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ABSTRACT

Robust Adaptive Controls of Nonlinear Systems with Actuator Hysteresis
Represented by Prandtl-Ishlinskii Models

Qingqing Wang, Ph.D.

Concordia University, 2006

The development of control techniques to mitigate the effects of unknown hys-
teresis preceding with plants, has recently re-attracted significant attention. This
thesis deals with robust adaptive control of nonlinear systems preceded by unknown
hysteresis nonlinearities. In the literature, the most common methods to reduce
hysteresis effects to the controlled systems are based on the inverse hysteresis com-
pensations. Due to the complexity of hysteresis behavior, this approach has its
limit. By thoroughly investigating the Prandtl-Ishlinskii models of hysteresis, a ro-
bust adaptive control scheme was developed, which makes it possible to fuse the
model of hysteresis with the available control techniques without necessarily con-
structing a hysteresis inverse. The global stability of the adaptive system and to
track a desired trajectory to a certain precision are achieved.

Two classes of nonlinear systems preceded by unknown hysteresis nonlineari-
ties are studied. One class of systems is with parametric uncertainties and known
nonlinear functions. By integrating proposed hysteresis adaptation law with slid-
ing mode control and back-stepping techniques, the global stability and tracking a

desired trajectory to a certain precision are achieved. Simulation results attained
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for an example of this class of nonlinear system are presented to illustrate and fur-
ther validate the effectiveness of the proposed approaches. Then the approach is
extended to a more general class of systems in the presence of parametric uncer-
tainties and unknown nonlinear functions with bounded disturbances and preceded
by unknown hysteresis nonlinearities. Combined with neural networks adaptation
control method, it is proved that for any bounded initial conditions, all closed-loop
signals are bounded and the state vector z(t) converges to a neighborhood of the
desired trajectory.

Concerning the practical applications, determination of the density function
of the Prandtl-Ishlinskii model is crucial. In this study, a discretional approach is
developed to approximate density function p(r) based on the memory effects of the

play operator F)[v](t).

i
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Chapter 1

Introduction

1.1. Hysteresis and Systems Control

The hysteresis phenomenon occurs in & wide range of physical systems. For example,
smart material-based actuators, such as piezoceramics and shape memory alloys,
exhibit hysteresis phenomena [5]. The principal characteristic of hysteresis is that
the output of the system depends not only on the instantaneous input, but also on
the history of its operation. The relationship between the output and the input takes
form of branches, as shown in Fig. 1.1. This usually causes undesirable inaccuracies
or oscillations and even instability [15, 59] when controlling a system exhibiting
hysteresis behavior.

The development of control techniques to mitigate the effects of unknown
hysteresis has been studied for decades and has recently re-attracted significant
attention of many researchers. Much of this renewed interest is a direct consequence
of the importance of hysteresis in current applications. Interest in studying dynamic
systems with actuator hysteresis is also motivated by the fact that they are nonlinear

systems with non-smooth multi-valued nonlinearities for which traditional control
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Figure 1.1: Hysteresis nonlinearity
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Chapter 1. Introduction

methods are insufficient and so requiring development of new approaches [60]. It
is typically challenging in developing a general frame for control of a system in the
presence of unknown hysteresis nonlinearities.

To address such a challenge, the development of purely phenomenological mod-
els is necessary. Such models will characterize these nonlinearities with sufficient
accuracy. They should be amenable to control design for nonlinearity compensa-
tion and efficient enough for use in real-time applications. Several models of hys-
teresis have been developed since the end of the 19th century (see, for instance,
[10, 37, 45, 63]). The reader may refer to [43] for a recent review of research in this
area. One of such models is the Preisach model, which can be considered as a super-
position of one of the elementary hysteresis operators, called “relay”. This model has
been widely utilized in modelling piezoelectric, magnetostrictive and shape memory
alloy hysteresis. An extensive review on this subject can be found in [45]. Models
set up by the composition of “play” or “stop” operators are referred to as Prandtl-
Ishlinskii models in the literature (see, e.g., [37, 63]). Although the model itself was
introduced much earlier [31], the reader may refer to [10, 37, 63] for a systematic
mathematical investigation of Prandtl-Ishlinskii models.

In the literature, the most common approach to mitigate the effects of hystere-
sis is to construct an inverse operator, which was pioneered by Tao and Kokotovic
[59]. The reader may refer to, for instance, [17, 23, 38] for recent progress in such
development. Essentially, the inversion problem depends on the phenomenological
modelling methods (for example, using Preisach models) and strongly influences
practical applications of controller design. Due to multi-valued and non-smoothness
features of hysteresis, those inverse based methods are sometimes complicated, com-
putationally costly and highly sensitive to the model parameters with unknown mea-

surement errors. These issues are directly linked to the difficulty of stability analysis
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Chapter 1. Introduction

of the systems except for certain special cases [59)].

In the past decades, robust adaptive control of uncertain nonlinear dynamics
has undergone rapid developments. Systematic design procedures for globally stable
and asymptotically tracking controllers have been developed for reasonably large
classes of nonlinear systems, including systems with nonlinear parameters, in the
presence of parametric uncertainties and unknown nonlinear functions [30, 41, 36].
Although the phenomenological models, such as Prandtl-Ishlinskii model, have been
successfully applied in modelling piezoceramic and shape memory alloy hysteresis
[27, 23, 58], methods to integrate them with available control techniques to have
the basic requirement of system stability are not apparent. In this thesis research,
by thoroughly investigating the Prandtl-Ishlinskii models of hysteresis, it is noticed
that the Prandtl-Ishlinskii model can be transformed into the Preisach model. Under
certain definition of the measurement, they are all defined as Preisach type models.
These two models have the same type of memory, which is completely determined by
a curve of the play operator in the (F,[v](t),r) plane. Based on this consideration,
the experimental results applied to the Preisach models can be adjusted to suit
to the Prandtl-Ishlinskii models. Secondly, it is noticed that the Prandtl-Ishlinskii
model decomposes the hysteresis behavior into two terms. The first term is a linear
function of the control signal v(t), and the second term describes the nonlinear
hysteretic part. This decomposition is crucial since it facilitates the utilization of
the currently available robust adaptive control techniques for the controller design.
It will become more clear later that this structure makes design the adaptive control
algorithm possible. This is also the primary motivation to use the Prandtl-Ishlinskii

model in this thesis research.
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Chapter 1. Introduction

1.2. Contributions of the Thesis

1.2.1 Summary of Research Contributions

This thesis deals with robust adaptive control of nonlinear systems preceded by
unknown hysteresis nonlinearities. In recent development in this area, the most
common methods to reduce hysteresis effects to the controlled systems are based on
the inverse hysteresis compensations. Due to the complexity of hysteresis behav-
ior, this approach has its limit. By thoroughly investigating the Prandtl-Ishlinskii
models of hysteresis, a novel robust adaptive control scheme is developed , which
makes it possible to fuse the model of hysteresis with the available control techniques
without necessarily constructing a hysteresis inverse.

Two classes of nonlinear systems preceded by unknown hysteresis nonlineari-
ties are studied. One class of systems with known nonlinear functions and unknown
parameters. By combining the proposed hysteresis adaptation method with two
control techniques, sliding mode control and back-stepping, it is proved that the
closed-loop systems are globally stable, and the system states track the desired tra-
jectory to a designed precision. Simulation results attained for a nonlinear system
are presented for both methods to illustrate and further validate the effectiveness of
the proposed approaches.

Then the approach is extended to a more general class of systems. The systems
are in the presence of parametric uncertainties and unknown nonlinear functions,
bounded disturbances caused by the system uncertainties such as the external dis-
turbances and modelling errors, and unknown hysteresis nonlinearities preceded by
the plant. Combined the technique designed to reduce the hysteresis effects with
neural network adaptation control method given in [19], it is proved that if the

system states defined in a bounded domain, for any bounded initial conditions, all
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Chapter 1. Introduction

closed-loop signals are bounded and the state vector z(t) converges to a neighbor-
hood of the desired trajectory. To illustrate this robust adaptive control algorithm,
simulations are conducted to a variable length pendulum plant. The pendulum is
considered to be driven by an input v though an actuator with hysteresis. The
output of the actuator applied to the pendulum is the torque w, see Fig.6.1. The
results show the effectiveness and robustness of the approach under different set of
parameters.

As for practical applications, it is noticed that the Prandtl-Ishlinskii model
is determined by its density function. In this study, a discretional approach is
developed to approximate the density function p(r) based on the memory effects
of the play operator Fy.[v]. By measuring the outputs corresponding to a designed

decreasing input function, the density function can be estimated.

1.3. Organization of the Thesis

The remaining part of this thesis is organized as follows. Extensive literature review
in mathematical models of the hysteresis nonlinearity and control methods of the
systems with hysteresis is presented in Chapter 2. From the numerous recent pub-
lications in this area, it is noticed that such controller design is an open question
and requires further study. In Chapter 3, the Prandtl-Ishlinskii model and its ma-
jor properties to be used in our controller design are presented. And also a model
identification methodology for the density function of the Prandtl-Ishlinskii model
for practical applications is developed. Controller design based on sliding mode con-
trol and back-stepping control are discussed in Chapters 4 and 5, respectively, with
analysis and simulation results. Controller design with neural network for even more

complicated systems is presented in Chapter 6. Summary and concluding remarks
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from the results of this thesis research are presented in Chapter 7.
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Chapter 2

Literature Review

2.1. Hysteresis

The phenomenon of hysteresis is encountered in many different areas of engineering
and science. However, the vary meaning of hysteresis varies from one area to another.
Usually people refer hysteresis phenomenon to a relation between two quantities
with the formation of hysteresis loops. As pointed out by Mayergoyz [45], this
may be misleading and can create the impression that the looping is the essence
of hysteresis. In 1905, by experimentally observing ferromagnetic hysteresis and
noticing its complexity, Madelung [10] summarized the following rules to describe
ferromagnetic hysteresis effect, with reference to Fig.2.1.

Madelung’s Rules:

1) Any curve C) emanating from a turning point A of the input-output graph
is uniquely determined by the coordinates of A.

2) If any point B on the curve C| becomes a new turning point, then the curve
C, originating at B leads back to the point A.

3) If the curve C; is continued beyond the point A, then it coincides with the
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continuation of the curve C' which led to the point A before the C,-Cj cycle was
traversed.

In order to avoid confusion and ambiguity, the definition given in [45] is adopt:

Definition of Hysteresis

Consider a transducer which can be characterized by an input v(t) and an
output w(t). This transducer is called a hysteresis transducer if its input-output
relationship is a multi-branch nonlinearity for which branch-to-branch transition
occur after extrema.

This is a phenomenological definition. It is not related to any specific physical
meanings of the input and output functions. Thus it gives more mathematical gener-
ality. This definition emphasizes that branching is the most important characteristic
of hysteresis. The Preisach models and the Prandtl-Ishlinskii models are examples
of hysteresis transducers under this definition. It can be seen in Fig.2.1 that looping
1s a particular case of branching, and hysteresis loops are formed only when the

Input function is back and forth between two consecutive extremum values.
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Figure 2.1: Madelung’s rules
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2.2. Mathematical Models of Hysteresis

To develop general models that can accurately represent diverse hysteresis behaviors
has been a subject of interest since the end of the 19th century. Several models of
hysteresis have been proposed and each has found applications in certain areas. For
instance, the Duhem models and the Preisach models are mainly used in applied
electromagnetics while the Prandtl-Ishlinskii models are used to describe elastic-
plastic behavior of certain systems. Since early 1970s, systematic mathematical
investigations on hysteresis phenomenon have been carried out by many research.
The most widely accepted hysteresis models are the Duhem type models usually in
the form of differential equations, the Preisach and Prandtl—IShlinskii models based
on basic hysteresis operators, and the Krasnosel’skii-Pokrovskii hysteron. There
are monographs for hysteresis modelling and for dynamical systems with hysteresis,

[10, 37, 45, 63]. The reader may refer to [43, 52| for recent review.

2.2.1 The Duhem Type Hysteresis Models

The Duhem model focusses on the fact that the output can only change its character
when the input changes direction. In general, for suitable functions f; and fy, the
hysteresis is given by the two families of curves in the (v,w) plane defined as the

solution to the differential equation

w(t) = fi(w,v)04(t) + fo(w,v)o_(t)
with v, (t) = maz[0,0(t)], 0—(¢) = min[0,9(¢)]. A special case given in Bouc [43] is
dw dv dv
&

2t ol Dhglw,w) = b7, 1)

11
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where a typical choice for g is g(v,w) = w — bg(v). Coleman and Hodgdon [12, 13]

extensively studied this model, using the equation

dB _
dt

of 17 () — B+ L g(), 2.2

where o > 0 is a constant, H is the applied magnetic field and B is the level of
magnetization of the medium. They proved that the following conditions for f and
g are necessary and sufficient for equation (2.2) to give a hysteresis diagram,

(1) f(.) is piecewise smooth, monotone increasing, odd, with limy_ . f' (H)
finite;

(2) g(.) is piecewise continuous, even, with limpy_cg(H) = limp_o f' (H);

(3) () > g(H) > e [5°|£'(n) = gln)]e="dn for all H > 0.

And the solution can be explicitly expressed as

B = J(H)+{Bo— f(Ho)lem T Hwsonily pmettantt [ M1y) _ pip)l=ensnigy (23)

for H piecewise monotone and H constant. The functions and parameters in (2.2)
can be fine-tuned to match experimental results for rate-independent hysteresis in
ferromagnetic soft materials.

A modification based on exchanging the positions of B and H in the differential
equation (2.2) was studied by Hodgdon [24, 25].

The Bouc-Wen model: Bouc-Wen model is another modification of the
Bouc’s model. The model was applied to describe hysteresis in a single degree of
freedom oscillator [56], and a magnetorheological damper attached to a scaled three-
degree of freedom building [52]. Suppose z is the position of a oscillator system given
by |

= f(z,,2,u), (2.4)

12
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where z is the hysteretic variable proportional to the restoring force acting on the

oscillator described by the first order differential equation
5 = A — Bilz* — A2z, (2.5)

the parameters n, A, 8, and -y are shape parameters of the hysteresis curves which can
also be functions of time. Note that in this model £ acts as an input, and the equation
is not involved in z although the hysteresis phenomenon is observed between x and
z. When n = 1, (2.5) becomes a linear ordinary differential equation which can be
solved according to the signs of £ and z. As n increases to oo, the hysteresis loop
will converge to a bilinear curve defined by z = &[sgn(z + A) — sgn(z — A)]/2.
The Jiles-Atherton model: This model is widely used in modelling fer-
romagnetic hysteresis [34, 35, 33]. In its original form [35], magnetization M =
M,en + M, was decomposed into its reversible component M,., and irreversible
component M;,.. The differential equations with respect to the frequency of the

imposed magnetic field H(t) are represented in the form

dMirr Man - Mir?"

