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Abstract

Active Control of shimmy oscillation in Aircraft Landing Gear

Shun Hong Long

Shimmy oscillation is an anxious concern in aircraft landing gear design and
maintenance. Through related literature review, it is found that active shimmy control
(suppressing) is still an open problem. In this thesis, an in-depth analysis has been
carried out on aircraft landing gear shimmy dynamics and active control strategy has

been developed to suppress shimmy oscillation.

Based on a nominal aircraft landing gear model, its shimmy Limit Cycle Oscillation
(LCO) variation with respect to varying parameteré has been studied by numerical
integration. The shimmy stability variation with varying caster length and taxiing velocity
has also been analyzed after linearizing the system. Due to inherent system dynamics
uncertainties (such as varying taxiing velocity) and external disturbances (such as rough
runway), Robust Model Predictive Control (RMPC) technology is resorted to suppress
shimmy during aircraft landing. A new active control strategy has been proposed suitable
for online shimmy control application by combining a RMPC control law with a LPV
polytope design. The proposed RMPC has been compared with two present RMPCs
both in a benchmark example and the landing gear shimmy control. It has been verified
by simulation results that the proposed RMPC stabilizes the unstable parameter-varying
landing gear system with guaranteed closed-loop stability, high computational efficiency
and strong disturbance rejection ability. Related design parameters, mathematical proof

and implementation considerations are addressed in this thesis.
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Chapter 1

Introduction

1.1 Landing gear and shimmy history

Landing gear is the structure under an aircraft's fuselage that allows it to land or take
off safely and smoothly. This structure usually has wheels and some form of shock
absorbing apparatus. At landing or takeoff, the landing gear has to perform the task of
absorbing the energy of vertical motion of the aircraft via the shock absorber and the
kinetic energy due to horizontal motion by means of the brakes. During taxiing, the

landing gear has to carry the aircraft over runways and taxiways with varying quality.

There are two configurations for wheeled aircraft landing gear: taildragger and
tricycle. Conventional taildragger landing gear is set up with two wheels near the front
of the plane and one smaller taildragger wheel, which is sometimes steerable, at the rear

of the airplane, see Figurel-1.

Figure 1-1 Taildragger of Cessna 150 [23]

1
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Figure 1-2 Boeing 737-200 in landing, [23]

On the other hand, tricycle landing gear has one steerable nose wheel set near the
front of the plane, and a main pair of wheels set approximately under the middle of the

wing, which is by far the predominant modern configuration (see Figurel-2).

Both taildragger and tricycle can be found in either a fixed or retractable subtype.
An aircraft tricycle configuration consists of a nose landing gear and a left and right
main landing gear. Each main landing gear includes an oleo shock strut with two or
more wheel and tire assemblies that cushions the landing and keeps the plane level while
landing. The main landing gears are often equipped with a brake assembly with anti-skid
protection. The main landing gear is retracted forward and up into the left and right
lower wing area, and each is enclosed with a single door. The nose landing gear is
retractable forward and up into the lower forward fuselage (referring to Appendix G)

and is enclosed by two doors located in the lower forward fuselage. In addition, the nose

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



landing gear is steerable. The steerable nose landing gear is subject to self-induced
lateral and torsional oscillations. This oscillation phenomenon is summarized as
“shimmy” for all ground vehicles, especially for aircraft landing gears. In this thesis,

research is only limited to nose landing gear in the tricycle configuration.

In the design and development of aircraft landing gear, shimmy test has to be
conducted during aircraft taxi-test phase [1]. In extreme cases, shimmy can cause severe
damage to landing gear hardware or even severe loss of the aircraft. In less extreme
cases, shimmy can be nothing more than an annoyance, but it does affect customer

satisfaction and can cause added maintenance expense [9].

. In a 1995 accident investigation report (Report Number A95W0202) of The
Transportation Safety Board of Canada (TSB) [73], some accident details are cited as
following: The left main landing gear of the Fokker F28-Mk1000 began to shimmy
immediately after touchdown when landing at Calgary. Brakes were applied to slow the
aircraft in an attempt to control the shimmy, but the oscillations continued until both left
main wheels and brake assemblies separated from the axles. After the aircraft came to a
stop, the passengers and crew were evacuated without incident through the forward main
cabin door. Site examination revealed that the upper torque link failed within the first
200 feet of the landing roll, and the wheels separated about 1,450 feet from touchdown.
There was substantial damage to the oleo lower sliding member, wheels, tires, brakes,
and left inboard and outboard flaps. Furthermore, it is reported that this accident was
the 29th occurrence of this type recorded in the aircraft manufacturer's data base up to

that time.
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As early as in 1941, Von Schlippe analyzed the shimmy motion of an aircraft tyre
and described the interaction of tyre and landing gear leg stiffness with tyre forces. A
wheel is said to be shimmy when it oscillates about its caster axis. Shimmy is caused by
the interaction between tyre behaviour and landing gear structural dynamics. In detail, it
is caused by a lack of torsional stiffness (structural or fluidic) in the gear, excessive
torsional freeplay, inadequate trail (too much or too little) and improper wheel mass
balancing or worn parts. A repaired or rough runway often leads to fast parts worn and
likely induces shimmy. Shimmy oscillation typically has a frequency in the range of 10

to 30 Hz [1]. The detailed analysis about shimmy formation can be found in [4] and [6].

1.2 Literature review

Aircraft landing gear is a complex multi-degree-of-freedom system. Many early
researchers focused on shimmy dynamics analysis and tire modeling, which helped
landing gear designers to find optimized structural configuration or search better tire
physical parameters [1][10]{15][17]. Unlike other system of aircraft (e.g. aircraft engine
system), landing gear has been treated as a passive vibration absorber. For purposes of
better performance and more comfort to the pilots and passengers, active landing gear

concept recently has attracted much attention of researchers [2][3][19].

1.2.1 Shimmy phenomenon

It is found that there are limited landing gear guide books [1][2], not to mention

books about landing gear shimmy. It is hard to get any literature concerning systematic
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shimmy analysis or shimmy suppression. Only available references are papers about

landing gear dynamics analysis or shimmy analysis [5, 7, 8, 9, 10, 11, 18].

From National Aeronautics and Space Administration (NASA) Langley Research
Center, Jocelyn Pritchard launched a valuable shimmy literature survey in 1999 [4],
which was originated from the NASA safe air travel initiative. The initiative gained
increasing interest in improving landing gear design to minimize shimmy and brake-
induced vibration. The major focus of survey was to summarize and document previous
works to highlight the latest efforts in solving vibration problems and to reveal a variety

of analyses, testing, modeling, and simulation of aircraft landing gear.

In a doctoral dissertation [9], two analytical landing gear shimmy models were
proposed: a nonlinear model and a linear Finite Element Model, which were numerically
simulated and analyzed by standard eigenvalue techniques. A test running with the two
models showed good correlation and illustrated the effects of changes to various
parameters. W. Kruger et al [6] presented three software packages, which were used in
the numerical simulation of aircraft ground dynamics and gave an overview of landing

gear design requirements including shimmy stability.

In [15], a set of parameters for accurate prediction of shimmy stability of landing
gears are suggested and the stability maps of a typical landing gear varying with changes

in tire parameters are also shown.

Der Valk Gordon presented a mathematical model in [10] to analyze the stability of a

two-wheeled landing gear and its failure. The model was validated by ground vibration

5
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tests and aircraft taxi test. Finally, it was concluded that any two-wheeled ‘F.28 like’
landing gear is unstable and an apex shimmy damper is needed as a remedy for shimmy
oscillation. In addition, a perturbation analysis for simple landing gear shimmy model
with nonlinear terms of coulomb friction and freeplay was presented by J. T. Gordon in
[18] and the analysis results were shown to be in good agreement with direct numerical
integration results. Other papers [5] [7][8] are focused on shimmy modeling and stability

boundaries analysis.

1.2.2 Tire modeling

An important and difficult part of shimmy modeling is the tire modeling, which has a
longer history compared to shimmy modeling. Strictly speaking, tire modeling may be
classified into three separate categories: tire mechanical properties, tire stresses and tire

temperatures [71]. In this thesis, only mechanical properties are considered.

In the 1950s, two basic analytical tire modeling theories were suggested for
determining the forces on a wheel due to tire deflections: the stretched string theory by
Von Schlippe-Dietrich [12] and the point contact theory by Moreland [13]. Another
well-known Pacejka Model [14] is thought to be an extended string theory. In the
stretched string theory, the tire is approximated by an elastic string, which is stretched
about the outer edge of a wheel at the tire radius and attached to it by elastic springs.
For point contact theory, tire inertia and the effect of the finite length of the contact
patch are neglected. Hence the tire is thought as a single point contact with the ground.

The contact point may move with respect to the ground in lateral and longitudinal

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



directions. These two theories are still used in today’s most publications about shimmy
analysis. L.C. Rogers claimed in 1972 that considering the small tire deformation, these
two classical tire models are equivalent and give similar results for shimmy analysis if

the involved tire parameters are properly selected [17].

Based on the comparison of experimental data and the theoretical curves from string
model, the equations relating ground force and torque on the tire to arbitrary angle and
lateral deflection are provided in [17]. Furthermore, some objections were found in [17],
such as non-agreement between the physics of Moreland model and experimental
frequency response curves. In the same paper, it was thought that Pacejka’s theory is too

cumbersome for direct use in tire dynamic studies.

In [16], two tire equations relating tire forces to wheel yaw angle and lateral
displacement were developed from tire frequency response data to calculate transient tire
forces. These two tire models were said to have advantage of being more accurate than
existing tire theories with relatively simple form provided that the limitation of small

slip angles is not exceeded.

1.2.3 Shimmy damping

For the earlier aircrafts, there were no extra shimmy damping equipments installed.
Although shimmy phenomenon was observed and analyzed, how to suppress shimmy
oscillation effectively and actively remains a challenge. In France and Germany, landing

gear shimmy was treated as a problem that should be dealt with early in the design stage.
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On the contrary, in the United States, the general tendency was to fix this problem after

it had occurred [4].

Shimmy can occur in the main landing gear or nose landing gear, but nose wheel
shimmy is more common. Nose wheel shimmy is an oscillatory motion that could be
brought on by runway surface irregularities, non-uniformity of the tire or other factors. It
is further exaggerated by worn landing gear components that allow significant play in

the linkages.

Current shimmy suppressing methods are shimmy damper as in Figurel-3 (zoom-in

view in Figurel-4) and structural damping in Figurel-5.

MYEW LODRING, &F T HOSEWHEEL WELL

Figure 1-3 Shimmy damper in the Nose-wheel well (aft view), [68]
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Figure 1-4 General schematic of shimmy damper

The shimmy damper is a device that is used to reduce the effects of shimmy by
restraining the movement of the nose wheel, or in detail, by reducing the amplitude
and/or by preventing the onset of the shimmy limit cycle. The shimmy damper allows
the wheel to be steered by moving it slowly, but does not allow the wheel to move back
and forth rapidly. This device consists of a hollow tube filled with hydraulic fluid with a
shaft and piston that cause velocity dependent viscous damping forces to be generated

when moved through the fluid, see Figurel-4.

Some disadvantages are found in the current shimmy damper. One such problem is
the need for frequent maintenance. Increasing temperature causes the hydraulic fluid to
expand and to leak past the seals thereby reducing the damping efficiency of the device.
This problem has been known to occur even after only 100 hours of operation.
Maintenance costs associated with this were sometimes found unacceptable, so were the
replacement costs. It is reported that the new-generation shimmy damper uses surface-
effect technology to absorb nose wheel vibration and provide consistent damping

without much maintenance.
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On the other hand, commonly used structural damping is referred to as hydraulic
shimmy damping as described in [1], and reprinted in Figurel-5. Here, shimmy damping
is obtained in steering system by restricting motion in the steering actuator. The one-way
restrictor ensures oil to go forward smoothly and come backward with restriction to
suppress some external disturbances, which tends to induce shimmy oscillation. Check
valve is a purely one-way valve. The self-centering steering actuator does help keep the
wheel alignment. Other shimmy damping methods in terms of design consideration
could be co-rotating wheels, an appropriate amount of trail (the distance that the wheel

centers are behind the shock strut centerline) or canting the nose gear [1].

