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ABSTRACT

Structural Optimization and Sensitivity Analysis using Finite Element Force Method

Amandeep Singh

The objective of the present research is to develop a computer aided environment for
optimization of structures by integrating the structural and design sensitivity analysis
using the finite element force method, and mathematical programming techniques. A
reliable tool for sensitivity analysis is perquisite for performing interactive structural
design, synthesis and optimization. The sensitivity analysis is used to provide the gradient
information to the gradient-based optimization algorithm. The developed structural
optimization methodology using the fqrce method is used to optimize discrete structures
subjected to stress, displacement and frequencies constraints, and results are compared
with those generated from displacement method and those iﬁ literature. The improved
accuracy and efficiency of the developed optimization algorithm using analytical
sensitivity analysis is also demonstrated by comparing the results with those obtained

from the numerical sensitivity analysis

Later, the developed optimization methodology is extended to the design of the stiffened
panels subjected to uniform uniaxial compression loading. The buckling characteristic of
stiffened panels subjected to uniform in-plane loading is of considerable importance,
while designing for the aerospace, naval and civil engineering applications. The finite
element model for the linear buckling analysis of the eccentrically stiffened panels based
on the force method is developed, and is validated by extensive numerical analysis. The

explicit expressions of the sensitivity of the buckling load with respect to dimensions of
iii
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plate and stiffener are formulated, and integrated with the optimization algorithm and

finite element analysis. The developed optimization algorithm is used to design different

types of stiffened panels.

v
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Chapter 1
INTRODUCTION

1.1 Problem Statement

The scientific research in the field of struétural optimization has increased rapidly during
recent decades. The increasing interest in this field has been boosted by the advent of
reliable general analysis method like Finite Element (FE) method, method of design
sensitivity analysis and methods of programming, along with exponentially increasing
speed and capacity of digitals computers. This environment integrates design processes
by allowing the design engineer to create a geometric model, to build a finite element
model, to parameterize the geometrié model, to perform FE analysis, to visualize FE
results, to characterize performance measures, and to carry out design sensitivity analysis
and optimization. Most of the commercials structural optimization codes are based on the
Displacement Method (DM) and very few investigations have been done on structural
optimization using the force fnethoélf The main objective of the present research is to
develop, to implement and tovintegrate the structural and design sensitivity analysis using

the FE force methbd, and mathematical programfning techniques into specific purpose

computer aided environment.

1.2 State of Art

The structural optimization has been topic of interest for many years. The early work of
Maxwell [1] and the subsequent development by Michell [2] provided a basic theory for

the optimal layout of minimum weight of trusses under single load condition and subject
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to stress constraints. Michel’s work provided a basis for generating an optimal orthogonal
layout given the positions, in a two-dimensional space, of the load application and
support conditions. In 1940’s and the early 1950’s significant work was done on the
component optimization as represented by such works as Shanley’s “Weight —Strength

Analysis of Aircraft Structures” [3].

Development of linear programming techniques by Dantzig [4] together with the advent
of digital computer, led to the application of mathematical programming techniques to
the plastic design of beam and frame structures as described by Heyman [5]. Schmit [6]
was the first who combined the mathematical programming techniques with the finite
element method to solve the ‘nonline:ar', vinequality constrained problems of designing
elastic structure under multiplicity of ‘loading conditions. The mathematical programming
problem involves finding the values of a set of design variables that yields the smallest
value of a specified objective functibn, subject to a set of equality and inequality
constraints. This leads to the modern structural optimization concept known as structural

synthesis.

Mathematical programming algorithms require the evaluation of the objective, constraint
functions and their gradients, and in turn these require a complete structural analysis each
time the design variables are modified. Because in most practical cases, the constraints
are defined implicitly in terms of design variables, the approximate technique, such as
finite difference technique was genefally used to evaluate the gradients that require one

additional analysis of the structure for each gradient. In general, the number of iterations
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necessary to solve a programming problem is rather large, and in turns demands a very
large number of analyses on the structure being optimized. Flurry and Sander [7] pointed
out that the number of structural anaflysis increases with the number of design variables.
Frind and Wright 8], and Pappas [9] concluded that the mathematical programming
methods were not suited to the structural optimization problem because of the heavy

computational burden and the large number of structural re-analysis required.

Nevertheless, by 1970 it had become apparent that the available optimization capabilities
based on combining the FE analysis with the mathematical programming techniques
required inordinately long run time to solve structural design problem of only modest
practical size. However, the outlook for the mathematical programming approach did not
deter researcher from attempting to improve the situation. Schmit[10] recognized that
obstacle to the implemeﬁtation of éfﬁgient programming based structural synthesis
method were associated with large nﬁmbers of design variables, large number of
inequality constraints, and many ‘fnequality constraints that are computationally

burdensome implicit function of the design variables.

These problems were then alleviated by introduction of approximation concepts such as
the coordinated use of design variable linking, temporary constraint deletion, and the
construction of high quality explicit approximation for retained constraints using Taylor
series expansion. Design variables linking reduce the number of independent design
variables by making groups of elements linearly dependent upoh a single generalized

design variable. Linking also maintains geometric consistency and allows time saving
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reduction in the number of design variables. Constraint deletion procedure can be used to
temporarily ignore behavior constraints, which would have no influence in upcoming
design step. Schmit [11] reduced the number of analysis cycle by creating approximation
functions to the objective and constraints using tailor series expansion. The
approximations are then updated using precise analysis of the proposed optimum and the
process is repeated until convergence to the precise optimum has been achieved. Further,
the efficient techniques to calculate tﬁe sensitivity derivatives were also developed and

new field in the structural optimization known as sensitivity analysis was emerged.

Mathematical programming algorithms such as the Sequential Quadratic Programming
(SQP) method, sequential linear programming, sequential unconstraint optimization, the
generalized reduced gradient method, the method of moving asymptotes, and the
modified method of feasible direction are commonly used for structural optimization
problems. SQP methods are regarded as the standard general purpose mathematical
programmihg algorithms for solving non —linear programming optimization problems
and considered to be the most suitable method for solving structural optimization
problems. Such methods make use’ of local curvature information derived from
linearization of the original function, by using their derivative with respect to design

variables at points obtained in the process of optimization.

1.3 Finite Element Force Method and Structural Optimization

Equilibrium and compatibility equations are two main constituents for solving the

structural problems. Accuracy of numerical solution depends highly on the degree to
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which these equations are satisfied. Equilibrium is the force balance concept and was put
into mathematical equations by Cauchy [12-13]. Determinate structures can be easily
solved by using equilibrium equations, but compatibility equations are required to obtain
sufficiency in case of indeterminate structures. Compatibility equations in terms of strains
for deformable solids were formulated by St. Venant [12] which was then expressed in

terrhs of stresses by Beltrami and Michelle [13].

Clebch [14] wrote the equilibrium equations in terms of displacements and observed that
the number of equations and displacement unknowns are the same. This formulation led
to the displacement method (DM), but it was not very successful in that time as there was
no practical way to solve these large numbers of simultaneous equations. Maxwell [14,
15] proposed another formulation to satisfy the compatibility equation by the concept of
redundant members. A statically indétérrhinate structure is initially reduced to one that is
determinate by removing redundant forces. The remaining determinate structure is solved
for applied forces in order to obtain the internal forces and relative displacements at the
cuts for all the load systems. The compatibility equation is then satisfied by setting up the
equilibrium equations between redundanvt and external forces that closes the gaps, and

these are solved to calculate the redundant reactions.

Before 1960, the redundant force method was more popular because it was elegant for
manual calculation as éOmpared to the DM. With the advent of computer age, the DM
starts dominating in structural analysis due to its amenability to computer programming.

The DM is well documented in many books [14, 16]. Several efforts have been done to
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improve the process of selection of redundancies [17]; however, all these procedures
either result in matrices with certain undesired properties, or lack the physical

interpretation.

Determinate structures t Indeterminant structures
(equilibrium) ' (equilibrium and compatibility)

= Stiffness method
(popular to extent of monapoly)

YES

JUBLUBACLU

|
|
: NO
|
|

Could not be extended ‘
Integrated force method

>

Primal method of forces
(identical to IFM)

Compatibility Barrier

NO

JUBWIBAOLL

!
I
|
| YES
I
I

l—————» Redundant force method

(disappeared)

2nd half of
20th Century

Figure 1-1 Structural analysis method and their status

In the recent years, efforts have been done to revitalize the force method. A new
automated force method formulation known as the Integrated Force Method (IFM) has
been developed by Patnaik [18-25]. The independent forces are treated as unknown
variables which are obtained by solving tﬁe system of equations consisting of equilibrium
and compatibility conditions. The procedures for generating the compatibility conditions

have been developed which yield sparse and banded matrices [22-24], and are easily
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amenable to computer application. A finite element library for the two [20] and three [21]
dimensional analysis have been developed and performance of different types of
elements have been analyzed. This method overcomes many drawbacks of redundant
force method like generation of compatibility by selecting redundant elements. IFM has
been successfully applied for static. [17-20] and free vibration analysis [25]. The
equations of the IFM can be specialized to obtain the stiffness method [18] and the

redundant force method [19] as shown in Figure 1-1.

The application of the IFM to structurdl optimization was first proposed by Patnaik [26].
Patnaik developed the closed form sensitivity analysis equations for truss structures, and
designed the truss structures subjeéfed to stress and displacement constraints [26].
Furthermore, Sedaghati and Esmailzadeh [27] combined the IFM with mathematical
programming techniques in order to design the truss and frame structures subjected to
stress and displacement constraints. They compared the optimization results obtained
from the IFM with those obtained from the DM and concluded that the IFM is extremely
efficient to analyze and optimize the beam and truss structures, subjected to stress and
displacement constraints. Further, Sedaghati et. al. [28] optimized the truss and frame
structures under single and multiple frequency constraints. They concluded that in
structural problems with multiple frequency constraints, the analysis procedure (force or
displacement method) significantly affect the finial optimum design. All these structural
optimization investigation were limited to small scale problem because of large
computational expense involved in calculation of gradient of behavior constraint by the

finite difference method.
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Patnaik has extended the application of the IFM in various pther applications of
structural optimization, such as calcu}ation of analytical initial design [29], to identify
singularities in optimization [30], and modified fully utilized design [31]. An initial
design for the optimization is either assumed or obtained from the experience of designer,
but the initial design can be calculated analytically by using the IFM [29]. A good initial
design accelerates the convergence of optimization algorithm. The IFM has also been
used as an analysis tool to identify singularities in optimization [30]. Singularities occur
because of the redundant nature of stress and displacement constraints, and can increase
the number of optimization iterations or can break down the process prematurely without
an optimum solution. Recently, a modified fully utilized design method has been
developed for the design of structures with both stress and displacement constraints [31].
The traditional fully stresses design method for stress constraints using the DM, when
extended for stress and displaceme’nf constraints, can generate an over design. The
modified fully utilized design method has been verified through successful solutions of
number of desi gn examples and produce results comparable with non linear mathematical

programming technique.

1.4 Sensitivity Analysis and Force Method

Sensitivity analysis is the most important and time-consuming part of a gradient-based
optimization procedure. Although, sensitivity analysis is mostly mentioned in the context
of structural optimization, it has evolved into a research topic of its own. Design
sensitivity analysis deals with change of structural system response with respect to design

variables. The structural system response or performance measure may be displacement,
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stress, natural frequency and critical buckling load etc. The finite element sensitivity
analysis represents an essential ingredient for the efficient and accurate convergence of
the gradient-based optimization methods. Mathematical programming generates a set of
design variables that require performance values from structural analysis and sensitivity
information from design sensitivity analysis to find an optimum design. The accuracy of
sensitivity may highly influence the optimization solution, the required number of

optimization cycles and the convergence.

Design sensitivity information provides a quantitative estimate of desirable design
change, even if a systematic design optimization method is not used. Based on the design
sensitivity results, a designer can decide on the direction and amount of design change
needed to improve the performance measure. Design sensitivity information can also be

used during a post processing of the interactive design process to improve the design.

Several techniques have been developed which can be mainly distinguished by their
formulation and implementation aspects. The methods for the sensitivity analysis can be
mainly divided into approxirhation, discrete and continuum approach [32]. The first
approach is based on finite difference 'method, which can be easily implemented. In this
method the perturbed structural systeﬁl for each design parameter has to be analyzed to
obtain the difference between the initial and the perturbed structural performance. Such
procedure can be prohibitively computationally expensive especially for large problems
with many design parameters. Moreover in certain cases performance of such methods

depends on the step size. The computational expense and uncertainty of step size make
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the finite difference approach less attractive. In the discrete method, design sensitivity is
obtained by taking design derivatives of the discrete governing equations. The derivative
of the stiffness and mass matrices is needed for this purpose which can be obtained
analytically or by the finite difference method. In the continuum approach derivatives are

obtained by differentiating the continuum equations that govern the structural behavior.

Most of the sensitivity analysis work is based on the finite element DM, but insignificant
work has been done on developing sensitivity analysis formulation based on the force
method. Patnaik and Gallagher [33] developed the discrete sensitivity analysis equations
for the truss structure using the force method and compared the results with numerical
gradient. They concluded that gradieh{ calculation using the IFM is computationally
inexpensive, since only flexibility mafrix depends on the design variables. Further, the
feasibility of using approximate gradient of the stress and displacement constraint using
IFM have been investigated for different optimization methods [34]. It was shown that
the approximate gradient can produce. the correct optimum results and reduce the
computational time significantly. Sensitivity analysis using the force method is a field
required to be extended further and effort has been done in this research to develop the

sensitivity analysis of discrete and continuous structures using the IFM.

1.5 Integrated Force Method versus Displacement Method

Force method has long been considéred as an alternative to the DM. It was originally
developed in structural analysis by the introduction of the concept of redundant forces. It

has been almost neglected not because it is less accurate as compared to the DM, but

10
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because it is difficult to automate redundant selection process in this method.
Furthermore, in two and three-dimensional problems, concept of ‘redundancy’ loses its
meaning, and also it can not be easily extended to the dynamic and stability problems. On
the other hand, the DM because of its good amenability to automation has become the
method of choice for the solution of structural mechanics problem, and it has been grown

well with several general purpose FE codes available.

Although the DM produces acceptable displacement and frequency results, but it is not
much accurate for stress calculation. Stress which forms the basis for most failure criteria
is not necessarily accurate even when the maximum displacement has apparently
converged. Typical displacement based finite element techniques require much higher
mesh density for obtaining accurate stresses than for obtaining accurate displacements.
Stresses are calculated from the differential of approximate displacement and it is known
that error in differential of a function is more than function itself, which may induce
inaccuracy in stress calculations. Moreover, inter element strain compatibility is not
satisfied in the DM, and the compatibility condition is satisfied by the continuity of the
displacements. In general, stresses obtained by the DM along the element interface
boundary satisfy neither equilibrium nor cofnbatibility conditions. Because of these
limitations in the DM, stress computation is typically avoided at the cardinal nodal points
or along element interfaces. The deficiency has been researched and improved with some

success. A new formulation of stiffness method called hybrid stress method [35] has been
developed for the calculation of more accurate stresses. However, in hybrid method, the

inversion of the flexibility matrix is necessary in order to generate the element stiffness

11
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matrix which may become a computational burden, especially if higher order

approximation of stress fields is required.

The IFM makes automation as convenient as it is with the DM and yet retains the known
potential for the superior stress field accuracy for the FE model that is associated with the
force method solution technique. The IFM provides a convenient way to enforce
constraints on the FE model of a continuum namely strain compatibility at the inter
element boundaries. In IFM all the independent forces are treated as unknown variables
those can be calculated on the basis of simultaneous imposition of equations of

equilibrium and compatibility conditions. The basic equation of the IFM can be stated as:

(1-1)

Intial Deformation

Equilbrium Equation |, Stres
Compatability Conditions

{ Mechanical Load }

The equilibrium equations represent the balance of internal forces and mechanical load.
Compliance of forces and initial deformation is achieved through compatibility condition.
Equilibrium equations represent the necessary conditions and sufficiency is achieved
through the compatibility conditions. Eq. (1-1) is sufficient for the calculation of stresses,
and displacements can be back calculated from stresses. The comparison of basic
equations of the IFM and the DM formulations is shown in Figure 1-2. It can be seen that
strain compatibility conditions are missing in the DM formulation, and DM only satisfies

the displacement continuity.

[FM equilibrium equations are independent of material characteristics and structural
design parameters and in the compatibility conditions only flexibility matrix depends on

design variables. Also, the load vector is independent of material characteristic and

12
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design variables of the structure. The right hand side load vector in DM which includes
both mechanical load vector and equivalent load vector is a function of design variables
and mechanical load of the structures. The DM equivalent loads are non zeros even for

compatible initial deformation that do not induce stresses in the system.

STRESS STRIN CONSTITUTIVE
EQUILBRIUM COMPATIBILTY LAW
STRESS
COMPATIBILTY
INTEGRATED
»  FORCE METHOD
STRAIN
»  EQUILBRIUM [¢
STRAIN v
DISPLACEMENT - - DISPLACEMENT
RELATION > EQUILBRIUM
A
DISPLACEMENT DISPLACEMENT
CONTINUITY > METHOD

Figure 1-2  Basic equations of IFM and displacement method.

IFM is also very efficient for stress calculation because stresses are calculated directly as

compared to the DM, which requires series of transformations and back substitutions

(from local to global system to generate displacement and then from global to local

system to calculate forces). It is known that the solution of the DM is sensitive to the

13
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choice of the displacement field; on the other hand IFM is not sensitive to the choice of
the stress field. The overall solution accuracy in the IFM depends highly on satisfaction
of the system equilibrium and global compatibility. In other words, the element quality or
the type of interpolation polynomial plays an insignificant role in overall accuracy of the

results.

1.6 Design Optimization of Stiffened Panel

Many industrial structures such as those used for aerospace, marine and offshore
application are, generally, made up of stiffened panels. The stability of these members is
of great interest since it generally controls the optimum design of these kinds of
structures. Therefore the correct evaluation of the buckling load is of paramount
importance for the economical design of the struéture. The study of the stability of the
stiffened panel has along history. Troitsky [36] discussed the earlier development in this
field. Bryan [37] was first to apply energy criteria to study the stability of stiffened plates
under uniform compression. Timoshenko and Gere [38] presented the numerical tables
for buckling load of reqtangular plates stiffened by longitudinal and transverse ribs. The
effect of the eccentricity of the ‘stiffenef was introduced as the effective moment of inertia
of the stiffener by Seide [39]. The case of multiple stiffeners was discussed by Cox and
Riddel [40] using strain energy formulation. Dawe [41] applied the finite element DM to
the solution of stiffened panel problems. Plates with arbitrarily oriented stiffeners have
been solved by Shastry [42]. Mizusawa [43] was the first to study the stability of skew
stiffened plate with various bending and torsional stuffiness’s of the stiffeners. Razzaque

and Mathers [44] analyzed the stiffened plates and shells.

14
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Among all the numerical methods, the FE method is found to be powerful technique to
model the stiffened panel. The extensive research has been done on this topic and many
elements has been developed so far using the DM. However to correctly evaluate the
buckling stress in the stiffened panel, a very fine FE model or a higher order finite
elements are required. This increases the computational time for the problem and

sometimes it become impossible to design the stiffened panel using the FE method.

Although significant research has been done to analyze and optimize the stiffened panel
using the finite element DM, however no work has been reported using the FE force
method, which is more accurate for evaluation of stresses. In this study a design
optimization methodology based on the FE force method as analyzer and sequential
quadratic programming technique as optimizer is developed to minimize the mass of the
stiffened panels while guarding against buckling. Moreover, the analytical sensitivity of
the buckling constraints with respect to design variables is formulated and integrated with

the optimization algorithm.

1.7 Current Work and Expected Contribution
The objectives of the present thesis are (1) to conduct fundamental study in the IFM, (2)
to formulate general expression for discrete sensitivity analysis for stress, displacement,

frequency and stability constraints using the IFM (3) to investigate structural
optimization using the IFM, (4) and to develop the methodology for FE analysis,

sensitivity analysis and optimization of stiffened panels using the IFM.
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In the literature, most of the work related to the IFM is focused on the analysis part, and a
very few investigation has been done related to structural optimization. The
comprehensive study of small and large scale structural optimization problems using [FM
is the main aim of this research work. A reliable tool for design sensitivity analysis is a
prerequisite for performing interactive structural design, synthesis and optimization.
General expression for design sensitivity analysis of stress, displacement and frequency
constraints with respect to size design variables are formulated for discrete and
continuous structures. The analytical discrete approach is used to evaluate the design
sensitivity, and analytical expressions for various matrices in IFM are calculated. A
number of benchmark structural optimization problems regarding truss and frame
structures subjected to stress, displacement and frequency constraints are solved using the
IFM with analytical gradient IFM(AG), the IFM with numerical gradient IFM(NG) and
the DM. Various performance criteria’s such as computational time, solution accuracy,
convergence, etc are compared for all these approaches. The main objective of this study
is to compare the relative performar;ée of the force and displacement method in the
structural optimization of discrete structures under different types of constraints. It is also
demonstrated by several examples that analytical sensitivity analysis is computationally

inexpensive and completely eliminates the inaccuracy in problem.
Last part of the research is focused on using the IFM for the design and optimization of
stiffened panels subjected to buckling constraints. The FE model using the IFM is

developed for the buckling analysis of eccentrically stiffened panels. The panel and

stiffener are treated as separate members where the compatibility between these two
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types of members is maintained. The force FE equations for panel and stiffener elements
are formulated. The finite element modeling is validated by performing the force finite
element analysis of different sizes of stiffened panels. The convergence study has been
also performed in order to estimate the mesh size required for the solution accuracy. The
effect of torsional stiffness of the stiffener on the buckling load of stiffened panels is also
investigated. Further, the strategy for the optimization of panel having large number of
similar stiffener subjected to uniforrﬂ compressive loading, has been developed. The
explicit expressions of the sensitivity of the buckling load with respect to dimensions of
plate and stiffener are formulated. An optimization algorithm is developed integrating the
IFM, sensitivity analysis and SQP to obtain the optimum values of dimensions of

stiffened panel while guarding against buckling failure.

1.8 Thesis Organization

The present thesis contains six chaptérs. The presént chapter introduces the objective of
thesis and mbtivation for the work. A _st‘ate-of-the-art review of developments in the area
of numerical structural optimization and FE force method is presented. The concept of
sensitivity analysis is introduced aﬁd its state-of-art with respect to force method is
presented. A historical review of the design optimization of stiffened panel is presented.
A brief comparison is made between the IFM and the DM formulation. Finally, the

current work and expected contributions are clearly stated.

Chapter 2 presents the introduction to basic governing equations of the IFM. The various

aspects of the IFM like generation of equilibrium and flexibility matrix, stress
17
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interpolation, displacement interpolation and different methods to generate compatibility
matrix are presented in detail. The IFM finite elements library is developed and general
procedure to formulate a new element using IFM is presented. Finally, extensive
numerical analysis is performed to validate the IFM formulation, and to demonstrate its

accuracy over the DM.

Chapter 3 presents the structural optimization using the IFM. The mathematically
optimization statements are formulated for size optimization of discrete structures
subjected to stress, displacement, frequency and system stability constraints. The
comparison is made between different approaches to evaluate the design sensitivity. An
efficient approach to find the sensitivity analysis of structural response such as stress,
displacement and frequency for truss and frame type structures is formulated. The
sensitivity analysis is combined with optimization algorithm to provide the information

about the gradient of the constraints required in SQP technique.