= 2.

dH ok — a(Myn — Mirr) (26)
dM,«ev dMan dMirr

_ _ 2.

ar =g T am (27)
where M, is the anhysteretic magnetization
H+ oM a

Mg, = M{coth( ) — (H n aM)} (2.8)

and ¢ is a directional parameter. It takes the value +1 for dH/dt > 0 and —1
for dH/dt < 0. a,aq,c k, and the saturation magnetization M, are the parame-

ters to be determined from experimental measurements of the hysteresis loops, see

[35, 40, 53]. The Jiles-Atherton model and the Preisach model are often used in

13
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magnetodynamic field. The former is based on the real physical systems, and the
latter is a phenomenological model. Philips [49] compared the computation results
of these models with experimental measurements. It was found that the identifi-
cation of the parameters in the Jiles-Atherton model requires less measurements,

while the Preisach model fits the hysteresis loops better.

2.2.2 Hysteresis Models Based on Hysteron

The Krasnosel’skii-Pokrovskii hysteron: In 1970s, Krasnosel’skii and Pokrovskii
systematically investigated the hysteresis phenomenon from mathematical point of
view, see the monograph [37]. They defined their basic model of hysteresis, referred
as hysteron, in a geometric way.

Considering a transducer W with input u(¢) and output z(¢) as
z(t) = Wito, zolu(t), t > to. (2.9)

For a piecewise monotone and continuous input function u(t), the domain Q(W) of
the tranéducer W must satisfy the following hypotheses:

(1) The intersection K (ug) of the domain Q(W) with any vertical straight line
u = Up 1S a nonempty interval. It can be a singleton.

(2) The endpoints of the interval K(ug) for all u = ugy define two continuous
functions ®;(u) inu € (—oo,a;) and @,(u) inu € (br, c0); When K (uo) is a singleton,
®;(u) and ®,(u) coincide.

(3) The region Q(W)y € Q(W) defined by the points not belonging to either
®;(u) or &,.(u) is stratified into families of nonintersecting graphs of continuous
functions. The left endpoi‘nt of aﬂ graphs belong to ®;(u); and the right endpoint
of all graphs belong to ®,(u). The remaining points of the graphs belong neither to
®,(u) nor to D, (u).

14
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(4) If two points M and N belong to different graph families , then
[ (M) — w(N)][ur(M) = ur(N)] > 0.

This definition is very general and can cover various forms of hysteresis loops
whereas some modifications are needed to give minor loops. A simple example is a
play operator.

Banks, Kurdila and Webb [3, 4] developed a model using generalized play
operators, called Krasnosel’skii-Pokrovskii (KP) operators. The model represents
hysteresis as the cumulative effect of weighted KP operators distributed over a do-
main in N2, Galinaitis investigated the KP model focusing on the properties of
inverse and approximation [17].

The Preisach model: The most popular hysteresis model is certainly the
Preisach’s model. This model can be considered as a superposition of elementary

hysteretic “relay” operators

W)= [ [ ule B)vaslol()dads, (2.10)

where v, g[v](t) is a relay hysteresis defined as

+1 if v(t) > «a,
Yaslv](t) = { —1 if u(t) < 8, (2.11)
remains unchanged if 8 <v(t) < a.
An extensive review on the Preisach model, its modified forms, and model iden-
tification methods can be found in ’monographs (10, 45] and papers [51, 67]. There
are many experimental setups to show that this model can describe the hysteresis

behavior in smart material-based actuators and sensors, such as magnetostrictive

58], piezoceramic in a stacked form [26], and shape memory alloy [23] actuators.

15
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The Prandtl-Ishlinskii model There are other types of basic hysteresis
operators such as “play” and “stop” operators. The models set up by composition
of play or stop type operators are referred to as Prandtl-Ishlinskii models. Suppose
E,[v] are basic elastic-plastic elements or stop operators for all r € [0, R], then the

model can be expressed as

w(t) = /0 * () B, o] (t)dr, (2.12)

where p(r) is a given density function. Although the model itself was introduced
much earlier [50, 31], the reader may refer to [10, 37, 38] for recent development.
Kuhnen and Janocha [39] give a modified Prandtl-Ishlinskii model. Instead of using
all stop or play operators, they combined the one-sided dead-zone operators and
the play operators to formulate hysteresis loops. They demonstrated that the mod-
ified Prandtl-Ishlinskii model is applicable to a broad class of hysteretic actuator
nonlinearities.

Hysteresis models based on hysteron are phenomenological. They have been
intensively and extensively studied and proved to be effective in capturing important
properties of hysteresis phenomena. In this research, the Prandtl-Ishlinskii model
is used to define the hysteretic behavior appeared in the system. The detailed

discussion about this model will be given in Chapter 3.

2.3. Control Methods for Systems with Hystere-
sis Nonlinearity

In the literature, control schemes for systems with unknown hysteresis have been
developed. The most common approach to mitigate the effects of hysteresis is to

construct an inverse operator, which was pioneered by Tao and Kokotovic [59]. For
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hysteresis with major and minor loops, they used a simplified linear parameterized
model to develop an adaptive hysteresis inverse model with parameters updated on
line by adaptive laws. Model-based compensation of hysteresis has been addressed
in many research papers. The main issue is how to find the inverse of the hysteresis.

Compensation of hysteresis effects in smart material actuation systems using
Preisach model-based control architectures has been studied by many researchers.
Ge and Jouaneh [18] proposed a static approach to reduce the hysteresis effects in
tracking control of a piezoceramic actuator for desired sinusoidal trajectory. The
relationship between input and output of the actuator was first initialized by a
linear approximation model of a specific hysteresis. The Preisach model of the
hysteresis was then used to redefine the corresponding input signals for the desired
output of the actuator displacements. PID feedback controlier was used to adjust
the tracking errors. The developed method worked for both specific trajectories
and required resetting for different inputs. Galinaitis [17] analytically investigated
the inverse properties of the Preisach model and proved that a Preisach operator
can only be locally invertible. He presented a closed form inverse formula when the
weight function of the Preisach model was taking a specific form. Mittal and Meng
[46] developed a method of hysteresis compensation in electromagnetic actuator
through inversion of numerically expressed Preisach model in terms of first-order
reversal curves and the input history. Croft, Shed and Devasia [14] used a different
approach. Instead of modelling the forward hysteresis in piezoceramic actuators and
then finding the inverse, they directly formulated the inverse hysteresis effect using
Preisach model. Also in [8], an inverse Preisach model was proposed with magnetic
flux density and its rate as inputs, and the magnetic fields as the output.

Methods based on the inverse of KP model can be found in [17, 64]. Galinaitis

mathematically investigated the properties and the discrete approximation method

17
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of the KP operators [17]. Webb defined a parameterized discrete inverse KP model,
combined with adaptive laws to adjust the parameters on-line to compensate hys-
teresis effects [64]. Recently, a feed-forward control design based on the inverse of
Prandtl-Ishlinskii model was also applied to reduce hysteresis effects in piezoelectric
actuators [38].

In addition to the above mentioned model-based inverse methods, neural net-
works and fuzzy system models were also developed. It is well known that the
universal approximation property is one of the most important properties of neural
networks and fuzzy systems. However, this property is generally proven for con-
tinuous and one-to-one functions. Wei and Sun [65] studied the rate-independent
memory property. After conducting analysis on multi-layer feed-forward, recurrent
and reinforcement learning networks, they found that networks with only compu-
tational nodes and links cannot function as hysteresis simulators. They proposed
a propulsive neural unit to construct hysteretic memory. Several propulsive neural
units with distinct sensible ranges were used to form a model. The neural network
can be trained to follow the loops given by the Preisach model. Selmic [54] gave a
neural network structure to approximate piecewise continuous functions appearing
in friction, or functions with jumps. Hwang [29, 28] developed a neuro-adaptive
control method for unknown piezoelectric actuator systems. The proposed neural
network included two different nonlinear gains according to the change rate of a
input signal and a linear dynamic system, to learn the dynamics of the piezoelec-
tric actuators. A forward control based on the inverse of learned model was used to
achieve an acceptable tracking result. Because the trackiﬁg performance by a control
could not be guaranteed as the system was subject to uncertainties, a discrete-time
variable-structure coﬁtrol was synthesized to improve the performance. Readers can

refer to [47, 42] for further details.

18
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Essentially, the inversion methods treat hysteresis and structure response func-
tions separately. That is, the inverse models are used in the forward loop to can-
cel hysteresis behavior. Then a feedback controller is designed to compensate the
structural dynamic effects. However, the hysteresis operator is usually a part of a
system. It is difficult to decouple the effects from the hysteresis and the structural
dynamics from experimental measurements. As a result, the input is determined
by the interaction of the operator with the rest of the system. Since the input is
not predictable beforehand, it is impossible to specify ahead of time the branches of
hysteresis nonlinearity which will be followed in a particular regime of the system.
Due to the complexity of the hysteresis characteristics, especially the multi-value
and non-smoothness properties, it is quite a challenge to find the inverse hysteresis
models. Thus, inversion methods usually using approximated inverse models are
complicated, computationally costly and strongly sensitive to the model parameters
to unknown measurement errors. These issues are also directly linked to the diffi-
culty of stability analysis of the systems except for certain special cases [59]. It would
be better to develop an approach that can consider both effects simultaneously [61].

Passivity-based stability and control of hysteresis in smart actuators were at-
tempted by Pare and Gorbet [48, 23]. In [23], energy properties of the Preisach
hysteresis model were investigated, and passivity was demonstrated for the relation-
ship between the input and the derivative of the output. The result only leads to
stability of rate control of hysteresis systems.

The differential models of hysteresis were used for control purposes [6, 16, 20,
52, 57]. The Bouc-Wen model was applied to develop a semi-active structural control

model for a magnetorheological damper attached to a three-story scaled building, see
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[52]. Su used Duhem form model investigated by Coleman and Hodgdon. He com-
bined the solution properties of the model with adaptive control techniques and de-
veloped a robust adaptive control algorithm. This method integrates the hysteresis
compensation and control techniques without constructing an inverse of hysteresis.
Research presented in this thesis follows this direction. The dynamic characteris-
tic of this type of models can be implemented in state-space. The main challenge
is resulted from high nonlinearity and the lack of knowledge about mathematical

properties of the differential models when they are applied to system control.

20
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The Prandtl-Ishlinskii Hysteresis
Models

3.1. Hysteresis Operators

Some basic well-known hysteresis operators are first listed below. A detailed discus-

sion on this subject can be found in monographs [10, 37, 63].

3.1.1 The Stop Operator

One of the basic elements of the theory of hysteresis operators came from the contin-
uum mechanics for elastic-perfectly plastic constitutive laws as illustrated in Fig.3.1.
As shown in Fig.3.1, as long as the applied stress w is smaller than the yield stress
r of the material, strain v is related to w through the linear Hooke’s law. As soon
as w reaches the yield stress, the stress w will remain constant with further increase
of the strain. However, the elastic behavior is instantly recovered when the strain is
lowered again. This input-output relationship can be expressed by an elastic-plastic,

or stop, operator, w(t) = E,[v](t), with threshold r.
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Analytically, suppose C,,[0, tg| is the space of piece-wise monotone continuous
functions, for any input v(t) € C,[0,¢g], the stop operator w = E,[v](t), for any

7 > 0, can be given by the inductive definition

=
—_—
=
N
[
~—
I

er(v(t) —v(t;) + Eol(t)), fort;<t<tand0<i< N -1,
(3.1)

e,(z) = min(r, max(—r, z)). (3.2)

where 0 = t5 < t; < --- < ty = tg is a partition of [0,%¢g] such that the function
v is monotone on each of the sub-intervals [¢;, t;+1]. The argument of the operator
is written in square brackets to indicate the functional dependence, since it maps
a function to a function. The stop operator however is mainly characterized by its
threshold parameter r which determines the height of the hysteresis region in the

(@, v) plane.
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Figure 8.1: Stress-strain behavior in a one-dimensional elastic-plastic element
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3.1.2 The Play Operator

Another basic hysteresis nonlinearity operator is the play operator. The one-
dimensional play operator can be considered as a free-to-move cylinder of length
2r and a moving piston. The output w(t) is the position of the center of the cylin-
der, and the input is the piston position v(t). The input-output behavior can be
given by the hysteresis diagram shown in Fig.3.2.

For a given input v(t) € Cp[0,tg] , the play operator w = F,[v](t) with
threshold r is then inductively defined by

FT‘[U](O) = fr(v(())’O)’ - (3.3>
F.ol(t) = fr(v(t), Folu](&)), forti<t<tqand0<i< N —1,
with
fr(v,w) = max(v — r,min(v + 7, w)). (3.4)

where 0 =ty < t) < --- < ty = tg is a partition of [0, ¢g|, such that the function v
is monotone on each of the sub-intervals [t;, t;11].

From the definitions given in (3.1) and (3.3), it can be proved [10] that the
operator F;. is the complement of E,, i.e., they are closely related through the
equation

E,ol(6) + F[0](8) = v(t), (3.5)

for any piece-wise monotone input function v € C,,,[0,¢g] and 7 > 0.

24
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b
<

Figure 3.2: A piston with plunger of length 2r(left), and the rules of motion
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3.1.3 Properties of the Play Operator

Listed below are some basic properties of the play operator. In the study of the
Prandtl-Ishlinskii model in the following sections, the play operator will serve as an
building element. Since the stop operator E, is complement to F,, the discussion
will mainly focus on the play operator. Further details on the relationship of these
two operators can be found in [10].

General Initial condition: In the definition of the play operator in (3.3), it
is assumed that, before v(0) was applied to the system at time ¢t = 0, the internal
state was 0 . In more general cases, the definition can be extended to the following:

Let ¥ denote the set of functions ¢ : R, — R, satisfying

[Y(r1) = p(ra)| < Jry = 7o for all ry,72 >0, (3.6)
and
Rsupp (V) = sup{r|r > 0,9 (r) # 0} < +o0. (3.7)

The play operator F, : Cp,[0,tg] x ¥ — C,[0,tg], for r > 0, can then be inductively
defined by

F v 9](0) = £ (v(0); ),
Folo; ) (t) = fr(v(t), Frlo;¥](t)), fort; <t <ty1and0<i< N -1,

(3.8)

where f. is the same function as the one defined in (3.4).

From the recursive equation (3.4), it is easy to determine that F.lu;9)(t) € ©
for all v € C,[0,tg]. Thus, ¥ was called the set of memory curves in [10]. This
definition is consistent with the previous definition for ¢ = 0. In the sequel, F}[v]
will be simply written as F,[v; ¢] so long as doing so does not affect the proof.

Due to the natural characteristics of the play and stop operators, above dis-

cussions are for continuous and piecewise monotone functions defined on the space
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Cin[0,tg]. However, they can also be extended to continuous functions in C[0,tz]
space and satisfy the following theorem.