MANUAL BY=-PASS

RETURN

ACCUMULATOR Y RELIEF VALVE
] i { SYETEM PRESSURE

CHECK VALVE (NORMAL EMERGENCY)

: - : = /CHECK . VALVE
T : . ,
STEERINGA WHEEL “ l : FAELFSCENTERING
ped ONE-WAY : L. STEERING ACTUATOR

‘k » | RESTRICTOR , —
. S0 1 N )

STEER NG~

CONTROL e : Lo - LA
VALVE, e ] :

Figure 1-5 Hydraulic steering system with shimmy damping, [1]

1.2.4 Actively controlled landing gear

Although current shimmy oscillation damping of landing gear is based on passive

mechanical or hydraulic shimmy damping, active control concept presents a possibility

10
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of improved control effect and widened aircraft operation range. In the last 10 years, the
active or semi-active vertical vibration control for landing gear has attracted the
attention of some researchers and has shown some advantages. An example of control
design for aircraft landing gear vertical vibration elimination is described in dissertation
[19]. In this dissertation, the active control is compared to semi-active control on aircraft
suspension system and it is pointed out that semi-active landing gear does not need large
external power supply and its implementation is simpler and more practical.
Nevertheless, in NASA Report [3], L. G. Horta et al started from a simplified model of
main landing gear of Navy A6 Intruder and implemented an external servo-hydraulic
system for active control in vertical damping (Figurel-5 and Figurel-6). Because the
landing gear test was time-consuming and very expensive, this kind of active control test
was not found in literatures for landing gear before. The control algorithm in [3] was
common PID feedback control. They successfully developed a facility to test various
active landing gear control concepts and their performance and demonstrated that
fuselage vertical vibration level was reduced by a factor of 4 by experiments in case of
landing. However, it is not reduced to zero. This was inspiring news for those
researchers who are interested in actively controlled landing gear. Although the landing
gear active control was restricted to vertical damping and active suspension in [3], the
extension of active concept to landing gear shimmy control is proved to be possible or at

least theoretically possible in the latter chapters of this thesis.

11
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Figure 1-7 Test setup of NASA actively controlled landing gear system, [3]
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The problem of stabilizing a system with changing dynamics was investigated and a
straight forward switching scheme by Lyapunov Function was applied to a shimmying
wheel resulting from switches between sliding and rolling in [20]. W. Kruger presented
a multi-body aircraft simulation model in [22], and designed three control laws for semi-
active aircraft landing gears. Simulation results were compared among passive, fully
active, and semi-active systems. In [21], B. Goodwine considered the design of
nonlinear stabilizing controllers for a system with unstable rolling dynamics using
nonlinear feedback linearization technique. Such system was suggested to be used to
approximate the complex dynamics of an aircraft landing gear structure and related three

controllers were designed to stabilize three different simplified models of the system.

1.2.5 MPC application to shimmy suppressing
Model Predictive Control (MPC) or Receding Horizon Control (RHC) started from

the end of 1970s. MPC essentially solves standard optimal control problems and differs
from other controllers in that it solves the optimal control problem online for the current

state of plant, rather than determining an optimal feedback strategy offline.
MPC usually contains the following three ideas according to [26]:

® Explicit use of a model to predict the process output along a future time horizon.
® (Calculation of a control sequence to optimize a performance index

® Use of a receding horizon strategy so that at each instant the horizon is moved
towards the future and the first control signal of the sequence calculated at each step is

applied to the plant.

13
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Figure 1-8 Strategy of Model Predictive Control, [26]

As illustrated in Figurel-8, the future outputs )A/(t +k|t) is predicted at each instant
t using the process model. y(¢+k|f) means future output at instant ¢+k predicted at current
instant based on future reference and future control sequence u(t+k|t) ( k=0,...N-1, N is
the prediction horizon). The future control sequence u(z) ...u(t+k|t) is calculated by
optimizing a determined criterion to keep the output as close as possible to the reference
trajectory, but only the first u(z+1) is sent to the plant. At next instant, the wu(t+1|t+1)
is calculated and applied again, normally different from w(t+1|f) because the new
information is available. So MPC uses the receding horizon concept and it’s an iterative

optimization.

The most popular MPC algorithms are DMC and GPC. DMC uses an impulse
response model, which is valid only for open-loop stable processes, and minimizes the

variance of the error between the output and a reference trajectory. For GPC, quadratic
14
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performance function is used to calculate a sequence of future control signals in such a
way that it minimizes a multi-stage cost function defined over a prediction horizon with
weighting of control effort and a Controller Auto-Regressive Moving-Average
(CARMA) model. GPC also provides an analytic solution for the optimal control in the

absence of constraints.

Nonlinear model predictive control based on state space models and the receding
horizon concept had also been developed, for example by Mayne and Michalska (1993)
[34], who constructed a robust dual-mode receding horizon controller for nonlinear

systems with state and control constraints.

In recent years, many commercial MPC products have been developed and available
from vendors: SMOC (MDC Company), CONNOISSEUR (Simulation Sciences),
DMCplus (AspenTech) and RMPCT (Honeywell), 3dMPC (ABB). Most of them are

designed for the needs of the process industries, especially in the petrochemical sector.

The reason why MPC is chosen for landing gear shimmy suppressing is based on

three points:

(1) MPC is a mature and advanced control technology, which has wide-spread
applications in diverse industries. It was first applied in the petrochemical industry and
currently is extended to different fields. According to [25], MPC is the only advanced
control methodology which has made a significant impact on industrial control

engineering and is more advanced than standard PID control.
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(2) MPC has many advantages compared to conventional control technology, such
as its tunability and explicitly incorporating various constraints. MPC is said to be the
only generic control technology which can deal routinely with equipment and safety

constraints [25].

(3) Some related MPC research explorations have been successfully extended to
application examples. MPC was applied to automobile orientation control, such as
vehicle maneuvering control in [66]. Also in [69], side slip control to vehicle lateral
orientation was realized by direct yaw moment, which indirectly demonstrated the

possibility of direct yaw moment control to aircraft landing gear shimmy suppressing.

1.2.6 RMPC review

Normally, the standard MPC process is composed of three steps: future output
prediction, objective function optimization and control signal implementation. The
accuracy in these three steps is highly dependent on the model precision. Model
uncertainty arises when system parameters are not precisely known, or may vary over a
given range. In extreme cases, a small parameter perturbation may lead to constraint
violation or system being unstable. As pointed out in [34], the primary disadvantage of
current design techniques of MPC is their inability to deal explicitly with plant model

uncertainty.

Robust Control is a synthesis that optimizes worst-case performance specification
and identifies worst-case parameters as long as the variation of plant remains in some

specified sets. In 1996, M. V. Kothare et al first developed a new RMPC using LMIs
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[34] (simplified as KRMPC in this thesis). The main contribution was that Min-Max
robust control was reduced to a convex optimization, which dramatically decreased the
computational complexity and increased the implementation efficiency. Since then,
KRMPC has drawn considerable attention from robust control and MPC control research

community. The works related to RMPC are summarized into three fields:

® Derivation of less conservative robust conditions [33, 38, 42, 54, 61]
® Extend RMPC into nonlinear system control [44, 47, 55]

® Extend RMPC into off-line LMIs [45, 50, 56, 63].

® Other performance improvement [32, 46, 48, 54, 59]

Despite the fact that some researchers used Min-Max robust strategy, such as A.
Casavola in [43] and R. Ramirez in [64], others worked on special aspects of RMPC.
For example, H. Fukushima employed closed-loop prediction to RMPC [60] ; Sheng
Yunlong developed a dual-mode control scheme in [52]; D. Q. Mayne designed an
output feedback RMPC in [65]. One of the shortcomings of KRMPC is the computation

inefficiency if it is applied to online control according [39, 62].

1.3 Motivation and challenge

From section 1.2, it has been demonstrated that there are more shimmy analysis than
shimmy active control design in the previous literatures. Although landing gear shimmy
is often overlooked, shimmy can cause catastrophic damage in some extreme cases. To
the author’s knowledge, active shimmy control is still an open problem. Although the
shimmy suppressing measures based on landing gear structural design are effective to

some extent, the extension of active landing gear concept to shimmy control is very
17
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attractive in terms of the flexibility and reliability of control strategy design and

effectiveness of shimmy suppressing.

As mentioned in [4], shimmy damping (mechanical or hydraulic) requirement is
often in conflict with good high-speed directional control. Furthermore, once the landing
gear design is done, those elaborate structural parameters for shimmy suppressing can
neither be changed nor adapted to some new changes. When external disturbance (rough
runway, crosswind or severe climate) or uncertain parameter variations (due to worn
parts or other uncertain factors) occurs in landing gear system, it is hard to take any
further actions. In such unexpected operation situations (worn parts and rough runway),
active control strategy works effectively whenever shimmy occurs. With the advent of
high speed and high reliable microprocessor used in controller implementation, the idea
of actively controlled landing gear has gained new momentum. Landing gear shimmy
dynamics varies greatly with taxiing velocity, which will be explained in Chapter 2. A
velocity-dependent controller can not be obtained by the conventional constant feedback

control, such as LQR control, which is often applied in LTI system.

The challenges for developing actively shimmy-suppressed landing gear are

summarized in two folds.
(1) Complexity of landing gear shimmy dynamics and modeling.

Complex landing gear configuration and tire modeling, including nonlinear factors
in tire and mechanical parts introduce the complexity of landing gear modeling. Aircraft

landing gear normally tends to be rather heavy and bulky, so its test is time-consuming
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and expensive. Those physical parameters of landing gear are hard to be measured and
related test data are not easy to be collected. Due to the difficult and costly landing gear
test, it is hard to make shimmy dynamics analysis and build the model, or to even verify
the landing gear shimmy control effects by the corresponding tests. It is reported that
one of the major landing gear test facilities in United States is at NASA Langley

research center.
(2) Computational load of RMPC to online shimmy suppressing application

Very limited literature is found on shimmy dynamics analysis and control.
Considering the online control application, RMPC should be computation-efficient with

the ensured capability of robust stability and disturbance rejection.

1.4 Thesis contributions

The main contributions of this thesis are summarized as follows:
(1) Shimmy dynamics analysis and parametric variation effects on shimmy

A landing gear shimmy model, along with a tire model is formulated and analyzed
for deeper insight on shimmy dynamics. Simulation results show the existence of Limit
Cycle Oscillations (LCO) in the landing gear dynamical response. The effects of
torsional damping constant and taxiing velocity on shimmy dynamics variation are
simulated and analyzed. Shimmy stability variation with respect to caster length and

taxiing velocity are also investigated.

(2) A new active control strategy on shimmy suppressing of landing gear
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A theoretical exploration of applying RMPC to landing gear shimmy suppression has
been carried out in this research. Through literature survey, it is found that many
researchers worked on landing gear shimmy modeling and dynamics analysis, which are
directly useful in landing gear design improvement. But there were few people working
on active shimmy control despite there were some researches working on active
suspension control. Application of RMPC to landing gear shimmy suppression is new,
and it can help in the development of next-generation actively controlled aircraft landing
gear. The details related to RMPC design (such as control algorithm realization,
controller parameter tuning) and system implementation issues (such as integration into

present control systems, conceptual choice of sensors and actuators) are also discussed.
(3)A combined LPV-RMPC synthesis procedure is proposed for LPV system

After linearizing nonlinear landing gear equations, a combined LPV-RMPC
synthesis is proposed to achieve landing gear shimmy suppression during aircraft
landing or taking off. By this synthesis, a taxiing velocity-dependent robust controller is
designed to guarantee asymptotic stability of the closed-loop LPV system. But without
introduction of LPV polytope construction in this synthesis, RMPC is not ready to be
employed because the convex optimization is not guaranteed if this optimization is not
executed in a convex set. After this convex polytope design, the time-varying state
feedback gain is calculated online from a set of LMIs, which can be readily solved using
known LMI solvers, such as Matlab LMI-Lab, YALMIP, or SeDuMi et al. Furthermore,

the results are extended to the more general case of parameter varying system with
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external disturbance, such as rough runway. This synthesis approach can be applied to

other similar systems.
(4) The proposed new RMPC algorithm improves computational efficiency

Compared with any of the present modified algorithms on RMPC, the proposed new
RMPC algorithm (PRMPC) is simpler and easier to implement. This new RMPC
synthesis is not only compared with two present RMPCs in the two-mass-spring
example but also compared with the application of landing gear shimmy suppression. In
these online control applications, the improvement on computational efficiency is
significant along with guaranteed robust stability. The simulation results confirm the
effectiveness of control algorithm. After the introduction of concepts of invariant
ellipsoid and contracted Positive Definite Matrix (PDM), the theoretical stability is

emphasized by related mathematical proof.

1.5 Thesis outline

This thesis is organized as follows. Chapter 1 introduces landing gear shimmy
phenomenon and Model Predictive Control. The literature review of tire modelling,
shimmy analysis and active landing gear control is given. Chapter 2 describes a typical
landing gear shimmy model. Related equations for the landing gear shimmy dynamics
and modeling are given. In the simulations, it has been shown what causes shimmy
oscillations and how shimmy stability varies with parameters, especially its dynamics
variation with respect to the taxiing velocity. A new Robust Model Predictive Control

synthesis is proposed in Chapter 3. This new PRMPC is compared with two known
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KRMPC and CRMPC in a two-mass-spring example. Conventional LQR control is also
applied and compared with these three RMPCs. In Chapter 4, active shimmy control
design is described in detail, ranging from control objective, LPV polytope design,
control system design, controller scheme, to simulation results. Related design
parameters and implementation considerations are addressed for reference. Finally,

conclusions and future work are given in the last chapter.
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Chapter 2
Landing Gear Shimmy Dynamics and Modeling

According to Pacejka in [70], shimmy is due to a conversion of forward motion
kinetic energy to self-excitation energy. When the defective landing gear is taxiing on
runway, even with little external disturbance, the oscillation tends to occur. When this
oscillation grows up, the unstable landing gear experiences damage. Sometimes when
the instability grows to some amplitude, the nonlinear effects limit the oscillations to
remain within some response envelope. This kind of oscillation is the so-called Limit
Cycle Oscillation (LCO). The shimmy LCO will be observed and analyzed in the later

sections.

