid(1:N/2,1:N/2);
ind = sqrt(fl.~2 + £2.°2):;

passb = find(ind <= Rp):

stopb = find(ind > Rs};

if ~high % Lowpass
rp = max (max(abs (H(passb))-1)}:
rs = max{max (H(stopb))):
else % Highpass
rp = max (max (abs (H(stopb))-1)):
rs = max (max (H(passb))):;
end
iMaxs = find (H==max (max(H(stopb)))):
xMaxs = fix(iMaxs/(N/2)) + 1;
yMaxs = rem(iMaxs, N/2):

if ~yMaxs yMaxs = N/2; end

yMaxs = yMaxs+l:;

wlsMax = ((xMaxs-1)*2*pi/N);

w2sMax = ((yMaxs-1)*2*pi/N);

fprintf ('\n Maximum error in the stopband at frequencies:\n'):
fprintf (' ( $f , %f£f ) \n', wlsMax, w2sMax);

go—m————— = END of ripplec -——————————m—————=—=—
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A3. Programs for Chapter 4: Diamond and Fan FIR Filters

function [wl,w2, H] = diam2(fp, fs,Nl,wts)

[wl,w2,Hk]=diaml (fp, £s,N1) takes frequaency samples

in 1/4 of the first quadrant of (wl,w2) plane.

The samples lie on parallel lines obtained from 1-D optimal
filter design. The obtained samples can be used with DNINT2D
to design a 2-D half-band diamond shaped FIR filter

by nonuniform sampling. The edge frequencies fp and fs are
specified in normalized by pi frequencies between [0 1],

1 corresponding to pi rad/s (Nyquist).

O o0 00 o OF OF o dP o o

See also: DNINT2D

© val Ninov, Dec. 1898
Last Revision: Feb. 99

oo oP

if fp+fs~=1
error ('Incorect edge frequencyes for a halfband filter'):
end

if length(fp)>1 Wl=fp; Hl=fs; N1l=2*(length(fp)-2):
else

if nargin ==4

(W1, H1] = pmcc(N1l,[0 fp fs 1],{1 1 0 0],wts);
else [W1l, Hl1] = pmcc(N1l, ([0 fp fs 1],[1 1 O 0]);

end
Wl = Wi*2*pi;
Wl = W1l(:); H1 = H1(:):;

end

Ll = max(size(W1l)):
if abs (W1l (Ll)-pi)>10*eps

Wl = [(Wl;pi]; H1 = [H1; H1(L1-1)]; L1 = L1+1;
end
Sq = sqrt(2);

Ll find (Wl == fp*pi):
wl = zeros(300,1);
w2 = zeros(300,1);
H = zeros(300,1);

if Wi(l) <= eps

wl(l) = 0; w2(1) = 0; H(1) = H1(1l):;
k=2; o0=2;
else

k=1; o=1;
end

for o:L1

j = o:
m = tan(pi/4-0.02:-pi/ (pi*(j-1)+5):0);
for i=1l:length(m)

wl(k) = 2*W1l(j)/(m(i)+1):;

w2 (k) = m(i)*wl(k):

H(k) = H1(j):
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k =k+1;
end
clear m;
end

for kk=1:30 n(k)=fix((kk+1l)/2)*fix((kk+2)/2); end
Ns = max(find(wl)):;
M = max(find (n<=Ns));
L =n(M:;
if L ~= Ns
$for 3 = Ll+l:1length(W1l)
% wl(k) = W1l(j); w2(k) = W1(j):
% H(k) = H1(j):; k =k+1;
$end
end

Ns
wl

max (find (wl) ) ;
wl(l:Ns); w2 = w2(1l:Ns); H = H(1l:Ns);

for kk=1:30 nn(kk)=fix((kk+1l)/2)*fix((kk+2)/2); end
MM = max (find (nn<=Ns));
remove=0;
if Ns ~= nn(MM)
Nd = Ns-nn (MM):; remove=1l;
end
if remove

fprintf('\n %d samples. %d samples will be discarded\n', Ns,

Nd) ;
g = length(wl);
p = 3; %$count = 0;
r = max(4, £fix((g-p*Nd) /3)):

for k=r:p:r+p*Nd-1

wl = [wl(l:k-1,1); wl(k+l:q,1)1]:;
w2 = [w2(1l:k-1,1); w2(k+l:q,1)}]:
H = [ H(1:k-1,1); H(k+l:q,1)1:
g = length(wl);
$count = count+1l;
end
end