Chapter 4 contains a large array of numerical benchmark tests and examples to
investigate the application of the proposed formulations and methodologies in structural
optimization. The structural optimization problems ranging from small to large sizes are
investigated, and comparison is made with the DM. The structures are subjected to
different types of constraints: (1) stress constraints only (2) stress and displacement
constraints (3) single frequency constraints and (4) multiple frequency constraints.
Finally, the relative merits and deméﬁté ;)f the IFM in structural optimization under

different types of behavior constraints are discussed.
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Chapter 5 presents the design and optimization of stiffened panels using the IFM. A FE
formulation based on the IFM has been formulated for the buckling analysis of the
stiffened panels. In order to validate the FE formulation, first the buckling analysis of
simply supported square plate subjected to unidirectional compression is performed, and
results are compared with those obtained from the analytical solution and the DM.
Further, the stiffened panels of varioﬁs sizes are analyzed and convergen;e study with
varying number of elements is performed. The finite element sensitivity analysis of
buckling load with respect to design variables is developed, and integrated with
optimization algorithm. Finally the developed optimization code is used to optimize

different shapes of stiffened panels.

The present work is summarized in the conclusion in the Chapter 6 where possible future

extensions are also discussed.
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Chapter 2
INTEGRATED FORCE METHOD

2.1 Introduction

In the IFM, all independent forces are treated as unknown variables that can be calculated
on the basis of simultaneous imposition of equations of equilibrium and conditions of
compatibility. The IFM overcomes the general drawback of the redundant force method
i.e. automatic generation of the compatibility condition. It has also been successfully
extended to the free vibration and buckling analysis of the structures. In this chapter, the
basic equations of the IFM for the static and free vibration analysis are presented. A
general procedure to generate the finite elements in the IFM is described and a library of
the finite elements is developed. Finally, the IFM is tested on the analysis problems for

which analytical solutions are available, and comparison is made with the DM.

2.2  Basics Equations of Integrated Force Method

If a continuous object is discretized using finite elements, resulting in » force degrees of
freedom and m displacement degrees of freedom, then it will have m equilibrium

equations and r = (n — m) compatibility equations.

Equilibrium equations are based on the force balance concept and can be written as:
[BYF}={P} (2-1)
where {F} and {P} are unknown independent forces and nodal load vectors,

respectively, and [B] is the (mx n) rectangular equilibrium matrix, having numbers of
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columns greater than number of rows. It is very sparse, unsymmetrical matrix with full

row rank.,

Indeterminate structure can not be solved only by equilibrium equations; compatibility is

required to obtain the sufficiency. The structure will have r =(n—m)compatibility
equations and these are:

[CllcKF}={or} (2-2)
where [Clis the (rxn ) compatibility matrix and [G] is the (nxn) symmetrical flexibility
matrix. The flexibility matrix is the block diagonal matrix, where each block represents a
flexibility matrix for individual element. {(5R} is the r-component effective initial
deformation vector and can be written in term of initial deformations vector {3, } as

{or}=-{Cl{p,} (2-3)

The detail about the generation of each of these matrices will be discussed in next
sections. The compatibility matrix is basically constraint on the deformations of the
element and ﬂexibilify matrix converts deformation constraints into forces constraints, in
order to assemble it with equilibrium matrix. The equilibrium and compatibility equations

are coupled to obtain the governing equations of the IFM as:

[s){F}=1P"} (2-4)

where 5= ] - #={3) @9

The internal forces {F } can be directly calculated by solving Eq. (2-4). Subsequently,

stresses can be calculated by substituting forces into the stress interpolation relation.
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The vector of unknown nodal displacement {U, } is obtained by back substitution as:

v.y=llckr} (2-6)
where [J] is the (mxn) deformation matrix that represents the top m rows of the

transpose of the matrix [S]".

In IFM analysis, continuous structure under consideration is discretized into the finite
elements. The stress and displacement fields are interpolated, and then used to generate
the equilibrium and flexibility matrices for the element. The detail description of the

equilibrium, flexibility and compatibility equations will be discussed in next sections.

2.3  Equilibrium Equations

The equilibrium equations written in terms of forces at the grid points of a FE model
represent the vectorial summation of n internal forces {F} and m external loads{P}.
The element equilibrium matrix for the bar and beam element can be easily obtained by
force balance concept, but for the continuous structure very few equilibrium matrix are
reported in the literature [14, 15]. In ‘t}‘le IFM, a general procedure is developed to
generate the equilibrium matrix. The stress and displacement field is required to be
interpolated, to generate the equilibrium matrix in the IFM. The stress and displacement

field within the element are interpolated in terms of two sets of independent variables.

The displacement interpolation is the same as that in the DM, and the displacement field

{U} interpolated in term of nodal displacement {U,} as:

vi=vlv., @-7)
22
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where [N ] contains the displacement interpolation or shape functions. Stress field {a} is
interpolated in terms of independent internal forces {F}, which are unknown in the force
formulation. Stress field is thus interpolated as:

o}=[rRF | (2-8)

where [Y]is the stress interpolation matrix .

The general equation to generate the equilibrium matrix is generated from the principal of

virtual work. The principal of virtual work can be stated that internal virtual work oW, is
equal to external virtual work oW, :

oW, =oW, , (2-9)
The internal virtual work per unit volume is the product of the real stress {a} and the
virtual strain {68}, and is given by:

oW, = J {oe) {oldv (2-10)

The strain vector within the element can be obtained by differentiating the displacement

vector in Eq. (2-7), and can be written as:

l=lzlv.) (2-11)
where [Z 1= [L][N ], and [L] is the matrix of differential operator. Thus, given the virtual
nodal displacements {oU, }, virtual strains in the element are:

{ee}=12]{oU,} (2-12)
Substituting Eqs. (2-8) and (2-12) into Eq. (2-10) yields the finial expression for the

internal virtual work as:
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ow, ={u.,} [[z][v]Flav (2-13)

The external virtual work is the combination of work done by surface traction and body

forces. The external virtual work due to surface traction {F; }can be written as:

JlouY {7, Js, = [(vou. I {7 s, =lou. Y [T {F; Jas, (2-14)

s s s

Contribution to the external work done by body forces {F 3} is:

Ul {F,)av = [(NYou ) {F, }av ={ou,}" [INT {F, Jdv (2-15)

v v

Adding Egs. (2-14) and (2-15) yields the total external virtual work as:

ow, ={U, )" [N {F, Jas+{ou,}" [INT {F, Jav (2-16)

s v

According to the principal of virtual work expressed in Eq. (2-9), we may write:

ou M lzY Y liFlv={ov.}" [INT{F; Jds, +ou. )" [INT {F,}av (2-17)

v 5

JlzY [ )iFly = [INT{F, Jds + [INT {F, Jav (2-18)

Eq. (2-18) can be written in the following compact form as:

[B.}F}=1{0:}+{0,} (2-19)

where {Q,} and {Q,} are the equivalent nodal force vectors due to surface traction and
body force, respectively. [Be] is the element equilibrium matrix which balance the

internal forces {F } with nodal forces on the element due to externally applied forces and

can be written as:

[8.]= [[z] [¥]av (2-20)

v
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The equilibrium matrix is obtained by integrating the product of stress and displacement
interpolation matrices over the entire domain. For simple elements, closed form
integration can be obtained; otherwise numerical integration like Gauss Quadrature is
preferred. The equilibrium matrix is (mxn) rectangular matrix having rows
corresponding to element displacement degrees of freedom and columns corresponding to
element force degrees of freedom. It is also independent of material properties and the
design parameters of the structure. The finial system equilibrium matrix of the structure is
obtained by assembling element equilibrium matrices and assembling procedure is

similar to that in the DM.

2.4 Flexibility Equations

The flexibility matrix requires expressirig the compatibility in terms of forces, which can
then be coupled to equilibrium equation, which are already available in term of forces. It
represents the relation between deformation and internal forces. The generation of
flexibility matrix in finite element analysis is well established in the literature. The IFM
flexibility matrix is generated from the principal of complementary strain energy and

castigliano’s theorem. The change in complementary strain energy U, of the element with

small change in external loading can be expressed as:
oU, =% j{éa}r {e}av (2-21)

Strain can be expressed in terms of stress by the stress-strain relation as:
{e}=[DJo} (2-22)

where [D] is the compliance matrix. Now substituting Eq. (2-22) in Eq. (2-21) yields:
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SU. = % (5o [DYo)dv (2-23)

v

Substituting Eq. (2-8) in Eq. (2-23) yields:
U, =% [or Y rY DY KF}av (2-24)

The deformations {f} are obtained from the castigliano’s theorem, which states that

deformations are the rate of change of complimentary strain energy with respect to

forces:

513 T Dl se)= (ol 29)

where [G] is the flexibility matrix, and its general expression can be written as:
= -;— [T lpllr]av (2-26)

Thus, the flexibility matrix [G] can be obtained by substituting stress interpolation matrix
and compliance matrix into Eq. (2-26), and then integrating. Similar to the equilibrium
matrix, global flexibility matrix is obtained by assembling the flexibility matrix of each

element.

2.5 Compatibility Equations

The deficiency in the compatibility condition has prevented the development of direct
stress determination method in structural analysis and ¢1asticity. Earlier in the force
method, compatibility was achieved through the concept of redundant forces, with virtual
cuts and subsequent closing of gaps. Condition of compatibility, formulated in pre

computer era were found to be inconvenient and inefficient for automated computation of
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large scale problems, thus hinder the growth of the force method in this computer era.
Strain or deformation balance represents the physical concept behind the compatibility
condition. Saint-Venant ‘formulated the strain balance equation in elasticity, by
eliminating displacements from strain displacement relation. The two steps of Saint-
Venant formulation in elasticity are: |

1) Formulation of strain displacement relation:

oxT Y ox'? oy ox 27
2) Elimination of displacement to obtain the compatibility conditions:
O*e oe 0*
x » 979 (2-28)

oy’ " ox*  Oxdy
The compatibility conditions for FE analysis are obtained as an extension of Saint-
Venant’s formulation in elasticity [22-24]. The strain-displacement relation is replaced by
the displacement deformation relation (DDR), and then displacements are eliminated

from the DDR.

The DDR in the finite element analysis is derived from the principle of complimentary

virtual work [15]. The principle of complimentary virtual work state that:
OWsS =owS (2-29)
where 0WS and OW/ are external and internal complimentary virtual work done,

respectively. The external complimentary virtual work done due to the external virtual

load {oP} and real displacements {U,} is:

ow; ={oPy'{U.} (2-30)
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Substituting Eq. (2-1) into Eq. (2-30) yields:

owy ={orY [B]{U.} (2-31)
The internal complimentary virtual work done due to internal virtual forces {0F} and
corresponding real deformations {8} is:

owe ={or} {p} (2-32)
Now with substitution of Egs. (2-31) and (2-32) into Eq. (2-29), we have:

lory [B]' v }=1or} {8} (2-33)

or p1=18]'v.} (2-34)

The Eq. (2-34) represents the DDR in which n deformations {,6} are expressed in terms
of m nodal displacements {Ue} by the transpose of equilibrium matrix. Therefore, there
are r= (n - m) constraints on the deformation which represents the compatibility

equations. The compatibility equations are obtained after eliminating the m

displacements from » DDR is:

lcKat=1o) (2-35)
The deformations {ﬂ} in Eq. (2-35) represent total deformations, consisting of initial
deformations {4, } and elastic deformations {3, }, as{8}={8,}+{8,}. The compatibility
conditions in terms of the elastic deformations {4, } can be written as:

[c}iB.}={or} (2-36)

where

{or}=-CKB,} 2-37)

Now substitute Eq. (2-25) into Eq. (2-36) yields:
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[cle)ir) - {ow) @39
The rectangular and banded compatibility matrix [C] of dimension(r x#) has a full row

rank of 7. It is independent of sizing design parameters, material properties, and external

loads.

The elimination of deformation from the DDR is amenable to computer automation and
can be performed in two ways, direct elimination and indirect elimination. The
procedures to generate the compatibility matrix using direct and indirect techniques are
discussed in detail here.

Direct Elimination

The compatibility matrix can be obtained by direct elimination of the displacements from
the global DDR. The direct elimination can be performed by standard value

decomposition technique (SVD) [27].

The nodal displacement can be expressed in term of deformation from the Eq. (2-34) as:

w), =[B18T '[8Y8) =[BT T {5) @39

The matrix [[B]T ]Ww denotes the Moorse-Penrose pseudo inverse of [B]T Substituting

displacement {U }e from Eq. (2-39) into Eq. (2-34) yields:
{g)= (8T [T " ) (2-40)
s} =0 (2-41)

where ire}= r,., - (8T [BF 7| (2-42)

=)
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Eq. (2-41) is similar to the compatibility equation given by Eq. (2-35), however the rank
of (nxn) matrix [[T] is», which means that rows of [I1] are dependent on each other.
The SVD technique is used to extract the (rxn) compatibility matrix from [H] The
detail of SVD technique can be found in the reference [48]. By applying the SVD method
to [H], we obtain:

)= [R=]rT (2-43)

where [R] and [T"] are the (1 x n) orthogonal matrices and

X= AD (2-44)
B 0 O (nxn)

with A = diag{A,,A,.....A, },and A; 2A, >...2A, 2 0. It follows that:

=[G -45)

[C]=AlL LT LT (2-46)

where the vector {I,} denotes the ith column of the matrix [T'].

It should be noted that the compatibility matrix introduced in Eq (2-46) may not be
banded. The direct technique is efficient for relatively small size problems; however it is
numerically expensive for large size problems.

Indirect method

The direct elimination technique to generate the compatibility matrix is easy to
implement, but it is numerically expensive for large scale structural problems. The

indirect elimination technique [22-24] is more systematic and efficient, and suitable for
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large scale problems. In this approach, the compatibility conditions are divided into three
distinct categories: 1) the interface compatibility conditions, 2) the cluster, or field
compatibility conditions, and 3) the external compatibility conditions. The general
procedures to generate each of these compatibility conditions are the same and the main
steps are:

1) Separate a local region from the strucfural model on the basis of interface, cluster or
external bandwidth consideration.

2) Establish the DDR for the local region. The elimination of displacement from the DDR
yields the compatibility conditions for that region. Repeat this process for every local

region until we obtain the required number of compatibility conditions.

Fach compatibility condition is generated separately, and then assembled with global
compatibility conditions. The physical concept behind each of these compatibility

conditions and procedure to generate them are discussed in next sections.

2.5.1 Interface Compatibility Conditions

The interface is the common boundary shared by two or more elements. The deformation
in the two elements should be compatible along the interface between them, which
defines compatibility conditions of the interface. To better understand the interface
compatibility condition, let us consider the 2-D structure shown in Figure 2-1. The
structure is discretized by triangle and quadrilateral elements. The number of force
degrees of freedom for triangular and quadrilateral elements are three and five,
respectively. Structure has 16 nodes and each node has two displacement degrees of

freedoms. The common boundary along nodes 2 and 5 is the interface between elements
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1 and 2, and the boundary connecting node 5 and 6 is the interface between elements 2
and 6. The compatibility condition at the interface of element 1 and 2 means that

deformation between elements 1 and 2 must be compatible along the common boundary

shared by them.
13 14 /, }5 2994 )/6
@ @ S
O @ &
5 1 3 12]
3 i Elements 4-7, 9, 11-14 are
b @ 8 @ S in the cluster of element
- N
5 = 6 @ SS
Interface of @7 @ / @ E
elements 1 and 2 | @ 3 N
1 v 2 7777777777

Figure 2.1 Interface and Cluster Compatibility

The numbers of compatibility condition at the interface depend on the element type and
their numbers at the interface. In other words, the numbers of compatibility condition at
the interface of elements 1 and 2 are different from those at interface of elements 2 and 6.
The compatibility condition is genér_ated by extracting the DDR for each interface from
the global DDR, and then eliminating tﬁe displacements from the DDR. The number of
global DDR of the structure is reduced after the generation of each compatible condition.
The reduced set designated has m rows and (1, = n—n_) columns, where n_, represents
the number of compatibility equations generated in previous step. It is obtained by
dropping one of the deformations from the DDR that had participated in compatibility
equation generated in previous step. Dropping a deformation that has participated in the
compatibility condition immediately after its generation avoids the possibility of its

further participation in other compatibility conditions, thus maintaining the uniqueness of
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the compatibility condition. The degree of indeterminacy of the structure will reduce by
one with drop of any deformation from the global DDR and structure behavior will

approach towards that of the determinant structure.

2.5.2 Cluster Compatibility Conditions

In the FE model, a cluster is defined as a series of adjoining elements. The cluster
compatibility describe that the deformation of all the elements in cluster must be
compatible with each other. For example, the element § of the structure shown in the
Figure 2-1 have elements 4-7, 9, and 11- 14 in its cluster. The deformations of each
element in cluster of element 8 must be compatible with each other. The DDR of the
cluster of element 8 is extracted from the global DDR, and then displacements are
eliminated from the DDR tb generate the constraints on the deformations. The global
DDR relation is updated immediately after generation of each compatibility condition by
dropping any deformation that has participated in compatibility. The procedure is
repeated for every element and compatibility is generated for each cluster. Similar to the
interface compatibility, the number of compatibility conditions in the cluster depends on

the type of elements and their numbers.

2.5.3 External Compatibility

The FE model of the structure is restrained at the nodes to suppress the free degrees of
freedom of the structure. If such restraints on the boundary exceed the number of rigid
body motion of the structure, then it is externally indeterminate. The degree of externally

indeterminacy R_, of the structure can be calculated as:

ext
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R, =T,~T, (2-47)

ext

where T is the number of displacement components suppressed on the boundary and 7,

is the number of boundary conditions required only for the kinematics stability of the
structure. The local restrain region is separated from the whole structure, and the
compatibility condition for this region is generated similar to as done for interface and

cluster compatibility.

To further reduce the computational time to generate compatibility, the concept of node
determinacy can be used. Node is determined, if the numbers of displacement degrees of

freedoms ND, is equal to the number of force components presents in the equilibrium
equations written at that node NF;. The node determinacy factor can be written as:

Node determinacy NR, = NF, — ND, (2-48)
If node is determined i.e. NR, =0, then forces present at that node are determined and

thus, do not participate in compatibility conditions. Consequently for determined node,
forces or deformation along with displacement can be dropped simultaneously from the
DDR. It is equivalent to the elimination of appropriate columns and rows in the DDR.
The node determinacy can reduce the number of DDR; however number of compatibility
conditions remains the same. This increases the computational efficiency of the

compatibility generation procedure.
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2.6 Stress Field Interpolation

The proper interpolation of stresses within the element is necessary to obtain the accurate
results, since it appears in both the equilibrium and the flexibility matrices. The general
guidelines of stress interpolation, in context to the hybrid method application were
discussed by Pian [45-46] and Spliker [47]. Stress fields are interpolated without any
reference to the shape and number of kinematics degrees of freedom of the considered
element. It was suggested that approximated stress field should satisfy equilibrium
equations, free from any zero energy modes and should be invariant with respect to
coordinate transformation. Spliker [47] have shown that necessary and sufficient
condition for the element to be invariant with respect to coordinate transformation is that
it should possess complete polynomial. As discussed in hybrid method [45-47], number
of stress parameters must be greater than or equal to the number of element displacement
degree of freedom minus number of rigid body modes. However a large plausible stress
field can be defined which sometimes result in element possessing zero energy modes
and also increase the computational cost, so there is always tendency to have minimum

number of stress parameters.

In the IFM, the correct rank of element equilibrium matrix ensures the absence of
spurious zero energy modes [20-21]. It is seen that if the element equilibrium matrix has
the correct rank then there are only zero ehergy modes associated with the rigid body
modes of the element, Thus in order to eliminate spurious zero energy modes, the stress

field must be constructed such that the resulting equilibrium matrix has the correct rank.
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An Airy’s stress function as complete polynomial is usually used to interpolate stresses in

the IFM. Airy’s stress function is given by:

q . .
Pry) =) Cx 7y (2-49)
j=0
where C,, for j=1........ q , are constants, and x and y are Cartesian coordinates. The

stresses are obtained from Airy’s stress function by the proper differentiation of it. Stress

in x direction o can be obtained from Eq. (2-49) as:

o'e 2 i
o, = 5 =Y C,n(G+D(j+2)x" 7y (2-50)
j=0

Similarly y direction stress o, can be obtained as:

0= 225 ¢ a-Da—j -1y @-s1)

and shear 7, stress can be written as,

rxy=-% =—j§c,-<j+1>(q—j—1>x"‘2‘fﬂ @-52)

Stresses are interpolated in terms of constants C » and these constants subsequently can
be replaced by independent internal forces {F } within the element. For example by
taking g =3 in Eq. (2-49), Airy’s stress function can be written as:
D(xy) = Cyx* +Cx’y + Cyxp* + Cy° (2-53)
Stresses obtained from Eqgs. (2-50), (2-51) and (2-52) are then described as:
g,=6C,y+2C,x (2-54)

o, =6Cyx+2Cy (2-55)
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T, =-2Cx-2C,y (2-56)
Now assuming

6C, = F,,2C, = F,,6C, = F, ,2C, = F, (2-57)

o,,0,andz, in Egs. (2-54), (2-55) and (2-56) can be written as:

o, =Fy+FXx (2-58)

o, =Fx+Fy 2-59
y 3 4

v, =—Fx—F,y (2-60)

Therefore the stress field is expressed in terms of four independent forces
F,F,, Fand F,. Stress field of high approximation can be obtained by taking the
polynomials of higher order. The stress field obtained from above approach satisfies the

equations of equilibrium at any point inside the domain of the element and the resulting

element matrix is invariant with respect to coordinate transformations.

As discussed earlier, there is always tendency to reduce the number of independent
forces in stress field representation while preserving all the desirable properties of
resulting element matrices. Patnaik [20] proposes the imposition of the compatibility
conditions on the stress field to reduce the number of unknown forces. The compatibility
condition can be written as:

Vo, +0,)=0 ' (2-61)
The number of independent forces required to interpolate the. stresses are reduced by Eq.

(2-61), which subsequently reduces the computational time for the analysis.
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2.7 Frequency and Buckling Analysis

The IFM methodology can also be easily extended to frequency and buckling analysis

[18, 25]. The basic frequency equation in the DM is:

g+ (K, )= 0 (2-62)
where [M] and [K] are the mass and stiffness matrices of the structures, respectively.
The static equations of the DM can also be written as [16]:

[K}u.}=1{P} (2-63)
Now considering Eqs. (2-1), (2-6) and (2-63), one may represent Eq. (2-62) in the

following form:

\:._———-[M I ][G]} {F}+[s]{F}=0 (2-64)

v, )+ (B =0 265

v, )= [MGJ] (2-66)

In free vibration, it is assumed that forces are harmonic and can be written in terms of
force mode shapes {F, } as:
{F}={F,}Sinwt (2-67)
Substituting Eq. (2-67) into Eq. (2-65) yields the frequency equation of the IFM as:
([s]-w?[m, )iF,}=0 (2-68)
Even though Eq. (2-68) represents (n X n) system of equations, the numbers of

frequencies are only m corresponding to the number of equilibrium equations. To
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increase the computational efficiency of the analysis, Patnaik [25] proposed a method to

reduce the (n X n) system of equations to (mx m) system of equations by taking
advantage of null matrices. The forces are divided into set of redundant forces {F,} and

basic determinant forces {F, } in the structure, and Eq. (2-68) is written accordingly as:

el K i e
Eq. (2-69) can be further expanded as:

[Su KEL 3+ 54 KE S - o0 (81, JF, }+ [0, KF, )= 0 (2-70)
[5.. KF.}+1s, KF. }=0 @-71)
Elimination of {F, } from these(n x n)systems of equations given in Eqs. (2-70) and (2-

r

71), results in the following (m X m) system of equations:

([de ]— [Sdr ][Sr—rl ][Srd ]){Fd } - a)z ([Md ]— [Mr ][Sr;l ][S rd ]){Fd } =0 (2'72)

(£} =1s;1s,, F,) | (2-73)

The solution of the reduced eigen value problem expressed by Eq. (2-72) provides m
eigen values, then both Egs. (2-75) and (2-76) are used to find the associated force eigen
vectors. Although this formulation increase efficiency of the frequency analysis

significantly, but the process of selection of redundant complicates the procedure.