2.1 Landing gear shimmy modeling

Despite many attempts to employ different types of shimmy dampers for shimmy
suppression, little was known about the cause of shimmy [6]. Shimmy modeling was
considered to be as complex as dynamics of aircraft landing gear. In [5], Gerhard
Somieski proposed a nonlinear nose landing gear shimmy model with landing gear
torsional motion description and stretched string tire modeling theory. This model is a
simplified model built by first-principle, which is described in [5] and redrawn in
Figure2-1. In practice, this model stands for one single nose landing gear on a light

aircraft, which is steerable.
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Figure 2-1 Side view and top view of landing gear model

The nonlinear shimmy dynamics equations are developed using Figure 2-1.The
values and physical meanings of all parameters in equations are outlined in the List of

Symbols. The related terminology of landing gear is listed in the Appendix F.

2.1.1 Torsional dynamics

The following equation (2-1) describes the torsional dynamics of the lower parts of

the landing gear [5] with y as Yaw Angle. It is derived from Newton’s Second Law for

rotational motion.

Ly=M +M,+M,+M, +M, (2-1)

where I, is Moment of Inertia about z-axis.

M, is a linear spring torque between the turning tube and the torque link:
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M, = ky, 2-2)
where £ is torsional spring rate.

M3 accounts for combined damping moment from viscous friction in the bearings of the

oil-pneumatic shock absorber and from shimmy damper:

M, =cy, (2-3)
where c is torsional damping constant.
Mj is tire moment and is composed of M; (tire aligning moment about tire’s center)

and tire cornering moment eF, :

M,=M,-eF (2-4)

Yy

where F), is wheel cornering force and e is caster length (as lever arm), referring to
Figure 2-1. F) and M, depend on vertical force F, and side slip angle a, which shows

nonlinear tire sideslip characteristics, as in following Figure 2-2 (a).

Fy/F=z

P, / Slip Angle a{rad)

Figure 2-2 (a) Nonlinear F,/F; vs. side slip angle
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The forces F, and F, have the relation:

F,/F,=Cpa, for [of<5 (2-5)
F,/F, = Cg,dsign(a), for |a|> & (2-6)

where 8 is limit angle of tire force. In Equation (2-6), sign(a) is a sign function, which

means

L if a>6

sign(a) = {— Lif a<6 @-7)

The nonlinear tire sideslip characteristic was proposed by Pacejka in the form of

following well-known “Magic Formula” [70], one of them is expressed as following.
F, = Dsin[Carctan{Ba — E(Ba — arctan(Ba))} ]| (2-8)

where variables B, C, D and E are functions of the wheel load, slip angle, slip ratio and
camber. C is the shape factor; D is the peak value of the curve; B and E are coefficients
related to vertical force Fz.

“Magic Formula” is widely used for both automobile tire modeling and landing gear
tire modeling, such as in [5], [6] and [9]. According to “Magic Formula”, the plot of
F,/F, vs. side slip angle « is shown in Figure 2-2 (b).
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MAligning moment M2/Fz

Jwanedug foree Fy/ls

5 slip angle « [deg]

Figure 2-3 (b) Nonlinear Fy/F; vs. side slip in “Magic Formula”, [5]

It is found that both Figure 2-2 (a) and (b) share similar nonlinear side slip
characteristic. Therefore, instead of complicated “Magic Formula”, (2-5) and (2-6)
are used as simplified approximation but still realistic [5]. As shown in the Figure2-2
(a), the function of F,/F, is approximated by linear function (2-5) (the blue dash-dot line

in Figure 2-2 (a)) and saturation function (2-6).

M./F; is approximated by a sinusoidal function and constant zero, respectively. Its
mathematical expression is shown as the following equations (2-9) and the plot M,/F, vs.

a 1is shown in Figure 2-3.

Mz/F 2z

| i ! |

-G N a,
Slip Angle a {rad)

Figure 2-4 Nonlinear M,/F; vs. side slip angle, [5]
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a
M,/F, =C,, —gsin(@ a), forla| < a (2-9)
180 e ¢

M,/F, =0, forla|> a,
M, =—y (2-10)

where M, is the tire damping moment from tire tread width, which depends on taxiing
velocity V and yaw rate gu , K 1s tread width moment constant.

M;5 is introduced for the controller design, which is the control force/torque for
shimmy elimination. It is assumed that when applying external force/torque to steer the

landing gear, the landing gear will respond to some yaw angle.

M, =ku @2-11)

e

where k, is the moment constant related to the external control torque and u is the
control signal from external actuator.

The stability analysis in the following sections is conducted based on the autonomous

dynamics of landing gear (i.e. M, =0).

2.1.2 Tire motion equation

Elastic string theory is used in modeling the tire. The equation of tire motion is given in

(2-10) as in paper [5].
jz+£y=Vl,y+(e—a)y) (2-10)
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The formation of a slip angle may result from either of two fundamental motions,
i.e., pure yaw or pure sideslip. A tire rolls in pure yaw only when the yaw angle v is
allowed to vary and the lateral deflection y is held at zero. To the contrary, in pure

sideslip, the lateral deflection varies as the yaw angle is held at zero.

The deflection of tire is due to ground forces acting on the tire footprint, and these
ground forces (or moments) are transmitted through the tire to the wheel. According to
elastic string theory, the lateral deflection y of the leading contact point of tire with

respect to tire plane can be described as a first order differential equation with time

constant and 7 = % [S]. o is relaxation length, which is defined as the ratio of the slip

stiffness to longitudinal force stiffness. Tire sideslip velocity V; can be expressed as

2-11).

V=y+2 (2-11)
T

Meanwhile, the tire undergoes yaw motion, which leads to yaw velocity V. V, is

similar to V;, which can be approximated as (2-12) [12] [14]

V.=Vy+(e-a)y . (2-12)
When wheel rolls on the ground, the following equation should be satisfied.

V.=V (2-13)

t r

Substituting (2-12) and (2-11) into (2-13), one can obtain (2-10).
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Furthermore, an equivalent side slip angle caused by lateral deflection is

approximated as following (2-14).
a =~ arctano = P (2-14)
o

Egs. (2-1), (2-10) and (2-14) form the full set of landing gear motion equations, in

which nonlinear tire force and tire moment are included. Note that in the equation

Error! Reference source not found., x = -0.15aC,_F, .

2.2 . Shimmy dynamics variation

In this study, a light aircraft with one nose landing gear is considered. The related
parameters and values of this landing gear are shown in the List of Symbols. It is very
hard to obtain the analytical solution to nonlinear differential equations (2-1) and (2-10).
But if applying numerical integration to (2-1) and (2-10), the equations can be solved

with respect to time.

Table 2-1 Numerical integration parameters

Integration method Fixed-step Fourth-order Runge-Kutta
Fixed-step size 0.001
Simulation staring time 0 second
Simulation ending time 3 seconds
30
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Two initial values of disturbed yaw angle (1 rad and 0.1 rad, respectively) are
compared and analyzed. Torsional damping constant is set to 10 Nm s/rad (low limit)
and 100 Nm s/rad (high limit). Taxiing velocity is varying from 80 m/s to 20m/s. The

numerical integration parameters are listed in the above Table 2-1.

2.2.1 Damping constant effect

Torsional damping constant ¢ in the equation (2-3) is an important parameter in the
landing gear design and also critical for shimmy oscillation analysis. In this section, the
simulation parameters are set as: taxiing velocity 80 m/s, the initial disturbed yaw angle
1 radian, and torsional damping constant varying from 10, 20, 30, 50 to 100 Nm s/rad

respectively and simulation time is set as 3 seconds.

Yowhnie - frd Ve Rate 4078 1nds|

Figure 2-5 Phase plot of yaw angle
(w(0)=1rad,V =80m/s,c = 10Nms/ rad)

As demonstrated in Figure2-4, when torsional damping constant is set to 10 Nm s/rad
(weak damping), there exists obvious LCOs. But with increasing torsional damping
constant, the shimmy oscillation becomes smaller and weaker in Figure2-5 to Figure 2-

8. When the torsional damping constant is set to 100 Nm s/rad (very strong damping, but
31
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impossible to make it in practice), the yaw angle of landing gear quickly converges to
near 0. In summary, the increase of the torsional damping constant helps suppress the

shimmy.

Furthermore, a boundary torsional damping constant value 39.5 Nm s/rad is
observed. When torsional damping constant is bigger than 39.5 Nm s/rad, the shimmy
oscillation is not obvious in this situation, as in Figure2-9. Please note that the taxiing

velocity is a constant in the below simulations.

Phase plot of shimmy ,'¥(0)=1,v=80,k=-20
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Figure 2-6 Phase plot of yaw angle
(w(0) =1rad,V =80m/s,c = 20Nms/ rad)
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Phase plot of shimmy ,¥(0)=1,V=80,k=-30
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The related oscillation frequency and amplitude are collected in the following table
2-2. Note that for decreasing LCOs, these values are the final stable oscillation

frequency and amplitude. w(0) is setto 1 radian and taxiing velocity is 80 m/s.

Table 2-2 Oscillation frequency and amplitude of LCOs

Damping constant(Nm) Frequency(H,) Amplitude(rad)
10 52 0.68
20 52 0.36
30 52 0.008
50 0 0
100 0 0

2.2.2 Taxiing velocity effect

The taxiing velocity is considered one of major factors introducing shimmy since it
is always changing during the landing and taking-off process. Thus, it is one major
parameter varying in the system model. How the taxiing velocity affects shimmy

oscillation is the main topic of this section. The simulation parameters are set as follows:

Initial disturbed yaw angle is 0.1 radian or 1 radian. Torsional damping constant is 10

Nm s/rad. Taxiing velocity is descending from 80, 60 and 30 to 20 m/s respectively.

(1) Shimmy oscillation exists in the lateral direction and yaw motion as in Figure2-
13 and Figure2-14, when the initial yaw angle is small (=0.1 radian in Figure2-14) or
large (=1 radian in Figure2-15). At a lower taxiing velocity, the amplitude of
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oscillation is relatively low too. In Figure2-11, the amplitude of oscillation even tends to
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(2) The amplitude of shimmy LCO is increased with taxiing velocity, which can be

verified from Figure2-11, Figure2-12, Figure2-13 and Figure2-14. The amplitude of
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(3) The approach direction of limit cycle varies with different initial conditions.

When initial yaw angle is small (y=0.1 radian), the stable limit cycle is approached from

inside (Figure 2-14); On the contrary, when initial yaw angle is larger (w=1 radian), the
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limit cycle is approached from outside (Figure2-15). This was also observed and claimed
in [5].

(4) From Table 2-2, it is found that the shimmy vibration frequency is fixed at about
52 Hertz in the simulations and it does not change with varying taxiing velocity or initial
yaw angle.

(5) According to LCO theorem, if a system has a nonlinear stiffening term, in most
occasions, the amplitude of oscillation will grow until the LCO is reached, such as in
Figure2-11 to Figure2-14. Although the final state of LCO is bounded due to the
nonlinear saturation, the system state variable--yaw angle cannot asymptotically
approach its original equilibrium state as time goes by. When on the limit cycle, the rate
of energy input is equal to the rate of energy dissipation, which results in a stable

periodic motion as in Figure2-13 and Figure2-14.
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Figure 2-17 Lateral deflection (y(0) = lrad,V =20,40,80m/s)
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For better study about how taxiing velocity affects shimmy oscillation, three groups of
simulation data with different taxiing velocities are collected together and
simultaneously displayed in Figure2-16 and Figure 2-17. It can be seen that the
transition time from initial condition to stable limit cycle oscillation varies with taxiing
velocity too. The bigger the taxiing velocity is, the shorter the transition time needed.
The oscillation amplitude increases with taxiing velocity, but not proportionally
increases with taxing velocity. The amplitude of yaw oscillation does not change very

much when taxiing velocity goes beyond 60 m/s.