Ns = max(size(wl)):
fprintf (' %d samples\n', Ns);

o END of diam2  -------—-———ooo—-
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function [wl,w2, H] = diam4 (fp,£fs,N,alpha)

[wl,w2,Hk]=diam4 (fp, £s,N1}) takes frequaency samples

in 1/4 of the first quadrant of (wl,w2) plane

on parallel lines with exponential distribution.

The obtained samples can be used with DNINT2D

to design a 2-D half-band diamond shaped FIR filter

by nonuniform sampling.

The edge frequencies fp and fs are specified in normalized
by pi frequencies between [0 1], 1 corresponding to pi rad/s

of 0P d0 O OP O O OP Of of

See also: DIAM2, DNINT2D

®© Val Ninov, Jan. 1999
% Last Revision: Feb.99

if fp+fs~=1
error('Incorect edge frequencyes for a halfband filter');
end

if nargin<4 alpha = 1.7; end

P = max(2,£fix(N/4));

x = 0:1/P:1-1/P;

g =1 - exp(-alpha*x}:
Wl = fp*pi*g/max(g):

Sq = sgrt(2);

L1l = length(W1l);

wl = zeros(300,1); w2 = zeros(300,1);
if W1l(l) <= eps

wl(l) = 0; w2(l) = 0;
k=2; o=2;
else k=1; o=1;

end

for j o:L1

m = tan(pi/4-0.05:-(pi/4-0.06)/(j):0.01);
for i=l:length(m)
wl (k) 2*W1(3j)/ (m(i)+1)~
w2 (k) = m(i)*wl(k):
k =k+1;
end
clear m;

end
Ns max(find(wl)):
wl wl(1l:Ns); w2 = w2(1l:Ns);
for kk=1:30 nn(kk)=fix{(kk+l)/2)*fix((kk+2)/2); end
MM = max(find(nn<=Ns));
remove=0;

if Ns ~= nn (MM)

Nd = Ns-nn{MM); remove=l;

end
if remove

fprintf('\n %d samples. %d samples will be discarded\n', Ns, Nd):;
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= length(wl); p = 3;

= max (3, fix((g-p*Nd)/3)):

or k=r:p:r+p*Nd-1

wl [wl(l:k-1,1); wl(k+l:q,1)1;
w2 fw2(1l:k-1,1); w2(k+1l:gq,1)]:
g = length(wl):
end

end

Ns = max(size(wl)):;

H = ones(Ns,1});

fprintf (' %d samples\n', Ns);

q
r
£

% PLOTTING

figure(l); clf reset; hold on
x1=0:0.2:3.6; yl=zeros(size(xl)};

x2 = 0:0.1:pi; y2=pi*ones(size(x2)):;

x3 = pi/2:0.1:pi; y3 = -x3+pi;
plot(xl,vyl,':w', yl, x1,':w’,x2,y2,"'.w');
plot(y2,x2,'.w', x2,x2,"'.w"', x3,y3,"'.w");
ha=text(3.8,0.1,'w"');

set (ha, 'FontName', 'Symbol') %,'FontAngle', 'italic')

ha=text (4,0,'1"'); set(ha, 'FontSize',8)
ha=text(0.1,3.6,'w'");

set (ha, 'FontName', 'Symbol') %, 'FontAngle','italic')

ha=text(0.3,3.5,'2'); set(ha, 'FontSize',8);
ha=text(3.2,3.2, "' (p.,P)"'):;
set (ha, 'FontName', 'Symbol"', 'FontSize',10);
ha=text(-.2,-.2,'0"):
set (ha, 'FontName', 'Symbol"', 'FontSize',11);
axis equal; axis off;
axis([-0.2 pi+0.5 -0.2 pi+0.5]):
for i=1:1L1