Theorem: Lipschitz Continuity on C[0,tg| For any r > 0, the operator
F,. can be extended uniquely to a Lipschitz continuous operator F, : C[0,tg] x ® —
C[0,tg). In addition, it holds, for all v1, v, € C[0, tg], for all initial values 1, ¥ € R,

and for all 0 < ¢ <t < tg,

| Frfon; 41)(8) = Frlva; 9] (1) < maz sup |on(7) — va(7)], [ — 42| (3.9)

0<r<t
|FrJors ] (8) — Erfo; ] (#)] < t,iugth(T)—vl(t'ﬂ (3.10)
Frludn(t) < Frlogwel(t), if vi<wvy and 91 <y (3.11)

Proof: see [10] Section 2.3.
Bound of the Play Operator: From the above theorem, it is notice that
the bound of the play operator is related to its initial condition and the maximum

difference of the input function on the time interval. Especially, in (3.9), if let

v2(t) = 0, and 1)y = 0, then F,[uy; 9)(t) = 0, we have

Bl il()] < maz sup (7)) (3.12)
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3.2. The Prandtl-Ishlinskii Model

3.2.1 Definition

With the introductory discussion in the previous section, it is ready to introduce
the Prandtl-Ishlinskii model defined by the stop or play hysteresis operators. The
Prandtl-Ishlinskii model was originally developed to describe elastic-plastic behavior
through a weighted superposition of basic elastic-plastic elements E,[v], or stop, as
following:
w(t)= [ p(r)E.l(t)ar, (3.13)
where p(r) is a given density function, satisfying p(r) > 0 with [®rp(r)dr < oco.
p(r) can be identified from experimental data. With the defined density function,
this operator maps C|ty, 00) into Cltg, c0), i.e., the Lipschitz continuous input will
lead to the Lipschitz continuous output [37]. Since the density function p(r) vanishes
for large values of r, the choice of R = oo as the upper limit of the integration is
specified mainly for the sake of convenience as discussed in [10].
Since the operator F;. is the complement of F,, the Prandtl-Ishlinskii model
can also be expressed through the play operator. Using Equation (3.5) and substi-
tuting E, in (3.13) by F, the Prandtl-Ishlinskii model defined by the play hysteresis

operator is expressed as follows:

w(t) = pov(t) — /0 ® p(r)Fu ] (), (3.14)

where py = [ p(r)dr is a constant which depends on the density function. It should
be noted that Equation (3.14) decomposes the hysteresis behavior into two terms.
The first term describes the linear reversible part and the second term describes

the nonlinear hysteretic part. This decomposition is crucial for the research as it
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facilitates the utilization of the currently available robust adaptive control techniques
for the controller design.

As an illustration, Fig.1.1 shows the function w(t) generated by the model
given in (3.14), with p(r) = e~ 0070 =% ' ¢ [0,10], and input v(t) = Tsin(3t)/(1+t),
t € [0, 2] with ¢y = 0. This numerical result shows that the Prandtl-Ishlinskii model

(3.14) indeed generates the hysteresis curves.
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3.2.2 Properties of the Prandtl-Ishlinskii Model

The Prandtl-Ishlinskii hysteresis operator has some important properties. List below
are some fundamental characteristics which will be helpful to understand the results
of this research.

Memory Effects: The hysteresis operators are nonlinearities with memory.
In general, they fall into two categories: hysteresis nonlinearities with local memories
and hysteresis nonlinearities with nonlocal memories. For hysteresis nonlinearities
with local memories the past exerts its influence upon the future through the current
value of output. While for hysteresis nonlinearities with nonlocal memories, future
values of output depend not only on the current value of output but on past ex-
tremum values of input as well [45]. The play and the stop operators are examples
of hysteresis nonlinearities with local memories. The Preisach and the Prandtl-
Ishlinskii hysteresis operators are hysteresis nonlinearities with nonlocal memories.
In this study, we solely concern with hysteresis nonlinearities with nonlocal memo-
ries.

At any time instant ¢ > 0, for a given input function v(t) € C,[0,tz], Fr[v](2)
is a function of r. For v > 0, it forms a curve in the (r, F,) plane. Fig.3.3 to Fig.3.5
illustrates that this curve depends not only on the current input, but also on the
past history of some local extreme values of the input function. The form of the
curves is independent of the speed at which they are traversed, and satisfies the
wiping out property. A geometrical interpretation of this discussion is given below.

For example, we consider an input function v(t), with v(¢g) = 0, which has the
following local extreme values: v(t,) = 4, v(t3) = —2, v(t3) = 5. v(t) is monotonicity

fort € (ti,ti41), 1 = 0,1,2. At ¢t =, = 0, we have F,[v](0) = 0, ¥r > 0. As the
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input function v increases, by definition,
El(t) = fr(u(t),0) = maz(v(t) - r,0),

for ¢ € (0,%1), until v(t) reaches its local maximum v(t;) = 4. At t = t;, F.[v](t1)
is the line segments ABC shown in Fig.3.3. Then, v decreases with respect to

t € (t1,ts), and
Eo](t) = fr(u(t), F[v] (1)) = min(u(t) + 7, F o] ().

When v(t) reaches its local minimum v(ty) = —2, F.[v](t;) is the line segments
DEBC, see Fig.3.4. If v(t) then reverses to reach maximum value v(t3) = 5, Fy.[v](t3)

| is formed by the line segments A’B’C, shown in Fig.3.5. Thus, it can be seen that
the memory behavior at time ¢ is completely described by the curve F,[v](t).

Rate Independency: The form of the hysteresis diagrams is independent
of the speed with which they were traversed. Notice that, in Fig.3.3 to Fig.3.5,
the speed at which the input function v(¢) moves is only reflected in the speed
of the output; how fast v(t) reaches monotonically from one extreme value v(t;),
for i = 0,1,2, to other alternating extreme value v(t;r1) will not affect the form
of the curve F,[v](t;11) in the (F;,7) plane. Since the Prandtl-Ishlinskii model is
completely defined by the integration of F,[v](¢) curve on [0, R] for any input v(t),
the Prandtl-Ishlinskii model is rate independent. For input functions v, and v in
different time frames, they reach the same successive extreme values accordingly,
see Fig.3.6. These inputs result in the same (F,,r) diagram of hysteresis as shown
in Fig.3.7.

Wiping-out Property: In Fig.3.3 to Fig.3.5, we see that the memories im-
pressed by the previous smaller local extreme values have been deleted by a larger

local extreme value. That is, the previous records of F,[v](t;) and F.[v](ty) have
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Friv]()

Figure 3.3: Geometrical interpretation of F.[v](t) in (r, F.[v](t)) plane: F.[v](t;)
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Frjvi(t)

Frivi(t)

Fr{v](0)

Figure 8.4: Geometrical interpretation of F,[v](t) in (r, F.[v](t)) plane: F,[v](t)
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Figure 3.5: Geometrical interpretation of F.[v](t) in (r, F,[v](¢)) plane: F,[v](t3)
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Figure 3.6: Rate independent: The input functions vi(t) and va(t) reach the same successive
extreme values in different velocities.
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Figure 8.7: Rate independent: The same hysteresis diagram generated by the input functions
v1(t) and va(t).
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been wiped out. This property is defined by Mayergoyz [45] as wiping-out property:
Only the alternating series of the dominant input extrema are stored by the hystere-
sis model. All other input extrema are wiped out. In [10] section 2.7, it is defined
as deletion rule and proves that the Prandtl-Ishlinskii model satisfies this property.
The Prandtl-Ishlinskii model also possesses some very unique properties such
that it is invertible and the inverse has the same structure. A detailed discussion on
this subject can be found in the monograph [10]. We will now prove an important
property of the Prandtl-Ishlinskii model which will be useful in the seQuel.
Lemma: Let w(t) be a hysteresis defined by the Prandtl-Ishlinskii model
(3.13)
R
w(t) = [ p()E ol (0)dr, (3.15)

where p(r) is a density function, satisfying p(r) > 0 with [®rp(r)dr < co. Then,

for any v(t) € Clty, 00), there exists a constant K > 0, s.t.
lw(t)] < K < 0. (3.16)

Proof. Let 7 > 0 be given. From the definition of E, operator, we have

|Eu](t)] <7, for all u(t) € Clty, 0), (3.17)
R
)l =1 ] p(r)E{vl(t)dr]
R
< [ ) BRI ldr
< /ORp(r)rd’r, (3.18)

and from the definition of p(r), one can conclude that K = [ p(r)rdr < co.

JAVAVAN
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3.3. Experimental Determination of the Density
Function

[t is clear that the Prandtl-Ishlinskii model is defined by its density function p(r).
Determination of the density function is crucial for practical applications of the
Prandtl-Ishlinskii model. In this study, a discretional approach to approximate p(r)
is developed. Based on the memory effects of the play operator F,[v](t), especially
the wiping-out property, and by devising the input in a certain sequence, p(r) can
be derived directly from the output measurements.

We consider that the system input v is a continuous bounded function con-

tained in the interval [—R, R]. The memory set ¥y is defined by

Yo = {¢[¥:[0,R]—R, [¥(r)| <k
[W(r) =) <lr=r'l, Vrr'e[0,Rl} (3.19)

where 7 is on the interval [0, R]. The identification scheme is based on the measure-
ments of the hysteresis outputs.

Step 0: Initial condition normalization

For arbitrary initial conditions vy € [~ R, R] and internal state 1), € Uy, if the
input v(t) monotonically increases to the positive saturate value v(tg;) = +R, by

definition,

Frlv;](tor) = maz{R—r,min{R+r,¢1}}
= maz{R— 7,1}
R—r ifR—71 >4
= Vr € [0, R] (3.20)
wl, fR—r< ’gbl
If vg < 4hn, for t < ¢y and v, < 4y, Flv;4n](t) is formed by line R + r from a to

b and 1 from b to ¢, shown in Fig.3.8. When v; > 91 and reaches v(tp;) = R,
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F.[v;¢1](to1) erased the portion of the initial condition which is under the line of
R —r. In addition, F,[v;v;](¢01) is formed by the line R — 7 from al to bl and the
segment of the initial condition v, from b1 to ¢ which has not been erased, Fig.3.9.

Then let the input decrease to the negative saturate value v(tp;) = —R, by

definition,

F.lv;n](tee) = maz{—R—r,min{—R+r, F.lv;11](te1)}}
maz{—R —r,min{—R+r,R—r}} if R—r >
maz{—R —r,min{—R + 91 }}, if R—r <1
= maz{-R—7r,—R+r}

= —R+7r VYrel0,R] (3.21)

As we see in Fig.3.10, when v(t) decreases, F,.[v;11](t) erases every lines above the
line v(t)+r at that instant of time ¢. Using the above procedures, the initial state set
by any initial input vy and internal state i, is erased. Therefore, it can be assumed

that the identification procedures always start from a well defined initial state :

vy = —R ;
FT['U();?,D]_](to) = —R+T Vr € [O,R} (322)

line from (0, —R) to (R, 0) shown in boldface in Fig.3.11.

For the hysteresis definition interval [0, R], let N be a positive integer, define

AN =R/N (3.23)
Step 1: Define
1
T11 = R - 5& (324)
T12 — R —iA (325)
38
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and let the input function v monotonically increases from v(ty) = —R to the point
v(ty) = R— A at t =ty;:
Flv;n](tn) = max{R - A —r,min{R— A +r, F.[vg; 1] (t11)}}
= maz{R— A —r,—R+r}
R-A—-r if0<r<r
= (3.26)
—R+r, ifryy <r <R
In Fig. 3.12, we can see that for all 7 < ry1, F,[vg; ¥1](to) is erased by Fy.[vi1; ¢1](t1)-
The new memory curve F,[viy;91](¢11) is shown in boldface in the figure. The

hysteresis output wj; at time ¢;; is determined by

wi = pov(ti) — /ORP(T)FT[U] (ti)dr
R
= po(R— D) - /0 p(r)F,[o] (b1 dr
= po(R—A) - /Om p(r)(R— A —r)dr

R
= [ p) R+ ryar (3.27)

We now reverse the input and let v(¢) monotonically decrease from v(t;;) = R — A

to v(t1y) = —R+ A at t = t15. By definition

Folv;n](tie) = maz{—R+ A —r,min{—R+ A +r, E.Jui;;91]}}

—R+A+r if0<r<rpy
= (3.28)
F.[v](t11), ifrie<r<R

where 715 = R — A. Fig.3.13 shows that F.lu; 9] (t11) is erased by F[vig;11](ts)

for all 7 < ry5. The hysteresis output wyy at time ¢ is

wiz = pov(tiz) —/ORPO")F?«[U](tl?)dr

_ p0<—R+A)—/Omp(m(—maw)dr
-/ R p(r) Fufo] (t11)dr ' (3.29)

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3. Prandtl-Ishlinskii Models

Noticing that in (3.27) the first term and the integrands in the second term on the
interval r € [0, r12] have opposite signs and compare the first and second terms in

(3.29), if we add wy; and ws together, we have

wy +wye = po(R—A)— /ORP(T)Fr[Un](tu)dT

+po(—R+ A) — /Onz p(rY (=R + A +r)dr

R
- / p(r)Frlvn|(t)dr

= po(R—A)— /Omp(r)(R _ A —r)dr
_ /;ip(T)Fr[vll](tll)dr -+ po(—R + A)

_ /m —R+ A +r)dr — /R p(r) Er[vi](t11)dr

T12

) / Fyfvn)(t1y)dr (3.30)

Step i: For ¢ = 2,...,n, we define

(2t —1)

ro=R—iA, i=2...,N (3.32)

Let the input function v(¢) monotonically increase from v(t;—1)2) = =R+ (1 — 1)A
to the point v(t;) = R — 1A at t = t;;, then decrease to the point v(t;) = —R+iA

at t = tigl
Ev;)(ta) = maz{R —il —r,min{R — i +r, F,[v](t-1)2)}}

= Tﬁaw{R — i =71, FL[v](ti-1)2)}

R—iA -7 ifOST’ST‘ﬂ
_ (3.33)
FT[’U] (t(i_l)g), if ra<r<R

The hysteresis output w;; at time ¢;; is

wit = pov(ta) “/ORP(T)Fr[U](tiI)dT
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R

= —iA) — [ p(r)E[v](ta)dr
0
= — i) p — A —r)dr
0
- /r p(r)F, ] (¢6-1)2)dr (3.34)

To reverse the input and let v(¢) monotonically decrease from v(t;) = R —1iA

to v(tin) = —R+ 1A at t = t;5, by definition

F.lv;n](tn) = maz{=R+i1A —r,min{—R+iA +r, FW](ta)}}
—R+iA+7r if0<r<rp

_ (3.35)
FT{/U](til>, if Tio < T S R
where r;; = R —1/\. The hysteresis output w;, at time ;5 is
R
wa = pov(tn) - / PR bita)dr
= —R+1iA) p —R+iA 4 r)dr
0
——/ p(r) Epvl(ti)dr
T2
= —R +iA) p —R+ 1A+ r)dr
0
R
- / p(r) Fy o]t )dr — / p(r) Fy[v] (b2 dr (3.36)
Ti2 T

Ti1
Notice that the first two terms in (3.34) and (3.36) are in the opposite signs, add

w;; and wye together, we have

Wil + Wiy = —2/ ’U] 11 dr

T(k— 1)2

Y / e (ta)dr + Z / P[] (te ) drX3.37)

k2
fori=1,...,n.
If the number N is large enough, the intervals [riy, 7(;_1)2) will be small for

t=1,...,n. It can be assumed that p(r) are constants on each interval [rip, 7(;-1)2)
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and take p(r;1) = p(r) as an approximate value of the density function. Substituting
p(r) by p(ry1) in the summation of (3.37) and based on the definition of (3.32), the

integration of F,[v](t;1) on each interval [ri2, 7(;—1)2] equals

/”’“”2 Fllta)dr = — /T“(R — i —1)dr — /T“'m(—R + (i = 1)A+r)dr
Ti2 Ti2 Ti1
A2
- -5 (3.38)
we have
AQ 7
wi +wip = —§~{Zp(rk1)} i=1,...,n (3.39)
k=1

We now can solve p(r;;) from the above equations: for i = 1

2
p(ru) = E(wu + wia) (3.40)
and fort=2,...,n
2
p(ra) = ‘A‘E[(wil + wig) — (wi—1y1 + W(i-1)2)] (3.41)

Figs.3.8 - 3.14 present such identification process for [0, R] = [0,10] and N =
10.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3.