2.3 Stability variation analysis

There are many known dynamics analysis tools for linear system. In order to use
these linear analysis tools, the linearization to the landing gear model has to be

considered first.
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2.3.1 Linearization of model

From model equations (2-1), (2-10) and (2-14), before moving on to linear system
stability analysis, linearization of nonlinear system is needed. Within small range of side
slip angle, F), and M,/F; are approximately proportional to side slip angle, as in Figure2-
2 and Figure2-3. Based on this assumption, the nonlinear dynamic system is linearized

using Taylor series expansion and rearranged in autonomous state-space equations as in

(2-157).
x=Ax
(2-157)
74 0 1 0
- c K «k F,
wherex=|¥ |,4= Z‘ Z+ﬁ: —O__(CMa_eCFa) (2-18)
y
V e—a r
o

The main linearization steps are listed here. Collect equations (2-4), (2-5), (2-6) ,

(2-9) and (2-14)to form following (2-19) ,(2-20) and (2-21):

124 180
M Cyre —=sin(—a),|a| > a
==9 M 180 (ag Mol z e, (2-19)
F 0
: lo] <a,
F <o
_ Cro0F,, {aI (2-20)
Y| CraOF, sign(a),|o| > 6
M,=M,~eF, (2-21)
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Substituting (2-19) and (2-20) into (2-21), one can get the complete expression for M;

in form of (2-22) :

—eC,OF sign(a), as<-a,

F.C,, ——g—sin(l——oa) —eC, OF sign(a),—a, <a <-5
180 a, d

o, . 180
My=M,-eF, =4 F,C,, @sm(——a) —eC,, OF,, ~-§<a<d
g
a, . 180 .
F.C,, msm{——a) —eC,,0F sign(a),0 <a<a,
g
eC,,OF sign(a), a>a,
(2-22)
Substituting the expression of a (2-14) into
(2'22)9

M; can be expressed in terms of y in the neighbourhood of & =0 (y = 0)as following.

[#4
M,=FC,, ﬁsin(lfg-y— —eC,, %Fz (2-16)

g

Using Taylor’s Series expansion, M3 can be linearized as below.
g y P ) 3

oM, _F o 180 180 1 1 F

- ZCMD‘ v COS( a) ‘__eCFa -Fz =—= (CM _eCFa)
oy | _ 180 a a, o e} o
y=0 &g g

y=0

(2-24)

At last, after introducing another state variablel/} , one can get the linearized state-

space equation as in Egs. (2-157) and (2-18).
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2.3.2 Stability variation analysis

The inherent varying parameter in landing gear system is taxiing velocity (V) during
landing or taking-off. The taxiing velocity is critical in the shimmy analysis as observed
in [19]: lower taxiing velocity leads to higher stability. Dynamics simulation shows the
landing gear to be stable at the lower speed of 10 knots (1 knot=1.852
kilometre/hour=0.5144 metre/second). Also reported in [4], the occurrence of shimmy

increases with the increasing taxiing velocity.

According to [23], in a perfect aircraft touchdown, assuming there is no crosswind,
contact with the ground is made just as the forward speed is reduced to the point where
there is no longer sufficient lift to remain aloft. In this thesis, the forward maximum
velocity is supposed to be 155.52 knots (80 m/s) before aircraft touches down. Varying
parameters 1s not a new concept. For landing gear designers, to get optimal design
parameters, they have to try different combination of several varying design parameters.
Here only two typical varying parameters, taxiing velocity ¥ and caster length e are
considered. Taxiing velocity is chosen to vary from 80 m/s to 20 m/s in 5 minutes and

caster length varies between -0.5 m and 0.5 m.

According to stability theory, the method of obtaining the characteristic equation

directly from the vector differential equation is based on the fact that the solution to the

unforced system is an exponential function, which means that the solution to x=Ax is
x = ke™ . The obtained characteristic equation is det(A] — 4) = 0. From characteristic

roots, system stability can be judged.
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When varying taxing velocity 7, the system eigen-values vary, and consequently
affects system stability, which is plotted in Figure 2-18. In Figure2-18, caster length is
assumed to be constant 0.5m. It is shown that there are two repeated positive real roots
and landing gear is an unstable system at the taxing velocity of 80 m/s, which means the
instant of landing. Only when velocity goes below about 25 m/s, the system becomes
stable. The objective of robust control design is to introduce the suitable state-feedback

gain and robustly stabilize this unstable system despite varying taxiing velocity.

Stability variation respective to V
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Figure 2-19 Real part of eigen-values variation vs. V
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Eigen value's real part variation respective to e(-0.5-0.5)

-10F ,
I
20 |
|
23 ]
= .30 I
O
> t
f= I
<, 40 I
g |
k]
= -50 :
©
Q. i
§ -60 ‘» ! [
| | t
| | |
-70 el T~ -0 i
| | | I/ |
| i 1 | | |
.80 | = Real part of ev2 _+__\,___,__“,_7/4___.___*
— — Real part of 3 ' N 7 | :
1] \l~ /l 1 |

)
!
80 L i V- 1
05 04 03 02 01 0 01 02 03 04 05
e

Figure 2-20 Real part of eigen-values variation vs. e
Similarly, when varying caster length e, the system eigen-values also vary, as
plotted in Figure 2-19 y. It shows that when caster length varies between -0.5m and
0.5m, the real part of system eigen-values all are less than 0, so the system is stable in

this situation according to the criteria of stable system.

2.4 Conclusion

From the above simulations and analysis, it is shown that LCO does exist in landing
gear system and varies with varying structural parameters, such as torsional damping
constant, caster length or inherent varying parameter, such as taxiing velocity. To avoid
the occurrence of shimmy LCO, some structural parameters are adjusted at the landing
gear design stage. However, the inherent varying parameter taxiing velocity makes nose
landing gear unstable and leads to oscillation at varying amplitude and frequency. To
suppress this oscillation actively and effectively, a feedback control system will be

introduced in Chapter 3.
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Chapter 3

Robust Model Predictive Control

3.1 Modern control

Control theory can be classified into two main areas: conventional control and
modern control. Conventional control covers the concepts and techniques developed up
to 1950. Modern control covers the techniques from 1950 to present (Leo Rollins,
“Robust Control Theory”, 1999). Conventional control theory is developed based on
the transfer function and the feedback theory while Modern control theory is developed
with system state equations, which are realized in the form of matrix equations such that
computers could efficiently solve them. Any n™ order differential equation describing a
control system could be reduced to n I* order equations, which can be solved
conveniently. The method is often referred to as the State Variable/State Space method.
State-space theory is an elegant way to approach a control problem such that it is
popular among academic researchers, where the system is represented by differential
state equations instead of transfer functions. The state-space theory represents a
paradigm shift which led to many useful system concepts and new methods for control
system analysis and design. It has introduced powerful computational methods based on
numerical linear algebra. Modern control methods were extremely successful because
they could be efficiently implemented on computers. They could handle Multiple-Input-
Multiple-Output (MIMO) systems and also they could be relatively easy to be
optimized. Robust Model Predictive Control obviously belongs to modern control

method which deals with the uncertainties and system constraints in a systematic way.
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3.2 Uncertainty and disturbance in the system

Uncertainty and disturbance are two important factors imposing fundamental limits
of feedback performance in the modern robust control design. In Figure3-1, uncertainties

and disturbances are shown in the system as following:
(1) There exist uncertainties in the model of the plant.
(2) Disturbances occur in the control system.
(3) Also noises often read on the sensor inputs.

Each of these uncertainties can have an additive or multiplicative component. One

difficult part of designing a good control system is modeling the behaviour of the plant.

Uncertainty Distyrbance

\\4

~—>%——> Controller Plant

FﬂteP Sensor

Noise
Figure 3-1 Uncertainties and disturbances in the control system
In terms of state space method, control system engineers are concerned about three

main topics: observability, controllability and stability. Observability is the ability to
47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



observe all of the parameters or state variables in the system. Controllability is the
ability to move a system from any given state to any desired state. Stability is often
phrased as the bounded response of the system to any bounded input [27]. Uncertainties
present a challenge to the control system engineer who tries to maintain these three
properties using limited information. One method to deal with uncertainties in the past is
stochastic control, such as LQR and LQG, in which uncertainties in the system are
modeled as probability distributions and these distributions are combined to yield the

control law.

Given a bound on the uncertainty, the controller is supposed to deliver results that
meet the control system requirements in all cases. Therefore robust control theory might
be stated as a worst-case analysis method rather than a typical case method. It must be
recognized that some performance may be sacrificed in order to guarantee that the
system meets certain requirements. There are many difficulties in robust control design,
such as: inaccurate plant data, time-varying plant and nonlinearity. The key issue with
robust control system design is the uncertainty and how the control system can deal with
this problem. In this thesis, the researh focus is on linear time-varying plant. The
uncertainty of system is represented by the variations in the elements of the following

matrices 4, B, C and D.

x = Ax + Bu (3-1)
y=Cx+ Du (3-2)
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The objective of robust control is to ensure the required performance specification be
met by the designed state feedback control when the plant are subject to some

uncertainties and disturbances.

3.3 LPV system and RMPC

LPV is the acronym of Linear Parameter Varying system, of which the parameters
are time varying. Robust control design can normally deal with LPV system. RMPC is a

powerful design tool, which is based on MPC and robust control theories.

3.3.1 LPV, LTl and LTV system

As mentioned in [25], early approaches to robust predictive control assumed that the
model was defined as an FIR system of fixed order and the uncertainty was in the form
of bounds on the pulse response coefficients. A more recent approach is to assume that a
number of ‘corner’ points, which consist the so-called uncertainty polytope, as a
quadrangle polytope depicted in Figure3-2, when system matrixes A and B varying

within this polytope.

[Al, B1] [A2, B2]

[A4, B4] [A3, B3]

Figure 3-2 Uncertainty convex polytope of LPV system
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LPV system, first introduced by J.S Shamma and M. Athans, is Linear Parameter-
Varying system, whose state-space description is a function of some parameter vector 0.

In state-space form, a LPV system is described by Eqs. (3-3) and (3-4).
x=A(@)x + B(O)u (3-3)
y=C(O)x + D(O)u (3-4)

where 0 is a vector of varying parameters on which the system characteristics are
assumed to depend. LPV systems can be considered in light of two other important
classes of linear systems: Linear Time Invariant (LTI) system and Linear Time Varying
(LTV) system. LTI system is the most common system. It is described in form of state-
space if 6 is constant in equations (3-3) and (3-4). LTV systems represent systems where
the state-space description is completely defined by the functional time dependence of
the state-space matrix, which is represented by A(2), B(t), C(t), D(t). In fact, in equations
(3-3) and (3-4), if 0 varies with time, then it could be called LTV system, which is
equivalent to a LPV system. In this thesis, LPV system is preferred in accordance with
related literatures. A nonlinear system can be transformed into a LPV description. For

example, the Van der Pol equation is described as:
)él =X (3-5)

x, = x,—0.3(1- x2)x, (3-6)
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It is known that there is limit cycle for this system. All trajectories starting outside
this limit cycle diverges and all trajectories starting inside converges to zero. But it could

be transformed to a LPV equation (3-7).

x| [0 -1 x, 37
5, 1 —030-pY) | x, 3-7)

where p(x) = x,, such that the nonlinear term of (3-7) is hidden in parameter p .Thus

some LPV control designs can be applied to this quasi-linear system.

3.3.2 LMI optimization

For LPV system, the associated control system design for LPV model can be cast or
recast as convex optimization problems that involves solving linear matrix inequalities
(LLMI) problems, see Appendix B for more details. Thanks to the standard efficient LMI
optimization tools to solve general LMI problems; LMI-based Robust Control recently
has become popular in the control community. Besides the LMI-Lab toolbox in Matlab,
other LMI toolboxes have been developed, such as LMITOOL (built in Scilab software),
SeDuMi( developed by the Advanced Optimization Lab of McMaster University ),
SDPT3(developed by K. C. Toh et al ), SDPA(by K. Fujisawa et al). Most of these
toolboxes are based on semi-definite programming and primal-dual interior-point

method.

The LPV controller design needs some form of prediction on varying system
dynamics in the sense of MPC. The linearized landing gear system is a LPV system,

whose dynamics inherently depends on taxiing velocity. LPV control synthesis was
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studied for car yaw moment control and lateral deviation control as in [30]. Its control
law is designed using the H. loop-shaping method for a LPV plant, whose dynamics

depends on the longitudinal speed.

3.4 RMPC control

RMPC control method can deal with LPV system with polytopic uncertainty. One
important progress in RMPC design is that controller design is transformed into LMI
form and then LMI optimization is executed with emerging LMI toolboxes to realize
robust control objective. The algorithms available for solving LMI problems appear to

be very fast, so that the formulation can be candidate for online use [25].

3.4.1 RMPC without constraints

The system considered in this thesis is a discrete time-varying linear model:

x(k +1) = A(K)x(k) + Bu(k) (3-8)
»(k) = Cx(k) (3-9)

Note that:

(1) The parameter matrix 4 is varying at every sample interval in this model while B

is constant. But RMPC can handle time-varying A and B (referring to Figure3-2).