plot ([W1 (i) 2*W1l(i)],[Wl(i) 0]),'g");
end
for k = 1:Ns

if H(k) > 0.5

if H(k)>1
plot (wl(k),w2(k),'go', 'markersize’,4)
plot(wl(k),w2(k),"'.', 'markersize’',8)
else plot(wl(k),w2(k),'m."', 'markersize’',12)
end
else
if H(k)>0

plot (wl(k),w2(k),'gc', 'markersize’', 4)
plot(wl(k),w2(k),'."', 'markersize’',8)

elseif H(k)==0 plot(wl(k),w2(k),'.', 'markersize',12)

else plot(wl(k),w2(k),'m."*, 'markersize’,12)
end
end
end
title ('Sample Locations'); hold off

S END of diam§  ———=—m—————————m
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func

o0 a0 o0 OO OO K N o o

oo

if

els
if
(w
el
en
Wl
Wl

end
L1l

tion [wl,w2, H] = fan2(fp,fs,Nl,wts)

[wl,w2,Hk]=FAN(fp,fs,N1) takes frequaency samples

in 1/4 of the first quadrant of (wl,w2) plane.

The samples lie on parallel lines passing trough
extremal frequencies obtained from a 1-D optimal filter
The obtained samples can be used with FNINT2D

to design a 2-D fan FIR filter

by nonuniform sampling.

See also: FNINT2D, DIAM, DNINT2D

Val Ninov, Dec. 1988

length(fp)>1 Wl=fp; Hl=fs; N1=2*(length(fp)-2}:
e

nargin ==

1, H1] = pmcc(N1, [0 fp f£s 1],[1 1 O 0],wts):

se [W1l, H1] = pmcc(N1l,[0 fp fs 1]1,(1 1 O 0]):
d

Wl*2*pi;

Wi(:); H1 = H1(:);

= max(size (W1l)):

if abs(W1l(L1l)-pi)>10*eps

Wl
end

Sq
L1

en

for
Ns =

[Wl;pi]l:; H1 = [H1l; H1(L1-1)]}; L1 = L1+1;

= sqrt(2);
= find (Wl == fp*pi):

= zeros (300,1);
= zeros (300,1):;

= zeros (300,1):;

Wl(l) <= eps

(1) = pi; w2(l) = 0;
1) = H1(1):

2; o=2;

j = o0:L1
m = pi-W1(j)+0.02:(W1(j)-0.03)/j:pi-0.01;
or i=l:length(m)
wl (k) m(i);
w2 (k) wl (k) +2*W1(j)~-pi;
H(k) = H1(j):
k =k+1;
end
clear m;

Hh

d

kk=1:30 n(k)=fix((kk+1)/2)*fix((kk+2)/2):; end
max(find(wl));
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max (find (n<=Ns) ) ;
n(M);
if L ~= Ns

$for j = Ll+l:1length(W1l)

t
nu

% wl(k) = W1(3j); w2(k) = W1(j):
% H(k) = H1(j):; k =k+1;
$end
end
Ns = max(find(wl));
wl = wl(1l:Ns); w2 = w2(1l:Ns); H = H(1:Ns):

for kk=1:30 nn(kk)=fix((kk+1l)/2)*fix((kk+2)/2); end
MM = max(find(nn<=Ns)}:;

remove=0;
if Ns ~= nn (MM)
Nd = Ns-nn{(MM); remove=l;
end
if remove

fprintf('\n %d samples. %d samples will be discarded\n', Ns,

Nd) ;
g = length(wl):
p = 3; %count = 0;
r = max(4,fix ((g-p*Nd)/3)}):

for k=r:p:r+p*Nd-1

wl = [wl(1l:k-1,1); wl(k+1l:q,1)];
w2 = [w2(1l:k-1,1); w2(k+1l:q,1)]-;
H = [ H(l:k-1,1); H{(k+l:q,1)]:

g = length(wl);
$count = count+l;
end
end

Ns = max(size(wl)):;
fprintf (' %d samples\n', Ns):;

gommm END of fan2  -----———————————==——-—
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function [wl,w2, H] = fand (fp,fs,N,alpha)

% [wl,w2,Hk]=FAN(fp, fs,N1) takes frequaency samples
% in 1/4 of the first quadrant of (wl,w2) plane

% on parallel lines with exponential distribution.

