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ABSTRACT

Numerical Investigation of the Flow Between Two Stationary
Parallel Discs.

Jomir Uddin Soroardy

Steady, incompressible turbulent sink flows that develop between two
stationery discs with and without swirl were investigated numerically using the
software FLUENT 6.1 with the Reynolds Stress Model (RSM) employed to
approximate turbulence. The main purpose of the work is to validate the method and

then elaborate on some key features of these types of flows.

Both problems studied here were characterized by severe streamline bending.
Exploratory tests using the k-&methodology reconfirmed that it is not suitable for
flows of these type. Instead, the Reynolds Stress Model (RSM) with five equations
for 2D geometry and 7 equations for 3D to accurately resolved the physics of the
problems well. Furthermore, the continuative rather the pressure boun(iary condition
yielded stable solutions. Care however had to be applied in selecting the length of the
outlet manifold. The basic idea was to avoid the vena contracta after the ninety-
degree bend by increasing the length of the exit pipe.

The obtained numerical results are shown to be in accord with past
experiments throughout the entire domain. The technique is able to resolve, at a

satisfactory level, the flow development even at known problematic areas such as for

iii
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example near the sink exit. Acceleration was found to be the primary controlling
factor for both purely radial and swirling inflow where monotonic changes of pressure
gradient are a common manifestation.

For uni-radial sink flow, inertia increase either due to inlet velocity
augmentation or decrease of the local area produces flatter velocity profiles thus
suggesting that inertia reigns over the viscous forces. In the case of swirling inflow,
the overpowering centrifugal force field forced almost all of the fluid to be drained
through the Ekman’s boundary layers developed on each of the disk surface. It nbw
becomes clear that the growth of flow near the disk or spikes in the radial velocity is
due to the combined action of boundary layer development and local reduction of the
flow area. The numerical algorithm was also able, for the first time, to successfully
capture the toroidal recirculation zone that is known to inhabit the central portion of
the flow. The latter is also responsible for the development of a reversed flow, which
causes the saddle-like behavior of the radial velocity near the mid-plane. The
tangential velocity peaks near the disks known from previous experiments and
numerical formulations appeared also in the current solutions.

Therefore, the present study has validated a tool that can now be used to
provide answers to some outstanding questions. It can be employed to provide an
insight into the stabilizing effects of acceleration which encourages the flow to remain

laminar even at very high inlet Reynolds numbers, or to laminarize in case that the
entering flow is turbulent. It could also pfovide the limits of validity of the previous
simple models.

iv
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Nomenclature

h Half the gap size (mm or in).
H Gap size (mm or in).
k Turbulent Kinetic Energy ( m2/s2).
)% Pressure (Pa).
r,0,z Polar Coordinates
R, Radius of discs (mm or in).
R Radius of sink exit (mm or in).
Re Reynolds Number with respect to gap size
Re, Reynolds number with respect to disc radius
S | Swirl ratio
t _ Time (sec).
u Dimensionless Radial velocity
u, Inlet radial velocity (m/s or ft/s).
v Velocity with direction
% Dimensionless Swirl velocity
v, Inlet swirl velocity (m/s, ft/s).
v, Radial velocity (m/s, ft/s).
v, Swirl or tangential Velocity (m/s, ft/s).
v, Axial Velocityk(m/s or ft/s).
X
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Vi

fn

H

Mean velocity of turbulent flow in i direction (m/s).

Mean velocity of turbulent flow in j direction (m/s).

Mean velocity of turbulent flow in k direction (m/s).
Fluctuating velocity of turbulent flow in i direction (m/s).

Fluctuating velocity of turbulent flow in j direction (m/s).

Fluctuating velocity of turbulent flow in k direction(m/s).

Dimensionless Axial velocity

Distances in Cartesian coordinates i,j,k
Density of fluid (air) (Kg/m3)

Dynamic Viscosity of fluid (air)(N-S/m2).
Kinematic Viscosity of fluid (air) (m2/s).
Gradient

Aspect Ratio

Dimensionless radial coordinate
Dimensionless axial coordinate
Dimensionless pressure
Function

Turbulent Dissipation rate (m2/s3).

Turbulence Viscosity (N-S/m2).

X1
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CHAPTER 1

Introduction

The long interest of researchers in disc-type flow domains is due to the
industrial relevance of the problem. This situation often appears in several turbo-
machinery components, in the radial diffuser, the vortex gyroscope, heat exchangers

etc. The problem can be examined using the setup shown schematically in figure 1.1

Lower disc

Figure 1.1: Disc type domain for purely radial or swirling flow.

Fundamentally, several types of flows could be generated within this
configuration; the sink flow and the source flow with or without swirl. In the case of a
sink flow (or inward flow) the setup allows the fluid to enter through the periphery
and drained out by a centrally located exit on one disc or on both of them. On the
other hand, source flow or outward flow can be created by turning around the
direction of the last type of flow keeping in mind that reversing the direction of flow
may not always reverse the flow characteristics. Both inflow and outflow exhibit the

releminarization phenomenon [Sovran, 1967], which plays an important role in fluid
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dynamics. Here focus will be given on the purely radial inflow with and without
swirl.

Past experimental, theoretical as well as numerical efforts approached the
problem form different angles with the aim to examine some specific flow

characteristics.

1.1 Purely sink flow:

This type of flow deals with the converging kind where no tangential velocity
is being introduced. Purely radial inflow includes the important properties of a
monotonic decreasing pressure as a consequence of a continuously increasing
acceleration in the direction of the flow. Due to the stabilizing effect of acceleration,
the flow behaves as a laminar one even though it is was turbulent when entered the
domain [Murphy, et al., 1983]. Industrial applications of this type include the double

disc valves, air bearings, pneumatic micrometers, flow rate and viscosity meters.

1..2 Swirling inflow

Imparting to the entering fluid, a tangential velocity component, in addition to the
radial, creates swirling disk inflow. The superimposed swirl generates a strong
centrifugal force field inside the domain which alters completely the character of the
flow. Typical industrial applications of flow fields of this kind are the gaseous core
nuclear rocket engine [Savino & Keshok, 1965] and the vortex combustors

[Jawarneh, et al., 2004]. More over, the notable use of the swirling type flow found in
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cyclone separators and incinerators, the vortex gyroscope, the vortex pump, the swirl
atomizer, multiple disc turbo machinery cascades, make it attractive to fluid
dynamicists. The complexities related to mainly the dominance of the centrifugal
force and the complexity of the boundary conditions introduces severe obstacles that
have prevented a general analytical solution in the past. Furthermore, excessive time
(and thus prohibitive cost) requirement have also hindered even a proper experimental
characterization of the problem. It is for these reasons that we have decided to
numerically solve for the turbulent flow in such domain using the commercially
ai/ailable CFD software FLUENT 6.1. Many industries are now routinely involving
the less expensive CFD methods to simulate complicated fluid flows. Besides,
because of the massive development in computer memory, this technique provides
fast, economical, and highly accurate [Ferziger & Peric, 1999] results. Nevertheless,
the numerical solution is always approximate in comparison the exact analytical.
Errors in the description are concerned with the imposition of assumptions, the
selection of the appropriate boundary conditions, solver setup to approximate the
differential equations, discritization and iterations strategies. Steady, axi-symmetric,
incompressible assumptions are taken to reduce the complexity of flow simulation.

The Reynolds Stress Model (RSM) is selected to simulate turbulence.
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CHAPTER 2

Technical Literature Review

In the last decades, several analytical, numerical, and experimental
investigations have improved our understanding of the phenomenon. Priority will be
given here to only previous contributions that are directly relevant to the present

work.,

Savino and Keshok [1965] conducted a series of experiments in a 0.107 aspect
ratio (height to diameter ratio) cylindrical chamber with the aim to map the radial,
tangential velocity, and pressure distributions. The causes that had as an effect the
development of their respective profiles were examined. Air was injected tangentially
through the periphery and exhausted by a centrally located outlet. A probe was used
'to sense both of the magnitude and the direction of velocity at different radial
locations. The non—dirnénsional radial velocity profiles were found to exhibit a
distinct similarity near the upper and lower boundaries (upper and lower plates). It

was discovered that under the influence of a strong centrifugal field the fluid finds the

exit moving close to the upper and lower dicks where due to the presence of Ekman’s
boundary layers where the centrifugal force is at its minimum. Consequently, the fluid
is seen to find the exit through the upper and lower boundary layers thus choosing the

path of the least action. The measurements also show the radial velocity to be small
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way from the walls (in the mid-channel region). Awdy from the exit port and near the
mid- channel the tangential velocity was found to follow closely a free-vortex profile.

The latter finding made the analytical determination of the pressure possible. The

determined factor responsible for such behavior is therefore the swirl (S = Vo =15 in
v,

their case), imparted to the fluid at the inlet. This high inlet swirl strength is the cause

of such a distinct flow manifestation.

Wormley [1969] developed a momentum integral analysis for a steady,
incompressible swirling inflow in a short vortex valve considering the interaction
between the invicid vortex core and viscous end wall boundary layers. The inlet and
exit regions of the chamber were excluded. In search of simplifying assumptions for
the analytical solution, a series of water flow visualizations were also performed
employing air bubbles and milk powder to visualize the flow. In the experiment, the
steady stream of bubbles entered the chamber and immediately rose to the upper wall,
and then traveled to the exit following closely the upper disk surface. At very high
swirling ratio the milky “donut” lingered for a long time near the mid-plane of the
chamber indicating the existence of a lesser radial flow region, with the bulk of the
fluid moving mainly through the end-wall boundary layers. As the swirl strength was
reduced, the radial flow pcnetrﬁtcd further into the mid-channel plane. At very weak
swirl, there was no milk observed inside the valve confirming that a radial flow was
developing along the entire axial span of the chamber. In his analytical derivations, he

considered two regions; the developing flow zone and developed one. Every region
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was further subdivided into two sub-zones; the boundary layer and core flow. In mid-
channel both the radial and tangential velocities were assumed to be sole function of
the radius, while near the end walls they were function of the axial distance as well.
The obtained analytical expression for the pressure distribution agreed well with
experimental findings. A parameter named Boundary Layer Coefficient (BLC), a
function of the valve diameter, peripheral flow, total flow, and the wall frictional

factor, was derived for short vortex valves.

Based on Wormley’s technique [1969], Kowk et al [1972] numerically solved
a set of differential equations for the flow within the annular region of a short vortex
chamber. Attention was also given to extend his method and to examine the variation
of the apparent viscosity throughout the flow field. Assuming the apparent viscosity
(that consisted by the eddy viscosity + operating viscosity) to be a function of the
tangential velocity in the core, the governing equations were simplified and
integrated. Their calculations showed the non-dimensional boundary layer thickness
of the entering fluid to first increase, reaching a maximum, and then reduce as the
flow approached the sink. The tangential velocity profile agreed well with experiment
within the main chamber. Near the exit where the streamlines bend to find the exit,
the agreement was unsatisfactory. Furthermore, the simulations results showed that
the radial velocity is not resolved adequately in both the boundary layérs and inside

the core flow regions. An empirical equation for apparent viscosity was also derived.
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In a subsequent analytical study, Kwok and Lee [1978] applied the integral
equation method for compressible inflow (without vortex) between two discs and
considered the incompressible flow as a special case. Considéring the flow process as

an isothermal one, the derived nonlinear equation was solved numerically via a fourth

order Runge-Kutta.