(2) Matrix A changes at each sampling interval, but it does not mean that its variation
rule is known ahead of time (not a pre-defined function of c¢). Since their precise

variations are unknown, the model dynamic behaviour is uncertain. The known
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parameters are the corner points described by the vertices of convex polytope Q (about

concept of convex set, see Appendix F), which means
AeQ (3-10)

Q = Co{d,, 4,,4;, 4,,..4, }

L L

A=Y a4, a =la, >0 (3-11)

i=1 i=1

The robust performance objective is defined as following (3-12), which means to
minimize the maximum of cost function and lead to robustness against model

uncertainty.

min  max V.
u(k+ilk)  [ACk+),B(k+)]eQ (3-12)

where V(k) is the quadratic cost functions, which is defined as:

V. (k)= Zm:[x(k +i| k) O x(k+i| k)] +[ulk+i|k) R u(k+i|k)] (3-13)

k=0
Suppose there exists a Lyapunov Function V(x) which satisfies

V()C)z.xTPx,P:PT>O (3_14)

If V satisfies the following inequality for all x(k+ilk) and u(k+ilk, (i=0) (predicted
state variable and predicted control input at the present instant in the uncertain system
model (3-8), respectively):

Vix(k+i+1k)-V(x(k+i|k))
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S x(k+i| k) Q x(k +i| k) +u(k +i)| k)" R u(k +i| k)] , (3-15)

then the system is stable. Note that P is a suitable Positive Definite Matrix (PDM,

(the property of PDM, refer to Appendix A).

Inequality (3-15) is important because it leads to the upper bound formation for the
cost function (3-13) as expressed in (3-16). Assuming that robust objective function is
finite, x(0 | k) =0 . Thus one can inferV(x(co | k)) =0 . Summing (3-15) up from i=0

to i=o0, one obtains:

) (kn}?))ig Vo (k) <V(x(k|k)) (3-16)

Then, (3-11) can be replaced by the following;:

min V' (x(k | k) (3-17)

The above expression (3-17) is a convex optimization problem and can be solved by
LMI solver. Therefore considering (3-14), the problem (3-12) is equivalent to the

following (3-18):

miny Subjectto x(k|k) Px(k|k)<y . (3-18)
v,P

Define Q=P >0 as a PDM. One can get 1-x(k| k)" Q'x(k|k) =0 by using

Schur Complement (referring to Appendix C), which is equivalent to following LMI:

{1 x(klk)T]ZO
xklk)  Q . (3-19)
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Now assume that the control signal is determined by state feed-back law

u(k +i| k)= Fx(k+i|k),i 2 0. Substituting for u(k+ilk) in inequality , (3-15), one gets
x(k+i| k)" {[A(k +i)+ Bk +1)F]" PLA(k +i) + B(k +1)F] - P

+F'RF +Q Yx(k+i|k)<0

(3-20)
Applying property of PDM again, (3-20) holds for all i >0 if
[A(k +1)+ B(k +1)F]" PLA(k +i)+ B(k +i)F]- P+ F"RF +Q, <0 (321)
Rearranging (3-21):
P—[A(k+i)+B(k +i)F]" PlA(k +i)+ B(k +i)F]- FTRF -Q_ 20 (3-22)

Pre- and post-multiplying by Q (because Q>0, inequality still holds) and defining

Y=FQ and substituting P=»0" , one obtains another LMI by using Schur

complement:
Q (Ak+D0+BY)" QQ,")" Y' (R,
Ak +)Q+ BY Q 0 0 >0
0,°0 0 A 0 -
R’Y 0 0 A

(3-23)
where A(k+i) is affine in uncertain set A (referring to (3-8) to (3-10)).

If considering input and output constraints, another two LMIs should be added,

which will be discussed in the next section.
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3.4.2 RMPC with constraints

In this thesis, the Buclidean norm constraints are considered for input and output

signals at sampling instant £,

Ilu(k +1i| k)"2 Sug, (3-24)

[y +i10), < yar (3-25)

To express (3-24) and (3-25) in form of LMIs, the following derivation has to be

carried out.
max |u(k +17| k)“z = ng})x"Fx(k +1i] k)”z = I?;}JX"YQ_‘X(IC i k)"z
= n?z%lezQ—’ Nzﬂx(k +i|k)? Q—l)‘ = n}j(‘)X”YTQ_lY”J!x(k +i| k) QO x(k +i] k)"2

Using Cauchy-Schwarz inequality (If X and Y are real vectors, then following inequality

holds |XY | , S ”X ” 2“Y “2 ), the above inequality becomes:

<max

i0

Y70 max|x(k + | k)" Q7 x(k +i | k)|,
From (3-19), One knows 1-x(k|k)"O'x(k|k)>0 holds for all k>0. Since

max max

max|u(k +i | k)|, < up,,, the following LMI holds if U, <

[UT Y]zo . (3-26)
Yy o

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Note that x(k+i|k) is a vector and belongs to state-invariant

ellipsoidE = {z | z'Q7'z} = {z | 2" Pz < y} . Besides, for Matrix 4 and B, if 4> B then

A4, 2 B, holds.
Similarly, for output constraint (3-22):
max|y(k +i] K| = max|[CLA(k +i) + Bk +i)F1x(k +i | k)|,
Substituting 7' = YO, one obtains from above equation

= H?Z%XHC[A(]( +i)+ Bk +)YQ™ Jx(k+i| k)“i

= max|CLA(k +1)Q+ B(k +)Y10 ™ x(k +i [ K)|
Using Cauchy-Schwarz inequality, one derives:
< max|CLA(k + Q0+ B(k + )Y ][;. max|0 " x(k +i | B
= max{C[4(k +1)Q + B(k + DY O {ClA(k + )0 + B(k +)Y]"}
max {x(k +i | k)T Q7' x(k +i|k)}

Again, introducing 1 - x(k | k)" Q7'x(k | k)= 0 , if ma})x“y(k+i | k)||§ < y?2.. holds,
then the following inequality holds.

{ClA(k+ DO+ Bk +)Y1} Q7 {CLA(k +1)Q + B(k +i)Y]} < v,

which is equivalent to the following LMI using Schur complement,
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{ 0 [A(k+))Q+ Bk +)Y]" CT

X } > 0,(i 2 0)
CLA(k +i)Q + B(k +1)Y] y2 I

(3-27)

In summary, for system (3-8) and (3-9), if there exists matrix ¥ and Q satisfying all

the five LMIs (including robust stability condition and input, output constraints) (3-17),
(3-19), (3-23) , (3-26) and (3-27) , the controller F =Y(Q™" achieves the robust control

objective (3-12).

3.5 PRMPC

According to section 3.4, online step-by-step convex optimization can finally lead to
asymptotically stable state evolution. However, for the online control application, the
computation efficiency is still a challenging problem in the RMPC application to the
online control problems. To get over this drawback, the following algorithm (called

PRMPC) have been proposed.

3.5.1 Proposed algorithm description

The objective of proposed PRMPC is to find a stable but faster RMPC algorithm.
The main idea is that there is only one-time running for relatively time-consuming LMIs
(3-17), (3-19), (3-23) , (3-26) and (3-27) . Then the faster convex LMI computation is
used to maintain state convergence process and compute suitable feedback gain matrix

at every sample interval.

The proposed algorithm is described as follows. Given the system (3-8) and (3-9)
with an initial feasible state x(0), (that means there is feasible solution to all related five

LMIs subject to x(0)), the following procedures are carried out:
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(1) Compute Q subject to (3-17), (3-19), (3-23) , (3-26) and (3-27) with initial
condition x(0) and polytopic vertices of 4; (i.e. 4;, 4> As... in (3-10) ), then save the

solution Q, Y;

(2) At time k, solve related LMIs (3-28) to (3-31) to obtain optimized Q(k) from

present x(k);

(3) Compute feed-back gain F(k)=YQ(k)" and controller is designed as

u(k)=F (k)x(k)=YQ(k)'1x(k). Apply the current control input u(%) to the system;
(4) Attime k+1, set Q = Q(k) go back to (2).
In the step (2), all involved LMIs are described as follows:

min # subject to following (3-28) to (3-31).

B.0.Y,0(k)
B >0 (3-28)
| x(k)  Q(k)
u;T ka)} S0 (3-29)
yamQF)  CTAQM+BNT] (.30
(4,0(k) + BY)C Yomax] -
0 <Q < O(k) 0<p<) (3-3D)

Note that 4; means vertex point of the convex polytope.
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3.5.2 Mathematical proof

The proposed PRMPC is based on concepts of invariant ellipsoid and contracted
positive definite matrix (PDM). Although its proof is simple and easily understandable,
the saving on computational time compared with other RMPCs is profound.

Definition: Given a polytopic uncertain system (3-8) and (3-9), the subset

e={x|x"Q7'x <1} of the state space x e R™ is defined as an asymptotically stable

invariant ellipsoidal set.

Lemma: The first PDM Q obtained from stepl is the upper bound of invariant
ellipsoidal set for system with the initial state x(0).

This upper bound only depends on initial state if all related LMIs have feasible

solutions and convex polytope has been predefined. Related materials can be referred to
[33]and [34]. Note that LMIs (3-29) and (3-30) are nothing but input and output
constraints, which should be satisfied at every sample interval.

Theorem: Considering the LPV system (3-8) and (3-9), this system with state-
feedback gain F(k)=YQ(k)™ and control input u(k)= F(k)x(k) is asymptotically

stable if Q(k)™ is asymptotically contracted.

Proof: From characteristics of Positive Definite Matrix (refer to Appendix A), for

Q(k)>0 and Q(k+1)>0 (k>0), one can infer that if 0<Q < FQO(k) and

O(k) < Q(k +1) holds, then 0<Q(k)” —Q(k +1)™" holds.

Multiplying the above inequality left side by x (k) and right side by x (k)7, one derives:
0 < x(k)Qk) "' x(k)" = x(k)O(k + 1) x(k)”
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According to [34], if at time k there exits >0 and x(k | k)" Q~'x(k | k) <1 holds,
then at time k+i, Max{x(k+i|k)" Q7'x(k+i|k)} <1 holds. Thus if applying state-
feedback control law F(k) =YQ(k)™ and u(k)= F(k)x(k) to the controlled system, it

will generate one ellipsoid inside another, which assures that the system is

asymptotically stable.

Note that Q'is the upper bound of contracted Q(k)™. A contracted ellipsoidal set is

expressed in terms of LMIs as (3-28) to (3-31), see figure 3-3.

&

Ellipsoide ={z|z"Q 'z <1}

Figure 3-3 Graphical description for contracted ellipsoidal sets

3.6 CRMPC
One way for LPV control design is to find a single Lyapunov matrix, like KRMPC

proposed by Kothare [34], but sometimes this is thought to be conservative (not always
though). Another way is to find parameter dependent Lyapunov matrix (PDLM). PDLM
involves introduction of one or more matrix variables, such as matrix G in the following

(3-32), to get hopefully less-conservative controller.
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Based on KRMPC [34], F.A. Cuzzola in [33] and N. Wada in [32] presented
improved RMPC successively by PDLM. F.A. Cuzzola’s method is a typical RMPC

method, which is the so-called CRMPC in this thesis.

To alleviate the repetition, only the different parts of CRMPC are listed comparing to

previous RMPCs. The related proof refers to [33].

Vj=12..L,
/ /
G+G" -0, [4,G+BY]" [0)*GY [R)*Y]
4,G+BY Q) 0 O 150 (3-32)
0.°G 0 A 0
R’Y 0 0 A

where A, is related to vertex point of the convex polytope, such as A to A4in Figure3-2.
The state-feedback gainis  F (k) = YG(k)™' and control input is u(k) = F(k)x(k)

The input and output constraints are expressed as:

[l 1 Y?
. 120 (3-33)
Y G+G"-0Q,
[ G+GT -0, [C(4.G+B )
Q, [, , ] >0 (3-34)
| C(4,G+B,Y) y2 I

The comparison between two robust stability conditions of KRMPC and CRMPC is

described in Appendix D.
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3.7 A RMPC application example
3.7.1 System model

To verify the proposed RMPC algorithm, a benchmark example in [34] has been
adopted. The system consists of a two-mass-spring system shown in Figure3-4. Its
discrete-time state-space equations are obtained by Euler first-order approximation with
sampling time 0.1 second. Now the proposed PRMPC is applied to this example system
and its control performance is compared with that of KRMPC, CRMPC in terms of
robustness. The respective simulation results are shown in the following Figure3-5 to

Figure 3-13.

X1 X2

u—f M M M

() () ) ()

Figure 3-4 Two mass-spring system

The system model is:
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x,(k+1) 1 0 0.1 07 x(k) 0

nk+n| |0 1 0 otfn®| | 0 |
nk+)| [=01K/m,  01K/m, 1 0 |x@)| |0.1K/m, |
x,k+)| | 0.1K/m, —01K/m, 0 1 |x&) 0 (335)

where m; and m; are the two masses and X is the spring constant , x; and x, represent

the positions of these two masses, x3and x, are their velocities.

The control objective is to drive the initially disturbed four states (positions and
velocities of m; and m,) to equilibrium point (0, 0, 0, 0) while the spring constant X is

arbitrarily varying between its maximum 10 N/m and minimum 0.5 N/m.