Prandtl-Ishlinskii Models

Frivi(h

10

Friv](t)

2

-8

Frivi(t)

Figure 3.8:

p(r) identification-1

10k

Frivite)

b1

2r

-8+

-8t

—-10F

Figure 8.9:

p(r) identification-2

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11



Chapter 3. Prandtl-Ishlinskii Models

-8F -

-10} _

Frivi(t)

10f... 1

-4t

-6 Friv(tey

-8

-10

Frgure 3.11: p(r) identification-4
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Figure 8.12: p(r) identification-5
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Figure 3.13: p(r) identification-6
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Figure 8.14: p(r) identification-7
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3.4. Relationship with Preisach Hysteresis Mod-
els

As discussed previously, the most popular hysteresis model is the Preisach model.
In fact, the play operator is closely related to the Preisach operator [10]. In 1935,
Preisach, based on his studies about the magnetization in ferromagnetic materials,
developed a relation between the magnetization w and the magnetic field v through a
linear superposition of relays with hystefesis, and also provided a simple geometrical
interpretation for the Preisach model.

The Preisach model can be given as

W= | i ;Oow(r, §) Ro_rysn[v] (£)dsdr, (3.42)

where R,_, s [v](f) is a relay hysteresis defined by

+1, ifv(t) <s—rorifv(t) € (s—r,s+r)and v(r(t)) =s—r;
Ry rstr[v](t) =
—1, ifv(t)>s+rorifo(t)e (s—rs+7r)and v(r(t)) = s+ 7;

(3.43)
with r > 0, 7(t) = sup{a/a < t,v(a) = s —r or v(a) = s+r}, ie., 7(t) is the value
of time at the last threshold attained. The initial value of the relay R,_, si,[v] is
taken as -1 if s > 0, and +1 otherwise.

It is known that the memory of the Preisach model is completely determined
by the dividing line, ¢(¢)(r). It separates the areas in which the relays attain the

value 1 from those having the value —1 at time ¢
AL(t) ={(r,s) e Ry X N | Ry_ps4r[v](t) = £1}.

Brokate in [9] described the connection between the dividing line ¢(t)(r) and the

play operator F,[v](t). If ¢(¢)(r) is given by the functional relation s = ¢(t)(r),
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where ¢ is to be considered as a parameter fixed for each curve, then it can be

proven that
o(t)(r) = F[v](t)

. The play operator is called the Preisach memory operator. In general, the Prandtl-
Ishlinskii model is defined as a subclass of the Hysteresis Operators of Preisach Type.

The reader may refer to [10], Sections 2.1 and 2.4, for detailed analysis.
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i A i

Figure 3.15: Relay with hysteresis
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Chapter 4

Sliding Mode Control Based

Design

4.1. System Description

Consider a controlled system consisting of a nonlinear plant preceded by an actuator
with hysteresis nonlinearity, that is, the hysteresis is presented as an input of the

nonlinear plant, and denoted as an operator
w(t) = Pl(¢) (4.1)

with v(t) as the input and w(t) as the output. The operator P[v] will be discussed
in detail in the following section of this chapter. The nonlinear dynamic system

being preceded by the above hysteresis is described in the canonical form as
k
2™ (t) + 3" a;Yi(z(t), &(t), .., V(1)) = buw(t) (4.2)
=1

where Y; are known continuous and linear or nonlinear functions. Parameters q;
and controller gain b are constants. It is a common assumption that the sign of b is

known. Without loss of generality, we assume that b > 0.

o1
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The control objective is to design a control law v(t), to force the state vector
X = [%,%,...,x" V]| 10 follow a desired trajectory x4 = [Xq, Xq, ...,x&nﬁl)]T, ie.,
X — Xq as t — oo.

Consider the Prandtl-Ishlinskii model expressed by the play operator given in

(3.14), the hysteresis output w(t) can be written as

w(t) = pov(t) — dlv](t), . (4.3)

where
R
dl() = [ pr)BLl@dr, (44)
with po = [;* p(r)dr . For convenience, F,[v, %] is denoted by F.[v] for a given initial
state ¥ € .

If the hysteresis in the system is known, that is, p(r) and 1 are given or can
be accurately estimated, for any continuous input function v(t) at a time instant ¢,
F,[v](t) will be a set of line segments determined by some extreme values of v(t)
(refer to Fig.3.3 to Fig.3.5)). The integration of d[v] can be calculated online, and
d[v] can be used as a feed forward compensator to cancel the second non-linear term
of the dynamic system.

However, in most cases, it is difficult or even impossible to accurately estimate

the hysteresis of the system. Using the hysteresis model of (4.3), the system (4.2)

becomes,

k
200 + 3 ai(a(t), 6(0), ) = bipon(®) — b)), (45)

which leads to a linear relation to the input signal v(¢) plus a shifting term bd[v].
Remark: It is clear that the first term on the right-hand side of (4.5) is a
linear function of the control signal v(t). In this case, it is possible to fuse the

currently available controller design techniques with the hysteresis model for the
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controller design. It will become more clear later that such a structure in fact makes
it possible to design the adaptive control algorithm. This was also the primary
motivation of using the Prandtl-Ishlinskii model.

If in the system (4.5), there is no hysteresis effect, that is, d[v](t) = 0, shown

™ (t) 4 ; a;Yi(z(t), £(t), ..., ™"V (t)) = bpov(t), (4.6)

adaptive sliding mode control method can be effectively used to construct a robust
controller for tracking and stabilization even when system uncertainties are present.
In the context of robust control, the term bd[v](¢) is normally treated as a distur-
bance function, which is assumed to be bounded by a constant or bounded by a
known function. However, being different from the traditional expressions of the
disturbance, d[v](t) is presented as an integral function. Therefore the assumption
cannot be made on its boundedness. In addition, it is in fact a function of the input
signal v(¢) and requires a special treatment for the adaptive controller design.

Define the tracking error vector X as
X=X-— Xd,

and a filtered tracking error as

s(t) = (% + A Dz (1), A>0 (4.7)

s(t) can be rewritten as s(t) = AT%(¢) with AT = [A\O*D (n — A2 1]

It has been shown in [55] that the definition given in (4.7) has the following
properties:

(i) the equation s(t) = 0 defines a time-varying hyperplane in " on which the

tracking error vector X(t) decreases exponentially to zero;

o3
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(i) if %(0) = 0 and |s(t)] < e, where € is a constant, then X(¢) € Q. 2 {&(t) |
1%;| < 271N\ i = 1,...,n} for Vi > 0;

(iii) if %(0) # 0 and |s(t)| < ¢, then %(¢) will converge to . within a time-
constant (n — 1)/A.

In sliding mode control design, the controller contains the discontinuous non-
linearity sgn(+). It will cause chattering due to practical imperfections in switching
devices and delays. In order to eliminate chattering, rather than deriving the adap-

tive laws with the filtered error s(t), we introduce a tuning error, s, as follows:

Se=8— §sat(§) (4.8)

where € is an arbitrary positive constant and sat(-) is the saturation function. The
tuning error, s, disappears when the filtered error, s, is less than e.

In developing robust adaptive control laws, the following assumptions regard-
ing the plant and the hysteresis are made:

Assumption 1: The desired trajectory x4 = [z4, Z4, ..., xé"_l)]T is continuous

and available. Furthermore, [x7, :cfi”)]T € Qg € R with Qg4 a compact set.
Assumption 2: There exist known constants 0 < bnin < bmae Such that the
control gain b in (4.2) satisfies b € [bin, bmagz)-

Assumption 3 Define § 2 [3“515, e b—‘;%]T € R*, then

9 & Qg é {9 : gimin S 91 S Himaa:;\/i & {1, caey k}}

where 0 and 0;,.. are some known real numbers.

Assumption 4: There exist known constants pomin and ppaz, such that pg >
Pomin, and p(r) < pmaé for all r € [0, R].

Remark: Assumption 1 is made mainly for the design of a tracking controller.

Assumption 2 is common for nonlinear controller designs [55]. In Assumption 3,
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a new parameter vector £ was defined for the convenience of further development.
Basically, Assumption 3 implies that the ranges of the plant parameters, a,,7 = 1...k,
are known in advance. This is a reasonable assumption on the prior knowledge of
the system. As for Assumption 4, based on the properties of the density function
p(r), it is reasonable to set an upper bound ppa, for p(r). Here pomin > 0 must be

satisfled.

4.2. Controller Design

In presenting the developed robust adaptive control law, the following definitions

are required:

6(t) = 9(75) -6, (4.9)
(t) = d(t) — ¢, (4.10)
p(t,r) =p(t,r) —p(r), forallre|0,R], (4.11)

6 is an estimate of 0 as given in Assumption 3, ¢ is an estimate of ¢, which is defined

as ¢ & (bpo)~*. P(t,7) is an estimate of the density function p(r). Let

Bl 2 [y I

dr, 4.12
0 Pomin ( )

and the estimation B(t) is given by [F (¢, ) |P;'O:i(:)|dr, which leads to

Bt = [ (plt.r) - pr) TG (4.13)

Pomin
Given the plant and hysteresis model subject to the assumptions described
above, and noting that the term d[v}(¢) in (4.3) is in the form of integral with the

kernel F.[v](t), we propose the following control laws:

v(t) = —kgs(t) + dusa(t) + YT (x)0 + vp(t) (4.14)
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with

uga(t) = 237 (t) — ATR(2); (4.15)

v

wn(t) = —sat(2) B(t); (4.16)

where kg > 0; Y 2 Vi, %]T e ®F AT = [0, AV (n — DAP=D | (n — 1)),
the parameters ¢ and 6, and the function B (t) will be updated by the following

adaptation laws

6 = Proj(§, —7Y (x)s.), (417

q.g = Proj(gZA), —NUsdSe), (4.18)
2]S(t,r) = Proj(p(t,r), qm|s€|), forr [0, R], (4.19)
at Pomin

where parameters v, n and ¢ are positive constants determining the rates of the

adaptations, and Proj(-,-) is a projection operator formulated as follows:

0 if 0; = 6,0, and ¥(Y'se); <0
—y(Y'se)i if [Oimin < b; < Oimaz]
{Proj(0,—yYs)}; = or [6; = Bimaz and v(Y's.); > 0] (4.20)

OI"A [éz - eimin and ’Y(Yse)i S O}

0 if 0; = Oimin and (Vs > 0

0 if qB = Prnaz and Nusese < 0
—TNUfdSe if [d)mm < é < ¢ma:c]
Proj(¢, —nugas.) = or [¢ = Pmag and nuggs, > 0] (4.21)

or [é = ¢5mm and MU fdSe < 0]

0 if é = @pmin and nusgse > 0
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Y 0 if At,T‘ = Pmax;
qmlsel)= Blhr)=» (4.22)

Pomin q'—FT—[vﬂm|S€| if 0 S ﬁ(t, 7") < Pmazx -

Pomin

Proj(p(t,r),

Remarks: 1) Projection operator is used in the above control laws. It can be
proved that the prdjection operator satisfies the following properties: (i) 2(¢) €
Q, if 2(0) € €, where Q, is a compact set; (i) [|[Proj(z,y)|| < |ly|l; and (iii)
—(z — 2)TAProj(z,y) > —(z — z*)T Ay, where A is a positive definite symmetric
matrix.

2) The projection operators require the upper and lower bounds of the param-
eters 0, ¢ and p(t,r). Assumptions 2)-4) are fundamental to this end. However,
these parameters are only used to specify the ranges of the parameter changes for
the projection operator. These ranges are not restricted as long as the estimated
parameters are bounded.

3) The term wvp(t) represents the compensation component for the function
dv](t). Unlike traditional robust adaptive controller designs, where d[v](t) is as-
sumed to be bounded by either a constant or a known function, d[v}(t) is presented
as an integral equation, and there is no assumption on its boundedness. Notice
that the density function p(r) is not a time function, we can thus treat this term
as a parameter of the hysteresis model and develop an estimated law for it. This is
crucial for the success of the adaptive law design.

4) For the calculation of B(t) = [&#(r, t)’—%o[ﬁ%dr in the implementation,
using numerical technique, we can simply replace the integration with the sum by
dividing R into small intervals, i.e, E(t) = YNt A(lAT, t)lﬂ%ﬂ%@lAr, where N

determines the size of the intervals as Ar = R/N. The selection of the size of the
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intervals depends on the accuracy requirement. As will be shown in the simulation
example, the size of the intervals may not necessarily be very small.

The stability of the closed-loop system described in (4.5), (4.14) and (4.17)-
(4.19) is established in the following theorem:

Theorem: For the plant given in Equation (4.2) preceded by a hysteresis
nonlinearity presented by Prandtl-Ishlinskii model (3.14) subject to Assumptions
1)-4) with

QG - {9 : eimin < ‘91' < eimazav'i € {11 7k}}7

1
Q(;S:{(b:%

Q, ={pt,7) : 0 < p(t,7) < Pmaz, Vr € [0, R},

: (bmaachnmm)_1 S d) S (bminp()min)—l}a

if O(te) € Qp, (to) € Oy and H(tg,) € €2, then the robust adaptive controller
specified by Equations (4.14) and (4.17)-(4.19) ensures that all the closed-loop sig-
nals are bounded and the error of the state vector and the desired trajectory X(t)
converges to Qe = {X(t)||x:] < 27\ "¢,i=1,...,n} as t — oo.