In the same decade, experimental work for purely radial and weak vortex in an
angular rate sensor (aspect ratio < 0.0170455) was reported by De santis and
Rakwasky [1971]. The velocity data were obtained via hot-wire anemometry. In both
swirling and non swirling flow, the experimental velocity profiles at smaller radii
Were not symmetric, which is contrary to what was expected when two outlets are
used. In their study priority was given to the determination of the flow characteristics
inside the boundary layer i.e. in the viscous dominated flow sector of the field. For the
non- swirling sink, their experimental results established that the flow is mainly
invicid inside the main chamber (for the range of inlet Reynolds no 300 to 1600) and
the boundary layers developed near the discs constitutes only 10% of the flow field.
The influence of boundary layers was examined byA comparing the experimental
values against the theory based on a modified version of the integral momentum
boundary approach. As the flow accelerated toward the sink center, and under the
influence of a favorable pressure gradient, the radial velocity followed the 1/r law.
The boundary layers thinned out producing steeper velocity profiles along the flow
direction. The theoretical displacement thickness corresponded reasonably to the

experiment, while a small discrepancy was evident for the momentum thickness. The
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measured inviscid centerline radial velocity values were in good agreement with the
theory. The shear stress increased sharply with decreasing radius. A case of a very
low aspect ratio (0.002727) chamber was tested and the flow was found to be fully-
developed after a short distance down-stream from inlet, where the boundary layers
merged. The entrance length was estimated analytically. In the case of swirling sink,
experiments were conducted in a 0.01591 aspect ratio chamber with spin introduced
to the fluid by rotating both discs. The swirl ratios were on the weak side of the swirl
ratio spectrum (S = 0.03 and 0.06). Due to the probe rotation, the measured tangential
velocities ware in doubt. In order to remedy the difficulty they added the quantity cr
to the measured values but found the experimental centerline tangential velocity to be
lérger than the inviscid velocity. Due to the presence of a porous coupler, the obtained
boundaryk layer thickness was non zero at periphery. For purely radial inflow,
displacement thickness was maximum at one-third the radial distance from the inlet
and the maximum momentum thickness occurring at the 70% location of the non-
dimensional radii. The radial wall shear stress increased sharply toward the center
with the azimuthal component exhibiting very rapid growth. The experimental shear
stress was always to lag behind the theoretical. For every Reynolds number in the
interval [300, 1500], the efficiency, given in terms of the vortex strength, was seen to
decrease linearly (from 1 to 0) with the radius.
| /

Murphy et al [1978] studied both aﬁalytically and numerically the sink flow

without swirl between two discs. Three flow regimes were considered; the entrance

region where the flow is under the influence of strong viscous effects; the area near
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the exit where strong inertial effects are present, and the region in the middle of the
other two where both viscous and inertial effect are of equal importance. Assuming a
uniform velocity profile at the inlet, they obtained a fully developed parabolic
velocity profiles just after the inlet, with a boundary layer thickness half the gap size.
As the flow advanced downstream, the acceleration dominated the flow causing
flattening of the radial velocity distribution profiles. The flow resembled the familiar
external boundary layer with a large central core flunked on both sides. The static
pressure varied logarithmically at large and at very small radii as predicted by the
potential Bernoulli equation, but not i.n the intermediate zone where both viscosity
and acceleration are important. Murphy et al [1983] also studied the laterally
converging laminar and turbulent flow between two parallel surfaces. Studies on the
laminarizing or laminarascent phenomena were also included although their main
interest remained on the near-wall region where the boundary layer assumptions for
internal flow remained valid. For the laminar flow with local Reynolds number
ranging from 210 to 21000, a test section having the circular shape was employed in
the experiment and their results agreed well with the laminar approach. Smoke
visualizations of the path lines from three directions provided evidence of no rapid
mixing or diffusion ‘that marked the dominance of acceleration rather than effect of
turbulence in that flow region. In order to study turbulent and transitional flow,
experiments conducted in a test section having the shape of a circular section. The
Jocal Reynolds number varied from 1600 up to 68000. Experimental results of the
stream wise pressure were measured. In the range of high entefing Reynolds number

flow and minimal convergence, the fluid motion is quasi-developed, fully turbulent.
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However, in the range of low flow rate and maximum lateral convergence, the
experimental pressure drop differs modestly with the laminar and turbulent

predictions.

An alternate momentum integral approach by Lee and Lin [1985] featured a
second order differential equation that was solved numerically using Runge-Kutta
method. Static pressure results for a purely radial inflow found to be in agreement

with previous experimental evidence, though the velocity broﬁles did not.

Using a similar domain, Vatistas [1988] simplified the governing equations
and was able to derive analytical closed form solution for the purely radial sink flow.
Assuming the average changes of radial momentum and neglecting the axial velocity
component (for small gap), the pressure drop was found to be consisting from the
superposition of th¢ viscous and the inertia inertial contributions. In the viscous
affected region, radial velocity was the function of 1/r and z (axial distance) but in the
case where inertia term dominated, radial velocity was dependent on 1/r only. The
derived value for the maximum radial velocity was 3/2 times of local radial average
velocity. The global friction coefficient was expressed in terms of a reduced Reynolds
number. These analytical static pressure results were compared with previqus
experiments and were in very good agreement. Vatistas [1990] then focused on the
linearization of the momentum equation of Lee and Lin and was able to derive a
closed form solution. For low Reynolds numbers, the radial velocity distribution was

almost the same as in earlier work with the Poisseuille parabolic profile emerging at

10
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very low Reynolds numbers. Difference with the experiment was found to be within
12.5%. For high Reynolds number the velocity profiles became flat where the
existence of boundary layers appeared as a consequence of the non-slip condition at
the disk wall. Moreover, both creeping and invicid flow were shown to be the

asymptotes to the general case.

In order to provide more accurate representations of the pressure and the radial
velocity, Vatistas et al. [1995] solved the nonlinear equations numerically for purely
radial inflow. Simplified derivations for velocity and pressure were functions of
solely one dimensional parameter called A which is the combination of Reynolds
number and radial distance. For small A values the obtained AIl was comparable to
previous theories. Whereas, for large value of A, the results varied substantially with
the other theories except with the closed form solution given by Vatistas [1988]. The
non-dimensional velocity profiles were also in fair agreement with the closed form

solution at higher . However, for smaller A the deviation was large.

Singh [1993] investigated the inward flow between two stationary parallel
discs both experimentally and numerically. For low Reynolds numbers the k-& model
was employed to resolve the Reynolds stress. Increasing the local inlet Reynolds
number and decreasing the gap diameter ratio, the pressure drop was found to
increase. The accompanied experimental measurements via a Laser Doppler

Anemometer showed that the velocity profiles are symmetric about mid plane near

11
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the inlet. As expected, in the neighborhood of the exit, where the streamlines bend for
the fluid to negotiate the exit, the velocity becomes asymmetric with its maximum
value occurring near the disc containing outlet. The turbulent intensity was found
maximum near the wall remaining more or less constant on the core region. Due to
the stabilizing effects of acceleration on the production of turbulent kinetic energy,
iricreasing the Reynolds number resulted into a decrease of the velocity fluctuations.
It was amply evident from their results that the turbulent kinetic energy decayed faster
at smaller gap ratios. The latter observation suggests that a decrease in gap size has a

stabilizing effect on the flow.

A powef series solution, where all material elements were either
monotonically accelerating or decelerating, was presented by Zitouni and Vatistas
[1997]. The series were evaluated numerically. As mentioned previously, all the
controlling parameters were expressed in terms of A (function of other dimensionless
radius and reduced Reynolds number). For A closed to zero, both sink and source flow
showed the familiar Poiseuille profiles. However, for large A values, the two flows
were entirely different to mid-channel. Near the wall, the velocity reduced to zero
through a thin boundary layer. Its thickness was found to decrease with A. Ghaly and
Vatistas [1997] provided a simpler and faster numerical solution (to power series) for
purely inflow and outflow. Assﬁming unidirectional flow, the flow excluded the
entrance and exit regions. As A increased, inward velocity flattened the governing
equations were reduced to a third- order ordinary differential equation (ODE) that was

written as a system of three non-linear first orders ODE s. The resulting system was

12
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then solved as an initial value problem (IVP) using the shooting method. Pressure
distributions as well as radial velocities were in fair agreement with previous
experiments and also with power series solution. In a later parametric study
concerning the sink flow with swirl, Ghaly and Vatistas [2001] demonstrated the
effects of swirl and Reynolds number on the flow field and pressure field in a low
aspect ratio vortex chamber. Assuming that the shear stress in radial direction is much
than that in axial direction, the radial and tangential momentum equations were
simplified. The implicit Euler’s backward method was then employed to integrate the
equations in the radial direction and the shooting-method for solving in the axial
direction. The produced numerical results showed that increasing the swirl number
caused the maximum radial velocity to shift from the gap centre line to the near wall
as the centrifugal force increased. Keeping the Reynolds number constant, the radial
velocity decreased with the swirl strength. Purely radial flow emerged for creeping

flow Reynolds numbers.

Not long ago, Frankel & Taira [2005] performed error analysis with respect to
the numerical solution of the set of equations presented in [1995] and [1997]. Ghaly
and Vatistas [2001] provided results that are comparable to those obtained using the

considerably more involved theoretical approaches of Frankel and Taira [2005] and

Zitouni and Vatistas [1997].

Tsifouradaris [2003] performed analytical investigation for both inflow and

outflow with or without swirl between two discs with very low aspect ratios. In the

13
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analysis, the radial velocity was expressed as a function of radial location and the
reduced Reynolds number while the pressure depended on the Re, the radial distance
and the swirl number. In order to support the analysis, experiments at low and
moderate Re numbers for several gap ratios were also conducted. The entry and exit
regions were excluded. For the case of purely radial flow, viscous as well as inertia
affects played an important role near inlet (after the entrance). As flow advanced, the
profiles became flatter at mid gap. Increasing the inlet Reynolds number, inertia grew
larger thus encouraging the radial velocity to develop at a faster rate. The effect of
Reynolds number on pressure was found to be minimal. For swirling inflow, the
radial velocity remained unaffected by swirl. Analytical results for the tangential
velocity showed similar characteristics with radial. Based on above wofk, Vatistas et
al [2005] extended further the analytical expression for the tangential velocity when

both discs are rotating.

14
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CHAPTER 3

Mathematical Description and Dimensional Analysis

Dimensional analysis widens and deepens every experimental, analytical, and
numerical study. It provides a generalized presentation of results through a set of
dimensionless parameters. The method also offers a compact description of the same
phenomenon on a framework requiring fewer variables’. Since it reduces the effort in
characterizing the same problem, dimensional analysis is economical. The great
majority of the parameters correspond to a ratio between two forces. Consequently
these are indicators, which show the relative importance of one force visa vie the
other. In some flow conditions some forces could be orders of magnitude larger than
others. Frequently, through an order of magnitude argument one can examine the
same problem considering only the dominant forces and neglecting all those of
insignificantly smaller contribution. Such an approach yields a simpler set of
equations, which describe mathematically the problem that often leads either to an

analytical solution or reduces considerably the computational effort.