Similarly linear bucking analysis in the IFM can be written as:

[s1- Als, [Ii{F } = {0} (2-74)
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Where[Sb]=F{<—€—]—[(~;d[g—]} is the stability matrix of the IFM, |_KgJis the geometric

stiffness matrix and A is the load factor parameter.

2.8 Finite Element Library

The implementation of all equations to generate the finite elements in the IFM is
presented in this section, to give some insight into finite element formulation procedure.
The stress and displacement field within the element is required to be interpolated in
order to generate element matrices. These approximations are performed independently:
the displacement components within the element are approximated in terms of element
nodal displacements, while the components of stress tensor are approximated in terms of
set of independent forces. The equilibrium and flexibility matrices are then generated
from the stress and displacement interpolation. The DDR of the element is generated in
terms of equilibrium matrix, and then compatibility matrix is generated by the
elimination of displacements from the DDR. The FE formulation of some basic finite

elements is presented in the next sections.

2.8.1 Truss Element

Truss element as shown in the Figure 2-2 has one axial nodal displacemént degree of

freedom at each node.

Figure 2-2 Two node truss element
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A linear variation of displacement in term of axial nodal displacements u, and u,is

assumed;
u=Nu, +N,u, (2-75)
~ where
x x
N=1-2, N,=Z 2-76
i L 2 L ( )

From Egs. (2-11) and (2-75) the strain displacement matrix is:

[Z]=[—1 1} 2-77)

L L
The stress field within the element is interpolated in term of axial force as:

o, ==t (2-78)

The uniform internal force in the bar is F], associated stress is o, and the cross sectional

area of the truss is A. From Egs. (2-8) and (2-78) the stress interpolation matrix is:

[Y]=H (2-79)

Substituting Eqs. (2-77) and (2-79) into Eq. (2-20) yields the equilibrium matrix as:

[8.], {ﬂ (2-80)

Substituting Eq. (2-79) into Eq. (2-26) yields the flexibility matrix as:

(A =[ﬁ} (2-81)

Flexibility matrix is of size (1 X 1) because the truss element contains only one force

degree of freedom.
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2.8.2 Beam Element

Beam Element has one transverse and one rotational degree of freedom at each node as
shown in Figure 2-3. The transverse and rotational displacements of the element are

related by Kirchhoft’s assumption.

/
"l’ ' . H}Z = 112

'Hﬂ =1
/N
ll

Figure 2-3 Two node beam element
The transverse nodal displacement is interpolated in terms of transverse displacements

w,and w, , and rotational displacements 6, and 6,, as:

w=Nw +N,0,+Nw, +N,0, (2-82)
where
2 3 2 3
N =1-2 2%y, _x,_%z_+_’_‘7
L L (2-83)
3x2 2x° x* X
= s Ny=——+—
L L L L

Now considering Egs. (2-11), (2-82) and (2-83), the strain-displacement matrix can be

obtained as:

(2-84)

[Z]—-_Z .__6+!_2.£ :_4__*_6_x. _q_ 12x 2+6x:}
> rr L rr r L I*

where z is the distance from the centroidal axis of the beam element.
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Moment Field is interpolated linearly along the x axis as:
M, =F +F,x (2-85)
where M, is the y direction moment field, and F)and F, are independent force degrees

of freedom. The stresses in the element can be related to moment as:

12
o, = —t;EM y (2-86)

Now using Egs. (2-8), (2-85) and (2-86), the stress interpolation matrix can be stated as:

[r]= %5[1 x] (2-87)

where ¢ is the thickness of the beam. Substituting Eqs. (2-84) and (2-87) into Eq. (2-20)

yields the equilibrium matrix as:

0 1
-1 0
B, ;= -
BL= , _, (2-88)
1 L

Also substituting Eq. (2-87) into Eq. (2-26) yields the flexibility matrix as:

L
[G.], = i iﬁ (2-89)
21 31

where / denotes the area moment of inertia of cross section of the element about y -axis.

2.8.3 Frame Element

Frame element includes both the axial and the bending deformations. Element has three
displacement degrees of freedom at each node, one corresponding to axial deformation

and two corresponding to bending displacements. Equilibrium and flexibility matrices of
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the truss and beam elements are superimposed to obtain the equilibrium and flexibility

matrices of the frame element.

The equilibrium matrix obtained after superimposing Egs. (2-80) and (2-88) is:

-1 0 0
0 0 1
0 -1 0
B . = 2-90
[e]F l O 0 ( )
0 -1
..O L_

Frame structures generally consist of numbers of members oriented at different angles
with respect to each other. The transformation of the equilibrium matrix is required to
assemble the element equilibrium matrix in the global formulation. Equilibrium matrix
for the frame element having local axis inclined at angle @ with respect to global axis is

given by:

[Be]FG = [T]T [Be ]F : (2-91)

where [T] is transformation matrix and is given by:

(c s 0 0 0 O
-s ¢ 00 00O
[T]= 0 01 0 00 where ¢ =cosé and s =siné (2-92)
0 00 ¢ s O
0 00 -s ¢ O
(0 00 0 0 1]

Flexibility matrix is obtained after superimposing of Egs. (2-81) and (2-89) and can be

written as:

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



o wlr

= (2-93)

)

R~ o
e

2.8.4 4-Node Quadrilateral Membrane Element

The 4-node quadrilateral membrane element is basic element for two dimensional finite
element analyses. It has four comer nodes and each node has two displacement degrees
of freedom, therefore element has total eight degrees of freedom. Node numbering and

dimension of the element are shown in Figure 2-4.

}P
7?2 i~ 4 3
b
¥ > N
b
AL
1 4

Figure 2-4  4-Node quadrilateral membrane element
The displacement field is interpolated in terms of nodal displacements as:

u = Nu +N,u, + Nyu, + N,u,

(2-94)
v=Ny, +N,v,+ N,v, + N,v,

where u, and v, are horizontal and vertical nodal displacement at ith node, respectively

and interpolation functions are described as:
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1 1

N, =m(a—x)(b—y)a N, =47b‘(a—x)(b+y) .95
Ny = qsla 3o ), No=lae 2)(o-)

The strain field within the element obtained from the strain displacement relation as;

£ -(b-y) 0 —(+y 0  (+y 0 (-3 0 ]
! 0 —(a-x) 0 (a-x) 0 (a+x) 0 —(a+x) VZ; (2-96)

Sy :Za-_b "
€y —-(a-x) —(b-y) (a-x) —(b+y) (a+x) (b+y) —(a+x) (b-y) )
U,
Vs )

Using Eqgs. (2-11) and (2-96), the strain interpolation matrix can be written as:

--y) 0 —(b+y 0 (@®+y 0 (b-y) 0

[z]:ﬁ 0 —@-x 0 (a-x) 0 (a+x) 0 —(@+x)| (2:97)

~(a=x) —(b-y) (a-x) —(b+y) (a+x) (b+y) —(a+x) (b-y)

Since the number of displacement degree of freedom of the element are eight, and
number of rigid body modes are three, therefore minimum five independent forces are
required to interpolate the stress field and to obtain the correct rank of the equilibrium
matrix. The higher order stress interpolation can be used with more than five independent
forces to obtain better approximation of stress at the expense of computational cost. The

stresses o, and o, are interpolated linearly and constant interpolation is used for shear

stress 7, . Thus, the stress field interpolation can be written as:
o, =F +Fy (2-98)

o, =F,+Fx (2-99)
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r_ =F, (2-100)

Based on Eqgs. (2-11) and (2-98-100) the stress-interpolation matrix can be written as:

y O

0 x (2-101)
0 0

and also from Eq. (2-20), the equilibrium matrix can be written as:
a b

B,),, = [ [lz] [Y]edyex (2-102)

-a—b
where ¢ is the thickness of the element. Substituting Egs. (2-97) and (2-101) into Eq. (2-

102) yields the equilibrium matrix as:

2
-b 0 -a »b— 0
3 2
0 —-a -b 4
, 3
=b 0 a —-[2— 0
3 2
0 a -b _a
[B.], = ) 3 (2-103)
b 0 — 0
f R a 3 i
0 a b a
) 3
b 0 -—-a —b— 0
3 2
0 -a b 0 =%
L 3

Similarly, substituting Eq. (2-101) into Eq. (2-26) yields the flexibility matrix as:
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1 =v 0 0 0]
—-v 1 0O 0 O
) |00 % 0 0

[e.1, =[7E—] 5 (2-104)

0 0 0 =— 0
3 2
o 0o o0 o L

i 3 ]

2.8.5 4-Node Quadrilateral Kirchhoff’s Bending Element

The 4-node quadrilateral Kirchhoff's bending element is formulated to perform the
bending analysis of plate’s type structures. The shape and node numbering of the element
are shown in the Figure 2-5. Element has three degrees of freedoms at each node,
transverse deflection, rotation about x direction and rotation about y direction. The
Kirchhoff’s thin plate assumption is imposed such that plane normal to the element

remains straight and normal after the rotation and shear stress in neglected.

Figure 2-5 4-Node quadrilateral bending element

The displacement field is interpolated in terms of nodal displacements using hermite

polynomial. The transverse deflection within the element is interpolated as:
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w = Ho@)H ()W, +Hy(9H ()0, + H(xH ()0,
Hy(x)H ,(y)w, + Hy()H ,(»)0,, + Hl](x)HOZ(y)eyZ

(2-105)
H () H o (n)w; + Hop()H 3(7) 0,5 + H,(x)H (y) 0,5
H,(x)H y,()w, + Hy,(0)H, (0)0,, + H,(x)H () 9y4
where shape functions are:
x* =3a*x+2a’ x* =3a’x-2a’
HOl(x) = 4(13 ’ HOZ(x) = - 4 3
X —ax?—a*x+ad’ x> +ax? —c—zazx—-a3 (2-106)
H,\(x) = 3 H(x)= 2
4a 4a

Strain field within the element can be obtained from the strain-displacement relation,

which can be written as [16]:

@ ]
€, g x

:, 52_;2 (2-107)
/q”‘y 20w
| Oy

v

=-Z3

where zis the distance from the centroidal axis. The strain interpolation matrix [Z] can

be obtained by closed or numerical differentiation of Eq. (2-107).

Similar to beam element, moment field within the element is interpolated in terms of
independent forces, and then stresses are interpolated by using moment-stress relation.
The element have twelve displacement degrees of freedom and three rigid body modes,
therefore moment field is interpolated in term of nine independent forces:

M, =F +Fx+Fy+Fxy

M, =F, +Fx+F,y+Fxy (2-108)
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The variation of normal moments in the field is linear, but the twisting moment is

constant. Stress interpolation is obtained from stress-moment relation, which can be

stated as:
o, 1 M,
o, =-FZ- M, (2-109)
Tx}‘ M'\’}’

where ¢ is the thickness of the element. Now using Egs. (2-11), (2-108) and (2-109), the

stress-interpolation matrix can be described as:

L[l v w000 00
[Y]:—tf—ooo 01 xy x 0 (2-110)
0000000 0 1

1 0 0 0 -v 0 0 0 0
0 93— 0 o 0 —v& o0 0
2 2
o o Z 0 o0 o —Z o 0
3 212 3 212
0 0 o & ;’ 0 0 0 e 9b
[6.), =4§§’b 0 0 o 1 0 0 0 0 @2-111)
0 v 0 o 0o X o 0 0
3 2 3 2
0o 0o 2 0o o o b 0 0
3 212 3 212
o 0 o -4 o o & o
9 9
0 0 0 0 0 0 0 2l+v)

The equilibrium matrix obtained from Eq. (2-20) is:
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i 2 2 )
0 b 0 —% 0 0 a —2% _2
% b’ 24> 24%b
o L o 2 s 22 a2
3 15 5 5
o X2y @ a

b? b 24* 2a’b
0o 20 o4 2 o 2222 0
X 2b* 2alb52 ° a’ a35
“boab = == 00 =g
Bl =
) 0 -b 0 I BELE
5 5
0 -l-)—z— i a g‘f- ab 2a° 0
P a2
2b* 24a*
0o b 0 2 o0 0o 4« = 2
) 5, ) >,
o B Bl g ME (2-112)
3 15 5 5
b ab 2 2ab 0 a&oa
i 5 5 315 ]

2.9 Illustrative Examples

In this section, two numerical examples are presented to validate the FE formulation
based on the IFM. The results are compared with those obtained from the DM and
analytical solutions. First example is the analysis of beam subjected to end loading using

4-node quadrilateral membrane elements, and the second is analysis of plate subjected to

point load at the center using 4-node quadrilateral bending elements.
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2.9.1 Beam Analysis

A beam of length 12m and uniform rectangular cross section, subjected to concentrated

force P at the free end as shown in Figure 2-6 is analyzed.

1m

a K—

i

d

Figure 2-6 Beam meshed with quadrilateral membrane element

The analysis is performéd using two dimensional finite element discretizations, assuming
the state of plane stress case, and using the 4-node quadrilateral membrane element. The
response of the beam is also obtained using the DM 4-node quadrilateral membrane
element having displacement interpolation similar to the IFM element. The support
conditions for the clamped end are modeled such that point b is completely fixed and
horizontal displacement at point a, is fixed. The concentrated force at the end is generally
modeled as parabolic shear force along the edge. Here, since we have two nodes at the
edge, P is distributed equally on nodes ¢ and d with 0.5P on each node. The value of the P

taken for the analysis is 12 KN.

The compatibility conditions are generated by using both direct and indirect approach. It
has been observed using indirect approach that only interface compatibility condition

exists for this problem. A MATLAB computer program has been written to generate the
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interface compatibility at each interface, and then finally to assemble into the global
compatibility condition. The responses from the analysis program are the maximum

stress at the constrained end and the tip displacement at the free end of the beam. The

. . h. .
exact value of the stress at the constraint end in the outer most fiber (aty =E) is

864 KPa and the tip displacement is 0.395mm. The results for stress and tip displacement,

for both the IFM and the DM are provided in Table 2-1.

Table 2-1 Stress at the constrained end and tip displacement

Stress at Constrained End Tip Displacement
(KPa) (mm)
El. No. DM IFM DM IFM
5 260 778 0.1198 0.3926
10 549 821 : 0.2402 0.3956
15 686 835 0.2952 0.3962
20 752 842 0.3208 0.3964
25 788 847 0.3343 0.3965
30 809 850 0.3421 0.3966
35 822 852 0.3470 0.3966

N
—_
1

-

o
\
<

o
o
T

Stress(Comp)/Stress(anal)
=}
~

0.6
0.5-
—DM
0.4+ —v-|FM
-— Analytical
1 ) L H 1. 1. —
5 10 15 20 25 30 35

Elements

Figure 2-7 Convergence of stress with number of elements
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It can be realized that the IFM not only show high accuracy in calculation of stresses, but
also give very accurate results for the tip displacement. The IFM achieves 90% of
accuracy in stress calculation only with five elements; on the other hand the DM achieves
this accuracy with more than 20 elements. Figure 2-7 shows the convergence study for
the normalized stress at the constrained end versus the number of elements. As it can be
seen that the IFM converge ‘very rapidly; on the other hand the DM shows slow

convergence.

117

Y

o o
® ©
T T

Disp(comp) / Disp(anal)
o
~

0.6+
0.5
-vI|FM
0.4f —+-DM
— Analytica!
1 1} N - | 1 ]
5 10 15 20 25 30 35

Elements

Figure 2-8 Convergence of tip displacement with number of elements
Surprisingly, the tip displacement results obtained from the IFM are far more accurate
than those obtained from the DM. The results for the convergence study of the
normalized tip displacement are presented graphically in Figure 2-8. The IFM method
achieves sufficient accuracy with error less than only 1% using 5 elements, where as the
DM gives an error of 70 % using the same number of elements. It has been noted that the
SVD and indirect approach to generate the compatibility generate similar results, and

computational time for both the cases is almost the same.
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2.9.2 Plate Analysis

The plate dimensions, loading and material properties are shown in the Figure 2-8. The
problem is analyzed using, 4-node quadrilateral Kirchhoff’s IFM bending element and 4-
node quadrilateral Kirchhoff’s DM bending element having displacement interpolation
similar to the IFM element. The FE equations of 4-node IFM element are formulated
previously and those of 4-node DM element are well documented in the literature [16].
The global equilibrium and flexibility matrices are assembled from element matrices, and

the compatibility matrix is generated by SVD approach.

3KN

L’

s
x
.
5 [ J/
AT
b lm -

Modutus of Elasticity=210e9 , Poisson ratio=0.3

Figure 2-9 Clamped plate subjected to loading at the center

The transverse deflection at the center of the plate and the moment per unit length about y

axis M at (x =0,y = ——2—) are responses from the analysis. The central deflection and

moment at the specified point, given by Timoshenko [40], are 0.699 cm and 377.1N/m,

respectively. The results obtained from the IFM and the DM are presented in the Table

2.2.
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Table 2-2 Center deflection and moment M y for different element numbers

Deflection at the | M, at x=0, y=-b/2

center of plate(cm) (N/m)

El. No. DM IFM DM IFM
16 0.6548 | 0.6975 | 324.7864 | 372.3855
36 0.6671 | 0.6975 | 341.9589 | 373.1158
64 0.6735 |0.697 |352.686 |373.2155

100 0.6768 | 0.696 | 359.0042 | 373.441
144 0.6788 |0.696 |362.9558 | 373.9

1.01 T

0.991

anal)

= 0.98f

o

©

~
T

o

©

=)
T
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Figure 2-10 Convergence of central deflection with number of elements
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Figure 2-11 Convergence of the moment with number of elements.
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The rate of convergence of the normalized central deflection versus number of elements
for both the analysis methods is shown graphically in Figure 2-10. It can be seen that the
IFM element provides accurate results using just16 elements, where as the DM struggle
to do so. The DM requires very fine mesh to converge to accurate results, and it shows

error of 2.9% even for FE model consisting of 144 elements.

The calculation of moments in the IFM is far more accurate than the DM. The graphical
presentation of normalized moment per unit length with increasing numbers of element is
shown in Figure 2-11. The IFM shows 1.25% error with respect to analytical solution
with only 16 elements model, where as DM shows 13.87% error with same numbers of
elements. Using 144 elements, the error reduces to 3.75% using the DM which is still
higher than the 1.25% of the IFM with 16 elements. The IFM is also more efficient for
stress calculation because it calculate stress directly from the independent forces which
are unknown in the formulation, where as in the DM stresses are calculated from the back

substituting of the nodal displacement.

It can be realized from these investigations that the IFM yields accurate results for both
stresses and displacements even for very coarse meshes. The equations of the IFM are
amenable to computer automation and can be easily automated. Therefore accuracy and

efficiency of the IFM structural analysis has motivated to use it for structural

optimization.
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Chapter 3

STRUCTURAL OPTIMIZATION AND
SENSITIVITY ANALYSIS

- 3.1 Introduction

Structural optimization deals with engineering design problem with aim of finding an
optimal structure that satisfies a number of given constraints. Structural optimization
problems are characterized by various objective and constraint functions, which are
generally non-linear function of design variables. These functions are usually implicit,
discontinuous and non-convex. The mathematical formulation of the structural
optimization problem with respect to the design vaﬁableé, the objective and constraint
functions depend on the type of application. However, all structural optimization
problems can be expressed in standard mathematical form as a non-linear programming
problem which in general can be stated as follows [50]:
Minimize fX) (3-1)
Subject to, n, equality constraints:

h(X) =0 i=lo. n (3-2)

n, inequality constraints:

g,X)<0 j=Tlo.. n, (3-3)

and n, side constraints:

x5 <{x) <x. k=1...... n, (3-4)
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where, {X } is the vector of design variables, f{(X) is the objective function to be

minimized, #(X) are the equality behavior constraints, g (X)are inequality behavior

constraints, {X, }, and {X,}, are the upper and lower bounds on design variables {x},.

The FE method is most widely used analyzer for the structural optimization to find the
performance measures of the structure. The accuracy and efficiency of the FE formulation
affect the success of the optimization algorithm. Nowadays, the DM is dominant as
analyzer and most of the optimization algorithms are based on the DM. Very few
investigations have been done on structural optimization using force method and its
comparison with the DM. This chapter is focused on developing size optimization
algorithms for the discrete structures using the IFM. In a general purpose computer aided
environment for design optimization, sensitivity analysis is an important enabling tool. The
numerical and analytical techniques are generally used to find the design sensitivity. The
analytical techniques are more preferred because of high computational efficiency and
accuracy. It should be noted that most of the reference work on the analytical sensitivity
analysis is based on the DM and few work have been reported related to sensitivity analysis
based on the force method [33-34]. In this study, the sensitivity analysis of behavior
constraints such as stress, displacement, frequency with respect to design variables is

formulated using the IFM.

3.2 Size Optimization

A structural design problem can be represented as a mathematical model whose constituent

elements are design parameters, constraints and objective function. The design parameters
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specify the geometry and shape of the structures and physical properties of its members.
From the design parameters, a set of derived parameters are obtained which are defined as
behavior constraints e.g., stress, displacement, natural frequency and buckling loads etc.

The lower and upper limits on the design parameters are known as side constraints.

In size structural optimization problem, the design variables are typically the cross
sectional area of structural components and objective function is to minimize the weight

of the structure. The objective function of the problem can be stated as:
Ji) =M =plaf{L} (3-5)
where {4} is vector of design variables, and its elements are the cross sectional area of

the structural components.

Practical structural optimization problems are usually subjected to different types of
constraint such as stress, displacement, frequency and system stability, and these
constraints can be cast into the following forms:

Stress Constraint

(3-6)

where n_ are the number of stress constraints, and o; and &, are von Mises stress and

its relative allowable for the ith element, respectively.

Displacement Constraint

3-7)
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where n, are the number of displacement constraints, and U, and Ujare the

Jthdisplacement and its relative allowable, respectively.

Frequency Constraints

De.

+1<0 k=lrt, (3-8)
@y

gr =

where n, are the number of frequency constraints, and @, and @, are the kth frequency

and its relative allowable, respectively.

Stability Constraint

g =—=£+1<0 (3-9)

where N, and N, are critical buckling load and its relative allowable, respectively.

3.3 Optimality Conditions
In unconstrained optimization, a local minimum has to satisfy the necessary
condition Vf(X) = 0, and non-negative curvature in any direction at the optimum. This

implies that there is no descent direction at the optimum for the unconstrained problem.
The condition for the constrained case can be written similar to the unconstrained case if
problem can be transformed into a single function. This leads to the use of Lagrange

multipliers 4 to combine the objective and constraint function into Lagrangian function.