Proof. Using the expression (4.5), the time derivative of the filtered error

(4.7) can be written as:

k
3(t) = —uga(t) = 2 aYi(x(1)) + b{pov(t) — do](2)}- (4.23)
Using control laws (4.14)-(4.16), the above equation can be rewritten as
k
s() = —up(t) - 2_:1 a;Y;(x()) — balv](t)
+bpo[—kas(t) + dusa(t) + YT (x)0 + va(t)]. (4.24)

To establish global boundedness, we define the following Lyapunov function

candidate

/ “Rrdr]. (4.25)

S J—
bpo Y n qJo
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Since the discontinuity at |s| = € is of the first kind and s = 0 when |s| <€,

the derivative V exists for all s, with
V(t)=0, for|s| <e. (4.26)

When |s| > €, using (4.24) and the fact that s.$. = s.$, we have
V(t) = st —(0- 070+ (3 - 9)}

= —5.8
bpo 7

Y
R Jd _
w2 [V Byt

= —kg8.8+ SE[QS’LLfd( ) + YT( )é + v (t) — dv](?)]

1 1 .
‘b-—p—-se —’Ll,fd ZCL Y t) ] + (0 - 9)T0

R ~ ~
RO /0 B, 1) ()

= —kgses+ sfusalt) + YT (x)0 +va(t) — dv)(t)]
5[~ dusqa(t) — YTO) + %(é — 679+ %(& ~$)é

1 rB_ 0 .
-I-;/O p(t,r)ap(t,r)dr.

(4.27)
The above equation can be simplified, by the choice of s, to
V() < —kas? + scldusa(t) + YT (x)8 + un (1))
b= urat) = Y70 - —du)(t)] + ~(0 - 075+ (5 - 6)9
Do Y n
+% /ORﬁ(t, r)g—tﬁ(t,r)dr.
(4.28)
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By using the adaptive laws given in (4.17)-(4.19) and the properties of

1 . A A
—(0 — 0)" Proj (6, —yY's.) < —(0 — 0)TY s,
v

1 - “ n
:6(¢ - ¢>PT0.7(¢7 __nufdse) S —(¢ - ¢)ufd5€7
we obtain
V() < —kas® + scfdusa(t) + YT (x)0 + vn(t)]
s[~dusalt) — YT Z—)lgd[v] (0] = (6 — O)TY s, — (& — d)ugas.
42 [t Prostote,n, o 20Ol gy
< —kas? + vn(t)s. — ~—d[u](B)s.
Po

LAOIGI

Omin

1 pR_ R
+E/0 p(t,7)Proj(p(t,7), q

(4.29)
Now, we show that V() < —kgs2. Since
-;}()—d[v](t)se—kvh(t)se - —]i); ORp(r)FT[v](t)dr—sat(g)se /0 Bt '1; (Em]ff)' -
<+ [T pmimneir - L a0 mpr
< -LL o nimwon
(4.30)
let
Rmaz = {7 : B(t,7) = Pmasz} C [0, R (4.31)
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Rnae = {7 B(t,7) < Prmaz} C [0, B (4.32)
from (4.22) and according to adaptation law (4.19), if r is in the subset .., we
have p(t,) 2 0,

Proj(p(t,r), g Fr[v](t)sel /Pomin) = O,

_d e iR @l [ ) Proj(a, 1), ¢ LD g <

pOmin Rmax q JRmas pOmin

where RZ,

otherwise, we have 0 < p(¢,7) < Pmae for r € RE

¢ ez is the comple-

ment of Rne in [0, R]). By (4.22),

PT‘Oj(ﬁ(t,'r‘),q|Fr[U](t)56|) _ qur[U](t)Se|

?

Pomin DPomin
o e FONION 8 |0 Bl =
That is
V() < —kgs? + vp(t)s. —p—d[ v](t)s.
42 [ e, Pros(atr), g i yay
< kst = Ll %50 0017 e
Omin
= [t Prospter), g 2 o ar
< —kgs?. (4.33)

Equations (4.25), (4.26) and (4.33) imply that V' is a Lyapunov function lead-
ing to global boundedness of variables s., (§—6), (¢— @), and p(t, r)—p(r). From the
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definition of s, s(¢) is bounded. It can be shown that if X(0) is bounded, then %(¢)
is also bounded for all ¢ € [0,tg]. Since x4(t) is bounded by design, x(t) must also
be bounded. To complete the proof and establish an asymptotic convergence of the
tracking error, it is necessary to show that s. — 0 as t — co. This is accomplished
by applying Barbalat’s Lemma to the continuous, non-negative function:

Vi(t) = V(t)— t(V(T) + kgs2(7))dr with

0

Vi(t) = —kgs?(t) (4.34)

It can easily be shown that (4.23) is bounded. It should be mentioned that the
term b{pov(t) — d[v](#)} is the Prandtl-Ishlinskii model defined by the play operator,
which is equivalent to (3.13). Then, the boundedness of that term can be concluded
from the Proposition given in Section 3.2.2. Hence $ and s, are bounded. This
implies that V;(t) is a uniformly continuous function of time. Since V; is bounded
below by 0, and Vi(t) < 0 for all ¢, using Barbalat’s Lemma we can prove that
Vi(t) — 0. Therefore, from (4.34), it can be shown that s.(t) — 0 as t — co. The
remark following Equation (4.7) indicates that x(¢) will converge to Q..

JAVAVAN

Remark: 1t is now clear that the developed control strategy to deal with the
hysteresis nonlinearities can be applied to many systems and may not necessarily
be limited to the system described by (4.2). However, it should be emphasized that
our goal is to develop a control strategy in a simpler setting to reveal its essential

features.
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4.3. Simulation Studies

Consider a nonlinear system in the form of (4.2) given by
1— e

I = a———l )

+ bw(t) (4.35)
where w(t) represents the output of the hysteresis operator described by the Prandtl-
Ishlinskii model (3.14). Parameters a, b and the density function p(r) are assumed
unknown. The nominal values of a = 1, b = 1 and p(r) = ae "~ and 1(r) = 0.07
for r» € [0,100], with & = 0.5, 8 = 0.00105 and ¢ = 2 are used in the simulation. As
mentioned before, p(r) is expected to be identified from experimental data. Notice
that when the control input v(t) = 0 and w(t) = 0, we can use basic analytical
method to show that the system is unstable without control.

A sinusoidal desired trajectory of z4 = 3sin(2t) + 0.1cos(6.7t) is used to il-
lustrate the tracking capability of the proposed robust adaptive control. In the
simulation, initial conditions are chosen as p(0,r) = 0 for € [0, R], 6(0) = 1/4.41,
and $(0) = 1/2.32. We also assume that z(0) = —1 and v(0) = 0. The approach to
select their values was through iterative simulation. In this simulation, k4 = 0.97,
DPomin = 1.10 > 0, v = 0.53, n = 0.91, ¢ = 0.87 and ¢ = 0.005. The sampling
time is 0.001. With these parameter values, the system responses are more sen-
sitive to kg4, Pomin and ¢. It is obvious that pgni, and g are used to correct the
errors caused by the hysteresis. As long as 0 < pomin < po is satisfied, smaller pomin
and larger ¢ (normally < 1) will result in faster convergency of the tracking error
and less smooth transient response of the control term wy(t). In this simulation,
0 < Pomin = 1.10 < pg = [ p(r)dr = 14.662. To calculate B(t), the integration is
replaced by the summation S, where N = 4000.

To illustrate the effectiveness of the proposed control scheme, the simulation

is also conducted without controlling the effects of the hysteresis. This is done
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by setting the component vy(t) = 0 in the controller v(¢). Simulation results are
shown in Figs.4.1-4.5. Fig.4.1 shows the tracking errors of the system state for the
desired trajectory with and without controlling the effects of the hysteresis in the
time spans of 1 second and 30 seconds, where the tracking error (solid line) is kept
less than € = 0.005 after 0.2 seconds. In comparison, the tracking error for v, = 0
is also shown by the dash-dot line. It is seen that the hysteresis in the system
causes the tracking error at least 30 times higher than the desired level. It clearly
demonstrates the excellent tracking performance of the proposed algorithm. Fig.4.2
gives the desired trajectory x4(t) = 3sin(2t) + 0.1cos(6.7t) and the system outputs
z(t) with control term vy, # 0 and z(t) for v, = 0. Figs.4.3 and 4.4 show the input
control signal v(t) and the hysteresis output w(t).

It should be mentioned that simulations for several different desired trajecto-
ries with various parameter values and initial conditions have also been conducted.
Results show that they all displayed similar behaviors as the one shown in this
section. The simulation conducted with V = 8000, which resulted in smaller inter-
vals, gives almost identical results. This further verifies that the developed control

algorithm is repeatable and computationally implementable.
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-0.15f
~025H
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Figure 4.1: Tracking errors of the system state with control term vy, # O (solid line) and vy, = 0
(*-.-7 line).
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Chapter 4.

x(t),xd(t)

Fuigure 4.2: System outputs z(t) with control term vy, # 0 (solid line) and vy, = 0 (dashed line).
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3.5 -

25 -

s v(t) with vh(t)=0

-15 | | i ) ! 1 1

Figure 4.3: The control signals v(t) with vy # 0 (solid line) and v, = 0 (broken line).
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50 T T T T T T T
401+ .
301 _

20 w(t) with vh(t)=0 il

w(t)

10 .

Figure 4.4: The hysteresis outputs w(t) with vy, # 0 (solid line) and vy, = 0 (broken line).
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Figure 4.5: The signal vy, designed to reduce the tracking error caused by the hysteresis.
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Chapter 5

Back-stepping Control Based

Design

5.1. Problem Statement

In this chapter, for the similar class of nonlinear systems discussed in chapter 4, it
is show that this approach can also be fused with adaptive back-stepping control
design.

Consider the Prandtl-Ishlinskii model expressed by the play operator given in

(3.14), the hysteresis output w(t) can be expressed as
w(t) = poo(t) — diol(t), (5.1)
where

dbl(t) = [ plr)Erlo] (), (5.2

0
with pg = fOR p(r)dr. For convenience, F,[v, 1] is denoted by F,[v] for a given initial

state ¥ € .
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The nonlinear dynamic system being preceded by the above hysteresis is de-

scribed in the canonical form as,
k
™ (t) + > a;Yi(z(t), £(2), ..., 2D (4)) = bw(t) (5.3)
i=1

where Y; are known continuous, linear or nonlinear functions. Parameters q; and
controller gain b are constants. It is a common assumption that the sign of b is
known. Without losing generality, we assume that b > 0. It should be noted that
more general classes of nonlinear systems can be transformed into this structure
(32].

The control objective is to design a control law v(t), to force state vector
(ﬂ—l)}T

x = [x,%, ..., x®D|T o follow a desired trajectory xq = [Xd,Xd; -y X , Le.,

X — X4 as t — o0.

5.2. Controller Design

Assumption : The desired trajectory xq = [xq,Xaq, .,.,X((jn_l)]T is continuous and
available. Furthermore, [xT,x{V]T € 4 C R+ with Q4 a compact set.
Using the hysteresis model of (5.1), the nonlinear system dynamics described

in (5.3) can be expressed as

k
2™ (t) + ; a:Yi(2(t), &(t), ..., 2"V (1)) = b{pov(t) — dlv](1)}, (5:4)

which yields a linear relation to the input signal v(t) together with a shifting term
bd|v].

Remark: As we mentioned in the previous section that the first term on the
right-hand side of (5.4) is expressed as a linear function of the control signal v(t).

Such a structure would thus permit for the design of the adaptive variable structure
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control algorithm. This particular aspect of the integration will become clear with
the formulations presented later. Furthermore, the integrated model in (5.4) was
also our primary motivation behind using the Prandtl-Ishlinskii model.

Equation (5.4) can be re-expressed as

in, = avY +byv(t) — dp[v](t) (5.5)
where z1(¢) = z(t), z2(t) = ©(t), -+, 2.(t) = 2V (t), a = [~a;, —az, -+, —a |7,

Y =[V,Ys,- -, Y], b, = bpy, and

o)) = [ p(r) Bl ()dr (5.6

with py(r) = bp(r).

We introduce the following new variables

21(t) = z(t) — z4(t)

a(t) = z(t) —af Y —a, i=2,3,,n (5.7)
(85} (t) = -—C]_Zl(t>
a;(t) = —cizi(t) — zie1 () + dua(zy, -+, Tim1, Tay -, T L),
for i=23..-,n—1 (5.8)
where ¢;, ¢ = 1,2,---,n — 1, are positive design parameters. The time derivative of

21 i8

= z(t) — Za(t) (5.9)
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using the second and the third equations in (5.7)

z(t) = z(t)+ o)

= ZQ(t) — clzl(t) (510)
Similarly, for z;, 4 =2,3,---,n — 1, we have

H(t) = @i(t) — 2P (1) — Gua(t)

= —z1(t) — ciz(t) + zip1 () (5.11)
Giving the following definitions

a(t) = a— a(t), (5.12)

(1) = ¢ — (1), (5.13)

Do(t,7) = po(r) — Pu(t, ), for all v € [0, R], (5.14)

A~

a is an estimate of a, ¢ is an estimate of ¢, which is defined as ¢ 2 (bp)7, Bult,T)

is an estimate of the density function py(r),

BO®) 2 [ n(r)I BRIl (5.15)

and the estimation B(t) is given by [ p(¢, )| F. [v](¢)|dr, which leads to

BO) = [ (ltr) ~ o) BRI, (5.16)
and the time derivative of z, is

i) = @) = o) — Gna(t)
= dTY + by — dp[v] () — 27 (t) — s (5.17)

Subjected to the assumptions and definitions given above, the following control

laws are proposed:
v(t) = () (t) (5.18)
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with

U1 (t) = —Cpzn — zn_1 — ATY + v (t) + 25 + Gy (5.19)

~

vp(t) = —sgn(z,)B (5.20)

The parameters qAS and &, and function B(t) will be updated by the following adap-

tation laws

a = 7Yz, (5.21)
¢ = —nuiz, (5.22)
%ﬁb(tﬂ“) = qF[](®)l|zal, forT [0, R], (5.23)

where parameters v, n and ¢ are positive constants determining the rates of the
adaptations.

Remarks:

1) The term wy(t) represents the compensation component for the function
dv](¢). Unlike the traditional robust adaptive controller designs, where d[v](t) is
assumed to be bounded by either a constant or a known function, d[v](¢) is presented
as an integral equation, and there is no assumption on its boundedness. Due to the
fact that the density function p(r) is not a time function, this term can thus be
treated as a parameter of the hysteresis model and develop an estimated law for it.
This is crucial for the success of the adaptive law design.

2) For the calculation of B(t) = [ py(r,t)|F.[v](t)|dr in the implementation,
using numerical technique, we can simply replace the integration with the sum by
dividing R into small intervals, i.e, B(t) = SN5! pp(IAT, t)| Fiar [v](t)| A7, where N
determines the size of the intervals as Ar = R/N. The selection of the size of the
intervals depends on the accuracy requirement. As will be shown in the simulation
example, the size of the small intervals may not necessarily be very small, similar

to that discussed in the previous chapter.
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The stability of the closed-loop system described in (5.4), (5.18) and (5.21)-
(5.23) is established in the following theorem:

Theorem: For the plant given in Equation (5.3) with the hysteresis (3.14),
subject to the assumptions discussed above, the robust adaptive controller spec-
ified by Equations (5.18) and (5.21)-(5.23) ensures that all the closed-loop sig-
nals are bounded and the state vector x(t) converges to the desired trajectory
Xq = [Xd, X4, ...,x((in_l)]T.