In this chapter, the mathematical model of the flow between two stationary ‘
discs with swirl will be given with the associated equations arranged in dimensionless

form.

' Equal to the number of basic dimensions involved.
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The Mathematical Model

Every representation of reality must respect all the conservation and entropy
laws. In our case since an isothermal flow is assumed, the conservation of mass and

momentum will be paramount.

Figure 3.1: Top and side views of the setting for the flow between two discs.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R —»!

l

v
~

0
N
=

ugand v,

i R

Figure 3.2 Flow problem in 2D for symmetric half.

In the present study the flow is assumed to be steady, incompressible and axi-
symmetric. Under these assumptions the conservation equations and boundary

conditions are,
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CHAPTER 4

Numerical Modeling

In this chapter, the numerical study is presented. The selection of the
numerical model, the grid, the selection and imposition of the boundary conditions
along with the solution procedure used to simulate the flow problem will be

discussed.

Steady, turbulent, incompressible, axi-symmetric converging flow with and
without swirl has been modeled numerically using the FLUENT 6.1 solver. As there
are no circumferential gradients in the flow, modeling was accomplished using 2D
.segregated solver. For purely sink flow, Singh [1993] used the low Reynolds number
k -& model in his numerical solution. Expecting severe ‘case of streamline bending to
occur, the Reynolds Stress Model is employed instead. Test performed for the
swirling flow case, k-g¢ model failed to simulate the flow characteristics to the

expected fidelity.

For the case of swirling inflow, conservation of angular momentum plays a
vital role in the creation of a Rankine-like [1858] combined vortex where the
tangential velocity increases sharply as the radius decreases and then reducing to zero
at the sink center. Centrifugal forces developed by the circumferential motion in the
free vortex region are in equilibrium with the radial pressure gradient. For a non-ideal
vortex, the form of these radial pressure gradient changes, driving radial and axial

flows in response to a highly non-uniform pressure. High degree of coupling between
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the swirl and the pressure field makes the modeling of swirling flows complex. The
Reynolds Stress Model (RSM) is suitable to resolve the latter impediment. FLUENT
6.1 is able to take account of these variations in the static pressure and the
corresponding changes in the axial and radial velocities as well as tangential

components.

4.1 Selecting the turbulence model:

Selection of turbulence model depends on the physics of fluid flow and no
single model can be considered as acceptable for all types of problems [Fluent, 2003].
For example, two equations & -& model can be applied where there is no or very little
sfreamline bending taking place such as for the purely radial inflow or very weak
swirling inflow away from the outlet . But in the case of strong swirling flow, where
streamlines curve severely, RSM five equations for 2D geometry and 7 equations for
3D can predict the flow characteristics accurately. The choice of the model primarily

depends on the expected vortex strength measured by the swirl ratio,

s=Yo,
V,
Flows with no swirl (S=0) or weak té moderate swirl (S <0.5) k-¢& model can be
employed. Nevertheless, both the RNG £ -& model and the realizable k- &£ model can
provide better results than the standard & -& model. However, if S >0.5, the effect of
strong turbulence anisotropy due to strong swirl can be modeled adequately via the
second-moment closure introduced in the RSM. Besides the swirl number, the level of

accuracy required, the available computational resources, and the amount of time
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available for the simulation are also important factors in the selection of the

approximate turbulence model (more details can be found in the Fluent 6.1, Manual).

Importance will be given now to the determination of which part of the turbulent
Navier-Stocks equations (of Ensemble Averaging approéch) is important for the

present modeling using the RSM.
4.1.1 Reynolds (Ensemble) Averaging

Reynolds —Averaging approach requires much less computational capacity
rather than the more involved Large Eddy Simulation (LES). The transport equations
for the mean flow with all the scales of turbulence are represented by the RANS
(Reynolds- Averaged Navier- Stocks) equations. Filtering is introduced to remove
eddies smaller than the mesh size. In this approach, Navier-Stocks equations are

decomposed into the mean and fluctuating components;
V=V, Y, | ©)
Where, 7, is the mean and ), is the fluctuating velocity component.
The pressure and other scalar qﬁantities can be written:
p=p+¢' | (10)

Here ¢ denotes a scalar such as the pressure or say energy.
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Substitution of the above forms into continuity and momentum equations and
taking a time (or ensemble) average gives the RNAS equations in Cartesian

coordinate,

0 ‘
o 9py) _, (11)
ot Ox,

i

o(py) pyy) oy
6xj ox. Ox, 3 8xj

ot Ox; Ox; ; ' Ox,

Where, &, is the Kronecker delta. Here —aa; is zero, p is constant (steady,

incompressible flow).

The additional terms that now appear in the momentum equations are the

Reynolds stresses that represent the effect of turbulence. For closure, the Reynolds

stresses py' .y, must be modeled. In order to solve the problem, the term py/y)'

must be expressed in terms of the known variable can be achieved using Boussinesq’s
hypothesis [1975] which also includes the different k- & models and Reynolds stresses
transport models (RSM and Algebraic Stress Model where FLUENT 6.1 deals with

only RSM).

The Boussinesq hypothesis [1975] relates the Reynolds stresses to the mean velocity

gradients,
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_%)5., (13)
X,

2

r_ !
Where (= poC, ]—C——) is the eddy viscosity, k(= y—’él—") turbulent kinetic energy and &
se

is dissipation rate and C, = 0.09 is constant.

To close the momentum equation (12), one needs the values of the Reynolds
Stresses in equation (13).Then the value of k and ¢ are required as an input.
Assuming the flow is fully turbulent and the effects of molecular viscosity are
negligible, the standard k-& model (semi-empirical model) became more popular to
model various practical engineering flow calculations due to its robustness, economy,
and reasonable accuracy for a wide range of uses [Fluent, 2003]. Due to its limitation
in simulating the flow with stream line bending, two other models were modified
from standard k- £ model to solve this problem. One of them is Realizable k- & model
proposed by Shih et al. [1995] where another one is the Re-Normalization Group

RNG) theory that proposed by Yakhot and Orszag [1986] and by Choudhury [1993].

Although the above mentioned two models have been considered for the
s_vvirlihg flow phenomenon (up to medium strength), for very strong swirl (S >5),
none of above models is able to produce results comparable with experiment. The
Reynolds Stress Model (RSM), the most elaborate one, is applicable to predict such

flows.
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4.1.2 Reynolds Stress Model:

Rather than the eddy-viscosity hypothesis, RSM solves five additional
transport equations for the Reynolds stresses in 2D flows and seven additional
transport equations in 3D together with an equation for the dissipation rate to closes

the RANS equations.

The transport equations for Reynolds stresses, oy ,-V’,- in tensorial form are:

0, — 0 — 0
Sy e v - P GRS SCRTURL )
k k
\__ ) N J - /
i i iii
o, & —\%, % =
+ L Gy )N - NN & SN i 4 _ o O+ 0
o, {u - CVRVIRT IR A (VR VY on, W'V axk} pPBigV 0+8,v' 0}
N _J - / N _J
v \4 vi
o' oy oy oy
p s Vay 2,V - 20 YV )
\ O, Ox v Ox, Ox, \_ W,
vii viii ix
S, (14)
X

Where, i= Local time derivative (zero for present steady flow), ii= Convection C;,

iii = Turbulent diffusion, D,,, iv = Molicular Diffusion D,,, v = Stress

i 4

production P,

%> Vvi=DBuoyancy production G, (Neglected in this case), vii = Pressure

strain ¢,,  viii = Dissipation tensor ¢, ix = production by system rotation F; (zero,

present study), x = Source term S (zero).
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C

y’?

D,, and P, are not required to model [Fluent, 2003]. So one has to

Ly Ay

calculate #,, Dy, &, terms to close these exact equations.

y)

Daly and Harlow [1970] proposed following formula to generalize the

diffusion gradient D, ;
s kv v 0 v
D,, =c, 0 {p V V.V V J)} (15)

0x, & 0x,

Concerning the numerical instabilities, it is simplified in FLUENT 6.1 according to

Lien and Leschziner [1994] with the relation;

{,u, o'y V')
ox, o, Ox,

D.

Ty~

—} (16)

2
Where, turbulent viscosity p = pC, L similar to the standard k-¢£ model and o, =
£

0.82. The pressure-strain term ¢, is modeled using different theories one of which is

called Linear Pressure-Strain Model proposed by Gibson and Launder [1978], Fu et
al. [1987], and Launder [1989] with Low-Re Modifications for near-wall flows using
the enhanced wall treatment. Another model that is called Quadratic Pressure-Strain
Model proposed by Speziale, Sarkar, and Gatski [1991] (See Fluent Manual, 2003 for

details). However, Linear Pressure-Strain Model was used to model g, . In modeling a

specific term, the turbulent kinetic energy can be calculated by k& =-Lt.
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Therefore, to solve transport equation for the turbulent kinetic energy &, in order to
obtain boundary conditions for the Reynolds stresseé, Fluent uses the following

conservation equation,

o(pky,
(k) + (Pky) =_5_[(/J +fi)_%]
ot Ox, Ox; o, Ox

' J J

+%(E,- +G,)— pe(1+2M2)+ S, (17

Equation (17) is solved globally throughout the flow domain and is identical with

k-¢  model wheno,=0.82. The dissipation tensor ¢g,is calculated

t

- from ¢; = %5,,] (pe+Y,,) where, Y,, =2psM}?. M, is turbulent Mach number, which
can be defined as; M, = \/—E— here a=./yRT sound speed.
a

Similar to the standard k-& model, the dissipation rate ¢ is approximated

using the following relation,

2

0 _
Ape) , Apey) _ & ples, ()

ot ox, Ox

i j £ J

£

M, . O¢ Py
+50 2204 C, (P, +C.,G,)-C
[(,u o )ax ] el 2k( i £3 u)

where o0,=1.0, C_,=1.44, C_,=1.92. The constant C,, is a function of the local flow

direction relative to the gravitational vector.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.1.3 Computational Time:

Computational time per itération is important for the choice of the turbulence
model. For example, the standard k-& model requires the least amount of memory
rather than aﬁy other models. Because the RSM solves a larger number of equations
for the Reynolds stresses, requires 50-60% more CPU time per iteration compared to
the k-£ model [Fluent, 2003]. For modeling the flow in the present domain, RSM is

found to be feasible with optimum mesh size.