The Lagrangian function for the constraint optimization problem can be written as [50,

51):

L) = 0~ 3 W00+ Ay, (3-10)
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Consider a design point that is optimum for the constrained problems and the functions

are continuously differentiable. The set of optimality conditions are:

VL(X" A" )=0 (3-11)
hX")=0, i=1,..,n, (3-12)
g,(X")<0, j=1...,n, (3-13)
220, j=Ll...n, (3-19)
AhX")=0, i=1...,n, (3-15)
AgX')=0, j=1..,n, (3-16)

Egs. (3-11) to (3-16) are collectively known as the Karush-Kuhn-Tucker (KKT)
conditions. KKT conditions are necessary and sufficient for optimality based on the first-

order. conditions. The set of optimum design variables and Lagrange multipliers
(X7, X)) that satisfies the KKT conditions are referred to as the KKT points. The
condition of Eq. (3-16) is referred to as the complimentarily condition and implies that A
and g, cannot be both non-zero. For cases that the condition is not hold, the constraint is

considered inactive with a feasible descent direction defined with respect to the

constraint.

3.4 Sequential Quadratic Prqgramming

Sequential Quadratic Programming (SQP) method is mathematical programming
technique for solving Non-Linear Programming (NLP) optimization problems. They are
also considered to be the most robust and powerful mathematical programming

optimization algorithm available today. In this method a Quadratic Programming (QP)
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sub problem is constructed from the initial NLP problem. A local minimizer is then found
by solving a sequence of these QP sub problems using a quadratic approximation of the

objective function. Each sub problem has the following form:

Minimize:
vf o} Lo ) (o)) 6-17)
Subject to:
VA" {5 }+ h(X® ) = 0 (3-18)
Vg {5 }+ g(x?) <0, (3-19)

where p in the parentheses is the current iteration number, [H (”)] is the Hessian of the
Lagrangian function at the current design point {X ® }, with the current estimate of the

Lagrange multipliers A%, and {s} is the vector of design variables in this sub-problem
representing the search direction to be defined in the original optimization problem. The
solution of the QP sub-problem produces an estimate of the Lagrange multiplier 4, and a

search direction vector {s} at iteration p , which are used to form a new iteration as:
{X(pﬂ)}: {X(‘”)}+ a, {S(p)} (3-20)
The step length parameter a,is determined through a one-dimensional minimization in

order to produce a sufficient decrease in the merit function. At the end of the one

dimensional minimization, Hessian of Lagrangian, required for the solution of the next
QP problem is updated using Broyden-Fletcher-Goldfarb-Shanno (BFGS) [52-53] update

formula:

e [g@ +{y(")}{y(”)£_[H (”)W“’)}{é(’” }T[H (p)] 391
L R 7 I
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where
pr)= ) ) (3-22)
)= vrexe, ) - VL2, X) (3-23)
BFGS formula may lead to indefinite Hessian. In order to keep Hessian positive definite,

Powel [52] recommends replacing {y(")}by:
27 a-plE? for) (3-24)
where {y(”)} is given by Eq.(3-22) and y is determined by:

1 it v} )2 0242 ) [H 16" }
#=)__osbollr] it} )< 02 [}

oSG T o")- T 7]

(3-25)

From Egs. (3-21) and (3-23), it can be 6bserved that gradient of Lagrangian is required at
the start of each iteration in SQP problem. Lagrangian gradient consists of the gradient of
both the objective function and the constraint. Therefore the correct evaluation of the
gradient of the objective and constraint function is necessary for the success of the

optimization algorithm.

3.5 Sensitivity Analysis

The structural optimization problems are mostly solved using the gradient based SQP
algorithm, which requires accurate sensitivity analysis to find the search direction and
step size. Sensitivity analysis is also used to ascertain how the structural performance
measures depend on the design variables. The performance measures of the structure can

be stress, displacement, natural frequency and system stability. Design sensitivity of
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functions explicitly defined in terms of design variables can be easily evaluated by direct
differentiation. However in structural analysis, performance measures are mostly implicit

function of the design variables, therefore the direct differentiation is not possible.

The sensitivity analysis of the performance measures in the structural optimization
problems can be perforrnedvby numerical and analytical techniques. The finite difference
approach has been largely used for the numerical sensitivity analysis. This approach to
sensitivity analysis is not computationally efficient, but can be used as reliable reference
method. Therefore the analytical methods are commonly used for the efficient and
accurate evaluation of the design sensitivity. The finite difference and analytical

approaches to evaluate the design sensitivity are discussed in the next section.

3.5.1 Finite Difference Technique

Finite differencing is the simplest way of estimating sensitivities transformed from the
definition of the function derivative. For any continuous function, Taylor expansion can

be written as:

fIX +4X) = f0) + f/(X)AX + f/’(X)é;—z + f/”(X)A—f;- Foreis (3-26)

where AX is the step size, and it is generally defined relative to the magnitude of the
design variable in order to ensure the robustness of the calculation regardless of the
dimensions and range of the design variable. By truncating the series at second derivative

term, we can rearrange formula and obtain the forward-step finite difference as:

1y _ S+ AX) = fX) )
&= X (3-27)
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Whenever a finite difference scheme is used to approximate derivatives, there are two
sources of error: truncation and condition errors. The truncation error is the results of the
neglected terms in the Taylor series expansion in the perturbed function in Eq. (3-26).
This source of error can be reduced by using a small perturbation. The reduction in step
size results in improved accuracy of the formulation, however reduction of step size leads
to condition error, which can drastically reduce the number of significant digits in the
sensitivity value. As the step size is reduced, the function value of the perturbed point and
the reference value become increasingly similar and when subtracted, the matching digits
will cancel each other, thus reducing the accuracy of the resulting sensitivity. These
opposite demands to the magnitude of the perturbation may give rise to the so-called
“step size dilemma” referred by Haftka and Adelman[57]. As noted by Haftka and
Adelman, the “step-size dilemma” may be reduced if a higher order finite difference
approximation is used, e.g. a second order central difference approximation, but this
implies additional computational cost. The finite difference method is also not very
efficient because of large numbers of structure analysis required to find a single gradient.
The number of structural analysis increases with increase in number of design variables

leading to large computational expense. For example, if problém has n, design variables,

the total number of structural analysis required to find the sensitivity of one performance

measure are (n, +1).

3.5.2 Analytical Sensitivity Analysis of Behavior Constraints

As the finite difference method is computationally inefficient for the design sensitivity

analysis, the analytical approaches are generally used. The analytical sensitivity analysis
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can be divided into discrete and continuum methods. In the discrete method, the
sensitivity analysis is obtained by taking the design derivatives of the discrete governing
equations obtained by the FE method. For thivs purpose, it is necessary to take the
derivatives of the FE matrices with respect to design variables. If these derivatives are
obtained analytically using the explicit expression of the derivatives of the matrices with
respect to design variables, it is known as analytical methods. However, if derivatives are
obtained using a finite difference method, then method is called semi analytical method.
In the continuum approach, the design derivatives of the variational equations are taken

before it discretized.

The issue of which approach of sensitivity analysis is better is a much debated subject
and several authors, e.g., Keulen, Haftka and Kim [58], Choi and Twu [59], have
presented comparisons between the continuum and the discrete approaches. The
conclusive argument for selection of method for the design sensitivity analysis has been
that continuum approach takes a lot of analytical work in order to develop the expression
for design sensitivity. The discrete approach seems much easier to implement and to be

just as applicable to solve problem as continuum approach.

In this study, the discrete approach to design sensitivity analysis has been chosen due to
its ease of implementation. The expression for the discrete sensitivity analysis of the
stress, displacement, natural frequency and system stability constraints are formulated
using the IFM for the discrete structﬁres. The efficiency of the discrete sensitivity

analysis will be discussed in Chapter 4.
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3.6 Sensitivity Analysis of Truss Structures

The IFM FE formulation for truss structure is presented in the section 2.8.1. The truss
element has two displacement degrees of freedom and one force degree of freedom.
Generally for the truss structure, the numbers of force degrees of freedom r are the same
as the numbers of member in the structure n, . The design variables are the cross sectional
area of the members. These types of structure may be subjected to stress, displacement,

frequency and buckling constraints. The discrete sensitivity analysis for each of these

constraints is formulated in this section.

In the force based finite element method, the sensitivity analysis of various performance
criteria is based on the design sensitivity of the force field. Thus, when the force design
sensitivities are known, other sensitivities, e.g. stress, displacement and frequency etc.,

can be easily computed. Therefore, the sensitivity analysis of force field is evaluated first.

The discrete approach to obtain design sensitivity of the force field is based on implicitly
differentiation of the system equilibrium equation of the IFM. The system equilibrium

equations of the IFM from Eq. (2-4) can be stated as:
[s]F}=1p}
Suppose that truss structure has »n, number of members, and the design variables are the

vector {A} consisting of the cross sectional area of the members. It should be noted that
Eq. (2-4) is implicit function of the member cross sectional area. Thus taking the

derivative of the Eq. (2-4) with respect to the cross sectional area of the jthmember 4,

yields:
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[315{F}+ 5[5]{1;} _a{p} (3-28)

The applied external load {P} is usually independent of the design variables,

therefore%%l = 0. Substituting in Eq. (3-28) yields:

J

%?=—[ST‘%[§{F} (3-29)

J J
As given in Eq. (2-5), the matrix [S] can be written in term of equilibrium and

compatibility equations as:

25l

The compatibility equation in Eq. (2-5) can be expanded as:

G, 0 .. 0
0 G,

lel=lc, ¢, - ¢,] . -lce, ¢G, -~ ¢G,.] (3-30)
0 0 0 G

where C, is the ith column of [C] and [G,] is the flexibility matrix of ith member of
the structure. [G,,] can be obtained from Eq.(2-81) as:

L.
G =— 3-31
et AIE ( )

It is important to note that in [S ]matrix, only flexibility matrix depends on the design
variables, and the equilibrium and the compatibility matrices are independent of design
variables. Furthermore, in the system flexibility matrix, the flexibility matrix of

only jth element depends on the 4 ;» therefore the derivative of flexibility matrices of
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other elements with respect to 4 ; 1s zero. Substituting Eq. (3-30) in Eq. (3-29) and taking

derivative of the final equation with respect to 4, yields:

ols]_ _ o] (3-32)
o4, [0 0 ... CG, .. 0
where
G, = Gy (3-33)
g Aj -
Eq. (3-32) can also be written as:
o[s] < <1 o
—+d=—0 0 ... §, .. here |5, |=|—= -
) o 5, 0]  where [3)] [CJGJ (3-34)
Substituting Eq. (3-34) into Eq. (3-29) yields:
=1sT' [5,¥F,} (3-35)

Expanding the terms of Eq. (3-35), for j =1......... n, , the final equation for the sensitivity

analysis of the force field can be written as:

A
04,
oF

o4, | =[ST'S]FR]=[%] (3-36)

oF
o4

K

L .

where

Fl-[0 7 Y| w5 5 - 5 (37)

ng
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3.6.1  Sensitivity Analysis of Stress Constraint

Truss structures are subjected to only axial stresses. The normalized stress constraint can

be written from Eq. (3-6) as:

g(F.4)=2i -1 i=Tornnn n, (3-38)

i
It is supposed that each member is subjected to stress constraint; therefore the numbers of

stress constraints are same as number of design variablesn,. For the truss structure, the

stress in terms of axial member force F; can be written as:

F
=L 3-39
o (3-39)

Substituting Eq. (3-39) into Eq. (3-38) yields the stress constraint as:

RN

g(F.4)= S D n, (3-40)

The gradients are the rate of change of the performance measures with respect to design

variables, and can be stated as:

T
dg, dg, dg, .
|98 & 8| oy 3-41
& LrA1 dA, a, | & (3-41)

As discussed previously, g,is not explicit function of design variables, it depends

indirectly on the design variables, so we can not find its derivative directly. The total
derivative of g, with respect to A, can be evaluated by using the chain rule of

differentiation as:

dg; _ g, + og, Ta{F}
d4, o4, o{F} o4,

J

(3-42)
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The a%ﬁ:—}can be obtained from the Eq. (3-36), therefore to calculate the design

sensitivity of stress constraint only the partial derivatives

a&

J

—L and
04

a&

o{F}

are required to

be evaluated. The —g—j‘— can be obtained by taking the partial derivative of Eq. (3-40)

J

with respect to 4; :

F .. .
o _ |5 VisJ

= (3-43)
04, o
! 0 ifi#]j
Extending the terms of Eq. (3-43), fori =1......... n,andj=1..... n,yields:
| _a_& _a_g_l . ____ag 1 | —_ E 0 0 |
04, 04, 04, oA
% % %8, 0o b 0
o4, o4, o4, |= Y =[or] (3-44)
: : : : : . F
%, O % 0 0 0 -——%
04, 04, od, | | o4, |
The Ga{i"‘ } can be obtained by taking the partial derivative of Eq. (3-40) with respect to
force field {F }:
, 2%, -
oF | ( 0}
%11,
OF, :
0g; :
e =0 3-45
oF} | % | |z SR
OF, :
og, | 0]
oF,,
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where

1
A 3-46
" TA ( )

[ ]

Expanding the terms of Eq. (3-45), for i =1......... n,andj=1..... n, yields:

(%8 % O8]

OF, OF  OF Z 0 .. 0

98 %8 %u| |0 z

oF, oF, = oF |= =[] (3-47)
8g, 6g2 agn(, 0 0 0 an

oOF, OF,  OF,

Substituting Eqgs. (3-36), (3-44), (3-47) into Eq. (3-42) and then substituting the final

equation in Eq. (3-41) yields the stress gradient as:

i T
Ve, a4,
Vg, d_g.Z_

Col=ldd, | =lo ] +[RT(R] (3-48)
Ve, | |dg,
4, |

3.6.2 Sensitivity Analysis of Displacement Constraints

Generally, the nodal displacements are constrained in the structure, and a general

expression for the displacement constraints of the truss structure can be stated from Eq.

(3-7) as:

g ==t-1 =l m (3-49)

SIS
|
W
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Similarly to the stress gradient, the displacement gradient can be stated as in Eq. (3-41).

The displacement constraints are not explicit function of design variables, so their

derivatives can be evaluated as given in Eq. (3-42). As mentioned before, ?@can be
j

obtained from the Eq. (3-36), according to Eq. (3-42) g—j‘— and %, are required to be

;- oF)

evaluated to find the design sensitivity of the displacement constraints.

To calculate 5%’}— , take the partial derivative of Eq. (3-49) with respect to {F }:

1 oU,
oF) T ofF) G50

The term—a—UL in Eq. (3-50) can be obtained by taking the partial derivative of Eq. (2-6)

o\F}
with respect to {F }:

%{%mm (-51)

Expanding the terms of Eq. (3-50) for i=1.......... m and then substituting Eq. (3-51) into

it yields:

- % .
oF
%8,
oF |= [Ur ][J ][G ], where [UT] =

og,,
L OF |

o
(]
o

(3-52)

o o o _Ql|»~

o OMQII*—‘

iQll»—aa o
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The term —Si—"— can be obtained by taking partial derivative of Eq. (3-49) with respect to 4, :

J

og, 10U,
260 X 3-53
04, U, o4, (3-53)
To calculate—g—g—"-, take the partial derivative of Eq. (2-6) with respect to 4, :
] .
Wiy (3-54)
04, 04,
Eq. (3-54) can be expanded as:
[0 0 0 . 0] (F,
000 0 0 F,
w P00 s
—+=[7] ' : (3-55)
aA Ge'
J 000 .. -—% 0 F
4, /
: F
0000 o o of U]

Substituting Eq. (3-55) into Eq. (3-53) and extending the terms for i=1.......... m and

J=la.. n, yields:

O, 0z g |
04, 04, = 04,
%, 0% % |
04, 04, == 04, :[UT][J][WT] (3-56)
oz, 02, o,
o4, o4, 04,
where
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_Flﬁ 0 0 ]
4,
G
0 -FE=* .. 0
prl=| 4 | (3-57)
Gn
0 0 —F, —n
L ’IA"J_

Substituting Egs. (3-36), (3-51) and (3-56) into Eq. (3-42) and then substituting the final

equation in Eq. (3-41) yields the gradients of the displacement constraints as:

- T

g,
Vg, ;{Aj
ve, | | %82 _ _
:g = d{lj = [[UT ][‘]][WT]+ [UT ][J][G][YT ]]r J=hn, Ny (3-58)
ve.] | da.
| dd,; |

3.6.3 Sensitivity Analysis of Eigen Values

The eigen value problem appears in both the vibration and buckling analysis of the
structure, therefore the sensitivity analysis of eigen value problem is necessary for the
optimization of the structures subjected to frequency and buckling constraints. A general

eigen value problem in the IFM can be stated as:
([S]".UleD{VR}= {0} (3-59)

where u is the eigen value, {VR} is the corresponding right eigen vector and
v, )= [[M Iz ][G]} (3-60)

where [M ] is the mass matrix of the structure. Eq. (3-59) can also be written as:
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.Y (s1-ulm, D=0} (3-61)
where {VL} is the left eigen vector corresponding to eigen value g . Pre multiplying Eq.
(3-59) by {¥, | yields:

.Y (5], i} =0} (3-62)

Differentiating Eq (3-61) with respect to 4, yields:

A A R N

/ (3'63)
d{v,}
+ {7,V (S]- ulm Wl
L ([ f]) dAj
Substituting Egs. (3-59) and (3-61) into Eq. (3-63) yields:
d|S diM
(4], ey
du d4; d4,;
= - (3-64)
dd, V.Y, v

Eq. (3-64) is the general equation for the sensitivity analysis of the eigen value problem.

: s . . . d[s] d lM /'J
Therefore in addition to the eigen value analysis results, the matrices —— and 7R
j j

are required to be evaluated, to perform the design sensitivity analysis of eigen value. The

d\M
(;[S] can be obtained from the Eq. (3-34), and to evaluate l‘ f J

J ]

, we differentiate Eq. (3-

- 60) with respectto 4;:

dm,] | d4,

dA | [Olrxnd) (3—65)

J
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All the matrices, except

dl/]
A

J

are evaluated in the previous section. [J ] represents the top

m rows of the transpose of [S]", and its derivative can be calculated from the following

relation:

[ST’ sy S ][sr (3-6)

3.7 Sensitivity Analysis of Frame Structures

Frame structures are subjected to both the axial and the bending loadings. The FE
formulation for the frame structures is discussed in section 2.8.3. Frame element have
three force degrees of freedom, one related to axial displacement and other two related to
bending moments. Element have three displacement degrees of freedom at each node. It
is supposed that structure have n force degrees of freedoms, m displacement degrees of

freedoms, and #n, are the number of members in the structure. The design variables are

the cross sectional area of the members, and other parameters such as moment of area and

section modulus can be related to the cross sectional area by standard relations [61].

As discussed previously, the design sensitivity of the force field is required to evaluate
the design sensitivities of various other performance measures. Therefore the design
sensitivity of the force field of the frame structure is evaluated first. The general

expression for the design sensitivity of the force field is given in Eq. (3-29). It should be

noted that the global flexibility matrix of the frame structure is (31, x3n,) which is
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assembled from (3x3) elemental flexibility matrices of each member; therefore [S] can

be discretized as:

(3-67)

[s]=| 18] R
l[cl ][Ge]l [CZ ][Ge]2 T lCn,; J[Ge ]n,, J
where [Ge]j. is the (3 3)flexibility matrix of the jth frame member, and given in Eq.(2-

93), and [C,.]are the corresponding columns of the compatibility matrix. Taking the

partial derivative of Eq. (3-67) with respect to 4, yields:

a[s]z_{ o 059

a4, oo . [glE] 9

where [52 ]j is derivative of the flexibility matrix of the jth element, and its value can be

obtained by differentiating Eq.(2-93) :

L
-— 0 0
4; 2
_ -L,dI, -1°dI,
[Ge]-=l 0 T L (3-69)
) I; dd, 21 d4;
0 ~Lzzj dl, —ij di,
i 217 d4; 31 d4; |
Eq. (3-68) can also be written as:
o[s] < - 0
=—0 0 ... {S;] ... 0 where S |= 3-70
Ao 5] o ey e

Substituting Eq. (3-70) into Eq. (3-29) yields:
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F-i 3
5
F:‘ - F;j—Z
olF}_ 5T o .. [5] ... o} 2i=[sT[5,]) Ae (3-71)
o4, j Fy F
7, “
L Fn, )
Extending the terms of Eq. (3-71), for j=1....... n, yields the sensitivity of force field
as:
- oF T
04,
oF
o4, | =l] (3-72)
oF
| 04,, |
where
'F 0 0
F, 0 0
F, 0 0
0 F, 0
—r— — 0 F 0
[YF]=[ST1[S][FF]’ and [FF]= 0 F‘z 0 (3_73)
0 0 0 K,
0 O 0 P_;n(, -1
0 0 0 K,
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3.7.1 Stress Gradients

The frame structures are subjected to the axial and the bending stresses. The maximum
stress in the frame member is the sum of the axial stress and the maximum bending
stress. The maximum stress in the ith member can be written as:

F, M.
o, =132 T (3-74)
A, SH,

1 ¢

where F,,_,is the internal axial force, SH,is the shear modulus which is function of the
cross sectional area of the member and M,is the maximum bending moment in the

member. Maximum bending moment in frame element will at one of its two ends, and

from Eq. (2-85) can be written as:

By if By, 2 Fyy + L Casel

M, = _ (3-75)
Fy,+FL ifF, <F, +FL  Case

The numbers of stress constraints for the frame element are generally same as the number
of members in the structure. A general expression for the stress constraint for the frame
element can be stated similar to Eq. (3-38). Substituting Eq. (3-74) into Eq. (3-38) yields
the stress constraint as:

Fu, . M, .
R i=1aii n 3-76

i H

Similarly to the truss structure, the stress gradient can be stated as in Eqs. (3-41) and (3-

42). The term —%{5—} in Eq. (3-42) can be obtained from the Eq. (3-72), therefore only
J

%, and aa{ij } are required to be evaluated in order to find the gradients.
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To calculate the termg—‘ji-, Let us take the partial derivative of Eq. (3-76) with respect

J

toA.:

- ,. , if i =
'21?: 5 A’ 5 SH' 04 ! (3-77)
/ 0 ifi#j
Fori=1...... nyand j =1......... n,, Eq. (3-77) can be extended as:
(%8 G 0%
o4, o4, o4,
%, 08 %
04, o4, o4, |=[0:] (3-78)
o, oz, 0g,,
o4, o4, == 04,
where
__F_ M, &sH, 0 0 ]
o4 &SH} 04, |
F, M, &SH
0 — 4 2 2 O 3_79
[oF]= 5,4} G,SH; o4, 3-79)
. . B, M, oA,
g, 4. @,SH, 04, |

Theéa{igﬁi—} can be obtained by taking the partial derivative of Eq. (3-76) with respect

to{F}:
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- g |
OF
Og; 0)
oF, 0
dg, :
0g; an'—z Q,
ol ! =< L 3-80
ofF} | % z, (-80)
0§i_1 I
98 0
OF,,
: L0
0g,,
oF,,
where
1
Q = 3-81
"G4, (3-81)