Proof: To establish the global boundedness, we define the following Lyapunov

function candidate

1 1 b, ~ 1 rR
V(t) = —2—*T~—”2—/~2td .24
() =2 g+ g atatg @'+ | Alnd (5.24)
The derivative V is
Vi) = Xn:z-z +—5T5+b—pq5¢~5+1/R~(t r)2~(t r)dr
i:111, n qopb ) atpb )

(5.25)
Multiply (5.10) by z; and (5.11) by 2; , we have
2121 = —clzf + 2129
Zid = —z 12 — Gzl + zizip, 1=2,3,,m—1 (5.26)
noticing that
but) = bydui(t)
— w(t) - bdult) (527)
substitute (5.27) into (5.17), we have
Pn = —CoZn — Zn_1 + ALY — sign(z,)B — dy[v](t) — byduy (t) (5.28)
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V(t) = (—clzf -+ 2122> + (—2122 - CgZ% + 2223)
+ (_Zn 22n—1 — Cp— 1272,, 1 + Zn—lzn) + an.n

. 5
3+ [ nitr)g

+
t

1 P
= e Do(t,T)dr
AT (t:7)

= =S 22 +8'Yz, — bdv(t)zn — |20 B — dy[v] () 2n
i=1

— e

_I__;"Tﬁ -+ %Qggf; -+ —z; /()Rﬁb(t, T)%ﬁb(t, ’I")dT’
(5.29)
as defined in (5.6) and (5.15)
£ = OR po(r) Eu o] (E)dr (5.30)
R
0 Pb Id’f’ (531)
we have
V) s ~Yad+ S8 (6 + Y 20) + 290~ m122) = |zl B + bl )2
z«-; )
+ [ Bt )]l aldr
< - zczz + AT+ Y5, + ;%3({5 — m12,) — |2l B
+/0 b(t,7) | Fr o] 1) |z
(5.32)
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by adaptation laws (5.21), (5.22) and (5.23)
V() < =3 ¢zl (5.33)
1=1

Equations (5.24) and (5.33) imply that V is a non-increasing function. Hence,

21,0, Zn, A, g%(t), and py(t,r) are bounded. Notice that

—/ V@) = V(t) —v(oo) < oo Vi >0 (5.34)
to
implies
o0 n
0< | Seazl<oo V>0 (5.35)
o 4=
since ¢; are positive constants, z; € L?, for 4 = 1,---,n. If we can show that z; is

bounded, then from Barbalat Lemma (see Appendix), we will have z; — 0 as t — oo

1

for © = 1,2,---,n. Furthermore, we want to show that z; — $f1_ as t — oo for

4t) = o) —az(t) (5.36)

since z; and z; are bounded, # (t) is bounded, from Barbalat Lemma, z; — 0.

z1(t) = z1(t) — za(?) (5.37)
we have x; — 74 as t — oo.
Wheni=2,---,n—1:

Zl(t> = ‘—Zi_l(t) — cizi(t) + Zi-}-l(t) ‘ (538)

we have z; — 0 as t — co. From definition

z(t) = zt) -2V — oy
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ai(t) = —cazn(t)
ai(t) = —cat) = zio1(t) + dioi(z, -, Ti1, Tay o, T ),
for 1=2,3,---,n—1 (5.39)
where «;_; is the function of z(¢),-- -, z;-1(¢), by conduction, e;—; — 0. Thus, we

have 27 — x4 as t — oo.

When i =n:
() = aTY + by — dyfv](t) — 28 (£) — 6my (5.40)

It can be shown that the right hand side of the above equation is bounded. ¢&,,_; is

bounded because its definition and the facts that z;,7 = 1,---,n are bounded. The

bpv — dp[v](t) boundedness is proved in the previous section. From the assumption

of continuity of ¥ and boundedness of all other variables, Z,(t) is bounded. By

Barbalat Lemma, 2z, — 0. Using the same argument as for ¢ < n, we conclude that
n—1

Tp — Zy ~ ast — oo.

JAVAVAN

5.3. Simulation Studies

In this section, we illustrate the methodology based on the adaptive back-stepping

control design presented in the previous sections using the same nonlinear system

described by
1 — e ®

SRS EE=0)

+ buw(t) (5.41)

where w(t) represents the output of the hysteresis. The hysteresis is given as

R

w@:mwﬂ—Ap@RM@W. (5.42)
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The actual parameter values are b = 1 and a = 1. Without control, i.e., v(t) = 0,
so w(t) = 0, we can use basic analytical method to show that the system in (5.41)
is unstable. The objective is to control the system state z to follow the desired
trajectory.

The simulations are conducted under two sets of parameters. Both show that
the proposed robust controller demonstrates excellent tracking performance. In Case
1), we consider the desired trajectory as x4 = 5sin(2t) + cos(3.2t), the hysteresis
density function is p(r) = ae P for r € [0,100], with parameters « = 0.5, 3 =
0.0014, and ¢ = 1. In the simulation, the robust adaptive control laws (5.21)-(5.23)
are used with ¢; = 0.9368. In the adaptation laws, we choose v = 0.13, n = 0.05 and
g = 0.437 with the initial parameters values being a(0) = 0.13, ¢(0) = 0.431, and
P(0,7) = 0. The initial state is chosen as z(0) = 2.05, sampling time is 0.002. To
avoid the vibration caused by the discontinuity of the sign function, we use saturate
function sat(s/e) = s/e instead of the sign function sign(s) in the simulation. The
proof is valid except in a small neighborhood of (—¢,¢]), and in this example we
choose € = 0.01. We also assume that the hysteresis internal state was ¥(r) = 0.07
for r € [0, B] before v(0) is applied. For the calculation of B(t), we replace the
integration by the sum Zév . In the simulation, we choose N = 4000.

To illustrate the effectiveness of the proposed control scheme, the simulation
are also conducted without controlling the effects of hysteresis, which is implemented
by setting v, (t) = 0 in the controller v(¢). This implies that the control compensation
for the hysteresis nonlinearity is ignored. Simulation results are shown in Figs.5.1 -
5.4 for the system (5.4) to track the desired trajectory z4(t) = 5sin(2t) + cos(3.2t).
Figs.5.1 and 5.2 show the state trajectories and tracking errors for the desired tra-
jectory with and without considering the effects of hysteresis, where the solid line is

the results for v, (¢) # 0 and the dotted line is for v, (¢) = 0. From Figs.5.1 and 5.2,
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we see that the proposed robust controller clearly demonstrates excellent tracking
performance and the developed control algorithm can overcome the effects of the
hysteresis. We should mention that we also conducted the simulations for NV = 6000,
which results in smaller intervals. The simulation results were almost identical to
those presented above. This further verifies that the developed control algorithm is
computationally implementable.

In case 2), we consider the desired trajectory z4 = 3sin(2t) + 0.1cos(6.7¢),
which is the same desired trajectory used in the previous chapter. The hysteresis
density function p(r) = ae #r=) for r € [0, 100}, with parameters « = 0.5, =
0.00105, and o = 1, we use the robust adaptive control laws given by (5.21)-(5.23)
with ¢; = 0.37. In this case, we choose v = 0.33, n = 0.41 and ¢ = 0.573 with the
initial conditions a(0) = 1/4.41, $(0) = 1/2.32, and $,(0,r) = 0. The initial state is
chosen as z(0) = 2.05, sampling time is 0.01, and ¢ = 0.05. We also assume that the
hysteresis internal state was ¢ (r) = 0.07 for » € [0, RB] before v(0) is applied. For
the calculation of B(t), we replace the integration by the sum S with N = 4000.
Figs.5.5 - 5.9 show the simulation results. Also we point out that, under the above
assumptions, if we do not control the hysteresis effect, i.e.r let vy, (t) = 0, the system

state will not follow the desired trajectory, z(t) — z4(t) is divergent as t — oo.
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desired trajactory xd(t)(green) and system output x(t) with uN(red) & without uN(black)

T T T T

8 T T T T

x(t),xd(t)

-8 1 L !
4 6 7 8 9 10

Figure 5.1: Case 1): Desired trajectory zq(t) = 5sin(2t) + cos(3.2t), system outputs z(t) with
control term vy, (-.) and vy =0 (dotted line) g1
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system error e(t)=x(t}-xd(t) with term uN(red) and without uN (biack)
5 T T T T T T T T T

Figure 5.2: Case 1): Tracking errors z(t) — za(t) for z4(t) = 5sin(2t) + cos(3.2t) with control
term vy, and vy, = 0 (dotted line) 892
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controller term uN(t)
6 T T T T T T T T T

uN()
o
T

-4 ~ 4

i I L \ 1 1 L L 1 I

—

Figure 5.3: Case 1): Signal vy, designed to reduce the tracking error caused by the hysteresis
when z4(t) = 5sin(2t) + cos(3.2t) 83
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Chapter 5.

Control signal v(t) (UN~--Red and uN=0--Black)
¥ T T T

3k
v(t) with uN=0

v(t)

Figure 5.4: Case 1): Control signal v(t) and the hysteresis output w(t) when zq(t) = 5sin(2t) +

cos(3.2t) 84
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ot -

4 1 1 1 1 !
0 5 10 15 20 25 30

t

Figure 5.5: Case 2): System state z(t) and the desired trajectory z4(t) = 3sin(2t) + 0.1cos(6.7t)
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25 T T T T T

1.5 ]

x{t)—xd(t)
(o]
w

oh
-05}1 4
1+ .
-1.5 u ' L ' L !
0 5 10 15 20 25 30

t

Figure 5.6: Case 2): Tracking errors z(t) — z4(t) for x4(t) = 3sin(2t) 4 0.1cos(6.7t)
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0_.
<
>
-1 -
\‘ : i 1
L\ I
/.’
_3F -
_4 1 1 I L I
0 5 10 15 20 25 30

t

Figure 5.7: Case 2): Signal vy, designed to reduce the tracking error caused by the hysteresis
when z4(t) = 3sin(2t) + 0.1cos(6.7t)
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v(t)

-3 I ! 1 1 1
0 5 10 15 20 25 30

t

Figure 5.8: Case 2): Control signal v(t) when z4(t) = 3sin(2t) + 0.1cos(6.7t)
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Figure 5.9: Case 2): Hysteresis output w(t) when z4(t) = 3sin(2t) + 0.1cos(6.7t)
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Chapter 6

Controller Design Based on

Neural Network Adaptive Control

6.1. Problem Statement

Consider an SISO nonlinear system with the hysteresis presented as an input

T; = Lit1s i:1727"'7n_1
Tn = a(z)+ b(z)w(t) + de(t)

y = I (6.1)

where ¢ = [z1,Z2, -, z,]7 € R is the system state; a(z) and b(z) are unknown
smooth functions; d.(t) represents the system uncertainties such as the external
disturbances and modelling errors bounded by a known constant dy > 0, ie.

3

|de(t)| < do. w(t) is the hysteresis operator given by

w(t) = pov(t) - (2 (62)
R

dpl(t) = [ () Frlol(t)dr (63
90
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where py = JJ¥ p(r)dr. For convenience, F,|v,1,] is denoted by F.[v] for any given

hysteresis initial state ¢, € U. By using this hysteresis model, system (6.1) becomes

Ti = Tipl, 1=1,2,---,n—1
Tn = a(z)+ b(z)pov(t) — b(z)d[v](t) + de(t)

y = m (6.4)

In this chapter, the study is focused on the adaptive control problem of the
physical plants operating in bounded regions and the state variable belongs to a
compact set 2, C ™. The objective is to design a stable control law v(t) to force
the state vector z = [z, Tq, - -, z,]T € Q to follow a specified and desired trajectory
X4 = [Xd, Xd, -+ xfjn—l)]T as close as possible.

For the considered systems the following assumptions are made:

Assumption 1: The sign of b(z) is known and there exists a constant by > 0,
bo < |b(z)], Vz € ;. Since the sign of b(z) is known and b(z) is not equal to zero,
we may assume that b(z) > 0.

Assumption 2: There exists a smooth function b(z) such that |b(z)| < b(z)
and b(z)/b(z) is independent of the state z,, Yz € Q, C R

Assumption 3: The desired trajectory x4 € C™(R) is available and x4 €
Qg4 C R™ with Q4 being a compact set.

Assumption 4: There exist a known constant pgm,in > 0 and a known func-
100 Prag (1), such that py > pomin and p(r) < pmas(r) for all r € [0, R].

Remark: Assumptions 1 and 3 are generally adopted for the design of a tracking
controller. As mentioned in [19], Assumption 2 imposes an additional restriction
on the class of systems. However, many physical systems possess such a property.

Examples of such systems include pendulum plants, magnetic levitation systems and

single link robots with flexible joints. As for Assumption 4, based on the properties
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of the density function p(r), it is reasonable to set an upper bound p,,., for p(r).
Here pomin > 0 must be satisfied, otherwise py = 0 implies w(t) = 0.

To simplify the notification, let

g9(z) = b(z)po/b(z)pomas

where pPomaz = fOR Pmax(r)dr. From Assumptions 1, 2 and 3, g(z) is independent of
ztpand 0 < g(z) <1.

Define the tracking error vector X as
X =X — Xq,

and a filtered tracking error as

s(t) = (% + 2Dz, (1), A>0 (6.5)

s(t) can be rewritten as s(t) = [AT1]%(t) with AT = A*D (n—1)AP=2_ (n—1))].

It has been shown in [55] that the definition given in (6.5) has following proper-
ties: (i) the equation s(t) = 0 defines a time-varying hyperplane in " on which the
tracking error vector X(t) decays exponentially to zero, (ii) if X(0) = 0 and |s(¢)| < ¢,
where ¢ is a constant, then %(¢) € Q, £ {X(¢) | %] < 272X ™"e,i = 1,...,n} for
Vt > 0, and (iii) if X(0) # 0 and |s(t)| < ¢, then X(t) will converge to (). within a

time-constant (n — 1)/A.

6.2. Controller Design

In this section, we first assume that the nonlinear functions a(z) and b(z) are known,
the hysteresis weight function p(r) is available, and the system uncertainty d.(t) = 0.

Notice that the Prandtl-Ishlinskii model (6.2) decomposes the hysteresis behavior
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into two terms: the linear reversible component pyv(t) and the nonlinear hysteretic
component d[v](t). If d[v](t) = 0, then the system input is w(t) = peu(t), there
exists an ideal feedback control v* as suggested in [19]. Under this control the state
vector x will follow the desired trajectory xq asymptotically.