4.2 NUMERICAL SIMULATION: Numerical simulation is the crucial part for

the numerical modeling which can be divided into three stages; Pre-processing,
selecting the solver that will solve the turbulent Navier-Stokes equations, and post-

processing.
4.2.1 Pre-processor:

Pre-processing includes the clear definition of the physical phenomenon that
needs to be solved, selecting and creating the suitable flow geometry of the domain,
optimum mesh generation for this domain, the setting-up of the appropriate boundary
condition based on geometry and physics of flow. The physical phenomena studied
here is the turbulent in-flow between two stationary discs without and with swirl. As
the flow is converging, pressufe is decreasing with the increasing radial and swirl
velocity components with the swirl enhancing turbulence. When the influence of swirl

or the rotational terms is large, high degree of coupling between the momentum
28
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Figure 4.1: 2D geometry for the numerical modeling
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equation introduces difficulties in the domain and thus to the solution of the flow.
These impediments are related to the large radial pressure gradient which drives the
flow in the axial and radial directions and to the ensuing complex forces in the flow.
Instabilities in the solution process may result from this coupling and sometimes

making very difficult to obtain a converged solution [Fluent, 2003].
i) The Computational domain

Axi-symmetry implies that there are no circumferential gradients in the flow
and therefore a two-dimensional geometry (figure 4.1) can be adopted in order to

define the physical phenomenon. Here Do (=2 R,) is the disc diameter, Di (=2 R,) is

the diameter of the outlet located at the centre of the upper disc. H (=2 /) is the gap
between the two discs. These dimensions are varying for purely radial inflow and
swirling inflow as different cases were examined to compare with existing

- experiments.
ii) The Grid Size Study

For an axi-symmetric problem, it is strongly recommended to set the grid in
such a way that if the axis of rotation is x axis, then the grid must be located on or

above the y=0 line. Sufficient resolution in grid should also be taken care when

solving flows that include swirl or rotation because, swirling flow will often involve
steep gradients in the tangential velocity requiring fine grids for accurate resolution

[Fluent, 2003].
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From the Figure 4.1, it is clear that the geometry of flow is symmetrical. So
meshing the half portion of this configuration will be capable to calculate full domain.
Grid study was evaluated by selecting optimum grid types and size as wall as

considering their effect on solution.
a) Selecting the appropriate Grid Type:

The choice of mesh type usually depends on the engineering application. Set-
up time, Computational expense and Numerical diffusion are important to select an

appropriate grid type.
a.l) Set-up time:

In general, for complex geometries, it is preferable to employ unstructured
grids with triangular or quadrilateral cells in order to save meshing time, but a simple

geometry can be graded with both structured and unstructured approaches.
a.2) Computational Expense:

In the case of complex or very large geometries, a triangular mesh gives less
numbers of cells than an equivalent quadrilateral mesh. Because, the structured
quadrilateral mesh enforces cells to place at the regions where they are not required.
However, quadrilateral meshes offer many advantages over triangular meshes in
grading simple and moderately—corhplex shapes. For example, quadrilateral elements
are more inexpensive in some situations as they permit much larger aspect rati<; than

triangular types. Besides, large aspect ratio in a triangular cell can affect the skewness
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of the cell, which may lead the solution to inaccuracies and obstruct convergence
[Fluent, 2003]. Therefore, for relatively simple geometries quadrilateral mesh is

recommended.
a.3) Numerical diffusion:

Numerical diffusion (false diffusion) is one of the dominant sources of efror in
numerical calculations because it affects the flow calculation in the same manner as if
increasing the real diffusion coefficient. Second-order discretization scheme is helpful
to reduce the effects of numerical diffusion in the solution. Moreover, the amount of
numerical diffusion is inversely related to the resolution of the mesh. Hence, one way
of avoiding the effect of numerical diffusion is using a fine mesh. Above all, it can be
minimized when the flow is aligned with the mesh [Fluent, 2003]. This is the most
relevant factor in the choice of grid. When grading is done with triangular mesh
instead of quadrilateral category, it can not be possible to make the grid parallel to the

flow.

Objective of study is the mean turbulent flow rather than boundary layer
solution. So, uniform distribution of mesh (equal interval size with successive ratio
every where the domain) is able to predict the solution correctly. However, grading
with finer mesh at boundary layer was also examined and obtained results were
simi}larl to the previous approach. Geometry was drawn and meshed by GAMBIT 2.2
that offers quadrilateral (map, sub-map, pave) and triangular (pave only) face

meshing schemes. Basically, quadrilateral mapping (structured mesh) deals with the
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shape which can easily be divided or sub-divided in the form of quadrates [Fluent,

2003]. VELOCITY

UPPER DISC (WALL)

L.OWER DISC (WALL)

OUT FLOW patiiit i

Figure 4.2: Quadrilateral uniform face mesh on the domain for purely sink-flow

according to the setup of Singh [1993].

If the contour is not one quadrate but the combination of two or more
quadrates (as figure 4.2) then sub-mapping (of quadrilateral) are more useful than
triangular one. Because of the flow complexity, both the quadratic and triangular
types were checked for present investigation and same results were achieved.

Therefore, present problem is independent on mesh types.
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Finally, triangular mesh of same interval size to the quadrilateral one produces
much more numbers of elements (hence, more computational ability required).

Therefore, quadrilateral meshing scheme was chosen to study this problem.

b) Effect of grid on solution:

Grid Size (interval
size of face) (mm) Number of Cells Number of Faces Number of Nodes
1 : 2324 4832 2509

0.8 3889 8016 4128
0.6 6844 14004 7161
0.4 15462 31398 15937
0.3 27545 55723 28179
0.2 61849 124647 62799
0.15 109841 220947 111107
0.14 126596 254548 127953
0.13 146044 293548 147505
0.12 171944 345470 173527

Table 4.1: Details of different mesh size and number of cells, faces and nodes for

purely sink flow.
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1) Purely sink flow:

In order to determine the grid dependence on the purely radial inflow, the
geometry of experimental settings for Singh [1993] was chosen where, the radius of
discs, R, = 152.4 mm, radius of sink outlet, R, = 25.4 mm, Gap, H = 12 mm., with
flow rate 19.71E-0.03 m3/s. Figure 4.2 shows the grid scheme for this setting.

Different grid sizes that were examined to get optimum mesh are described in table

4.1.
Effect of the grid z,r (4.8mm,45.72mm)
-5.9 : g : P
S5 4o nd L
: |
2 6.05 &
|
B
6.1 +— ®
-8.15
012 013 014 015 02 03 04 06 08 1
grid size (mm)

Figure 4.3(a): Radial velocity (m/s) Vs. grid size (mm) of the solution for purely sink

flow [Singh, 1993] at the point (4.8mm, 45.72mm).
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The effects of mesh sizes on the radial velocity at two different points are shown by
graphical representation (figure: 4.3). From the Figure 4.3; it’s very clear that after the
mesh size 0.3 mm, the change in the solution is negligible as the difference is not
exceeding 0.576 %. Table 4.1; shows the finer mesh size is, the more number of cells,
number of nodes as wall as number of faces which concern the computational time
and memory. So, optimum mesh size cén be selected between 0.2 mm and 0.3 mm for

this flow problem.

Effect of th grid z,r = (2.4mm,121.92mm)

1 0.8 06+ 04 0.3 0.2 0.15 0.14 0.13 0.12

-2.15

E 2.2 \ : :
he) : ' o
g | \ o
® 225 b—rt N
2.3
Tl el
2.35 SRR

grid size (mm)

Figure 4.3(b): Radial velocity (m/s) Vs. grid size (mm) of the solution for purely sink

flow [Singh, 1993] at the point (2.4mm, 121.92mm).
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Figure 4.4

according to the setup of Savino and Keshock [1965].
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In this case, the radius of discs, R, = 148.844 mm (5.86 in), radius of sink outlet, R,

= 25.4 mm (1 in), Gap H = 31.75 mm (1.25 in). The given mass flow rate is 0.209

pound mass per second with inlet radial swirl ratio S = 15.

In the original experimental test section, the inlet velocity was given as average
velocity. As no velocity profile was given, assuming uniform inlet velocity would

lead to an improper boundary condition that could affect the solution.

Consequently, an inlet velocity profile is needed as an appropriate boundary
condition. This requirement can be satisfied in two ways; namely writing the profile
as a user defined function or extending the diameter of discs and putting a uniform

velocity distribution at the inlet section.

Grid Size
(interval size of face)
(mm) Number of Celis Number of Faces Number of Nodes
1 6368 12974 6607
0.8 10000 20298 10299
0.6 17596 35588 17993
0.5 25600 51677 26078
0.48 27456 55407 27952
046 29946 60409 30464
0.45 31453 63435 31983
0.44 32688 65916 33229
0.43 34336 69225 34890
0.42 36100 72767 36668
0.41 37561 75702 38142

Table 4.2: Details of different mesh size and number of cells, faces and nodes for

swirling inflow.
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In the present numerical study, disks radius was increased to 1 inch more than
experimental test section for above purpose. Therefore, the total disc radius became

174.244 mm (6.86 in).

Figure 4.4 shows all the settings for computation that are same as purely sink
flow except extending radial portion. Here, velocity inlet was defined at inlet, wall at
upper and lower discs, out flow condition at outlet and axis at the centre line. The
choice of 1 in. extension of given radius was confirmed after making some
investigations on that. For example, using 1.5 inch and 2 inches instead of 1 inch gave
same profile at concerned radius (5.86 inches of test section). However, 1 in

increment was chosen to save computational time.

effect of grid at z,r (25mm,114.3mm)

N

o
o
&

\
}

o
o
\I

R

radial valocity (m/s)
[
oo

0.03

1 08 06 05 048 048 045 044 043 042 041
grid size (mm)

Figure 4.5(a): Radial velocity (m/s) Vs. grid size (mm) for swirling inflow [Savino

and Keshock, 1965] at the point (25mm, 114.3mm).
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Effect of grid at z,r (15mm,76.2mm)
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Figure 4.5(b): Radial velocity (m/s) Vs. grid size (mm) for swirling inflow [Savino

and Keshock ,1965] at the point (15mm, 76.2 mm).

Effect of grid at z,r (25mm,114.3mm)
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Figure 4.6(a): Swirl velocity (m/s) Vs. grid size (mm) for swirling inflow [Savino.and

Keshock ,1965] at the point (25mm, 114.3 mm).
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Effect of grid at z,r (15mm,76.2mm)
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Figure 4.6(b): Radial velocity (m/s) Vs. grid size (mm) for swirling inflow [Savino

and

Keshock, 1965] at the point (15mm, 76.2 mm).

Figure 4.4; displays the grid on domain and different sizes of grid that was
selected to study are listed in table 4.2. Effects of grid size on radial and swirling

velocity at two different points are represented in fig 4.5 and fig 4.6.