% The obtained samples can be used with FNINT2D

% to design a 2-D 90° fan FIR filter

% by nonuniform sampling.

%

% See also: FNINT2D, DIAM4, DNINT2D

% ® Val Ninov, Dec. 1998

% Last Rrevision: Feb. 1999

if nargin ~=4
alpha = 1.65;
end
P = max(2,£fix(N/4)):;

Xx =0:1/P:1-1/P;

g =1 - exp(-alpha*x);

Wl = fp*pi*g/max(qg):;

Sg = sqrt(2):

L1 = length(W1l);

wl = zeros(210,1):; $ MAX filter size 57x57
w2 = zeros(210,1);

if W1(l) <= eps
wl(l) = pi; w2(1l) = 0;
k=2; o=2;
else
k=1; o=1;
end
for § = o:1L1
$m = tan(3*pi/4-0.01:-pi/(pi*(j-1)+5):pi/2+0.01);
m = tan(3*pi/4-0.05:-(pi/4-0.06)/(j):pi/2+0.01);
for i=1l:length (m)
wl (k) 2*W1(j)/(m(i)-1)+pi;
w2 (k) wl(k)+2*Wl(]j)-pi;
k =k+1;
end
clear m;

end

Ns max (find (wl));
wl Wwl{(1l:Ns); w2 = w2(1l:Ns);
for kk=1:30 nn(kk)=fix((kk+1l)/2)*fix((kk+2)/2); end
MM = max(find(nn<=Ns));
remove=0;
if Ns ~= nn (MM)
Nd = Ns—-nn(MM); remove=l;
end
if remove

fprintf('\n %d samples. %d samples will be discarded\n', Ns, Nd);

g = length(wl):
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p = 4;

r = max(4,£fix((g-p*Nd)/2)):

for k=r:p:r+p*Nd-1
wl = [wl(l:k-1,1); wl(k+l:q,1)];
w2 = [W2(1:k-1,1); w2(k+l:q,1)];
g = length(wl):

end

end

Ns = max(size(wl)); H = ones(Ns,1);
fprintf(' %d samples\n', Ns):;

% PLOTTING

figure(l); clf reset

hold on

x1=0:0.2:3.6; yl=zeros(size(xl)):

x2 = 0:0.1:pi; y2=pi*ones(size(x2)):

x3 = pi/2:0.1:pi; y3 = -x3+pi;

plot (x1,y1l,"':w', yl, x1,':w',x2,y2,"'.w");
plot(y2,x2,'.w', x2,x2,"'.w', x3,y3,'.w");
ha=text(3.8,0.1,'w');

set (ha, 'FontName', 'Symbol') &, 'FontAngle','italic"')
ha=text (4,0,'1"'); set(ha,'FontSize',8)

ha=text (0.1,3.6,'w'):

set (ha, 'FontName', 'Symbol') &, 'FontAngle’','italic"')
ha=text (0.3,3.5,'2'); set(ha,'FontSize',8);
ha=text(3.2,3.2,"'(p,pP) ")

set (ha, 'FontName', 'Symbol"', 'FontSize',10):
ha=text(-.2,-.2,'0"):

set (ha, 'FontName', 'Symbol', 'FontSize',11);

axis equal; axis off;

axis([-0.2 pi+0.5 -0.2 pi+0.5]):

for i=1:L1
plot ([pi-W1l(i) pil, [W1(i) 2*W1(i)],'g');
end

for k = 1:Ns
plot (wl(k),w2(k),'go', 'markersize’,4)
plot (wl(k),w2(k),"'.', 'markersize’,8)

end

title('Sample Locations')

fos

hold off

- END of fan4 -—-—---------———mo—————
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function h = dnint2d(wl, w2, H, fp, fs)

% h= DNINT2D(wl,w2,H) solves for the coefficients

% of an eigthfold symmetrical, DIAMOND shaped FIR filter
% with nonuniform frequency samples as input arguments.

% The algorithm is based on the properties

% of a half-band diamond (eightfold symmetric) zero-phase
% FIR filter.