Consider the state feedback control

with

* 1 g(.’L‘) ], (67)

1
) = @ il = sl + 5 T 2w

where § > 0 is a constant and
p=(0,AT)% — y"

By definition (6.5), the time derivative of s with the input v*(¢) for the system

(6.4) can be written as

1 1 9(z)
5(t) = —|=+ - S. 6.8
0= G 5w 26 o
Define a Lyapunov function candidate Vi = thw) 52, the time derivative of V;

along (6.8) equals

2 1 1
Vilt) = -1+ —= s%. 6.9
1() 5[ g(SL‘)]Qg(iL‘) ( )
Since 0 < g(z) < 1, it follows that
; 4
V() < — 5% | (6.10)
the solution of the above inequality satisfies
Vi(t) < e 50 0Vi(ky), YV t >t (6.11)
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|6(z)| = by > 0, limy_, V() = O implies that lim,_,o, s = 0. Furthermore, using the
properties of s, limy_, [|X|| = 0.

It is proved that when functions a(z) and b(z) are known and the hysteresis
weight function p(r) is available, then using the control input v* defined in (6.6),
the tracking error vector X = x — xq converges asymptotically to zero if d[v](t) =0
and the system uncertainty d.(¢) = 0.

When a(z), b(z) and p(r) are unknown, the controller v* given in (6.6) cannot
be implemented. A reasonable approach is to use an estimated v to approximate
v*(t). From the previous discussion, v} does exist. Under Assumptions 1 and 2,
a(z) and b(z) are continuous functions of z and v}, is continuous with respect to
z(t) and xq4. It has been assumed that x4 is continuous on the compact set §2; and
z(t) takes values in coinpact set ;. We can see that all conditions for the Universal
Approximation Theorem are satisfied. Therefore, function approximation methods
such as neural networks or fuzzy systems can be applied. In the following discussion,
neural networks will be used to approximate v;.

Let z = (27, s,5/6, 1), 2z belongs to a compact set
QZ = {(xT’ Sy 5/57 /J)’l’ € Qm’ Zg € Qd}

vy, is a function of z. As mentioned in [19], s and s/§ are in different scales when
a small § is chosen. Feeding the neural networks with both s and s/§ will improve
the approximation accuracy. For any arbitrary constant €g, there exists an integer

I*, such that for all [ > {*, the following approximation holds:
vi(t) = 07®(2) + ¢ Vz €, (6.12)

‘where [ is number of nodes of the neural network, ®(z) € R is the basis function

vector and the approximation error ¢ satisfies || < €p. 6* is the ideal weight defined
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by

0 = arg minges {sup.eq, |07 ®(2) — vl (t)|} (6.13)
Now, the unknown nonlinearity problem is transformed to a problem of estimating
the ideal parameter vector 8. Let § be an estimate of the ideal neural network
weight ", and the controller v,,(t) is chosen as

vn(t) = 0T D(2) (6.14)

with the adaptation law
4

Il

—T[®(2)s + ob) (6.15)
where I', 0 > 0 are adaptive gains.

In order to cancel the effect caused by term d[v](t), we notice that d[v]() is
determined by the weight function p(r), which is not a function of ¢. So it can be
considered as a parameter for each fixed r € [0, R] and adjusted by the adaptation
law. Let p(t,7) be the estimate of p(r) at any r € [0, R]. Define

Bp(t,r)

vp(t) = | —==—=|F.v](#)|drsign(s) (6.16)
0 Pomin '
with the adaptation law
0 " ~ B x maz
5001 = —blt ) + 1 D L)) (617)

where v > 0 and 7 > 0 are adaptive parameters.

The adaptive controller is then defined as following

1

v (t) B Z—)(x)pOmaz

Vn(t) + va(t) (6.18)

where v, and vy, are given by (6.14) and (6.16). Substituting v(t) into system (6.4),

the time derivative of s can be rewritten as

() = [o(e) + bl + 9(z)vn + b(z)pova(t)
~b(z) [ () E R0 + du) (6.19)
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To establish the global boundedness, let

0=0—0, (6.20)
p(t,r) =p(t,r) —p(r), Vrel0,R] (6.21)
We choose the Lyapunov function candidate as
V(t) = §° + Lorp-ig + L / § Po(t,r)dr (6.22)
29(x) 2 21 Jo ’ '
The time derivative of V is
: 1 dy (t)
Vit) = — + ¢ — s+ —<s
O = e T T 5
+07[®(2)s + F_lé] + E /Rﬁ(t T)—(?—ﬁ(t r)dr
n Jo ot
- R p(r)
+0(2)DomazS[un(t) — ; ——p—Fr[v] (t)dr] (6.23)
0 .
Utilizing the adaptation law (6.15),
G713 (2)s + =16 = — o070 (6.24)

To simplify the last three terms in (6.23), from definition (6.16), we have

Bummm%w—i

R
| B ltar
+—:} /OR;ﬁ(t, T)g{ﬁ(t’ r)dr

stgn(s)

= 6($)p0maz3[_

R
| eI e ar

- L R o) E ol (t)r]

Omain

+- A p(t, r)=—p(t,r)dr (6.25)
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el L IACIGIY

l il / (t)|dr]

-l——ﬁ/o ﬁ(t,r)-—a-iﬁ(t,r)dr (6.26)

S B(-T>p0ma:r[

< el 501y oy 0]
+% /()Rﬁ(t,r)%ﬁ(t,r)dr (6.27)

Noticing that p(¢,r) = p(r) — p(r), and substituting (6.17) into the above equation,

we have
B max R ~
K lman 2l %56,7) — ) ol
R )
+% /0 (t,7)=-(t, r)dr (6.28)
< @Pomaslel 1% 5, o)1) ar
Pomin
+2 [ ate e )+ (6.29)
< —y /0 B(t,r)p(t, T)dr
Therefore,
. 1 Lo )
YO s e T o)
o0~ [ Bt r)p(e,r)dr (6.30)
7 0 p ) p b .
Furthermore, using the following inequalities
~ o879 < —Z ]8> + "] (6.31)
lers| < V2¢s| < 591@ s+ 5g§x)612 (6.32)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6. Neural Network Controller Design

W) 1 . b,
Ig(m) s| < 25g2(a:)8 + 2de(t) (6.33)
~ BBt r) < 2R (1) + 22(r) (6.34)

and noticing that 0 < g(z) < 1, |€z| < €g, and |d.(t)| < do,

; 2 _ 7 ~2
V() %ﬂ> 26 -2 [ ey
+— S+ 0+ 2l + 7/ (6.35)
let
T= mm(d )\mm YN) (6.36)

where A\, is the largest eigenvalue of I'"!. The above inequality satisfies

V) < -1V + g (6.37)
with
R
¢ = dep + 6d3 + o||6* | + ’y/ p*(r)dr (6.38)
0

and we have

V() < eV (g) + 5‘1 (6.39)
T

From the definition of V', we conclude that s, 5, and p are bounded. Especially,

<Jav(y) < \/ZV(to)e“T(t%tﬁ—l—\/g (6.40)

Noticing that the bound for the filtered tracking error in (6.40) is a function
of t and depends on the initial value V' (¢5). Using the same method as in [55], we
can prove that the tracking error vector X converges to a set, which is not depend
on the initial condition V' (¢p). Let p = d/dt be the Laplace operator,

1

yl(p) = mé‘(p)

1
i = —Yi-1,  =1,2,---;n—1 6.41
Wp) = e n (6.41)
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From (6.40), y1(¢) is bounded by

m@ < [ e s(alda

to

WE 12V (to)e~ E=10) (t — )

if A =7/2; (6.42)
2‘/2V to { =T (t—to) _ ,—A(t— to)} -

IA

!
N3]

otherwise
\

By integrating inequality |y;(t)| < ftto e~ M=y, 1 (t)]da from i =2toi=mn—1, for

n > 3, we have

b at—a)
par @ < [ eIy a(t)lda (6.43)

if A=1/2;

/2 2V (to){ () e

n— ilb—taYi—l e
— sl (2/\2—7)n z(t(ii)i)! e A to)}

IN
>
3
I
—

(6.44)

otherwise

Since Z1(t) = yn-1(t) and Z,(¢) satisfies the above inequality, and lim;_.., Z1(t) =

et f where ¢ and 7 are existing constants given in (6.36) and (6.38). The upper

bounds for |Z;(t)| and V¢ > ¢, are also given as

;

c 2V (to) s p— n—1_—(n—
Xﬁl‘—‘f\/; + Y (255t
ifAN=71/2
1Z:1(8)] < (6.45)

r 2 V) () e B
n— n—; (=11 i
- i=11 (2>\2—T) (5—1)!),\1'-16 ( 1)}

otherwise
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They are reached at t = ”T—l +tgfor A\=7/2, and t = % + to otherwise.

Similarly, for Z;(t),i =2,---,n — 1, let

1
vi(p) = ms(p)
1
X — - i =1.2.... —i—=1
y](p) p+)\yj l(p)7 J 1 < , 1
21 (p) = yn—i—l(p)
S - .
zi(p) = m2j~1(p), J=2, 51 (6.46)

Since Z;(t) = 2(t), using previous results we can prove that

Jim 3:(6) = Jim (6) = 27X o/

As a conclusion, we summarize the above discussion in the following theorem:
Theorem: Consider a nonlinear system (6.1) with the hysteresis as an input
represented by the Prandtl-Ishlinskii model satisfying Assumptions 1)-4, if the ro-
bust adaptive controller is specified by (6.18) with adaptation laws (6.15) and (6.17),
then for any bounded initial conditions, all closed-loop signals are bounded and the

state vector z(t) converges to

Qe = {z(t)] 3] < 27N Je/ri=1,...,n}
where 7 and ¢ are constants given in (6.36) and (6.38).

Remark : We point out that, in the above theorem, the bound for the con-
verging set (). is determined by 7 and c. Since 7 is a constant decided by controller
parameters 0, 0, Apaz, 7, and 7. ¢ depends on the controller parameters and the
properties of the plant such as the weight function of the hysteresis p(r), the bound
of disturbances dy, and the approximator to be used to estimate the unknown non-
linear functions a(z) and b(x). The bound of the converging set §2, can be adjusted

by choosing suitable parameters of system properties such as €, do, 6*, and p(r).
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6.3. Simulation Studies

To illustrate the proposed robust adaptive control algorithm, we use the same ex-
ample given in [19]. Consider a variable length [(¢) pendulum as shown in Fig.6.1.
¢ is the angle subtended by the rod and the vertical axis, and w is a torque applied

to the pendulum. The plant dynamics can be expressed in the following form

:'Ei = Tit1, i:1727”'7n—1

T, = a(z)+b(z)w(t) + de(t)

y = o (6.47)

If the parameters satisfy (@) = lo + l1cos(¢), l1/lo = 0.5, g/lo = 10 and mlZ = 1, we

have

0.5sinz1 (1 + 0.5cosz1)z5 — 10sinz1(1 + coszy)

ae) = 0.25(2 + coszq)?
1
bz) = 0.25(2 + coszy)?
de(t) = di(t)coszy with  di(t) = cos(3t) (6.48)

where z = [z, 22]7 = [¢, ¢]T. The state variables belong to the compact set

Qp = {(z1,22)| |21 < 7/2, |2o| < 47} (6.49)

We can verify that 4/9 < b(z) < 1 for all z € Q, and Assumptions 1 and 2 are
satisfied. We set b(z) = 1. The reference signal is given as 14 = sin(2t). Initial
states are assumed to be [z1(0), zo(0)]* = [0,0]7 and A = 5.

In (6.47), the torque w(t) is the output of the hysteresis operator expressed
by the Prandtl-Ishlinskii model

wlt) = pou(t) - | * o) L] (t)dr, (6.50)
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where p(r) = ae 05" for r € [0,100], with o = 0.45,8 = 0.009. py = 5.379,
Pomaz = 6.379 and popmn = 4.379. We also assume that the internal state of hysteresis
was 1(r) = 0.15 for 7 € [0, 100] before v(0) was applied. For the calculation of B(t),
we replace the integration by the summation Zf)v . In the simulation, we choose
N = 4000. The sampling time is 0.005. To avoid the vibration caused by the
discontinuity of the sign function, we use saturate function sat(s/e) = s/e instead
of the sign function sign(s) in the simulation. The proof is valid except in a small
neighborhood of (—¢, ¢€]).

In this example, a two-order neural network with 20 nodes (I = 20) is selected

as
fall,2) = 670(2)  VzeQ, (6.51)
where z = [21, 2, 8, /6, ], and 8 is the vector of the weight parameters. Let

O(z) = [b1(2),62(2), ., Pn(2)]" (6.52)

If we choose ¢(z;) as the hyperbolic tangent functions

efl — e

then ¢;(z) are the possible combinations of ¢(z;)%1¢(zx)%2 for j,k = 1,...,5, for

example, denoting as following
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$1(2) = ¢(z1) "1 P(z) 12
$2(2) = ¢(22) ™1 P(22) 2,
$3(2) = B(21)%1 p(25)%2;
$a(2) = B(23)™2 p(21) M2,
$5(2) = (z1) %1 p(24)%2;
¢6(2) = ¢(24)% p(21)%;
$1(2) = ¢(21) p(25) 72
5(2) = p(25) %1 p(21) %2,
o(2) = P(z2)% B (25) %2,

where d;; and d;p are non-negative integers. ¢;(z) are called basis functions of
the neural network, and they are dependent on d;; and d;5. In the following, we
conducted simulations in two cases. First, we chose all d;1 and d;o equal to 1.
Under this condition, simulation results are given for three sets of neuial network

and hysteresis adaptation parameters for the same initial conditions. Then, for the
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different neural network basis functions defined by given different values of d;; or
d; 2, we show that the system states still converge to the neighborhood of zero.

Case 1) Let d;y =land dip =1foralli=1,---,20, ie.

dipx dig 11
dy1 doo 11
ds1 dso 11
dan  dao 11
dsi dsg 11
de1 dg2 11
dry  drp 11
dei dss 11
do1 doo 11
dio1 dio2 R
diy ding 11
dig1 digo 11
diz1 dizp 11
dia1 diao 11
dis1 disp 11
dis1 die2 11
dir1 diza | 11
digy digg 11
dig1 dig2 11
dao1  dao2 11

Under the basis functions defined as above, we give two sets of parameters to study

the system performances for different designed parameters.
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1.1) For the neural network initial weight vector § = 0, we set the neural net-
work adaptation gains as I' = diag{35}, o = 0.1, and § = 0.05. For the adaptation
laws of hysteresis, we choose adaptive parameters v = 0.11 and n = 0.15. Simula-
tion results for € = 0.1 are shown in Fig.6.2 to Fig.6.7. Figs.6.2 and 6.3 show the
tracking errors of the system states for the desired trajectory. It can be seen that
with the term v (t) # 0 designed to reduce the effects of hysteresis, system state
erTors 1 = I — g and Ty = z3 — L4 converge to a small region after 2 seconds.
The transient performances are shown in the detailed Figure (b) in the time spans
of 10. Fig.6.4 shows system outputs z(¢). In Fig.6.5, the norm of the estimated
neural network weight parameters ||| is bounded. The control input v(t) and the
term vy (t) designed to reduce the hysteresis effect are given in Fig.6.7 and Fig.6.6.
To illustrate the effectiveness of the proposed control scheme, simulation was also
conducted without controlling the effects of hysteresis. This was implemented by
setting vx(t) = 0 in the controller v(¢). This implies that the control compensation
for the hysteresis nonlinearity was ignored. The results are presented in the figures
with dashed lines. We can see that the proposed controller clearly demonstrates
robust tracking performance and the developed control algorithm can overcome the
effects of the hysteresis.