3.7.2 Simulation results

The simulation results of three RMPCs in the two-mass-spring example are shown
below. Figure 3-5 to Figure 3-7 are the control inputs. Figure 3-8 to Figure 3-10
demonstrate the state history. Figure 3-11 to Figure 3-12 show the minimized

performance index y .

control input of KRMPC
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Figure 3-5 Control input of KRMPC
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Control input of CRMPC

0.15

01F---

steps(time=steps*0.1s)

Figure 3-6 Control input of CRMPC

controt input of PRMPC
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)

() nduy jouo0

-0.14

steps(time=steps*0.1s)

Figure 3-7 Control input of PRMPC

From above Figure3-5, 3-6 and 3-7, one can see that at the beginning, CRMPC has

smoother control input evolution than KRMPC and PRMPC. But at the end (after 200

iterations), the control signals of all three RMPCs vibrate within relatively limited

amplitudes. PRMPC has longer settling time than KRMPC and CRMPC, because it is
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designed with less computational load for application to online feedback control while
sacrificing some performance of convergence speed. However, for the PRMPC, it has

been mathematically proved that its robust stability property is ensured, see section 3.5.

Time history of state variables in KRMPC

states

I i

| |

_—

T 1 t

i i | |

I i 1 |

! I 1 i |
50 100 150 200 250 300 350 40
steps(time=steps*0.1s)

0.2
0

Figure 3-8 States of KRMPC

Time history of states in CRMPC

states

1
I
]
|
I |
! ]
100 200 300 400 500
steps(time=steps*0.1s)

Figure 3-9 States of CRMPC
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Time history of state variables in PRMPC

states
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|

|
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|

)

. I
+ I |
1 | |
1 3 1
50 100 150 200 250 300 350
steps(time=steps*0.1s)

Figure 3-10 States of PRMPC
Obviously, CRMPC has faster convergence of states than KRMPC and PRMPC.
PRMPC needs almost 400 steps to reach desired state in this example. Note that unit of
x-axis is iteration steps. Because sampling interval is 0.1 second, time is equal to
iteration step times by 0.1 second. Although CRMPC has best convergence, it suffers the
heaviest computational load than other two RMPCs, which will be explained in later

section.

As for the minimized performance index, only figures of KRMPC and CRMPC are
shown (see Figure3-11 and Figure3-12). Because PRMPC uses different algorithm, it
does not need to compute the same performance index in the step-by-step optimization.
Similarly, the computation of the minimized index f is needed for PRMPC and shown in
Figure 3-13. CRMPC starts from lower y (200.43) and KRMPC from bigger y (279.75),
then CRMPC converges to near to 0 at 10 seconds (100 steps) while KRMPC at 12

seconds (120 steps).
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Minimizer § of mv
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Figure 3-13 Minimized index (f) of PRMPC
3.7.3 LQR control
As mentioned section 3.2, one method to deal with limited uncertainty is the
stochastic control, such as LQR and LQG, in which uncertainties in the system are
modeled as probability distributions (not arbitrary distributions). In order to verify
distinct characteristics of RMPC compared to stochastic optimal control LQR, LQR
method has been applied in the same two-mass-spring system with same initial

conditions. The simulation results are shown as following Figure 3-14 to 3-17.
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Time history of state variables in LQR
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Figure 3-14 States of LQR
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Figure 3-15 Control input of LQR

From the above simulation results, one can see both the states and control input

diverge quickly as system parameter is varying. Therefore the conclusion is drawn that
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But if

LQR method does not work in this two-mass-spring LPV system at all.

simulation condition is changed, i.e., if system parameters variation is known for LQR in

advance, the results are totally different with Figure 3-14 and Figure 3-15.

Time history of state variables in LQR(known dynamics)

steps(time=steps*0.1s)

Figure 3-16 States of LQR (known variation of dynamics)
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Figure 3-17 Control input of LQR (known variation of dynamics)
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From Figure 3-16 and Figure3-17, one can see that LQR method even has better
control performance than the previous KRMPC, PRMPC or CRMPC. But note that there
is a prerequisite for these simulation results. In fact, in Figure3-16 and Figure3-17, there
is no uncertainty of system dynamics at all. In other words, it means if the system
parameters are completely known at every sampling instant, then LQR can work well. In
LQR computation, the first step is to solve the discrete-time Riccati equation [67] based
on definite system model, and then obtain the optimal feedback gain, and finally apply

this constant feedback gain to stabilize the controlled system.
Some characteristics of LQR are concluded here:

(1) LQR is a model-based optimization method, and hence it cannot deal with neither
time-varying uncertainty nor input and output constraints systematically. The
simulations have shown that for the controlled system with polytopic uncertainty (as in
Figure3-14 and 3-15) or with system constraints (plots are omitted here), LQR controller

makes the controlled system unstable.

(2) LQR is a faster algorithm compared to RMPC, but it can not guarantee the
robust stability globally due to its inability for LPV system and deficiency for any future

prediction as system dynamics varies.

All the simulation results are summarized in Table.3-1 for purpose of performance
comparison. For LQR, the results are based on Figure 3-15 and 3-16. The total

computation time of PRMPC is only 19% of KRMPC and 4% of CRMPC, respectively,
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which means 5.25 times faster than KRMPC and 24.8 times faster than CRMPC, so that

the computational efficiency is greatly improved.

Table 3-1 Comparison of three RMPCs and LQR

Compared items KRMPC | CRMPC PRMPC LQR
Starting value of
upper bound index 279.74 200.43 279.74 N/A
)
Total Computation time
1260 5947.8 239.92 61.3
(seconds)
Average  computation
time  per iteration 2.52 11.90 0.48 0.12

(seconds)

Note that in table 3-1, it seems that average computation time per iteration is larger
than sampling time (0.1 second). For online control application, this computation time

should be less than sampling time. Considerations about this are addressed as follows:

(1) The simulated programs are Matlab-based and not compiled executable

programs. Thus, its computation is certainly slower than the compiled ones.

(2) The computation is executed in the computer of a student lab. In practice,
improvements on both computational hardware and software are possible to express the

whole computation.
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3.8 Trajectory tracking

The two basic control applications are regulation and tracking. The above two-
mass-spring example is a regulation problem, which means that given a controlled
system, controller should try to make the system states return to equilibrium point in
spite of system dynamics variation or uncertainties. But for trajectory tracking problem,
it starts from initial conditions (normally at equilibrium point), control system will drive
the states to the required set point. Figure 3-18 shows simulation results using KRMPC

algorithm, in which starting point is at [0;0;0;0] and set point is at [1;1;0;0;].

states

0 50 100 150 20 250 300
steps(time=steps*0.1s)

Figure 3-18 States history of tracking example
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control input of tracking
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Figure 3-19 Control input of tracking example

3.9 Conclusion
This chapter starts from modern control development history and introduction of
system with uncertainty and disturbance. Three different system definitions: LPV, LTI
and LTV are given. And the stable and faster PRMPC has been proposed to handle
LPV system with input and output constraints efficiently and effectively. Three RMPCs
have been tested and compared in a benchmark example. Through simulation results, it
is concluded that all of three RMPCs can work with LPV system while LQR can not
deal with LPV system. The proposed PRMPC does save lots of computational time and

is proved to be more practical for online control application compared to two other

RMPCs.
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Chapter 4
Active Shimmy Control Design

As the simulation results demonstrated in section 3.7.3, LQR may be designed based
on known variation of dynamics within some certain operation ranges. In practice, a
more robust control design is in need for dealing with wider operation range while
considering the system input and output constraints. In this chapter, the proposed
PRMPC algorithm is applied to accommodate online landing gear active shimmy
control. Considering the linearized shimmy dynamics Eqs. (2-17) and (2-18), one may
find out that landing gear shimmy system is a typical LPV system since state matrix A

changes with taxiing velocity.

4.1 Control objective

The objective of active shimmy control is to asymptotically suppress yaw vibration
with less overshoot and short settling time during landing process and to robustly

stabilize the system despite the taxiing velocity varying from 80 m/s to 20 m/s. The

control input constraint (u(k+i|k)|. <0.5 rad/Nm and output constraint
p 2

ly(k+i|k)|, <1 radian should always be satisfied. And the index f is to be minimized

at every sampling interval to guarantee the robust stability with respect to the varying

parameter and the external disturbance.
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In terms of LPV controller design, given a system described by xy.+;=A(V)x; +Bu(k)
with initial deviation xo, to find a feedback control law u such that the closed-loop

system state x; tends to near 0 in desired time .

4.2 LPV polytope design

In last chapter, through a two-mass-spring example, three RMPCs are demonstrated
dealing with LPV system very well. Note that in the linearized landing gear state-space
equations (2-157) and (2-157), there are two coupled parameters ¥ and 1/V. Although
the involved LMIs computation in RMPC is identified as a convex optimization, taxiing
velocity is not ready to be incorporated into RMPC computation because V-1/V curve is

not a convex set (see the definition of convex set in Appendix F).

Prior to the design control law of RMPC, a convex polytope must be constructed to
cover whole range of V-1/V. The design criterion for constructed convex polytope is
subject to maximum-minimum rule: (1) The constructed polytope should cover
maximum variation range of parameters; (2) This polytope should be designed with
minimum area (for two-dimension polytope) or volume (for three-dimension polytope).
The first criteria is to ensure control system global stability and the second one is to
ensure that this polytope is the closest to varying parameters to obtain most suitable

feedback gain and less computational load.
In [31], one design technique to construct this kind of convex polytope was presented

although this technique was used in H-infinity controller design.
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Figure 4-1 Constructed (V-1/V) convex polytope
The constructed convex polytope(1,2,3,4) in the above figure is explained as follows:
Line 1-4 is the connection between maximum and minimum velocity; linel-2 tangent to
hyperbola at 1; line 3-4 tangent to hyperbola at 4; line 2-3 is parallel to linel-4 and
tangent to hyperbola. This polytope covers the whole range of varying parameters
(V,1/V). Then according to the characteristic of convex set, any point P on the curve (¥,
1/V) can be expressed as the linear combination of four vertexes P;, P, P; and P, of

quadrangle, which means
P=a,P +a,P, +a,P, +,P,
(o, +a,+a,+a, =1,a,,a,,a,,a, >0) 4-1)

Although P can be expressed as linear combination of P; to Py, the solution of real

number to @, to «, in the (4-1) is not always easily obtained and sometimes it is

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



unsolvable. Fortunately, from the derivation in Chapter 3, one can see a, to a, is not

needed for the related LMIs computation. On the contrary, only four vertices value of P,
to P, will be involved in that computation. Although this is conservative for the

controller design, it assures robust stability globally.

4.3 Shimmy control system design

In this section, all control system design details are addressed and explained.

4.3.1 Closed-loop system parameters

The linearized landing gear system is described in open-loop state-space equations as
in (2-157) and (2-157). In order to introduce state-feedback control, one needs to
introduce external control force/torque and then normalize in discrete time domain in
compliance with controller design as following equation (4-2) and (4-3). Note that

because A(k) is time-varying, this is a linear discrete-time varying system.

x(k +1) = A(k)x(k) + Bu(k) (4-2)

y(k) = Cx(k) (4-3)
The parameters in the above system control equations are to be defined for further
design:
(1) System matrix A(x) is known in continuous-time domain as in equation (2-18).

(2) Vector B is to be decided. In this thesis, it is assumed that when applying external
force/torque to steer the landing gear, the landing gear will respond with some

yaw angle. Referring to torsional spring rate k (=10000 Nm/rad) (see the List of
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0
Symbols), without loss of generality, B was chosen as|13950|for controller
0

design. In practice, this coefficient matrix depends on output and input

relationship of actuator.

(3) Because the output of landing gear is the yaw angle, the output vector C is

chosen as[l 0 O].

(4) Egs. (2-157) and (2-18) is described in continuous-time domain. However, the
robust model predictive controller is designed based on the discrete-time model.
To design an active shimmy controller, the continuous-time model has to be
transformed to discrete-time model. In order to transform it to discrete-time
domain, the Euler first-order approximation is introduced to equations (2-157)
and (2-18). The discreet-time equations are shown in form of equations (4-2) and

(4-3).

4.3.2 Functional scheme of shimmy control system

The functional scheme of shimmy control system is described as Figure 4-2. Firstly,

at every sample interval, the present yaw angle is measured. If it is desirable, no control

action will be taken. Otherwise, we have to measure full states (l//,l/}, y) to calculate
suitable control input by online RMPC algorithm. Then the computed control input is

applied to landing gear steering actuator to correct yaw orientation. Because of robust
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stability characteristic of RMPC, the controller can stabilize the system at the

equilibrium point in spite of varying dynamics and disturbance.

Disturbance

yy

W

U ; . \ . 6
 Online RMPC -—> Control signal A Landing Gear
—) ctuator ich

Measurement

Figure 4-2 Functional scheme of shimmy control system

4.3.3 State-feedback control system configuration

A robust control system exhibits the desired performance despite the presence of
significant plant uncertainties. A control system is said to be robust when it is stable
over the range of parameter variations and the performance continues to meet the
specifications in the presence of a set of changes in the system parameters. In this thesis,
the robust control system aims at dealing with taxiing velocity variation and external

disturbance, its state-feedback control system configuration is shown in Figure 4-3.