% Val Ninov, Dec. 1998

% Last revision: Jan. 1999
wl = wl(:);

w2 = w2(:);

H"H(:)t

for k=1:30 n(k)=fix((k+1)/2)*fix((k+2)/2); end
len = max(size(wl)):;

M = max(find(n<=len)):;
N = 2*M+1;
L = n(M);

if L ~= len
fprintf(' With %d samples a %d X %d filter wil be designed\n'
len, N, N);
fprintf (' Only the first %d samples will be used\n', L);
fprintf(' If you want %d X %d size take %d more samples\n’,
N+2,N+2,n(M+1)~len);
end

al = zeros(L,1);
a = zeros (M+1,M+1);
= zeros(L,L);

for k = 1:L;
1 =1;
for nl = 1:M
for n2 = 0:nl-1
if rem(nl+n2,2)
V(k,1l) = cos(nl*wl(k))*cos(n2*w2(k))...
+ cos (n2*wl(k))*cos(nl*w2(k)); 1l=1+1;
end
end
end
end

if size(V)~=[L,L]
error ('Matrix V is calculated in a wrog way !!')
end
cond_V = cond (V)
al = V\(H(1:L)-0.5);

a(l,1) = 0.25; % Guess why?
k=1;

’
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for i=2:M+1
o = rem(i,2)+1;
for j = 0:2:1i-1
a(i,j)=al(k); k=k+l1;
end
end

a=a+a': % answer of the above question

a(l,2:M+1)=0.5*a(1,2:M+1):;
a(2:M+1,1)=0.5*a(2:M+1,1);
a(2:M+1,2:M+1)=0.25%a (2:M+1,2:M+1);

hll = flipud(fliplr(a(2:M+1,2:M+1}));
hl2 = flipud(a(2:M+1,1:M+1)):;
h2l = fliplr(a(l1:M+1,2:M+1})};
h = [ hll hl2 ;
h21 al-
if ~nargout
fiplot(h):
end
if nargin == 5
{rp,rs]=rippled(h, fp, fs,128)
end
r—mm END of dnint2d —--~--——-——-——-——n=-
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function h = fnint2d(wl, w2, H, fp, fs)

% h= FNINT2D(wl,w2,H) solves for the coefficients

% of a FAN shaped 2-D half-band FIR filter

% with nonuniform frequency samples as input arguments.
% The algorithm is based on the properties

3% of a half-band FAN (90°) zero-phase FIR filter.

% Val Ninov, Dec. 1998

% Last revision: Jan. 1999

wl = wl(:);

w2 = w2(:);

H = H(:);

for k=1:30 n(k)=fix((k+1l)/2)*fix{(k+2)/2); end
len = max(size(wl)):;

M = max(find(n<=len)):
N = 2*M+1;
L = n(M);

if L ~= len

fprintf (' With %d samples a %d X %d filter wil be designed\n' ,

len, N, N):
fprintf(' Only the first %d samples will be used\n', N);
fprintf (' If you want %d X %d size take %d more samples\n’',
N+2,N+2,n(M+1)~len);

end

al = zeros(L,1l);

a = zeros(M+1,M+1);
V = zeros(L,L);

1 =1;
for nl = 1:M
for n2 = 0:nl-1
if rem(nl+n2,2)
V(k,1l) = cos(nl*wl(k))*cos(n2*w2(k))...
- cos(n2*wl (k) ) *cos (nl*w2(k)):;
1=1+1;
end
end
end
end

if size(V)~=[L,L]

error('Matrix V is calculated in a wrog way !!')
end
cond V = cond (V)

al = VAM(H(1:L)-0.5);

k=1;
for i=2:M+1
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o = rem(i,2)+1;
for j = 0:2:i-1
a(i,jr=al(k); k=k+l;
end
end

a=a--a';

a(l,1)=0.5;
a(l,2:M+1)=0.5%a(1,2:M+1);
a(2:M+1,1)=0.5%*a(2:M+1,1);
a(2:M+1,2:M+1)=0.25%a (2:M+1,2:M+1);

hl1l = flipud(fliplr(a(2:M+1,2:M+1)));
hl12 = flipud(a(2:M+1,1:M+1)};
h21 = fliplr(a(l1:M+1,2:M+1)});

h = { hll hl2 ;
h21 al;

if ~nargout
fiplot (h):
end

if nargin ==
frp,rsl=rippled(h, fp, £s,128)
end

g—mm e m END of fnint2d  ----=--———--—-
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function [rp,rs] = rippled(h, fp, fs, N)

% (rp,rs] = RIPPLED(h, fp, fs) returns the

% passband and stopband max deviations of a 2-D

% DIAMOND FIR filter.