Figure 4.5 and figure 4.6 indicates that grid smaller than 0.48 sizes has minimal effect

on changing the solution criteria. Again, from the point of view of computational
memory and time, face mesh with the size between 0.48 and 0.45 can be selected as

optimum one to get approximate numerical solution of the problem.
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4.2.2 Solver:

After grading and setting boundary conditions in GAMBIT 2.2, the file
exported as mesh file which was opened in FLUENT 6.1 as case file. Then file was
run using steady, incompressible axisymmetric, 2D segregated solver for purely sink
flow and axisymmetric swirl solver for swirling in-flow. Different settings and
parameters choose to solve the turbulent Navier-Stokes equations are as follows.

i) Grid checking:

The first action taken place after reading the case file in FLUENT 6.1 is to
check the grid using ‘grid check’ command to detect any .‘gfid trouble before gét
started with the problem setup. Skewness-based smoothing of mesh can be possible to
perform where it sets the minimum cell skewness value to 0.4 for 2D geometry.
‘Smooth’ command tries to move interior nodes if required to improve the skewness
of cells greater than minimum value. ‘Swap’ command exchanges the faces of cells
for any disorder. All of these actions accomplished with some number of iterations
and helpful to see whether it is possible to get solution using this grid set up or not.
For example, if any negative areas or volumes in the grid are detected by checking
command indicates the incapability of achieving the solution [Fluent, 2003].
However, because of the simplicity that we have in our domain this step has minimal
effect in our cases of study.

ii) Scaling grid and defining units:
Grid was created in mm for both cases but units were defined differently as

experiments. Following table describes the details.
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Flow Length | density | viscosity | velocity |pressure | Temp. | Mass
flow
rate

Purely mm Kg/m3 |Kg/m-s |m/s Pascal K |Kg/s

sink

Swirling | mm lbm/ft3 | Kg/m-s ft/s Pascal F  |[lbm/s

inflow

Table 4.3: Different units used in solution.

iii) Defining turbulent model:
For both of the swirling and non-swirling flow, Reynolds-Stress Model
needs to define the model constants. Constants were selected as given in the solver by

default. Such as, C,=0.09,C, =144, C, =192, turbulent Prandtl number for
kinetic energy o, =1.0; turbulent Prandtl number for dissipation rate o,=1.3. In the

Reynolds-Stress option in solver, wall boundary condition from & equation with
standard wall function was chosen for the near wall treatment. Because, standard wall
functions are able to give reasonably accurate predictions for the majority of high-

Reynolds-number, wall-bounded flows. Later is applicable if there is no blowing or
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suction as well as no severe pressure gradients takes places or when the flow

situations do not depart far away from the ideal conditions [Fluent, 2003].

iv) Defining material:
The material flow inside the domain was air and the properties of material

at inlet were set as given in experiments as the following table.

Flow type Material Density Viscosity Pressure Temperature

Purely radial Air 1.225kg/m3  1.7894e-05 101325 300 degree K

flow kg/m-s Pascal

Swirling flow Air 0.106326 | 2.29e-05 10'1 325 299.82degree
Tbm/ft3 kg/m-s Pascal K

Table 4.4: Material and properties at inlet.
v) Defining Boundary ’conditions:

Velocities were specified at domain inlet by three components such as
axial, radial, and Swirl (in the case of swirling in-flow) velocity. In every case, the
axial velocity was zero at the inlet, the flow was normal to the gap.

Radial velocity was calculated from the volumetric flow rate by the following

equation.

___ 9
Vim TR G

(19)
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Where, 1 = Radial Velocity with (-) sign indicates the direction of flow toward the
centre. 0= Volume flow rate,

R,= Disc radius,

¢4
D

= as'pect ratio, H = Gap size, D= Disc diameter.

Tangential velocity (in case of swirling flow) was calculated from the swirl ratio

where,

Swirl ratio, S =Yoo tangential/ radial velocity (20)
' V,

vi) Turbulence specification method:

In general, higher level of turbulence is produced within shear layer which is
relatively insensitive to the in-flow boundary value for the numerical calculation.
However, it is important to ensure the boundary value not to be so unphysical that can
contaminate the solution or obstruct the solution convergence. Turbulent intensity and
Hydraulic Diameter specification method is strongly recommended to model internal

turbulent flows [Fluent, 2003].

a) Turbulence intensity:

The turbulence intensity can be defined as the ratio of the root-mean-square of

the velocity fluctuations, v, , to the average velocity v,, ;

[=tms (21)
v
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Physically, turbulence is instability generated by shear and its intensity is increased

by the increase of shear. So, the turbulence level can be scaled byv,,, = %)ﬂ But this
Y

scaling is not dimensionally consistent. To solve this problem, shear strength can be

replaced by shear velocity or frictional velocity based on the wall shear stress;
v = [l (22)

Where v’ » is the shear velocity or the frictional velocity=v, .. p is the density of
fluid, 7, is wall shear stress.

One of the most challenging problems is to calculate shear stress which is a
function of Reynolds number based on ‘;he distance along which the boundary layer
developed. There is no previous theoretical study available to get this distance for the
present flow domain. Therefore, it is very difficult to theoretically predict the shear
velocity as well as turbulence intensity (7 ) for the current configuration. In case of a
fully-developed duct flow, I can be estimated from the empirical formula [Fluent,

2003];

[=2m = 0.16(Re,,) ™"

av

Where, Re,, is the Reynolds number based on hydraulic diameter with 7=4% for
Re,,,=50000. However, the present flow is not similar to the duct flow. Hence,

turbulence intensity was estimated using the experimental data of Singh [1993] for
purely radial flow where it was varied from 12 to 20 percent. In the experiment

[Singh, 1993}, I was decreasing with increasing the Reynolds number and decreasing
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the gap ratio inside the domain. During the present solution process, no effect was
observed due to the inlet / variations.

b). Hydraulic diameter:

Hydraulic diameter was calculated from the following formula;

D, =i”£ (23)

For the flow between two discs;

D,, = hydraulic diameter,

Where H is gap height and D is disc diameter.
A= Cross sectional area =2zD .
P = wetted perimeter of the flow domain (for two discs)= zD+ #D=2xzD.
Putting these relations in the equation (23) the hydraulic diameter for present study is
D, =2H (24)

¢) Reynolds-stress specification:

Reynolds-stress was specified by estimating the Reynolds stress components
at inlet. Calculation was based on some empirical formula assuming isotropic

turbulence at the inlet;

T =2k (25)

Here, k£ is the turbulent kinetic energy that can be estimated from turbulence

intensity, I using the following formula [Fluent, 2003];

E=20,0)° (26)
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And Reynolds-Stress components in the perpendicular direction were neglected at

inlet as axial velocity input was zero. Hence,

=0 @7)

Under-Helaxation Facto]

Pressure [y

Figure 4.7: Example of settings in window showing solution control panel.

In the solution control panel (figure 4.7) of solver, all the equations like
flow, turbulence, Reynolds-stresses and swirl velocity (for swirling case only) were
kept running together to get the calculation in the same iteration. SIMPLE (Semi —
implicit Method for Pressure —linked Equations) scheme was chosen as the method of
pressure- velocity coupling. Because, this algorithm uses a relationship between
velocity and pressure corrections which enforce the mass conservation through the
solution aﬁd pressure field of the domain could be obtained. Due to the pressure
interpolation of flow with high swirl ratio or the flow inside strongly curved domains,

PRESTO! (Pressure Staggering Option) scheme is recommended [Fluent, 2003].
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Second order upwind discretization for momentum equations, swirl velocity,
turbuleﬁce kinetic energy, turbulence dissipation rate and Reynolds stresses was set to
reduce numerical diffusions. Default settings of Under relaxation factors such as 0.3
for pressure, 0.7 for momentum, 1 for density,] for body force, 0.9 for swirl
velocity,0.8 for turbulent kinetic energy,0.8 for turbulent dissipation rate,1 for
turbulent viscosity and 0.5 for Reynolds stresses were used to get convergence. At
each iteration, solution proceeds according to following flow chart as segregated

solver was employed.

Solve momentum
equations
And update velocities.

Check convergence Solve mass balance

c (pressure correction)
ﬂ equations and update
the velocity, pressure.

Update fluid properties

Solve turbulence and other
active scalars and update

scalars.

Figure 4.8: Flow chart of numerical calculation at one iteration for segregated solver.
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4.2.3 Sample calculations of different parameters for boundary
conditions:

i) Purely sink flow:
Calculations using Singh [1993] experimental setup;

Given flow rate Q= 19.71E-03 m3/s, disc radius R =152.4mm, disc diameter

D=304.8 mm, Gap size H= 12mm, radius of sink outlet R =25.4mm.

So the gap ratio G = -—g—=12/304.8 =(.03937.

g 'guelocitywinlet 1

Figure 4.9: Sample input boundary window of Fluent for purely sink flow.
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From the equation (19), Inlet radial velocity u,= 1.714 m/s with (-)ve direction.
Hydraulic diameter D,, =2H (equation, 24) = 24mm.

Inlet Reynolds number, Re= LY 2816

7

Where p=1.225 kg/m3 and 1 =1.7894e-05 kg/m-s.
Inlet turbulence intensity 7 = 12% (estimated from the experiments).

From equation (26), inlet turbulent kinetic energy k= 0.0635 m2/s2.

Finally, the Reynolds- stress components at inlet, vy, = %k =0.0423.

And Vv, =0.

ii) Swirling inflow:
The experimental set-up of Savino and Keshock [1965] was employed for sample
calculations.

Here, given mass flow rate 7= 0.209 lbm/s, disc radius, R,= 6.86 in = 174.244mm,
outlet radius R,=1 in = 25.4 mm, Gap size H = 1.25 in=31.75mm.
Density of air at inlet p=0.106 lbm/ft3 = 1.703236 kg/m3. x=2.29¢-05 kg/m-s.

Given inlet swirl ratio, S = 14.634.
So, aspect ratio, G = %= 1.25/(2*5.86) = 0.106655=0.107.

Volume flow rate, Q= m/p=1.965653 ft3/s.
From the equation (19), radial velocity u,= 6.15 ft/s = 1.87452 m/s with (-) ve

direction.
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From the equation (20), tangential velocity, v,= u,* S =90 ft/s =27.432 m/s.

Hydraulic diameter D, =2H (equation, 24) =2.5 in = 63.5 mm.

Inlet Reynolds number, Re = PuDy 8853.
y7

Zone Name: e
Guelecity inlet.d

constant

onstant

ydraulic Diameter

eynolds Sticsses (m2/s2) (6. 609

WA Reynolds Stresses

Figure 4.10: Sample input boundary window of Fluent for swirling inflow.

As Turbulence intensity I, increases with increasing Reynolds number at inlet, than
we set /=5 to 30 % but could not realize any change in solution for this variation.
From equation (26), inlet turbulent kinetic energy k= 0.0131768 m2/s2.

So, Reynolds- stress components at inlet, ' /= §k= 0.009, and W =0.
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 4.2.4 Verification of incompressibility:

i) Purely Sink flow:

i) Incase of Q0= 19.71E-03 m3/s, Gap = 0.03937 and inlet Reynolds No. = 2816, at
the 28.194 mm radial location (0.185 non- dimensional radius from exit),

From the numerical solution;

Area-Weighted Average Radial Velocity = 9.3128608 m/s (in negative direction).
Now, speed of sound in air is 347.219 m/s (as speed of sound = ./yRT where,

specific heat constant of airy = 1.4, Gas constant R of air 287.05 N.m./kg K, T=
300K).

So Mach number, Mc = Local average radial velocity / speed of sound = 0.026821.

As the flow does not exceed the Mc = 0.3 at above radial location (near exit) than its
clear that flow remains incompressible at that location. Hence, incompressible

assumption is valid for these boundary conditions.

b) Incase of Q= 34.42E-03 m3/s, Gap = 0.03937 and inlet Reynolds = 4918, at
28.194 mm radial location (0.185 non- dimensional radius),

Again, from the Numerical solution;

Area-Weighted Average Radial Velocity = 16.26417 m/s (in negative direction).
Again Speed of sound = 347.219 m/s.

So, Mc = 0.04684, which is far beyond Mc = 0.3 (compressible criteria).