1.2) For the same neural network initial weight vector 8 = 0, if we reduce the
neural network adaptation gain I' from I' = diag{35} to I = diag{3.5}, and keep
o = 0.1. Then we have to increase 6 = 0.25. For the adaptation laws of hysteresis,
we reduce the adaptive parameters to v = 0.0081 and = 0.078. Simulation results
for € = 0.1 are shown in Fig.6.8. In this case, it takes longer time for the system to
converge.

1.3) If we reduce € from € = 0.1 to ¢ = 0.01, and keep the rest of the parameters

the same as in the case 1.1), tracking errors of the system states ; = z, — zg,
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Ty = 9 — 74 and control input v(t) are shown in Fig.6.12 to 6.14.
Case 2) If we change neural network basis functions by taking d; ;, for i =

1,---,20 and 7 = 1, 2, as following

diy dig 11
dyy1  dog 10
ds1 dzo 10
dgy  dap 11
dsi dso 11
de1 deo 1 2
dri dra 12
dg1 dgp 11
do1 dgo 11
diog  dioz B 11
diiy diig 11
dig1 dize 11
diz1 dizp 11
dia1 diag 11
dis1 dis2 11
dig1  dige 11
dirg dirg 11
dis1 digz2 11
dig1 digo 11
doo1 daog 11

and keep all the other parameters the same as in case 1.1): 8 = 0, I' = diag{35},
o =0.1,4 =0.05, y =0.11 and n = 0.15. Simulation results for ¢ = 0.1 are shown
in Fig.6.15 to Fig.6.18.
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The simulation results show that the proposed control methodology effectively
reduces the tracking errors of the system states. The estimated weight parameters
of the neural network are bounded. The system shows robust performances for the

neural network basis functions and the system parameters.
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A 4

)

mg

Figure 6.1: Variable length pendulum with 1(¢) = lo + licos(¢),li/lo = 0.5,9/lo = 10 and
mig = 1. ’
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Figure 6.2: Case 1.1): Tracking errors of the system state for the desired trajectory &y = 1 — zq
in the time spans of 10 seconds and 50 seconds with I' = diag{35}, o = 0.1, § = 0.05, v = 0.11,

n = 0.15 and ¢ = 0.1. Where solid lines represent the result with control term v, # 0 and dashed
lines with vy, = 0.
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Figure 6.3: Case 1.1): Tracking errors of the system state for the desired trajectory Ts = T2 — 4
in the time spans of 10 seconds and 50 seconds with I' = diag{35}, o = 0.1, § = 0.05, v = 0.11,

= 0.15 and € = 0.1. Where solid lines represent the result with control term v, # 0 and dashed
lines with v, = 0.
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Figure 6.4: Case 1.1): System outputs z(t) in the time spans of 10 seconds and 50 seconds with
[ = diag{35}, 0 = 0.1, § = 0.05, v = 0.11, 7 = 0.15 and € = 0.1. Where solid lines represent the
result with control term vy, # 0 and dashed lines with vy, = 0.
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Figure 6.5: Case 1.1): Neural network weight ||| with T = diag{35}, o = 0.1, § = 0.05,
v =0.11, n = 0.15 and e = 0.1. Where solid line represents the result with control term vy, # 0

and dashed line with vy, = 0.
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Figure 6.6: Case 1.1): Signal vy, designed to reduce the tracking error caused by the hysteresis
with I' = diag{35}, 0 = 0.1, § = 0.05, v = 0.11, n = 0.15 and ¢ = 0.1.
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Figure 6.7: Case 1.1): The control input v(t) with T = diag{35}, o = 0.1, § = 0.05, vy = 0.11,
n = 0.15 and e = 0.1. Where solid line represents the result with control term vy, # 0 and dashed
line with v, = 0.
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1.5 T T T T T T T T T

Figure 6.8: Case 1.2): Tracking error of the system state for the desired trajectory #, = ©1 — 24
with T' = diag{3.5}, 0 = 0.1, § = 0.25, v = 0.0081, n = 0.078 and ¢ = 0.1. Where solid line
represents the result with control term vy # 0 and dashed line with vy, = 0.
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Figure 6.9: Case 1.2): Tracking error of the system state for the desired trajectory &3 = o — Zq
with I' = diag{3.5}, ¢ = 0.1, § = 0.25, v = 0.0081, n = 0.078 and ¢ = 0.1. Where solid line
represents the result with control term vy, # 0 and dashed line with vy = 0.
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Figure 6.10: Case 1.2): Neural network weight ||0] with T = diag{3.5}, o = 0.1, § = 0.25,
v = 0.0081, n = 0.078 and ¢ = 0.1. Where solid line represents the result with control term vy, # 0
and dashed line with vy, = 0.
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Figure 6.11: Case 1.2): The control input v(t) with T = diag{3.5}, ¢ = 0.1, § = 0.25, v =
0.0081, n = 0.078 and e = 0.1.
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x1(t)~-xd(t)

x1(t)-xd(t)

Figure 6.12: Case 1.8): Tracking errors of the system state for the desired trajectory Ty = £1—gq
in the time spans of 10 seconds and 50 seconds with I' = diag{35}, ¢ = 0.1, § = 0.05, v = 0.11,
1 =0.15 and € = 0.01. Where solid lines represent the result with control term vy, # 0 and dashed

lines with v, = 0.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6. Neural Network Controller Design

2.5 T T T T T
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Figure 6.13: Case 1.8): Tracking errors of the system state for the desired trajectory o = X3 —Iyg
in the time spans of 10 seconds and 50 seconds with I' = diag{35}, ¢ = 0.1, § = 0.05, v = 0.11,
n=0.15 and € = 0.01. Where solid lines represent the result with control term vy, # 0 and dashed

lines with vy, = 0.
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Figure 6.14: Case 1.8): The control input v(t) with T = diag{35}, o = 0.1, § = 0.05, y = 0.11,
1 =10.15 and ¢ = 0.01. Where solid line represents the result with control term vy # 0 and dashed
line with vy, = 0.
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Figure 6.15: Case 2): Tracking errors of the system state for the desired trajectory &, = z1 — q
in the time spans of 10 seconds and 50 seconds with T = diag{35}, ¢ = 0.1, § = 0.05, v = 0.11,
1 = 0.15 and € = 0.1. Where solid lines represent the result with control term v, # 0 and dashed
lines with vy, = 0.
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Figure 6.16: Case 2): Tracking errors of the system state for the desired trajectory &2 = T3 — Zq
in the time spans of 10 seconds and 50 seconds with I’ = diag{35}, ¢ = 0.1, § = 0.05, v = 0.11,
n = 0.15 and € = 0.1. Where solid lines represent the result with control term vy, # 0 and dashed

lines with vy, = 0.
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Figure 6.17: Case 2): Neural network weight ||6] with T = diag{35}, ¢ = 0.1, § = 0.05,
v =011, n = 0.15 and € = 0.1. Where solid line represents the result with control term v, # 0

and dashed line with vy, = 0.

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6. Neural Network Controller Design

vit)

0 1 2 3 4 5 6 7 8 9 10

10 -

v(t)

0 5 10 15 20 25 30 35 40 45 50

Figure 6.18: Case 2): The control input v(t) with T = diag{35}, o = 0.1, § = 0.05, v = 0.11,
1 = 0.15 and € = 0.1 in the time spans of 10 seconds and 50 seconds.
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Chapter 7

Conclusions and Future Work

7.1. Concluding Remarks

In practical control systems, especially for accurate control of positioning systems,
hysteresis nonlinearity with unknown parameters in physical components may severely
limit the controlled system performances. By using the Prandtl-Ishlinskii model
with a play operator, a robust adaptive control scheme is developed to reduce hys-
teresis effect. This scheme is first combined with sliding mode control technique
for a class of continuous-time nonlinear dynamic systems with unknown parameters
and preceded by a hysteresis nonlinearity. It is proved that the proposed control
laws can ensure global stability of the entire system and achieve both stabilization
and tracking within a desired precision. Then, for the similar class of systems with
less requirements for the design parameters, it is proved that the scheme can also
be integrated with back-stepping control technique and lead to the same results.
Simulations based on both methods were performed on an unstable nonlinear sys-
tem. The results illustrate and further validate the effectiveness of the proposed

approaches.
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In this research, the developed method is also extended to a more general class
of systems. The systems are in the presence of parametric uncertainties, unknown
nonlinear functions, bounded disturbances caused by the system uncertainties Sﬁch
as external disturbances and modelling errors, and unknown hysteresis nonlinearities
preceded by the plant. We combined our technique designed to reduce hysteresis
effects with neural network adaptation control method given in [19] and proved that,
if the system states defined in a bounded domain, then for any bounded initial con-
ditions, all closed-loop signals are bounded and the state vector z(t) converges to
a neighborhood of the desired trajectory. To illustrate this robust adaptive control
method, simulations are conducted on a variable length pendulum plant. The re-
sults show that the developed method is effective and robust under different set of
parameters.

It is now clear that the developed control strategy to deal with hysteresis
nonlinearities can be applied to many systems and may not necessarily be limited
to the system described by (4.2) or (6.1). However, the goal of this research is to
develop a control strategy in a simpler setting that reveals its essential features.
The primary purpose of this research is to explore new avenues to fuse the models
of hysteresis nonlinearities with available adaptive controller design methodologies
without constructing a hysteresis inverse. This goal is achieved with very promising
results. The results presented in this thesis can be considered as a stepping stone to
be used towards the development of a general control framework for systems with

hysteresis behavior.
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7.2. Future Work

The following future research topics in this area will be of academic and practical
interests and can be conducted in extending the current research presented in this

thesis:

e Generalized Prandtl-Ishlinskii models: In our research the Prandtl-Ishlinskii

model is based on the stop operators and takes the form of

w(®) =poot) ~ [ P EL](0)dr (7.1)

with po = [f'p(r)dr. As we mentioned in section 3.4, the Prandtl-Ishlinskii
model can be defined in a more general form, see reference [10]. Notice that in
the above model, hysteresis loops are created by the integration of the weighted
play operators. By changing the coefficients of the two terms on the right hand
side of w(t), the shape and direction of the hysteresis branches or loops can be
impacted. Research results based on the more general form, therefore, should

be suitable for broader applications.

o Rate-dependent hysteresis models: Rate-independent property is one of the
characteristics of the Preisach type hysteresis models. Under certain condi-
tions, it approximates hysteresis exhibited in many materials. It is possible and
useful to further develop and extend the current research to rate-dependent

circumstances.

e Practical controller development and implementations for industrial and other
system control: Theoretical results and with supporting simulation studies
presented in this thesis can be implemented for real system and process con-

trol in manufacturing, automation, robotics, aerospace and other applications

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 7. Conclusions

where hysteresis is a critical issue. Such implementation can be done through
further software and/or hardware development. It will be a challenging task
since many factors such as real time response, tolerances, computer interface,

compatibility with existing systems, etc. are involved.

7.3. Publications from This Thesis Research

Several papers reporting results of this thesis research have been published in jour-
nals and well known international conferences as listed below. These papers were
written under the guidance of my supervisor, Dr. C.-Y. Su. Other co-authors of
some of the papers contributed partially through extensive discussions with impor-
tant recommendations, initial computing codes and simulations, or the combinations

of the above.

o C.-Y. Su, Q. Wang, X. Chen, and S. Rakheja, “Adaptive Variable Structure
Control of a Class of Nonlinear Systems with Unknown Prandtl-Ishlinskii Hys-
teresis”, IEEE Transactions on Automatic Control, Vol. 50, No. 12, pp2069-
2074, 2005. (Chapter 5)

e Q. Wang and C.-Y. Su, “Robust Adaptive Control of a Class of Nonlinear
Systems Including Actuator Hysteresis with Prandtl-Ishlinskii Presentations”,

Automatica, Vol. 42, pp859-867, 2006. (Chapter 4)

e Q. Wang, C-Y. Su, Y. Tan, “On the Control of Plants with Hysteresis:
Overview and a Prandtl-Ishlinskii Hysteresis Based Control Approach”, Acta
Automatica Sinica, Vol.31, No.1, pp92-104, 2005. (Chapter 2)

e (. Wang, C.-Y. Su, S. Ge, “A Direct Method for Robust Adaptive Nonlin-
ear Control with Unknown Hysteresis ” Proceedings of the Joint 44th IEEE
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Conference on Decision and Control and European Control Conference (CDC-
ECC’05), Seville, Spain, December 12-15,2005. Full version will be submitted

to International Journal of Control. (Chapter 6)
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Appendix Lyapunov Stability and Convergence

APPENDIX

Definition A.1 A function f : R" — R™ is said to be continuous at a point z if,

given € > 0, there is 6 > 0 such that for any y satisfies

lz —yll < ¢ (1)

implies
1£(z) = f)ll <e (2)
A function f is continuous on a set S if it is continuous at every point of S. A
function f is uniformly continuous on a set S if, given € > 0, there is § > 0 depen-
dent only on € such that the inequality (2) holds for all z,y € S. Note that uniform

continuity is defined on a set, the same constant ¢ works for all points in the set.

Definition A.2 A function f(z,t) is said to be Lipschitz in z if there exists a positive

constant L such that
1 f(z,t) = fly, )| < Lijz -y (3)

for all (z,t) and (y,t) in some neighborhood of (zg, o).

A function f(z,t) is said to be locally Lipschitz in z on D X [a,b] C R™ x R, where
D is an open and connected set, if each point z € D has a neighborhood Dy such
that f satisfies (3) on Dg x [a, b] with some Lipschitz constant Lo. A function f(z,?)
is Lipschitz in  on W x [a, b] if it satisfies (3) on for all ¢ € [a,b] and all points in

W, with the same Lipschitz constant L.

Consider the non-autonomous system

T = f(:l),t) (4)
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where f: R" x R, — R" is locally Lipschitz in z and piecewise continuous in ¢.

Definition A.8 The origin z = 0 is the equilibrium point for (4) if

£0,6)=0 V>0 (5)

Definition A.4 A continuous function «y : [0,a) — R, is said to belong to class K if
it is strictly increasing and (0) = 0. It is said to belong to class K, if a = oo and

¥(r) — oo as r — oo.

Lemma (Barbalat)
Consider the function ¢ : Rt — R. If ¢ is uniformly continuous and lim; ., f5° ¢(r)dr

exists and is finite, then
Jim () =0

Corollary

Consider the function ¢ : R — R. If ¢, ¢ € Ly, and ¢ € L, for some p € [1, 00),

then

lim ¢(¢) = 0.

t—o00
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