The values of X, and I, depend on the location of the maximum moment in the frame

element, and for two different locations can be written as:

Casel: When M, =F, |

2 == ! and I,=0 (3-82)
o,5H,
Case2: When M, =F,_ +F,L
Z = L and [, =— 1 (3-83)
o,5H, o,SH,;
For i=1......... nyand j=1...... n,; , Eq.(3-80) can be extended as:
83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



%, Oz 9%,
oF, OF, OF,
% X %8s, Q0 0 |
oF,  OF, oF, v
0g og, og,, 2, 0 . 0
OF, oF, —ﬁ; I, 0 0
: : : |=[R.] where [R.]=] (3-84)
0g, 0g, og g 0 0 O
OF,,, - OF, OF,,, -, 0
g 9g, g, J 0 0 . J "
6F3nd -1 aF;m,, -1 annd -1 - -
0g, 0g, 0g.,
oF,,  OF, or;,,

Substituting Eqs. (3-72), (3-78) and (3-84) into Eq. (3-42) yields the stress gradient as:

- ar

9%,
Vg, aAf
0g
Vg =2
.=l a4, | =0+ T[R] (3-85)
Ve, | | o,
_6AJ._

3.7.2 Displacement Gradient

A general expression for the normalized displacement constraint for the frame element

can also be stated similar to Eq. (3-49) and the expression for the sensitivity analysis is

given in Eqgs.(3-41) and (3-42). The term

aa{j} can be obtained from Eq. (3-72), therefore

J

to calculate gradient of displacement constraints, only the partial derivatives

—aig-"— and

o4,

agi

o{F}

are required to be evaluated.
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The term :{i} can be calculated similar to as calculated in section 3.6.2 for the truss

element and can be written similar to Eq. (3-51) as:

o]
oF
9 —

o | =0:1/1] (3-86)

%,
L oF

, ou, .
The term —g%— can be obtained from the Eq. (3-53) and the term EA({’— in Eq. (3-54) can

J J

be written similar to Eq. (3-55) as:

F
F2
0 0 0 . 0] Fy
0 0 0
0 0 0 0 0 k.,
a{Ue}=[J] : : : F,. L (3-87)
o4 17
© Jooo . ) .o |5
0000 0 0 0 P
Fan,,—l
L o, |
' . FSj—2
Mz["j] . [6;’]/ (3-88)
84, Y
J
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where J is the jth column of [J ] Extending the terms of Eq. (3-88) for j =1

.......... n,
and substituting into Eq. (3-54) yields:

(0 Og  Og

o4, o4, = 04,

%, & % |

04, 04, af‘_ln,, :[UF][J ][GF][F F] (3-89)

og, o2, 0,

|04, o4, 04, |
where

] o ... o
_ o 6] .. o
A= 5 [;]2 N (3-90)

0 0 0 [Ge]”d

Substituting Eqgs. (3-85), (3-86) and (3-89) into Eq. (3-42) yields the displacement

constraint as:

ragl T
Vg, —5A—
Vg, ?ﬁZ_ _ _
il v I W48 A T 113 T8 A I
vVg., og,,
o4,

3.7.3 Sensitivity Analysis of Eigen Values

The sensitivity analysis of eigen value using the IFM for truss structures is discussed in
the section 3.6.3. The basic equation for the design sensitivity analysis for the frame

structure is same, and can be stated from Eq. (3-64) as:
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{VL}T[d[S]—ud[Mf]]{VR}

du dA, dA;
dd, . v, )

J

. dlm, |
Similar to Eq. (3-65), 7R can be obtained as:

J

) | Bgs o) ] 49

dAj - [OlrxJnd)

Except matrix , all the required matrices for the sensitivity analysis are evaluated

dl]
A

j
in previous section. [J] represents the top m rows of the transpose of the matrix[S]" and

its derivative can be calculated from Eq. (3-66):
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Chapter-4
CASE STUDY-STRUCTURAL OPTIMIZATION

4.1 Introduction

In this chapter, several examples of sizing design optimization for the discrete structures
are presented. The objective of this study is to implement and investigate, the design
optimization and sensitivity analysis method using the IFM for small and large scale size
optimization problems. A size optimization algorithm has been developed in which the
IFM as analyzer is combined with SQP technique as optimizer. SQP algorithm is
implemented using MATLAB optimization toolbox [60]. An efficient analytical design
sensitivity analysis technique, developed in previous chapter, has been implemented for
evaluating the gradient of the behavior constraints. The analytical sensitivity analysis is
impiemented using MATLAB programming, and then integrated with optimization
algorithm. It should be noted that for all the optimization problems considered in this
chapter stopping tolerance of 0.001 is considered for objective function, constraints and

search direction.

The structures ranging from small to large scale are designed for the stress, displacement
and frequency constraints. The problems are also investigated using the DM and the
IFM(NG). Various performance criteria’s like optimum design, numbers of iterations,
computational time, convergence and number of active constraints are compared for all
the cases. The numerical tests presented demonstrate the computational advantages of the

IFM for stress and displacement constraints, which become more pronounced in the
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large-scale optimization problems. It has been shown that path of the optimization
algorithm depends on the analysis procedure, and the small difference in the response
from the analysis procedure can change the path of the optimization algorithm. The
optimization problems subjected to frequency constraints have numbers of local
optimums and it has been observed that the IFM and the DM leads to different optimum
design while starting with same initial design. The efficiency and accuracy of analytical

sensitivity analysis is also compared with numerical sensitivity analysis.

4.2  Size optimization-Stress and Displacement constraints

42.1 10-Member Truss Structure

1~360 in
B L | L X P=100 kips
3 2 1
0 ]
10
9
6 L
; X

[ A 4

Figure 4.1 The 10-bar planar truss structure

The 10-bar planar truss structure is shown in Figure 4.1. This structural design
optimization problem is a classical benchmark problem for testing optimization
algorithms. The objective is to minimize the mass of the structure under stress and

displacement constraints, and design variables are the cross sectional area of the
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elements. The material is aluminum with Young’s modulus E =10"psi (6.895x10" Pa)
and density p = 0.1 Ibm/in’® (2767.99 Kg/m?). Structure is statically indeterminate having
10 force degrees of freedom and 8 displacement degrees of freedom. Thus, the degree of
indeterminacy is 2. The maximum allowable stress of £25000 psi is imposed on all the
members. Vertical displacement constraints of +2 in are imposed on nodes 1-4. The
minimum area for all elements was set at 0.1 in>. The cross sectional area of 1in?® is
considered as initial design for all the members.

Table 4.1 Optimum design of the 10-bar planar truss structure

Area of Cross Section (m?)
Member No. IFM(NG) IFM(AG) DM
1 30.5219 30.5219 30.5219
2 0.1 0.1 0.1
3 23.1999 23.1999 23.1999
4 15.2229 15.2229 15.2229
5 0.1 0.1 0.1
6 0.5514 0.5514 0.5514
7 7.4572 7.4572 7.4572
8 21.0364 21.0364 21.0364
9 21.5284 21.5284 21.5284
10 0.1 0.1 0.1
Mass (Kg) 5060.9 5060.9 5060.9
CPU time(sec) 2.956 2.14 3.187
No. of Iterations 26 22 44
AS.C 5 5 -
A.D.C. V1 V1 V1
A.L.B.C. 2,5,10 2,5,10 2,5,10

A.S.C.-Active Stress Constraint, A.D.C-Active Displacement Constraint
A.L.B.C-Active Lower Bound Constraint, V1-Vertical Displacement at Node 1

V1- Vertical Displacement at node 1

The optimization results for the 10-bar structures are shown in Table 4.1. It can be seen

that all the optimization algorithms converge to similar optimum mass of 5060.9 Kg, but
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differ in number of iterations. The results of the optimization analysis match exactly with
those in literature by Haftka and Gurdal [51], and Fleury and Schmit [62], which are
based on the DM. The IFM (AG) required 22 iterations, where as the IFM (NG) and the

DM required 26 and 44 iterations, respectively. The DM takes maximum number of

iterations.
6000
5000} LS = e Ml e B e M T N Y W N Y N Y N
IFM(AG IFM(NG
40001 (AG) (NG DM
C)
<
a 3000+
3]
=
2000~
1000f ~~DM
—{FM(AG)
0 1. i 1 Il Il 1 1 I ]
0 5 10 15 20 25 30 35 40 45
lterations

Figure 4.2 Convergence curves of the 10-bar truss structure.

The axial stress in the 5th member and vertical displacement at node 1 (V1) reached to
their maximum values at the optimum design. The cross sectional area of the elements 2,
5 and 10 reach to their minimum value. The convergence of the all the optimization
algorithms has been presented graphically in Figure 4.2, It can be seen that the IFM(AG)
and the IFM(NQG) take different optimization path. Therefore small error in numerical
gradient can change the path of optimization algorithm and results in large number of

iterations. The optimization has also been performed with different initial point and same
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optimum results have been obtained for most of the initial designs. The results show that

the IFM is robust analyzer for the optimization.

4.2.2 10- Members Frame Structure

100 kp 200 kp
\f
100 kp ——
1300 kp-in 1500 kp-in
L
150 kp
100 kp——-é 2 ) —r
l R
1500 kp-i :
. 1500 kpein 3000 kp-in
! 3 5 L
Vil mm mm Tt X
" L T L 1.=254 cm (100 in)

Figure 4.3 The 10-member frame structure

The 10-member frame structure and applied loading are shown in Figure 4.3. It is made
of steel with E=207KN/m’andp=7830Kg/m’. The structure is statically

indeterminate having 30 force degrees of freedoms and 15 displacement degrees of
freedoms. The degree of indeterminacy is 15. The objective is to minimize the mass of
the structure and the design variables are the cross sectional area of the members. The
second moment of area and section modulus, are related to cross sectional area by the

following relations:
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[ SH =1.6634 A"

1=45924"

|1 =4.6384"

[ SH =13.76 A ~103.906

| [ =256.229 A-2300

SH = (281.077 A> +84100)*° ~ 290

154<44

15< A< 44

(4-1)

(4-2)

(4-3)

where SH, I and A are the section modulus, moment of area and cross sectional area of

the member, respectively. The above relations are stated for steel section in accordance

with AISC codes [61]. The stress limit for all members is 165.474Kg/m’and the

horizontal displacement of all joints is limited to 0.00127m. A minimum and maximum

area limit of 0,003226 m? and 0.064516 m? are enforced on each member.

Table 4.2 Optimum design of thel0-members frame structure

Cross Sectional Area (m°)
Member No. IFM(NG) IFM(AG) DM
1 0.028387 0.028386 0.028387
2 0.023753 0.023654 0.023681
3 0.003226 0.003226 0.003226
4 0.003226 0.003226 0.003226
5 0.046245 0.046202 0.046256
6 0.01025 0.010243 0.010241
7 0.007201 0.007228 0.0072355
8 0.016323 0.016459 0.016429
9 0.016296 0.016281 0.016245
10 0.003226 0.003226 0.003226
Mass 3305.8 3305.63 3305.8
CPU time(sec) 3.203 2.281 4.814
No. of Iterations 36 33 46
A.S.C. 6 6 6
A.D.C, H4 H4 H4
A.LB.C. 3,4,10 3,4,10 3,4,10
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The problem was solved using number of different initial points and the best optimum
result is obtained by considering an initial design of 0.012903 m? for the cross sectional
area for all the members. The results of the optimization analysis are presented in Table
4.2. The IFM (NG) and the DM converge to same value of minimum mass of 3305.8 Kg,
and almost same value of mass of 3305.63 Kg is obtained by using the IFM(AG). At the
optimum point, stress in member 6 and horizontal displacement of node 4 (H4) reached
to their maximum value. The cross sectional area of the members 3, 4 and 10 reached to
their minimum value. The problem was also investigated by Khan [63] using the DM and

the optimal criteria method, and a mass of 3390.39 Kg was obtained.

3400
B e B S e S =
Y
3200f 04 \
/ IFM(AG) DM
; IFM(NG)
| S
3000} > [
2 e T
% 2800, y
‘5“ —+—DM
j » IFM(NG)
26001 e’ v IFM(AG)
24001 % |
L 1 1 i I 1 | L J
22005 5 10 15 20 25 30 35 40 45
lterations

Figure 4.4 Convergence curves for thel0-member frame structure

The iteration history for the optimization algorithms is shown in Figure 4.4. All the
algorithms follow almost the same path, but differ in numbers of iterations required for
the convergence. The numbers of iteration taken by the IFM(AG) are 33 which are less

than 36 and 46 taken by the IFM(NG) and the DM, respectively. The computational time
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taken by the IFM is less than the DM, and it is further reduced by calculating the gradient
analytically.

4.2.3 25- Member Frame Structure

Y
L=254 ¢ (100 in}

500 kp 1700 kp 700 kp 500 kp

4

100 hp ¥.3 4

106 kp
e

2 7 12 19 1
wokp Rt 3 6 o 20
10 12 I
I 9 1 21 L
X
. A . A,
L R L R L N

Figure 4.5 The 25-member frame structure

The 25-member frame structure and the applied loading are shown in Figure 4.5. The
structure has the same material properties and the stress limit as those of the 10-member
frame structure and the objective is to minimize the mass of the structure. The numbers of
design variables are 25 and those are the cross sectional area of the members. The section
modulus and moment of area are related to the cross sectional area according to Egs. (4-
1), (4-2) and (4-3). The horizontal displacement of nodes 1, 2, 3, 10, 11 and 12 are
limited to 0.00127m and the limits for minimum and maximum cross sectional area are
0.003226 m® and 0.064516 m?, respectively. The numbers of stress and displacement

constraints are 25 and 12, respectively. The numbers of force and displacement degrees
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of freedom are 75 and 36, respectively, and the degree of redundancy of the structure is

39.

The optimization results are given in Table 4.3. The problem is solved with number of
different initial points and the best design is obtained with initial cross sectional area of
0.06 m* Almost same minimum mass of 9504 Kg is obtained by using all formulations.
It should be noted that a minimum mass of 10049 Kg was obtained by Khan [63] using
the DM and the optimal criteria method. At the optimum point, the stress in the members
1,2,3,5,9, 12, 14 and 17, and the cross sectional area of member 11 reached to their
maximum values, for both the IFM and the DM. The horizontal displacements of nodes 2
and 10 (H2 and H10) are active for the I[FM, and the horizontal displacements of nodes 3,
10 and 12 (H3, H10 and HI12) are active for the DM. The total numbers of active
constraint for the DM are 19, where as those for the IFM(AG) and the IFM(NG) are 17.
The computational efficiency of the IFM in this problem is more prominent as compared
to the 10 member frame structure due tb large size of the problem. It can be seen from
Table 4.3 that the IFM takes significant less computational time than the DM. Further, it
is interesting to note that the gradient calculation by analytical method reduces this
computational time to almost half of the original computatiénal time. The gradient
calculation by analytical method decreases the computational efficiency significantly.
The iteration history of the optimization algorithms is shown in Figure 4.6. It is seen that
the IFM(AG) and the IFM(NG) almost follow the same path, but the DM follows a
different path. The IFM converge to optimal solution quite rapidly as compared to the

DM. So it can be concluded that path of the optimization algorithm depends on the
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analysis method, and the small difference in the calculation of performance measures can

change the convergence path.

Table 4.3 Optimum design of the 25-members frame structure

Cross Sectional Area (m”)
Member No. DM IFM(NG) IFM(AG)
1 0.010004 0.010011 0.010008
2 0.0071444 0.0071558 0.0071489
3 0.0042334 0.0042296 0.0042338
4 0.016201 0.016231 0.016193
5 0.020244 0.020239 0.020239
6 0.003226 0.003226 0.003226
7 0.051763 0.051774 0.05172
8 0.014865 0.014786 0.014866
9 0.031431 0.031422 0.031425
10 0.053884 0.053883 0.053879
11 0.064516 0.064516 0.064516
12 0.020579 0.020582 0.020583
13 0.003226 0.003226 0.003226
14 0.019579 0.019578 0.01958
15 0.003226 0.003226 0.003226
16 0.0048218 0.0048456 0.0048354
17 0.013149 0.013153 0.013153
18 0.003226 0.003226 0.003226
19 0.016149 0.016177 0.016145
20 0.003226 0.003226 0.003226
21 0.01874 0.018719 0.018781
22 0.013523 0.013536 0.013543
.23 0.046809 0.046808 0.046788
24 0.003226 0.003226 0.003226
25 0.003226 0.003226 0.003226
Mass(kg) 9504.2 9504.4 9504.2
CPU time(sec) 20.2 12.78 6.25 sec
No. of
Iterations 62 48 47
AS.C. 1,2,3,59,12,14,17 |1,23,59,12,14,17 | 1,2,3.5,9,12,14,17
AD.C. H3,H10,H12 H2,H10 H2,H10
A.L.B.C. 6,13,15,18,20,24,25 | 6,13,18,20,24,25 | 6,13,18,20,24,25
A.U.B.C. 11 11 11

A.U.B.C.-Active Upper Bound Constraints
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Figure 4.6 Convergence curve for the 25-members frame structure

4.2.4 70 Member Frame Structure

The 70 member frame structure and loading on the structure are shown in Figure 4.7. The
material properties of the structure, side constraints on the cross sectional area and stress
limits are assigned the same values, as those used for the 10 members frame structure.
The design variables are the cross sectional area of the members, and other parameters
such as section modulus and moment of area are related to cross sectional area according
to Egs. (4-1), (4-2) and (4-3). The horizontal displacements of all joints are limited to
0.03810m. The numbers of force and displacement degrees of freedom are 210 and 120,

respectively, and the degree redundancy is 90.

The mass of the structure is minimized for the following two cases:
Case 1- Subjected to both the stress and displacement constraints.

Case 2- Subjected to only stress constraints.

98

—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The two cases are considered to study the efficiency of the IFM under stress-

displacement constraints and under only stress constraints.

111.206KN 111.206KN  111.206KN 111,206KN

49 50
444.822KN - - }
37 38 35 40
10 12 48 51
13 47 52
400,340KN -
33 34 35 36
9 14 46 53
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Figure 4.7 The 70-members frame structure.

4.2.4.1 Casel: Stress and Displacement Constraints

The structure 1s designed for both stress and displacement constraints. In the literature,

the problem was investigated by Khan [63] using the DM and the optimal criteria
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method, and optimum mass of 43691.4 Kg was obtained. An initial design of 0.06 m® is
taken for the cross sectional area of all members. The optimum mass and finial design for
the cross sectional areas are given in Tables 4.4 and 4.5, respectively. The performance
parameters such as CPU time, number of iteration, active constraints are also given in
Table 4.4.

Table 4.4 Final design of the 70-members frame structure with both

displacement and stress constraints.

IFM (NG) IFM (AG) DM
MASS(Kg) 43520 43520 43521
CPU time(sec) 925.836 323.312 1179.5
No. of Iterations 191 186 194
Active D.C. H37 H37 H37
Active L.B.C. 48,49,50,51,52,53 | 48,49,50,51,52,53 | 48,49,50,51,52,53
Active U.B.C. 1,2,3,63,65,67,69 | 1,2,3,63,65,67,69 | 1,2,3,63,65,67,69
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Figure 4.8 Convergence for the 70-member frame structure for both stress and

displacement constraints.
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Table 4.5 Optimum design for the cross sectional area (m?) of the 70-members frame

structure with both displacement and stress constraints

Member Member
No. IFM(NG) | IFM(AG) DM No. IFM(NG) | IFM(AG) DM
1 0.064516 | 0.064516 | 0.06452 36 0.030281 | 0.030672 | 0.031075
2 0.064516 | 0.064516 | 0.06452 37 0.02922 | 0.029454 | 0.029671
3 0.064516 | 0.064516 | 0.06452 38 0.029814 | 0.029505 | 0.029509
4 0.064405 | 0.064345 | 0.0645 39 0.028391 | 0.028415 | 0.028399
5 0.051467 | 0.051489 | 0.05171 40 0.028567 | 0.028565 | 0.02859
6 0.039302 | 0.039416 | 0.03961 41 0.028367 | 0.02844 | 0.028387
7 0.028481 | 0.028363 | 0.02839 42 0.028734 | 0.028857 | 0.028896
8 0.019963 | 0.020181 | 0.0202 43 0.028368 | 0.028412 | 0.028346
9 0.013922 | 0.014028 | 0.01406 44 0.029272 | 0.029543 | 0.029344
10 0.02252 | 0.022644 | 0.0226 45 0.028466 | 0.028441 | 0.028457
11 0.026668 | 0.026604 | 0.0266 46 0.034474 | 0.034561 | 0.034889
12 0.028396 | 0.028386 | 0.0284 47 0.034448 | 0.033963 | 0.033957
13 0.025203 | 0.02522 | 0.02531 48 0.003226 | 0.003226 | 0.003226
14 0.026567 | 0.026675 | 0.02653 49 0.003226 | 0.003226 | 0.003226
15 0.013918 | 0.014202 | 0.01386 50 0.003226 | 0.003226 | 0.003226
16 0.022553 | 0.022257 | 0.02246 51 0.003226 | 0.003226 | 0.003226
17 0.022725 | 0.022781 | 0.02277 52 0.003226 | 0.003226 | 0.003226
18 0.028392 | 0.028374 | 0.02837 53 0.003226 | 0.003226 | 0.003226
19 0.028379 | 0.02836 | 0.02839 54 0.029087 | 0.028941 | 0.02927
20 0.028435 | 0.028376 | 0.02846 55 0.02839 | 0.028331 | 0.028386
21 0.028492 | 0.02844 | 0.02839 56 0.030181 | 0.030254 | 0.029641
22 0.028522 | 0.028534 | 0.02847 57 0.031367 | 0.031256 | 0.031248
23 0.029221 | 0.029013 | 0.02932 58 0.028737 | 0.028705 | 0.028575
24 0.029726 | 0.029836 | 0.02917 59 0.04264 | 0.042636 | 0.042682
25 0.028971 | 0.029588 | 0.02918 60 0.028648 | 0.029012 | 0.028696
26 0.031741 | 0.031618 { 0.0308 61 0.054881 | 0.055038 | 0.054774
27 0.030977 | 0.030634 | 0.0302 62 0.029234 | 0.029587 | 0.029664
28 0.03027 | 0.030112 | 0.03124 63 0.064516 | 0.064516 | 0.064516
29 0.028418 | 0.02841 | 0.02841 64 0.029705 | 0.02913 | 0.029821
30 0.028393 | 0.028325 | 0.02838 65 0.064516 | 0.064516 | 0.064516
31 0.028354 | 0.028361 | 0.02836 66 0.030207 | 0.030562 | 0.030374
32 0.031454 | 0.031048 | 0.03098 67 0.064516 | 0.064516 | 0.064516
33 0.029742 | 0.029686 | 0.03047 68 0.028393 | 0.028369 | 0.028415
34 0.032002 | 0.031728 | 0.03193 69 0.064516 | 0.064516 | 0.064516
35 0.031437 | 0.031233 | 0.03035 70 0.028391 | 0.028443 | 0.028438
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An optimized mass of 43520 Kg is obtained using the IFM(AG) and the IFM(NG), and
almost similar mass of 43521 Kg is obtained using the DM. The horizontal displacement
at node 37 (H37) is active at the optimized result and there is no active stress constraint.
Therefore displacement constraints are more dominating for this problem and decide the
final optimum design of the structure. The cross sectional area of elements 48, 49, 50, 51,
52 and 53 reached to their minimum value, while that of elements 1, 2, 3, 63, 65, 67 and
69 reached to their maximum value. It is evident from Table 4.4 that the IFM is
computationally more efficient as compared to the DM. It should also be noted that again
there is significant increase in computational efficiency using IFM combined with
analytically evaluated gradients technique. The calculation of gradient by analytical
method reduces the computational time to one third of that with numerical gradient. The
convergence of the optimization algorithms is presented in Figure 4.8. It can be seen that
all the optimization algorithms take the different path. The number of iteration required to
converge to the optimized result are also different. The IFM(AG), the IFM(NG) and the

DM take 186, 191 and 196 iterations, respectively.