Hence, the flow is still incompressible at these boundary conditions.
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ii) Swirling inflow:

From the numerical solution, The Area-Weighted Average Radial Velocity at 1 in.
radial location (from exit) is 17.699781 ft/s = 58.0701m/s (negative direction).

Speed of sound in air is 347.219 m/s.

So Mach number, Mc = 0.16724 which indicates the flow is incompressible at that
location. Hence the assumption and solution of incompressible flow is valid for the
swirling in-flow also.

4.2.5 Post-Processing:

Post —processing was employed for creating surfaces at different radius,
reporting mass flow rate, plotting the radial and swirling velocity profiles, getting the
radial pressure distribution as wall as streamlines to compare with experiments.

4.2.6 Convergence:
Convergence of solution was checked for different residuals which were

obtained in graph as follows;

Residuals

- cartinuity
e n-veloaity fe-01
e rve! acity
e e e thory
e - stress
W-stress
SRR Tt

-------- USRS s

te-02

13

1m-08 -

1e.08 T r v v
a SO0 1000 156040 2000

Rerations

Figure 4.11: One example the residuals
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CHAPTER 5

The Validation

Comparison of numerical results with the experiments will be provided in this
chapter in two parts; purely radial sink flow and inflow with swirl. As per definition
of inflow, the fluid enters the domain through the periphery and drained via by
centrally located outlet. The characteristics of the radial pressure distribution, radial
velocity at different stations obtained numerically (described in previous chapter) of a
steady, incompressible, axi-symmetric, turbulent flow will be compared with previous
experimental investigations. Data from Desantis and Rakwasky [1971], Singh [1993]
were chosen for purely radial flow and that of Savino and Keshock [1965] for

swirling case.

5.1 Purely sink flow:

In the case of a sink flow, the croés sectional area reduces in the streamwise
direction and consequently the fluid accelerates. As no tangential velocity is
introduced at inlet, the streamlines between inlet and exit regions will be pérallel, see
figure 5.1. Due to the developing flow near the inlet and at the exit corner turning

produce streamline bending evident in the same figure. At the exit manifold the

classical recirculation patch due to vena contracta is clearly visible.
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Figure 5.1: Stream function for the numerical modeling of purely radial turbulent sink

flow at G=0.0394, Re= 2538. ‘

Due to the existence of the exit recirculation zone, the manifold length of
ﬁumerical domain should be selected in such a manner as to allow flow development.
Any length before this development contains reverse flow. As outflow boundary
condition let the flow go out only, it contradicts the algorithm followed by
recirculation zone and hence, misleads the pressure calculations. Moreover, the
pressure boundary condition will lead to numerical difficulties, which in turn will
necessitate additional computing time for convergence. Due to the complexity in
estimating the backpressure and turbulence intensity of the reverse flow, the outflow

boundary condition was used in lieu of the exit pressure condition. For purely sink
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flow studied here, a pressure condition at the inlet provided similar result as those by
the inlet velocity condition. However, a uniform velocity at inlet was imposed due to
the simplicity. Particular care was provided to the inlet length as turbulent
characteristics require sufficient time and distance to adjust to the acceleration. Even
if fully developed turbulent profile was defined at inlet, it would not affect the
solution to a significant manner since in the case of purely sink flow, the nature of
turbulence depend only on acceleration rather than the ‘history of flow’ at the
entrance.
i) Pressure Distribution:

The radial variation of the static pressure depends on the inertial contribution,

turbulence losses, and viscous dissipation.

d2/d1=6, G=0.0295

16

Re 3175 (num)
14 — — — Re 4320( num)
= = =Re 5268(num)

12 o Re 3175 (exp)
\ . Re 4320 (exp)
10 o Re 5268(exp)
o \
Q. 8
o

S e = 2

0 0.2 04 06 0.8 1

Non dimensional radius

Figure5.2: Numerical and experimental [Singh, 1993] pressure difference of purely

sink flow for G=0.0295.
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In order to gage the numerically obtained pressure distribution against the
experiments of Singh [1993] three different geometries (gap ratios G=0.0295, G=

0.0197, G=0.00984) along with twelve inlet Reynolds numbers were used

Since for a purely sink flow the flow area is continually reduced along the
flow direction, the pressure decreases monotonically [Tsifourdaris, 2003]. Figures
5.2, 5.3, and 5.4 show changes of the pressure, starting immediately after the

entrance, which persist until the fluid finds the exit port.

d2/d1=6, G=0.0197

16 Re 3175(num) |..

- = = =Re 3905 (num)
~———Re 4373 (num)
14 -~ = = Re (4729 (num) |__
3 ¥ = Re 4885(num)

Re 3175(exp)
12 \
10

Re 3905 Eexpg ]
Re 4373 (exp
Re 4729 expg
Re 4885 (exp

XeP>0OO

P-Po
o
L

T 7

0 0.2 0.4 0.6 0.8 1
Non dimensional Radius

Figure 5.3: Numerical and experimental [Singh, 1993] pressure difference of purely

sink flow for G=0.0197.
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Figure 5.2 reveals some deviations to exist near the inlet area among the
numerical solution and the experimental data. It is also evident, from the same figure,
that there is a noticeable deviation between the two for radii greater than 0.6. In other
figures (figure 5.3, figure 5.4), however, no such a digression is observed. The latter
leads us to believe that the discrepancy among the two in figure 5.2 it may be due to

experimental error.

Near the exit region, both of inertia and viscous contributions play vital roles
for the noticeably sharp changes of the pressure. Decreasing the gap ratio has minimal
effect on the pressure difference but for a given gap size, increasing the inlet

Reynolds number leads to a decrease of the pressure drop.

18 d2/d1=6, G=0.00934
16 Re 2344(num) |_
- - = =Re 2722 (Num)
14 S — — Re 3175 (num) |_|
/ e = Re 3825(num)
12 Y 0 Re 2344(exp)
\ O Re 2722 (exp)
10 \ O Re 3175 (exp)
£ s A Re3825
° N
4 g
S
2 =%
0 ] ] £ _
0 0.2 04 0.6 0.8 1
Non dimensional Radius

Figure 5.4: Numerical and experimental [Singh, 1993] pressure difference

of purely sink flow for G=0.00984.
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The percentage error amongst the numerical and experimental [Singh, 1993]

pressure distributions is shown in Table 5.1. It is amply evident that the numerical

technique is capable of predicting the pressure fairly.

non dimensional radius

Gap ratios . Re 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.!
3175 -0.0693 | 0.0433 | 0.09511 | 0.18067 | 0.3912 0.2 | 0.446501 | 0.58897.
G=0.0295 | 4320 -0.082 | 0.02567 | 0.23561 | 0.3228 | 0.385
5268 -0.0496 0.0448- 0.41959
3175 0.0642 | 0.0513 | 0.06843 | -0.0341 | 0.109 | 0.105] -0.2632 0.204
G=0.0197 3905 0.0612 0.05241 0.04122 | -0.0075 | -0.002 | 0.098 0.143 ] -0.114
% of
4373 | error | 0.0501 | 0.0091 [ -0.0735 | -0.0447 { -0.054
4729 0.0354 0.0407- -0.0829 | -0.0826 0.08 | -0.19481 -0.523
4885 Q.0815 0.0331— -0.0446 | -0.0016 | -0.023
G=0.00984 | 2344 -0.2069 0.2762- -0.252 { -0.1056 -0.4676
2722 -0.1463 0.2565- -0.2568 { -0.1983 | -0.206 { -0.156
3175 -0.1033 0.1905- -0.2715 | -0.3772 | -0.352 | -0.93 | -0.50933
3825 -0.0835 0.0881- -0.1697 | -0.2601 { -0.273 | -0.299 -0.293 -1.26

Table 5.1: Percent of errors between numerical and experimental [Singh, 1993]

pressure difference.
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ii) The Radial Velocity:

Based on the viscous and/or acceleration effects and in order to achieve
solutions previous numerical and analytical studies for unidirectional sink flow
[Wormley, 1969 and Tsifourdaris, 2003] were restricted to three different flow
regions with setups of very small gap ratios and/or low inlet Reynolds numbers.
However, the present study relaxes the previous restrictive conditions and considers
the turbulent flow in enclosures of moderate gap ratios. The results obtained (see
figure 5.5 to 5.11) show that inertia force is dominant to viscous force across almost
the entire flow domain. In order to verify the numerically obtained flow
characteristics, Singh’s [1993] four experimental cases (shown in figures 5.5, 5.6, 5.7,
and 5) were considered. Two gap ratios and a range of inlet Reynolds numbers were
used. In addition, the three sets of experimental data provided by Desantis and

Rakwasky’s [1971] (see figures 5.9, 5.10, and 5.11) were also included.

When the flow enters the domain with a uniform velocity and in order to
accommodate the wall non-slip condition, it starts to develop. Figures 5.5 and 5.7 are
implying that the numerical calculation is able to capture the flow evolution in the
entrance region. For higher Reynolds numbers (figures 5.6 and 5.8), the small
differences between the experiment and numerical solution at entrance region are
clear. These discrepancies may be attributed to the insufficient time and space
allocations (due to the higher inlet velocity) given for turbulence to be adequately
adjusted to the acceleration. However, the trend of velocity profiles in both the

numerical predictions and the experimental information seem to be reasonably good.
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The numerical study of Murphy et al. [1983] suggested that at larger entry
radii, after the entrance effects have died down, viscosity dominates the flow. The
argument was based on the fact that in this region, the radial velocity profile changes
from the imposed inlet uniform distribution to the parabolic shape. In the intermediate
section, boundary layer develops and reaches up to half of the disc spacing. Then,
cross-sectional area reduction causes the fluid in the potential core to accelerate and
makes the boundary layer thinning until it reaches to the locality of exit. At very small
radii, acceleration is seen to dominate the flow rather than viscosity that allows the

radial velocity begins to revert back to a uniform profile.

The radial velocity inside the boundary layer has been measured by Desantis
and Rakwasky [1971]. They provided three experimental data sets, corresponding to
three different inlet-Reynolds numbers, show similar trends. The main flow between
the two discs is essentially inviscid with a boundary layer developing along the two
disk walls. These layers occupy only 10 percent of the total flow area. The radial
velocity inside boundary layer was found to be a function of radius, while the
boundary layer had developed at about 0.8 of the non-dimensional radial position.
Subsequent to this radial position, its thickness decreases as the fluid continues to
flow towards the center of the sink. The latter being a direct result of the favorable
pressure gradient which tends to accelerate the flow in the stream wise direction.

Tsifourdaris [2003] had theoretically shown that boundary layer development

near the entrance to be very quick and the displacement thickness found to increase
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up to 80% of the non dimensional radius (see figures 5.5, 5.6, 5.7, 5.8), and then to

decrease linearly towards the geometric center.

Finally, comparison between the current numerical and the experimental
results of Desantis and Rakwasky [1971] presented in figures 5.10 and 5.11 show a

very sound agreement even near inlet zone.