% h is the imp. response, fp and fs are the

% frequency edges (in radians/pi), fp=wp/pi, fs=ws/pi.
% N is the 2-D DFT size: N-by-N points.

% ©® Val Ninov, Jan. 1999

% Last Rrevision: Feb. 99

if nargin < 4

N = 128;
end
H = £ft2(h,N,N);
H = abs(H(1:N/2,1:N/2));

high=0;
if H(1,1)<0.5 high =1; end

round (N/2*fp + 1);

Rs round (N/2*fs + 1)

[f1,£2] = meshgrid(1:N/2,1:N/2);
find(£f1+£2<=2*Rp) ;

find (£f1+£2>=2*Rs) ;

'O
[\
w0
0
o)

nn

if ~high % Lowpass
rp = max(max (abs (H(passb))-1));

rs max (max (H(stopb))):
else % Highpass
rp = max (max(abs(H(stopb})-1));
rs = max (max (H(passb)));
end
iMaxs = find(H==max (max(H(stopb))})):
xMaxs = fix(iMaxs/(N/2)) + 1;
yMaxs = rem(iMaxs, N/2);

if ~yMaxs yMaxs = N/2; end
yMaxs = yMaxs+1l;
wlsMax = ((xMaxs-1)*2*pi/N);

w2sMax ((yMaxs-1) *2*pi/N);

fprintf ('\n Maximum error in the stopband at frequencies:\n'):
fprintf (' ( $f , %f ) \n', wlsMax, w2sMax);
gr————mmm—mm———— END of rippled ———-==—-——=w————-——-
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Appendix B
Approximation Error Plots

Some plots of the approximation error for the circularly shaped FIR filter designed in
Example 3.6, pp. 115-116, are shown. The contour and perspective plots of the designed
filter frequency response magnitude are repeated here in Figs. Bl and B2.
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The nearly equiripple behavior and the low 1-D error are maintained in the passband of
the designed filter; §;p = 0.0056492, &, = 0.0056607. The perspective error plot is
shown in Fig. B3. Details in the passband can be seen from the magnified perspective plot
in Fig. B4. Figs. BS and B6 represent the approximation error in a cross-section along the

diagonal @) = @, and along the @, axis, respectively.
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Appendix C

Number of independent impulse response points for circular
(eightfold symmetric) and half-band FIR filters

Eightfold Symmetric FIR Filters 2-D Half-band FIR Filters
Filter size # independent points Filter size # independent points
NxN L=(N+l)(N+3) NxN L=I_N+l N+1J

3 4 4

3x3 3 3x3 1

5x5 6 5x5 2

7x7 10 7x7 4

9x9 15 9x9 6
11 x11 21 11 x11 9
13 x13 28 13 x13 12
15 x 15 36 15 %15 16
17 x 17 45 17 x 17 20
19 x 19 55 19 x19 25
21 x21 66 21 x 21 30
23 x 23 78 23 x23 36
25 x 25 91 25 x 25 42
27 x 27 105 27 x 27 49
29 x 29 120 29 x 29 56
31 x31 136 31 x 31 64
33 x33 153 33 x33 72
35x35 171 35x35 81
37 x 37 190 37 x 37 90
39 x 39 210 39 x 39 100
41 x 41 231 4] x 41 110
43 x 43 253 43 x 43 121
45 x 45 276 45 x 45 132
47 x 47 300 47 x 47 144
49 x 49 325 49 x 49 156
51 x 51 351 51 x 51 169

53 x53 378 53 x53 182

55 x 55 406 55 x55 196

57 x 57 435 57 x 57 210

59 x 59 465 59 x 59 225
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