4.2.4.2 Case 2-Stress Constraints
In order to investigate the efficiency of the IFM for problems under only stress

constraints, the 70-member frame struéture is again designed for only stress constraints. It
has been demonstrated that the IFM is very efficient for stress dominating optimization
problems. The optimum mass and finial design for the 70-member frame structure
subjected to only stress constraints are provided in Tables 4.6 and 4.7, respectively. The

CPU time, numbers of iterations, active constraints are also shown in Table 4.6. A
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minimum value of mass of 28033 Kg is obtained using both the IFM(NG) and the DM,
and the IFM(AG) converges to slightly lighter mass of 28027 Kg. It can be seen from
Table 4.6 that IFM(NG) takes almost one fourth of the computational time than that taken
by the DM. This illustrates the high computational efficiency of the IFM for stress
dominating problems. Therefore, it can be concluded that the efficiency of the IFM
increases with increase in number of active stress constraints in the optimization problem.
Furthermore, the computational time for the IFM is reduced by one third with calculation
of gradient by the analytical method. It can be observed that the IFM(AG) take
insignificant computational time of 18.54 sec as compared to 227.83 sec taken by the
DM. The numbers of iterations taken by the IFM are also significantly less than the DM.
The numbers of active stress constraints, active lower bound constraints and active upper
bound constraints, for the 'IFM(AG), the IFM(NG) and the DM, are the same and shown

in Table 4.6.

Table 4.6 Final design of the 70-memebrs frame structure with stress constraints

IFM(AG) IFM(NG) DM
MASS(Kg) 28027 28033 28033
CPU time(sec) 18.54 54.172 227.828
No. of .
Iterations 29 30 47

1-7,10-17,19,20,22, | 1-7,10-7,19,20,22,24- | 1-7,10-7,19,20,22,24-
A S.C. 24-28,31,34,36-40,44- | 28,31,34,36-40,44-47, | 28,31,34,36-40,44-47,
47,56-59,61-67,69,70 56-59,61-67,69,70 56-59,61-67,69,70

8,9,18,21,29,33,35,41, | 89,18,21,29,33,35, | §,9,18,21,29,33,35,41,
A.L.B.C. 43,48-55,60,68 41,43,48-55,60,68 43,48-55,60,68

A.U.B.C. 69 69 69
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Table 4.7 Optimum design for the cross sectional area (m?) of the 70-members

frame structure under only stress constraints

Member Member
No. IFM(AG) | IFPM(NG) DM No. IFM(AG) | IFM(NG) DM
1 0.064237 | 0.064207 { 0.064231 36 0.031562 | 0.031566 | 0.031537
2 0.040219 | 0.040197 | 0.040221 37 0.031748 | 0.031751 | 0.031725
3 0.039618 | 0.03963 | 0.039627 38 0.034329 | 0.034316 | 0.03439
4 0.024374 | 0.024368 | 0.024357 39 0.043387 | 0.043379 | 0.043411
5 0.015836 | 0.015848 | 0.015811 40 0.027629 | 0.027633 | 0.027592
6 0.011141 | 0.011143 | 0.011142 41 0.003226 | 0.003226 | 0.003226
7 0.023185 | 0.023182 | 0.023197 42 0.005065 | 0.005065 | 0.00508
8 0.003226 | 0.003226 | 0.003226 43 0.003226 | 0.003226 | 0.003226
9 0.003226 | 0.003226 | 0.003226 44 0.032609 | 0.032617 | 0.032609
10 0.010023 | 0.009943 | 0.009939 45 0.028012 | 0.028007 | 0.028002
11 0.009621 | 0.010054 | 0.010056 46 0.015084 | 0.015105 | 0.015114
12 0.011228 | 0.011206 | 0.011209 47 0.015622 | 0.01566 | 0.015666
13 0.013169 | 0.013069 | 0.013062 48 0.003226 | 0.003226 | 0.003226
14 0.018158 | 0.018129 | 0.018118 49 0.003226 | 0.003226 | 0.003226
15 0.003981 | 0.003983 | 0.003984 50 0.003226 | 0.003226 | 0.003226
16 0.01859 | 0.018594 | 0.018605 51 0.003226 | 0.003226 | 0.003226
17 0.019374 | 0.019375 | 0.019386 52 0.003226 | 0.003226 | 0.003226
18 0.003226 | 0.003226 | 0.003226 53 0.003226 | 0.003226 | 0.003226
19 0.024718 | 0.024714 | 0.024736 54 0.003226 | 0.003226 | 0.003226
20 0.027962 | 0.027957 | 0.027989 55 0.003226 | 0.003226 | 0.003226
21 0.003226 | 0.003226 | 0.003226 56 0.030772 | 0.030779 | 0.030772
22 0.033784 | 0.033798 | 0.033716 57 0.031345 | 0.031349 | 0.031331
23 0.017424 | 0.017455 | 0.017329 58 0.027906 | 0.027904 | 0.027892
24 0.032429 | 0.032426 | 0.032494 59 0.015133 | 0.015133 | 0.015143
25 0.032009 | 0.032014 0.032049 60 0.003226 | 0.003226 | 0.003226
26 0.01956 | 0.01952 | 0.019539 61 0.017391 | 0.017387 | 0.017407
27 0.036274 | 0.036269 | 0.036296 62 0.018022 | 0.018014 | 0.018065
28 0.025003 | 0.025007 | 0.025016 63 0.027486 | 0.027482 | 0.027503
29 0.003226 | 0.003226 | 0.003226 64 0.030952 | 0.030958 | 0.030934
30 0.028377 | 0.028435 | 0.028387 65 0.039544 | 0.03955 | 0.039533
31 0.031616 | 0.031624 | 0.031628 66 0.032676 | 0.032685 | 0.032661
32 0.02091 | 0.020911 | 0.020869 67 0.041584 | 0.041586 | 0.041589
33 0.003226 | 0.003226 | 0.003226 68 0.003226 | 0.003226 | 0.003226
34 0.020255 | 0.020258 | 0.020261 69 0.064516 | 0.064516 | 0.064516
35 0.003226 | 0.003226 | 0.003226 70 0.032503 | 0.032492 | 0.032506
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Figure 4.9 Convergence curve for the 70-members frame structure under stress
constraints

The convergence curves of all optimization algorithms are shown in Figure 4.9. It can be
seen that the IFIM(NG) and the IFM(AG) almost follow the same path, but the DM
follows the different path. The IFM converges to optimized result quite rapidly as

compared to DM.

It can be concluded that the IFM is very efficient for the stress dominating optimization
problem, and is also equally efficient for displacement dominated problems. Moreover
evaluating the gradient of constraints analytically significantly improves the efficiency of

the optimization algorithm.
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4.3 Size Optimization -Frequency Constraints

Here, the efficiency and accuracy of the IFM for the frequency constraints are
investigated, and compared with those of the DM, and also those reported in the
literature. The 70 member frame structure as shown in Figure 4.7 is considered, but now
it is subjected to different loading. All the horizontal members of the structure carry the
uniformly distributed nonstructural weight of 450 Kg/m. Frames are made from steel
having weight density of 7757 Kg/m® and an elastic modulus of 2x10" Pa. The minimum
area limit for all the members is specified at 0.0019355 m?, while the maximum area limit
is set at 0.056955m? The mass of the frame structure is minimized for three different
cases of frequency constraints:

Case 1: The second natural frequency is 7 Hz. (@, =7 HZ).

Case 2: The first and second natural frequencies are greater than 2 Hz and 7Hz,
respectively. (o, 22,w, 2 7).

Case 3: The first, second and third natur:al frequencies are greater than 2Hz, 7 Hz and 15
Hz, respectively. (@, 22,w, 27,0, 215).

The problem is investigated using the IFM(NG), the IFM(AG) and the DM. The results
of the optimization analysis are also compared with those obtained by McGee and Phan
[64] who investigated the problem using optimal criteria method and the DM. The design
variables are the cross sectional area of the members, and the other parameters such as
shear modulus and moment of area are related to cross sectional area by relation given by
McGee and Phan [64]. Similar to other problems multiple of random initial point has
been generated to find the optimal solution. Here, it has been observed that the problem

has number of local optimums and different initial points converge to different local
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optimum point. It has been found that the two best optimal results obtained are associated
with initial points of 0.0129032 m? and 0.0258064 m>, for the cross sectional area of all
members. The optimal results corresponding to these two initial points are presented for

all the following cases.

4.3.1 Casel: 70 Member Frame Structure-Single Frequency Constraint

The mass of 70 member frame structure as shown in Figure 4.7 is minimized under
equality constraint that the second natural frequency to be 7 Hz. The problem was
investigated with different initial designs, and the minimum optimum mass is obtained at
starting design of 0.0258064 m? for all the algorithms. The results of the optimization
algorithm for the first five natural frequencies with two best starting design are given in
Table 4.8. The finial optimum results for the cross sectional areas corresponding to initial
point of 0.0258064 m” are tabulated in Tables 4.8. A minimum mass of 34839 Kg is
obtained using the DM, and minimum mass of 34694 Kg and 34520 Kg are obtained
using the IFM(NG) and the IFM(AG), respectively. A minimum mass of 36292.82Kg
was obtained by McGee and Phan [64] using optimal criteria and the DM. It can be seen
that the IFM converges to lighter design than the DM. The optimization problem
subjected to frequency constraints is numerically expensive using the IFM due to
presence of null rows in the mass matrix. The problem of large computation time is
alleviated by calculating the gradients by analytical method. It has been observed that in
some cases calculation of gradient by analytical method led to the lighter optimum

design, This is because that numerical sensitivity analysis is not very accurate, and small
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error in the gradient calculation can change the path of the optimization algorithm and it

can converge to other local minima.

Table 4.8  Final five frequencies of the 70-members frame structure at the
optimum point, designed for Case 1.

Analysis | Initial Design -0.0019355 m> | Initial Design-0.0258064 m"
Method DM | IFM(NG) | IFM(AG) | DM | IFM(NG) | IFM(AG)
First 1.1798 | 1.1841 1.2311 1.2076 | 1.2144 1.2451

Second 7 7 6.9999 7 7 7
Third | 7.3265| 7.0934 7.0001 | 7.2225 7 8.0522
Fourth | 8.7866 | 9.4406 8.7001 | 9.1372 | 9.1918 8.935
Fifth 12.103 | 11.742 11.631 12.42 11.636 12.267
Mass(Kg) | 35580 | 35288 35666 34839 34694 34520
+ DM
- IFM(NG)
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Figure 4.10 Convergence curve for the 70-member frame structure optimized for Casel
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Table 4.9 Optimum design for the cross sectional area (m?) of the 70 member frame

structure designed for Casel

Member Member
No. IFM(AG) | IFM(NG) | DM No. IFM(AG) | IFPM(NG) | DM
1 0.039 0.0337 1| 0.0329 36 0.0025 0.0019 | 0.0019
2 0.0284 0.0166 | 0.0164 37 0.0019 0.0019 | 0.0019
3 0.0191 0.0219 | 0.0213 38 0.0024 0.0019 | 0.0019
4 0.0248 0.0284 | 0.0268 39 0.002 0.0025 | 0.0024
5 0.0243 0.0207 | 0.0178 40 0.0025 0.0019 | 0.0019
6 0.0166 0.0284 | 0.0284 41 0.0019 0.0019 | 0.0019
7 0.0381 0.0019 | 0.0019 42 0.0025 0.0019 | 0.0019
8 0.0019 0.0019 | 0.0019 43 0.0019 0.0459 0.0526
9 0.0019 0.0019 | 0.0019 44 0.0022 0.0421 0.0474
10 0.0019 0.0019 | 0.0019 45 0.0369 0.023 0.0019
11 0.0019 0.0019 | 0.0019 46 0.0321 0.0058 | 0.0152
12 0.0019 0.0022 | 0.0138 47 0.0019 0.0019 | 0.0161
13 0.0019 0.0019 | 0.0019 48 0.003 0.0287 | 0.0265
14 0.0019 0.0198 | 0.0021 49 0.0019 0.0023 | 0.0019
15 0.0019 0.0019 | 0.0019 50 0.004 0.0019 | 0.0019
16 0.0429 0.0062 | 0.0032 51 0.0284 0.0019 | 0.0019
17 0.0477 0.0019 | 0.0019 52 0.0313 0.0319 | 0.0284
18 0.0084 0.0422 | 0.0443 53 0.0067 0.0284 | 0.0284
19 0.0351 0.0393 0.0373 54 0.0019 0.0302 0.0378
20 0.0284 0.0198 | 0.0178 55 0.0071 0.0124 | 0.0125
21 0.0019 0.0247 | 0.0264 56 0.0019 0.0019 | 0.0019
22 0.0284 0.0039 | 0.0095 57 0.0071 0.0111 | 0.0111
23 0.0019 0.0027 } 0.0019 58 0.0019 0.0019 | 0.0019
24 0.0284 |- 0.0029 | 0.0062 59 0.0065 0.0101 | 0.0102
25 0.0019 0.0029 | 0.0032 60 0.0019 0.0019 | 0.0019
26 0.0225 0.0041 | 0.0033 61 0.0064 0.0104 | 0.0102
27 0.0338 0.0284 | 0.0284 62 0.0019 0.0019 | 0.0019
28 0.0252 0.0281 | 0.0278 63 0.0065 0.0118 | 0.0116
29 0.0471 0.0338 | 0.0331 64 0.0019 0.0019 | 0.0019
30 0.045 0.031 0.0316 65 0.0066 0.0108 0.0108
31 0.0019 0.0019 | 0.0019 66 0.0019 0.0019 0.0019
32 0.0035 0.002 0.0019 67 0.0076 0.0125 0.012
33 0.0019 0.0019 0.0019 68 0.0019 0.0019 0.0019
34 0.0031 0.0019 | 0.0019 69 0.0116 0.0282 | 0.0254
35 0.0022 0.0019 0.0019 70 0.0043 0.002 0.0019
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It is seen from the convergence study shown in Figure 4-10 that the IFM converge to the
optimized solution more rapidly as compared to the DM and also led to lighter design.
The deviation of the DM from the optimized solution is more as compared to any other
analysis procedure. It can be concluded from this study that path of the optimization
algorithm depends on the analysis procedure, and the IFM is better in comparison of
convergence and accuracy of the results. Further, the IFM(AG) and the IFM(NG) follow
the different optimization path. The numerically calculated gradient deviate the path of
the IFM and led to premature convergence which result in the heavier optimum design

corresponding to other local optima.

4.3.2 Case 2:70-Member Frame Structure-Two Frequency Constraint

In this case, the mass of the structure is minimized such that the first and second natural
frequencies are greater than 2 Hz and 7 Hz, respectively. The optimization results for the
first five natural frequencies with two best starting designs are shown in Table 4.11, and

the finial optimum design of the structure is tabulated in Table 4.10.

It can be observed that the initial point that give the minimum optimal solution for the
IFM can be different from the initial point that give the minimum optimal solution for the
DM. It is interesting to note that for this problem the IFM produce minimum mass using
initial design of 0.0019355 m? where as the DM produce minimum mass using initial
design of 0.0258064 m?. A minimum mass of 38356 Kg and 38354 Kg is obtained using
the IFM(NG) and IFM(AG), respectively with initial design of 0.0019355m® A

minimum mass of 38802K g is obtained using the DM with initial design of 0.0258064m®.
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Table 4.10 Optimum design for the cross sectional area (m?) of the 70-members

frame structure designed for Case2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Member | IFM(AG) | IFM(NG) DM Member | IFM(AG) | IFM(NG) DM
No No
1 0.0441 0.0019 0.0514 36 0.0118 0.0115 0.0251
2 0.0284 0.0019 0.0284 37 0.0019 0.0019 0.0019
3 0.0248 0.0019 0.0135 38 0.0136 0.0088 0.0228
4 0.0243 0.0019 0.0119 39 0.0019 0.0019 0.0019
5 0.0225 0.0019 0.0126 40 0.0144 0.025 0.0284
6 0.0172 0.0019 0.0115 41 0.0286 0.0289 0.0296
7 0.0123 0.0019 0.0117 42 0.0314 0.0142 0.0283
8 0.0153 0.0019 0.0124 43 0.0394 0.0394 0.0399
9 0.0314 0.0019 0.0312 44 0.0019 0.0389 0.0191
10 0.0019 0.0019 0.0019 45 0.0019 0.0019 0.0019
11 0.0019 0.0019 0.0019 46 0.0019 0.0059 0.0019
12 0.0285 0.0019 0.0286 47 0.0019 0.0019 0.0019
13 0.0314 0.0019 0.0328 48 0.0019 0.0284 0.0019
14 0.0059 0.0019 0.008 49 0.002 0.002 0.0022
15 0.0393 0.0019 0.0345 50 0.0019 0.0019 0.0019
16 0.0388 0.0019 0.0347 51 0.0019 0.0019 0.0019
17 0.0019 0.0019 0.0019 52 0.0019 0.0311 0.0019
18 0.0142 0.0314 0.0285 53 0.0019 0.0314 0.0019
19 0.0019 0.0019 0.0019 54 0.0019 0.0395 0.0019
20 0.0251 0.0144 0.0022 55 0.0019 0.0153 0.0019
21 0.0233 0.0019 0.0019 56 0.0019 0.0019 0.0019
22 0.0087 0.0136 0.0019 57 0.0019 0.0123 0.0019
23 0.0125 0.0019 0.0019 58 0.0019 0.0019 0.0019
24 0.0114 0.0119 0.002 59 0.0019 0.0171 0.0019
25 0.0284 0.0019 0.0019 60 0.0019 | 0.0232 0.0235
26 0.0248 0.0118 0.0278 61 0.0019 0.0223 0.0173
27 0.0361 0.0019 0.0284 62 0.0019 0.0125 0.0142
28 0.0284 0.0132 0.0284 63 0.0019 0.0243 0.0044
29 0.049 0.0019 0.0532 64 0.0019 0.0284 0.0019
30 0.047 0.0284 0.0387 65 0.0019 0.0247 0.0042
31 0.0019 0.0019 0.0019 66 0.0019 0.036 0.0019
32 0.0131 0.0283 0.0076 67 0.0019 0.0285 0.0044
33 0.0019 0.0019 0.0211 68 0.0019 0.0491 0.0019
34 0.0117 0.0249 0.0187 69 0.0019 0.0442 0.006
35 0.0027 0.0027 0.0284 70 0.0284 0.0468 0.0094
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Table 4.11 Final five frequencies of the 70-members frame structure at the

optimum point, designed for Case 2.

Analysis | Initial Design -0.0019355 m” Initial Design-0.0258064 m”
Method DM | IFM(NG) | IFM(AG) | DM | IFM(NG) | IFM(AG)
First 2 2 2 2 2 1.9999
Second 7 7 6.9997 7 7 6.9997
Third 7.6296 | 8.7088 8.7087 | 7.6357 8.709 9.1821
Fourth | 10.815] 9.5094 9.5204 10.62 9.3599 10.443
Fifth 13.715 | 12.231 12.228 | 12.412 | 12.452 11.035
Mass(Kg) | 41155 | 38356 38354 38802 38476 40378

The optimized cross sectional areas corresponding to these optimum designs are given in
Table 4.10. It is noted that again the IFM converges to lighter design in comparison to
the DM. Further, analytical gradient increases the performance of the IFM, and produced
even lighter design than that with numerical gradient. It should be noted that a minimum
mass 46494.67 Kg was obtained by McGee and Phan [64] using optimal criteria method

and the DM,

4.3.3 Case3:70-Member Frame Structure-Three Frequency Constraint

Finally, the mass of the structure is minimized so that the first, second and third natural
frequencies be greater than 2 Hz, 7 Hz and 15 Hz, respectively. The first five natural
frequencies and optimized mass using ail the analysis methods are shown in Table 4-12.
For both the IFM and the DM, the minimum optimum mass is obtained using starting
design of 0.0258064m> A mass of 55418 Kg is obtained using the DM, and a mass of
54557 Kg and 54252 Kg are obtained using the IFM(NG) and the IFM(AG), respectively.
It should be noted that a minimum mass of 61369.05 Kg was obtained by McGee and

Phan [64] using optimal criteria method and the DM. The cross sectional area of all the

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



members corresponding to optimum solution using the IFM(AG), the IFM(NG) and the

DM are provided in Table 4.13.

Table 4.12 Final five frequencies of the 70-members frame structure at the

optimum point, designed for Case 3.

Analysis | Initial Design -0.0019355 m* | Initial Design-0.0258064 m”
Method | DM [IFM(NG) | IFM(AG)| DM |IFM(NG) | FM(AG)
First 2 2 2 2 2.0478 2
Second 7 7 7 7 7 7
Third 15 15 15 15 15 15
Fourth 17.616 16.382 16.382 15.09 15.325 15.306
Fifth 18.441 17.465 17.004 18.3 17.111 18.072
Mass(Kg) | 56389 54891 54797 55418 54557 54252
7.5x10"
- IFM(AG)
- IFM(NG) DM
g \
[72]
T
E ‘ J*" AR
.r.»:»:"”‘*”"f\\,.‘;/"i R YA
Jrere o r
G /
< [ IFM(AG)
4 L 1 [ I )
0 50 100 150 200 250
lterations

Figure 4-11 Convergence curve for the 70-members frame structure optimized for

case3
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Table 4.13 Optimum design for the cross sectional area (m?) of the 70-members

frame structure designed for Case3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Member | [IFM(AG) | IFM(NG) DM Member | IFM(AG) | IFM(NG) DM
No. No.
1 0.034 0.0434 0.0355 36 0.0242 0.0285 0.0212
2 0.0217 0.0207 0.0268 37 0.0019 0.0019 0.0019
3 0.0228 0.0249 0.028 38 0.0324 0.0298 0.0356
4 0.0222 0.0244 0.0265 39 0.0371 0.0336 0.0472
5 0.0133 0.0309 | 0.0214 40 0.0291 0.0286 0.0284
6 0.01 0.0272 0.0161 41 0.0289 0.0284 0.032
7 0.01 0.0266 0.0196 42 0.0213 0.0283 0.024
8 0.0258 0.0283 0.0284 43 0.0019 0.0284 0.0019
9 0.0019 0.0325 0.0019 44 0.0199 0.0284 0.0281
10 0.0019 0.0019 0.0019 45 0.0029 0.0284 0.0203
11 0.0019 0.0019 0.0019 46 0.0275 0.0172 0.0285
12 0.0224 0.04 0.0287 47 0.0347 0.0412 0.0495
13 0.0019 0.0354 | 0.0019 48 0.0293 0.0294 0.0409
14 0.0293 0.033 0.0288 49 0.0206 0.0019 0.0019
15 0.0289 0.0418 0.0299 50 0.0019 0.0019 0.0019
16 0.0173 0.0292 0.028 51 0.0019 0.0019 0.0019
17 0.0208 0.0019 0.0304 52 0.0286 0.0019 0.0284
18 0.0225 0.0262 0.0284 53 0.0283 0.0021 0.0284
19 0.0019 0.0019 0.0019 54 0.0314 0.0019 0.0286
20 0.0281 0.0286 0.0284 55 0.0241 0.003 0.0159
21 0.0019 0.0295 0.0019 56 0.0233 0.0019 0.0019
22 0.0277 0.0342 0.0284 57 0.0216 0.0037 0.0131
23 0.0274 0.0465 0.0284 58 0.0019 0.0019 0.0019
24 0.0122 0.0316 0.0129 59 0.0196 0.0043 0.013
25 0.0019 0.0019 0.0019 60 0.0289 0.0019 0.0019
26 0.0115 0.0284 0.011 61 0.0273 0.0054 0.0238
27 0.0019 0.0019 0.0019 62 0.0386 0.0019 0.036
28 0.0138 0.0217 | 0.0129 63 0.0278 0.0049 0.0276
29 0.0287 0.033 0.0285 64 0.0278 0.0019 0.0225
30 0.034 0.0374 0.0358 65 0.0241 0.0056 0.0228
31 0.0019 0.0019 0.0019 66 0.0019 0.0019 0.0019
32 0.0205 0.0274 0.025 67 0.0226 0.008 0.0219
33 0.0019 0.0019 0.0019 68 0.0288 0.0285 0.0319
34 0.0207 0.0281 0.0216 69 0.0389 0.0389 0.0377
35 0.0019 0.0282 0.0019 70 0.0317 0.0378 0.0396
- 114




The iteration history for the DM, the IFM (AG) and the IFM(NG) is presented in the
Figure 4-11. It can be seen that all optimization algorithms take the different optimization
path and converge to the different optimum results. The small difference in the gradient
calculation and performance measures can change the path of the optimization
algorithms. Although the numbers of iterations for the IFM(AG) are more than IFM(NG),
but it converge to the lighter result. The inaccuracy in the numerical gradient leads to the

premature convergence using the [IFM(NG).