&1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A

Disturbance
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Control law

BF(X)

Figure 4-3 State-feedback control system configuration

4.3.4 Cost function and constraints

In the landing gear shimmy control design, the computational efficiency and the
disturbance rejection ability should be emphasized due to the online control demand.
RMPC is a powerful online optimal control with ability of disturbance rejection.
However, its disadvantage is that computational load is too heavy to be implemented for
online application. One way is to use offline RMPC to improve computational
efficiency, but it is hard to handle the unexpected varying parameters or disturbance,

thus PRMPC proposed in chapter 3 is chosen as active shimmy control algorithm.

The robust performance objective is chosen as

min  max
we+il)  [AGi),BU+eQ Vo () (4-4)
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where ¥, (k) = i[x(k +i| k)" QO x(k+i| k)] +[uk +i | k)" Ru(k+ik)] ; Qw>0 and

k=0

R,>0, are two weighting matrix.

The input and output constraints are:

e +i | )| =ty = 0.5 (i20) (4-5)

& +i [ B} =Yg =1(20) (4-6)

In simulation, all above LMIs are coded in Matlab software combining with

YALMIP toolbox. The details about algorithm of PRMPC refer to section 3.5.

4.4 Simulation results

For online control design purpose, the simulation results are shown in real time with
the sampling interval 0.005 second. Furthermore, although some disturbance rejection
ability of RMPC was claimed in [34], few simulation results with disturbance were
found in literature. Computational efficiency is to be verified in shimmy control

application with comparisons between proposed PRMPC and other two RMPCs.

4.4.1 Simulation environment

e Hardware: Dell Workstation PWS370; Intel Pentium 4 CPU 2.80G Hz; 512

MB RAM; Hard disk 250 GB; Windows NTFS file system.

o Software: Windows XP (SP2), Matlab 7.0.1(R14) SP1, YALMIP LMI

Toolbox V3 (R14SP3).
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4.4.2 Open-loop system response

First of all, the open-loop system response with initially disturbed states is simulated
with different taxiing velocity. In Figure 4-4 and Figure 4-5, taxiing velocity is 20 m/s
and initial Yaw Angle are 0.1 radian and 1 radian respectively, the system oscillates and
can not get to equilibrium quickly during simulation time. In Figure 4-6 and Figure 4-7,
the system becomes unstable and yaw angle diverges quickly to infinity with same
taxiing velocity 80 m/s but with different initial yaw angle 0.1 radian and 1 radian
respectively. The instability of the system is verified by checking the system’s poles and
zeros. It is found that there are two unstable poles (beyond unit cycle) in this

circumstance, which are shown in Figure 4-8.

Open loop response with(V=20,(0)=0.1)
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Figure 4-4 Open-loop response when V=20m/s, y(0)=0.1rad
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Open loop response with(V=20,\y(0)=1)

T T
1
1 ' ] ¢
_____________________________________
[ 1
+ 1
i 1
l 1 )
|

L "Iul I

HlIMH L \h L

| i } T !l .
e i A
R I‘l‘l o ll "

HHIIHII y

______________
{ | 1 |
B Lk Py
| i | | i

1

0.8

(=4
o

o

.2

i
0.4 l
I
Al
ol

system response

1 1 1 1 L
0 0.5 1 1.5 2 25 3
Time(second)

Figure 4-5 Open-loop response when V=20m/s, y(0)=1rad
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Figure 4-6 Open-loop response when V=80m/s, y(0)=0.1rad
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x 102 Open loop response with(V=80,y(0)=1)
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Figure 4-7 Open-loop response when V=80m/s, y(0)=1 rad
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Figure 4-8 Pole-zero map when V=80 m/s
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4.4.3 Design parameters tuning

Tuning the design parameters to achieve better performance is important in the
design stage. During parameters tuning, one trick is how to find first feasible solution of
related LMIs, which is based on trial-and-error and sometimes tedious. But once the first

feasible solution is found, the iterations can always carry on.

There are four important design parameters to be tuned: weighting matrixes, control
input maximum, system output maximum and sampling time. Normally speaking,
increasing control input weighting matrix reduces control activity and degrades feedback
effect; decreasing control maximum value can lead to smoother control; sampling time
is critical to solutions of LMIs, shorter sampling time assures online control reliability
and global stability. According to Shannon’s Sampling theorem, normally the sample
rate is chosen 5 to 10 times the signal bandwidth (at least two times). All tuned
parameters have to assure feasible solution to LMIs. The finally chosen design

parameters are listed in the following Table 4-1.
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Table 4-1 Shimmy control system design parameters

Discretization method Euler’s first-order approximation

System sampling time 0.005 second

Maximum control input
0.5
(rad /second Nm)

Maximum system output

(radian)

) Yaw Angle: 1 radian
Disturbed initial condition
Lateral Deflection: 0.05 metre

Weighting Input coefficient Ry, 1

Weighting Output Matrix Qy 0.0001*1(3X3)

4.4.4 Simulation without disturbance

In practice, there is always disturbance into controlled system, so simulation with
disturbance is always necessary. For the comparison of system response, firstly the
system is simulated without disturbance. In the next section, system with disturbance
will be simulated. Three RMPCs: KRMPC, CRMPC and PPRMPC are designed and
simulated for landing gear shimmy suppressing based on same system model.
Corresponding simulation results are collected and listed in Table 4-2. From Table 4-2,
one can find out that the total computation time and average computation time per
iteration of PRMPC are only 40.6% of KRMPC and 5.5% of CRMPC, which means 2.4

times faster than KRMPC and 17.9 times faster than CRMPC, respectively.
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Table 4-2 Comparison of three RMPCs

Compared items KRMPC CRMPC PRMPC
Starting value of upper
5537.6 1146.6 5537.6
bound index (y)

Total Computation time

63.5 465.3 25.8
(seconds)
Average computation

1.27 9.31 0.52

time per iteration (seconds)

As claimed in Chapter 3, the PRMPC is based on the concept of invariant ellipsoid
and contracted PDM. At first glance, it seems that there are more LMIs to be solved than
those in KRMPC and CRMPC (total is 10 LMIs in PRMPC while KRMPC 4 and
CRMPC 4), but in fact there are only 4 simpler LMIs computed in every iteration step.
The LMIs (3-19), (3-23) , (3-26) and (3-27) just run once out of loop, and then solutions
of O and Y are saved. LMIs (3-28) to (3-31) are solved in loop, and a contracted o)
can be solved at every sample interval and used for feedback-gain computation. Because
LMIs (3-28) to (3-31) only run in simpler and smaller-dimension convex optimization,

there is less computational load and it is the fastest algorithm among three RMPCs.
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In section 4.5.2, the open-loop response of landing gear system is shown oscillatory
and unstable without any control action. Figure 4-9 to Figure 4-14 show the control

effect of all three RMPCs. Some points about simulation results are summarized.

(1) RMPC feasibility depends on possibility of solution of LMIs. Although the
mathematical feasibility is proved in [34], but this feasibility exists only after the first
feasible solution has been obtained. Otherwise, the LMIs optimization can never be

carried out.

(2) The starting value of minimized index y depends on system dynamics, initial
condition and related algorithm. According to [25], the problem formulation of KRMPC
tends to be somewhat conservative. From Table 4-2, CRMPC starts from a less value
than KRMPC and PRMPC, but suffers heavier computational burden, which leads to

longer total computational time and average computational time per loop.

(3) Obviously, the states convergence of CRMPC is a little better than KRMPC and
PRMPC. Although CRMPC introduces another matrix variable (referring to [33][34]) ,
the control effect of CRMPC is not likely as good as claimed in two mass-spring system

of Chapter 3. PRMPC is similar to KRMPC, but with less computational time.

(4) Referring to [33], because Q; in the LMI (3-32) means four symmetric matrixes
with respective to vertexes of convex polytope, 12 LMIs have to be solved to get control
feedback gain F(=YG’) in CRMPC at every iteration step. According to LMI
optimization theory [29], the fastest Interior Point algorithm’s computation effort grows

with (MN’), where M is the total row size of LMIs and N is the total number of decision
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variables. Consequently, there are far more row sizes of LMIs and decision variables in
CRMPC, thus the computational time of CRMPC is much longer than that of

KRMPC and PRMPC.

(5) RMPC can deal with multi-parameter varying system. For example, one may
simulate the controlled system with varying torsional damping constant ¢ in Egs. (2-18),

and it was observed that RMPC still works (the plots are omitted here).

4.4.5 Simulation with disturbance:

Many control systems in practice tend to be disturbed. The common external
disturbance signals for landing gear are crosswind and rough runway. When the aircraft
experiencing any external disturbance (i.e. pot holes, cracks, and unevenness), the
landing gear body should not have large oscillations and oscillations should dissipate as
quickly as possible. In the following simulations, the landing gear is assumed to taxi
along runway with varying taxiing velocity from 80 m/s to 20 m/s within 5 minutes (300

seconds).

The runway disturbance is assumed as a state disturbance to system. In the
simulations, the runway disturbance will be approximated by a step input (Figure 4-15
and Figure 4-16) and a sinusoidal input (Figure 4-17 and Figure 4-18), respectively.
These two disturbance signals last 10 seconds. The step signal could represent the
landing gear coming out of a pothole. The sinusoidal signal could represent continuously
uneven runway. In Figure 4-15 and 4-17, the state-feedback controller of PRMPC shows

definite disturbance rejection and has less overshoot while it has shorter settling time
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when dealing with step disturbance (as in Figure 4-15) than with the sinusoidal

disturbance (as in Figure 4-17).

PRMPC with step disturbance(L)
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Figure 4-15 State history of PRMPC with step disturbance
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PRMPC with sinusoidal disturbance(L)
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4.5 Implementation considerations

Most light aircraft accomplish nose wheel steering by some form of direct linkage
between the nose-wheel and the rudder pedals that allow the nosewheel to be steered
when the aircraft is on the ground. For the heavy aircrafts, the nose wheel is steered with
hydraulic actuators that are controlled by the pilot, as in Figure 4-19. The proposed
active shimmy control system is suggested to be used as an auxiliary-control system
whenever shimmy occurs, which could be implemented with external motor drive for
light aircraft or integrated into nose wheel steering control system for heavy aircrafts.

In this section, I consider more implementation on heavy aircrafts.

Figure 4-19 Bombardier Challenger 300 cockpit, [72]
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For online application, the control system has to ensure that the computer program
executes and responds to plant within a reasonable time. Every control signal

computation should be finished within one sample interval.

Hydraulic steering actuator of landing gear might be chosen as controller’s actuator.
Rotary position sensor is chosen for measuring yaw angle, which normally uses
potentiometers, resolvers and a variety of magnetic and capacitive sensors. Angular
speed sensor is used for yaw rate and displacement sensor is for lateral deflection. At
every sampling instant, these three variables are measured by control system for state-

feedback gain computation.

The conceptually chosen sensors and actuator are listed as in following Table 4-3,
which are found easily in market. The considered specification of all sensors is a rough
description based on assumed performance requirement of control system design. In the
engineering practice, many of them may depend on aircraft part or assembly design

requirements and different implementation situations.
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Table 4-3 Conceptual choice of sensors and actuator

Item Type Specification Example model

Actuator Push-pull hydraulic | Internal/external N/A

or electrical motor

drive
Angular sensor | Rotary position Measurement range: Model 0601-
sensor 0000, Trans_tek,

-70 to 70 deg. accuracy:
0.5% Inc.

Angular speed | Magnetoresistive Omnipolar, 4.5 V DC to | 1X

sensor Wheel-Speed 16 V DC supply voltage, | Magnetoresistive,
Sensor rise time (10 % - 90 %) of | Honeywell
1.5 ps max.
Deflection Linear deflection Measurement range | Vishay Model
sensor sensor 0.005-0.5 meter,accuracy: | HS25,Intertechnol
0.1%, ogy Inc.

output: voltage

In practice, landing gear design should comply with airplane design regulations,
which should be seriously considered by airplane subsystem designers or by control
system designers. Here some related essential regulations are cited for directional and

lateral controllability for information [74].

(1) Airplane can make turns at a specified bank angle into and away from one or

more inoperative engines.
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(2) Airplane can make sudden changes in heading while keeping the wings
approximately level.
(3) These required bank angles and changes in heading angle are specified

differently in each regulation, depending on the type of airplane.
4.6 Conclusion

In this chapter, the proposed PRMPC is applied to solve landing gear active shimmy
suppressing problem. One significant difference between landing gear system and
previous two-mass-spring system is that the constructed LPV polytope because varying
coupled parameters V-1/V is not ready to be incorporated to convex computation.
Through simulations and analysis, PRMPC is proved to be more computation-efficient
than other two RMPCs so that PRMPC is more practical for online control application.
Besides, PRMPC has been proved to have good disturbance rejection ability. For
purpose of future real application, some related implementation considerations are also

addressed.
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Chapter 5

Conclusions and Future Work

In this thesis, an active control strategy has been proposed for landing gear shimmy
suppressing. From literature review, it is found that active landing gear shimmy control
is still an open problem. The research started from a nosewheel shimmy model and its
shimmy dynamics analysis and the variation with varying parameters. After applying
numerical integration to system dynamic equations, one observed that LCO dramatically
varied with parameters torsional damping constant and taxiing velocity. The system
stability was found varying with parameters caster length and taxiing velocity after
applying the linearization to the nonlinear system. By introducing full-state feedback
RMPC controller, the landing gear system is globally stabilized and shimmy oscillation
is effectively suppressed. The related state feedback gains are computed step-by-step by
online LMI convex optimization. In order to reduce computation burden, a new PRMPC
was proposed and proved simpler and faster without loss of robust stability and
disturbance rejection ability. The important conclusions from this research are

summarized as following.