As the flow advances downstream (for example, less than 80% of the non-
dimensional radius toward the centre of the sink) viscous effect is reduced rapidly and
the radial velocity is increasing monotonically as the flow area reduces. In this region,
aﬁceleration affects strongly the nature of the flow, which produces the distinctly

present velocity plateau.
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G =0.0394, Re = 2538
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Figure 5.5: Radial velocity Vs. Gap size from numerical results and experimental data
of Singh [1993] for G=0.0394, Re= 2538.
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Figure 5.6: Radial velocity Vs. Gap size from numerical results and experimental
data of Singh [1993] for G=0.0394, Re= 4409.
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G =0.05, Re = 2538
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Figure 5.7: Radial velocity Vs. Gap size from numerical results and experimental data
of Singh [1993] for G=0.05, Re= 2538.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



G =0.0394, Re = 4409

8 e
* "‘*u,
7 jf - BN 8 ,
i ){ >/ \.'
; XN
I : Kx‘y
g 4 : K
i N Ko
c |l ~ DX
s | - v
25 e S
5 ; . T~ S,
o e . ~.
I S & <> Q <>. O N
o ! ‘ . (\ S
o 4 .
2  m o® B oW om D T T 2 om\
(72 5 g - JRRL AU UBE MRG0 e N A %‘ m R m: W LRALL R T
& i e | S
Eall — e .
R RO st ot etk i SRR
; S \\ i
, g o o 0 D_ _D O o o o o@m !
Y 0 5 0 0 0 0 o o5 O i
4 / . - : ‘
0.2 04 08 0.8 1
Non -dimensional Gap
e [ = 149 352 mm (num) r=121.92 mm (num) w1 = 91.44 mm (nUM)

-——=-r=60.96 mm(num) « = =r=4572 mm (num) ———r=36.576 mm (num)
e« [=28398 mm (num) O r=149352mm{exp) O r=121.92 mm (exp)
X r=91.44 mm (exp) A r=60.96 mm (exp) 58 r=45.72 mm (exp)

& r=36.576 mm (exp) » r=28.394 mm (exp)

Figure 5.8: Radial velocity Vs. Gap size from numerical results and experimental data
of Singh [1993] for G=0.05, Re= 4409.
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Figure 5.9: Radial velocity Vs. Gap size from numerical results and experimental data
of Desantis and Rakwasky, [1971] for 38 CFM flow rate.
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Figure 5.10: Radial velocity Vs. Gap size from numerical results and experimental
data of Desantis and Rakwasky, [1971] for 88 CFM flow rate.
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Figure 5.11: Radial velocity Vs. Gap size from numerical results and experimental
data of Desantis and Rakwasky, [1971] for 176 CFM flow rate.
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The flow seems to behave as an external boundary layer with a large central
core flunked on both sides. These characteristics can easily be verified by examining
figures 5.5 to 5.11 where they show Singh’s [1993] Laser Doppler Anemometer

(LDA) data against the present numerical computations.

Reasonable agreement in velocity profiles from radial location 91.44 mm (or
0.6 non-dimensional radius) to 45.72 mm (or 0.3 non-dimensional radius) is evident.
However, for the increased Reynolds number with a same gap ratio (see figure 5.6),
the numerical results collapse with the experimental data validating the
appropriateness of all the assumptions and boundary conditions as well as the

Reynolds-stress turbulent model employed to achieve the numerical calculations.

Although the gap size was increased from 12 mm to 15.24 mm [Singh,1993]
with the same inlet Reynolds number (see figures 5.5and 5.7), but the radial velocity
profiles have similar tendency within the inte@ediate flow region. Here again the
numerical results was found to be more accurate at higher Reynolds number (see
Figures 5.7 and 5.8). These characteristics.imply that if the flow rate (hence the
Reynolds number) is increased, the acceleration is also increased providing the flow
lesser time and space (as area is reducing toward to the flow) to be affected by
turbulence. This tehdency can also be found in the previous numerical study of
Murphy et al. [1983] where the flow visualization showed that the flow remained
laminar up to local Reynolds number 20700 although it supposed to be turbulent at

this extreme Reynolds number.
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The numerical simulation based on Desantis and Rakwasky [1971]
experimental arrangement has shown sensible agreement between two (figure 5.9,
5.10, 5.11). Here also the velocity profiles become flat as the flow proceeds (starting
from 0.8 non-dimensional radius)‘ towards the centre. At lowest flow rate (38 cfm),
the results presenfed in figure 5.8, show a deviation between experimental and
numerical data at the radial location of 2.5 inches which is eliminated at higher flow
rates (see figures 5.10 and 5.11). Average radial velocity, calculated from the
experimental data of Desantis and Rakwasky [1971] for this location (2.5 in), does
not satisfy the law of mass conservation. This discrepancy may occur either due to
plotting error or an error in the experimental set-up. Velocities at different sections
were measured using hot-wire anemometry techniques. In general, the probe disturbs
the flow and at the lower flow rate, this interference is more profound than the case of
higher flow rate. In Singh’s [1993] experiments this is not true as laser was used to
measure the velocity. However, for different ﬂqw rates with the same gap ratio (G =
0.01705 here) the good agreement with experiments of Desantis and Rakwasky
[1971] at the intermediate flow region (figure 5.9, 5.10, 5.11) confirms the adequacy

of the numerical method to approximate the radial velocity.

Past this zone, the flow starts to sense the exit. In order to negotiate the turn,
the streamlines begin to curve. Numerical modeling is also able to predict the
asymmetric behavior of the velocity (see figures 5.5 to 5.8) where it displays maxima

towards the disc encompassing the exit port. The latter behavior was also found in the
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experiment conducted by Tsifourdaris [2003] at very low inlet Reynolds number and

gap ratio (Re = 328.74, G= 0.01389).

Comparing the present results to the experiments of Singh [1993] for exit zone
shows a good agreement for lower Reynolds number (figure 5.5 and 5.7) but a
discrepancy appears if the flow rate is approximately doubled (see figures 5.6 and
5.8). These differences of numerical result from the actual flow situation could be due
to two reasons. Firstly, the computations provide only an approximate solution.
Secondly, the effect of compressibility plays an important role in the determination of
the flow character which the present approach does not include. A qualm concerning
the precise conditions in Desantis and Rakwasky [1971] experimental work may arise
noting the asymmetric velocity profile near the exit area (see figures 5.10 and 5.11)
where the flow paradoxically tends to go faster in one end than in the symmetric

counterpart.

Another important fact of the numerical solution is its ability to predict the
flow criteria near wall. All of the figures shown above (figures 5.5 to 5.11) are
reporting a good correspondence between the numerical and the experimental results

for the near the wall behavior although the present study focused on the mean flow

rather than the flow through the boundary layers where no experimental data are

available.
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5.2 Swirling inflow:

Let us now consider the previously treated inflow with one modification. In
addition to the pure radial velocity imposed at the inlet, let us now include also a
tangential component. These types of sink flow have been found to be characterized
by streamline curving; see the fine work of Savino and Keshock [1965]. A striking
characteristic of flows of this kind is the appearance of a toroidal recirculation zone of

fluid, which covers a hefty part of main flow area, see figure 5.12.
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Figure 5.12 (a): streamlines of the experiment [Savino and Keshock, 1965]. Figure
5.12 (b): numerical streamlines.
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The simulations with swirl considered the experimental set-up and flow
conditions of Savino and Keshock [1965]. Their arrangement can be viewed into two
ways; either swirling flow between two disks with a large gap, or the flow in a short
cyclone chamber. Figure 5.12 (a) and (b) represents the streamline patterns obtained
numerically and the previous experimental streamline patterns [Savino and Keshock,
1965] respectively. A good similarity between the two is clearly evident. As the fluid
enters the flow domain it immediately senses the centrifugal force field. In the attempt
to find the exit taking a path of least resistance, it splits into two streams. The first
stream flows along the upper plate while the second one propagates next to the lower
disk. Streamline contraction in the proximity of walls points out that most of the inlet
flow finds the exit flowing through the top and bottom Ekman’s boundary layers.

In core region where the toroidal vortices reside, are seen to extend up to the
inlet and to even to penetrate deep near exit, streamlines indicate that almost no fluid
particles fine the exit through a rude crossing the mid channel. Savino and Keshock
[1965] performed their experimental investigation under one swirl ratio. However, the
effect of different inlet swirling ratios on streamline development will be discussed
later. Here, the numerical results in terms of the non-dimensional pressure, radial
velocity along with swirling velocity profiles will be compared with the experimental

of Savino and Keshock [1965].
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i) The Pressure:

The static pressure for swirling inflow shows a similar behavior as for the
purely sink flow. Following the acceleration, which has less effect in the inlet region,
pressure drop increases slower than in the case of a uni-radial flow but as it penetrates
more into the flow domain the strong acceleration makes the pressure to experience a

considerable drop near the outlet region.
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Figure 5.13: comparison of numerical pressure profile with the experiment [Savino
and Keshock, 1965] '

Figure 5.13 shows the numerical pressure values to be in good accord with the
experimental data of Savino and Keshock [1965]. Alike to the purely radial inflow
there is a noticeable small deviation between the two in the vicinity of the exit where

compressibility may be important. A similar behavior for the pressure field was also
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reported by Tsifourdaris [2003] where it was shown that for the highest gap size
tested, the pressure drop was more pronouns at Reynolds numbers. Meanwhile, the
effect of Reynolds number and gap ratio is minimal on the pressure field for smaller
gap sizes. The more severe reduction of pressure for swirling flow in comparison to
purely sink flow was reported in Tsifourdaris [2003] which is also in concurrence

with present numerical calculations.

ii) The Radial Velocity
The numerically calculated radial velocities at different radial stations and the
experimental profiles from reference [Savino and Keshock, 1965] are presented in

figures 5.14 (a) to (g).
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Figure 5.14(a): Radial velocity Vs Gap size from numerical result and experimental
data of Savino and Keshock [1965] at 0.768 non-dimensional radial distance.
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Its clear form all these figures that almost all radial inflow occurs adjacent to the discs
surfaces.
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Figure 5.14(b): Radial velocity Vs Gap size from numerical result and experimental
data of Savino and Keshock [1965] at 0.6 non-dimensional radial distance.
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Figure 5.14(c): Radial velocity Vs Gap size from numerical result and experimental
data of Savino and Keshock [1965] at 0.512 non-dimensional radial distance.
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Figure 5.14(d): Radial velocity Vs Gap size from numerical result and experimental
data of Savino and Keshock [1965] at 0.4266 non-dimensional radial distance.

The swirling ratio, which dominates this type of fluid motion, will be
discussed next. Imposition of swirl at the inlet gives rise to a centrifugal force field. In‘
addition to the acceleration, this type of flow must develop a static pressure
component in such a way as to mainly balance the radial centrifugal force. This will
give rise to differences in the present calculations as compared to the previous whefe
swirl was absent. Increasing the inlet swirl ratio produces a greater centrifugal field

which affects considerably the flow.

In an analytical and experimental study by Wormley [1969] using a short
vortex valve, the preference of the radial inflow to find the exit through the boundary

layers was looked at by means of flow visualizations. Photographs with injected
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milky powder has shown that the higher the swirl number is the smaller the portion of
the fluid that finds the exit through a mid-channel path, or the higher the fraction that
finds the outlet through the upper and lower boundary layers. The long lasting milky
donut (see flow visualization photographs, fig 3, 4, 5, 6 of Wormley, 1969) have
shown the lack of radial flow in the mid- chamber at highest swirl ratio. When
swirling ratio was decreasing, more radial component was penetrating the mid-gap
causing those milky donuts to occupy less portion of the chamber. At the lowest swirl
ratio, there was no donut remaining in the domain which demonstrated the minimal
effect of a weak centrifugal force on the flow.