It can be concluded that the IFM and the DM can converge to the different optimum
results for structures subjected to single or multiple frequency constraints. The gradient
calculation with analytical method can change the path of the optimization algorithm and
can lead to the better design. As discussed in last chapter, the numerically gradient
calculation highly depends on the step size and choosing appropriate step size for the
finite difference gradient is challenging task. Therefore analytical calculated gradient can

provide the best direction to the optimization algorithm.
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Chapter 5

DESIGN OPTIMIZATION OF STIFFENED
PANELS USING IFM

5.1 Introduction

Stiffened panels are structural components, consisting of plates reinforced by a system of
stiffeners to enhance their load carrying capacity. The advantage of stiffening a plate lies
in achieving an economical and light weight design. While stiffening elements add
negligible weight to the structure, their influence on strength and stability is enormous.
These structures are widely used in aircraft, ship, bridge, building and some other
engineering activities. In many circumstances, these structures are found to be exposed to
in-plane loading. The buckling characteristics of these structures subjected to uniform in-
plane loading is of considerable importance, while designing for the aerospace [64], naval

[65] and civil engineering applications.

In this chapter, the FE formulation based on the IFM is developed for the elastic buckling
analysis of eccentrically stiffened panels. The panel and the stiffener are modeled using
two different IFM finite elements, and the compatibility between them is maintained. The
force finite element buckling analysis is performed for different sizes of stiffened panels
and convergence with increasing mesh size is studied. Further, the force FE buckling
analysis is combined with SQP technique to develop a design optimization methodology

to optimize the size of the stiffened panel while guarding against the elastic buckling, The

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



analytical expressions of the design sensitivity of the buckling load with respect to the
plate and the stiffener dimensions are also formulated using the IFM. The sensitivity
analysis is then integrated with the optimization algorithm to provide the gradient
information to SQP gradient based optimization technique. Finally, the developed design
optimization methodology is used to optimize the unflange and the flange stiffened

panels subjected to uniform compression loading.

5.2 Finite Element Formulation

The FE model for the elastic stability analysis of the eccentrically stiffened panels based
on the IFM is developed. The stiffened panel and references axis are shown in Figure 5-1.
The mid plane of the panel is considered as reference plane for both the panel and the
stiffener. The centroidal axis of the stiffener is eccentric from the reference axis by the

distance e which is called eccentricity of the stiffener.

STIFFENER

4

r

Figure 5-1 Stiffened panel
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The stiffener and the panel are assumed to buckle simultaneously and the formulation is
based on the behavior of the panel-stiffener system, and not on the behavior of separate
components. The stiffener is assumed to be of solid cross section, i.e. warping effects are
neglected. The bending strain developed due to the action of in plane loading is
considered for the buckling analysis. The panel and the stiffener are descretized by using
4-node shell element and 2-node space frame element, respectively. The expressions for
the equilibrium, the geometric stiffness and the flexibility matrices for both the panel and

the stiffener elements are formulated in the next section.

5.2.1 Shell Element

The shell element and the corresponding displacement degrees of freedom are shown in
Figure 5-2. The shell element is corﬁbination of the'plate and the membrane element.
The bending and the membrane deformations are considered independent of each other
and the FE matrices are formulated separately for these cases. The final matrices are

obtained by superposition of plate and membrane matrices.

Wy

Figure 5-2 The displacement degrees of freedom of 4-node shell element
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The element has four nodes and five displacement degrees of freedom at each node as
shown in Figure 5-2. Three displacement degrees of freedom are corresponding to the
plate element and two are corresponding to membrane element.

Plate Element

The bending state displacement w within the element is interpolated in terms of

deflection w,, rotation about x direction €, and rotation about y directiond,. The

Kirchhoff’s assumption that line normal to the surface of the plate remain normal after
the bending, is assumed, thus transverse shear deformation is neglected. Due to this
assumption, the rotational displacements are related to transverse displacements as:

The negative sign in &,,is due to the fact that to have positive moment along x direction,

negative displacement w is required. The displacement field within the element is
interpolated with hermitian interpolation, and is given by:

w=N w+N,,0,+N,, 0, +N,,w,

2p ¥xl 3p Uyt
+N;, 0,5+ N, 0, + N, ywy +Ng 0,4 (5-2)

+Ny, 0, + Nyg,wy + N,y 0.+ N,y , 0

9p7y3 12p Y y4

where

Nlp =Hy,(x)H (), sz =~Hu()H (), N3p = H(x)H y,(y)
N4p =Hy(x)H y,(»), Nsp =~Hy()H ,(3), Nsp = H,(x)H (),
Nyy =Hp()H (), Ny, =—Hu()H (), No, =H,(0)H ()
NIOp = Hu()H (), Nup =-Hy,(x)H ,(y), N12p =H,(x)H ,,()

(5-3)

where H,,(x), Hy,(x), H;,(x) and H,(x) can be obtained from Eq.(2-106), and H,(y)
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Hy,(y), H,,(y) and H,,(y) can be obtained from Eq.(2-106) by changing x to y and a to

b.

The moment field is interpolated similar to Eq. (2-108) and the stress interpolation matrix
is obtained from Eq. (2-110). The equilibrium matrix for 4-node plate element
corresponding to the bending deformations is obtained by substituting the displacement

and stress interpolation from Eqgs. (5-2) and (2-110), respectively into Eq. (2-20), and is

given by:

_ . X .

o 5 o 2 o o 4 2
) P ) >

o £og B2 m
2 2 2 3

S A A N R
15
> 21»52 ? 24

0 0 20 0 -a =
2 53 2 52

o & o0 b 2 gy P
3 15 5 5

p o 2 _ea
[Be]B= > 52 3 152

0o b o0 X o o -4 22
2 53 . 2 52
2 2 2 3

boap 22, o L L
5 5 3 15

0 -b 0 265 a2

2 53 2 52 54
o & o0 b, 2 g 240, (>-4)

3 : 15 5 2 5
2b 2ab a a

b ab -2 - 0 4 2

I 5 5 3 15|
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The flexibility matrix corresponding to stress filed of Eq. (2-110) can be obtained from
Eq. (2-115).

Membrane Element

The equilibrium and flexibility matrices for the membrane degrees of freedom are

formulated in the section 2.8.4, and can be obtained from the Eqgs. (2-103) and (2-104),

respectively.

The geometric stiffness matrix corresponding to the membrane degrees of freedom is null
matrix. Therefore, the geometric stiffness matrix of shell element contains terms only

corresponding to the bending degrees of freedom, and those can be evaluated from the

following equation [16]:

L= [t o o5

~b-a xp y
where
[4]= 9_%"_ _a_]?,_"_ _fi ﬁ_ (5-6)
% 5 Ty o

and n andn, are load vector along x and y direction, respectively, and 7, is shear load

vector. The panel is subjected to in plane compression loading only and shear load factor
n,, is considered as zeros. The closed form integration of the Eq. (5-5) is performed, and
the analytical expression for the geometric stiffness matrix is obtained for compressive

loading along x direction as:
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- ) . -
48 1@ L. 1@ 7% 162 T8 . 468 1326
a 32 a a ) a 82 a a )
-132 487 ) -78b -36b2 o 78b 362 . 13 4802
a a a a a a a a
78 -22b 208a 27  13b 72a -27 ~-I3b ~-18a -78 22b -S2a
162 78, 468 126 o 468 1526 0 -l T8
a a ) a a ) a a 5 a a 5
78 366 5 132 48 13k 48 -78b 366
a a a a a a a a
k] =( n,b)>< 27 -13b 722 78 22b  208a -78 -2%b -52a -27b 13b -18%a
«#7(Toso)"| 162 78b . -468 -1 . 468 13b . 12 -7
a a ) a a 2 a a 5 a a 2
786 36bY . -1b_agb® 136 4k’ 786 3eb?
a a a a a a a a
21 73 -8 78 b -5 -78 -2 208 -27 13 7
-468  13%b . -l 78 . 162 78 . 468 -132b
a a 5 a a 5 a a 2 a a 2
132 -48bT ) T8 36T 0 -78b 36?0 -1 ag? ) (57)
a a a a a a a a
78 -2b -522 27 13b -18a -27 -3 722 -78 22b  208a |

The expression for the geometric stiffness matrix corresponding to the compression

loading along y direction can be obtained by changing a to b and n, to n, in Eq. (5-7).

If the stiffened panel is compressed along both directions, then the resulting geometric

stiffness matrix is sum of previous two matrices.

5.2.2 Space Frame Element
A space frame element as shown in Figure 5-3 is a straight bar of uniform cross section
which is capable of resisting axial forée, bending moment about y axis in the plane of its

cross section and twisting moment about its centroidal axis. The bending displacements
about z axis are neglected and panel is considered to have infinite stiffness against the
drilling degree of freedom. The local x yz coordinate system coincides with the principle
axis of the cross section, with the x -axis representing the centroidal axis of the frame
element. According to engineering theory of bending and torsion of beams, the axial

displacements, the torsional displacements and the bending displacements in xz plane are
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independent of each other. Therefore these three cases will be considered separately in

formulating the finite element equations.

Space Frame Element

Figure 5-3 The space frame element
Axial Displacements

A space frame element has two axial nodal displacements u, and u, as shown in Figure

5-4.

1
——x

12

Figure 5-4 Axial degrees of freedom of the space frame element
The equilibrium and flexibility matrices for these displacements are generated in section

2.8.1, and can be obtained from Egs. (2-80) and (2-81), respectively as:

[B.) = {_ﬂ (5-8)

[G.] = {j}g} (5-9)

The geometric stiffness for these displacements is null matrix.
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Torsional Displacements

A space frame element has two torsional degrees of freedoms 6, and 6., as shown in

Figure 5-5.

Figure 5-5 Torsional degrees of freedom of the space frame element

A linear variation for the torsional displacements is assumed, and the displacement field
is interpolated as:

9x = Nllexl + N21‘9x2 (5-10)

where shape functions are:

X X
Nllzl_f and N2,='i- (5-11)

The torsional displacement induces only shear stresses in the element, which can be

interpolated as:

F, (5-12)

Txyz

SN

where F; is the internal torsional force in the element, z is the distance from the

centroidal axis and J is the polar moment of inertia.

Substituting Egs. (5-10) and (5-12) into Eq. (2-20) yields the equilibrium matrix as:

3.1, {—ﬂ (5-13)

Substituting Eq. (5-12) into Eq. (2-26) yields the flexibility matrix as:
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ST

[6.], =[ = } (5-14)

where S is the shear modulus of the frame material. The geometric stiffness matrix for

torsional displacements is also null matrix.

Bending Displacement in xz plane

The space frame element have four nodal bending degrees of freedom in the xz plane as
shown in Figure 5-6, transverse displacements w, and w,, and rotational displacements

0,and 6,,.

/
1% =1|»1/ Hyz =11y,

X

fw, W,

!
z

Figure 5-6 Bending degrees of freedoms in xz plane

The equilibrium and the flexibility matrices associated with these degrees of freedom are

formulated in the section 2.8.2, and can be obtained from Eqgs. (2-88) and (2-89) as:

0 1
-1 0
= 5-15
BL=, (5-15)
1 L
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L= (5-16)
2 30,

The geometric stiffness matrix for these bending displacements can be obtained from the

following relation [16]:
L

[k, ] = [lT Plz]ax (5-17)

0

where

[Z]:[aN, AN, 6N, am} (5-18)

ax ox ox ox
P is the axial compressive load, and N,, N,, N, and N, can be obtained from Eq.(2-83).
The axial compressive load P can be approximately written in term of panel loading 7,

as [65]:

p=tapy, (5-19)
Ask

where A4, and 4, are the cross sectional area of the stiffener and the skin, respectively
and b, is the width of the panel. The geometric stiffness matrix obtained after closed form

integration of Eq. (5-17) can be written as:

36 3L -36 3L

L 41 -3L -’
k] =| 2 3 L (5-20)
¢5~|30L ) -36 -3L 36 -3L

3L -1 3L 417
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The Finial Equilibrium, Flexibility, and Geometric Stiffness Matrices
The final equilibrium, flexibility and geometric stiffness matrices of the frame element
are obtained by superimposition of the matrices obtained from three independent

deformation states. The final equilibrium matrix, assembled from Eqs. (5-8), (5-13) and

(5-15) is:

-1 0 0 0]

0 0 0 1

0 -1 0 O

[Be]SF_ o0 b (5-21)

1 0 0 O

0 0 0 -1

0 1 0 0

0 0 1 L|

L
AE,
0 S_LJ 0 0 (5-22)
Gl = ) )
"l o L K
EI, 2EI,
12 r
i 2EI, 3EI, |

The finial geometric stiffness matrix for the frame element includes only terms
corresponding to the bending deformation, since those for the axial and the torsional

displacements are null matrix and from Eq. (5-20) can be extended as:
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0o o 0 0 0 0 0 O
0 3 0 3L 0 -36 0 3L
0 0 0 0 0 0 0 0
[K] 2[__13_)0 3L 0 412 0 -3L 0 -I? (5-23)
¢gFr {30LJO O O O O O 0 O
0 -36 0 -3L 0 36 0 -3L
6 0 0 0 0 0 0 O
0 3L 0 -L* 0 -3L 0 4L*

5.2.3 Panel Stiffener Interaction

The compatibility between the panel and the stiffener is considered by combining these at
the common node at the point of their intersection. If the panel is descritized into

(n, xn, ) mesh, then there will be (#, +1) common node where frame elements can be

placed as shown in Figure 5-7.

\7

Stiffener /

Plate

Figure 5-7 The FE modeling of stiffened panel
The additional displacement [67] resulting from the eccentricity e of the middle surface

of the panel and the centroids of the stiffener is taken into account in deriving the finial
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equilibrium and the geometric stiffness matrices of the stiffened panel. The rotations 8,

at the panel node k& will produce displacement at the stiffener node o as shown in Figure

5-8.

u k

vk

' W
A

Figure 5-8 The displacements on plane (%, z)

The displacement vector { 0} at the stiffener node o and {g, }at the plate node % can be

written as:
U, U,
al=ig 1 lad=1y" (5-24)
0s Oy
The {g, } can be associated with {g, } by the following relation:
{.}=1rla.} (5-25)
where [T'] is the transformation matrix and is of the form:
1 0 0 —e
[T]=8 (1) (1) g (5-26)
000 I
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The equilibrium and geometric stiffness matrices for the space frame element generated

at node o can be transformed to node & by the following relation:
8], =[rT[5.] (5-27)
k] =lrTlk, ][] (5-28)
[Be]oand (B, ]k are the element equilibrium matrices of the stiffener at node o and %,
respectively. lK gL and [K ¢ Jk are the geometric stiffness matrix of the stiffener at node o

and k, respectively. The equilibrium and geometric stiffness matrices transformed at node
k are assembled with those of the panel element to obtain the final equilibrium and the
geometric stiffness matrices of the stiffened panel. The flexibility matrix of stiffener is

same at node o and k, and therefore assembled directly with the panel flexibility matrix.

5.3. Convergence and Validation

The accuracy of the solution obtained is of paramount importance in the choice of
analysis formulation. Numerical studies have been conducted for the elastic buckling
analysis of the plate and the stiffened panels to validate the developed FE formulation
based on force methodology. The problerhs are solved for which analytical solutions are
available. The results for the buckling analysis are also compared with those obtained
using the DM. Finally, convergence study for the buckling analysis of stiffened panels is
carried out in order to estimate the order of the mesh size to be necessary for numerical

solution.
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5.3.1 Buckling Analysis of Square Plate
The FE elastic buckling analysis of the plate simply supported along all edges and
subjected to uniform in plane loading is performed using the I[FM. The dimensions and

material properties of the plate are shown in Figure 5-9.

1m,

&

[
101nm
. "~
K

pV4

Modulus of Elasticity=200GPa, Poisson ratio= 0.3
Figure 5-9 The éimply supported square plate
The analysis is performed with the IFM shell element. The problem is also analyzed with
4-node Kirchhoff’s DM element having displacement interpolation similar to that of the
IFM plate element and ANSYS Elastic 4node63 shell element [68]. The exact solution
for the critical buckling load of the simply supported square plate subjected to uniform

uniaxial loading is given by Timoshenko [37]:

. k
Critical Buckling Load N, = bfzzD- ~ (5-29)
5 t.Y
Bt L : :
where D= o £— is the flexural rigidity of the plate, & is the buckling parameter,
—V ,

b, is the width of plate and ¢, is thickness.

The value of k obtained analytically for this problem is 4. The buckling load parameter

obtained from all the formulations are presented in Table 5-1. The results show that the
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IFM give sufficient accuracy of less than one percent error using only 25 elements, on the
other hand ANSYS required 64 elements in order to achieve similar accuracy. The DM,
with using highest number of 144 elements, still shows 1.8 percentage errors. The IFM
converges very rapidly to the exact solution and show excellent accuracy even for coarse
mesh.

Table 5-1 Critical buckling load for simply supported square plate subjected to uniform

uniaxial compressive loading

IFM ANSYS DM
No.of | Buckling | &k (num) | Buckling | 4k (num) | Buckling | 4 (num)
Elements | Parameter / Parameter / Parameter /
(k) k (anal) (k) k (anal) (k) k (anal)
4 3.751 0.938 3.748 0.937 4.406 1.102
9 3.892 0.973 3.82 0.955 4.249 1.062
16 3.942 0.986 3.88 0.970 4.173 1.043
25 3.966 0.991 3.916 0.979 4.134 1.033
36 3.978 0.994 3.94 0.985 4.112 1.028
49 3.985 0.996 3.956 0.989 4.098 1.024
64 3.989 0.997 3.964 0.991 4,089 1.022
81 3.992 10.998 3.972 0.993 4,083 1.020
100 3.994 0.998 . 3.976 0.994 4.078 1.019
121 3.996 0.998 3.98 0.995 4.075 1.019
144 3.997 0.999 3.98 0.995 4.072 1.018

A convergence study of the critical buckling load is performed and the results are shown
graphically in Figure 5-10, the results obtained from the IFM are presented with those
obtained from the analytical solution, the DM Kirchhoff’s element and ANSYS 4-node
shell element. As Figure 5-10 shows fast convergence is achieved when the IFM element

is used, whereas the DM element led to a very slow convergence. The IFM and ANSYS
elements converge from lower side of the analytical solution, whereas the DM element

converges from the upper side. The DM shows the least accuracy as compared to other
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formulations. The IFM basic 4-node element even shows superior accuracy than that of

much advanced ANSYS shell element.

1.12
i <+ DM
110« P(num) : Buckling Load Calculated Numerically ——|FM
P(ana ) : Buckling Load Calculated Analytically v ANSYS
108 — Analytical
106k 4
© N
& 1.04f .
o e e
é 1.02- e D B e <
2
a_’ 1 [P —- k Ty v v
v
0.98+
0.961
0.94+
: 1 ! ! : l
43 64 81 100 121 144

Number of Elements

Figure 5-10 Convergence curves for the critical buckling load of square plate

5.3.2 Buckling Analysis of Stiffened Panels

The simply supported square plate with one central stiffener as shown in Figure 5-11 is
analyzed in the present case by varying the stiffener parameters.

ks

V4

Vel
=

_T_—_ts

T
l
|
—_ +
,:(___.w bow
|
|
)

Figure 5-11 Cross section of stiffened panel
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The stiffener is placed eccentrically and the panel is subjected to uniform in plane loading
along the x-axis. The results of the analysis are compared with those obtained
analytically by Timoshenko [37]. The exact value for the critical stress can be evaluated

from the following formula [37]:

(5-30)

where £ is the buckling parameter and its value can obtained from tables given in

Ref.[37], and D, b, and ¢, are the flexural rigidity, width and thickness of the plate,

respectively. It should be noted here that energy of twist of the stiffener, which occurs
during buckling, is neglected in Timoshenko formulation, therefore the actual value of
the critical stress can be more than that given by Eq. (5-30). In order to compare the
results with Timoshenko formulation, the problem is first analyzed without considering
the torsional rigidity of the stiffener (IFM1). The results thus obtained are compared with
Timoshenko formulation and the convergence study is performed. The analysis is also
performed with considering the torsional rigidity of the stiffener (IFM2), and the effect of
torsional rigidity of the stiffener on the buckling load is investigated. The two stiffeners
of different sizes having same panel size and loading are analyzed in the following

section.

Stiffener 1
The dimension of the plate and stiffener taken are:

b =lm,L, =1mt =10mm,t, =15 b, =30mm. (5-31)
The value of & obtained is 7.8025. The results of the analysis obtained using the IFM1

and the IFM2 with increasing numbér of elements are presented in Table 5-2.
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Table 5-2 The buckling parameter ( k) for stiffener] with different number of elements

Elements | IFM1 IFM2
4x4 7.29 7.29
6x6 7.60 7.60
8x8 7.719 7.719

10x10 7.768 7.768
12x12 7.789 7.789

A convergence study is carried out for the buckling load. It is seen that the IFM converge
to the accurate results very rapidly and generate very accurate results even for the coarse
FE mesh. The IFM converge to 1% error for (8x8)FE mesh, and error reduces to 0.184
% for (12x12)mesh size. The convergence study shows that mesh size of (8 x8)elements
is sufficient enough to get reasonable accurate result. It can be seen that the critical
buckling load obtained from IFM1 and IFM2 are same, therefore the torsional stiffness of
the stiffener have no effect on the critical buckling load of the considered stiffened panel.