(1) Linearized landing gear shimmy system is identified as an unstable and
oscillating LPV system. In spite of lots of literatures about tire modeling and shimmy
investigation, there are few active shimmy control strategies which have been

developed. Current shimmy damper and structural hydraulic damping have some

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



inherent drawbacks. RMPC-based active control strategy is a robust control design and

has been proved effective and more suitable for online LPV system control application.

(2) RMPC can deal with LPV system very well, which are verified in both two-
mass-spring system and landing gear shimmy control system by simulation results.
RMPC can not only work with single-parameter varying system but also with multi-
parameter varying system. Although three RMPCs (KRMPC, CRMPC and PRMPC) can
work on LPV system, they have different properties. CRMPC introduces more matrix
variables and starts from lower minimized stability performance index but suffers from
heavier computational load. PRMPC has the least computation burden without loss of
robust stability and disturbance rejection ability for online LPV application. The
performance of KRMPC is between CRMPC and PRMPC. It was also proved that

conventional LQR control can not work with LPV system at all.

(3) For the landing gear system with varying coupled parameters of V-1/V, in order
to apply LMI-based RMPC controller design and related convex optimization, ad-hoc
LPV polytope design has been introduced and is proved effective and computation-
efficient. The combination of PRMPC and convex polytope design is innovative and can

be extended to other similar LPV systems.

(4) Although the whole control system design for landing gear shimmy suppressing
is basically a conceptual design, the real implementation has been considered. Not only
landing gear shimmy control scheme and control system configurations have been

proposed, but also the design parameters tuning guide and even selection of sensors and
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actuators have been recommended. It is expected that this control system design and
related implementation considerations might be helpful for the development of next-

generation actively controlled landing gear system.

It is the first-time that a conceptual design of landing gear shimmy control has been
carried out, so there are certainly many improvements needed in the future work. The

following are some recommendations for future work:
(1) Improvement on control algorithm

All KRMPC, CRMPC, or proposed PRMPC methods need online full-state
measurement, which maybe unavailable in practice. In a more convenient way, it is
better to only make use of output feedback instead of the full-state feedback.
Furthermore, the measurement noise has not been considered in the controller design.
One of the future researches may introduce quasi-Kalman filter or observer to suppress
system noise. However the observer-based control design expressed in LMIs is still a
problem. Although there is disturbance rejection ability for RMPC as observed in
landing gear control simulations, the future research work could be focused on
developing more robust controller which may work in larger operation range and more
complicated operation environment and maybe more powerful with disturbance

rejection and noise elimination in terms of LMI realization.
(2) Improvement on real landing gear control application

Although there are some implementation considerations for landing gear shimmy

control as in section 4.6, the whole control system design is still in a stage of conceptual
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design. There maybe some unexpected problems from controller design or related
control system implementation in the real case, such as the computational load of LMI
for real time control and selection of control system actuator or response speed of
hydraulic actuator. Despite PRMPC has shown lots of computational time saving
compared to two other RMPCs, the computational load of control system and time delay

of actuator might cause some real time application problems.

Landing gear vibration includes self-induced oscillations (referred to as shimmy) and
brake-induced vibration. Now only nose landing gear with non-braked situation is
considered in the present thesis. Integrated control system for all three landing gears
(tricycle configuration) and integration with braking control system should have more

practical values.

To add external hydraulic actuator is costly and tends to be impractical because of
high demand for aircraft’s safety and reliability to comply with strict aircraft design and
operation regulation. Therefore, incorporating shimmy suppressing system with other
current control systems, such as steering control system, directional control (lateral
motion control) or Advanced Brake Control System (ABCS) is a suggested
implementation way. For example, as mentioned in [1], ABCS aims to help the pilot by
coordinating all of the systems related to directional control and by applying corrective

action far more quickly than it could have been applied manually.
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Appendix A

Positive Definite Matrix

Definition A-1: The matrix 4 € R™ is a positive definite matrix if

xTAx>0 (A-1)

;o

= T 2
is a positive definite one since for V= [é:l ‘52] €R

2 114 26, +4,
xTAx=[§1 52{1 I:Hif::lz[é 52{5:5]

=280 +266, 48 =81 +(£,+£,)° >0

n
for all nonzero vector. X € R

Example 1: The matrix A

is positive definite.

sk bk ek

3 2
Similarly, the matrix A=(2 2
1 1

Main characteristics of PDM are collected here. Some are from R.A. Horn et al [28].
(1) A Hermitian (or symmetric) matrix is Positive definite iff all its eigen values are
positive.

(2) A complex (or real)matrix is positive definite iff its Hermitian(or symmetric) part
has all positive eigen values.

(3) If a matrix is PDM, then all its submatrices obtained by deleting the rows and
columns of this matrix with the same numbers are positive definite and all the elements
on the leading diagonal of the matrix are positive.

(4) The determinant of a PDM is always positive, so it is always non-singular.

(5) The inverse of a PDM is also a PDM.

(6) The principle minors of PDM are still positive.

(7) A PDM can be decomposed as A=U"U (Cholesky decomposition), U is an upper

triangular matrix.
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Appendix B
Linear Matrix Inequality

A linear matrix inequality or LMI is a matrix inequality of the form
F(x)=F0+Z[:x,.Fl. >0 (B-1)

where Xy, X»... X, are the variabligls, Fi=Flisa symmetric matrix. X; is scalar variable. and
F(x) > 0 means that F(x) is Positive Definite. Multiple LMIs F 1(x) >0, Fy(x) ...Fy(x)> 0
can be expressed as the single

diag (Fi(x),F2(X), ..., Fu(x)) > 0 (B-2)
The importance of LMIS is in that optimization problems of the kind

min c"x Subject to F(x)>0 (B-3)
F is a symmetric matrix that depends affinely on the optimization variable x, and k is a
real vector. This is an convex optimization problem and there are very efficient
algorithms for solving this problem.
In the control engineering, we often encounter problems in which the variable is matrix,
for example, looking for Positive Definite Matrix in robust control(refer to Section 3.5.2
and Appendix D).
According to [34], the LMI-based optimization is most relevant to control problem is that
LMI problems are tractable. LMI problems have low computational complexity: from a
practical standpoint, there are effective and powerful algorithms that rapidly compute the
global optimum, with non-heuristic stopping criteria. Numerical simulation shows that
these algorithms solve LMI problems with extreme efficiency. LMI-based optimization is
well suited for on-line implementation, which is essential for MPC.
For more details about LMI problem and convex optimization, refer to Boyd et al. (1994)

[29] and Boyd et al (2004) [30], respectively.
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Appendix C
Schur Complement

In linear algebra and the theory of matrices, the Schur Complement (named after Issai
Schur) is defined as a block of a matrix within the larger matrix. When converting

convex quadratic inequalities to LMI, Schur Complement is often used.

Let Q(x) "= Q(x), Rx)! = R(x), and S(x) depends affinely on variable x.

Then the LMI
5
(C-1) is equivalent to the matrix inequality:
R(x) > 0, Q(x) - Sx)"R(x) " S(x) >0 (C-2)
or equivalently,
Q(x) >0, R(x) - S(x)'Qx)'S(x) > 0 (C-3)
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Appendix D
Two Similar Conditions of

Discrete-time Lyapunov Stability

The linear discrete-time uncertain system defined as (3-5), is copied to here as:

x(k +1) = A(k)x(k) + Bu(k) O-1)

where A(k) belongs to a convex polytopic set defined as
L L
A={A()=) a4, a,=1a, >0} (D-2)
i=1 i=1

Theorem D1: System (D-1) is robustly stable in the uncertainty domain (D-2) if there
exits a matrix P(k) = P(k)” >0 suchthat A(k)" P(k)A(k)-P(k) <0 forallA(k)e A .
Proof:

Because P(k) = P(k)" >0, so V(x(k)) = x(k)" P(k)x(k) > 0

V(x(k+1) =V (x(k)) = [A(R)x(k)]" PUe)[ A(k)x (k)] = x (k)" P(k)x(k)

= x(k)"[A(k)" P(k)A(k) - P(k)]x(k)

If A(k)" P(k)A(k)— P(k) <0 , then V(x(k +1))—V(x(k)) <0
According to Lyapunov stability theorem, the system is asymptotically stable.

P is called parameter-dependent Lyapunov matrix.

Theorem D2: System (D-1) is robustly stable in the uncertainty domain (D-2) if there
exists a matrix P(k) = P(k)" >0 and a matrix G such that

G+G" —-P [GAT

LMI
o

} >0 holds forallA(k)e A .

Proof:

(The index k is ignored hereafter for purpose of simplicity)
From P>0,s0 P >0 and (P-G)"P7'(P-G)20
P-G)'P'(P-G)=(P" -G"P'(P-G)
=P-(G+G"H+G"P'G=20
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So get first inequality: G+G” —P<G'P'G
FromP - A"PA>0,
0<P—-A"PA=P-GAG"P'G)(GA)" > P-GA(G+G" —P)(GA)"

Using Schur complement, then it is equivalent to LMI [ oA P

T _ T
G+G™ -P [GA] }0‘

Note that if G=G'=P, then it is the case of Theorem D1.
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Appendix E
Stability Condition’s Comparison

Considering LPV system such as in (3-8) and (3-9), an interesting comparison of
stability conditions between CRMPC and PRMPC is made, which will reveal some
insightful points. As mentioned in literature, such as in [38] [46] [61], for discrete-time

Robust Control, the following two inequalities are equivalent.
A LPV system is stable if following condition is satisfied:
(1)There exists a PDM P, such that
A"PA-P <0 (E-1)

(2)Or : there exists a PDM Q and another matrix G such that

G+G™-Q (461 ©2)
AG 0

The proofs about the above two robust stability conditions are referred in Appendix

Remark 1: We can track the following change in LMI parameters and help

understand difference between above two stability conditions.

times by x

Y=FG
AG—2lw 5 JG+ BY — AG+BFG — G(Ax+ BFx)—*% 5 G(Ax+ Bu)
which means that after introducing state-feedback u(k)= F(k)x(k), A is changed to

A+BF. So if (E-1)Error! Reference source not found. holds for uncontrolled system (3-
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8) and (3-9), then following (E-3) certainly holds for controlled close-loop system, which

is exactly the left-top sub-matrix of (3-32).

G+G" -0 [AG+BY) -0
AG + BY 0

(E-3)

Remark 2: If G=G"=Q in (3-32), which is exactly the same as LMI (3-23). In this
way, we can say (3-32) stability condition is the extended stability condition of (3-23)

and hopefully less conservative than condition (3-23).
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Appendix F

Concept of Convex Set

A linear matrix inequality in canonical form is:

Fx)y=F,+x,F,+.x,F >0 (F-1)

where F(x) is an affine function of the real vector x=[x, x, ...x ]T . FO, F1,..., Fn

n

are real symmetric matrices, and x is a vector of decision variables.

The feasible solution set of (F-1) {x | F(x)>0} is a convex set. This is an important

property since powerful numerical solution techniques are available for the problems

involving convex solution sets, details refer to “Convex optimization” (S. Boyd et al).
Convex set: A set S in a vector space over R is called a convex set if the line

segment joining any pair of points of S lies entirely in S.

nx,eR0<a<l,>ax, +(1-a)x, eR (F-2)

Examples of convex:

Examples of non-convex:

A N

X=ax +a,x, +..a,x,

Convex combination: any point x of the form
(a,a,,.a,>0,0, +a,+a, =1)
Convex hull: set of all convex combinations of points in S
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Appendix G

Landing Gear Terminology

)

Fig. 41 Landing gear terminology.

1) Beam, trunnion 17} Retainer, packing

2) Rod, metering 18) Packing nut

3) Diaphragh, piston 18} Axte, lahding gear

4) Base, metering rod 20) Spacer, wheel baaring

B) Fork, landing gear 215 Washer, key

6) Nut, castellated, hexagon 22) ‘N, slotted, hexagen

7) Baaring sleeve 23) Adapter, aircraft jacking point
8) Bearing sleeve 24} Tomgue arm, landing gear

3) Set.screw 28) Bearing.:sleeve or bushing
10) Valve, saubber 28) Base, festrictor suppornt-iube
11} Piston, landing gear 27 Tube, support restrictor

12) Stop, piston extension 28)- Adapter, restrictor

13) Packing. preformed 28) Restrictor

14)- Adapter; alrcraft mooring/towing 30) Adapter; axie

18) Cylinder, fanding gear 31) Beam, axle

18) Bearing, sleeve

Figure G-1 Landing gear Terminology,[1]
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