The influence of variable swirling ratio was also examined by Donaldson and

Snedeker which was reported by Savino and Keshock [1965].
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Figure 5.14(e): Radial velocity Vs Gap size from numerical result and experimental
data of Savino and Keshock [1965] at 0.3413 non-dimensional radial distance.
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Figure 5.14(f): Radial velocity Vs Gap size from numerical result and experimental
data of Savino and Keshock [1965] at 0.256 non-dimensional radial distance.
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Figure 5.14(g): Radial velocity Vs Gap size from numerical result and experimental
data of Savino and Keshock [1965] at 0.17065 non-dimensional radial distance.
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They had reported that when tangential to radial velocity ratio is equal or less
than 1.5, radial flow was found at gap centre line. If this ratio exceeded by 1.5, radial
inflow was unable to penetrate the centrifugal field. Consequently, at the swirling
ratio of > 12, fluid changed their path from radial to axial direction just after entered
into the chamber.

The present study is concerned with the modeling of strongly swirling
turbulent inflow. The powerful tangential motion would set up the expected toroidal
v.ortices. .As the fluid enters the domain it would be quickly deflected towards the two
disks and would continually flow parallel to the disk surfaces. As the fluid approaches
the exit, the effective flow area decreases thus it is experiencing an increase of the
inward radial momentum. Figure 5.14 confirms that near the wall the radial is greater
than centrifugal acceleration.

It is therefore clear that for the case of strong swirl, the centrifugal force
dominates the gap center but not the neighborhood of the wall, where it becomes
weak and allows the radial flow to dominate.

Vortices cause the radial flow to revetse at the mid-plane and to reach even the
near the inlet area. Figure 5.14a, 5.14b, 5.14c, shows the ability of numerical
calculation to capture accurately this particular flow behavior. Let us be reminded that

the inlet velocity was uniform (discussed in numerical chapter). Although in this way
we approximated the flow by including the average effect this may not however be
absolutely true when one wishes to capture the flow transformations very near the

inlet.
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As the fluid approaches the exit the effective flow area decreases thus the flow
must be experiencing an increase in the inward radial velocity. This effect gives rise
to the growing velocity spikes near the wall (see figures 5.14a to 5. 14g). The saddle-
like shape manifestation in the velocity profile, shown in figures 5.14 (d) to (f), is the
consequence of the development of a reverse flow near the mid-plane. As the fluid
approaches the exit its Vélocity is expected to become asymmetric. This manifestation
is clear in figure 5.14(g) where one of spikes (near the bottom disk) is smaller than
the other. The present numerical solution using the Reynolds stress modeling predicts

approximately the same trend.
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iii) The Swirl Velocity
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Figure 5.15(a): Swirl velocity Vs Gap size from numerical result and experimental
data of Savino and Keshock [1965] at 0.768 non-dimensional radial distance.
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Figure 5.15(b): Swirl velocity Vs Gap size from numerical result and experimental
data of Savino and Keshock [1965] at 0.6 non-dimensional radial distance.
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Figure 5.15(c): Swirl velocity Vs Gap size from numerical result and experimental
data of Savino and Keshock [1965] at 0.512 non-dimensional radial distance.
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Figure 5.15(d): Swirl velocity Vs Gap size from numerical result and experimental
data of Savino and Keshock [1965] at 0.4266 non-dimensional radial distance.
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Figure 5.15(e): Swirl velocity Vs Gap size from numerical result and experimental

data of Savino and Keshock [1965] at 0.3413 non-dimensional radial distance.
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Figure 5.15(f): Swirl velocity Vs Gap size from numerical result and experimental
data of Savino and Keshock [1965] at 0.256 non-dimensional radial distance.
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Figure 5.15(g): Swirl velocity Vs Gap size from numerical result and experimental
data of Savino and Keshock [1965] at 0.17065 non-dimensional radial distance.

The development of the tangential or swirl velocity inside the chamber is
expected to be that of a real vortex rather that the idealized formulation of Rankine.
At the outer periphery the tangential velocity should follow closely the potential

vortex profile veering away as the vortex center is approached. The last was clearly

shown by Tsifourdaris [2003].

Swirl velocity is seen to remain almost flat across a good portion of the gap,

see figures 5.15(a) to 5.15 (g). Near the flat surfaces of the disks the velocity reduces

to zero through the Ekman’s layer developed in the azimuthal direction. Two peaks in
the tangential velocity profile, presented in Kendall’s experiments [1962] and

Vatistas’ numerical computations [1984] also appear here. As anticipated the swirl
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velocity is increasing towards the center (see figures 5.15a to 5.15g). Accordingly, the
centrifugal force experienced by the forward moving fluid is increased. Difference
between numerical and experimental profiles near the inlet (figure 5.15a) must be as
" due to the velocity imposition of the inlet tangential velocity, which was assumed to

uniform across the entire height of the gap.
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CHAPTER 6

Conclusions

Numerical investigations concerning the turbulent flow developed between
two disks were conducted using the commercial CFD software FLUENT 6.1. Steady,

incompressible purely radial and swirling inflows were considered.

It was shown that in the case of sink flows, inertia increased either due to inlet
velocity augmentation or decrease of the local area. This produced velocity profile
plateau thus suggesting tﬁat inertia must overpower the viscous forces. In the case of
swirling inflow, the dominating centrifugal force pressed almost all of the flow to
drain through the end plate boundary layers. It became apparent that the near the disk,
radial velocity spikes are due to the synergetic contribution of boundary layer
development and the reduction of the local cross sectional flow area. The numerical
algorithm was found to be able to effectively simulate the mid channel recirculation
zone. The latter is also the causes for the saddle-like behavior of the radial velocity.
The known tangential velocity peaks near the disks known from previous studies

appeared also in the current solutions.

Therefore, the present study has been validated the tool that can now be used

to provide answers to some outstanding questions.
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Contribution

1) Different inlet and exit conditions were examined to select appropriate boundary
conditions that are able to predict reasonably accurate numerical results.

2) In case of purely radial inflow, present work catches the entrance and exit effects
along with the flow of intermediate zone comparing to the previous numerical work
by Singh [1993].

3) The effect of centrifugal force ahd the presence of toroidal vortices are successfully
outlined in present investigation. These phenomena obstructed to the previous
researches getting proper analytical treatment [Vatstas et al., 2005] or numerical
solution [Kowk et al., 1972] for this type of flow.

4) Reasonable agreement between numerical results and those of previous
experimental works indicate that the numerical tool, assumptions and boundary
specifications used here are capable to predict the similar flow problem with
complicated geometries relevant to the industrial applications.

5) Above all, present work is cost effective comparing to experimentations.
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Future Works

1) Numerical study with time dependent solution can be done to achieve the effect of
compressibility at near exit area.

2) Entrance length and effect of turbulence intensity inside the domain can be

checked.

3) Problem related to the instability can be investigated.

4) Numerical and experimental work for radial outflow (with and without swirl) can

be done with the similar set-up or with different gap ratios.

5) Heat transfer of the flow between two discs for sink flow and source flow with or

without swirl can be examined numerically as well as experimentally.
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APPENDIX

Non dimensional parameters are as follows;

A% v r
_ —_9 — —_
u__L, V= 3 w____l_’ 77——_
Uy Yo U 0
z h u
gz_, O-=—", Rez_g__
h R, 1%
Vv P Re u, R
S=-2, =—>, Re =—=22
U, pU, o 1%

Introducing these non-dimensional parameters in continuity and momentum

equations;
Now, continuity equation (4) can be modified as;

uo{__ _} 6w ~0
R, 0n n ag

h 1 0@, ow_,
R, 'n 0n og

or, _O_-M.F?_‘ﬂ:()

n on 0g

So the non-dimensional continuity equation for present flow domain will be;

n on Gag
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Putting all non-dimensional values in » momentum equation (5);

o(uu 0) Wiy Oury)  (wy)* la(l‘[pug)+v 0” (uu,) N 1 O(uu,) N 0 (uuy)  uu, ,
6(77R ) “o(h) R, p O(nRy) o(nR,)*  (nRy) d(nR,) (h)'  (MR,)

or,
O(uu, 0) Wi 6(uu0)_(vu0S)2_____L@(Hpué)_l_v az(uu0)+ 1 6(uu0)+62(uu0)_ uu, ]
a(7713) ahg) 1R, p OmR)  OMR,)’  (nR,) d(nR) (K (nR,)’
Roanh6§ ] R,0n Ry on” ndon K 05 7
h

ou 1 du v'S* o1 R, u 1ou 1 &u u
or, y—4—w—- = + —+ e ————]
on o ¥ 7 an wh on® non o*d* n

v

2 2 2
or, o 1,0 v o 1,0u 10w 10u u,

+
on o 98 7 on  Re'an® 77377 oralt n’
: g

So, Non-dimensional r momentum equation will be;

2 2 2 ’
ou 1 ou Vo 6H+1 61: 16u 1 0u _u_] (9)
, on* non oot nt

Putting values in dimensional # momentum equation (6);

5( 0) wit, 6(vv0) (u“o)(vvo) 82(V"o) 1 9(vw,) az(vvo) YWo ]
"5 Ro) 5(h§) R, a(ﬂRo) (1R,) a(77Ro) o(heY: (MR’

or,
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y a(vuOS)+Wu a(vuoS) (uuo)(vuoS) [6 (vu,S) 1 8(vu0S) 0* (vu, S)  vu,S ]
" O(IR,) ore) 1k SR, | Ry 0R,) | ALY (1R,)

ﬁS_a_v_R0 6vuv_1{0‘5,62\14_16v_'_R062 v

or, {u +——W——+—}— —_ > —T]
R, ~on h 0& 7 R, “on® non K3 7n
ov 1 ov uv 1 8% 1ov 1 &% v
o, y—t—w—+t—= st — = ——]
on o 8¢ n uRon* non '8l g
v

Than, the non- dimensional # momentum equation will be;

2 2
W o w 1 ov 1o 10y v, (10)

én o 98¢ n Re, on® nong o*ds* g

Now substituting the dimensional zmomentum equation (7);

B(uyw) Augw) wa(uow) _ 1 a(npu§)+v 0" (uyw) L] O(uyw) +62(u0w)

ok o) o oty ey Ry dmRy T ALY )

2 2 2 A2
or, Eo_{uiw_+_1io_w_8_w}= u06H+ u, 0w 10w Ry 0w

R on h o hot Rog® non W ol

0[____ a0

]

2 2 2
or, u_a_w-+_R_°.W.é.W_:—_R_(l_a_r_I.+._v__[a_}ﬂ+_}_zw_+§9.a w

on h 8,  h 3 uR, on* non K o

]

ow Ry Bw_ 180 1 w low 19w

or, y—— 4oy +=
“on hVar T T oor uR en pon o a:z]
Vv
2 2
(B o 1ol 1 Ow 1w 10w (11)

bt
on h 8¢ o9l Re, on* non oLt
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