Stiffener 2

Now the stiffened panel is analyzed with large size of the stiffener. The dimensions of the
stiffened panel are:

b, =1m,L, =1m, t, =10mm, t, =15, b, = 60mm | (5-32)
The value ofb k obtained analytically is 16. The results obtained using the [FM1 and the
IFM2 are presented in Table 5-3. The IFM results show superior accuracy and
convergence is very fast. It can be seen that the IFM produce sufficient accuracy with the
mesh size of the (8x 8)elements. It can be realized that the critical buckling load obtained
from the IFM2 is higher than the IFM1. Therefore, in this case, the torsional rigidity of

the stiffener noticeably affects the critical buckling load. It can be concluded that the
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effect of the torsional rigidity of the stiffener on the buckling load depends on the size of

stiffened panel, and the effect increases with increase in the size of the stiffener.

Table 5-3 Buckling parameter (k)

Elements | IFMI1 IFM2
4x4 15 16.585
6x6 15.554 17.061
8x8 15.753 17.234

10x10 15.846 17.315
12x12 15.896 17.359

The effect of torsional rigidity on the buckling load of the stiffened panel is presented

graphically in Figure 5-12. It can be seen that IFM2 curve is offset from the IFM1 curve

by certain distance, which is the measure of the effect of the torsional rigidity of the
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Figure 5-12 Convergence curve for the buckling load of the stiffened panel
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As the convergence study for both of these problems shows that mesh size of

(8><8) elements is sufficient enough to get reasonable order of accuracy, the analysis in

subsequent optimization problems is carried out with (8x8) mesh size.

5.4 Optimization of Stiffened Panel

Stiffened panels generally consist of large panel with equally spaced similar stiffeners
attached to it. The entire width of the panel can be divided into repeating unit, having
similar configuration as shown in Figure 5-13. A repeating unit includes the cross section
of stiffener plus the panel skin of width equal to spacing between stiffeners. The
optimization problem is reduced to only one repeating unit and the appropriate boundary
conditions are applied along the longitudinal side of the stiffener to simulate the
continuity of the panel. The single module model gives a good approximation to the local
skin buckling mode if there are more than three or four equally spaced stringers in the
panel. The boundary conditions along the length of the panel are applied such that the
panel is assumed to be buckled longitlidinally. All the nodes on the longitudinal axis are
restrained from rotation along the loﬁgitudinal axis to approximate the continuity of the

panel.

Repeating Unit

[
Entire Panel Width

Figure 5-13 Repeating unit of the entire panel
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The objective of the optimization problem is to minimize the mass of the stiffened panel
while guarding against the buckling failure. The mass of the stiffened panel can be
written as:

M =(4, +A,)pL, (5-33)
where p is the mass density and L, is the length of the panel. The length of the panel
and mass density are always known, therefore objective function can be reduced to
minimize the cross sectional area of the stiffened panel:

Objective Function= (4, + 4,,) (5-34)

Normalized buckling constraints may be described in standard form as:

g, =—%ﬂ +1<0 (5-35)

c

where N, and N, are the critical buckling load and its associated allowable, respectively.

An optimization algorithm has been developed in which the IFM as analyzer has been
combined with SQP technique as optimizer. The design sensitivity analysis of the
buckling load with respect to thickness of the plate and dimensions of the stiffener is

performed analytically and integrated with the optimization algorithm.
5.5 Sensitivity Analysis of Stiffened Panels
The linear buckling analysis problem is the eigen value problem. The formulation to

calculate the sensitivity of the eigen value is provided in section 3.6.3. From Eq. (3-64),

the sensitivity analysis equation for the buckling analysis can be written as:
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B dpv, " dDV,
dDy, AN 3

L WAl

(5-36)

where {VL} and {VR} are left and right eigen vectors, respectively and DV, is the jth

design variable. The derivative of the system matrix [S] of the IFM can be written as:

dls] _|_[o]
where
G]= jg?} (5-38)

From Eq. (2-74), the IFM stability matrix can be written as:

[s,]= [&[[(;’]][ﬂ} (5-39)

Taking derivative of the Eq. (5-39) with respect to DV yields:

Eagen ko Ik, ][J{d—[GlJ—

dls,) _| 407, vy, av,

5-40
dD Vj [Olrxn) ( )

It can be observed from Eqs.(5-36), (5-37) and (5-40) that to find the sensitivity of the

buckling load, the derivatives of the geometric stiffness and the flexibility matrix with

respect to design variables are required to be calculated. It is noted that derivative of [J ]

can be obtained from Eq. (3-66).
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Since a stiffened panel is being dealt with, the design variables come from both panel and
stiffener. In the present study, the length and breadth of the panel are kept constant,
however the thickness of the panel is considered as the design variable. The design
variables for the stiffener depend on the shape of stiffener, these are height and thickness
of the stiffener for the unflange stiffened panel, and additionally width and thickness of
the flange for the J-type stiffener. In the following section analytical expression for the
design sensitivity of the buckling load with respect to thickness of the plate and the

stiffener parameters are derived.

5.5.1 Sensitivity with Respect to Plate Thickness

The overall flexibility and geometric stiffness matrices of the stiffened panel are
assembled from the element matrices of the plate and the stringer. Further, the plate
element matrices are combination of matrices from the bending and the membrane
deformation states. Therefore the derivatives of all of these matrices are required to

calculate the sensitivity of linear buckling load with respect to design variables.

The finial geometric stiffness matrix of the stiffened panel is combination of the
geometric stiffness matrix of the panel and the stiffener. The panel geometric stiffness
matrix is independent of the thickness of the panel, so its derivative can be written as:

dlx,
b o (5-41)

dt

s

Stiffener geometric stiffness matrix depends on the compressive load applied on the edge

of stiffener, which depends on the plate thickness. From Eq. (5-23), the derivative of the
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geometric stiffness matrix of the stiffener with respect to plate thickness can be written

as.
[0 0 0 0 0 0 0 0
0 36 0 3L 0 -36 0 3L
0 0 0 0 0 0 0 0
dg,|, ap 1f0o 3L 0 4 0 -3L 0 -I (5.42)
de,  dt,30L[0 0 0 0 0 0 0 0
0 -36 0 -3L 0 36 0 -3L
0O 0 0 0 0 0 0 O
0 3L 0 -I* 0 -3L 0 4L7
where
dP -1
—=_-P 5-43
at, t (5-43)
d[G]

The derivative of flexibility matrix i is assembly of the derivative of shell flexibility

s

matrix %11 and the derivative of stiffener flexibility matrix d[f]” . The d[GL

s § s

further combination of the derivative of membrane flexibility matrix

derivative of bending flexibility matrix dgz]" . These matrices are evaluated from Egs.

5

(2-111), (2-104) and (5-22) as:

d[G], -3
R [G], (5-44)

s £

dlGl, -1 ]
= [G], (5-45)

dlol: _, (5-46)
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5.5.2 Sensitivity With Respect To Stiffener Parameters
The general expressions for sensitivity analysis with respect to jth stiffener parameter

SP; are formulated. As discussed previously, to find the sensitivity with respect to SP,,

d
ZEC;] and l gJ are required to be evaluated. The panel geometric stiffness matrix is

J J

the

independent of the stiffener parameter; therefore its derivative with respect to SPis zero:

d |.Kg -ly

dSP,

J

=0 (5-47)

From Eq. (5-23), the derivative of the geometric stiffness matrix of the stiffener is:

-

0 0 0 0 0 0 0 O
0 3 0 3L 0 -36 0 3L
0 0 0 0 0 0 0 O
d,), _ap 1]0 3L 0 4 0 -3L 0 -U (5.48)
dSP, dSP,30LIO 0O 0 0 0 0 0 0
0 -3¢ 0 -3L 0 36 0 -3L
0 0 0 0 0 0 0 0
0 3L 0 -LI* 0 -3L 0 41|
where ab__ a4, b.n A (5-49)

dsp, dsSp, 7
The flexibility matrix of the plate element is also independent of the stringer parameters,

so its derivative with respect to SP, is:

dlGl, _, 4Gl _, (5-50)
dSP, ' dSP,

J

From Eq. (5-22), the derivative of the flexibility matrix of the stringer with respect to SP,

1s:
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L 44, 0 0 0
A, dSP,
0 _EL @ 0
dSPj 0 0 ,.L dly _ L dfy
2 2
I’ dSp, 21 dSP,
0 0 _ _Ii a, _Li_ dl,
217 dSP, 31, dSP,

5.6 Ilustrative Optimization Examples

A design optimization algorithm is developed in which the IFM as analysis module is
combined with the SQP as optimization module to optimize the dimension of the
stiffened panel. The finite element sensitivity analysis has been used to evaluate the
required gradient in SQP algorithm. The stiffeners are attached symmetrically to the
panel, and length of the panel and the number of stiffeners are assumed to be known. The
panel is subjected to uniform compression loading and guarded against the elastic
buckling. The design variables are the thickness of panel and dimensions of the stringer.
The optimum dimension of both flange and unflange stiffener subjected to same uniform
compression loading, are calculated. The problem is also solved using the IFM(NG), and
results are compared with those obtained using the IFM(AG). It should be noted that for
both optimization problems stopping tolerance of 0.001 is considered for objective

function, constraints and search direction.
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5.6.2 Design of Unflanged Stiffened Panel

The unflange stiffener as shown in Figure 5-14 is simplest type of stiffener and used for

low cost fabrication. It has low structural efficiency, but easy to machine. The design

variables are the thickness of the plate, and height and thickness of the stiffener.

1

Figure 5-14 Unflange stiffened panel

The objective function of the problem is to minimize the cross sectional area of the

stiffened panel.

Area of cross section of the stiffener 4, =5,z
Area of cross section of panel 4,, =b.1,
Objective Function= bz + bwt‘w

The other parameters are:

' ) b
The distance of the centroidal axis from the lower surface of skin 4 = -—2-‘”—

by

Second moment of area of the stiffener about the centroidal axis /, = 5
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The length of the panel is 0.57631m, and it is designed for uniform compressive loading
of 1.5513 MN/m. As discussed previously, only one repeating unit of the entire panel will
be optimized to reduce the computational cost. The width of the repeating unit is
0.123952m. The lower limits on the thickness of the plate, height of the stringer and
thickness of the stringer are 20mm, 10cm and 20mm, respectively. As an initial design
for the optimization algorithm, the thickness of the plate, height of the stiffener and
thickness of the stiffener are set as 40mm, 70cm and 50mm, respectively.

Table 5-4 Comparison of the gradient at the initial design point for the unflange

stiffened panel
IFM(NG) IFM(NG)
(Default Step Size) | (Accurate Step Size) | IFM(AG)

Height of
stiffener(cm) 0.0274 0.0113 0.0113
Thickness of
stiffener(mm) 0.4753 0.4753 0.4753
Thickness of

plate(mm) 7.7242 7.6249 7.6248

Before starting the optimization algorithm, the accuracy of the analytically sensitivity
analysis is compared with numerically sensitivity analysis obtained from the MATLAB
optimization toolbox at the initial desigp and it has been demonstrated that how the
change in step size affect the accuracy of the gradient calculation. The step size taken by
MATLAB toolbox default setting varies between 0.1 and 1E-8. The analytically

calculated gradients and numerically calculated gradient by default setting are shown in

Table 5.4. It can be seen that numerical gradient obtained from MATLAB differ from
the analytical calculated gradient, and the maximum discrepancy is in the gradient with
respect to height of the stiffener. The reason for the discrepancy in gradient is the

incorrect step size taken by the MATLAB toolbox and discrepancy in gradient with
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respect to the height of the stiffener, is maximum because of its large value as compared
to other parameters. The numerically gradient is compared by varying the step size
setting in MATLAB toolbox to obtained best setting, for which discrepancy is minimum.
The numerical gradient using this step size setting is shown the Table 5.4. Therefore, it
can be concluded that numerical technique is not reliable tool for gradient calculation and
choosing best step size is challénging task in some cases.

Table 5-5 Optimized dimensions of the unflanged stiffened panel

Stiffened
Thickness | Height of | Thickness of | panel cross | Number
of the the section of
plate(cm) | stiffener(cm) | stiffener(cm) area(cm?) | Iterations
IFM(AG) | 0.4114 5.5134 0.2 6.2025 7
IFM(NG) | 0.4115 5.5107 0.2 6.2028 10
8.5
+ IFM(AG)
~—IFM(NG)
8
S
275
w
8
o
§ 7
<
6.5 IFM(AG) IFM(NG)
\'———-._m_u _____ SRR S 4
£ 2 3 4 5 6 7 8 9 10
lterations

Figure 5-15 Plot of objective function versus iteration number
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The optimization of the stiffened panel is performed with both analytically calculated
gradient and numerical calculated gradient. The optimum dimensions of the stiffened
panel are presented in Table 5-5. A minimum cross sectional area of 6.2025 cm? is
obtained. Although the IFM(AG) and the IFM(NG) converge to almost same optimum
values, but the IFM(NG) take more number of iterations to converge. The number of
iterations taken with analytical gradient are 7, on the other hand with the numerical
gradient are 10. The plots of objective function versus number of iterations for both
formulations are shown in Figure 5-15. The IFM(AG) takes much less number of

iterations, and time required to calculate the gradient is also very less than the numerical

gradient.

5.6.2 Design of J-Type Stiffener

The J-type stringer as shown in Figure 5-16 is designed. The J-type stringer provides

higher structural efficiency than unflanged stiffener, but requires complicated machining.

The design variables are thickness of the platez, , height of the stringerd, , width of the

stringer#,,, length of the flange b, and the thickness of the flange?, .

- bs |
o i
| +
C , 1
| T,
—.— { -, b,
|
1 |
— A
ol A

Figure 5-16 Design parameters of the J-type stiffened panel
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The objective function is to minimize cross sectional area of the stiffened panel.

Area of cross section of the stringer 4, =b,¢, +b¢, (5-57)
Area of cross section of plate 4, =bf, (5-58)
Objective Function = b t, +b,t, +bt, (5-59)

The other parameters are:

The distance of the centroidal axis from the surface of skin:

. 0.5¢,b2 + bt (b, +05t,)

5-60
i (5-60)
Second moment of area of the stiffener about the centroidal axis:
t b’ b\ bt )
I =22 pylp—22| + XL up s (b —h 5-61
y 12 w w( 2 j 12 f f( w ) ( )

The J-type stiffened panel as shown in Figure 5-16, is one of the repeating units of the
entire panel. The length of the panel, width of the repeating unit, critical buckling load
and boundary conditions are same as specified in previous problem. In addition to the
buckling constraint, the constraints on the dimensions of the flange are applied such that
width of flange is greater than 0.327 times the height of the stiffener and thickness of
flange is greater fhan or equal to thickness of the stiffener. The initial design for the
height of the stiffener, thickness of the stiffener, thickness of the plate, width of the
flange and thickness of the flange are set as 50cm, 30mm, 20mm, 20cm and 40mm,
respectively. The height of the stiffener, thickness of the stiffener and thickness of plate

are limited to minimum value of 10cm, 20mm and 20mm, respectively.

Similar to the previous problem, the analytical and numerical gradients of the buckling

constraint are compared, before the start of the optimization algorithm. The analytically
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calculated gradient and numerically calculated gradient using both default step size and

best step size are shown in Table 5-6. It can be observed that numerically calculated

gradients using default step size differ significantly from the analytically calculated

gradients. Therefore, the best step size is searched, for which discrepancy with respect to

analytically calculated gradient, is minimum and optimization is performed using this

step size.

Table 5-6 Comparison of the gradient at the starting design for J-type stiffened panel

IFM(NG) IFM(NG)
(Default Step Size) | (Accurate Step Size) IFM(AG)

Height of
stiffener(cm) -0.0031 0.0007 0.0007
Thickness of
stiffener(cm) 0.0406 0.0364 0.0364
Thickness of

plate(cm) 2.0361 . 2.0632 2.0623
Width of the

flange(cm) 0.0036 0.0017 0.0017
Thickness of

flange(cm) 0.0314 0.0259 0.0259

Table 5-7 Optimum Design of J-Type Stiffened Panel

Thickne | Height | Thickne | Width | Thickness | Stiffened -
ss of ofthe | ssofthe of of Flange | panel cross | Number
plate stiffener | stiffener | Flange (cm) section of
(cm) (cm) (cm) (cm) area(cmz) Iterations

IFM(AG) | 04114 | 4.3956 0.2 1.4374 0.2 6.2656 8
IFM(NG) | 04114 4.3926 0.2 1.4426 0.2 6.2661 12

The optimized dimensions of stiffened panel obtained using both analytical and

numerical gradients are given in Table 5.7. An optimized area of cross section of 6.2656

cm? is obtained using the IFM(AG), and 6.2661 ecm” is obtained using the IFM(NG). The

numbers of iterations taken by the IFM(AG) and the IFM(NG) are 8 and 12, respectively.
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The inaccuracy in sensitivity calculation by the numerical method, change the path of the
optimization algorithm and results in more number of iterations. It has been noted that
calculation of gradient by analytical method decreases the computational time

significantly and make the optimization algorithm faster.

9.5

1

- IFM(AG)
o9 —+-1FM(NG)
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4'50 2 4 6 8 10 12

lterations

Figure 5-17 Plot of objective function versus number of iterations
The convergence of the optimization algorithms with number of iteration are shown in
Figure 5-17. It can be observed that at theAbeginning both the optimization algorithms
follow the same path, but after a few number of iterations it differ somewhat. Therefore
small differences in the gradient calculation change the path of the optimization

algorithm and results in more number of iterations with numerical gradient.

Therefore it can be concluded that the IFM combined with SQP algorithm and analytical

sensitivity analysis, is excellent tool for optimizing the dimensions of stiffened panel
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subjected to uniform compression loading, and can be used in number of application in

civil, naval and aerospace industries.
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Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion
Many different topics in the field of structural analysis, design sensitivity analysis,
optimization and design optimization of stiffened panels are covered in this thesis. A

short summary and conclusion of the work are presented in the following.

6.1.1 Structural Analysis

The equations of the IFM are amenable to computer application and can be easily
automated. The extensive numerical analysis is performed to investigate the efficiency of
the IFM. The results of the analysis are compared with those obtained from the DM. It is
realized from these examples that the IFM yields accurate results for both stresses and
displacements even for very coarse meshes. The DM requires much finer mesh to acquire
the same accuracy. The IFM converge to exact solution rapidly and show superior
accuracy. AMoreover, it has been observed that the results of the IFM are not much

sensitive to the choice of the stress and displacement field.

6.1.2 Design Sensitivity Analysis

The numerical and analytical techniques for the design sensitivity analysis are introduced
and consequences of using numerical techniques are described. The discrete approach
which is computationally efficient and easy to implement, is used to evaluate the

analytical sensitivity. The design sensitivity analysis has been implemented for the
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discrete structures using the IFM. The closed form derivatives of the various finite
element matrices that are required in direct method are evaluated. The sensitivity analysis
equations are formulated for the stress, displacement and eigen value constraints. The
efficiency and accuracy of the analytical sensitivity analysis is compared with the
numerical sensitivity analysis. It has been observed that the analytical sensitivity analysis
procedure is very efficient and accurate as compared to the numerical sensitivity analysis,
and required less number of iterations to converge to the optimal solution. The accuracy
of the numerical sensitivity analysis highly depends on the step size. The small error in
the calculation of gradient by numerical method changes the path of the optimization
algorithm and results in large numbers of iterations and premature convergence. Further,
it has been observed in some cases that for the optimization problems subjected to

frequency constraints, the IFM(AG) produce even better design as compared to the

IFM(NG).

6.1.3 Structural Optimization

The design optimization using the IFM is investigated for the small and large scale size
optimization problerﬁs. A size optimization algorithm has been developed in which the
IFM as analyzer has been combined with SQP technique as an optimizer. The analytical
design sensitivity analysis is integrated with optimization algorithm to provide the
gradient information to the SQP. The structures are designed for the stress, displacement
and frequency constraints. The problems are also investigated with the DM as analyzer
and the comparison is performed. It hag been observed that the IFM and the DM produce

almost same optimum results for the structural optimization problems subjected to stress
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and displacement constraints, but the required computational time for the IFM is
significantly less than the DM. The numerical tests presented demonstrate the
computational advantages of the IFM for stress and displacement constraints, which
become more pronounced in large-scale optimization problems. Further, it has been
observed that the computational efficiency of the IFM increases with increase in numbers

of active stress constraints in the problem.

It has been observed that for the large scale structural optimization problems subjected to
frequency constraints have many local minima’s, the IFM and the DM can produce
different optimum results. It is seen from the investigations done in this thesis that the
IFM results are better than the DM. The IFM has been found more expensive for the
frequencies constrained problems due to presence of null rows in the IFM mass matrix.
The computational time of the IFM has been reduced by calculating the gradients by
analytical methods, Finally, it is concluded that the path of the optimization algorithm
depends on the analysis procedure, and the small difference in the response from the

analysis procedure can change the optimization path.

6.14 Design Optimization of Stiffened panel

The IFM finite element formulation is developed for the elastic buckling analysis of
eccentrically stiffened panels. The validity of the FE models has been established by
extensive numerical analysis. It has been observed that the IFM has superior accuracy
with respect to the DM and ANSYS, and generate sufficient accurate results even for

coarse finite element mesh. Further, the convergence study for the buckling analysis of
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stiffened panel is performed and it is concluded that mesh size of (8x8) elements is
sufficient enough to get reasonable accuracy. The effect of torsional rigidity of the
stiffener on the elastic buckling load is also investigated, and it is observed that the effect
of torsional rigidity dependé on the size of the stiffener. The critical buckling load

increases with increase in the size of the stiffener.

A design optimization methodology has been developed to optimize the dimension of the
stiffened panel while guarding against the elastic buckling, by combining the FE buckling
analysis based on the IFM with the SQP. The analytical expressions for the design
sensitivity of the buckling load with respect to the plate and the stiffener dimensions are
formulated. The sensitivity analysis is integrated with the optimization algorithm to
provide the gradient information to SQP gradient based optimization algorithm. The
optimization algorithm is used to optimize the unflange and the flange stiffened panel

subjected to practical uniform compression loading.

6.2 Recommendations

This thesis provides the basic understanding of the IFM and its applications in the field of
structural optimization. The methodologies developed and presented in this investigation
have been successfully applied to a significant class of structures subject to stress,
displacement, frequency and stability constraints. The application of the IFM in the field
of structural analysis and optimization is still in initial stage and a significant work is
necessary to extend IFM for more practical problems. Some suggestions for the possible

future work are given below:
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o The indirect approach to formulate the compatibility equation in the IFM is
implemented for simple finite elements. It becomes difficult to automate this
approach for complex structures. Therefore, automating the technique for
complex structure is still a challenging task.

o The finite element library developed for the IFM is limited to very basics
elements and future work is réquired to extend it for more advanced elements.

o The eigen value analysis in the IFM is computational expensive due to the
presence of null rows in the matrices. Therefore, efforts are required to develop
more efficient free vibration and stability analysis in the IFM.

o The most of the work in the IFM is limited to linear analysis. The IFM
methodology should be extended to nonlinear analysis.

e Most of the investigations are related to static, free vibration and stability
analysis. The IFM should be investigated for dynamic loading.

o The IFM is successfully used for size optimization problems, future work can be

done on using the IFM for shape optimization problems.
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